Compression limits in cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....
Cascaded quadratic soliton compression at 800 nm
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey;
2007-01-01
We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Wise, Frank W.
2008-01-01
The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...
DEFF Research Database (Denmark)
Bache, Morten; Lægsgaard, Jesper; Bang, Ole;
2007-01-01
We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...... nonlinearity, and show that compression of nJ pulses to few-cycle duration is possible in such a fiber. A small amount of group-velocity mismatch optimizes the compression.......We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton p...
Bache, Morten
2009-01-01
The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300-500 fs with a wavelength around 1030 nm and 10s of $\\mu$J pulse energy. Here we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO$_3$ using a type I phase matching configuration. We find that because of competing cubic material nonlinearities compression can only occur in the nonstationary regime, where group-velocity mismatch induced Raman-like nonlocal effects prevent compression to below 100 fs. However, the strong group velocity dispersion implies that the pulses can achieve moderate compression to sub-130 fs duration in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off is addressed, and in particular the latter could become an issue when compressing in such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locke...
DEFF Research Database (Denmark)
Bache, Morten
2009-01-01
The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch...
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin; Chong, A.
2010-01-01
We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals.......We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals....
Evolution of Dark Spatial Soliton in Quasi-phase-matched Quadratic Media
Institute of Scientific and Technical Information of China (English)
WANG Fei-Yu; CHEN Xian-Feng; CHEN Yu-Ping; YANG Yi; XIA Yu-Xing
2005-01-01
We theoretically investigate the evolvement of dark spatial soliton with cascading quadratic nonlinearity in quasi-phase-matched second harmonic generation. It is shown that the dark solitary wave can propagate stably when background intensity is large enough, in which diffraction of beam can be balanced by the cascading quadratic nonlinearity. We also analyze the influence of phase-mismatch on the stability of dark soliton propagation.
Modulational stability and dark solitons in periodic quadratic nonlinear media
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We show that stable dark solitons exist in quadratic nonlinear media with periodic linear and nonlinear susceptibilities. We investigate the modulational stability of plane waves in such systems, a necessary condition for stable dark solitons....
Dynamics of Soliton Cascades in Fiber Amplifiers
Arteaga-Sierra, F R; Agrawal, Govind P
2016-01-01
We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.
Dissipative quadratic solitons supported by a localized gain
Lobanov, Valery E; Malomed, Boris A
2014-01-01
We propose two models for the creation of stable dissipative solitons in optical media with the $\\chi^{(2)}$ (quadratic) nonlinearity. To compensate spatially uniform loss in both the fundamental-frequency (FF) and second-harmonic (SH) components of the system, a strongly localized "hot spot", carrying the linear gain, is added, acting either on the FF component, or on the SH one. In both systems, we use numerical methods to find families of dissipative $\\chi^{(2)}$ solitons pinned to the "hot spot". The shape of the existence and stability domains may be rather complex. An existence boundary for the solitons, which corresponds to the guided mode in the linearized version of the systems, is obtained in an analytical form. The solitons demonstrate noteworthy features, such as spontaneous symmetry breaking (of spatially symmetric solitons) and bistability.
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...
Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin
2012-01-01
We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....
Liu, Xing; Guo, Hairun; Bache, Morten
2015-01-01
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Cascaded Quadratic Soliton Compression in Waveguide Structures
DEFF Research Database (Denmark)
Guo, Hairun
The generation of few-cycle, high-intensity laser pulses is of great interests in a variety of research and application fields such as time-resolved spectroscopy, bio-chemical imaging with two-photon absorptions, medical treatment, material characterization, coherent supercontinuum generation...... and tera-hertz wave generation. Commercial pulsed lasers including the solid state system and the pulsed fiber laser have promised the generation of energetic femto-second pulses with the temporal duration around much more than tens of femto-seconds. Therefore, pulse compression technologies could be used...
Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.80.053812
2011-01-01
By using a powerful reductive perturbation technique, or a multiscale analysis, a generic Kadomtsev-Petviashvili evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in quadratic nonlinear media beyond the slowly varying envelope approximation is put forward. Direct numerical simulations show the formation, from adequately chosen few-cycle input pulses, of both stable line solitons (in the case of a quadratic medium with normal dispersion) and of stable lumps (for a quadratic medium with anomalous dispersion). Besides, a typical example of the decay of the perturbed unstable line soliton into stable lumps for a quadratic nonlinear medium with anomalous dispersion is also given.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun;
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper;
2007-01-01
We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression.......We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression....
TEMPORAL OPTICAL SOLITONS VIA MULTISTEP x(2) CASCADING
Institute of Scientific and Technical Information of China (English)
HUANG GUO-XIANG
2001-01-01
We consider a multistep X(2) cascading for light pulses with the dispersion of the system taken into account. Using the method of multiple scales we derive a set of coupled envelope equations governing the nonlinear evolution of the fundamental, second and third harmonic waves involved simultaneously in two nonlinear optical processes, i.e. second harmonic generation and sum frequency mixing. We show that three-wave temporal optical solitons are possible in three- and four-step cascading in the presence of a group-velocity mismatch between different pulses.
Limits to compression with cascaded quadratic soliton compressors
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths λ = 1.0−1.3 μm in a β -barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. however...
Guo, Bang-Xing; Gao, Zhan-Jie; Lin, Ji
2016-12-01
The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves. Supported by the National Natural Science Foundation of Zhejiang Province under Grant No. LZ15A050001 and the National Natural Science Foundation of China under Grant No. 11675164
DEFF Research Database (Denmark)
Zeng, Xianglong; Guo, Hairun; Zhou, Binbin
2012-01-01
In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced.......In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced....
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-01-01
and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...
Ulvila, Ville; Halonen, Lauri; Vainio, Markku
2015-01-01
We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.
Zhou, B B; Bache, M
2014-01-01
Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO$_3$ cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband ($\\sim 1,000$ cm$^{-1}$) mid-IR pulses around $3.0~\\mu\\rm m$ are generated with excellent spatio-temporal pulse quality, having up to 10.5 $\\mu$J energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and la...
DEFF Research Database (Denmark)
Zhou, Binbin; Chong, Andy; Wise, Frank W.;
2011-01-01
We show experimentally that sub-20 fs near-infrared pulses can be generated through soliton compression of energetic femtosecond pulses.e compression relies on cascaded type-0 second-harmonic generation in a just 1 mm long lithium niobate crystal....
Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.
1997-01-01
We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...
Trullinger, SE; Pokrovsky, VL
1986-01-01
In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experime
DEFF Research Database (Denmark)
Zhou, Binbin; Liu, Xing; Guo, Hairun;
2016-01-01
We experimentally observe widely tunable mid-IR femtosecond pulses by resonant radiation, generated by direct three-wave-mixing from a soliton in PPLN. The poling pitch gives a parametrically tunable resonant radiation, a feature absent in Kerr media....
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten; Chong, A.;
2010-01-01
By launching energetic femtosecond pulses in a lithium niobate crystal, the phase mismatched second-harmonic generation process compresses the 50 fs input pulse at 1250 nm to 30 fs through a soliton effect.......By launching energetic femtosecond pulses in a lithium niobate crystal, the phase mismatched second-harmonic generation process compresses the 50 fs input pulse at 1250 nm to 30 fs through a soliton effect....
Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities
DEFF Research Database (Denmark)
Bache, Morten; Liu, Xing; Zhou, Binbin
change Δn = ncascI, where ncase ∝ −d2eff/Δk, and deff is the effective quadratic nonlinearity. Due to competing material nonlinearities nKerr the total nonlinear refractive is ncubic = ncasc + nKerr. Interestingly ncubic can become negative (self-defocusing), elegantly avoiding self-focusing problems...
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2015-01-01
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited...... in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phasematching wavelengths due to degenerate four-wave mixing to the soliton. We also...... observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations....
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
Zhou, Binbin; Bache, Morten
2015-09-15
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phase-matching wavelengths due to degenerate four-wave mixing to the soliton. We also observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations.
DEFF Research Database (Denmark)
Bache, Morten; Wise, Frank W.
2010-01-01
using second-harmonic generation in a type-I phase-matching configuration. We find that because of competing cubic material nonlinearities, compression can only occur in the nonstationary regime, where group-velocity-mismatch–induced Raman-like nonlocal effects prevent compression to less than 100 fs...
Multi-wavelength and multi-colour temporal and spatial optical solitons
DEFF Research Database (Denmark)
Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.;
2000-01-01
We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, mult......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....
Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A
2016-01-01
Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.
Institute of Scientific and Technical Information of China (English)
CHEN Hao; WEN Shuang-Chun; ZHU He-Yuan; QIAN Lie-Jia
2004-01-01
@@ One of the obstacles in obtaining high power/energy laser sources is self-focusing, which stems from the nonlinear phase shift (B-integral) accumulated during beam propagation in Kerr media. Phase-mismatched secondharmonic generation may impose a nonlinear phase shift on the fundamental with controllable sign and magnitude,which can be used to compensate for self-focusing with a single-pass configuration. We have demonstrated such a possibility for picosecond pulses theoretically and experimentally, and both configurations of pre- and postcompensation by a β-barium borate crystal have been studied in detail. Cascaded second-order nonlinearity-based compensation for self-focusing may provide an auxiliary means to the conventional B-integral control techniques.
Soliton-similariton switchable ultrafast fiber laser
Peng, Junsong; Guo, Pan; Gu, Zhaochang; Zou, Weiwen; Luo, Shouyu; Shen, Qishun
2012-01-01
For the first time, we demonstrated alternative generation of dispersion-managed (DM) solitons or similaritons in an all-fiber Erbium-doped laser. DM solitons or similaritons can be chosen to emit at the same output port by controlling birefringence in the cavity. The pulse duration of 87-fs for DM solitons and 248-fs for similaritons have been observed. For proof of similaritons, we demonstrate that the spectral width depends exponentially on the pump power, consistent with theoretical studies. Besides, the phase profile measured by a frequency-resolved optical gating (FROG) is quadratic corresponding to linear chirp. In contrast, DM solitons show non-quadratic phase profile.
Taylor, J. R.
2005-08-01
1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here......, and we define a suitable figure of merit to screen a wide range of mid-IR dielectric and semiconductor materials with large effective second-order nonlinearities deff. The best candidates have simultaneously a large bandgap and a large deff. We show selected realistic numerical examples using one...... spanning the near-IR to the end of the mid-IR (nearly 4 octaves)....
Ryckelynck, Philippe
2011-01-01
This paper addresses the classical and discrete Euler-Lagrange equations for systems of $n$ particles interacting quadratically in $\\mathbb{R}^d$. By highlighting the role played by the center of mass of the particles, we solve the previous systems via the classical quadratic eigenvalue problem (QEP) and its discrete transcendental generalization. The roots of classical and discrete QEP being given, we state some conditional convergence results. Next, we focus especially on periodic and choreographic solutions and we provide some numerical experiments which confirm the convergence.
Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals
Zhou, Binbin
2016-01-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...
Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...
Fusion arrest and collapse phenomena due to Kerr-nonlinearity in quadratic media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2000-01-01
Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations.......Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations....
Gunasekaran, Sharmila; Hussain, Uzair; Kunduri, Hari K.
2016-12-01
The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess nontrivial 2-cycles (bubbles). Spacetimes containing such 2-cycles can have nonzero energy, angular momenta, and charge even in the absence of horizons. A mass variation formula has been established for spacetimes containing bubbles and possibly a black hole horizon. This "first law of black hole and soliton mechanics" contains new intensive and extensive quantities associated with each 2-cycle. We consider examples of such spacetimes for which we explicitly calculate these quantities and show how regularity is essential for the formulas relating them to hold. We also derive new explicit expressions for the angular momenta and charge for spacetimes containing solitons purely in terms of fluxes supporting the bubbles.
Gunasekaran, Sharmila; Kunduri, Hari K
2016-01-01
The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess non-trivial 2-cycles (bubbles). Spacetimes containing such 2-cycles can have non-zero energy, angular momenta, and charge even in the absence of horizons. A mass variation formula has been established for spacetimes containing bubbles and possibly a black hole horizon. This `first law of black hole and soliton mechanics' contains new intensive and extensive quantities associated to each 2-cycle. We consider examples of such spacetimes for which we explicitly calculate these quantities and show how regularity is essential for the formulae relating them to hold. We also derive new explicit expressions for the angular momenta and charge for spacetimes containing solitons purely in terms of fluxes supporting the bubbles.
Zhou, Binbin; Bache, Morten
2016-08-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.
The generalized Kaup-Boussinesq equation: multiple soliton solutions
Wazwaz, Abdul-Majid
2015-10-01
In this work, we investigate the generalized two-field Kaup-Boussinesq (KB) equation. The KB equation possesses the cubic nonlinearity that distinguishes it from the Boussinesq equation that contains quadratic nonlinearity. We use the simplified form of Hirota's direct method to determine multiple soliton solutions and multiple singular soliton solutions for this equation. The study exhibits physical structures for a generalized water-wave model.
Stable helical solitons in optical media
Indian Academy of Sciences (India)
Boris Malomed; G D Peng; P L Chu; Isaac Towers; Alexander V Buryak; Rowland A Sammut
2001-11-01
We present a review of new results which suggest the existence of fully stable spinning solitons (self-supporting localised objects with an internal vorticity) in optical ﬁbres with self-focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self-defocusing and quadratic nonlinearities. Their distinctive difference from other optical solitons with an internal vorticity, which were recently studied in various optical media, theoretically and also experimentally, is that all the spinning solitons considered thus far have been found to be unstable against azimuthal perturbations. In the ﬁrst part of the paper, we consider solitons in a nonlinear optical ﬁbre in a region of parameters where the ﬁbre carries exactly two distinct modes, viz., the fundamental one and the ﬁrst-order helical mode. From the viewpoint of application to communication systems, this opens the way to doubling the number of channels carried by a ﬁbre. Besides that, these solitons are objects of fundamental interest. To fully examine their stability, it is crucially important to consider collisions between them, and their collisions with fundamental solitons, in (ordinary or hollow) optical ﬁbres. We introduce a system of coupled nonlinear Schrödinger equations for the fundamental and helical modes with nonstandard values of the cross-phase-modulation coupling constants, and show, in analytical and numerical forms, results of collisions between solitons carried by the two modes. In the second part of the paper, we demonstrate that the interaction of the fundamental beam with its second harmonic in bulk media, in the presence of self-defocusing Kerr nonlinearity, gives rise to the ﬁrst ever example of completely stable spatial ring-shaped solitons with intrinsic vorticity. The stability is demonstrated both by direct simulations and by analysis of linearized equations.
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
ZHU; Linsheng
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
Parametric localized modes in quadratic nonlinear photonic structures
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;
2001-01-01
We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....
Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.
1997-01-01
We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...
2006-01-29
Jakubowski, and R. Squier, “Collisions of two solitons in an arbitrary number of coupled nonlinear Schrodinger equations ”, Physical Review Letters 90...on Nonlinear Evolution Equations and Wave Phenomena, Athens, Georgia, April 11-14, 2005. 89. D. N. Christodoulides, “ Discrete solitons in...Solitons for signal processing applications: 1. Navigating discrete solitons in two-dimensional nonlinear waveguide array networks: Among
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Indian Academy of Sciences (India)
Miki Wadati
2001-11-01
As an introduction to the special issue on nonlinear waves, solitons and their signiﬁcance in physics are reviewed. The soliton is the ﬁrst universal concept in nonlinear science. Universality and ubiquity of the soliton concept are emphasized.
Dispersive waves in fs cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Ultra-slow Bright and Dark Optical Solitons in Cold Media
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We present a systematic study on the formation of ultra-slow bright and dark optical solitons in highly resonant media. By investigating four life-time broadened atomic systems, i.e., three-state A-type and cascade-type schemes, and four-state N-type and cascade-type schemes, we show that the formation of such ultra-slow solitons in cold atomic systems is a fairly universal phenomenon.
Accardi, Luigi
2009-01-01
We construct the quadratic analogue of the boson Fock functor. While in the first order case all contractions on the 1--particle space can be second quantized, the semigroup of contractions that admit a quadratic second quantization is much smaller due to the nonlinearity. Within this semigroup we characterize the unitary and the isometric elements.
Quadratic eigenvalue problems.
Energy Technology Data Exchange (ETDEWEB)
Walsh, Timothy Francis; Day, David Minot
2007-04-01
In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.
Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Zhou, Binbin
2010-01-01
the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near...
Institute of Scientific and Technical Information of China (English)
Huai-Dong CAO
2006-01-01
Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.
Stokes Soliton in Optical Microcavities
Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry
2016-01-01
Solitons are wavepackets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fiber waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical-potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The di...
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2014-01-01
Self-defocusing soliton compression supported by the cascaded phase-mismatched second-harmonic generation process is numerically demonstrated in unpoled lithium niobate ridge waveguides where nano-joule pulses are operated and quasi-phase-matching is unnecessary. The soliton range is 1100-1800 nm....
Indian Academy of Sciences (India)
R S Kaushal; Ranjit Kumar; Awadhesh Prasad
2006-08-01
Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.
Multistage quadratic stochastic programming
Lau, Karen K.; Womersley, Robert S.
2001-04-01
Quadratic stochastic programming (QSP) in which each subproblem is a convex piecewise quadratic program with stochastic data, is a natural extension of stochastic linear programming. This allows the use of quadratic or piecewise quadratic objective functions which are essential for controlling risk in financial and project planning. Two-stage QSP is a special case of extended linear-quadratic programming (ELQP). The recourse functions in QSP are piecewise quadratic convex and Lipschitz continuous. Moreover, they have Lipschitz gradients if each QP subproblem is strictly convex and differentiable. Using these properties, a generalized Newton algorithm exhibiting global and superlinear convergence has been proposed recently for the two stage case. We extend the generalized Newton algorithm to multistage QSP and show that it is globally and finitely convergent under suitable conditions. We present numerical results on randomly generated data and modified publicly available stochastic linear programming test sets. Efficiency schemes on different scenario tree structures are discussed. The large-scale deterministic equivalent of the multistage QSP is also generated and their accuracy compared.
Multidimensional Localized Solitons
Boiti, M; Martina, L; Boiti, Marco
1993-01-01
Abstract: Recently it has been discovered that some nonlinear evolution equations in 2+1 dimensions, which are integrable by the use of the Spectral Transform, admit localized (in the space) soliton solutions. This article briefly reviews some of the main results obtained in the last five years thanks to the renewed interest in soliton theory due to this discovery. The theoretical tools needed to understand the unexpected richness of behaviour of multidimensional localized solitons during their mutual scattering are furnished. Analogies and especially discrepancies with the unidimensional case are stressed.
Indian Academy of Sciences (India)
Paulo E G Assis; Andreas Fring
2010-06-01
We investigate whether the recently proposed $\\mathcal{PT}$-symmetric extensions of generalized Korteweg–de Vries equations admit genuine soliton solutions besides compacton solitary waves. For models which admit stable compactons having a width which is independent of their amplitude and those which possess unstable compacton solutions the Painlevé test fails, such that no soliton solutions can be found. The Painlevé test is passed for models allowing for compacton solutions whose width is determined by their amplitude. Consequently, these models admit soliton solutions in addition to compactons and are integrable.
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Temporal dark polariton solitons
Kartashov, Yaroslav V
2016-01-01
We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid dark and anti-dark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while anti-dark solitons are always unstable. Both families exist outside forbidden frequency gap of the linear system.
Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri
2002-01-01
We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.
Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio
2016-01-01
We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...
Gravitating $\\sigma$ Model Solitons
Kim, Yoonbai; Moon, Sei-Hoon
1998-01-01
We study axially symmetric static solitons of O(3) nonlinear $\\sigma$ model coupled to (2+1)-dimensional anti-de Sitter gravity. The obtained solutions are not self-dual under static metric. The usual regular topological lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes involve charged Ba$\\tilde n$ados-Teitelboim-Zanelli black holes with...
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
Ho, Keang-Po
2003-01-01
The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by amplifier noise. In additional to that from amplitude jitter, the nonlinear phase noise due to frequency and timing jitter is also analyzed. Because the nonlinear phase noise is not Gaussian distributed, the overall phase jitter is also non-Gaussian. For a fixed mean nonlinear phase shift, the contribution of nonlinear phase noise from frequency and timing jitter decreases with distance ...
Bednarek, I; Bednarek, Ilona; Manka, Ryszard
1996-01-01
The evolution of a soliton star filled with fermions is studied in the framework of general relativity. Such a system can be described by the surface tension $\\sigma$, the bag constant $B$, and the fermion number density affects the spacetime inside the soliton. Whether it is described by Friedman or de Sitter metric depends on the prevailing parameter. The whole spacetime is devided by the surface of the soliton into the false vacuum region inside the soliton and the true vacuum region outside, the latter being described by the Schwarzschild line element. The aim of this paper is to study the equations of motion of the domain wall in two cases. In the first case the de Sitter metric describes the interior in the first case, and in the second case it is replaced by the Friedman metric. In both of them the Schwarzschild metric is outside the soliton. From the analysis of obtained equations one can draw conclusions concerning further evolution of a soliton star.
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Semidefinite programming for quadratically constrained quadratic programs
Olkin, Julia A.; Titterton, Paul J., Jr.
1995-06-01
We consider the linear least squares problem subject to multiple quadratic constraints, which is motivated by a practical application in controller design. We use the techniques of convex optimization, in particluar, interior-point methods for semi-definite programming. We reduce a quasi-convex potential function. Each iteration requires calculating a primal and dual search direction and minimizing along the plane defined by these search directions. The primal search direction requires solving a least squares problem whose matrix is composed of a block- Toeplitz portion plus other structured matrices. We make use of Kronecker products and FFTs to greatly reduce the calculation. In addition, the matrix updates and matrix inverses in the plane search are actually low-rank updates to structured matrices so we are able to further reduce the flops required. Consequently, we can design controllers for problems of considerable size.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
On Quadratic Differential Forms
Willems, J.C.; Trentelman, H.L.
1998-01-01
This paper develops a theory around the notion of quadratic differential forms in the context of linear differential systems. In many applications, we need to not only understand the behavior of the system variables but also the behavior of certain functionals of these variables. The obvious cases w
Interaction of spatial photorefractive solitons
DEFF Research Database (Denmark)
Królikowski, W.; Denz, C.; Stepken, A.
1998-01-01
beam or the complete annihilation of some of them, depending on the relative phase of the interacting beams. In the case of mutually incoherent solitons, we show that the photorefractive nonlinearity leads to an anomalous interaction between solitons. Theoretical and experimental results reveal...... that a soliton pair may experience both attractive and repulsive forces; depending on their mutual separation. We also show that strong attraction leads to periodic collision or helical motion of solitons depending on initial conditions....
Transverse stability of Kawahara solitons
DEFF Research Database (Denmark)
Karpman, V.I.
1993-01-01
The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...
Energy Technology Data Exchange (ETDEWEB)
Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)
2016-03-10
There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Directory of Open Access Journals (Sweden)
Feng-Tao He
2013-01-01
Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.
Annihilation Solitons and Chaotic Solitons for the (2+1)-Dimensional Breaking Soliton System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By means of an improved mapping method and a variable separation method, a scries of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.
Extended gcd of quadratic integers
Miled, Abdelwaheb
2010-01-01
Computation of the extended gcd of two quadratic integers. The ring of integers considered is principal but could be euclidean or not euclidean ring. This method rely on principal ideal ring and reduction of binary quadratic forms.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Numerical Exploration of Soliton Creation
Lamm, Henry
2013-01-01
We explore the classical production of solitons in the easy axis O(3) model in 1+1 dimensions, for a wide range of initial conditions that correspond to the scattering of small breathers. We characterize the fractal nature of the region in parameter space that leads to soliton production and find certain trends in the data. We identify a tension in the initial conditions required for soliton production - low velocity incoming breathers are more likely to produce solitons, while high velocity incoming breathers provide momentum to the final solitons and enable them to separate. We find new "counter-spinning" initial conditions that can alleviate some of this tension.
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-08-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Stokes solitons in optical microcavities
Yang, Qi-Fan; Yi, Xu; Yang, Ki Youl; Vahala, Kerry
2017-01-01
Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy.
Gravitating $\\sigma$ Model Solitons
Kim, Y; Kim, Yoonbai; Moon, Sei-Hoon
1998-01-01
We study axially symmetric static solitons of O(3) nonlinear $\\sigma$ model coupled to (2+1)-dimensional anti-de Sitter gravity. The obtained solutions are not self-dual under static metric. The usual regular topological lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes involve charged Ba$\\tilde n$ados-Teitelboim-Zanelli black holes without non-Abelian scalar hair.
