WorldWideScience

Sample records for cascade laser cavities

  1. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  2. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    Science.gov (United States)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  3. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lyakh, A., E-mail: alyakh@pranalytica.com; Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N., E-mail: patel@pranalytica.com [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, California 90401 (United States)

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  4. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Vijayraghavan, Karun [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); ATX Photonics, 10100 Burnet Rd., Austin, Texas 78758 (United States)

    2015-06-29

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps.

  5. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  6. Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.

    Science.gov (United States)

    Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted

    2014-12-01

    A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.

  7. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  8. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  9. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  10. External cavity-quantum cascade laser (EC-QCL) spectroscopy for protein analysis in bovine milk.

    Science.gov (United States)

    Kuligowski, Julia; Schwaighofer, Andreas; Alcaráz, Mirta Raquel; Quintás, Guillermo; Mayer, Helmut; Vento, Máximo; Lendl, Bernhard

    2017-04-22

    The analytical determination of bovine milk proteins is important in food and non-food industrial applications and yet, rather labour-intensive wet-chemical, low-throughput methods have been employed since decades. This work proposes the use of external cavity-quantum cascade laser (EC-QCL) spectroscopy for the simultaneous quantification of the most abundant bovine milk proteins and the total protein content based on the chemical information contained in mid-infrared (IR) spectral features of the amide I band. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. Protein concentrations in commercial bovine milk samples were calculated after chemometric compensation of the matrix contribution employing science-based calibration (SBC) without sample pre-processing. The use of EC-QCL spectroscopy together with advanced multivariate data analysis allowed the determination of casein, α-lactalbumin, β-lactoglobulin and total protein content within several minutes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fast quantification of bovine milk proteins employing external cavity-quantum cascade laser spectroscopy.

    Science.gov (United States)

    Schwaighofer, Andreas; Kuligowski, Julia; Quintás, Guillermo; Mayer, Helmut K; Lendl, Bernhard

    2018-06-30

    Analysis of proteins in bovine milk is usually tackled by time-consuming analytical approaches involving wet-chemical, multi-step sample clean-up procedures. The use of external cavity-quantum cascade laser (EC-QCL) based IR spectroscopy was evaluated as an alternative screening tool for direct and simultaneous quantification of individual proteins (i.e. casein and β-lactoglobulin) and total protein content in commercial bovine milk samples. Mid-IR spectra of protein standard mixtures were used for building partial least squares (PLS) regression models. A sample set comprising different milk types (pasteurized; differently processed extended shelf life, ESL; ultra-high temperature, UHT) was analysed and results were compared to reference methods. Concentration values of the QCL-IR spectroscopy approach obtained within several minutes are in good agreement with reference methods involving multiple sample preparation steps. The potential application as a fast screening method for estimating the heat load applied to liquid milk is demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    Science.gov (United States)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity

  13. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm

    Science.gov (United States)

    Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory

    2018-01-01

    The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.

  14. Continuous multispectral imaging of surface phonon polaritons on silicon carbide with an external cavity quantum cascade laser

    Science.gov (United States)

    Dougakiuchi, Tatsuo; Kawada, Yoichi; Takebe, Gen

    2018-03-01

    We demonstrate the continuous multispectral imaging of surface phonon polaritons (SPhPs) on silicon carbide excited by an external cavity quantum cascade laser using scattering-type scanning near-field optical microscopy. The launched SPhPs were well characterized via the confirmation that the theoretical dispersion relation and measured in-plane wave vectors are in excellent agreement in the entire measurement range. The proposed scheme, which can excite and observe SPhPs with an arbitrary wavelength that effectively covers the spectral gap of CO2 lasers, is expected to be applicable for studies of near-field optics and for various applications based on SPhPs.

  15. A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.

    2012-04-01

    A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.

  16. High power MWIR quantum cascade lasers and their use in intra-cavity THz room temperature generation

    Science.gov (United States)

    Troccoli, Mariano; Wang, Xiaojun; Fan, Jenyu; Jung, Seungyong; Jiang, Aiting; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.

    2015-05-01

    In this paper we review our results on high power quantum cascade lasers in the mid- and long-wave infrared regions of the spectrum (4-12um). The specifications and characteristics of state-of-the-art QC lasers fabricated by MOCVD technology are illustrated, along with their key application requirements and potential issues for future improvements. Single emitter QC lasers in the Watt-class range are presented and analyzed. In addition, we explore the use of high power QCLs for THz generation at room temperature by non-linear mixing of high power mid-infrared beams in a monolithic intra-cavity design. The THz radiation so obtained is widely tunable by electrical injection. Experimentally, we demonstrate ridge waveguide single mode devices electrically tunable between 3.44 and 4.02 THz.

  17. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  18. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  19. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    Science.gov (United States)

    Brumfield, B. E.; Taubman, M. S.; Phillips, M. C.

    2016-02-01

    A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D2O and HDO at an update rate of 40 Hz (25 ms measurement time). The chemical mixtures were generated by evaporating D2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H2O to produce HDO. Fluctuations in the ratio of D2O and HDO on timescales of measurement time are estimated for D2O and HDO respectively with a 127 m optical path. These detection limits are reduced to 23.0 and 24.0 ppbv with a 1 s averaging time for D2O and HDO respectively. Detection limits measurement time.

  20. Compact, rapid, and rugged detector of military and improvised explosives based on external grating cavity quantum cascade lasers

    Science.gov (United States)

    Tsekoun, Alexei; Dunayevskiy, Ilya; Maulini, Richard; Barron-Jimenez, Rodolfo; Lyakh, Arkadiy; Patel, C. Kumar N.

    2009-08-01

    Early detection of explosive substances is the first and most difficult step in defeating explosive devices. Many currently available methods suffer from fundamental failure modes limiting their realworld suitability. Infrared spectroscopy is ideal for reliable identification of explosives since it probes the chemical composition of molecules. Quantum cascade lasers rapidly became the light source of choice of IR spectroscopy due to their wavelength agility, relatively high output power, and small size and weight. Our compact, rapid, and rugged multi-explosives sensor based on external grating cavity QCLs simultaneously detects TNT, TATP, and acetone while being immune to ammonium nitrate interference. The instrument features low false alarm rate, and low probability of false negatives. Receiver operation characteristics curves are presented.

  1. Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7.5 and 8 µm

    Science.gov (United States)

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Dutta Banik, Gourab; Pradhan, Manik

    2018-04-01

    We demonstrate a mid-infrared detection strategy with 1f-normalized 2f-wavelength modulation spectroscopy (WMS-2f/1f) using a continuous wave (CW) external-cavity quantum cascade laser (EC-QCL) operating between 7.5 and 8 µm. The detailed performance of the WMS-2f/1f detection method was evaluated by making rotationally resolved measurements in the (ν 4  +  ν 5) combination band of acetylene (C2H2) at 1311.7600 cm-1. A noise-limited detection limit of three parts per billion (ppb) with an integration time of 110 s was achieved for C2H2 detection. The present high-resolution CW-EC-QCL system coupled with the WMS-2f/1f strategy was further validated with an extended range of C2H2 concentration of 0.1-1000 ppm, which shows excellent promise for real-life practical sensing applications. Finally, we utilized the WMS-2f/1f technique to measure the C2H2 concentration in the exhaled breath of smokers.

  2. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  3. Atmospheric ammonia measurements in Houston, TX using an external cavity-quantum cascade laser-based sensor

    Science.gov (United States)

    Gong, L.; Lewicki, R.; Griffin, R. J.; Flynn, J. H.; Lefer, B. L.; Tittel, F. K.

    2010-12-01

    Ammonia (NH3) plays a significant role in atmospheric chemistry. It has many anthropogenic (e.g., agricultural crops and mineral fertilizers) and natural sources (e.g., animals, oceans, and vegetation) in the environment. In certain areas, industrial and motor vehicle activities also can contribute to increases in atmospheric NH3 levels. From a perspective of environmental concern, NH3 is a precursor of particulate matter (PM) because it can lead to production of ammonium salts (e.g., (NH4)2SO4 and NH4NO3) through chemical reactions with sulfuric and nitric acid. As a result, the abundance of NH3 in the atmosphere has a great impact on aerosol nucleation and composition. Despite this, NH3 is not regulated. It is crucial, however, to improve our understanding of the dynamics of NH3 in an industrial and urban area such as Greater Houston where atmospheric NH3 data are limited. In this study, a 10.4 µm external cavity quantum cascade laser (EC-QCL)-based sensor was developed and utilized. To monitor atmospheric NH3 at trace gas concentration levels, an amplitude modulated photo-acoustic spectroscopy (AM-PAS) technique was employed. The minimum detection limit obtained from the sensor is ~1.5 ppb for a 5-second data acquisition time. After averaging data over 300 seconds a sub-ppb NH3 concentration level can be achieved. The NH3 sensor has been deployed on the roof of a ~60-meter-high building (North Moody Tower) located on the University of Houston campus since November 2009. Several episodes of high NH3 concentrations were observed. For example, the sensor recorded a significant and lasting increase in NH3 concentrations (~21 ppb) on August 14, 2010, when a major accident occurred during the same time period on the Gulf Freeway (I-45) in Houston only 2 miles from the sampling site. The elevated concentration levels are assumed to be associated with NH3 generation from a chemical fire resulting from the collision involving two 18-wheelers, one carrying fertilizer

  4. Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2018-01-16

    We report for the first time the frequency locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locked laser source is exploited to carry out molecular spectroscopy around 7.8 μm with a line-centre frequency combined uncertainty of ~63 kHz. The strength of the approach, in view of an accurate retrieval of line centre frequencies over a spectral range as large as 100 cm-1, is demonstrated on the P(40), P(18) and R(31) lines of the fundamental rovibrational band of N2O covering the centre and edges of the P and R branches. The spectrometer has the potential to be straightforwardly extended to other spectral ranges, till 12 μm, which is the current wavelength limit for commercial cw EC-QCLs.