Soliton crystals in Kerr resonators
Cole, Daniel C; Del'Haye, Pascal; Diddams, Scott A; Papp, Scott B
2016-01-01
Solitons are pulses that propagate without spreading due to a balance between nonlinearity and dispersion (or diffraction), and are universal features of systems exhibiting these effects. Solitons play an important role in plasma physics, fluid dynamics, atomic physics, biology, and optics. In the context of integrated photonics, bright dissipative cavity solitons in Kerr-nonlinear resonators are envisioned to play an important role in next-generation communication, computation, and measurement systems. Here we report the discovery of soliton crystals in Kerr resonators-collectively ordered ensembles of co-propagating solitons with discrete allowed temporal separations. Through analysis of optical spectra, we identify a complicated but discrete space of interacting soliton configurations, including crystals exhibiting vacancies (Schottky defects), shifted pulses (Frenkel defects), and superstructure. Time-domain characterization of the output-coupled soliton pulse train directly confirms our inference of the ...
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
Bergshoeff, Eric; Townsend, Paul K.
1999-01-01
Energy bounds are derived for planar and compactified M2-branes in a hyper-KÃ¤hler background. These bounds are saturated, respectively, by lump and Q-kink solitons, which are shown to preserve half the worldvolume supersymmetry. The Q-kinks have a dual IIB interpretation as strings that migrate bet
Self-trapped optical beams: Spatial solitons
Indian Academy of Sciences (India)
Andrey A Sukhorukov; Yuri S Kivshar
2001-11-01
We present a brief overview of the basic concepts of the theory ofspatial optical solitons, including the soliton stability in non-Kerr media, the instability-induced soliton dynamics, and collision of solitary waves in nonintegrable nonlinear models.
Formation of quasiparallel Alfven solitons
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Efficient supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching
Guo, Hairun; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten
2014-01-01
Efficient supercontinuum generation (SCG) requires excitation of solitons at the pump laser wavelength. Quadratic nonlinear waveguides may support an effective self-defocusing nonlinearity so solitons can directly be generated at common ultrafast laser wavelengths without any waveguide dispersion engineering. We here experimentally demonstrate efficient SCG in a standard lithium niobate (LN) waveguide without using quasi-phase matching (QPM). By using femtosecond pumps with wavelengths in the $1.25-1.5 \\mu\\rm m$ range, where LN has normal dispersion and thus supports self-defocusing solitons, octave-spanning SCG is observed. An optimized mid-IR waveguide design is expected to support even broader spectra. The QPM-free design reduces production complexity, allows longer waveguides, limits undesired spectral resonances and effectively allows using nonlinear crystals where QPM is inefficient or impossible. This result is important for mid-IR SCG, where QPM-free self-defocusing waveguides in common mid-IR nonline...
基于级联形式的线性切换系统的稳定性%Stability of switched linear systems via cascading
Institute of Scientific and Technical Information of China (English)
朱亚红; 程代展; 席在荣
2004-01-01
In order to investigate the problem of quadratic stability of switched linear systems via cascading, all the real invariant subspaces of a given linear system were investigated, and the result was used to provide comparable cascading form of switching models. Using the common cascading form, a common quadratic Lyapunov function (CQLF) can be found by the set of CQLF of diagonal blocks.
Stable One-Dimensional Periodic Wave in Kerr-Type and Quadratic Nonlinear Media
Directory of Open Access Journals (Sweden)
Roxana Savastru
2012-01-01
Full Text Available We present the propagation of optical beams and the properties of one-dimensional (1D spatial solitons (“bright” and “dark” in saturated Kerr-type and quadratic nonlinear media. Special attention is paid to the recent advances of the theory of soliton stability. We show that the stabilization of bright periodic waves occurs above a certain threshold power level and the dark periodic waves can be destabilized by the saturation of the nonlinear response, while the dark quadratic waves turn out to be metastable in the broad range of material parameters. The propagation of (1+1 a dimension-optical field on saturated Kerr media using nonlinear Schrödinger equations is described. A model for the envelope one-dimensional evolution equation is built up using the Laplace transform.
Relativistic solitons and superluminal signals
Energy Technology Data Exchange (ETDEWEB)
Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it
2005-02-01
Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.
Voronin, A. A.; Zheltikov, A. M.
2017-02-01
Analysis of the group-velocity dispersion (GVD) of atmospheric air with a model that includes the entire manifold of infrared transitions in air reveals a remarkably broad and continuous anomalous-GVD region in the high-frequency wing of the carbon dioxide rovibrational band from approximately 3.5 to 4.2 μm where atmospheric air is still highly transparent and where high-peak-power sources of ultrashort midinfrared pulses are available. Within this range, anomalous dispersion acting jointly with optical nonlinearity of atmospheric air is shown to give rise to a unique three-dimensional dynamics with well-resolved soliton features in the time domain, enabling a highly efficient whole-beam soliton self-compression of such pulses to few-cycle pulse widths.
Weakly deformed soliton lattices
Energy Technology Data Exchange (ETDEWEB)
Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)
1990-12-01
In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).
Exact periodic and solitonic states of the spinor condensates in a uniform external potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhi-Hai [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2016-08-15
We propose a method to analytically solve the one-dimensional coupled nonlinear Gross–Pitaevskii equations which govern the motion of the spinor Bose–Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.
A CLASS OF QUADRATIC HAMILTONIAN SYSTEMS UNDER QUADRATIC PERTURBATION
Institute of Scientific and Technical Information of China (English)
丰建文; 陈士华
2001-01-01
This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1(h) = 0 and the second order Melnikov function M2(h) ≡ 0, then the origin of the Hamiltonian system with small perturbation is a center.
Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.
Liu, X; Ilday, F O; Beckwitt, K; Wise, F W
2000-09-15
We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.
On Characterization of Quadratic Splines
DEFF Research Database (Denmark)
Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong
2005-01-01
that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...
Solitons: mathematical methods for physicists
Energy Technology Data Exchange (ETDEWEB)
Eilenberger, G.
1981-01-01
The book is a self-contained introduction to the theory of solitons. The Korteweg-de Vries equation is investigated and the inverse scattering transformation is treated in detail. Techniques are applied to the Toda lattice and solutions of the sine-Gordon equation. An introduction to the thermodynamics of soliton systems is given. (KAW)
Solitons in generalized Galileon theories
Carrillo González, Mariana; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2016-12-01
We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti-)de Sitter Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Solitons in generalized galileon theories
Carrillo-Gonzalez, Mariana; Solomon, Adam R; Trodden, Mark
2016-01-01
We consider the existence and stability of solitons in generalized galileons, scalar field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations, or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (A)dS galileons. For the case of DBI and conformal galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Thermophoresis of an antiferromagnetic soliton
Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav
2015-07-01
We study the dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant α , which can yield a drift velocity of tens of m/s under a temperature gradient of 1 K/mm for a domain wall in an easy-axis antiferromagnetic wire with α ˜10-4 .
Breather soliton dynamics in microresonators
Yu, Mengjie; Okawachi, Yoshitomo; Griffith, Austin G; Luke, Kevin; Miller, Steven A; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L
2016-01-01
The generation of temporal cavity solitons in microresonators results in low-noise optical frequency combs which are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems with a localized temporal structure that exhibits oscillatory behavior. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here, we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation in good agreement with the numerical simulations. Our study presents experimental confirmation of the stability diagram of dissipative cavity solitons predicted by the Lugiato-Lefever equation and is importance to understandin...
Halyo, Edi
2009-01-01
We describe solitons that live on the world--volumes of D5 branes wrapped on deformed $A_2$ singularities fibered over $C(x)$. We show that monopoles are D3 branes wrapped on a node of the deformed singularity and stretched along $C(x)$. F and D--term strings are D3 branes wrapped on a node of a singularity that is deformed and resolved respectively. Domain walls require deformed $A_3$ singularities and correspond to D5 branes wrapped on a node and stretched along $C(x)$.
Carroll, RW
1991-01-01
When soliton theory, based on water waves, plasmas, fiber optics etc., was developing in the 1960-1970 era it seemed that perhaps KdV (and a few other equations) were really rather special in the set of all interesting partial differential equations. As it turns out, although integrable systems are still special, the mathematical interaction of integrable systems theory with virtually all branches of mathematics (and with many currently developing areas of theoretical physics) illustrates the importance of this area. This book concentrates on developing the theme of the tau function. KdV and K
Kalashnikov, Vladimir L
2010-01-01
The analytical theory of chirped dissipative soliton solutions of nonlinear complex Ginzburg-Landau equation is exposed. Obtained approximate solutions are easily traceable within an extremely broad range of the equation parameters and allow a clear physical interpretation as a representation of the strongly chirped pulses in mode-locked both solid-state and fiber oscillators. Scaling properties of such pulses demonstrate a feasibility of sub-mJ pulse generation in the continuous-wave mode-locking regime directly from an oscillator operating at the MHz repetition rate.
Generation of bright soliton through the interaction of black solitons
Losano, L; Bazeia, D
2001-01-01
We report on the possibility of having two black solitons interacting inside a silica fiber that presents normal group-velocity dispersion, to generate a pair of solitons, a vector soliton of the black-bright type. The model obeys a pair of coupled nonlinear Schr\\"odinger equations, that follows in accordance with a Ginzburg-Landau equation describing the anisotropic XY model. We solve the coupled equations using a trial-orbit method, which plays a significant role when the Schr\\"odinger equations are reduced to first order differential equations.
Modified Korteweg-de Vries solitons at supercritical densities in two-electron temperature plasmas
Verheest, Frank; Hereman, Willy A
2016-01-01
The supercritical composition of a plasma model with cold positive ions in the presence of a two-temperature electron population is investigated, initially by a reductive perturbation approach, under the combined requirements that there be neither quadratic nor cubic nonlinearities in the evolution equation. This leads to a unique choice for the set of compositional parameters and a modified Korteweg-de Vries equation (mKdV) with a quartic nonlinear term. The conclusions about its one-soliton solution and integrability will also be valid for more complicated plasma compositions. Only three polynomial conservation laws can be obtained. The mKdV equation with quartic nonlinearity is not completely integrable, thus precluding the existence of multi-soliton solutions. Next, the full Sagdeev pseudopotential method has been applied and this allows for a detailed comparison with the reductive perturbation results. This comparison shows that the mKdV solitons have slightly larger amplitudes and widths than those obta...
Deceleration of the small solitons in the soliton lattice: KdV-type framework
Shurgalina, Ekaterina; Gorshkov, Konstantin; Talipova, Tatiana; Pelinovsky, Efim
2016-04-01
As it is known the solitary waves (solitons) in the KdV-systems move with speed which exceeds the speed of propagation of long linear waves (sound speed). Due to interaction between them, solitons do not lose their individuality (elastic interaction). Binary interaction of neigborough solitons is the major contribution in the dynamics of soliton gas. Taking into account the integrability of the classic and modified Korteweg-de Vries equations the process of the soliton interaction can be analyzed in the framework of the rigorous analytical two-soliton solutions. Main physical conclusion from this solution is the phase shift which is positive for large solitons and negative for small solitons. This fact influences the average velocity of individual soliton in the soliton lattice or soliton gas. We demonstrate that soliton of relative small amplitude moves in soliton gas in average in opposite (negative) direction, meanwhile a free soliton moves always in the right direction. Approximated analytical theory is created for the soliton motion in the periodic lattice of big solitons of the same amplitudes, and the critical amplitude of the small soliton changed its averaged speed is found. Numerical simulation is conducted for a statistical assembly of solitons with random amplitudes and phases. The application of developed theory to the long surface and internal waves is discussed.
Basic methods of soliton theory
Cherednik, I
1996-01-01
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons
Quadratic Tangles in Planar Algebras
Jones, Vaughan F R
2010-01-01
In planar algebras, we show how to project certain simple "quadratic" tangles onto the linear space spanned by "linear" and "constant" tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.
SMOOTHING BY CONVEX QUADRATIC PROGRAMMING
Institute of Scientific and Technical Information of China (English)
Bing-sheng He; Yu-mei Wang
2005-01-01
In this paper, we study the relaxed smoothing problems with general closed convex constraints. It is pointed out that such problems can be converted to a convex quadratic minimization problem for which there are good programs in software libraries.
Quantum quadratic operators and processes
Mukhamedov, Farrukh
2015-01-01
Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dynamical systems generated by classical and quantum quadratic operators is investigated and various properties of quantum quadratic operators are studied, providing an insight into the construction of quantum channels. This book is suitable as a textbook for an advanced undergraduate/graduate level course or summer school in quantum dynamical systems. It can also be used as a reference book by researchers looking for interesting problems to work on, or useful techniques and discussions of particular problems. Since it includes the latest developments in the fields of quadratic dynamical systems, Markov processes and quantum stochastic processes, researchers at all levels are likely to find the book inspiring and useful.
Soliton solutions for Davydov solitons in α-helix proteins
Taghizadeh, N.; Zhou, Qin; Ekici, M.; Mirzazadeh, M.
2017-02-01
The propagation equation for describing Davydov solitons in α-helix proteins has been investigated analytically. There are seven integration tools to extract analytical soliton solutions. They are the Ricatti equation expansion approach, ansatz scheme, improved extended tanh-equation method, the extend exp(-Ψ(τ)) -expansion method, the extended Jacobi elliptic function expansion method, the extended trial equation method and the extended G ' / G - expansion method.
Carbone, Francesco; El, Gennady
2015-01-01
We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macrosco...
Institute of Scientific and Technical Information of China (English)
SHI; Zhongci
2001-01-01
［1］Bornemann, F., Deuflhard, P., The cascadic multigrid method for elliptic problems, Numer. Math., 996, 75: 35.［2］Bornemann, F., Deuflhard, P., The cascadic multigrid method, The Eighth International Conference on Domain Decomposition Methods for Partial Differential Equations (eds. Glowinski, R., Periaux, J., Shi, Z. et al.), New York: John Wiley and Sons, 997.［3］Bornemann, F., Krause, R., Classical and cascadic multigrid-methodogical comparison, Proceedings of the 9th International Conference on Domain Decomposition (eds. Bjorstad, P., Espedal, M., Keyes, D.), New York: John Wiley and Sons, 998.［4］Shaidurov, V., Some estimates of the rate of convergence for the cascadic conjugate gradient method, Comp. Math. Applic., 996, 3: 6.［5］Shi, Z., Xu, X., Cascadic multigrid method for the second order elliptic problem, East-West J. Numer. Math., 998, 6: 309.［6］Shi, Z., Xu, X., Cascadic multigrid for elliptic problems, East-West J. Numer. Math., 999, 7: 99.［7］Shi, Z., Xu, X., Cascadic multigrid method for the plate bending problem, East-West J. Numer. Math., 998, 6: 37.［8］Braess, D., Dahmen, W., A cascade multigrid algorithm for the Stokes equations, Number. Math., 999, 82: 79.［9］Shi, Z., Xu, X., Cascadic multigrid for parabolic problems, J. Comput. Math., 2000, 8: 450.［10］Ciarlet, P.,The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 978.［11］Zienkiewicz, O. C., The Finite Element Method, 3rd. ed., London: McGraw-Hill, 977.［12］Powell, M. J. D., Sabin, M. A., Piecewise quadratic approximations on triangles, ACM Trans. Mat. Software, 977, 3: 36.［13］Xu, J., The auxiliary space method and optimal multigrid precondition techniques for unstructured grids, Computing, 996, 56: 25.［14］Bank, R., Dupont, T., An optimal order process for solving finite element equations, Math. Comput., 980, 36: 35.［15］Brenner, S., Convergence of nonconforming multigrid methods without full elliptic regularity, Math
Thermodynamic volume of cosmological solitons
Mbarek, Saoussen; Mann, Robert B.
2017-02-01
We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.
Generalized sine-Gordon solitons
Energy Technology Data Exchange (ETDEWEB)
Santos, C dos [Centro de Fisica e Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, 4169-007 Porto (Portugal); Rubiera-Garcia, D, E-mail: cssilva@fc.up.pt, E-mail: rubieradiego@gmail.com [Departamento de Fisica, Universidad de Oviedo, Avenida Calvo Sotelo 18, 33007 Oviedo, Asturias (Spain)
2011-10-21
In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)
Thermodynamic Volume of Cosmological Solitons
Mbarek, Saoussen
2016-01-01
We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter $a$, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass $M_{out}$ satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring $M_{out}$ to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.
Soliton structure dynamics in inhomogeneous media
Guerrero, L E; González, J A
1998-01-01
We show that soliton interaction with finite-width inhomogeneities can activate a great number of soliton internal modes. We obtain the exact stationary soliton solution in the presence of inhomogeneities and solve exactly the stability problem. We present a Karhunen-Loeve analysis of the soliton structure dynamics as a time-dependent force pumps energy into the traslational mode of the kink. We show the importance of the internal modes of the soliton as they can generate shape chaos for the soliton as well as cases in which the first shape mode leads the dynamics.
Soliton interactions of integrable models
Energy Technology Data Exchange (ETDEWEB)
Ruan Hangyu E-mail: hyruan@mail.nbip.net; Chen Yixin
2003-08-01
The solution of integrable (n+1)-dimensional KdV system in bilinear form yields a dromion solution that is localized in all directions. The interactions between two dromions are studied both in analytical and in numerical for three (n+1)-dimensional KdV-type equations (n=1, 2, 3). The same interactive properties between two dromions (solitons) are revealed for these models. The interactions between two dromions (solitons) may be elastic or inelastic for different form of solutions.
Soliton interactions of integrable models
Ruan Hang Yu
2003-01-01
The solution of integrable (n+1)-dimensional KdV system in bilinear form yields a dromion solution that is localized in all directions. The interactions between two dromions are studied both in analytical and in numerical for three (n+1)-dimensional KdV-type equations (n=1, 2, 3). The same interactive properties between two dromions (solitons) are revealed for these models. The interactions between two dromions (solitons) may be elastic or inelastic for different form of solutions.
Zdravković, S; Daniel, M
2012-01-01
We here examine the nonlinear dynamics of artificial homogeneous DNA chain relying on the plain-base rotator model. It is shown that such dynamics can exhibit kink and antikink solitons of sine-Gordon type. In that respect we propose possible experimental assays based on single molecule micromanipulation techniques. The aim of these experiments is to excite the rotational waves and to determine their speeds along excited DNA. We propose that these experiments should be conducted either for the case of double stranded (DS) or single stranded (SS) DNA. A key question is to compare the corresponding velocities of the rotational waves indicating which one is bigger. The ratio of these velocities appears to be related with the sign of the model parameter representing ratio of the hydrogen-bonding and the covalent-bonding interaction within the considered DNA chain.
Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom
2011-08-29
Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.
Covert, Michael
2015-01-01
This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
On the structure of gradient Yamabe solitons
Cao, Huai-Dong; Zhang, Yingying
2011-01-01
We show that every complete nontrivial gradient Yamabe soliton admits a special global warped product structure with a one-dimensional base. Based on this, we prove a general classification theorem for complete nontrivial locally conformally flat gradient Yamabe solitons.
Waveguides induced by grey screening solitons
Institute of Scientific and Technical Information of China (English)
Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhang Mei-Zhi; Li Jin-Ping; Liu Hong-Jun; Zhang Yan-Peng
2006-01-01
We investigate the properties of waveguides induced by one-dimensional grey screening solitons in biased photore-fractive crystals. The results show that waveguides induced by grey screening solitons are always of single mode for all intensity ratios, i.e. the ratios between the peak intensity of the soliton and the dark irradiance. Our analysis indicates that the energy confined near the centre of the grey soliton and the propagation constant of the guided mode of the waveguide induced by the grey screening soliton increase monotonically with intensity ratio increasing. On the other hand, when the soliton greyness increases, the energy confined near the centre of the grey soliton and the propagation constant of the guided mode of the waveguide induced by the grey screening soliton decrease monotonically. Relevant examples are provided where photorefractive crystal is of the strontium barium niobate type.
Institute of Scientific and Technical Information of China (English)
叶荣; 张彬; 李恪宇
2013-01-01
提出了一种采用倾斜脉冲的级联二阶非线性来实现超短激光脉冲压缩的方法.对基于单块BBO晶体中基频光与倍频光群速度匹配的级联二阶非线性的脉冲压缩方案进行了理论分析.对比研究了群速度匹配与失配情况下利用级联二阶非线性进行脉冲压缩的效果,并模拟分析了基频光与倍频光的位相失配量、非线性晶体长度、基频光初始峰值光强和初始脉宽等因素对脉冲压缩效果的影响.结果表明,基频光与倍频光的群速度匹配将会大幅度改善压缩脉冲的时间波形和频谱分布.通过对位相失配量、晶体长度、初始光强等参数的优化和选取可获得较理想的压缩效果.采用倾斜脉冲的级联二阶非线性的脉宽压缩方法,针对中心波长800 nm、脉宽100 fs,峰值光强为50 GW/cm2的基频光脉冲,采用25 mm厚BBO晶体,当基频光与倍频光位相失配量∆k=60 mm−1(对应失谐角1.98◦),晶体外部脉冲前沿倾斜角γ0=74◦时,计算获得了质量较好的20 fs剩余基频光,并同时产生了14 fs的倍频光.%A new method for compressing ultra-short laser pulse has been proposed in which cascaded quadratic nonlinearity with tilt pulse is used. The pulse compression scheme with group velocity matching between fundamental harmonic (FH) and second harmonic (SH) pulses in a single BBO crystal has been analyzed theoretically. The compressed results have been investigated and compared between the cases of group velocity matching and mismatching. Furthermore, the influences of the phase mismatching between the FH and SH pulses, the length of the nonlinear crystal, the initial peak intensity and pulse-duration of the FH pulse on the pulse-duration compression have been analyzed and simulated. The results show that the matched group velocity between FH and SH pulses can improve significantly both the temporal profile and the spectrum distribution of the compressed pulse. High
Finite dimensional quadratic Lie superalgebras
Jarvis, Peter; Yates, Luke
2010-01-01
We consider a special class of Z_2-graded, polynomial algebras of degree 2, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. Based on the factorisation of the enveloping algebra, we derive the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate the method for one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.
Students' understanding of quadratic equations
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-05-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.
Properties of an optical soliton gas
Schwache, A.; Mitschke, F.
1997-06-01
We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties of this soliton gas are determined numerically.
Analytical theory of dark nonlocal solitons
DEFF Research Database (Denmark)
Kong, Qian; Wang, Qi; Bang, Ole;
2010-01-01
We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....
Collapse of Langmuir solitons in inhomogeneous plasmas
Chen, Y A; Nishida, Y; Cheng, C Z
2016-01-01
Propagation of Langmuir solitons in inhomogeneous plasmas is investigated numerically. Through numerical simulation solving Zakharov equations, the solitons are accelerated toward the low density side. As a consequence, isolated cavities moving at ion sound velocities are emitted. When the acceleration is further increased, solitons collapse and the cavities separate into two lumps released at ion sound velocities. The threshold is estimated by an analogy between the soliton and a particle overcoming the self-generated potential well.
Numerical Calculation of a Standing Soliton
Institute of Scientific and Technical Information of China (English)
XianchuZHOU; YiRUI
1999-01-01
The governing equation of a standing soliton i.e. a cubic Schroedinger equation with a complex conjugate term was simulated in this article.The simulation showed that the linear damping α affects strongly on the formation of a stable standing soliton.Laedke and Spatschek stable condition is a necessary condition,not a sufficient condition.Arbitrary initial disturbance may develop into standing soliton.The interaction of two standing solitons can be simulated.
Multiple-μJ mid-IR supercontinuum generation in quadratic nonlinear crystals
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin; Ashihara, S.
2016-01-01
Pumping a quadratic nonlinear crystal in the mid-IR we observe octave-spanning mid-IR supercontinua. A self-acting cascaded process leads to the formation of a self-defocusing nonlinearity, allowing formation of filament-free octave-spanning supercontinua in the 2.0–7.0 μm range with 10s of μ...
Integer Quadratic Quasi-polyhedra
Letchford, Adam N.
This paper introduces two fundamental families of 'quasi-polyhedra' - polyhedra with a countably infinite number of facets - that arise in the context of integer quadratic programming. It is shown that any integer quadratic program can be reduced to the minimisation of a linear function over a quasi-polyhedron in the first family. Some fundamental properties of the quasi-polyhedra are derived, along with connections to some other well-studied convex sets. Several classes of facet-inducing inequalities are also derived. Finally, extensions to the mixed-integer case are briefly examined.
Successive quadratic programming multiuser detector
Institute of Scientific and Technical Information of China (English)
Mu Xuewen; Zhang Yaling; Liu Sanyang
2007-01-01
Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem,a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefinite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.
Soliton bunching in annular Josephson junctions
DEFF Research Database (Denmark)
Vernik, I.V; Lazarides, Nickos; Sørensen, Mads Peter
1996-01-01
By studying soliton (fluxon) motion in long annular Josephson junctions it is possible to avoid the influence of the boundaries and soliton-soliton collisions present in linear junctions. A new experimental design consisting of a niobium coil placed on top of an annular junction has been used...
THE PHYSICAL MECHANISM OF COLLISION BETWEEN SOLITONS
Institute of Scientific and Technical Information of China (English)
张卓; 唐翌; 颜晓红
2001-01-01
An easy and general way to access more complex soliton phenomena is introduced in this paper. The collisionprocess between two solitons of the KdV equation is investigated in great detail with this novel approach, which is different from the sophisticated method of inverse scattering transformation. A more physical and transparent picture describing the collision of solitons is presented.
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...
Soliton resonance in bose-einstein condensate
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Control of optical solitons by light waves.
Grigoryan, V S; Hasegawa, A; Maruta, A
1995-04-15
A new method of controlling optical solitons by means of light wave(s) in fibers is presented. By a proper choice of light wave(s), parametric four-wave mixing can control the soliton shape as well as the soliton parameters (amplitude, frequency, velocity, and position).
Incoherently Coupled Grey Photovoltaic Spatial Soliton Families
Institute of Scientific and Technical Information of China (English)
WANG Hong-Cheng; SHE Wei-Long
2005-01-01
@@ A theory is developed for incoherently coupled grey photovoltaic soliton families in unbiased photovoltaic crystals.Both the properties and the forming conditions of these soliton families are discussed in detail The theory canalso be used to investigate the dark photovoltaic soliton families. Some relevant examples are presented, in which the photovoltaic-photorefractive crystal is of lithium niobate type.
Complex solitons with real energies
Cen, Julia; Fring, Andreas
2016-09-01
Using Hirota’s direct method and Bäcklund transformations we construct explicit complex one and two-soliton solutions to the complex Korteweg-de Vries (KdV) equation, the complex modified KdV (mKdV) equation and the complex sine-Gordon equation. The one-soliton solutions of trigonometric and elliptic type turn out to be { P }{ T }-symmetric when a constant of integration is chosen to be purely imaginary with one special choice corresponding to solutions recently found by Khare and Saxena. We show that alternatively complex { P }{ T }-symmetric solutions to the KdV equation may also be constructed alternatively from real solutions to the mKdV by means of Miura transformations. The multi-soliton solutions obtained from Hirota’s method break the { P }{ T }-symmetric, whereas those obtained from Bäcklund transformations are { P }{ T }-invariant under certain conditions. Despite the fact that some of the Hamiltonian densities are non-Hermitian, the total energy is found to be positive in all cases, that is irrespective of whether they are { P }{ T }-symmetric or not. The reason is that the symmetry can be restored by suitable shifts in space-time and the fact that any of our N-soliton solutions may be decomposed into N separate { P }{ T }-symmetrizable one-soliton solutions.
Stability and Stabilization of Block-cascading Switched Linear Systems
Institute of Scientific and Technical Information of China (English)
Ya-Hong Zhu; Dai-Zhan Cheng
2006-01-01
The main purpose of this paper is to investigate the problem of quadratic stability and stabilization in switched linear systems using reducible Lie algebra. First, we investigate the structure of all real invariant subspaces for a given linear system. The result is then used to provide a comparable cascading form for switching models. Using the commoncascading form, a common quadratic Lyapunov function is (QLFs) is explored by finding common QLFs of diagonal blocks.In addition, a cascading Quaker Lemma is proved. Combining it with stability results, the problem of feedback stabilization for a class of switched linear systems is solved.
Quadratic Variation by Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Horel, Guillaume
We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...
Unramified extensions of quadratic fields
Institute of Scientific and Technical Information of China (English)
Wei Li; Dong Yang; Xianke Zhang
2008-01-01
Let K be a global quadratic field, then every unramified abelian extension of K is proved to be absolutely Galois when K is a number field or under some natural conditions when K is a function field. The absolute Galois group is also determined explicitly.
Surface solitons in trilete lattices
Stojanovic, M; Hadzievski, Lj; Malomed, B A
2011-01-01
Fundamental solitons pinned to the interface between three semi-infinite one-dimensional nonlinear dynamical chains, coupled at a single site, are investigated. The light propagation in the respective system with the self-attractive on-site cubic nonlinearity, which can be implemented as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlinear Schr\\"{o}dinger equations. The formation, stability and dynamics of symmetric and asymmetric fundamental solitons centered at the interface are investigated analytically by means of the variational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and two antisymmetric branches exist in the entire parameter space, while four asymmetric modes and the symmetric one can be found below some critical value of the inter-lattice coupling parameter -- actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric branch is destabilized and two new asymmetric soliton branches appear, ...
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Solitons in Bose–Einstein condensates
Indian Academy of Sciences (India)
Radha Balakrishnan; Indubala I Satija
2011-11-01
The Gross–Pitaevskii equation (GPE) describing the evolution of the Bose–Einstein condensate (BEC) order parameter for weakly interacting bosons supports dark solitons for repulsive interactions and bright solitons for attractive interactions. After a brief introduction to BEC and a general review of GPE solitons, we present our results on solitons that arise in the BEC of hard-core bosons, which is a system with strongly repulsive interactions. For a given background density, this system is found to support both a dark soliton and an antidark soliton (i.e., a bright soliton on a pedestal) for the density proﬁle. When the background has more (less) holes than particles, the dark (antidark) soliton solution dies down as its velocity approaches the sound velocity of the system, while the antidark (dark) soliton persists all the way up to the sound velocity. This persistence is in contrast to the behaviour of the GPE dark soliton, which dies down at the Bogoliubov sound velocity. The energy–momentum dispersion relation for the solitons is shown to be similar to the exact quantum low-lying excitation spectrum found by Lieb for bosons with a delta-function interaction.
The Quadratic Graver Cone, Quadratic Integer Minimization, and Extensions
Lee, Jon; Romanchuk, Lyubov; Weismantel, Robert
2010-01-01
We consider the nonlinear integer programming problem of minimizing a quadratic function over the integer points in variable dimension satisfying a system of linear inequalities. We show that when the Graver basis of the matrix defining the system is given, and the quadratic function lies in a suitable {\\em dual Graver cone}, the problem can be solved in polynomial time. We discuss the relation between this cone and the cone of positive semidefinite matrices, and show that none contains the other. So we can minimize in polynomial time some non-convex and some (including all separable) convex quadrics. We conclude by extending our results to efficient integer minimization of multivariate polynomial functions of arbitrary degree lying in suitable cones.
Consensus-ADMM for General Quadratically Constrained Quadratic Programming
Huang, Kejun; Sidiropoulos, Nicholas D.
2016-10-01
Non-convex quadratically constrained quadratic programming (QCQP) problems have numerous applications in signal processing, machine learning, and wireless communications, albeit the general QCQP is NP-hard, and several interesting special cases are NP-hard as well. This paper proposes a new algorithm for general QCQP. The problem is first reformulated in consensus optimization form, to which the alternating direction method of multipliers (ADMM) can be applied. The reformulation is done in such a way that each of the sub-problems is a QCQP with only one constraint (QCQP-1), which is efficiently solvable irrespective of (non-)convexity. The core components are carefully designed to make the overall algorithm more scalable, including efficient methods for solving QCQP-1, memory efficient implementation, parallel/distributed implementation, and smart initialization. The proposed algorithm is then tested in two applications: multicast beamforming and phase retrieval. The results indicate superior performance over prior state-of-the-art methods.
Regularized degenerate multi-solitons
Correa, Francisco
2016-01-01
We report complex PT-symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schroedinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Baecklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.
Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups
Batat, Wafaa
2011-01-01
We classify Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups. All algebraic Ricci solitons that we obtain are sol-solitons. In particular, we prove that, contrary to the Riemannian case, Lorentzian Ricci solitons need not to be algebraic Ricci solitons.
Quadratic and 2-Crossed Modules of Algebras
Institute of Scientific and Technical Information of China (English)
Z. Arvasi; E. Ulualan
2007-01-01
In this work, we define the quadratic modules for commutative algebras and give relations among 2-crossed modules, crossed squares, quadratic modules and simplicial commutative algebras with Moore complex of length 2.
Indian Academy of Sciences (India)
ABDUL-MAJID WAZWAZ
2016-11-01
We develop breaking soliton equations and negative-order breaking soliton equations of typical and higher orders. The recursion operator of the KdV equation is used to derive these models.We establish the distinctdispersion relation for each equation. We use the simplified Hirota’s method to obtain multiple soliton solutions for each developed breaking soliton equation. We also develop generalized dispersion relations for the typical breaking soliton equations and the generalized negative-order breaking soliton equations. The results provide useful information on the dynamics of the relevant nonlinear negative-order equations.
Team Decision Problems with Convex Quadratic Constraints
Gattami, Ather
2015-01-01
In this paper, we consider linear quadratic team problems with an arbitrary number of quadratic constraints in both stochastic and deterministic settings. The team consists of players with different measurements about the state of nature. The objective of the team is to minimize a quadratic cost subject to additional finite number of quadratic constraints. We first consider the problem of countably infinite number of players in the team for a bounded state of nature with a Gaussian distributi...
Agarwal, Nishant; Khoury, Justin; Trodden, Mark
2009-01-01
We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...
Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Wu, Xiao-Yu; Shan, Wen-Rui
2017-02-01
Under investigation in this paper is a three-dimensional Gross-Pitaevskii equation with the distributed time-dependent coefficients, which describes the phenomena associated with the three-dimensional Bose-Einstein condensation. Under the constraint α(t) = 2 β(t) , we obtain the bilinear forms, dark and bright N-soliton solutions via the Hirota method and symbolic computation, where t is the scaled time, α(t) and β(t) are the coefficients for the strength of the quadratic potential and diffraction, respectively. Specially, compared with the bright soliton solutions previously reported, we eliminate one constraint and obtain more soliton parameters. We give the existence constraints of the dark and bright N solitons, respectively. Choosing the diffraction and gain/loss coefficients, we observe the growth, decay, periodic oscillation, periodic collapse and revival of the dark and bright solitons. Relationships between the BEC time-dependent coefficients and soliton properties are studied. With the help of the asymptotic and graphic analysis, elastic interactions of the dark and bright two solitons are exhibited.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons & Fractals 17(2003) 669] to the Broer-Kaup system with variable coefficients, abundant new soliton-like solutions and multi-soliton-like solutions are derived. Based on the derived multi-soliton-like solutions which contain arbitrary functions, some interesting multi-soliton structures are revealed.
Soliton solutions and gauge equivalence for the problem of Zakharov-Shabat and its generalizations
Vaklev, Y.
1996-03-01
In a paper by Takhtadjan and Faddeev [Hamiltonian approach to the soliton theory (in Russian) (Nauka, Moskov, 1986)] the N-soliton solutions, related to the nonlinear Schrödinger equation (NSE), are given. A generalization of this approach allows us to apply it not only to the NSE, but to the whole hierarchy of the Zakharov-Shabat problem, to the quadratic bundle problem, and to the ones gauge equivalent to them [where one can find, for example, the Heisenberg ferromagnet equation, the relativistic Mikhailov model (which, in appropriate reduction, is equivalent to the massive Thirring model), the derivative nonlinear Schrödinger equation (which is equivalent to the derivative Landau-Lifshitz equation), etc.]. We have used an appropriate reduction, giving us interesting, from a physical point of view, results. Thus we manage to obtain the soliton solutions for the whole hierarchy of the quadratic bundle problem (free and under reduction) and for the ones gauge equivalent to it. This result was first announced in previous articles by Vaklev, but here we manage to solve the determinants given there and to present the searched result as simple fractions of products of numerical differences.
A polyhedral approach to quadratic assignment problem
Köksaldı, Ahmet Sertaç Murat
1994-01-01
Ankara : Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 1994. Thesis (Master's) -- Bilkent University, 1994. Includes bibliographical references. In this thesis, Quadratic Assignment Problem is considered. Since Quadratic Assignment Problem is JVP-bard, no polynomial time exact solution method exists. Proving optimality of solutions to Quadratic Assignment Problems has been limited to instances of small dimension. In...
Orthogonality preserving infinite dimensional quadratic stochastic operators
Energy Technology Data Exchange (ETDEWEB)
Akın, Hasan [Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, 27260 (Turkey); Mukhamedov, Farrukh [Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia P.O. Box, 141, 25710, Kuantan Pahang (Malaysia)
2015-09-18
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Quantum bouncer with quadratic dissipation
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, G. [NanoScience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)]. e-mail: ggonzalez@physics.ucf.edu
2008-07-01
The energy loss due to a quadratic velocity-dependent force on a quantum particle bouncing off a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new, effective, phenomenological Hamiltonian which corresponds to the actual energy of the system and obtain the correction to the eigenvalues of the energy in first-order quantum perturbation theory for the case of weak dissipation. (Author)
Quantum bouncer with quadratic dissipation
González, G.
2008-02-01
The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.
Langmuir Solitons in Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, Hans;
1978-01-01
The authors have considered the nonlinear interaction between a high frequency (Langmuir) wave, which propagates at an arbitrary angle to a weak, constant magnetic field, and low frequency (ion-cyclotron or ion-sound) perturbations. In studying Langmuir envelope solitons they have unified...
Numerical investigation of acoustic solitons
Lombard, Bruno; Richoux, Olivier
2014-01-01
Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works. Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical experiments illustrating typical features of solitary waves.
DEFF Research Database (Denmark)
Olsen, M.; Smith, H.; Scott, Alwyn C.
1984-01-01
A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment...
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)
2004-05-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.
Global Optimization of a Class of Nonconvex Quadratically Constrained Quadratic Programming Problems
Institute of Scientific and Technical Information of China (English)
Yong XIA
2011-01-01
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems.We show that each problem is polynomially solved.Strong duality holds if a redundant constraint is introduced.As an application,a new lower bound is proposed for the quadratic assignment problem.
Guo, Hairun; Zhou, Binbin; Zeng, Xianglong; Bache, Morten
2014-05-19
We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.
Columbo, Lorenzo; Brambilla, Massimo; Prati, Franco; Tissoni, Giovanna
2012-01-01
We propose a hybrid soliton-based system consisting of a centrosymmetric photorefractive crystal, supporting photorefractive solitons, coupled to a vertical cavity surface emitting laser, supporting multistable cavity solitons. The composite nature of the system, which couples a propagative/conservative field dynamics to a stationary/dissipative one, allows to observe a more general and unified system phenomenology and to conceive novel photonic functionalities. The potential of the proposed hybrid system becomes clear when investigating the generation and control of cavity solitons by propagating a plane wave through electro-activated solitonic waveguides in the crystal. By changing the electro-activation voltage of the crystal, we prove that cavity solitons can be turned on and shifted with controlled velocity across the device section. The scheme can be exploited for applications to optical information encoding and processing.
Soliton dynamics in the multiphoton plasma regime
Husko, Chad A; Colman, Pierre; Zheng, Jiangjun; De Rossi, Alfredo; Wong, Chee Wei; 10.1038/srep01100
2013-01-01
Solitary waves have consistently captured the imagination of scientists, ranging from fundamental breakthroughs in spectroscopy and metrology enabled by supercontinuum light, to gap solitons for dispersionless slow-light, and discrete spatial solitons in lattices, amongst others. Recent progress in strong-field atomic physics include impressive demonstrations of attosecond pulses and high-harmonic generation via photoionization of free-electrons in gases at extreme intensities of 1014 Wcm2. Here we report the first phase-resolved observations of femtosecond optical solitons in a semiconductor microchip, with multiphoton ionization at picojoule energies and 1010 Wcm2 intensities. The dramatic nonlinearity leads to picojoule observations of free-electron-induced blue-shift at 1016 cm3 carrier densities and self-chirped femtosecond soliton acceleration. Furthermore, we evidence the time-gated dynamics of soliton splitting on-chip, and the suppression of soliton recurrence due to fast free-electron dynamics. Thes...
Observation of soliton-induced resonant radiation due to three-wave mixing
Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M
2016-01-01
We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.
Vectorial coupled-mode solitons in one-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
朱善华; 黄国翔; 崔维娜
2002-01-01
We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadraticand cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopesof two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification arederived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-modeequations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due tothe optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears whenthe frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands.
Solitons at the critical density of negative ions in multicomponent plasmas
Energy Technology Data Exchange (ETDEWEB)
Ibohanbi Singh, K.H.; Das, G.C. (Manipur Univ., Dept. of Mathematics, Imphal (IN))
1989-12-01
The derivation of solitary waves in generalized multicomponent plasmas shows that the negative ion introduces a critical density at which the characteristics of the solitons are studied. The soliton's behavior deriving through the Korteweg-deVries (K-dV) equation at the critical density shows that the nonlinearity of the wave vanishes, due to which the mode of study is augmented through a modified K-dV equation. Employing a higher order equation involving quadratic and cubic nonlinearities, the transition of the K-dV equation to a modified K-dV equation along with the conservation of the Sagdeev potential, which is not affected by the negative ions, is studied in detail. The results are compared with experimental observations.
Solitones embebidos: estables, inestables, continuos y discretos
J. Fujioka; R. F. Rodríguez; A. Espinosa-Cerón
2006-01-01
En 1997 se descubrió un nuevo tipo de solitones, bautizados en 1999 como solitones embebidos . Estas peculiares ondas no lineales son interesantes porque existen bajo condiciones en las que hasta hace poco se creía que la propagación de ondas solitarias era imposible. En este trabajo se explica qué son los solitones embebidos, en qué modelos se han encontrado, y qué variantes existen(estables, inestables, continuos, discretos, etc.).
Dynamics of Incoherent Photovoltaic Spatial Solitons
Institute of Scientific and Technical Information of China (English)
ZHANG Yi-Qi; LU Ke-Qing; ZHANG Mei-Zhi; LI Ke-Hao; LIU Shuang; ZHANG Yan-Peng
2009-01-01
Propagation properties of bright and dark incoherent beams are numerically studied in photovoltaic-photorefractive crystal by using coherent density approach for the first time.Numerical simulations not only exhibit that bright incoherent photovoltaic quasi-soliton,grey-like incoherent photovoltaic soliton,incoherent soliton doublet and triplet can be established under proper conditions,but also display that the spatial coherence properties of these incoherent beams can be significantly affected during propagation by the photovoltaic field.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Moving stable solitons in Galileon theory
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali, E-mail: ali@phys.columbia.edu [Physics Department and ISCAP, Columbia University, New York, NY 10027 (United States); Xiao Xiao, E-mail: xx2146@columbia.edu [Physics Department and ISCAP, Columbia University, New York, NY 10027 (United States)
2012-08-29
Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.
Electrical solitons theory, design, and applications
Ricketts, David S
2010-01-01
The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain.Drawing on the award winning research of Carnegie Mellon's David S. Ricketts, Electrical Solitons Theory, Design, and Applications i
Soliton coding for secured optical communication link
Amiri, Iraj Sadegh; Idrus, Sevia Mahdaliza
2015-01-01
Nonlinear behavior of light such as chaos can be observed during propagation of a laser beam inside the microring resonator (MRR) systems. This Brief highlights the design of a system of MRRs to generate a series of logic codes. An optical soliton is used to generate an entangled photon. The ultra-short soliton pulses provide the required communication signals to generate a pair of polarization entangled photons required for quantum keys. In the frequency domain, MRRs can be used to generate optical millimetre-wave solitons with a broadband frequency of 0?100 GHz. The soliton signals are multi
Quadratic reactivity fuel cycle model
Energy Technology Data Exchange (ETDEWEB)
Lewins, J.D.
1985-11-01
For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau/sup 2/ as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau/sup 2/ in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper.
Regularized degenerate multi-solitons
Correa, Francisco; Fring, Andreas
2016-09-01
We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
M N Vinoj; V C Kuriakose
2001-11-01
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single ﬁeld in a ﬁber medium with phase modulation and ﬁbre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modiﬁed NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
Two-soliton interaction as an elementary act of soliton turbulence in integrable systems
Energy Technology Data Exchange (ETDEWEB)
Pelinovsky, E.N. [Department of Information Systems, National Research University – Higher School of Economics, Nizhny Novgorod (Russian Federation); Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Shurgalina, E.G.; Sergeeva, A.V.; Talipova, T.G. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation); El, G.A., E-mail: g.el@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University (United Kingdom); Grimshaw, R.H.J. [Department of Mathematical Sciences, Loughborough University (United Kingdom)
2013-01-03
Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg–de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Discrete solitons in graphene metamaterials
Bludov, Yuliy V.; Smirnova, Daria A.; Kivshar, Yuri S.; Peres, N. M. R.; Vasilevskiy, Mikhail
2014-01-01
We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schr\\"{o}dinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states. Fundação para a Ciência e a Tecnolog...
Discrete solitons in graphene metamaterials
Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.
2015-01-01
We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.
Tang, Chun-Ming; Jian, Jin-Bao
2008-10-01
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The "active set" strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.
On Algebraic Approach in Quadratic Systems
Directory of Open Access Journals (Sweden)
Matej Mencinger
2011-01-01
Full Text Available When considering friction or resistance, many physical processes are mathematically simulated by quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important problem when such systems are applied in engineering is the stability of critical points and (nonchaotic dynamics. In this paper we consider homogeneous quadratic systems via the so-called Markus approach. We use the one-to-one correspondence between homogeneous quadratic dynamical systems and algebra which was originally introduced by Markus in (1960. We resume some connections between the dynamics of the quadratic systems and (algebraic properties of the corresponding algebras. We consider some general connections and the influence of power-associativity in the corresponding quadratic system.
Observation of Dissipative Bright Soliton and Dark Soliton in an All-Normal Dispersion Fiber Laser
Directory of Open Access Journals (Sweden)
Chunyang Ma
2016-01-01
Full Text Available This paper proposes a novel way for controlling the generation of the dissipative bright soliton and dark soliton operation of lasers. We observe the generation of dissipative bright and dark soliton in an all-normal dispersion fiber laser by employing the nonlinear polarization rotation (NPR technique. Through adjusting the angle of the polarizer and analyzer, the mode-locked and non-mode-locked regions can be obtained in different polarization directions. Numerical simulation shows that, in an appropriate pump power range, the dissipative bright soliton and dark soliton can be generated simultaneously in the mode-locked and non-mode-locked regions, respectively. If the pump power exceeds the top limit of this range, only dissipative soliton will exist, whereas if it is below the lower bound of this range, only dark soliton will exist.
The Worldvolume Action of Kink Solitons in AdS Spacetime
Khoury, Justin; Stokes, James
2012-01-01
A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS space-time is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in its extrinsic and intrinsic curvatures. Two alternative methods are given for doing this. In addition to conformal Galileon interactions, we find a non-Galileon term which is never sub-dominant. This method can be extended to any conformally flat bulk space-time.
The Random Quadratic Assignment Problem
Paul, Gerald; Shao, Jia; Stanley, H. Eugene
2011-11-01
The quadratic assignment problem, QAP, is one of the most difficult of all combinatorial optimization problems. Here, we use an abbreviated application of the statistical mechanics replica method to study the asymptotic behavior of instances in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution P. Surprisingly, the QAP has not been studied before using the replica method despite the fact that the QAP was first proposed over 50 years ago and the replica method was developed over 30 years ago. We find simple forms for C min and C max , the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for C min and C max and their dependence on P only through its mean and standard deviation, independent of the details of P.
Observation of attraction between dark solitons
DEFF Research Database (Denmark)
Dreischuh, A.; Neshev, D.N.; Petersen, D.E.;
2006-01-01
We demonstrate a dramatic change in the interaction forces between dark solitons in nonlocal nonlinear media. We present what we believe is the first experimental evidence of attraction of dark solitons. Our results indicate that attraction should be observable in other nonlocal systems...
Temperature effects on the Davydov soliton
DEFF Research Database (Denmark)
Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth
1988-01-01
As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica...