  5. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  6. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  7. Interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  8. Spectrally resolved far-fields of terahertz quantum cascade lasers

    OpenAIRE

    Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A.; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M.; Strasser, Gottfried; Unterrainer, Karl

    2016-01-01

    We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-P\\'erot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing...

  9. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  10. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide ...

  11. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  12. Observation of Combination Bands Involving Intermolecular Vibrations of N_2O-N_2, N_2O-OCS and N_2O-CO_2 Complexes Using AN External Cavity Quantum Cascade Laser

    Science.gov (United States)

    Rezaei, M.; Sheybani-Deloui, S.; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2013-06-01

    Spectra of the weakly-bound N_2O-CO_2, N_2O-OCS, and N_2O-N_2 complexes in the region of the N_2O ν_1 fundamental band (˜2224 cm^{-1}) are observed in a pulsed supersonic slit jet expansion probed with a quantum cascade laser. One new band is observed for each complex: two combination bands involving the intermolecular in-plane bending for N_2O-CO_2 and N_2O-N_2 complexes, and the out-of-plane torsional vibration for N_2O-OCS. The resulting intermolecular frequencies are 34.17, 17.11 and 22.33 cm^{-1} for N_2O-CO_2, N_2O-OCS, and N_2O-N_2 complexes, respectively. The intermolecular vibrations provide clear spectroscopic data against which theory can be benchmarked. These results will be discussed, along with a brief introduction to our pulsed-jet supersonic apparatus which has been retrofitted by an infrared cw external-cavity quantum cascade laser (QCL) manufactured by Daylight Solutions. The QCL is used in the rapid-scan signal averaging mode. Although the repetition rate of the QCL is limited by its PZT scan rate, which is 100 Hz, we describe a simple technique to increase the effective repetition rate to 625 Hz. In addition, we have significantly reduced the long term frequency drift of the QCL by locking the laser frequency to the sides of a reference line. Limin Zheng, Soo-Ying Lee, Yunpeng Lu, and Minghui Yang, J. Chem. Phys. 138, 044302 (2013).

  13. Delay time calculation for dual-wavelength quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hamadou, A., E-mail: abd-hamado@yahoo.fr [Département des Sciences et Techniques, Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj 34000 (Algeria); Laboratoire d’étude des surfaces et interfaces des matériaux solides (LESIMS), Sétif 19000 (Algeria); Lamari, S. [Laboratoire d’étude des surfaces et interfaces des matériaux solides (LESIMS), Sétif 19000 (Algeria); Département de Physique, Faculté des Sciences, Université Sétif 1, 19000 (Algeria); Thobel, J.-L. [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Lille1, Avenue Poincaré, BP 60069, 59652 Villeneuve d' Ascq Cédex (France)

    2013-11-28

    In this paper, we calculate the turn-on delay (t{sub th}) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and Δt are explored.

  14. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  15. MID-INFRARED QUANTUM CASCADE LASERS

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. Quantum cascade lasers (QCL) based on intersubband transitions operating at room temperature in the mid-infrared or 'molecular fingerprint' spectral region (3.4–17 im) have been found useful for several applications including environmental sensing, pollution monitoring, and medical appli-.

  16. Interband Cascade Laser Photon Noise

    Science.gov (United States)

    2009-09-01

    separated by an injection region composed of digitally graded Indium Arsenide (InAs)/ Aluminum Indium Antimonide (Al(In)Sb) multi-QWs. The active region...consists of coupled InAs, Gallium Indium Antimonide (GaInSb) and Gallium Antimonide (GaSb) QWs separated by Aluminum Antimonide (AlSb) barriers. Under... Antimonide AlInSb Aluminum Indium Antimonide cw constant wave DC direct current GaSb Gallium Antimonide IC Interband cascade InAs Indium Arsenide InSb

  17. Multiheterodyne spectroscopy using interband cascade lasers

    Science.gov (United States)

    Sterczewski, Lukasz A.; Westberg, Jonas; Patrick, Charles Link; Kim, Chul Soo; Kim, Mijin; Canedy, Chadwick L.; Bewley, William W.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Wysocki, Gerard

    2018-01-01

    While midinfrared radiation can be used to identify and quantify numerous chemical species, contemporary broadband midinfrared spectroscopic systems are often hindered by large footprints, moving parts, and high power consumption. In this work, we demonstrate multiheterodyne spectroscopy (MHS) using interband cascade lasers, which combines broadband spectral coverage with high spectral resolution and energy-efficient operation. The lasers generate up to 30 mW of continuous-wave optical power while consuming portable and high-resolution solid-state spectroscopic chemical sensors operating in the midinfrared.

  18. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  19. Mid infrared DFB interband cascade lasers

    Science.gov (United States)

    Koeth, J.; Weih, R.; Scheuermann, J.; Fischer, M.; Schade, A.; Kamp, M.; Höfling, S.

    2017-08-01

    The mid infrared spectral range (MIR) is of great interest for a variety of industrial, medical and environmental applications since numerous molecules have strong absorption lines therein. Interband cascade lasers (ICLs) have the ability to cover the entire MIR almost independently from the bandgap of the utilized semiconductors. Combined with a DFB technology which is applicable for most kinds of interband transition based semiconductor lasers the spectral range between 2.8 and 5.9 μm could be covered with application grade single mode devices with low power consumption. Recent optimizations regarding the layer design as well as the device processing yielded DFB laser chips with improved performance that will pave the way for a variety of applications that benefit from reasonable output power.

  20. Lasers with intra-cavity phase elements

    Science.gov (United States)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  1. Compact and highly efficient laser pump cavity

    Science.gov (United States)

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  2. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also...... described, and their implications for microdroplet resonator technology are discussed. Optofluidic implementations of microdroplet resonators are reviewed with emphasis on the basic optomechanical properties....

  3. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  4. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    This thesis describes the design, fabrication and characterization of photonic crystal slab lasers. The main focus is on coupled photonic crystal cavity lasers which are examined in great detail. The cavity type which is mainly explored consists of a defect formed by a single missing hole...... in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality...... are identified such as the size and material for the carrier wafer in the III-V etch and the importance of removing all remains of the e-beam lithography mask after the etch of the hard mask. Detailed simulations are shown for a simple system with two coupled cavities in different coupling directions...

  5. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of...

  6. Soliton laser: A computational two-cavity model

    DEFF Research Database (Denmark)

    Berg, P.; If, F.; Christiansen, Peter Leth

    1987-01-01

    An improved computational two-cavity model of the soliton laser proposed and designed by Mollenauer and Stolen [Opt. Lett. 9, 13 (1984)] is obtained through refinements of (i) the laser cavity model, (ii) the pulse propagation in the fiber cavity, and (iii) the coupling between the two cavities...

  7. Interacting collective modes in a laser cavity

    International Nuclear Information System (INIS)

    Graca, E.L.; Brito, A.L. de; Baseia, B.

    1985-01-01

    Collective operators are defined for the quantized radiation field in a one-dimensional laser cavity coupled to a semi-infinite outside region and the overlaps of neighbouring collective modes are considered to show how they modify, in the linear appoximation, the time evolution of the radiation field below threshold. The model and procedure work directly within a continuous spectrum of modes and allow us to get an improved insight on the prescription for the laser field in single-mode operation. (Author) [pt

  8. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    International Nuclear Information System (INIS)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.; Kim, M.

    2015-01-01

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm 2 for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electrical to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers

  9. Applications of quantum cascade lasers in plasma diagnostics: a review

    Science.gov (United States)

    Röpcke, J.; Davies, P. B.; Lang, N.; Rousseau, A.; Welzel, S.