Formation of multiple dark photovoltaic spatial solitons
Indian Academy of Sciences (India)
Yuhong Zhang; Keqing Lu; Jianbang Guo; Xuewen Long; Xiaohong Hu; Kehao Li
2012-02-01
We theoretically study the formation of multiple dark photovoltaic soliton splitting in the quasi-steady-state and steady-state regimes under open-circuit conditions. We ﬁnd that the initial width of the dark notch at the entrance face of the crystal is a key parameter for generating an even (or odd) number sequence of dark coherent photovoltaic solitons. If the initial width of the dark notch is small, only a fundamental soliton or Y-junction soliton pair is generated. As the initial width of the dark notch is increased, the dark notch tends to split into an odd (or even) number of multiple dark photovoltaic solitons, which realizes a progressive transition from a low-order soliton to a sequence of higher-order solitons. The soliton pairs far away from the centre have bigger width and less visibility. In addition, when the distance from the centre of the dark notch increases, the separations between adjacent dark stripes become slightly smaller.
Dark Solitons in FPU Lattice Chain
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton.Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Modification of Plasma Solitons by Resonant Particles
DEFF Research Database (Denmark)
Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul;
1979-01-01
Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide.......Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide....
Few-optical-cycle dissipative solitons
Energy Technology Data Exchange (ETDEWEB)
Leblond, H [Laboratoire de Photonique d' Angers EA 4464, Universite d' Angers, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Mihalache, D, E-mail: herve.leblond@univ-angers.f [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest, 077125 (Romania)
2010-09-17
By using a powerful reductive perturbation technique, or multiscale analysis, a generalized modified Korteweg-de Vries partial differential equation is derived, which describes the physics of few-optical-cycle dissipative solitons beyond the slowly varying envelope approximation. Numerical simulations of the formation of stable dissipative solitons from arbitrary breather-like few-cycle pulses are also given.
Low-amplitude vector screening solitons
Institute of Scientific and Technical Information of China (English)
Keqing Lu(卢克清); Xiangping Zhu(朱香平); Wei Zhao(赵卫); Yanlong Yang(杨延龙); Jinping Li(李金萍); Yanpeng Zhang(张彦鹏); Junchang Zhang(张君昌)
2004-01-01
We show self-coupled and cross-coupled vector beam evolution equations in the low-amplitude regime for screening solitons,which can exhibit the analytical solutions of bright-bright and dark-dark vector solitons.Our analysis indicates that these self-coupled vector solitons are obtained irrespective of the intensities of the two optical beams,whereas these cross-coupled vector solitons can be established when the intensities of the two optical beams are equal.Relevant examples are provided where the photorefractive crystal is lithium niobate(LiNbO3).The stability properties of these vector solitons have been investigated numerically and it has been found that they are stable.
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Binary Quadratic Forms: A Historical View
Khosravani, Azar N.; Beintema, Mark B.
2006-01-01
We present an expository account of the development of the theory of binary quadratic forms. Beginning with the formulation and proof of the Two-Square Theorem, we show how the study of forms of the type x[squared] + ny[squared] led to the discovery of the Quadratic Reciprocity Law, and how this theorem, along with the concept of reduction relates…
Cai, Xin; Liu, Jinsong; Wang, Shenglie
2009-02-16
This paper presents calculations for an idea in photorefractive spatial soliton, namely, a dissipative holographic soliton and a Hamiltonian soliton in one dimension form in an unbiased series photorefractive crystal circuit consisting of two photorefractive crystals of which at least one must be photovoltaic. The two solitons are known collectively as a separate Holographic-Hamiltonian spatial soliton pair and there are two types: dark-dark and bright-dark if only one crystal of the circuit is photovoltaic. The numerical results show that the Hamiltonian soliton in a soliton pair can affect the holographic one by the light-induced current whereas the effect of the holographic soliton on the Hamiltonian soliton is too weak to be ignored, i.e., the holographic soliton cannot affect the Hamiltonian one.
Hassaïne, M; Yéra, J C
2004-01-01
The spacelike reduction of the Chern-Simons Lagrangian yields a modified Nonlinear Schr\\"odinger Equation (jNLS) where in the non-linearity the particle density is replaced by current. When the phase is linear in the position, this latter is an ordinary NLS with time-dependent coefficients which admits interesting solutions. Their arisal is explained by the conformal properties of non-relativistic spacetime. Only the usual travelling soliton is consistent with the jNLS, but the addition of a six-order potential converts it into an integrable equation.
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Soliton dynamics in computational anatomy.
Holm, Darryl D; Ratnanather, J Tilak; Trouvé, Alain; Younes, Laurent
2004-01-01
Computational anatomy (CA) has introduced the idea of anatomical structures being transformed by geodesic deformations on groups of diffeomorphisms. Among these geometric structures, landmarks and image outlines in CA are shown to be singular solutions of a partial differential equation that is called the geodesic EPDiff equation. A recently discovered momentum map for singular solutions of EPDiff yields their canonical Hamiltonian formulation, which in turn provides a complete parameterization of the landmarks by their canonical positions and momenta. The momentum map provides an isomorphism between landmarks (and outlines) for images and singular soliton solutions of the EPDiff equation. This isomorphism suggests a new dynamical paradigm for CA, as well as new data representation.
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
On Quadratic Variation of Martingales
Indian Academy of Sciences (India)
Rajeeva L Karandikar; B V Rao
2014-08-01
We give a construction of an explicit mapping $$\\Psi: D([0,∞),\\mathbb{R})→ D([0,∞),\\mathbb{R}),$$ where $D([0,∞), \\mathbb{R})$ denotes the class of real valued r.c.l.l. functions on $[0,∞)$ such that for a locally square integrable martingale $(M_t)$ with r.c.l.l. paths, $$\\Psi(M.())=A.()$$ gives the quadratic variation process (written usually as $[M,M]_t$) of $(M_t)$. We also show that this process $(A_t)$ is the unique increasing process $(B_t)$ such that $M_t^2-B_t$ is a local martingale, $B_0=0$ and $$\\mathbb{P}(( B)_t=[( M)_t]^2, 0 < ∞)=1.$$ Apart from elementary properties of martingales, the only result used is the Doob’s maximal inequality. This result can be the starting point of the development of the stochastic integral with respect to r.c.l.l. martingales.
Quadratic Hedging of Basis Risk
Directory of Open Access Journals (Sweden)
Hardy Hulley
2015-02-01
Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.
Solitons of axion-dilaton gravity
Bakas, Ioannis
1996-01-01
We use soliton techniques of the two-dimensional reduced beta-function equations to obtain non-trivial string backgrounds from flat space. These solutions are characterized by two integers (n, m) referring to the soliton numbers of the metric and axion-dilaton sectors respectively. We show that the Nappi-Witten universe associated with the SL(2) x SU(2) / SO(1, 1) x U(1) CFT coset arises as an (1, 1) soliton in this fashion for certain values of the moduli parameters, while for other values of the soliton moduli we arrive at the SL(2)/SO(1, 1) x SO(1, 1)^2 background. Ordinary 4-dim black-holes arise as 2-dim (2, 0) solitons, while the Euclidean worm-hole background is described as a (0, 2) soliton on flat space. The soliton transformations correspond to specific elements of the string Geroch group. These could be used as starting point for exploring the role of U-dualities in string compactifications to two dimensions.
The Geometrodynamics of Sine-Gordon Solitons
Gegenberg, J
1998-01-01
The relationship between N-soliton solutions to the Euclidean sine-Gordon equation and Lorentzian black holes in Jackiw-Teitelboim dilaton gravity is investigated, with emphasis on the important role played by the dilaton in determining the black hole geometry. We show how an N-soliton solution can be used to construct ``sine-Gordon'' coordinates for a black hole of mass M, and construct the transformation to more standard ``Schwarzchild-like'' coordinates. For N=1 and 2, we find explicit closed form solutions to the dilaton equations of motion in soliton coordinates, and find the relationship between the soliton parameters and the black hole mass. Remarkably, the black hole mass is non-negative for arbitrary soliton parameters. In the one-soliton case the coordinates are shown to cover smoothly a region containing the whole interior of the black hole as well as a finite neighbourhood outside the horizon. A Hamiltonian analysis is performed for slicings that approach the soliton coordinates on the interior, a...
Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids
2014-01-01
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek $\\Phi$, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton i...
Soliton Management in Periodic Systems
Malomed, Boris A
2006-01-01
During the past ten years, there has been intensive development in theoretical and experimental research of solitons in periodic media. This book provides a unique and informative account of the state-of-the-art in the field. The volume opens with a review of the existence of robust solitary pulses in systems built as a periodic concatenation of very different elements. Among the most famous examples of this type of systems are the dispersion management in fiber-optic telecommunication links, and (more recently) photonic crystals. A number of other systems belonging to the same broad class of spatially periodic strongly inhomogeneous media (such as the split-step and tandem models) have recently been identified in nonlinear optics, and transmission of solitary pulses in them was investigated in detail. Similar soliton dynamics occurs in temporal-domain counterparts of such systems, where they are subject to strong time-periodic modulation (for instance, the Feshbach-resonance management in Bose-Einstein conde...
Solitones embebidos: estables, inestables, continuos y discretos
Directory of Open Access Journals (Sweden)
J. Fujioka
2006-01-01
Full Text Available En 1997 se descubrió un nuevo tipo de solitones, bautizados en 1999 como "solitones embebidos". Estas peculiares ondas no lineales son interesantes porque existen bajo condiciones en las que hasta hace poco se creía que la propagación de ondas solitarias era imposible. En este trabajo se explica qué son los solitones embebidos, en qué modelos se han encontrado, y qué variantes existen(estables, inestables, continuos, discretos, etc..
Effect of Soliton Propagation in Fiber Amplifiers
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.
Spherical solitons in ion-beam plasma
Energy Technology Data Exchange (ETDEWEB)
Das, G.C.; Ibohanbi Singh, K. (Manipur Univ., Imphal (India). Dept. of Mathematics)
1991-01-01
By using the reductive perturbation technique, the soliton solution of an ion-acoustic wave radially ingoing in a spherically bounded plasma consisting of ions and ion-beams with multiple electron temperatures is obtained. In sequel to the earlier investigations, the solitary waves are studied as usual through the derivation of a modified Korteweg-de Vries (K-dV) equation in different plasma models arising due to the variation of the isothermality of the plasmas. The characteristics of the solitons are finally compared with those of the planar and the cylindrical solitons. (orig.).
Darboux transformation of generalized coupled KdV soliton equation and its odd-soliton solutions
Institute of Scientific and Technical Information of China (English)
LIU Ping
2008-01-01
Based on the resulting Lax pairs of the generalized coupled KdV soliton equation,a new Darboux transformation with multi-parameters for the generalized coupled KdV soliton equation is derived with the help of a gauge transformation of the spectral problem.By using Darboux transformation,the generalized odd-soliton solutions of the generalized coupled KdV soliton equation are given and presented in determinant form.As an application,the first two cases are given.
Weak and strong interactions between dark solitons and dispersive waves
Oreshnikov, Ivan; Yulin, Alexey
2015-01-01
The effect of mutual interaction between dark solitons and dispersive waves is investigated numerically and analytically. The condition of the resonant scattering of dispersive waves on dark solitons is derived and compared against the results of numerical simulations. It is shown that the interaction with intense dispersive waves affects the dynamics of the soltons strongly changing their frequencies and accelerating or decelerating the solitons. It is also demonstrated that two dark solitons can form a cavity for dispersive weaves bouncing between the two dark solitons. The differences of the resonant scattering of the dispersive waves on the dark and bright solitons are discussed. In particular we demonstrate that two dark solitons and dispersive wave bouncing in between them create solitonic cavity with convex "mirrors" unlike the concave "mirror" in case of the bright solitons.
Dirac-Point Solitons in Nonlinear Optical Lattices
Xie, Kang; Boardman, Allan D; Guo, Qi; Shi, Zhiwei; Jiang, Haiming; Hu, Zhijia; Zhang, Wei; Mao, Qiuping; Hu, Lei; Yang, Tianyu; Wen, Fei; Wang, Erlei
2015-01-01
The discovery of a new type of solitons occuring in periodic systems without photonic bandgaps is reported. Solitons are nonlinear self-trapped wave packets. They have been extensively studied in many branches of physics. Solitons in periodic systems, which have become the mainstream of soliton research in the past decade, are localized states supported by photonic bandgaps. In this Letter, we report the discovery of a new type of solitons located at the Dirac point beyond photonic bandgaps. The Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation. These new solitons are sustained by the Dirac point rather than photonic bandgaps, thus provides a sort of advance in conceptual understanding over the traditional gap solitons. Apart from their theoretical impact within soliton theory, they have many potential uses because such solitons have dramatic stability characteristics and are possible in both Kerr material and photorefractive crystals that poss...
Spatial solitons in photonic lattices with large-scale defects
Institute of Scientific and Technical Information of China (English)
Yang Xiao-Yu; Zheng Jiang-Bo; Dong Liang-Wei
2011-01-01
We address the existence, stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium. Several families of soliton solutions, including flat-topped, dipole-like, and multipole-like solitons, can be supported by the defected lattices with different heights of defects. The width of existence domain of solitons is determined solely by the saturable parameter. The existence domains of various types of solitons can be shifted by the variations of defect size, lattice depth and soliton order. Solitons in the model are stable in a wide parameter window, provided that the propagation constant exceeds a critical value, which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium. We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.
The Pure Virtual Braid Group Is Quadratic
Lee, Peter
2011-01-01
If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra gr_I K need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a criterion which is equivalent to gr_I K being quadratic. We apply this criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic.
Quadratic stabilization of switched nonlinear systems
Institute of Scientific and Technical Information of China (English)
DONG YaLi; FAN JiaoJiao; MEI ShengWei
2009-01-01
In this paper, the problem of quadratic stabilization of multi-input multi-output switched nonlinear systems under an arbitrary switching law is investigated. When switched nonlinear systems have uniform normal form and the zero dynamics of uniform normal form is asymptotically stable under an arbitrary switching law, state feedbacks are designed and a common quadratic Lyapunov function of all the closed-loop subsystems is constructed to realize quadratic stabilizability of the class of switched nonlinear systems under an arbitrary switching law. The results of this paper are also applied to switched linear systems.
Towards a Quantum Theory of Solitons
Dvali, Gia; Gruending, Lukas; Rug, Tehseen
2015-01-01
We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the soliton...
Soliton concepts and the protein structure
Krokhotin, Andrei; Peng, Xubiao
2011-01-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion, from a relatively small number of components. Here we propose to identify the modular building blocks of proteins with the dark soliton solution of a generalized discrete nonlinear Schrodinger equation. For this we show that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop specific parameters and we identify their possible values in Protein Data Bank. We show that with a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop, we cover over 90% of all proteins with experimental accuracy. We also present two examples that describe how the loop library can be employed both to model and to analyze the structure of folded proteins.
Engineering optical soliton bistability in colloidal media
Matuszewski, Michal
2010-01-01
We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.
Novel energy sharing collisions of multicomponent solitons
Indian Academy of Sciences (India)
T Kanna; K Sakkaravarthi; M Vijayajayanthi
2015-11-01
In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.
Breathing dissipative solitons in optical microresonators
Lucas, Erwan; Guo, Hairun; Gorodetsky, Michael; Kippenberg, Tobias
2016-01-01
Dissipative solitons are self-localized structures resulting from a double balance between dispersion and nonlinearity as well as dissipation and a driving force. They occur in a wide variety of fields ranging from optics, hydrodynamics to chemistry and biology. Recently, significant interest has focused on their temporal realization in driven optical microresonators, known as dissipative Kerr solitons. They provide access to coherent, chip-scale optical frequency combs, which have already been employed in optical metrology, data communication and spectroscopy. Such Kerr resonator systems can exhibit numerous localized intracavity patterns and provide rich insights into nonlinear dynamics. A particular class of solutions consists of breathing dissipative solitons, representing pulses with oscillating amplitude and duration, for which no comprehensive understanding has been presented to date. Here, we observe and study single and multiple breathing dissipative solitons in two different microresonator platforms...
Ion-acoustic solitons in multispecies spatially inhomogeneous plasmas
Indian Academy of Sciences (India)
Tarsem Singh Gill; Harvinder Kaur; Nareshpal Singh Saini
2006-06-01
Ion-acoustic solitons are investigated in the spatially inhomogeneous plasma having electrons-positrons and ions. The soliton characteristics are described by Korteweg-de Vries equation which has an additional term. The density and temperature of different species play an important role for the amplitude and width of the solitons. Numerical calculations show only the possibility of compressive solitons. Further, analytical results predict that the peak amplitude of soliton decreases with the decrease of density gradient. Soliton characteristics like peak amplitude and width are substantially different from those based on KdV theory for homogeneous plasmas.
Spatial solitons in nonlinear liquid waveguides
Indian Academy of Sciences (India)
R Barillé; G Rivoire
2001-11-01
Spatial solitons are studied in a planar waveguide ﬁlled with nonlinear liquids. Spectral and spatial measurements for different geometries and input power of the laser beam show the inﬂuence of different nonlinear effects as stimulated scatterings on the soliton propagation and in particular on the beam polarization. The stimulated scattering can be used advantageously to couple the two polarization components. This effect can lead to multiple applications in optical switching.
A Mass Formula for EYM Solitons
Corichi, A; Sudarsky, D; Corichi, Alejandro; Nucamendi, Ulises; Sudarsky, Daniel
2001-01-01
The recently introduced Isolated Horizon formalism, together with a simple phenomenological model for colored black holes is used to predict a formula for the ADM mass of the solitons of the EYM system in terms of horizon properties of black holes {\\it for all} values of the horizon area. In this note, this formula is tested numerically --up to a large value of the area-- for spherically symmetric solutions and shown to yield the known masses of the solitons.
Solitons and spin transport in graphene boundary
Indian Academy of Sciences (India)
Kumar Abhinav; Vivek M Vyas; Prasanta K Panigrahi
2015-11-01
It is shown that in (2+1)-dimensional condensed matter systems, induced gravitational Chern–Simons (CS) action can play a crucial role for coherent spin transport in a finite geometry, provided zero-curvature condition is satisfied on the boundary. The role of the resultant KdV solitons is explicated. The fact that KdV solitons can pass through each other without interference, represent `resistanceless' spin transport.
Solitons and spin transport in graphene boundary
Abhinav, Kumar; Panigrahi, Prasanta K
2016-01-01
It is shown that in (2+1)-dimensional condensed matter systems, induced gravitational Chern-Simons (CS) action can play a crucial role for coherent spin transport in a finite geometry, provided zero-curvature condition is satisfied on the boundary. The role of the resultant KdV solitons is explicated. The fact that KdV solitons can pass through each other without interference, represent 'resistanceless' spin transport.
Structure of Solvable Quadratic Lie Algebras
Institute of Scientific and Technical Information of China (English)
ZHU Lin-sheng
2005-01-01
@@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.
Radiotherapy treatment planning linear-quadratic radiobiology
Chapman, J Donald
2015-01-01
Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil
A NEW INEXACT SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
Institute of Scientific and Technical Information of China (English)
倪勤
2002-01-01
This paper represents an inexact sequential quadratic programming (SQP ) algorithm which can solve nonlinear programming (NLP ) problems. An inexact solution of the quadratic programming subproblem is determined by a projection and contraction method such that only matrix-vector product is required. Some truncated criteria are chosen such that the algorithm is suitable to large scale NLP problem. The global convergence of the algorithm is proved.
Quadratic stabilization for uncertain stochastic systems
Institute of Scientific and Technical Information of China (English)
Jun'e FENG; Weihai ZHANG
2005-01-01
This paper discusses the robust quadratic stabilization control problem for stochastic uncertain systems,where the uncertain matrix is norm bounded,and the external disturbance is a stochastic process.Two kinds of controllers are designed,which include state feedback case and output feedback case.The conditions for the robust quadratic stabilization of stochastic uncertain systems are given via linear matrix inequalities.The detailed design methods are presented.Numerical examples show the effectiveness of our results.
Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Liu, Xing;
2014-01-01
An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....
DEFF Research Database (Denmark)
Bache, Morten; Liu, Xing; Zhou, Binbin
2014-01-01
An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014....
Solitons in one-dimensional photonic crystals
Mayteevarunyoo, Thawatchai
2008-01-01
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structural "duty cycle", DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with loc...
The explicit dependence of quadrat variance on the ratio of clump size to quadrat size.
Ferrandino, Francis J
2005-05-01
ABSTRACT In the past decade, it has become common practice to pool mapped binary epidemic data into quadrats. The resultant "quadrat counts" can then be analyzed by fitting them to a probability distribution (i.e., betabinomial). Often a binary form of Taylor's power law is used to relate the quadrat variance to the quadrat mean. The fact that there is an intrinsic dependence of such analyses on quadrat size and shape is well known. However, a clear-cut exposition of the direct connection between the spatial properties of the two-dimensional pattern of infected plants in terms of the geometry of the quadrat and the results of quadrat-based analyses is lacking. This problem was examined both empirically and analytically. The empirical approach is based on a set of stochastically generated "mock epidemics" using a Neyman-Scott cluster process. The resultant spatial point-patterns of infected plants have a fixed number of disease foci characterized by a known length scale (monodisperse) and saturated to a known disease level. When quadrat samples of these epidemics are fit to a beta-binomial distribution, the resulting measures of aggregation are totally independent of disease incidence and most strongly dependent on the ratio of the length scale of the quadrat to the length scale of spatial aggregation and to a lesser degree on disease saturation within individual foci. For the analytical approach, the mathematical form for the variation in the sum of random variates is coupled to the geometry of a quadrat through an assumed exponential autocorrelation function. The net result is an explicit equation expressing the intraquadrat correlation, quadrat variance, and the index of dispersion in terms of the ratio of the quadrat length scale to the correlative length scale.
Radiating subdispersive fractional optical solitons
Energy Technology Data Exchange (ETDEWEB)
Fujioka, J., E-mail: fujioka@fisica.unam.mx; Espinosa, A.; Rodríguez, R. F. [Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Mexico, DF 04510 (Mexico); Malomed, B. A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)
2014-09-01
It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.
Models of few optical cycle solitons beyond the slowly varying envelope approximation
Energy Technology Data Exchange (ETDEWEB)
Leblond, H., E-mail: herve.leblond@univ-angers.fr [LUNAM University, Université d’Angers, Laboratoire de Photonique d’Angers, EA 4464, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Mihalache, D. [LUNAM University, Université d’Angers, Laboratoire de Photonique d’Angers, EA 4464, 2 Bd. Lavoisier, 49045 Angers Cedex 01 (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)
2013-02-15
In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few
Multi-indexed Extensions of Soliton Potential and Extended Integer Solitons of KdV Equation
Ho, Choon-Lin
2014-01-01
We discover new infinite set of initial profiles of KdV solitons, which are both exactly solvable for the Schrodinger equation and for the Gel'fand-Levitan-Marchenko equation in the inverse scattering transform method of KdV equation. These new solutions are based on the multi-indexed extensions of the reflectionless soliton potential.
Analysis of extrapolation cascadic multigrid method(EXCMG)
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on an asymptotic expansion of finite element,a new extrapolation formula and extrapolation cascadic multigrid method(EXCMG)are proposed,in which the new extrapolation and quadratic interpolation are used to provide a better initial value on refined grid.In the case of triple grids,the error of the new initial value is analyzed in detail.A larger scale computation is completed in PC.
Relativistic quasi-solitons and embedded solitons with circular polarization in cold plasmas
Sánchez-Arriaga, G
2016-01-01
The existence of localized electromagnetic structures is discussed in the framework of the 1-dimensional relativistic Maxwell-fluid model for a cold plasma with immobile ions. New partially localized solutions are found with a finite-difference algorithm designed to locate numerically exact solutions of the Maxwell-fluid system. These solutions are called quasi-solitons and consist of a localized electromagnetic wave trapped in a spatially extended electron plasma wave. They are organized in families characterized by the number of nodes $p$ of the vector potential and exist in a continuous range of parameters in the $\\omega-V$ plane, where $V$ is the velocity of propagation and $\\omega$ is the vector potential angular frequency. A parametric study shows that the familiar fully localized relativistic solitons are special members of the families of partially localized quasi-solitons. Soliton solution branches with $p>1$ are therefore parametrically embedded in the continuum of quasi-solitons. On the other hand,...
Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids
Muñoz Mateo, A.; Brand, J.