    2012-10-01

    Over the past few years mid-infrared absorption spectroscopy based on quantum cascade lasers operating over the region from 3 to 12 µm and called quantum cascade laser absorption spectroscopy or QCLAS has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, nitrogen oxides and organo-silicon compounds has led to further applications of QCLAS because most of these compounds and their decomposition products are infrared active. QCLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species at time resolutions below a microsecond, which is of particular importance for the investigation of reaction kinetics and dynamics. Information about gas temperature and population densities can also be derived from QCLAS measurements. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of QCLAS techniques to industrial requirements including the development of new diagnostic equipment. The recent availability of external cavity (EC) QCLs offers a further new option for multi-component detection. The aim of this paper is fourfold: (i) to briefly review spectroscopic issues arising from applying pulsed QCLs, (ii) to report on recent achievements in our understanding of molecular phenomena in plasmas and at surfaces, (iii) to describe the current status of industrial process monitoring in the mid-infrared and (iv) to discuss the potential of advanced instrumentation based on EC-QCLs for plasma diagnostics.

  10. Pseudorandom dynamics of frequency combs in free-running quantum cascade lasers

    Science.gov (United States)

    Henry, Nathan; Burghoff, David; Yang, Yang; Hu, Qing; Khurgin, Jacob B.

    2018-01-01

    Recent research has shown that free-running quantum cascade lasers are capable of producing frequency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate with the gain recovery time of the laser medium and the optimum modulation amplitude is comparable to the gain bandwidth, behavior that has been observed in the experiments.

  11. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Abitan, Haim; Andersen, Ulrik Lund; Skettrup, Torben

    2000-01-01

    Summary form only. Coupling of optical cavities offers a means of controlling the properties of one cavity (e.g. a laser) by making adjustments to another, external cavity. In this contribution we consider a unidirectional ring laser (bow-tie laser) coupled to an external ring cavity. Using...... different configurations we can control the out-coupling from the ring laser thereby influencing the threshold and the circulating power in the different ring cavities. This may be used to obtain the best balance between the passive losses and a nonlinear loss such as e.g. conversion to the second harmonic...... or operation of an optical parametric oscillator....

  12. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  13. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  14. High performance 5.6μm quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Go, R.; Figueiredo, P.; Todi, A.; Shu, Hong; Lyakh, A.

    2017-02-01

    5.6 μm quantum cascade lasers based on Al 0.78 In 0.22 As/In 0.69 Ga 0.31 As active region composition with measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured for the new design by testing devices with variable cavity length. Threshold current density of 1.7kA/cm2 and slope efficiency of 4.9W/A were measured for uncoated 3.15mm × 9μm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288K to 348K for the new structure can be described by characteristic temperatures T0 140K and T1 710K, respectively. Experimental data for inverse slope efficiency dependence on cavity length for 15-stage quantum cascade lasers with the same design are also presented. When combined with the 40-stage device data, the new data allowed for separate evaluation of the losses originating from the active region and from the cladding layers of the laser structure. Specifically, the active region losses for the studied design were found to be 0.77 cm-1, while cladding region losses - 0.33 cm-1. The data demonstrate that active region losses in mid wave infrared quantum cascade lasers largely define total waveguide losses and that their reduction should be one of the main priorities in the quantum cascade laser design.

  15. Cascade Type-I Quantum Well GaSb-Based Diode Lasers

    Directory of Open Access Journals (Sweden)

    Leon Shterengas

    2016-05-01

    Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.

  16. Theory of optical cavity and laser with output coupling

    OpenAIRE

    氏原, 紀公雄

    2006-01-01

    A quantum-mechanical analysis of an optical cavity having output coupling is presented withapplications to the laser theory. The rigorous treatment of the output coupling allows unifiedanalysis of the optical field inside and outside of the cavity. This treatment had lead to a newexpression for the laser line-width that contained the influences of non-uniform oscillating fielddistribution of the real cavity mode as well as the deviation from the cavity field mode due to non-uniformgain satura...

  17. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density-of-states and it......Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......-of-states relative to the optical density-of-states. The low effective Purcell eect for quantum well devices limits the highest possible modulation bandwidth to a few tens of gigahertz, which is comparable to the performance of conventional diode lasers. Compared to quantum well devices, quantum dot devices have...... is useful for design of coupled systems. A tight-binding description for coupled nanocavity lasers is developed and employed to investigate the phase-locking behavior for the system of two coupled cavities. Phase-locking is found to be critically dependent on exact parameter values and to be dicult...

  18. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  19. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  20. Meeting to discuss laser cavity design for photon linear collider ...

    Indian Academy of Sciences (India)

    The design is fairly insensitive to displacements transverse to the beam but very sensitive to change in length of the cavity (as the power enhancement of the laser cavity is lost). In fact an accuracy of less than 1 nm is required, which implies that adaptive optics are required to maintain the cavity enhancement. Power deposit ...

  1. High power cascade diode lasers emitting near 2 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu; Kipshidze, Gela; Belenky, Gregory [State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumping scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.

  2. Analytical expression for Risken-Nummedal-Graham-Haken instability threshold in quantum cascade lasers

    Science.gov (United States)

    Vukovic, N.; Radovanovic, J.; Milanovic, V.; Boiko, D. L.

    2016-11-01

    We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-P\\'erot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its second threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low second threshold in QCLs. This agrees very well with experimental data available in the literature.

  3. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  4. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  5. FY 2005 Quantum Cascade Laser Alignment System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  6. Gamma irradiation of Fabry–Perot interband cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, Washington; Cannon, Bret D. [Pacific Northwest National Laboratory, Richland, Washington; Brauer, Carolyn S. [Pacific Northwest National Laboratory, Richland, Washington; Canedy, Chadwick L. [Naval Research Laboratory, Washington, DC; Kim, Chul Soo [Naval Research Laboratory, Washington, DC; Kim, Mijin [Sotera Defense Solutions, Inc., Columbia, Maryland; Merritt, Charles D. [Naval Research Laboratory, Washington, DC; Bewley, William W. [Naval Research Laboratory, Washington, DC; Vurgaftman, Igor [Naval Research Laboratory, Washington, DC; Meyer, Jerry R. [Naval Research Laboratory, Washington, DC

    2017-09-20

    Two Fabry-Perot interband cascade lasers (ICLs) were exposed to Cobalt-60 gamma rays for a dosage of 500 krad(Si) each, which is higher than is typically encountered in space applications. The ICLs do not show any significant changes in threshold current or slope efficiency, suggesting the suitability of ICLs for use in radiation environments.

  7. Integration of a terahertz quantum cascade laser with a hollow waveguide

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  8. Mode Locking of Quantum Cascade Lasers

    National Research Council Canada - National Science Library

    Capasso, Federico; Kaertner, Franz X

    2007-01-01

    .... A wide variety of experimental data on multimode regimes is presented. Lasers with narrow active region and/or with metal coating on the sides tend to develop a splitting in the spectrum, approximately equal to twice the Rabi frequency...

  9. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  10. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings.

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-02

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  11. Optically Pumped Carbon Monoxide Cascade Laser

    National Research Council Canada - National Science Library

    Sawruk, Nicholas W

    2005-01-01

    ...) overtone band of the CO, which induced lasing on the (3,2) and (2,1) bands around 4.7um. The laser output was spectrally separated to determine the spectral and temporal evolution of the CO lasing pulse...

  12. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation. (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil- ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss ...

  13. Qualification of quantum cascade lasers for space environments

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Crowther, Blake; Hansen, Stewart

    2014-06-11

    Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons and Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.

  14. Single-Mode, Distributed Feedback Interband Cascade Lasers

    Science.gov (United States)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  15. Wavelength-Agile External-Cavity Diode Laser for DWDM

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  16. Continuous Emission Monitoring of Tetrafluoromethane Using Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Peter Geiser

    2016-04-01

    Full Text Available Recent developments in quantum cascade lasers have enabled the development of new sensors for in-situ applications that have so far only been possible with extractive systems. In this work, a sensor is presented using a unique Wavelength Modulation Spectroscopy approach to measure tetrafluoromethane, a strong greenhouse gas. The sensor was characterized in a laboratory environment indicating a long-term detection limit of 20 ppb·m and a short-term value of well below 10 ppb·m. To demonstrate the feasibility of the sensor in a real-world environment, it was installed at an Alcoa aluminum smelter. A co-located Fourier Transform Infrared Spectrometer allowed direct comparison measurements of both systems. General agreement between the two methods was observed, leading to the conclusion that the developed in-situ quantum cascade laser based sensor has the potential to continuously measure tetrafluoromethane at aluminum smelters.

  17. Gamma irradiation of Fabry-Perot interband cascade lasers

    Science.gov (United States)

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Canedy, Chadwick L.; Kim, Chul Soo; Kim, Mijin; Merritt, Charles D.; Bewley, William W.; Vurgaftman, Igor; Meyer, Jerry R.

    2018-01-01

    The effects of gamma radiation on Fabry-Perot interband cascade lasers (ICLs) were investigated. Two ICLs were exposed to cobalt-60 gamma rays for a total dose of 500 krad(Si) each. The ICLs do not show any evidence of changes in performance, including output power, threshold current, slope efficiency, or spectral frequency. These results demonstrate that ICLs are insensitive to gamma irradiation up to exposure rates above those normally encountered within a shielded spacecraft.