2014-12-01
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers
Institute of Scientific and Technical Information of China (English)
HE Jin-Ping; LIANG Xiao-Yan; LI Jin-Feng; ZHENG Li-He; SU Liang-Bi; XU Jun
2011-01-01
@@ Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1-xYx,)2SiO5 (x=0.5) lasers are demonstrated.Pulsesas short as 1.4 ps are generated for the soliton mode-locked operation, with a pair of SF10 prisms as the negativedispersion elements.The central wavelength is 1056nm and the repetition rate is 48 MHz.For the non-solitonmode locking, the output power could achieve ～1.2W and the pulse width is about 20ps.The critical pulseenergy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the criticalpulse energy in the non-soliton mode-locked operation
The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU; Quan; TIAN; Qiang
2005-01-01
The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.
BOOK REVIEW: Solitons, Instantons, and Twistors Solitons, Instantons, and Twistors
Witt, Donald M.
2011-04-01
Solitons and instantons play important roles both in pure and applied mathematics as well as in theoretical physics where they are related to the topological structure of the vacuum. Twistors are a useful tool for solving nonlinear differential equations and are useful for the study of the antiself-dual Yang-Mills equations and the Einstein equations. Many books and more advanced monographs have been written on these topics. However, this new book by Maciej Dunajski is a complete first introduction to all of the topics in the title. Moreover, it covers them in a very unique way, through integrable systems. The approach taken in this book is that of mathematical physics à la field theory. The book starts by giving an introduction to integrable systems of ordinary and partial differential equations and proceeds from there. Gauge theories are not covered until chapter 6 which means the reader learning the material for the first time can build up confidence with simpler models of solitons and instantons before encountering them in gauge theories. The book also has an extremely clear introduction to twistor theory useful to both mathematicians and physicists. In particular, the twistor theory presentation may be of interest to string theorists wanting understand twistors. There are many useful connections to research into general relativity. Chapter 9 on gravitational instantons is great treatment useful to anyone doing research in classical or quantum gravity. There is also a nice discussion of Kaluza-Klein monopoles. The three appendices A-C cover the necessary background material of basic differential geometry, complex manifolds, and partial differential equations needed to fully understand the subject. The reader who has some level of expertise in any of the topics covered can jump right into that material without necessarily reading all of the earlier chapters because of the extremely clear writing style of the author. This makes the book an excellent reference on
Vector solitons with locked and precessing states of polarization
Sergeyev, Sergey; Mou, Chengbo; Rozhin, Alex; Turitsyn, Sergei
2012-01-01
We demonstrate experimentally new families of vector solitons with locked and precessing states of polarization for fundamental and multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Lucian-Cornel Crasovan; Boris A Malomed; Dumitru Mihalache
2001-11-01
We review recent theoretical results concerning the existence, stability and unique features of families of bright vortex solitons (doughnuts, or ‘spinning’ solitons) in both conservative and dissipative cubic-quintic nonlinear media.
Soliton solutions of a generalized discrete KdV equation
Kanki, Masataka; Tokihiro, Tetsuji
2012-01-01
We investigate the multi-soliton solutions to the generalized discrete KdV equation. In some cases a soliton with smaller amplitude moves faster than that with larger amplitude unlike the soliton solutions of the KdV equation. This phenomenon is intuitively understood from its ultradiscrete limit, where the system turns to the box ball system with a carrier. KEYWORDS: soliton, integrable equation, nonlinear system, discrete KdV equation, cellular automaton
Experiments on soliton motion in annular Josephson junctions
DEFF Research Database (Denmark)
Davidson, A.; Dueholm, B.; Pedersen, Niels Falsig
1986-01-01
We report here the results of an extensive experimental investigation of soliton dynamics in Josephson junctions of different annular geometries. The annular geometry is unique in that it allows for the study of undisturbed soliton motion as well as soliton–antisoliton collisons, since there are ...... for a single trapped soliton, and evidence linking the stability of the soliton to surface damping. Journal of Applied Physics is copyrighted by The American Institute of Physics....
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Peregrine soliton generation and breakup in standard telecommunications fiber.
Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Morin, Philippe; Fatome, Julien; Dudley, John M; Millot, Guy
2011-01-15
We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.
Xia, Yong; Han, Ying-Wei
2014-01-01
In this paper, we propose a mixed-binary convex quadratic programming reformulation for the box-constrained nonconvex quadratic integer program and then implement IBM ILOG CPLEX 12.6 to solve the new model. Computational results demonstrate that our approach clearly outperform the very recent state-of-the-art solvers.
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2006-01-01
This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...
Linear-quadratic control and quadratic differential forms for multidimensional behaviors
Napp, D.; Trentelman, H.L.
2011-01-01
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look
Stable rotating dipole solitons in nonlocal optical media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Desyatnikov, Anton S.; Kivshar, Yuri S.
2006-01-01
We reveal that nonlocality can provide a simplæe physical mechanism for stabilization of multihump optical solitons and present what we believe to be the first example of stable rotating dipole solitons and soliton spiraling, which we are known to be unstable in all types of realistic nonlinear...
Twin-Pulse Soliton Operation of a Fiber Laser
Institute of Scientific and Technical Information of China (English)
W.; S.; Man; H.; Y.; Tam
2003-01-01
We report on the experimental observation of a novel type of twin-pulse soliton in a passively mode-locked fiber ring laser. Twin-pulse soliton interaction in the laser cavity are also experimentally investigated and compared with those of the single pulse soliton.
Oscillations of the soliton parameters in nonlinear interference phenomena
Energy Technology Data Exchange (ETDEWEB)
Tsoy, Eduard N. [Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)], E-mail: etsoy@physic.uzsci.net; Sterke, C. Martijn de [Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)
2008-03-10
Applying the inverse scattering transform method, we show that a soliton modified by an amplitude or phase filter can evolve into several solitons. The oscillation period upon subsequent propagation follows from the wavenumbers of the emerging solitons and the radiation. Our results clarify spectral variations observed in recent supercontinuum experiments.
Observation of Multimode Solitons in Few-Mode Fiber
Zhu, Zimu; Christodoulides, Demetrios N; Wise, Frank W
2016-01-01
We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiotemporal properties. They exhibit an energy-volume relation that is distinct from those of single-mode and fully spatiotemporal solitons.
Indian Academy of Sciences (India)
DEEPAK KUMAR; A G RAMAKRISHNAN
2016-03-01
Particle swarm optimization (PSO) is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The central idea is to use PSO to move in the direction towards optimal solution rather than searching the entire feasibleregion. Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or classification boundary for a data set. Our results on the Iris, Pima, Wine, Thyroid, Balance, Bupa, Haberman, and TAE datasets show that the proposed method works better than a neural network and the performance is close to that of a support vector machine
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Zhou, Binbin;
2011-01-01
When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....
Quadratic gravity: from weak to strong
Holdom, Bob
2016-01-01
More than three decades ago quadratic gravity was found to present a perturbative, renormalizable and asymptotically free theory of quantum gravity. Unfortunately the theory appeared to have problems with a spin-2 ghost. In this essay we revisit quadratic gravity in a different light by considering the case that the asymptotically free interaction flows to a strongly interacting regime. This occurs when the coefficient of the Einstein-Hilbert term is smaller than the scale $\\Lambda_{\\mathrm{QG}}$ where the quadratic couplings grow strong. Here QCD provides some useful insights. By pushing the analogy with QCD, we conjecture that the nonperturbative effects can remove the naive spin-2 ghost and lead to the emergence of general relativity in the IR.
Fast approximate quadratic programming for graph matching.
Directory of Open Access Journals (Sweden)
Joshua T Vogelstein
Full Text Available Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs, we find that it efficiently achieves performance.
Fast approximate quadratic programming for graph matching.
Vogelstein, Joshua T; Conroy, John M; Lyzinski, Vince; Podrazik, Louis J; Kratzer, Steven G; Harley, Eric T; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E
2015-01-01
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.
Quadratic Interpolation Algorithm for Minimizing Tabulated Function
Directory of Open Access Journals (Sweden)
E. A. Youness
2008-01-01
Full Text Available Problem statement: The problem of finding the minimum value of objective function, when we know only some values of it, is needed in more practical fields. Quadratic interpolation algorithms are the famous tools deal with this kind of these problems. These algorithms interested with the polynomial space in which the objective function is approximated. Approach: In this study we approximated the objective function by a one dimensional quadratic polynomial. This approach saved the time and the effort to get the best point at which the objective is minimized. Results: The quadratic polynomial in each one of the steps of the proposed algorithm, accelerate the convergent to the best value of the objective function without taking into account all points of the interpolation set. Conclusion: Any n-dimensional problem of finding a minimal value of a function, given by some values, can be converted to one dimensional problem easier in deal.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Indirect quantum tomography of quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2003-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...
Lambda-lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, O.; Schultz, U.P.
2004-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... on the simple observation that all functions in each component need the same extra parameters and thus a transitive closure is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity...
Quintessence with quadratic coupling to dark matter
Boehmer, Christian G; Chan, Nyein; Lazkoz, Ruth; Maartens, Roy
2009-01-01
We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.
On orthogonality preserving quadratic stochastic operators
Energy Technology Data Exchange (ETDEWEB)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Bound constrained quadratic programming via piecewise
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.
1999-01-01
We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...... of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive...
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
A CART extention using Quadratic Decision Borders
DEFF Research Database (Denmark)
Hartelius, Karsten
1999-01-01
In this article we put forward an extention to the hierarchical CART classification method which uses quadratic decision borders. The original CART applies univariate splits on individual variables as well as splits on combinations of variables to recursively partition the feature......-space into subsets which are successively more class-homogeneous. Guided by the fact that class-distributions in feature-space are very often hyper-elliptical shaped, we give an extension to the original CART which also uses quadratic shaped decision borders which can be modelled by a mean-vector and a dispersion...
A CART extension using Quadratic Decision Borders
DEFF Research Database (Denmark)
Hartelius, Karsten
1999-01-01
In this article we put forward an extention to the hierarchical CART classification method which uses quadratic decision borders. The original CART applies univariate splits on individual variables as well as splits on combinations of variables to recursively partition the feature......-space into subsets which are successively more class-homogeneous. Guided by the fact that class-distributions in feature-space are very often hyper-elliptical shaped, we give an extension to the original CART which also uses quadratic shaped decision borders which can be modelled by a mean-vector and a dispersion...
Guises and disguises of quadratic divergences
Energy Technology Data Exchange (ETDEWEB)
Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)
2014-12-15
In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.
The Wiener maximum quadratic assignment problem
Cela, Eranda; Woeginger, Gerhard J
2011-01-01
We investigate a special case of the maximum quadratic assignment problem where one matrix is a product matrix and the other matrix is the distance matrix of a one-dimensional point set. We show that this special case, which we call the Wiener maximum quadratic assignment problem, is NP-hard in the ordinary sense and solvable in pseudo-polynomial time. Our approach also yields a polynomial time solution for the following problem from chemical graph theory: Find a tree that maximizes the Wiener index among all trees with a prescribed degree sequence. This settles an open problem from the literature.
Soliton models for thick branes
Energy Technology Data Exchange (ETDEWEB)
Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2016-05-15
In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Golam Ali Sekh
2013-08-01
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both bichromatic lattices and a comparative study is done on the dynamics of solitons with respect to the effective potentials. The effects of dispersion on solitons in bichromatic lattices are studied and it is found that the dispersive spreading can be minimized by appropriate combinations of lattice and interaction parameters. Stability of nondispersive matter-wave solitons is checked from phase portrait analysis.
Stabilization of spatiotemporal solitons in Kerr media by dispersive coupling
Kartashov, Yaroslav V; Konotop, Vladimir V; Lobanov, Valery E; Torner, Lluis
2015-01-01
We introduce a mechanism to stabilize spatiotemporal solitons in Kerr nonlinear media, based on the dispersion of linear coupling between the field components forming the soliton states. Specifically, we consider solitons in a two-core guiding structure with inter-core coupling dispersion (CD). We show that CD profoundly affects properties of the solitons, causing the complete stabilization of the otherwise highly unstable spatiotemporal solitons in Kerr media with focusing nonlinearity. We also find that the presence of CD stimulates the formation of bound states, which however are unstable.
Manakov Soliton Pairs in Biased Photovoltaic Photorefractive Crystals
Institute of Scientific and Technical Information of China (English)
侯春风; 杜春光; 阿不都热苏力; 李师群
2002-01-01
We study, theoretically, incoherently coupled screening-photovoltaic soliton pairs in biased photovoltaic photorefractive crystals. It is shown that when the total intensity of two coupled solitons is much lower than the effective dark irradiance, the coupled soliton equations reduce to the Manakov equations. The dark-dark, bright-bright and dark-bright soliton pair solutions of these Manakov equations are obtained under an appropriate external bias field and a photovoltaic field, and the characteristics of these Manakov soliton pairs are also discussed in detail.
On the existence of stationary Ricci solitons
Figueras, Pau
2016-01-01
Previously the DeTurck 'trick' has been used to render the stationary Einstein's equation a well posed elliptic system that may be solved numerically by geometric flow or directly. Whilst in the static case for pure gravity with zero or negative cosmological constant there is a simple proof that solving the modified "harmonic" Einstein's equation leads to a solution of the original Einstein system - i.e. not a Ricci soliton - in the stationary case this argument no longer works. Here we provide a new argument that extends the static result to the case of stationary spacetimes that possess a "$t$-$\\phi$" reflection symmetry. Defining a "soliton charge" from the asymptotic behaviour of the solution, we show that this quantity is always non-positive. Provided asymptotic conditions are chosen such that this charge vanishes, then stationary solitons cannot exist.
Soliton-like solution in quantum electrodynamics
Skoromnik, O D; Keitel, C H
2016-01-01
A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.
Conserved momenta of a ferromagnetic soliton
Energy Technology Data Exchange (ETDEWEB)
Tchernyshyov, Oleg, E-mail: olegt@jhu.edu
2015-12-15
Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether’s theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.
Introduction to soliton theory applications to mechanics
Munteanu, Ligia
2005-01-01
This monograph provides the application of soliton theory to solve certain problems selected from the fields of mechanics. The work is based of the authors' research, and on some specified, significant results existing in the literature. The present monograph is not a simple translation of its predecessor appeared in Publishing House of the Romanian Academy in 2002. Improvements outline the way in which the soliton theory is applied to solve some engineering problems. The book addresses concrete resolution methods of certain problems such as the motion of thin elastic rod, vibrations of initial deformed thin elastic rod, the coupled pendulum oscillations, dynamics of left ventricle, transient flow of blood in arteries, the subharmonic waves generation in a piezoelectric plate with Cantor-like structure, and some problems related to Tzitzeica surfaces. This comprehensive study enables the readers to make connections between the soliton physical phenomenon and some partical, engineering problems.
Solitons in relativistic laser-plasma interactions
Institute of Scientific and Technical Information of China (English)
XIE Bai-song; DU Shu-cheng
2007-01-01
Single or/and multipeak solitons in plasma under relativistic electromagnetic field are reviewed.The incident electromagnetic field iS allowed to have a zero or/and nonzero initial constant amplitude.Some interesting numerical results are obtained that include a high-number multipeak laser pulse and single or/and low-number multipeak plasma wake structures.It is also shown that there exists a combination of soliton and oscillation waves for plasma wake field.Also,the electron density exhibits multi-caviton structure or the combination of caviton and oscillation.A complete eigenvalue spectrum of parameters is given wherein some higher peak numbers of multipeak electromagnetic solitons in the plasma are included.Moreover, some interesting scaling laws are presented for field energy via numerical approaches.Some implications of results are discussed.
Solitonic axion condensates modeling dark matter halos
Energy Technology Data Exchange (ETDEWEB)
Castañeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx
2013-09-15
Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.
Tunneling Dynamics Between Atomic Bright Solitons
Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li
2016-01-01
We investigate tunneling behavior between two bright solitons in a Bose-Einstein condensate with attractive contact interactions between atoms. The explicit tunneling properties including tunneling particles and oscillation period are described analytically, which indicates that the periodic tunneling form is a nonlinear Josephson type oscillation. The results suggest that the breathing behavior of solitons comes from the tunneling mechanism in an effective double-well potential, which is quite different from the modulational instability mechanism for Akhmediev breather and K-M breather. Furthermore, we obtain a phase diagram for two soliton interaction which admits tunneling property, particle-like property, interference property, and a resonant interaction case. The explicit conditions for them are clarified based on the defined critical distance $d_c$ and spatial interference period $D$.
Positons: slowly diminishing analogs of solitons
Matveev, V B
2002-01-01
The introduction to the theory of positons is presented. The positons are the remote-acting analogues of solitons and represent slowly diminishing and oscillating solitons of the nonlinear integrated equations of KdV type. The positon and soliton-positon solutions of the KdV equation were for the first time obtained and analyzed about 10 years ago and thereafter designed for a number of other models: mKdV, Toda chains, NSch, sn-Gordon equation and its lattice analog. By the proper selection of the scattering data the single positon and multipositon potentials are characterized by the remarkable property: the corresponding reflection coefficient is equal to zero and the transition coefficient is equal to one (the latter property, as it is known, has no place for the standard short-acting nonreflection potentials
Soliton form factors from lattice simulations
Rajantie, Arttu
2010-01-01
The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.
Breather solitons in highly nonlocal media
Alberucci, Alessandro; Assanto, Gaetano
2016-01-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science \\textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Multicomponent integrable wave equations: II. Soliton solutions
Energy Technology Data Exchange (ETDEWEB)
Degasperis, A [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome (Italy); Lombardo, S [School of Mathematics, University of Manchester, Alan Turing Building, Upper Brook Street, Manchester M13 9EP (United Kingdom)], E-mail: antonio.degasperis@roma1.infn.it, E-mail: sara.lombardo@manchester.ac.uk, E-mail: sara@few.vu.nl
2009-09-25
The Darboux-dressing transformations developed in Degasperis and Lombardo (2007 J. Phys. A: Math. Theor. 40 961-77) are here applied to construct soliton solutions for a class of boomeronic-type equations. The vacuum (i.e. vanishing) solution and the generic plane wave solution are both dressed to yield one-soliton solutions. The formulae are specialized to the particularly interesting case of the resonant interaction of three waves, a well-known model which is of boomeronic type. For this equation a novel solution which describes three locked dark pulses (simulton) is introduced.
Synchrotron radiation of higher order soliton
Driben, Rodislav; Efimov, Anatoly
2015-01-01
We demonstrate radiation mechanism exhibited by higher order soliton. In a course of its evolution higher order soliton emits polychromatic radiation resulting in appearance of multipeak frequency comb like spectral band. The shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is completely corroborated by numerical simulations. An analogy between this radiation and the radiation of moving charges is presented. For longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.
Current-driven electron drift solitons
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali, E-mail: aliahmad79@hotmail.com [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan)
2013-12-09
The soliton formation by the current-driven drift-like wave is investigated for heavier ion (such as barium) plasma experiments planned to be performed in future. It is pointed out that the sheared flow of electrons can give rise to short scale solitary structures in the presence of stationary heavier ions. The nonlinearity appears due to convective term in the parallel equation of motion and not because of temperature gradient unlike the case of low frequency usual drift wave soliton. This higher frequency drift-like wave requires sheared flow of electrons and not the density gradient to exist.
Solitons on H bonds in proteins
DEFF Research Database (Denmark)
d'Ovidio, F.; Bohr, H.G.; Lindgård, Per-Anker
2003-01-01
system shows that the solitons are spontaneously created and are stable and moving along the helix axis. A perturbation on one of the three H-bond lines forms solitons on the other H bonds as well. The robust solitary wave may explain very long-lived modes in the frequency range of 100 cm(-1) which...... are found in recent x-ray laser experiments. The dynamics parameters of the Toda lattice are in accordance with the usual Lennard-Jones parameters used for realistic H-bond potentials in proteins....
The Soliton Transmissions in Optical Fibers
Directory of Open Access Journals (Sweden)
Leos Bohac
2010-01-01
Full Text Available The objective of this paper is to familiarize readers with the basic analytical propagation model of short optical pulses in optical fiber. Based on this model simulation of propagation of the special type of pulse, called a soliton, will be carried out. A soliton transmission is especially attractive in the fiber optic telecommunication systems as it does not change a pulses shape during propagating right-down the fiber link to the receiver. The model of very short pulse propagation is based on the numerical solution of the nonlinear Schroedinger equation (NLSE, although in some specific cases it is possible to solve it analytically.
Dissipative plasmon solitons in graphene nanodisk arrays
Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S
2014-01-01
We study nonlinear modes in one-dimensional arrays of doped graphene nanodisks with Kerr-type nonlinear response in the presence of an external electric field. We present the theoretical model describing the evolution of the disks' polarizations, taking into account intrinsic graphene losses and dipole-dipole coupling between the graphene nanodisks. We reveal that this nonlinear system can support discrete dissipative scalar solitons of both longitudinal and transverse polarizations, as well as vector solitons composed of two mutually coupled polarization components. We demonstrate the formation of stable resting and moving localized modes under controlling guidance of the external driving field.
Soliton blueshift in tapered photonic crystal fibers.
Stark, S P; Podlipensky, A; Russell, P St J
2011-02-25
We show that solitons undergo a strong blueshift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards a shorter wavelength. This is accompanied by strong emission of radiation into the UV and IR spectral regions. The experimental results are confirmed by numerical simulation.
Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium
2002-01-01
This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...
Symmetry breaking of solitons in two-dimensional complex potentials
Yang, Jianke
2014-01-01
Symmetry breaking is reported for continuous families of solitons in the nonlinear Schr\\"odinger equation with a two-dimensional complex potential. This symmetry-breaking bifurcation is forbidden in generic complex potentials. However, for a special class of partially parity-time-symmetric potentials, such symmetry breaking is allowed. At the bifurcation point, two branches of asymmetric solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability of these solitons near the bifurcation point are also studied, and two novel stability properties for the bifurcated asymmetric solitons are revealed. One is that at the bifurcation point, zero and simple imaginary linear-stability eigenvalues of asymmetric solitons can move directly into the complex plane and create oscillatory instability. The other is that the two bifurcated asymmetric solitons, even though having identical powers and being related to each other by spatial mirror reflection, can possess different types of unstable eigenval...
Temporal behaviour of open-circuit photovoltaic solitons
Institute of Scientific and Technical Information of China (English)
Zhang Mei-Zhi; Lu Ke-Qing; Cheng Guang-Hua; Li Ke-Hao; Zhang Yi-Qi; Zhang Yu-Hong; Zhang Yan-Peng
2009-01-01
Based on the time-dependent band-transport model in a photorefractive medium, dark open-circuit photovoltaic (PV) solitons are investigated both theoretically and experimentally. Compared with those of the time-independent models, our theoretical results revealed that quasi-steady-state and steady-state PV solitons can both be obtained.Our results also revealed that when r 1, however, the FWHM of solitons first decreases to a minimum before it increases to a constant value. Moreover, the FWHM of steady solitons decreases with increasing intensity ratio for r 1. We further observed dark PV solitons in experiments, and recorded their evolution. These results indicated that steady solitons can be observed at low optical power, while quasi-steady-state solitons can only be generated at higher optical power. Good agreement is found between theory and experiment.
Single-mode dispersive waves and soliton microcomb dynamics
Yi, Xu; Yang, Qi-Fan; Zhang, Xueyue; Yang, Ki Youl; Li, Xinbai; Vahala, Kerry
2017-03-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
Institute of Scientific and Technical Information of China (English)
谭亚茹
2016-01-01
The quadratic Higher Algebra is an important part of this paper, the definition of quadratic forms, introduces the second type of representation, and then describes how to use the allocation method, elementary transformation, orthogonal transformation method, etc. II second type into the standard form, and the second type of normal form, finally introduced posi-tive definite quadratic form and method for determining positive definite quadratic form.%二次型是高等代数的重要组成部分，本文从二次型的定义出发，介绍了二次型的表示方法，然后介绍了如何用配方法、初等变换法、正交变换法等将二次型化为标准形，以及二次型的规范形，最后介绍了正定二次型和判定正定二次型的方法。
Range-based estimation of quadratic variation
DEFF Research Database (Denmark)
Christensen, Kim; Podolskij, Mark
In this paper, we propose using realized range-based estimation to draw inference about the quadratic variation of jump-diffusion processes. We also construct a new test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the test...
Range-based estimation of quadratic variation
DEFF Research Database (Denmark)
Christensen, Kim; Podolskij, Mark
This paper proposes using realized range-based estimators to draw inference about the quadratic variation of jump-diffusion processes. We also construct a range-based test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient...
Modulational instability in periodic quadratic nonlinear materials
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...