  18. Influence of interface roughness in quantum cascade lasers

    International Nuclear Information System (INIS)

    Krivas, K. A.; Winge, D. O.; Franckié, M.; Wacker, A.

    2015-01-01

    We use a numerical model based on non-equilibrium Green's functions to investigate the influence of interface roughness (IFR) scattering in terahertz quantum cascade lasers. We confirm that IFR is an important phenomenon that affects both current and gain. The simulations indicate that IFR causes a leakage current that transfers electrons from the upper to the lower laser state. In certain cases, this current can greatly reduce gain. In addition, individual interfaces and their impact on the renormalized single particle energies are studied and shown to give both blue- and red-shifts of the gain spectrum

  19. Widely Tunable Monolithic Mid-Infrared Quantum Cascade Lasers Using Super-Structure Grating Reflectors

    Directory of Open Access Journals (Sweden)

    Dingkai Guo

    2016-05-01

    Full Text Available A monolithic, three-section, and widely tunable mid-infrared (mid-IR quantum cascade laser (QCL is demonstrated. This electrically tuned laser consists of a gain section placed between two super structure grating (SSG distributed Bragg reflectors (DBRs. By varying the injection currents to the two grating sections of this device, its emission wavelength can be tuned from 4.58 μm to 4.77 μm (90 cm−1 with a supermode spacing of 30 nm. This type of SSG-DBR QCLs can be a compact replacement for the external cavity QCL. It has great potential to achieve gap-free and even further tuning ranges for sensor applications.

  20. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  1. Remote Chemical Sensing Using Quantum Cascade Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  2. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  3. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  4. Electron-positron-photon cascades in the strong laser field

    Science.gov (United States)

    Legkov, Maxim; Fedotov, Alexander

    2012-06-01

    At nearest future several ambitious projects (such as ELI and HiPER) may provide laser filed intensity up to 10^23--10^24 W/cm^2. In such strong fields quantum effects are essential. The most important among them is production of QED cascades. In this paper external field intensity is considered as ultra-relativistic but subcritical. Using a model of two colliding counter-propagating laser beams it was shown that the number of particles during the process is growing exponentially in time. This leads to vast formation of electron-positron-photon plasma. According to numerical simulations, this plasma quickly absorbs an essential part of the energy of the laser field thus leading to its depletion. Numerical simulation has been also performed for a case of high-energetic particle and laser beam collision. Probability rates of direct and recombination processes have been theoretically studied. Under some conditions, recombination may come into play and suppress cascade development. Using approximation of radiation in forward direction, system of kinetic equations, which describes plasma evaluation, was constructed. According to qualitative estimations based on kinetic equations, it was shown that recombination processes can be neglected for optical frequencies range of external field.

  5. Design strategy for terahertz quantum dot cascade lasers.

    Science.gov (United States)

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  6. Self-starting harmonic frequency comb generation in a quantum cascade laser

    Science.gov (United States)

    Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2017-12-01

    Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.

  7. InAs based terahertz quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, Martin, E-mail: martin.brandstetter@tuwien.ac.at; Kainz, Martin A.; Krall, Michael; Schönhuber, Sebastian; Unterrainer, Karl [Photonics Institute and Center for Micro- and Nanostructures, Technische Universität Wien, Gusshausstrasse 27-29, 1040 Vienna (Austria); Zederbauer, Tobias; Schrenk, Werner; Andrews, Aaron Maxwell; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Technische Universität Wien, Floragasse 7, 1040 Vienna (Austria); Detz, Hermann [Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010 Vienna (Austria)

    2016-01-04

    We demonstrate terahertz lasing emission from a quantum cascade structure, realized with InAs/AlAs{sub 0.16}Sb{sub 0.84} heterostructures. Due to the lower effective electron mass, InAs based active regions are expected to provide a higher optical gain compared to structures consisting of GaAs or InGaAs. The growth by molecular beam epitaxy enabled the fabrication of monolayer-thick barriers, required for the active region, which is based on a 3-well resonant phonon depletion design. Devices were processed in a double-metal waveguide geometry to ensure high mode confinement and low optical losses. Lasing emission at 3.8 THz was observed at liquid helium temperatures by applying a magnetic field perpendicular to the layered structure in order to suppress parasitic scattering channels. These results demonstrate the feasibility of InAs based active regions for terahertz quantum cascade lasers, potentially enabling higher operating temperatures.

  8. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    Science.gov (United States)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  9. A fast cavity dumper for a picosecond glass laser

    Science.gov (United States)

    Oak, S. M.; Bindra, K. S.; Narayan, B. S.; Khardekar, R. K.

    1991-02-01

    A fast cavity dumper for picosecond glass laser has been made. The optical and electrical characterization of the cavity dumper is described. An avalanche transistor Marx bank generator drives the cavity dumper. Up to 5 kV peak amplitude and 1.5 ns fall time negative polarity step pulses are generated by the Marx bank circuit. With a capacitive load like Pockels cell the pulse fall time increases to 4 ns. Optical switching times as fast as 2 ns (10%-90%) are experimentally measured. The contrast ratio of 1000 is obtained after a double pass through an amplifier. Single picosecond pulses are produced with an energy jitter of 10%.

  10. Continuous Emission Monitoring of Tetrafluoromethane Using Quantum Cascade Lasers

    OpenAIRE

    Peter Geiser; Viacheslav Avetisov; Luis Espinoza-Nava; Nicola Menegazzo; Peter Kaspersen

    2016-01-01

    Recent developments in quantum cascade lasers have enabled the development of new sensors for in-situ applications that have so far only been possible with extractive systems. In this work, a sensor is presented using a unique Wavelength Modulation Spectroscopy approach to measure tetrafluoromethane, a strong greenhouse gas. The sensor was characterized in a laboratory environment indicating a long-term detection limit of 20 ppb·m and a short-term value of well below 10 ppb·m. To demonstrate ...

  11. New quantum cascade laser sources for sensing applications (Conference Presentation)

    Science.gov (United States)

    Troccoli, Mariano

    2017-05-01

    In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long

  12. Terahertz GaAs/AlAs quantum-cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Rozas, G.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)

    2016-03-07

    We have realized GaAs/AlAs quantum-cascade lasers operating at 4.75 THz exhibiting more than three times higher wall plug efficiencies than GaAs/Al{sub 0.25}Ga{sub 0.75}As lasers with an almost identical design. At the same time, the threshold current density at 10 K is reduced from about 350 A/cm{sup 2} for the GaAs/Al{sub 0.25}Ga{sub 0.75}As laser to about 120 A/cm{sup 2} for the GaAs/AlAs laser. Substituting AlAs for Al{sub 0.25}Ga{sub 0.75}As barriers leads to a larger energy separation between the subbands reducing the probability for leakage currents through parasitic states and for reabsorption of the laser light. The higher barriers allow for a shift of the quasi-continuum of states to much higher energies. The use of a binary barrier material may also reduce detrimental effects due to the expected composition fluctuations in ternary alloys.

  13. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    Science.gov (United States)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  14. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    Science.gov (United States)

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  15. Meeting to discuss laser cavity design for photon linear collider ...

    Indian Academy of Sciences (India)

    The motivation to use a cavity at the photon linear collider (PLC) is that there are 1010 electrons in each electron bunch. The small cross-section for the Compton scattering process dictates having at least 1019 photons in the laser pulse to obtain an efficient conversion of the incoming beam. This means that less than 1 in ...

  16. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    2016-09-09

    Sep 9, 2016 ... (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the ... insight of the system dynamics. He's variational method is adopted to obtain the standard sech-type and the not- ... larger variety of systems such as physical [2–4], chem- ical [5], mathematical [6], and ...

  17. High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation

    Directory of Open Access Journals (Sweden)

    D. H. Wu

    2017-03-01

    Full Text Available We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64 μm. A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400 μm radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1.

  18. Thermal Analysis of InAs/AlSb Short Wavelength Mid-IR Quantum Cascade Lasers

    International Nuclear Information System (INIS)

    Lin, Wei; Ai-Zhen, Li; Gang-Yi, Xu

    2009-01-01

    We present the effects of hetero-interfaces and major key parameters on the thermal behaviors and performance of short wavelength mid-IR InAs/AlSb quantum cascade lasers (QCLs). We use a finite element method (FEM) with commercial software, ANSYS, to simulate the heat dissipation in QCLs in cw operation mode with an epilayer-down mounting package. The thermal performance is characterized by the temperature increase ΔT (self-heating effect) between the active region of QCLs and the heatsink. Results show that (1) the self-heating effects of InAs/AlSb QCLs are much less than those in AlInAs/GaInAs QCLs, (2) narrower ridges lead to significantly cooler active regions of InAs/AlSb QCLs due to poor heat transport in the cross-plane direction (across interfaces) and that most of the heat flows out of the active region in the lateral direction, and (3) the cavity length of the laser has little influence on the self-heating effect of the device, but the long cavity reduces mirror loss and threshold current density. (fundamental areas of phenomenology (including applications))

  19. Defence and security applications of quantum cascade lasers

    Science.gov (United States)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  20. Highly sensitive temperature sensor based on cascaded polymer-microbubble cavities by employing a subtraction between reciprocal thermal responses.

    Science.gov (United States)

    Cao, Kunjian; Liu, Yi; Qu, Shiliang

    2016-09-05

    A miniature, robust, and highly sensitive optical fiber temperature sensor based on cascaded polymer-microbubble cavities was fabricated by polymer-filling and subsequent heat-curing process. The expansion of polymer cavity results in the compression of microbubble cavity when the sensor is heated. We demodulated the interference spectrum by means of the fast-Fourier transform (FFT) and signal filtering. Since the thermal response of the polymer cavity is positive and that of the microbubble cavity is negative, a high sensitivity of the temperature sensor is achieved by a subtraction between the two reciprocal thermal responses. Experimental results show that the sensitivity of the temperature sensor is as high as 5.013 nm/°C in the measurement range between 20 °C and 55 °C. Meanwhile, such a sensor has potential for mass production, owing to the simple, nontoxic, and cost-effective process of fabrication.

  1. Temporal laser pulse manipulation using multiple optical ring-cavities

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  2. Laser polishing for topography management of accelerator cavity surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Klopf, J. Mike [College of William and Mary, Williamsburg, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  3. High power-efficiency terahertz quantum cascade laser

    Science.gov (United States)

    Li, Yuan-Yuan; Liu, Jun-Qi; Liu, Feng-Qi; Zhang, Jin-Chuan; Zhai, Shen-Qiang; Zhuo, Ning; Wang, Li-Jun; Liu, Shu-Man; Wang, Zhan-Guo

    2016-08-01

    We demonstrate continuous-wave (CW) high power-efficiency terahertz quantum cascade laser based on semi-insulating surface-plasmon waveguide with epitaxial-side down (Epi-down) mounting process. The performance of the device is analyzed in detail. The laser emits at a frequency of ˜ 3.27 THz and has a maximum CW operating temperature of ˜ 70 K. The peak output powers are 177 mW in pulsed mode and 149 mW in CW mode at 10 K for 130-μm-wide Epi-down mounted lasers. The record wall-plug efficiencies in direct measurement are 2.26% and 2.05% in pulsed and CW mode, respectively. Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339803 and 2013CB632801), the Special-funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2011YQ13001802-04), and the National Natural Science Foundation of China (Grant No. 61376051).

  4. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  5. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  6. Nonequilibrium phonon effects in midinfrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y. B., E-mail: yshi9@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691 (United States)

    2014-09-28

    We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.

  7. High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

    Science.gov (United States)

    Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine

    2017-05-01

    We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in raster scanning of the laser illumination allowed imaging of a 100-cm2 area at 5-m standoff. Raw hypercubes are post-processed to generate a hypercube that represents the surface reflectance relative to that of a diffuse reflectance standard. Results will be shown for liquids (e.g., silicone oil) and solid particles (e.g., caffeine, acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.

  8. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  9. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  10. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser

    Directory of Open Access Journals (Sweden)

    A. Pagies

    2016-06-01

    Full Text Available We demonstrate a low-threshold, compact, room temperature, and continuous-wave terahertz molecular laser optically pumped by a mid-infrared quantum cascade laser. These characteristics are obtained, thanks to large dipole transitions of the active medium: NH3 (ammonia in gas state. The low-power (<60 mW laser pumping excites the molecules, thanks to intense mid-infrared transitions around 10.3 μm. The molecules de-excite by stimulated emission on pure inversion “umbrella-mode” quantum transitions allowed by the tunnel effect. The tunability of the quantum cascade laser gives access to several pure inversion transitions with different rotation states: we demonstrate the continuous-wave generation of ten laser lines around 1 THz. At 1.07 THz, we measure a power of 34 μW with a very low-threshold of 2 mW and a high differential efficiency of 0.82 mW/W. The spectrum was measured showing that the linewidth is lower than 1 MHz. To our knowledge, this is the first THz molecular laser pumped by a solid-state source and this result opens the way for compact, simple, and efficient THz source at room temperature for imaging applications.

  11. Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies.

    Science.gov (United States)

    Todorov, Yanko; Sagnes, Isabelle; Abram, Izo; Minot, Christophe

    2007-11-30

    Quantum cascade devices processed into double metal cavities with subwavelength thickness and a grating on top are studied at terahertz frequencies. The power extracted from the devices as a function of the device thickness and the grating period is analyzed owing to electrodynamical modeling of dipole emission based on a modal method in multilayer systems. The experimental data thus reveal a strong Purcell enhancement, with Purcell factors up to approximately 50.

  12. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  13. Reliability of vertical-cavity lasers at Hewlett-Packard

    Science.gov (United States)

    Herrick, Robert W.; Lei, Chun; Keever, Mark R.; Lim, Sui F.; Deng, Hongyu; Dudley, Jim J.; Bhagat, Jay K.

    1999-04-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELs) have rapidly been adopted for use in data communications modules due largely to the improvement in reliability over that of competing compact disc lasers. While very long mean lifetimes for VCSELs have been published elsewhere (> 5 X 106 h MTTF at 40C), telecommunications switching applications require further reduction in the early failure rate to meet targets of < 0.5% failures over 25 years at 50 - 70 degree(s)C. Therefore, a extensive reliability program is needed to measure both the wear-out lifetime and the random failure rate of the devices. The results of accelerated life tests will be presented, and we will discuss the methodology used to estimate the failure rate. Models of current and thermal acceleration will be presented. Degradation mechanisms observed in HP lasers will be briefly discussed. We also present preliminary results from HP oxide-aperture VCSELs.

  14. High performance 40-stage and 15-stage quantum cascade lasers based on two-material active region composition

    Science.gov (United States)

    Figueiredo, P.; Suttinger, M.; Go, R.; Todi, A.; Shu, Hong; Tsvid, E.; Patel, C. Kumar N.; Lyakh, A.

    2017-05-01

    5.6μm quantum cascade lasers based on Al0.78In0.22As/In0.69Ga0.31As active region composition with measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured by testing devices with variable cavity length. Threshold current density of 1.7kA/cm2 and slope efficiency of 4.9W/A were measured for uncoated 3.15mm x 9µm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288K to 348K can be described by characteristic temperatures T0 140K and T1 710K, respectively. Pulsed slope efficiency, threshold current density, and wallplug efficiency for a 2.1mm x 10.4µm 15-stage device with the same design and a high reflection-coated back facet were measured to be 1.45W/A, 3.1kA/cm2 , and 18%, respectively. Continuous wave values for the same parameters were measured to be 1.42W/A, 3.7kA/cm2 , and 12%. Continuous wave optical power levels exceeding 0.5W per millimeter of cavity length was demonstrated. When combined with the 40-stage device data, the inverse slope efficiency dependence on cavity length for 15-stage data allowed for separate evaluation of the losses originating from the active region and from the cladding layers of the laser structure. Specifically, the active region losses for the studied design were found to be 0.77cm-1, while cladding region losses - 0.33cm-1. The data demonstrate that active region losses in mid wave infrared quantum cascade lasers largely define total waveguide losses and that their reduction should be one of the main priorities in the quantum cascade laser design.

  15. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  16. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    Science.gov (United States)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  17. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  18. Breath analysis using external cavity diode lasers: a review

    Science.gov (United States)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  19. Optimal design of radial Bragg cavities and lasers.

    Science.gov (United States)

    Ben-Bassat, Eyal; Scheuer, Jacob

    2015-07-01

    We present a new and optimal design approach for obtaining maximal confinement of the field in radial Bragg cavities and lasers for TM polarization. The presented approach outperforms substantially the previously employed periodic and semi-periodic design schemes of such lasers. We show that in order to obtain maximal confinement, it is essential to consider the complete reflection properties (amplitude and phase) of the propagating radial waves at the interfaces between Bragg layers. When these properties are taken into account, we find that it is necessary to introduce a wider ("half-wavelength") layer at a specific radius in the "quarter-wavelength" radial Bragg stack. It is shown that this radius corresponds to the cylindrical equivalent of Brewster's angle. The confinement and field profile are calculated numerically by means of transfer matrix method.

  20. Fast wavelength tuning techniques for external cavity lasers

    Science.gov (United States)

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  1. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    Science.gov (United States)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  2. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  3. Transoral laser resections of oral cavity and oropharyngeal tumors

    Directory of Open Access Journals (Sweden)

    M. V. Bolotin

    2016-01-01

    Full Text Available The incidence of squamous cell carcinoma of the head and neck remains high and ranks tenth in the structure of overall cancer morbidity. Surgical radicality has remained one of the major determinants of the long-term results of treatment so far. In the period December 2014 to January 2016, our clinic performed surgical interventions as transoral laser oral cavity and oropharyngeal resections using carbon dioxide (CO2 laser in 34 patients. Tumors are most commonly located in the area of the tongue root and oropharynx in 16 (47.1 % patients, tongue (its anterior two thirds in 14 (41.2 %, and mouth floor in 4 (11.7 %. The average length of hospital stay after transoral laser resections was 10.14 days. A nasogastric tube was postoperatively placed in 6 (17.6 % patients for 8 to 17 days. According to the results of planned histological examination, surgical interventions were microscopically radical in all cases. Transoral CO2 laser resections make possible to perform rather large radical surgical interventions with a satisfactory functional and cosmetic results, without deteriorating the long-term results of treatment. 