The GCD property and irreduciable quadratic polynomials
Directory of Open Access Journals (Sweden)
Saroj Malik
1986-01-01
Full Text Available The proof of the following theorem is presented: If D is, respectively, a Krull domain, a Dedekind domain, or a Prüfer domain, then D is correspondingly a UFD, a PID, or a Bezout domain if and only if every irreducible quadratic polynomial in D[X] is a prime element.
Target manifold formation using a quadratic SDF
Hester, Charles F.; Risko, Kelly K. D.
2013-05-01
Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.
Test-assignment: a quadratic coloring problem
Duives, Jelle; Lodi, Andrea; Malaguti, Enrico
2013-01-01
We consider the problem of assigning the test variants of a written exam to the desks of a classroom in such a way that desks that are close-by receive different variants. The problem is a generalization of the Vertex Coloring and we model it as a binary quadratic problem. Exact solution methods bas
Experimental results on quadratic assignment problem
Directory of Open Access Journals (Sweden)
N.P. Nikolov
1999-08-01
Full Text Available The paper presents experimental results on quadratic assignment problem. The "scanning area" method formulated for radioelectronic equipment design is applied. For all more complex tests ours results are better or coincident with the ones known in literature. Conclusion concerning the effectiveness of method are given.
On Quadratic Programming with a Ratio Objective
Bhaskara, Aditya; Manokaran, Rajsekar; Vijayaraghavan, Aravindan
2011-01-01
Quadratic Programming (QP) is the well-studied problem of maximizing over {-1,1} values the quadratic form \\sum_ij a_ij x_i x_j. QP captures many known combinatorial optimization problems and SDP techniques have given optimal approximation algorithms for many of these problems. We extend this body of work by initiating the study of Quadratic Programming problems where the variables take values in the domain {-1,0,1}. The specific problem we study is: QP-Ratio: max_{-1,0,1}^n (x^T A x) / (x^T x). This objective function is a natural relative of several well studied problems. Yet, it is a good testbed for both algorithms and complexity because the techniques used for quadratic problems for the {-1,1} and {0,1} domains do not seem to carry over to the {-1,0,1} domain. We give approximation algorithms and evidence for the hardness of approximating the QP-Ratio problem. We consider an SDP relaxation obtained by adding constraints to the natural SDP relaxation for this problem and obtain an O(n^{2/7}) algorithm for...
Distortion control of conjugacies between quadratic polynomials
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials.
Examples of Sol-Solitons in the Pseudo-Riemannian case
Onda, Kensuke
2011-01-01
This paper provides a study of sol-solitons in the pseudo-Riemannian case. In the Riemannian case, all nontrivial homogeneous sol-soliton are expanding sol-solitons. In this paper, we obtain steady sol-solitons and shrinking sol-solitons in the Lorentzian setting.
Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.
2016-04-01
Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105
Quadratically constrained quadratic programs on acyclic graphs with application to power flow
Bose, Subhonmesh; Low, Steven H; Chandy, K Mani
2012-01-01
This paper proves that non-convex quadratically constrained quadratic programs have an exact semidefinite relaxation when their underlying graph is acyclic, provided the constraint set satisfies a certain technical condition. When the condition is not satisfied, we propose a heuristic to obtain a feasible point starting from a solution of the relaxed problem. These methods are then demonstrated to provide exact solutions to a richer class of optimal power flow problems than previously solved.
Solitonic Information Transmission in General Relativity
Institute of Scientific and Technical Information of China (English)
SHANG Yu; WANG Gui-Dong; WU Xiao-Ning; WANG Shi-Kun; LAU Yun-Kau
2007-01-01
An exact solution of the vacuum Einstein's field equations is presented,in which there exists a congruence of null geodesics whose shear behaves like a travelling wave of the KdV equation.On the basis of this exact solution,the feasibility of solitonic information transmission by exploiting the nonlinearity intrinsic to the Einstein field equations is discussed.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Towards a quantum theory of solitons
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gomez, Cesar [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Instituto de Física Teórica, UAM–CSICm C–XVI Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gruending, Lukas, E-mail: Lukas.Gruending@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Rug, Tehseen [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany)
2015-12-15
We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.
Towards a quantum theory of solitons
Directory of Open Access Journals (Sweden)
Gia Dvali
2015-12-01
Full Text Available We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Bergshoeff, Eric A
2011-01-01
We construct for arbitrary dimensions a universal T-duality covariant expression for the Wess-Zumino terms of supersymmetric String Solitons in toroidally compactified string theories with 32 supercharges. The worldvolume fields occurring in the effective action of these String Solitons form either a vector or a tensor multiplet with 16 supercharges. We determine the dimensions of the conjugacy classes under T-duality to which these String Solitons belong. We do this in two steps. First, we determine the T-duality representations of the $p$-forms of maximal supergravities that contain the potentials that couple to these String Solitons. We find that these are p-forms, with D-4\\le p\\le 6 if D \\ge 6 and with D-4\\le p\\le D if D < 6, transforming in the antisymmetric representation of rank m=p+4-D\\le 4 of the T-duality symmetry SO(10-D,10-D). All branes support vector multiplets except when m=10-D. In that case the T-duality representation splits, for D<10, into a selfdual and anti-selfdual part, correspond...
Kerr-Newman Electron as Spinning Soliton
Burinskii, Alexander
2015-10-01
Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. The spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of space-time - the Kerr singular ring of Compton size, which may be interpreted as a closed fundamental string of low energy string theory. The singular and two-sheeted structure of the corresponding Kerr space has to be regularised, and we consider the old problem of regularising the source of the KN solution. As a development of the earlier Keres-Israel-Hamity-López model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: (1) the soliton forms a relativistically rotating bubble of Compton radius, which is filled by the oscillating Higgs field in a pseudo-vacuum state; (2) the boundary of the bubble forms a domain wall which interpolates between the internal flat background and the external exact Kerr-Newman (KN) solution; (3) the phase transition is provided by a system of chiral fields; (4) the vector potential of the external the KN solution forms a closed Wilson loop which is quantised, giving rise to a quantised spin of the soliton; (5) the soliton is bordered by a closed string, which is a part of the general complex stringy structure.
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Infrared Absorption in Acetanilide by Solitons
DEFF Research Database (Denmark)
Careri, G.; Buontempo, U.; Carta, F.;
1983-01-01
The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those...
Solitons in nucleon-nucleus collisions
Energy Technology Data Exchange (ETDEWEB)
Fogaca, D.A.; Navarra, F.S. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica]. E-mail: hadron@terra.com.br
2004-07-01
Under certain conditions, the equations of non-relativistic hydrodynamics may provide a Korteweg-de Vries equation (KdV) which gives a soliton solution. We show that this solution and its properties are related to the microscopic features of the nuclear matter equation of state. (author)
Internal mode of incoherent photovoltaic vector solitons
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Wang Hong-Cheng; She Wei-Long
2007-01-01
The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schr(o)dinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
Free energy cascade in gyrokinetic turbulence
Navarro, A Bañón; Albrecht-Marc, M; Merz, F; Görler, T; Jenko, F; Carati, D
2010-01-01
In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a forward (from large to small scales), extremely local, and self-similar cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large eddy simulation techniques for gyrokinetics.
Energy Technology Data Exchange (ETDEWEB)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt)
2014-05-15
Solitons (small-amplitude long-lived waves) collision and rogue waves (large-amplitude short-lived waves) in non-Maxwellian electron-positron-ion plasma have been investigated. For the solitons collision, the extended Poincaré-Lighthill-Kuo perturbation method is used to derive the coupled Korteweg-de Vries (KdV) equations with the quadratic nonlinearities and their corresponding phase shifts. The calculations reveal that both positive and negative polarity solitons can propagate in the present model. At critical value of plasma parameters, the coefficients of the quadratic nonlinearities disappear. Therefore, the coupled modified KdV (mKdV) equations with cubic nonlinearities and their corresponding phase shifts have been derived. The effects of the electron-to-positron temperature ratio, the ion-to-electron temperature ratio, the positron-to-ion concentration, and the nonextensive parameter on the colliding solitons profiles and their corresponding phase shifts are examined. Moreover, generation of ion-acoustic rogue waves from small-amplitude initial perturbations in plasmas is studied in the framework of the mKdV equation. The properties of the ion-acoustic rogue waves are examined within a nonlinear Schrödinger equation (NLSE) that has been derived from the mKdV equation. The dependence of the rogue wave profile on the relevant physical parameters has been investigated. Furthermore, it is found that the NLSE that has been derived from the KdV equation cannot support the propagation of rogue waves.
Estimating quadratic variation using realized variance
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Shephard, N.
2002-01-01
This paper looks at some recent work on estimating quadratic variation using realized variance (RV) - that is, sums of M squared returns. This econometrics has been motivated by the advent of the common availability of high-frequency financial return data. When the underlying process is a semimar......This paper looks at some recent work on estimating quadratic variation using realized variance (RV) - that is, sums of M squared returns. This econometrics has been motivated by the advent of the common availability of high-frequency financial return data. When the underlying process...... have to impose some weak regularity assumptions. We illustrate the use of the limit theory on some exchange rate data and some stock data. We show that even with large values of M the RV is sometimes a quite noisy estimator of integrated variance. Copyright © 2002 John Wiley & Sons, Ltd....
Higgsed Stueckelberg vector and Higgs quadratic divergence
Directory of Open Access Journals (Sweden)
Durmuş Ali Demir
2015-01-01
Full Text Available Here we show that, a hidden vector field whose gauge invariance is ensured by a Stueckelberg scalar and whose mass is spontaneously generated by the Standard Model Higgs field contributes to quadratic divergences in the Higgs boson mass squared, and even leads to its cancellation at one-loop when Higgs coupling to gauge field is fine-tuned. In contrast to mechanisms based on hidden scalars where a complete cancellation cannot be achieved, stabilization here is complete in that the hidden vector and the accompanying Stueckelberg scalar are both free from quadratic divergences at one-loop. This stability, deriving from hidden exact gauge invariance, can have important implications for modeling dark phenomena like dark matter, dark energy, dark photon and neutrino masses. The hidden fields can be produced at the LHC.
Linear quadratic output tracking and disturbance rejection
Karimi-Ghartemani, Masoud; Khajehoddin, S. Ali; Jain, Praveen; Bakhshai, Alireza
2011-08-01
This article introduces the problem of linear quadratic tracking (LQT) where the objective is to design a closed-loop control scheme such that the output signal of the system optimally tracks a given reference signal and rejects a given disturbance. Different performance indices that have been used to address the tracking problem are discussed and an appropriate new form is introduced. It is shown that a solution to the proposed optimality index exists under very mild conditions of stabilisability and detectability of the plant state-space equations. The solution is formulated based on converting the LQT problem to a standard linear quadratic regulation problem. The method is applied to two examples, a first-order plant and a third-order plant, and their simulation results are presented and discussed.
On quadratic residue codes and hyperelliptic curves
Directory of Open Access Journals (Sweden)
David Joyner
2008-01-01
Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Institute of Scientific and Technical Information of China (English)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
Elementary Components of the Quadratic Assignment Problem
Chicano, Francisco; Alba, Enrique
2011-01-01
The Quadratic Assignment Problem (QAP) is a well-known NP-hard combinatorial optimization problem that is at the core of many real-world optimization problems. We prove that QAP can be written as the sum of three elementary landscapes when the swap neighborhood is used. We present a closed formula for each of the three elementary components and we compute bounds for the autocorrelation coefficient.
Fission and Fusion of Solitons for the (1+1)-Dimensional Kupershmidt Equation
Institute of Scientific and Technical Information of China (English)
YING Jin-Ping
2001-01-01
By means of the heat conduction equation and the standard truncated Painlevé expansion, the (1+1) dimensional Kupershmidt equation is solved. Some significant exact multi-soliton solutions are given. Especially; for the interaction of the multi-solitons of the Kupershmidt equation, we find that a single (resonant) kink or bell soliton may be fissioned to several kink or bell solitons. Inversely, several kink or bell solitons may also be fused to one kink or bell soliton.
Bidirectional soliton spectral tunneling effects in the regime of optical event horizon
DEFF Research Database (Denmark)
Gu, Jie; Guo, Hairun; Wang, Shaofei
2015-01-01
We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....
Quadratic forms representing all odd positive integers
Rouse, Jeremy
2011-01-01
We consider the problem of classifying all positive-definite integer-valued quadratic forms that represent all positive odd integers. Kaplansky considered this problem for ternary forms, giving a list of 23 candidates, and proving that 19 of those represent all positive odds. (Jagy later dealt with a 20th candidate.) Assuming that the remaining three forms represent all positive odds, we prove that an arbitrary, positive-definite quadratic form represents all positive odds if and only if it represents the odd numbers from 1 up to 451. This result is analogous to Bhargava and Hanke's celebrated 290-theorem. In addition, we prove that these three remaining ternaries represent all positive odd integers, assuming the generalized Riemann hypothesis. This result is made possible by a new analytic method for bounding the cusp constants of integer-valued quaternary quadratic forms $Q$ with fundamental discriminant. This method is based on the analytic properties of Rankin-Selberg $L$-functions, and we use it to prove...
Dark-bright ring solitons in Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Stockhofe, J; Schmelcher, P [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Kevrekidis, P G [Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515 (United States); Frantzeskakis, D J, E-mail: jstockho@physnet.uni-hamburg.de, E-mail: kevrekid@math.umass.edu [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2011-10-14
We study dark-bright (DB) ring solitons in two-component Bose-Einstein condensates. In the limit of large densities of the dark component, we describe the soliton dynamics by means of an equation of motion for the ring radius. The presence of the bright, 'filling' species is demonstrated to have a stabilizing effect on the ring dark soliton. Near the linear limit, we discuss the symmetry-breaking bifurcations of DB soliton stripes and vortex-bright soliton clusters from the DB ring and relate the stabilizing effect of filling to changes in the bifurcation diagram. Finally, we show that the stabilization by means of a second component is not limited to the radially symmetric structures, but can also be observed in a cross-like DB soliton configuration. (fast track communication)
Adiabatic theory of solitons fed by dispersive waves
Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva
2016-09-01
We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.
Solitons in a chain of PT-invariant dimers
Suchkov, Sergey V; Dmitriev, Sergey V; Kivshar, Yuri S
2011-01-01
Dynamics of a chain of interacting parity-time invariant nonlinear dimers is investigated. A dimer is built as a pair of coupled elements with equal gain and loss. A relation between stationary soliton solutions of the model and solitons of the discrete nonlinear Schrodinger (DNLS) equation is demonstrated. Approximate solutions for solitons whose width is large in comparison to the lattice spacing are derived, using a continuum counterpart of the discrete equations. These solitons are mobile, featuring nearly elastic collisions. Stationary solutions for narrow solitons, which are immobile due to the pinning by the effective Peierls-Nabarro potential, are constructed numerically, starting from the anti-continuum limit. The solitons with the amplitude exceeding a certain critical value suffer an instability leading to blowup, which is a specific feature of the nonlinear PT-symmetric chain, making it dynamically different from DNLS lattices. A qualitative explanation of this feature is proposed. The instability...
Single-mode dispersive waves and soliton microcomb dynamics
Yi, Xu; Zhang, Xueyue; Yang, Ki Youl; Vahala, Kerry
2016-01-01
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and to offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power in the form of a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. A limiting case is demonstrated in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton is shown to induce bistable behavior in the spectral and temporal properties of the soliton. Also, an operating point of enhanced repetition-rate stability is predicted and observed. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
3D simulation for solitons used in optical fibers
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
Vector nematicons: Coupled spatial solitons in nematic liquid crystals
Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.
2016-11-01
Families of soliton pairs, namely vector solitons, are found within the context of a coupled nonlocal nonlinear Schrödinger system of equations, as appropriate for modeling beam propagation in nematic liquid crystals. In the focusing case, bright soliton pairs have been found to exist provided their amplitudes satisfy a specific condition. In our analytical approach, focused on the defocusing regime, we rely on a multiscale expansion methods, which reveals the existence of dark-dark and antidark-antidark solitons, obeying an effective Korteweg-de Vries equation, as well as dark-bright solitons, obeying an effective Mel'nikov system. These pairs are discriminated by the sign of a constant that links all physical parameters of the system to the amplitude of the stable continuous wave solutions, and, much like the focusing case, the solitons' amplitudes are linked, leading to mutual guiding.
Gravitational two solitons in Levi-Cività spacetime
Igata, Takahisa; Tomizawa, Shinya
2016-09-01
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equations and using the Levi-Cività solution as a seed, we construct a two-soliton solution with cylindrical symmetry. In our previous work, we constructed the one-soliton solution with a real pole and showed that the singularities that the Levi-Cività background has on an axis can be removed by the choice of certain special parameters, but it still has unavoidable null singularities, as usual one-solitons do. In this work, we show that for the two-soliton solutions, any singularities can be removed by suitable parameter-setting and such solutions describe the propagation of gravitational wave packets. Moreover, in terms of the two-soliton solutions, we mention a time shift phenomenon, the coalescence and the split of solitons as the nonlinear effect of gravitational waves.
Gravitational two solitons in Levi-Civita spacetime
Igata, Takahisa
2015-01-01
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equations and using the Levi-Civita solution as a seed, we construct a two-soliton solution with cylindrical symmetry. In our previous work, we constructed the one-soliton solution with a real pole and showed that the singularities that the Levi-Civita background has on an axis can be removed by the choice of certain special parameters, but it still has unavoidable null singularities, as usual one solitons do. In this work, we show that for the two-soliton solutions, any singularities can be removed by suitable parameter-setting and such solutions describe the propagation of gravitational wave packets. Moreover, in terms of the two-soliton solutions, we mention a time shift phenomenon, the coalescence and the split of solitons as the nonlinear effect of gravitational waves.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
Brasch, Victor; Geiselmann, Michael; Herr, Tobias; Lihachev, Grigoriy; Pfeiffer, Martin H. P.; Gorodetsky, Michael L.; Kippenberg, Tobias J.
2016-04-01
In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional
Institute of Scientific and Technical Information of China (English)
LU Keqing; ZHANG Yanpeng; TANG Tiantong; HOU Xun; WU Hongcai
2001-01-01
A theory of the space-charge field is improved in biased photorefractive-phorovoltaic crystals. Steady-state spatial solitons are obtained in the low-amplitude regime in biased photorefractive-photovoltaic crystals. When photovoltaic effect is neglected, these solitons are screening solitons, and their space-charge field is the space-charge field of screening solitons. When the external field is absent, these solitons are photovoltaic solitons for the closed or the open circuit and we also predict that gray solitons exist in photorefractive-photovoltaic crystals, and their space-charge field is the space-charge field of photovoltaic solitons.
Stability of Bright Solitons in Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
YU Hui-You; YAN Jia-Ren; XIE Qiong-Tao
2004-01-01
We investigate the stability of bright solitons in Bose-Einstein condensates by including a feeding term and a loss one in the Gross-Pitaevskii equation. Based on the direct approach of perturbation theory for the nonlinear Schrodinger equation, we give the explicit dependence of the height and other related quantities of bright solitons on the feeding and loss term. It is found that the three-body recombination loss plays a crucial role in stabilizing bright solitons.
Supercontinuum generation with bright and dark solitons in optical fibers
Milián, Carles; Kudlinski, Alexandre; Skryabin, Dmitry V
2016-01-01
We study numerically and experimentally supercontinuum generation in optical fibers with dark and bright solitons simultaneously contributing into the spectral broadening and dispersive wave generation. We report a novel type of weak trapped radiation arising due to interaction of bright solitons with the dark soliton background. This radiation expresses itself as two pulses with the continuously shifting spectra constituting the short and long wavelength limits of the continuum. Our theoretical and experimental results are in good agreement.
The soliton properties of dipole domains in superlattices
Institute of Scientific and Technical Information of China (English)
张启义; 田强
2002-01-01
The formation and propagation of dipole domains in superlattices are studied both by the modified discrete driftmodel and by the nonlinear Schrodinger equation. The spatiotemporal distribution of the electric field and electrondensity are presented. The numerical results are compared with the soliton solutions of the nonlinear Schrodingerequation and analysed. It is shown that the numerical solutions agree with the soliton solutions of the nonlinearSchrodinger equation. The dipole electric-field domains in semiconductor superlattices have the properties of solitons.
Production of strongly bound 39K bright solitons
Lepoutre, S; Boissé, A; Berthet, G; Salomon, G; Aspect, A; Bourdel, T
2016-01-01
We report on the production of 39 K matter-wave bright solitons, i.e., 1D matter-waves that propagate without dispersion thanks to attractive interactions. The volume of the soliton is studied as a function of the scattering length through three-body losses, revealing peak densities as high as $\\sim 5 \\times 10^{20} m^{-3}$. Our solitons, close to the collapse threshold, are strongly bound and will find applications in fundamental physics and atom interferometry.
Protonic transport through solitons in hydrogen-bonded systems
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
Soliton induced singularities in 2d gravity and their evaporation
Vaz, C; Vaz, Cenalo; Witten, Louis
1995-01-01
Positive energy singularities induced by Sine-Gordon solitons in 1+1 dimensional dilaton gravity with positive and negative cosmological constant are considered. When the cosmological constant is positive, the singularities combine a white hole, a timelike singularity and a black hole joined smoothly near the soliton center. When the cosmological constant is negative, the solutions describe two timelike singularities joined smoothly near the soliton center. We describe these spacetimes and examine their evaporation in the one loop approximation.
Schlenker, Cody W.
2011-09-27
We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.
Zhao, Chen; Gao, Yi-Tian; Lan, Zhong-Zhou; Yang, Jin-Wei
2016-09-01
In this article, a (3+1)-dimensional variable-coefficient breaking soliton equation is investigated. Based on the Bell polynomials and symbolic computation, the bilinear forms and Bäcklund transformation for the equation are derived. One-, two-, and three-soliton solutions are obtained via the Hirota method. N-soliton solutions are also constructed. Propagation characteristics and interaction behaviors of the solitons are discussed graphically: (i) solitonic direction and position depend on the sign of the wave numbers; (ii) shapes of the multisoliton interactions in the scaled space and time coordinates are affected by the variable coefficients; (iii) multisoliton interactions are elastic for that the velocity and amplitude of each soliton remain unchanged after each interaction except for a phase shift.
Interaction and resonance phenomena of multi-soliton
Institute of Scientific and Technical Information of China (English)
YANG Hong-juan; SHI Yu-ren; DUAN Wen-shan
2006-01-01
As is well known,Korteweg-de Vries equation is a typical one which has planar solitary wave.By considering higher order transverse disturbance to planar solitary waves,we study a Kadomtsev-Petviashvili (KP) equation and find some interesting results.In this letter we investigate the three soliton interaction and their resonance phenomena of KP equation,and theoretically find that the maximum amplitude is 9 times of the initial interacting soliton for three same amplitude solitons.Three arbitrary amplitude soliton interaction of KP equation is also studied by numerical simulation,which can also results in resonance phenomena.
Higher-order-mode fiber optimized for energetic soliton propagation.
Pedersen, Martin E V; Cheng, Ji; Charan, Kriti; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-08-15
We describe the design optimization of a higher-order-mode (HOM) fiber for energetic soliton propagation at wavelengths below 1300 nm. A new HOM fiber is fabricated according to our design criteria. The HOM fiber is pumped at 1045 nm by an energetic femtosecond fiber laser. The soliton self-frequency shift process shifts the center wavelength of the soliton to 1085 nm. The soliton has a temporal duration of 216 fs and a pulse energy of 6.3 nJ. The demonstrated pulse energy is approximately six times higher than the previous record in a solid core fiber at wavelengths below 1300 nm.
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Temporal development of open-circuit bright photovoltaic solitons
Institute of Scientific and Technical Information of China (English)
Zhang Lei; Lu Ke-Qing; Zhang Mei-Zhi; Liu Xue-Ming; Zhang Yan-Peng
2008-01-01
This paper investigates the temporal behaviour of open-circuit bright photovoltaic spatial solitons by using numerical techniques. It shows that when the intensity ratio of the soliton, the ratio between the soliton peak intensity and the dark irradiance, is small, the quasi-steady-state soliton width decreases monotonically with the increase of τ, where τis the parameter correlated with the time, that when the intensity ratio of the soliton is big, the quasi-steady-state soliton width decreases with the increase of τ and then increases with τ and that the formation time of the steady-state solitons is not correlated with the intensity ratio of the soliton. It finds that the local nonlinear effect increases with the photovoltaic field, which behaves as that the width of soliton beams is small and the self-focusing quasi-period is short. On the other hand, we also discuss that both the time and the temperature have an effect on the beam bending.
Coupled spatial multi-mode solitons in microcavity wires
Slavcheva, G; Pimenov, A
2016-01-01
A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism behind the multistability and formation of coupled multi-mode polariton solitons in microcavity wires. With pump switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our model predicts two distinct coupled soliton branches: stable and ustable. Modulational stability of the homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence domain upon variation of pump amplitude and the onset of multistability.
Radiation by solitons due to higher-order dispersion
DEFF Research Database (Denmark)
Karpman, V.I.
1993-01-01
We consider the Korteweg-de Vries (KdV) and nonlinear Schrodinger (NS) equations with higher-order derivative terms describing dispersive corrections. Conditions of existence of stationary and radiating solitons of the fifth-order KdV equation are obtained. An asymptotic time-dependent solution...... to the latter equation, describing the soliton radiation, is found. The radiation train may be in front as well as behind the soliton, depending on the sign of dispersion. The change rate of the soliton due to the radiation is calculated. A modification of the WKB method, that permits one to describe...
Bragg Fibers with Soliton-like Grating Profiles
Directory of Open Access Journals (Sweden)
Bugaychuk S.
2016-01-01
Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.
Modulation instability and solitons in two-color nematic crystals
Horikis, Theodoros P
2016-01-01
The conditions under which stable evolution of two nonlinear interacting waves are derived within the context of nematic crystals. Two cases are considered: plane waves and solitons. In the first case, the modulation instability analysis reveals that while the nonlocal term suppresses the growth rates, substantially, the coupled system exhibits significantly higher growth rates than its scalar counterpart. In the soliton case, the necessary conditions are derived that lead the solitons to exhibit stable, undistorted evolution, suppressing any breathing behavior and radiation, leading to soliton mutual guiding.
Nonlinear modeling of thermoacoustically driven energy cascade
Gupta, Prateek; Scalo, Carlo; Lodato, Guido
2016-11-01
We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.
Institute of Scientific and Technical Information of China (English)
LIU Chun-Ping; LING Zhi
2005-01-01
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.
Knot solitons in the AFZ model
Institute of Scientific and Technical Information of China (English)
Ren Ji-Rong; Mo Shu-Fan; Zhu Tao
2009-01-01
This paper studies the topological properties of knotted solitons in the (3 + 1)-dimensional Aratyn-Ferreira-Zimerman (AFZ) model. Topologically, these solitons are characterized by the Hopf invariant I, which is an integral class in the homotopy group π3(S3)= Z. By making use of the decomposition of U(1) gauge potential theory and Duan's topological current theory, it is shown that the invariant is just the total sum of all the self-linking and linking numbers of the knot family while only linking numbers are considered in other papers. Furthermore, it is pointed out that this invariant is preserved in the branch processes (splitting, merging and intersection) of these knot vortex lines.
Topological solitons in the supersymmetric Skyrme model
Gudnason, Sven Bjarke; Sasaki, Shin
2016-01-01
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Rotating soliton clusters in nonlocal nonlinear media
Institute of Scientific and Technical Information of China (English)
Wang Yu-Qing; Guo Qi
2008-01-01
From the study of the dynamics for the ring-like soliton clusters, we find that there exists a critical value of the ring radius, dcr, for the stationary rotation of the clusters with respect to the beam centre even in the presence of the relatively strong noise, and that the soliton clusters will not rotate but only undergo periodic collisions in the form of simple harmonic oscillator if the ring radius is large enough. We also show that the direction of the rotation can be opposite to the direction of phase gradient when the relative phase difference is within the domain 0<|θ|<π, while along the direction of phase gradient when the relative phase difference is within the domain π<|θ|<2π.
Solitonic vortices in Bose-Einstein condensates
Tylutki, M.; Donadello, S.; Serafini, S.; Pitaevskii, L. P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.
2015-04-01
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongated quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
Soliton molecules for advanced optical telecommunications
Mitschke, Fedor; Hause, Alexander; Mahnke, Christoph
2016-11-01
Recent developments in the technology of optical telecommunications are pushed forward by the rapidly growing demand for data-carrying capacity. Current approaches are discussed; most lines of investigation are limited to the linear (i.e. low power) regime. It is shown how this restriction poses a limit for further evolution. If, on the other hand, the nonlinear regime is entered, recent developments about soliton molecules offer a possibility to advance further.
Sigma-Model Solitons on Noncommutative Spaces
Dabrowski, Ludwik; Landi, Giovanni; Luef, Franz
2015-12-01
We use results from time-frequency analysis and Gabor analysis to construct new classes of sigma-model solitons over the Moyal plane and over noncommutative tori, taken as source spaces, with a target space made of two points. A natural action functional leads to self-duality equations for projections in the source algebra. Solutions, having nontrivial topological content, are constructed via suitable Morita duality bimodules.
Modification of Plasma Solitons by Resonant Particles
DEFF Research Database (Denmark)
Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul;
1980-01-01
A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results....
Multipole surface solitons in layered thermal media
Kartashov, Yaroslav V; Torner, Lluis
2008-01-01
We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.
Perturbation theory for solitons in optical fibers
Kaup, D. J.
1990-11-01
Using a singular perturbation expansion, we study the evolution of a Raman loss compensated soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mollenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are some differences in that our theory predicts an additional structure that was only partially seen in the numerical calculations. Our analytical results do give a quite good qualitative and quantitative check of the numerical results.
Envelope Soliton in Solar Radio Emission
Institute of Scientific and Technical Information of China (English)
WANG De-Yu; Wangde; G. P. Chernov
2000-01-01
Several envelope soliton fine structures have been observed in solar radio metric-wave emission. We present amodel of 1ongitudinal modulational instability to explain these fine structures. It is found that this instability canonly occur in the condition of sound velocity being larger than Alfven velocity in corona. Therefore, the envelopesoliton fine structures should display in the coronal region with high temperature and low magnetic field, whichcorresponds to the solar radio emission in the region of meter and decameter wavelength.
Spatiotemporal accessible solitons in fractional dimensions
Zhong, Wei-Ping; Belić, Milivoj R.; Malomed, Boris A.; Zhang, Yiqi; Huang, Tingwen
2016-07-01
We report solutions for solitons of the "accessible" type in globally nonlocal nonlinear media of fractional dimension (FD), viz., for self-trapped modes in the space of effective dimension 2 functions that include Gegenbauer polynomials, associated Laguerre polynomials, and associated Legendre functions. The validity of these solutions is verified by direct simulations. The model can be realized in various physical settings emulated by FD spaces; in particular, it applies to excitons trapped in quantum wells.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Range-based estimation of quadratic variation
DEFF Research Database (Denmark)
Christensen, Kim; Podolskij, Mark
In this paper, we propose using realized range-based estimation to draw inference about the quadratic variation of jump-diffusion processes. We also construct a new test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the te...... is well-sized and more powerful than a return-based t-statistic for sampling frequencies normally used in empirical work. Applied to equity data, we find that the intensity of the jump process is not as high as previously reported....
Range-based estimation of quadratic variation
DEFF Research Database (Denmark)
Christensen, Kim; Podolskij, Mark
This paper proposes using realized range-based estimators to draw inference about the quadratic variation of jump-diffusion processes. We also construct a range-based test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the ......, the test is well-sized and more powerful than a return-based t-statistic for sampling frequencies normally used in empirical work. Applied to equity data, we show that the intensity of the jump process is not as high as previously reported....
Automatic differentiation for reduced sequential quadratic programming
Institute of Scientific and Technical Information of China (English)
Liao Liangcai; Li Jin; Tan Yuejin
2007-01-01
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
Constrained neural approaches to quadratic assignment problems.
Ishii, S; Sato, M
1998-08-01
In this paper, we discuss analog neural approaches to the quadratic assignment problem (QAP). These approaches employ a hard constraints scheme to restrict the domain space, and are able to obtain much improved solutions over conventional neural approaches. Since only a few strong heuristics for QAP have been known to date, our approaches are good alternatives, capable of obtaining fairly good solutions in a short period of time. Some of them can also be applied to large-scale problems, say of size N>/=300.
Invariant measures and the soliton resolution conjecture
Chatterjee, Sourav
2012-01-01
The soliton resolution conjecture for the focusing nonlinear Schrodinger equation (NLS) is the vaguely worded claim that a global solution of the NLS, for generic initial data, will eventually resolve into a radiation component that disperses like a linear solution, plus a localized component that behaves like a soliton or multi-soliton solution. Considered to be one of the fundamental open problems in the area of nonlinear dispersive equations, this conjecture has eluded a proof or even a precise formulation till date. This paper proves a "statistical version" of this conjecture at mass-subcritical nonlinearity, in the following sense. The uniform probability distribution on the set of all functions with a given mass and energy, if such a thing existed, would be a natural invariant measure for the NLS flow and would reflect the long-term behavior for "generic initial data" with that mass and energy. Unfortunately, such a probability measure does not exist. We circumvent this problem by constructing a sequenc...
Matsuo, Kuniaki; Saleh, Bahaa E. A.; Teich, Malvin Carl
1982-12-01
We investigate the counting statistics for stationary and nonstationary cascaded Poisson processes. A simple equation is obtained for the variance-to-mean ratio in the limit of long counting times. Explicit expressions for the forward-recurrence and inter-event-time probability density functions are also obtained. The results are expected to be of use in a number of areas of physics.
Quadratic forms for Feynman-Kac semigroups
Energy Technology Data Exchange (ETDEWEB)
Hibey, Joseph L. [Department of Electrical Engineering, University of Colorado at Denver, Campus Box 110, Denver, CO 80217 (United States)]. E-mail: joseph.hibey@cudenver.edu; Charalambous, Charalambos D. [Electrical and Computer Engineering Department, University of Cyprus, 75 Kallipoleos Avenue, Nicosia (Cyprus)]. E-mail: chadcha@ucy.ac.cy
2006-05-15
Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions.
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2004-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...
Integrated Broadband Quantum Cascade Laser
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Ultradiscrete soliton equations derived from ultradiscrete permanent formulae
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Shinya, E-mail: s-nakamura@moegi.waseda.jp [Major in Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)
2011-07-22
We propose formulae of ultradiscrete permanent. Utilizing the formulae, ultradiscrete soliton equations and their multi-soliton solutions are obtained by a simple process. Changing variables and parameters of the formulae, we can derive the ultradiscrete Toda, KdV and hungry Lotka-Volterra equations. An extended version of the ultradiscrete hungry Lotka-Volterra equation is also proposed.
Chirped Optical Solitons in Single-mode Birefringent Fibers.
Mahmood, M F
1996-12-01
The trapping behavior of two chirped solitons forming a bound state in a single-mode birefringent fiber is investigated on the basis of a model of coupled nonlinear Schroedinger equations. The positive initial chirp plays an important role in controlling the threshold amplitude for soliton trapping without causing excessive pulse broadening.
Dark Spatial Soliton Interaction in Nonlinear Kerr Medium
Institute of Scientific and Technical Information of China (English)
LuchuanWANG; QinliangFAN
1998-01-01
The dark spatial soliton interaction in nonlinear Kerr medium has been studied in this paper.The problem has been solved by the use of the slowly varying envelope approximation in solving coupled nonlinear Schroedinger equations.The perturbation nature of dark spatial soliton interaction has been described and some of their key properties has been discussed as well in the paper.
Nonlinear Interactions of Dispersion-managed Soliton in OTDM Systems
Institute of Scientific and Technical Information of China (English)
CAI Ju; MAO Yu; LU Hui; ZHANG Li-na; YANG Xiang-lin
2003-01-01
The dispersion-managed soliton (DMS) transmission model of dispersion-managed systems is established,and the intrachannel DMS interactions equation is obtained.The impact of soliton interactions on DMS systems are numerically investigated.Finally,the relationships of the collision length changing with map strength are revealed.
Euler potentials for the MHD Kamchatnov-Hopf soliton solution
Semenov, VS; Korovinski, DB; Biernat, HK
2002-01-01
In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian
Soliton Collisions in the Ion Acoustic Plasma Equations
Li, Y; Li, Yi
1999-01-01
Numerical experiments involving the interaction of two solitary waves of the ion acoustic plasma equations are described. An exact 2-soliton solution of the relevant KdV equation was fitted to the initial data, and good agreement was maintained throughout the entire interaction. The data demonstrates that the soliton interactions are virtually elastic
Bright-dark incoherently coupled photovoltaic soliton pair
Institute of Scientific and Technical Information of China (English)
Hou Chun-Feng; Pei Yan-Bo; Zhou Zhong-Xiang; Sun Xiu-Dong
2005-01-01
The coupling between two mutually incoherent optical beams that propagate collinearly in open-circuit photovoltaic photorefractive media is investigated. It is shown that an incoherently coupled bright-dark spatial soliton pair can be formed due to photovoltaic effect. The physical properties of such a soliton pair are also discussed.
Bound soliton pulses in a passively mode-locked fibre ring laser
Institute of Scientific and Technical Information of China (English)
Zhang Shu-Min; Lü Fu-Yun; Gong Yan-Dong; Zhou Xiao-Qun; Yang Xiu-Feng; Lü Chao
2005-01-01
The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.
Exact discrete soliton solutions of quintic discrete nonlinear Schr(o)dinger equation
Institute of Scientific and Technical Information of China (English)
Li Hua-Mei; Wu Feng-Min
2005-01-01
By using the extended hyperbolic function approach, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution,alternating phase bright soliton solution and alternating phase dark soliton solution, if a special constraint is imposed on the coefficients of the equation.
1-Soliton solutions of complex modified KdV equation with time-dependent coefficients
Kumar, H.; Chand, F.
2013-09-01
In this paper, we have obtained exact 1-soliton solutions of complex modified KdV equation with variable—coefficients using solitary wave ansatz. Restrictions on parameters of the soliton have been observed in course of the derivation of soliton solutions. Finally, a few numerical simulations of dark and bright solitons have been given.
On a general class of quadratic hopping sequences
Institute of Scientific and Technical Information of China (English)
JIA HuaDing; YUAN Ding; PENG DaiYuan; GUO Ling
2008-01-01
Based upon quadratic polynomials over the finite field, a new class of frequency hopping sequences with large family size suitable for applications in time/frequency hopping CDMA systems, multi-user radar and sonar systems is proposed and investigated. It is shown that the new time/frequency hopping sequences have at most one hit in their autocorrelation functions and at most two hits in their crosscorrelation functions except for a special case, and their family size is much larger than the conventional quadratic hopping sequences. The percentage of full collisions for the new quadratic hopping sequences is discussed. In addition, the average number of hits for the new quadratic hopping sequences, quadratic congruence sequences, extended quadratic congruence sequences and the general linear hopping sequences are also derived.
Quadratic residues and non-residues selected topics
Wright, Steve
2016-01-01
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
Large amplitude electromagnetic solitons in intense laser plasma interaction
Institute of Scientific and Technical Information of China (English)
Li Bai-Wen; Ishiguro S; Skoric M M
2006-01-01
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively.Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.
Microresonator solitons for massively parallel coherent optical communications
Marin-Palomo, Pablo; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H P; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J; Koos, Christian
2016-01-01
Optical solitons are waveforms that preserve their shape while travelling, relying on a balance of dispersion and nonlinearity. Data transmission schemes using solitons were heavily investigated in the 1980s promising to overcome the limitations imposed by dispersion of optical fibers. These approaches, however, were eventually abandoned in favour of WDM schemes, that are easier to implement and offer much better scalability to higher data rates. Here, we show that optical solitons may experience a comeback in optical terabit communications, this time not as a competitor, but as a key element of massively parallel WDM. Instead of encoding data on the soliton itself, we exploit continuously circulating solitons in Kerr-nonlinear microresonators to generate broadband optical frequency combs. In our experiments, we use two interleaved Kerr combs to transmit data on a total of 179 individual optical carriers that span the entire C and L bands. Using higher-order modulation formats (16QAM), net data rates exceedin...
Breathing Bright Solitons in a Bose-Einstein Condensate
Institute of Scientific and Technical Information of China (English)
崇桂书; 海文华; 谢琼涛
2003-01-01
A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton,bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave,is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.
Mode spectrum and temporal soliton formation in optical microresonators
Herr, T; Jost, J D; Mirgorodskiy, I; Lihachev, G; Gorodetsky, M L; Kippenberg, T J
2013-01-01
The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton f...
Evolution of randomly perturbed Korteweg-de Vries solitons
DEFF Research Database (Denmark)
Abdullaev, F. Kh.; Darmanyan, S. A.; Djumaev, M. R.;
1995-01-01
The evolution of randomly modulated solitons in the Korteweg-de Vries (KdV) equation is investigated. The cases of multiplicative and additive noises are considered. The distribution function for the soliton parameters is found using the inverse scattering transform. It is shown that the distribu......The evolution of randomly modulated solitons in the Korteweg-de Vries (KdV) equation is investigated. The cases of multiplicative and additive noises are considered. The distribution function for the soliton parameters is found using the inverse scattering transform. It is shown...... that the distribution function has non-Gaussian form and that the most probable and the mean value of the soliton amplitudes are distinct. The analytical results agrees well with the results of the numerical simulations of the KdV equation with random initial conditions. The results obtained for the KdV equation...
Solitons in spiraling systems: a continuum model for dynamical phyllotaxis
Energy Technology Data Exchange (ETDEWEB)
Nisoli, Cristiano [Los Alamos National Laboratory
2009-01-01
A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.
Soliton-Complex Dynamics in Strongly Dispersive Medium
Bogdan, M M; Maugin, G A; Bogdan, Mikhail M.; Kosevich, Arnold M.; Maugin, Gerard A.
1999-01-01
The concept of soliton complex in a nonlinear dispersive medium is proposed. It is shown that strongly interacting identical topological solitons in the medium can form bound soliton complexes which move without radiation. This phenomenon is considered to be universal and applicable to various physical systems. The soliton complex and its "excited" states are described analytically and numerically as solutions of nonlinear dispersive equations with the fourth and higher spatial or mixed derivatives. The dispersive sine-Gordon, double and triple sine-Gordon, and piecewise-linear models are studied in detail. Mechanisms and conditions of the formation of soliton complexes, and peculiarities of their stationary dynamics are investigated. A phenomenological approach to the description of the complexes and the classification of all the possible complex states are proposed. Some examples of physical systems, where the phenomenon can be experimentally observed, are briefly discussed.
Matter-wave dark solitons in box-like traps
Sciacca, M; Parker, N G
2016-01-01
Motivated by the experimental development of quasi-homogeneous Bose-Einstein condensates confined in box-like traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power-law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterise this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the box-like trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.
Bunching of temporal cavity solitons via forward Brillouin scattering
Erkintalo, Miro; Jang, Jae K; Coen, Stéphane; Murdoch, Stuart G
2015-01-01
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal cavity solitons to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new cavity soliton self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrafast pulses of light.
Soliton repetition rate in a silicon-nitride microresonator.
Bao, Chengying; Xuan, Yi; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M
2017-02-15
The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ∼50 fs.
STABILITY OF BRIGHT SCREENING-PHOTOVOLTAIC SPATIAL SOLITONS
Institute of Scientific and Technical Information of China (English)
LIU JING-SONG; ZHANG DU-YING; LIANG CHANG-HONG
2000-01-01
We present a theoretical analysis of the stability of screening-photovoltaic (SP) spatial solitons in biased photovoltaic-photorefractive materials in the case of neglecting the loss of the material and the effect of diffusion.When an incident optical beam is a SP soliton, this beam propagates along a linear path with its shape kept unchanged.When the maximum amplitude, width and functional form of an incident optical beam are slightly different from those of a SP soliton, the beam reshapes itself and tries to evolve into a solitary wave after a short distance. That is, these SP solitons are stable against small perturbations. However, optical beams that significantly differ from SP soliton solutions tend to experience larger cycles of compression and expansion, and their maximum amplitudes oscillate with propagation distances. The larger the perturbations, the stronger the oscillation.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Quadratic forms and Clifford algebras on derived stacks
Vezzosi, Gabriele
2013-01-01
In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...
Robust Solutions of Uncertain Complex-valued Quadratically Constrained Programs
Institute of Scientific and Technical Information of China (English)
Da Chuan XU; Zheng Hai HUANG
2008-01-01
In this paper,we discuss complex convex quadratically constrained optimization with uncertain data.Using S-Lemma,we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program.By exploring the approximate S-Lemma,we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.
Some Aspects of Quadratic Generalized White Noise Functionals
Si, Si; Hida, Takeyuki
2009-02-01
We shall discuss some particular roles of quadratic generalized white noise functionals. First observation is made from the viewpoint of the so-called "la passage du fini à l'infini". We then come to a dual pairing of spaces formed by quadratic generalized white noise functionals. In this line, we can further discuss quadratic forms of differential operators acting on the space of white noise functionals.
On Quadratic BSDEs with Final Condition in L2
Yang, Hanlin
2015-01-01
This thesis consists of three parts. In the first part, we study $\\mathbb{L}^p$ solutions of a large class of BSDEs. Existence, comparison theorem, uniqueness and a stability result are proved. In the second part, we establish the solvability of quadratic semimartingale BSDEs. In contrast to current literature, we use Lipschitz-quadratic regularization and obtain the existence and uniqueness results with minimal assumptions. The third part is a brief summary of quadratic semimartingales and t...
Observation of high-order polarization-locked vector solitons in a fiber laser.
Tang, D Y; Zhang, H; Zhao, L M; Wu, X
2008-10-10
We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.
Control of soliton characteristics of the condensate by an arbitrary x-dependent external potential
Institute of Scientific and Technical Information of China (English)
Yang Ru-Shu; Yao Chun-Mei; Chen Ri-Xin
2009-01-01
This paper presents a family of soliton solutions of the one-dimensional nonlinear Schrodinger equation which describes the dynamics of the dark solitons in Bose-Einstein condensates with an arbitrary x-dependent external potential. The obtained results show that the external potential has an important effect on the dark soliton dynamical characteristics of the condensates. The amplitude,width,and velocity of the output soliton are relative to the source position of the external potential. The smaller the amplitude of the soliton is,the narrower its width is,and the slower the soliton propagates. The collision of two dark solitons is nearly elastic.
Institute of Scientific and Technical Information of China (English)
LU Ke-Qing; ZHANG Yan-Peng; TANG Tian-Tong; LU Zhi-Xian; LIU Lin
2001-01-01
The theory of the screening-photovoltaic solitons is improved in biased photorefractive-photovoltaic crystals. When the photovoltaic effect is negligible, the screening-photovoltaic solitons are the screening ones, and their space-charge field is the space-charge field of the screening solitons. If the external field is absent, the screening photovoltaic solitons are the photovoltaic ones on the open- and closed-circuit conditions, and their space-charge field is of the photovoltaic solitons. We also show theoretically that the screening and the photovoltaic solitons on the open- and closed-circuit conditions may be studies together as the screening-photovoltaic solitons.
Lee, Jen-Chi
2014-01-01
We calculate quantum mechanical scattering problems for multi-indexed extensions of soliton potential by Darboux transformations in terms of pseudo virtual wavefunctions. As an application, we calculate infinite set of higher integer KdV solitons by the inverse scattering transform method of KdV equation.
Chen, Qian-Yong; Malomed, Boris A
2011-01-01
We report results of systematic simulations of the dynamics of solitons in the framework of the one-dimensional nonlinear Schr\\"{o}dinger equation (NLSE), which includes the harmonic-oscillator (HO) potential and a random potential. The equation models experimentally relevant spatially disordered settings in Bose-Einstein condensates (BECs) and nonlinear optics. First, the generation of soliton arrays from a broad initial quasi-uniform state by the modulational instability (MI) is considered, following a sudden switch of the nonlinearity from repulsive to attractive. Then, we study oscillations of a single soliton in this setting, which models a recently conducted experiment in BEC. Basic characteristics of the MI-generated array, such as the number of solitons and their mobility, are reported as functions of the strength and correlation length of the disorder, and of the total norm. For the single oscillating soliton, its survival rate is found. Main features of these dependences are explained qualitatively.
A SPLITTING METHOD FOR QUADRATIC PROGRAMMING PROBLEM
Institute of Scientific and Technical Information of China (English)
魏紫銮
2001-01-01
A matrix splitting method is presented for minimizing a quadratic programming (QP)problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.
The Quadratic Selective Travelling Salesman Problem
DEFF Research Database (Denmark)
Thomadsen, Tommy; Stidsen, Thomas K.