  4. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  5. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    Science.gov (United States)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  6. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approa...... transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers....

  7. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  8. Digital control of laser modes with an intra-cavity spatial light modulator

    CSIR Research Space (South Africa)

    Ngcobo, S

    2014-02-01

    Full Text Available In this paper we outline a simple laser cavity which produces customised on-demand digitally controlled laser modes by replacing the end-mirror of the cavity with an electrically addressed reflective phase-only spatial light modulator as a digital...

  9. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma.

    Science.gov (United States)

    Li, Xiaohui; Yang, Leichao; Peng, Jiangbo; Yu, Xin; Liang, Jianhan; Sun, Rui

    2016-10-31

    We have for the first time achieved cavity ignition and sustainable combustion of liquid kerosene in supersonic flow of Mach number 2.52 using a laser-induced plasma (LIP) on a model supersonic combustor equipped with dual cavities in tandem as flameholders. The liquid kerosene of ambient temperature is injected from the front wall of the upstream cavity, while the ignitions have been conducted in both cavities. High-speed chemiluminescence imaging shows that the flame kernel initiated in the downstream cavity can propagate contraflow into upstream cavity and establish full sustainable combustion. Based on the qualitative distribution of the kerosene vapor in the cavity, obtained using the kerosene planar laser-induced fluorescence technique, we find that the fuel atomization and evaporation, local hydrodynamic and mixing conditions in the vicinity of the ignition position and in the leading edge area of the cavity have combined effects on the flame kernel evolution and the eventual ignition results.

  10. Pulpal reaction in dogs following cavity preparation by Er:YAG laser

    Science.gov (United States)

    Sekine, Y.; Ebihara, Arata; Takeda, A.; Suda, H.

    1995-04-01

    A histopathological study was performed on the tooth pulp of mongrel dogs after cavity preparation using the conventional high speed method (control group) and the newly developed Er:YAG laser system (laser group, output energy: 100 mJ, 150 mJ, and 200 mJ/pulse). All samples were divided into two groups (deep cavity and shallow cavity) according to the remaining dentin thickness (RDT) and histopathologically evaluated. After 1, 2, 4, 7 and 28 days postoperatively, there was no histopathological difference between the control group and the laser group. Er:YAG laser irradiation with three different output energies made little difference in the degree of pulpal damage. In the deep cavities, damage of the pulp was more remarkable than the shallow cavities in all groups. The efficacy of cutting rate in the laser group was not very different from the control group.

  11. Study of optical confinement of quantum cascade lasers and applications to detection

    International Nuclear Information System (INIS)

    Moreau, Virginie

    2008-01-01

    Quantum cascade lasers have been invented in 1994 and they have already established themselves as the semiconductor laser source of choice in the mid- and far-infrared ranges of the electromagnetic spectrum. As most molecules of chemical interest exhibit roto-vibrational transitions in these spectral ranges, quantum cascade lasers are especially suited for applications such as spectroscopy, trace gas detection or medical imaging. One of the current leading research axis targets the device optimization and miniaturization, with possible applications in detection microsystems. This PhD thesis work focused on the study and optimization of the vertical optical confinement in quantum cascade lasers featuring optical waveguides without top cladding layers. These structures are interesting because they are compatible with two different guiding mechanisms at the same time, i.e. surface-plasmons and air confinement. The study of the characteristics of the optical mode and of the electrical current dispersion allowed us to conceive original structures which open new perspectives, for instance in the domain of analytic detection in a fluidic environment. Furthermore, we have shown that the observation by near field microscopy is a powerful tool to characterize and understand quantum cascade lasers. Finally, we have laid the foundations for the optimization of miniaturized arrays of single-mode lasers based on photonic crystal technology. (author) [fr

  12. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  13. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  14. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  15. Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-07-20

    The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

  16. A compact chaotic laser device with a two-dimensional external cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Sunada, Satoshi, E-mail: sunada@se.kanazawa-u.ac.jp; Adachi, Masaaki [Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Fukushima, Takehiro [Department of Information and Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Shinohara, Susumu; Arai, Kenichi [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Harayama, Takahisa [NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Mechanical Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-06-16

    We propose a compact chaotic laser device, which consists of a semiconductor laser and a two-dimensional (2D) external cavity for delayed optical feedback. The overall size of the device is within 230 μm × 1 mm. A long time delay sufficient for chaos generation can be achieved with the small area by the multiple reflections at the 2D cavity boundary, and the feedback strength is controlled by the injection current to the external cavity. We experimentally demonstrate that a variety of output properties, including chaotic output, can be selectively generated by controlling the injection current to the external cavity.

  17. Breaking and Moving Hotspots in a Large Grain Nb Cavity with a Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G.; Cheng, G.; Flood, R. J.; Jordan, K.; Kneisel, P.; Morrone, M. L.; Turlington, L.; Wilson, K. M.; Zhang, S.; Anlage, S. M.; Gurevich, A. V.; Nemes, G.; Baldwin, C.

    2011-07-25

    Magnetic vortices pinned near the inner surface of SRF Nb cavities are a possible source of RF hotspots, frequently observed by temperature mapping of the cavities outer surface at RF surface magnetic fields of about 100 mT. Theoretically, we expect that the thermal gradient provided by a 10 W green laser shining on the inner cavity surface at the RF hotspot locations can move pinned vortices to different pinning locations. The experimental apparatus to send the beam onto the inner surface of a photoinjector-type large-grain Nb cavity is described. Preliminary results on the changes in thermal maps observed after applying the laser heating are also reported.

  18. III-V/SOI vertical cavity laser structure for 120 Gbit/s speed

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Mørk, Jesper

    2015-01-01

    Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA.......Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA....

  19. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines

    Science.gov (United States)

    Rocha, M. V.; Sthel, M. S.; Silva, M. G.; Paiva, L. B.; Pinheiro, F. W.; Miklòs, A.; Vargas, H.

    2012-03-01

    In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were employed. A detection limit of 45 ppbv in nitrogen was achieved as well as a great selectivity. The same methodology was also tested in the detection of methane issued from natural gas powered vehicles (VNG) in Brazil, which demonstrates the excellent potential of this arrangement for greenhouse gas detection emitted from real sources.

  20. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  1. High temperature operation of short wavelength InAs-based quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    P. Laffaille

    2012-06-01

    Full Text Available InAs/AlSb quantum cascade lasers emitting at 3.06 and 3.22 μm at room temperature has been studied. The lasers with high reflection coating on back facets operated in pulse mode up to 400 and 423 K, respectively. The obtained results showed no dramatic performance degradation of the InAs-based QCLs with decreasing emission wavelength down to 3 μm.

  2. Terahertz Difference-Frequency Quantum Cascade Laser Sources on Silicon

    Science.gov (United States)

    2016-12-22

    transverse direction, x. [28] The values ofW a and U x were determined by considering the cavity length of the device, the Cherenkov angle, the...Foundation (NSF) (ECCS- 1150449, ECCS-1408511, IIP-1448707); Army Research Office (ARO) (W911NF-15-1-0630); Kwanjeong Educational Foundation (KEF

  3. Photo-vibrational spectroscopy using quantum cascade laser and laser Doppler vibrometer

    Science.gov (United States)

    Liu, Huan; Hu, Qi; Xie, Jiecheng; Fu, Yu

    2017-06-01

    Photoacoustic/photothermal spectroscopy is an established technique for detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity sensor coupled with a lock-in amplifier, limiting the technique to applications in a controllable laboratory environment. Hence, this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment in short and long standoff distances demonstrated that the LDV is a capable sensor for chemical detection in an open environment.

  4. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    Science.gov (United States)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  5. Frequency and amplitude stabilized terahertz quantum cascade laser as local oscillator

    NARCIS (Netherlands)

    Ren, Y.; Hayton, D.J.; Hovenier, J.N.; Cui, M.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2012-01-01

    We demonstrate an experimental scheme to simultaneously stabilize the frequency and amplitude of a 3.5 THz third-order distributed feedback quantum cascade laser as a local oscillator. The frequency stabilization has been realized using a methanol absorption line, a power detector, and a

  6. Applications of cw quantum cascade laser near 8 μm in gas sensing research

    KAUST Repository

    Sajid, Muhammad Bilal

    2014-01-01

    Quantum cascade laser based sensors operating near 8 μm to detect H2O2, C2H2, CH4, N2O and H2O are discussed and demonstrated for applications in chemical kinetics, combustion and spectroscopic measurements.

  7. Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture

    Science.gov (United States)

    2016-02-08

    Thermal Management of Quantum Cascade Lasers in an Individually Addressable Monolithic Array Architecture Leo Missaggia, Christine Wang, Michael...Array Module Architecture As an initial demonstration of a monolithic QCL array, the module was designed to accommodate an array comprised of up to...management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were

  8. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  9. Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11 μm

    KAUST Repository

    Chrystie, Robin

    2015-05-29

    We report on a strategy to measure, in situ, the concentration of propene (C3H6) in combustion gases using laser absorption spectroscopy. Pyrolysis of n-butane was conducted in a shock tube, in which the resultant gases were probed using an extended cavity quantum-cascade laser. A differential absorption approach using online and offline wavelengths near λ = 10.9 μm enabled discrimination of propene, cancelling the effects of spectral interference from the simultaneous presence of intermediate hydrocarbon species during combustion. Such interference-free measurements were facilitated by exploiting the =C–H bending mode characteristic to alkenes (olefins). It was confirmed, for intermediate species present during pyrolysis of n-butane, that their absorption cross sections were the same magnitude for both online and offline wavelengths. Hence, this allowed time profiles of propene concentration to be measured during pyrolysis of n-butane in a shock tube. Time profiles of propene subsequent to a passing shock wave exhibit trends similar to that predicted by the well-established JetSurF 1.0 chemical kinetic mechanism, albeit lower by a factor of two. Such a laser diagnostic is a first step to experimentally determining propene in real time with sufficient time resolution, thus aiding the refinement and development of chemical kinetic models for combustion. © 2015 Springer-Verlag Berlin Heidelberg

  10. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  11. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  12. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  13. A Cascadable, Monolithic Laser/Modulator/Amplifier Transmitter

    National Research Council Canada - National Science Library

    Forrest, Stephen

    1997-01-01

    .... These included low threshold, strained InGaAsP multiple quantum well (MQW) Fabry Perot lasers which exhibited the lowest threshold current densities ever achieved for GSMBE grown material operating at 1.3 um...

  14. Linearly Polarized Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Hader, Joerg; Zakharian, Aramais R; Moloney, Jerome V; Stolz, Wolfgang; Koch, Stephan W; Bedford, Robert; Murray, James T

    2007-01-01

    The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an optically pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted Fabry-Perot...

  15. Self-Starting Solid-State Laser with Dynamic Self-Adaptive Cavity

    National Research Council Canada - National Science Library

    Antipov, Oleg

    2002-01-01

    ...: The present project is directed at the development of physical principles of creation of solid-state lasers of a new class with cavity completed by dynamic holographic gratings induced in nonlinear...

  16. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  17. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient...

  18. Novel laser machining of optical fibers for long cavities with low birefringence.

    Science.gov (United States)

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  19. Theory of non-Markovian decay of a cascade atom in high-Q cavities and photonic band gap materials

    International Nuclear Information System (INIS)

    Garraway, B M; Dalton, B J

    2006-01-01

    The dynamics of a three-level atom in a cascade configuration with both transitions coupled to a single structured reservoir of quantized field modes is treated using Laplace transform methods applied to the coupled amplitude equations. Results are also obtained from master equations by two different approaches, that is, involving either pseudomodes or quasimodes. Two different types of reservoir are considered, namely a high-Q cavity and a photonic band gap system, in which the respective reservoir structure functions involve Lorentzians. Non-resonant transitions are included in the model. In all cases non-Markovian behaviour for the atomic system can be found, such as oscillatory decay for the high-Q cavity case and population trapping for the photonic band gap case. In the master equation approaches, the atomic system is augmented by a small number of pseudomodes or quasimodes, which in the quasimode approach themselves undergo Markovian relaxation into a flat reservoir of continuum quasimodes. Results from these methods are found to be identical to those from the Laplace transform method including two-photon excitation of the reservoir with both emitting sequences. This shows that complicated non-Markovian decays of an atomic system into structured EM field reservoirs can be described by Markovian models for the atomic system coupled to a small number of pseudomodes or quasimodes

  20. Analysis of a wavelength selectable cascaded DFB laser based on the transfer matrix method

    International Nuclear Information System (INIS)

    Xie Hongyun; Chen Liang; Shen Pei; Sun Botao; Wang Renqing; Xiao Ying; You Yunxia; Zhang Wanrong

    2010-01-01

    A novel cascaded DFB laser, which consists of two serial gratings to provide selectable wavelengths, is presented and analyzed by the transfer matrix method. In this method, efficient facet reflectivity is derived from the transfer matrix built for each serial section and is then used to simulate the performance of the novel cascaded DFB laser through self-consistently solving the gain equation, the coupled wave equation and the current continuity equations. The simulations prove the feasibility of this kind of wavelength selectable laser and a corresponding designed device with two selectable wavelengths of 1.51 μm and 1.53 μm is realized by experiments on InP-based multiple quantum well structure. (semiconductor devices)

  1. Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers

    International Nuclear Information System (INIS)

    Williams, Richard M.; Kelly, James F.; Hartman, John S.; Sharpe, Steven W.; Taubman, Matthew S.; Hall, John L.; Capasso, Federico; Gmachl, Claire; Sivco, Deborah L.; Baillargeon, James N.

    1999-01-01

    Frequency stabilization of mid-IR quantum cascade (QC) lasers to the kilohertz level has been accomplished by use of electronic servo techniques. With this active feedback, an 8.5-μm QC distributed-feedback laser is locked to the side of a rovibrational resonance of nitrous oxide (N 2 O) at 1176.61 cm -1 . A stabilized frequency-noise spectral density of 42 Hz/√(Hz) has been measured at 100 kHz; the calculated laser linewidth is 12 kHz. (c) 1999 Optical Society of America

  2. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  3. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    Science.gov (United States)

    2014-06-01

    moderately doped 25-nm-wide chirped AlSb /InAs superlattice. Conference Name: 2014 72nd Annual Device Research Conference (DRC) Conference Date...graded layer, 10-nm-thick GaSb layer and moderately doped 25-nm-wide chirped AlSb /InAs superlattice4. The laser heterostructure was grown by solid

  4. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    Science.gov (United States)

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

  5. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity

    International Nuclear Information System (INIS)

    Su Zhou-Ping; Zhu Zhuo-Wei; Que Li-Zhi; Zhu Yun; Ji Zhi-Cheng

    2012-01-01

    Phase locking of a laser diode array is demonstrated experimentally by using an off-axis external Talbot cavity with a feedback plane mirror. Due to good spatial mode discrimination, the cavity does not need a spatial filter. By employing the cavity, a clear and stable far-field interference pattern can be observed when the driver current is less than 14 A. In addition, the spectral line width can be reduced to 0.8 nm. The slope efficiency of the phase-locked laser diode array is about 0.62 W/A. (fundamental areas of phenomenology(including applications))

  6. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two...... on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N = 7, and a reduction in the nominal cavity mode volume for increasing amounts of disorder....

  7. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers

    International Nuclear Information System (INIS)

    Notcutt, Mark; Ma, L.-S.; Ludlow, Andrew D.; Foreman, Seth M.; Ye Jun; Hall, John L.

    2006-01-01

    We perform detailed studies of state-of-the-art laser stabilization to high finesse optical cavities, revealing fundamental mechanical thermal noise-related length fluctuations. We compare the frequency noise of lasers tightly locked to the resonances of a variety of rigid Fabry-Perot cavities of differing lengths and mirror substrate materials. The results are in agreement with the theoretical model proposed in K. Numata, A. Kemery, and J. Camp [Phys. Rev. Lett. 93, 250602 (2004)]. The results presented here on the fundamental limits of FP references will impact planning and construction of next generation ultrastable optical cavities

  8. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  9. Quantum cascade lasers transfer-printed on silicon-on-sapphire

    Science.gov (United States)

    Jung, Seungyong; Kirch, Jeremy; Kim, Jae Hyun; Mawst, Luke J.; Botez, Dan; Belkin, Mikhail A.

    2017-11-01

    We demonstrate coupling of the laser mode into a passive waveguide by transfer-printing fully processed mid-infrared quantum cascade lasers onto a silicon-on-sapphire platform. The laser waveguide mode is coupled into a silicon waveguide via an adiabatic taper. The experimentally achieved coupling efficiency of the taper is estimated to be ˜10%, and theoretical calculations show that coupling efficiency over 75% is achievable by reducing the adhesive layer thickness to below 100 nm. Light coupling to silicon waveguides is confirmed by images taken at the output facet of a 3-mm-long passive Si waveguide with a mid-infrared camera. Our technique enables the development of heterogeneous photonic systems integrated with a wide range of fully processed semiconductor laser devices, including buried-heterostructure lasers, which was not previously possible.

  10. New quantum cascade laser architectures: II-VI quantum cascade emitters, high k-space lasing, and short injectors

    Science.gov (United States)

    Franz, Kale J.