2003-01-01
complication that each pair of nodes have an associated profit which can be gained only if both nodes are visited. The QSTSP is a subproblem when constructing hierarchical ring networks. We describe an integer linear programming model for the QSTSP. The QSTSP is solved by two construction heuristics...... solutions at a cost of much higher running time. All problems with up to 50 nodes are solved within one hour.......A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...
Compact stars with quadratic equation of state
Ngubelanga, Sifiso A; Ray, Subharthi
2015-01-01
We provide new exact solutions to the Einstein-Maxwell system of equations for matter configurations with anisotropy and charge. The spacetime is static and spherically symmetric. A quadratic equation of state is utilised for the matter distribution. By specifying a particular form for one of the gravitational potentials and the electric field intensity we obtain new exact solutions in isotropic coordinates. In our general class of models, an earlier model with a linear equation of state is regained. For particular choices of parameters we regain the masses of the stars PSR J1614-2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and SAX J1808.4-3658. A comprehensive physical analysis for the star PSR J1903+0327 reveals that our model is reasonable.
Linear ultrasonic motor using quadrate plate transducer
Institute of Scientific and Technical Information of China (English)
Jiamei JIN; Chunsheng ZHAO
2009-01-01
A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr, Ti)O3 piezo-electric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator's neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimen-sion in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than 150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.
Directed animals, quadratic and rewriting systems
Marckert, Jean-François
2011-01-01
A directed animal is a percolation cluster in the directed site percolation model. The aim of this paper is to exhibit a strong relation between in one hand, the problem of computing the generating function $\\G$ of directed animals on the square lattice, counted according to the area and the perimeter, and on the other hand, the problem to find a solution to a system of quadratic equations involving unknown matrices. The matrices solution of this problem can be finite or infinite. We were unable to find finite solutions. We present some solid clues that some infinite explicit matrices, fix points of a rewriting like system are the natural solutions of this system of equations: some strong evidences are given that the problem of finding $\\G$ reduces then to the problem of finding an eigenvector to an explicit infinite matrix. Similar properties are shown for other combinatorial questions concerning directed animals, and for different lattices.
Quadratic dynamical decoupling with nonuniform error suppression
Energy Technology Data Exchange (ETDEWEB)
Quiroz, Gregory; Lidar, Daniel A. [Department of Physics and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089 (United States); Departments of Electrical Engineering, Chemistry, and Physics, and Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089 (United States)
2011-10-15
We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N{sub 1} and N{sub 2} pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N{sub 1} and N{sub 2}, and near-optimal performance is achieved for general single-qubit interactions when N{sub 1}=N{sub 2}.
Low-rank quadratic semidefinite programming
Yuan, Ganzhao
2013-04-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Information cascade on networks
Hisakado, Masato; Mori, Shintaro
2016-05-01
In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.
Large-scale sequential quadratic programming algorithms
Energy Technology Data Exchange (ETDEWEB)
Eldersveld, S.K.
1992-09-01
The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.
Institute of Scientific and Technical Information of China (English)
CHEN Wei-cheng; XU Wen-cheng
2006-01-01
Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.
Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser
Institute of Scientific and Technical Information of China (English)
ZHAO Guang-Zhen; XIAO Xiao-Sheng; MEI Jia-Wei; YANG Chang-Xi
2012-01-01
Transitional operations of multiple dissipative solitons in a long-cavity normal-dispersion Yb-doped fiber laser are experimentally investigated.Multiple dissipative solitons,including a stable soliton pair and a soliton triplet are observed by increasing the pump power or adjusting the polarization controllers.Two main boundaries of the stable asymmetric soliton and oscillating soliton are found between steady mode-locking.Moreover,multiple dissipative solitons with greater quantities of solitons are observed with pump power increasing.The experimental results agree well with a previous numerical study of multiple dissipative solitons.
ON IMMERSION FORMULAS FOR SOLITON SURFACES
Directory of Open Access Journals (Sweden)
Alfred Michel Grundland
2016-06-01
Full Text Available This paper is devoted to a study of the connections between three different analytic descriptions for the immersion functions of 2D-surfaces corresponding to the following three types of symmetries: gauge symmetries of the linear spectral problem, conformal transformations in the spectral parameter and generalized symmetries of the associated integrable system. After a brief exposition of the theory of soliton surfaces and of the main tool used to study classical and generalized Lie symmetries, we derive the necessary and sufficient conditions under which the immersion formulas associated with these symmetries are linked by gauge transformations. We illustrate the theoretical results by examples involving the sigma model.
Accessible solitons in complex Ginzburg-Landau media
He, Yingji; Malomed, Boris A.
2013-10-01
We construct dissipative spatial solitons in one- and two-dimensional (1D and 2D) complex Ginzburg-Landau (CGL) equations with spatially uniform linear gain; fully nonlocal complex nonlinearity, which is proportional to the integral power of the field times the harmonic-oscillator (HO) potential, similar to the model of “accessible solitons;” and a diffusion term. This CGL equation is a truly nonlinear one, unlike its actually linear counterpart for the accessible solitons. It supports dissipative spatial solitons, which are found in a semiexplicit analytical form, and their stability is studied semianalytically, too, by means of the Routh-Hurwitz criterion. The stability requires the presence of both the nonlocal nonlinear loss and diffusion. The results are verified by direct simulations of the nonlocal CGL equation. Unstable solitons spontaneously spread out into fuzzy modes, which remain loosely localized in the effective complex HO potential. In a narrow zone close to the instability boundary, both 1D and 2D solitons may split into robust fragmented structures, which correspond to excited modes of the 1D and 2D HOs in the complex potentials. The 1D solitons, if shifted off the center or kicked, feature persistent swinging motion.
Axion dark matter, solitons, and the cusp-core problem
Marsh, David J E
2015-01-01
Self-gravitating bosonic fields can support stable and localised field configurations. For real fields, these solutions oscillate in time and are known as oscillatons. The density profile is static, and is soliton. Such solitons should be ubiquitous in models of axion dark matter, with the soliton characteristic mass and size depending on some inverse power of the axion mass. Stable configurations of non-relativistic axions are studied numerically using the Schr\\"{o}dinger-Poisson system. This method, and the resulting soliton density profiles, are reviewed. Using a scaling symmetry and the uncertainty principle, the core size of the soliton can be related to the central density and axion mass, $m_a$, in a universal way. Solitons have a constant central density due to pressure-support, unlike the cuspy profile of cold dark matter (CDM). One consequence of this fact is that solitons composed of ultra-light axions (ULAs) may resolve the `cusp-core' problem of CDM. In DM halos, thermodynamics will lead to a CDM-...
Dark-bright soliton interactions beyond the integrable limit
Katsimiga, G. C.; Stockhofe, J.; Kevrekidis, P. G.; Schmelcher, P.
2017-01-01
In this work we present a systematic theoretical analysis regarding dark-bright solitons and their interactions, motivated by recent advances in atomic two-component repulsively interacting Bose-Einstein condensates. In particular, we study analytically via a two-soliton ansatz adopted within a variational formulation the interaction between two dark-bright solitons in a homogeneous environment beyond the integrable regime, by considering general inter- and intra-atomic interaction coefficients. We retrieve the possibility of a fixed point in the case where the bright solitons are out of phase. As the intercomponent interaction is increased, we also identify an exponential instability of the two-soliton state, associated with a subcritical pitchfork bifurcation. The latter gives rise to an asymmetric partition of the bright soliton mass and dynamically leads to spontaneous splitting of the bound pair. In the case of the in-phase bright solitons, we explain via parsing the analytical approximations and monitoring the direct dynamics why no such pair is identified, despite its prediction by the variational analysis.
Approximate *-derivations and approximate quadratic *-derivations on C*-algebras
Directory of Open Access Journals (Sweden)
Park Choonkil
2011-01-01
Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.
Geometric quadratic stochastic operator on countable infinite set
Energy Technology Data Exchange (ETDEWEB)
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar [Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University, Jalan Sultan Ahmad Shah, Bandar InderaMahkota, 25200 Kuantan, Pahang (Malaysia)
2015-02-03
In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.
Immunizing Conic Quadratic Optimization Problems Against Implementation Errors
Ben-Tal, A.; den Hertog, D.
2011-01-01
We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonali
Binary GCD like Algorithms for Some Complex Quadratic Rings
DEFF Research Database (Denmark)
Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg
2004-01-01
binary gcd like algorithms for the ring of integers in and , one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich...
Quadratic Twists of Rigid Calabi–Yau Threefolds Over
DEFF Research Database (Denmark)
Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko
2013-01-01
We consider rigid Calabi–Yau threefolds defined over Q and the question of whether they admit quadratic twists. We give a precise geometric definition of the notion of a quadratic twists in this setting. Every rigid Calabi–Yau threefold over Q is modular so there is attached to it a certain newfo...
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
New Heuristic Rounding Approaches to the Quadratic Assignment Problem
Gharibi, Wajeb
2011-01-01
Quadratic assignment problem is one of the great challenges in combinatorial optimization. It has many applications in Operations research and Computer Science. In this paper, the author extends the most-used rounding approach to a one-parametric optimization model for the quadratic assignment problems. A near-optimum parameter is also predestinated. The numerical experiments confirm the efficiency.
AdS Waves as Exact Solutions to Quadratic Gravity
Gullu, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram
2011-01-01
We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity.
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2016-01-01
supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second......-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 µm...
Kerr-Newman electron as spinning soliton
Burinskii, Alexander
2014-01-01
Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. Spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of spacetime -- the Kerr singular ring of the Compton size, which may be interpreted as a closed fundamental string to the low energy string theory. The singular and twosheeted structure of the corresponding Kerr space has to be regularized, and we consider the old problem of regular source of the KN solution. As a development of the earlier Keres-Israel-Hamity-L\\'opez model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: 1) the soliton forms a relativistically rotating bubble of the Compton radius, which is filled by the oscillating Higgs field in pseudo-vacuum state, 2) boundary of the ...
Statistical foundation of the fluid analogue of the soliton formalism
Tchen, C. M.
1986-01-01
A fully nonlinear analysis is used to develop a general soliton formalism for the description of the nonlinear evolution of soliton fluctuations in both plasmas and classical fluids. From the Navier-Stokes equations for plasmas and compressible fluids of two scales, two equations for the propagation of density waves are derived. A fast soliton field is spontaneously created by rarefaction, and a slow density wave modulates the field intensity as a ponderomotive force. Constitutive properties are demonstrated using a Lagrangian-kinetic formalism of the fluctuation-dissipation theory.
Solitons induced by boundary conditions from the Boussinesq equation
Chou, Ru Ling; Chu, C. K.
1990-01-01
The behavior of solitons induced by boundary excitation is investigated at various time-dependent conditions and different unperturbed water depths, using the Korteweg-de Vries (KdV) equation. Then, solitons induced from Boussinesq equations under similar conditions were studied, making it possible to remove the restriction in the KdV equation and to treat soliton head-on collisions (as well as overtaking collisions) and reflections. It is found that the results obtained from the KdV and the Boussinesq equations are in good agreement.
Soliton physics with semiconductor exciton-polaritons in confined systems
Sich, Maksym; Skryabin, Dmitry V.; Krizhanovskii, Dmitry N.
2016-10-01
In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of non-linear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton-polariton systems. xml:lang="fr"
Theory of nonlocal soliton interaction in nematic liquid crystals
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw
2005-01-01
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....
Contributions to the application of solitons in optical communication systems
Mostofi, Amir
The field of optical soliton communication systems has made remarkable progress in the recent past, and yet it is still growing in many different directions. This thesis is essentially a collection of a variety of numerical investigations that were conducted in an attempt to introduce some new ideas in this area, as well as shed further light on certain already considered issues. The thesis consists of the following general topics: (1)A new multilevel TDM soliton transmission system has been proposed, where each channel transmits its data in the form of picosecond fundamental solitons of a unique amplitude. At the receiver, the pulses are compressed to the subpicosecond level, and separated in the wavelength domain, by taking advantage of the different Raman-induced self-wavelength shifts experienced. Through numerical simulations and noise analyses, the feasibility of the system has been investigated. (2)The use of trains of unequal- amplitude solitons for improving the undoing of soliton interactions in periodically amplified systems using optical phase conjugation has been considered and compared with the case of phase-alternation between neighbouring solitons. (3)It has been found that dispersion-decreasing fibres with the commonly used hyperbolic dispersion profile are not always a good option for near adiabatic, pedestal-free compression of soliton pulses. In fact, they appear to be inferior to some other simple dispersion profiles, such as linear, Gaussian, and exponential, particularly when compression of subpicosecond solitons is involved. (4)The fact that nonlinear couplers with constant core separation cannot be fabricated with very long lengths has been considered to pose a problem for reliable observation of soliton propagation in them. The nonconstancy of the core separation has been modelled in this thesis in terms of random fluctuations in the coupling coefficient, and the effects of these fluctuations on both dynamical switching and static
Soliton models in resonant and nonresonant optical ﬁbers
Indian Academy of Sciences (India)
K Porsezian
2001-11-01
In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in ﬁbers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear ﬁber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is brieﬂy discussed.
Ring resonator systems to perform optical communication enhancement using soliton
Amiri, Iraj Sadegh
2014-01-01
The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi
New cylindrical gravitational soliton waves and gravitational Faraday rotation
Tomizawa, Shinya
2013-01-01
In terms of gravitational solitons, we study gravitational non-linear effects of gravitational solitary waves such as Faraday rotation. Applying the Pomeransky's procedure for inverse scattering method, which has been recently used for constructing stationary black hole solutions in five dimensions to a cylindrical spacetime in four dimensions, we construct a new cylindrically symmetric soliton solution. This is the first example to be applied to the cylindrically symmetric case. In particular, we clarify the difference from the Tomimatsu's single soliton solution, which was constructed by the Belinsky-Zakharov's procedure.
Freezing of Energy of a Soliton in an External Potential
Bambusi, D.; Maspero, A.
2016-05-01
In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .
Scattering of topological solitons on holes and barriers
Piette, B; Brand, J; Piette, Bernard; Brand, Joachim
2005-01-01
We study the scattering properties of topological solitons on obstructions in the form of holes and barriers. We use the 'new baby Skyrme' model in (2+1) dimensions and we model the obstructions by making the coefficient of the baby skyrme model potential - position dependent. We find that that the barrier leads to the repulsion of the solitons (for low velocities) or their complete transmission (at higher velocities) with the process being essentially elastic. The hole case is different; for small velocities the solitons are trapped while at higher velocities they are transmitted with a loss of energy. We present some comments explaining the observed behaviour.
Peaked and Smooth Solitons for K*(4,1 Equation
Directory of Open Access Journals (Sweden)
Yongan Xie
2013-01-01
Full Text Available This paper is contributed to explore all possible single peak solutions for the K*(4,1 equation ut=uxu2+2α(uuxxx+2uxuxx. Our procedure shows that the K*(4,1 equation either has peakon, cuspon, and smooth soliton solutions when sitting on a nonzero constant pedestal limξ→±∞u=A≠0 or possesses compacton solutions only when limξ→±∞u=A=0. We present a new smooth soliton solution in an explicit form. Mathematical analysis and numeric graphs are provided for those soliton solutions of the K*(4,1 equation.
Soliton formation in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2009-01-01
of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...
Noise of quantum solitons and their quasi-coherent states
Institute of Scientific and Technical Information of China (English)
段路明; 郭光灿
1997-01-01
Quantum noise of optical solitons is analysed based on the exact solutions of the quantum nonlinear Schrodmger equation (QNSE) and the construction of the quantum soliton states. The noise limits are obtained for the local photon number and for the local quadrature phase amplitude. They are larger than the vacuum fluctuation. So in the fundamental soliton states the variance of the local photon number and the local quadrature phase amplitude cannot be squeezed The sohton states with the minimum noise are quasi-coherent states, in which the quantum dispersion effects are negligible.
Breather-like solitons extracted from the Peregrine rogue wave
Yang, Guangye; Qin, Zhenyun; Malomed, Boris A; Mihalache, Dumitru; Li, Lu
2014-01-01
Based on the Peregrine solution (PS) of the nonlinear Schr\\"odinger (NLS) equation, the evolution of rational fraction pulses surrounded by zero background is investigated. These pulses display the behavior of a breather-like solitons. We study the generation and evolution of such solitons extracted, by means of the spectral-filtering method, from the PS in the model of the optical fiber with realistic values of coefficients accounting for the anomalous dispersion, Kerr nonlinearity, and higher-order effects. The results demonstrate that the breathing solitons stably propagate in the fibers. Their robustness against small random perturbations applied to the initial background is demonstrated too.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
QUADRATIC ADMISSIBLE ESTIMATE OF COVARIANCE IN PSEUDO-ELLIPTICAL CONTOURED DISTRIBUTION
Institute of Scientific and Technical Information of China (English)
Hengjian CUI; Xiuhong GAO
2006-01-01
This article mainly discusses the admissibility of quadratic estimate of covariance in pseudoelliptical distribution. Under the quadratic loss function, the necessary and sufficient conditions that a quadratic estimator is an admissible estimator of covariance in the class of quadratic estimators are obtained. A complete class of the quadratic estimator class is also given.
Directory of Open Access Journals (Sweden)
Rocío Meza-Moreno
2015-01-01
Full Text Available Let p=4k+1 be a prime number and Fp the finite field with p elements. For x∈1,n, Nx will denote the set of quadratic nonresidues less than or equal to x. In this work we calculate the number of quadratic nonresidues in the shifted set N(p-1/2+a.
Period-doubling cascades galore
Sander, Evelyn; Yorke, James A.
2009-01-01
The appearance of numerous period-doubling cascades is among the most prominent features of {\\bf parametrized maps}, that is, smooth one-parameter families of maps $F:R \\times {\\mathfrak M} \\to {\\mathfrak M}$, where ${\\mathfrak M}$ is a smooth locally compact manifold without boundary, typically $R^N$. Each cascade has infinitely many period-doubling bifurcations, and it is typical to observe -- such as in all the examples we investigate here -- that whenever there are any cascades, there are...
Coupled solitons of intense high-frequency and low-frequency waves in Zakharov-type systems
Gromov, Evgeny; Malomed, Boris
2016-12-01
One-parameter families of exact two-component solitary-wave solutions for interacting high-frequency (HF) and low-frequency (LF) waves are found in the framework of Zakharov-type models, which couple the nonlinear Schrödinger equation for intense HF waves to the Boussinesq (Bq) or Korteweg-de Vries (KdV) equation for the LF component through quadratic terms. The systems apply, in particular, to the interaction of surface (HF) and internal (LF) waves in stratified fluids. These solutions are two-component generalizations of the single-component Bq and KdV solitons. Perturbed dynamics and stability of the solitary waves are studied in detail by means of analytical and numerical methods. Essentially, they are stable against separation of the HF and LF components if the latter one is shaped as a potential well acting on the HF field, and unstable, against splitting of the two components, with a barrier-shaped LF one. Collisions between the solitary waves are studied by means of direct simulations, demonstrating a trend to merger of in-phase solitons, and elastic interactions of out-of-phase ones.
Inferring Network Structure from Cascades
Ghonge, Sushrut
2016-01-01
Many physical, biological and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we solve the dynamics of general cascade processes. We then offer three topological inversion methods to infer the structure of any directed network given a set of cascade arrival times. Our forward and inverse formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for 5 different cascade models.
A Quadratic Closure for Compressible Turbulence
Energy Technology Data Exchange (ETDEWEB)
Futterman, J A
2008-09-16
We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.
Designing Camera Networks by Convex Quadratic Programming
Ghanem, Bernard
2015-05-04
In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport).
Approximate Graph Edit Distance in Quadratic Time.
Riesen, Kaspar; Ferrer, Miquel; Bunke, Horst
2015-09-14
Graph edit distance is one of the most flexible and general graph matching models available. The major drawback of graph edit distance, however, is its computational complexity that restricts its applicability to graphs of rather small size. Recently the authors of the present paper introduced a general approximation framework for the graph edit distance problem. The basic idea of this specific algorithm is to first compute an optimal assignment of independent local graph structures (including substitutions, deletions, and insertions of nodes and edges). This optimal assignment is complete and consistent with respect to the involved nodes of both graphs and can thus be used to instantly derive an admissible (yet suboptimal) solution for the original graph edit distance problem in O(n3) time. For large scale graphs or graph sets, however, the cubic time complexity may still be too high. Therefore, we propose to use suboptimal algorithms with quadratic rather than cubic time for solving the basic assignment problem. In particular, the present paper introduces five different greedy assignment algorithms in the context of graph edit distance approximation. In an experimental evaluation we show that these methods have great potential for further speeding up the computation of graph edit distance while the approximated distances remain sufficiently accurate for graph based pattern classification.
Optimal power flow using sequential quadratic programming
Nejdawi, Imad M.
1999-11-01
Optimal power flow (OPF) is an operational as well as a planning tool used by electric utilities to help them operate their network in the most economic and secure mode of operation. Various algorithms to solve the OPF problem evolved over the past three decades; linear programming (LP) techniques were among the major mathematical programming methods utilized. The linear models of the objective function and the linearization of the constraints are the main features of these techniques. The main advantages of the LP approach are simplicity and speed. Nonlinear programming techniques have been applied to OPF solution. The major drawback is the expensive solution of large sparse systems of equations. This research is concerned with the development of a new OPF solution algorithm using sequential quadratic programming (SQP). In this formulation, a small dense system the size of which is equal to the number of control variables is solved in an inner loop. The Jacobian and Hessian terms are calculated in an outer loop. The total number of outer loop iterations is comparable to those in an ordinary load flow in contrast to 20--30 iterations in other nonlinear methods. In addition, the total number of floating point operations is less than that encountered in direct methods by two orders of magnitude. We also model dispatch over a twenty four-hour time horizon in a transmission constrained power network that includes price-responsive loads where large energy customers can operate their loads in time intervals with lowest spot prices.
Information cascade on networks
Hisakado, Masato
2015-01-01
In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barab\\'{a}si-Albert(BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters--herders and independents--and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discussed the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade t...
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
Soliton-induced relativistic-scattering and amplification
Rubino, E; Belgiorno, F; Cacciatori, S L; Couairon, A; Leonhardt, U; Faccio, D
2012-01-01
Solitons are of fundamental importance in photonics due to applications in optical data transmission and also as a tool for investigating novel phenomena ranging from light generation at new frequencies and wave-trapping to rogue waves. Solitons are also relativistic scatterers: they generate refractive-index perturbations moving at the speed of light. Here we found that such perturbations scatter light in an unusual way: they amplify light by the mixing of positive and negative frequencies, as we describe using a first Born approximation and numerical simulations. The simplest scenario in which these effects may be observed is within the initial stages of optical soliton propagation: a steep shock front develops that may efficiently scatter a second, weaker probe pulse into relatively intense positive and negative frequency modes with amplification at the expense of the soliton. Our results show a novel all-optical amplification scheme that relies on relativistic scattering.
Soliton switching in a site-dependent ferromagnet
Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.
2017-02-01
Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.
Solitons and other waves on a quantum vortex filament
Van Gorder, Robert A
2014-01-01
The quantum form of the local induction approximation (LIA, a model approximating the motion of a thin vortex filament in superfluid) including superfluid friction effects is put into correspondence with a type of cubic complex Ginsburg-Landau equation, in a manner analogous to the Hasimoto map taking the classical LIA into the cubic nonlinear Schr\\"odinger equation. From this formulation, we determine the form and behavior of Stokes waves, 1-solitons, and other traveling wave solutions under normal and binormal friction. The most important of these solutions is the soliton on a quantum vortex filament, which is a natural generalization of the 1-soliton solution constructed mathematically by Hasimoto which motivated subsequent real-world experiments. We also conjecture on the possibility of chaos in such systems, and on the existence more complicated solitons such as breathers.
Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.
Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J
2015-02-01
We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.
Solitons in Skyrme - Faddeev spinor model and quantum mechanics
Rybakov, Y.
2016-07-01
We discuss the possibility of unification of Skyrme and Faddeev approaches for the description of baryons and leptons respectively as topological solitons within the scope of 16-spinor model. The motivation for such a unification is based on a special 8- semispinor identity invented by the Italian geometrician F. Brioschi. This remarkable identity permits one to realize baryon or lepton states through the effect of spontaneous symmetry breaking emerging due to special structure of the Higgs potential in the model. At large distances from the particle - soliton small excitation of the vacuum satisfies Klein - Gordon equation with some mass that permits one to establish the correspondence with quantum mechanics in special stochastic representation of the wave function for extended particles - solitons. Finally, we illustrate the peculiar properties of stochastic representation by the famous T. Young's experiment with n slits in soliton realization.