    Quantum cascade (QC) lasers are today's most capable mid-infrared light sources. With up to watt-level room temperature emission over a broad swath of mid-infrared wavelengths, these tiny semiconductor devices enable a variety of applications and technologies such as ultra-sensitive systems for detecting trace molecules in the vapor phase. The foundation of a QC structure lies in alternating hundreds of wide- and narrow-bandgap semiconductor layers to form a coupled quantum well system. In this way, the laws of quantum mechanics are used to precisely engineer electron transport and create artificial optical transitions. The result is a material with capabilities not found in nature, a truly "designer" material. As a central theme in this thesis, we stress the remarkable flexibility of the quantum cascade---the ability to highly tailor device structure for creative design concepts. The QC idea, in fact, relies on no particular material system for its implementation. While all QC lasers to date have been fabricated from III--V materials such as InGaAs/AlInAs, I detail our preliminary work on ZnCdSe/ZnCdMgSe---a II--VI materials system---where we have demonstrated electroluminescence. We then further discuss how the inherent QC flexibility can be exploited for new devices that extend QC performance and capabilities. In this regard, we offer the examples of excited state transitions and short injectors. Excited state transitions are an avenue to enhancing optical gain, which is especially needed for longer-wavelength devices where optical losses hinder performance. Likewise, shortening the QC injector length over a conventional QC structure has powerful implications for threshold current, output power, and wall-plug efficiency. In both cases, novel physical effects are discovered. Pumping electrons into highly excited states led to the discovery of high k-space lasing from highly non-equilibrium electron distributions. Shortening QC injector regions allowed us to

  11. Cavities

    Science.gov (United States)

    ... mother's bacteria from being passed to the child. Treatment of Cavities Fluoride Fillings Root canal or tooth extraction If ... to help the world be well. From developing new therapies that treat and prevent disease to helping people ...

  12. Operational characteristics of dual gain single cavity Nd:YVO laser

    Indian Academy of Sciences (India)

    diodes was varied by changing the diode laser current. The laser cavity consisted of a curved mirror (M1) with radius of curvature 80 mm. This mirror was coated for high reflectivity at the lasing wavelength (1064 nm) and high transmission at the pump wavelength (808 nm). A Nd:YVO4 crystal (C1) was placed close.

  13. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Taghizadeh, Alireza

    2015-01-01

    We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light...

  14. Operational characteristics of dual gain single cavity Nd:YVO 4 laser

    Indian Academy of Sciences (India)

    Operational characteristics of a dual gain single cavity Nd:YVO4 laser have been investigated. With semiconductor diode laser pump power of 2 W, 800 mW output was obtained with a slope efficiency of 49%. Further, by changing the relative orientation of the two crystals the polarization characteristics of the output could be ...

  15. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Liu, W. J.; Hu, X. L.; Ying, L. Y.; Chen, S. Q.; Zhang, J. Y.; Akiyama, H.; Cai, Z. P.; Zhang, B. P.

    2015-04-01

    Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs.

  16. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    Science.gov (United States)

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  17. Selection of transverse modes in laser cavities containing waveguides and open parts

    International Nuclear Information System (INIS)

    Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Tkachenko, V M; Topkov, A N

    2001-01-01

    The transverse modes of a submillimetre laser cavity that contains waveguides and open parts were studied theoretically and experimentally with the purpose of finding methods for mode selection. Two methods based on the filtering of the Fourier spectra of the waveguide modes and the use of their interference were substantiated numerically and realised in experiment. Special attention was paid to the mode selection in tunable lasers. Scaling laws allowing one to use the obtained results in a wide range of the cavity parameters and wavelengths are presented. (laser applications and other topics in quantum electronics)

  18. Theoretical analysis of laser-locked spectroscopy employing a confocal Fabry-Perot cavity

    International Nuclear Information System (INIS)

    Dong, Lei; Li, Linfeng; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2006-01-01

    A theoretical analysis of laser-locked enhanced absorption spectroscopy employing a confocal Fary-Perot cavity (CFPC) is presented. The signal-to-noise ratio and the minimum detectable absorbance, which are limited by either the shot noise or the amplitude noise due to the loose laser lock loop, are also discussed in detail. The results show that the effective absorption path length of a CFPC configuration is the same as that of the conventional nonconfocal Fary-Perot cavity configuration, with the CFPC configuration being more convenient to align without deliberate mode matching. Thus, the CFPC configuration should greatly simplify the complications of conventional laser-locked spectroscopy.

  19. Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.

    Science.gov (United States)

    Walther, T; Krysa, A B

    2017-12-01

    Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  20. Advancements in quantum cascade laser-based infrared microscopy of aqueous media.

    Science.gov (United States)

    Haase, K; Kröger-Lui, N; Pucci, A; Schönhals, A; Petrich, W

    2016-06-23

    The large mid-infrared absorption coefficient of water frequently hampers the rapid, label-free infrared microscopy of biological objects in their natural aqueous environment. However, the high spectral power density of quantum cascade lasers is shifting this limitation such that mid-infrared absorbance images can be acquired in situ within signal-to-noise ratios of up to 100. Even at sample thicknesses well above 50 μm, signal-to-noise ratios above 10 are readily achieved. The quantum cascade laser-based microspectroscopy of aqueous media is exemplified by imaging an aqueous yeast solution and quantifying glucose consumption, ethanol generation as well as the production of carbon dioxide gas during fermentation.

  1. Widely-tunable interband cascade lasers for the mid-infrared

    Science.gov (United States)

    von Edlinger, M.; Scheuermann, J.; Weih, R.; Nähle, L.; Fischer, M.; Höfling, S.; Koeth, J.; Kamp, M.

    2015-01-01

    Distributed feedback (DFB) laser sources are key components of modern gas analyzers based on tunable laser absorption spectroscopy. While the current induced tuning range of DFB lasers is usually limited to a few nanometers, there are a number of applications which will benefit from lasers with a wider tunability, e.g. multi-gas sensing or spectroscopy of liquids. In this paper, we present monolithic widely tunable laser devices in the 3.6 μm wavelength region based on interband cascade laser material. Using the concept of binary superimposed (BSG) grating structures and two-segment Vernier-tuning, stable single-mode emission is realized at discrete wavelength channels in the 3560 nm to 3620 nm region. A total tuning range around 60 nm in three channels is demonstrated. Within a single channel, the emission wavelength can be tuned mode hop free over up to 5 nm. The wavelength channels can be arbitrarily placed in the range of the material gain, allowing BSG lasers to sweep over several gas absorption lines. The number of channels can be chosen as well. Within a wavelength channel, the lasers show DFB like spectral performance with setup limited sidemode suppressino ratios around 25 dB and milliwatt levels of continuous wave output powers around room temperature. This paper will present an overview of the laser concept, simulations, performance data and applications.

  2. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  3. Multi-species trace gas analysis with dual-wavelength quantum cascade laser

    Science.gov (United States)

    Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas

    2015-04-01

    Simultaneous detection of multiple gas species using mid-IR laser spectroscopy is highly appealing for a large variety of applications ranging from air quality monitoring, medical breath analysis to industrial process control. However, state-of-the-art distributed-feedback (DFB) mid-IR lasers are usually tunable only within a narrow spectral range, which generally leads to one-laser-one-compound measurement strategy. Thus, multi-species detection involves several lasers and elaborate beam combining solutions [1]. This makes them bulky, costly, and highly sensitive to optical alignment, which limits their field deployment. In this paper, we explore an alternative measurement concept based on a dual-wavelength quantum cascade laser (DW-QCL) [2]. Such a laser can emit at two spectrally distinct wavelengths using a succession of two DFB gratings with different periodicities and a common waveguide to produce one output beam. The laser design was optimized for NOx measurements and correspondingly emits single-mode at 5.26 and 6.25 μm. Electrical separation of the respective laser sections makes it possible to address each wavelength independently. Thereby, it is possible to detect NO and NO2 species with one laser using the same optical path, without any beam combining optics, i.e. in a compact and cost-efficient single-path optical setup. Operated in a time-division multiplexed mode, the spectrometer reaches detection limits at 100 s averaging of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system was validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as monitoring the pollution at a suburban site. [1] B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger, 'Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy,' Atmospheric Measurement Techniques 6, 927-936 (2013

  4. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  5. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    Energy Technology Data Exchange (ETDEWEB)

    Paranin, V D; Matyunin, S A; Tukmakov, K N [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)

    2013-10-31

    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  6. Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Chodukowski, T.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2009-01-01

    Roč. 95, č. 23 (2009), s. 231501-231501 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LC528; GA MŠk(CZ) 7E09092 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Laser -plasma interaction * PALS laser * cavity pressure acceleration * acceleration of macroparticles Subject RIV: BH - Optics, Masers, Laser s Impact factor: 3.554, year: 2009

  7. Power-efficient III-V/silicon external cavity DBR lasers.

    Science.gov (United States)

    Zilkie, A J; Seddighian, P; Bijlani, B J; Qian, W; Lee, D C; Fathololoumi, S; Fong, J; Shafiiha, R; Feng, D; Luff, B J; Zheng, X; Cunningham, J E; Krishnamoorthy, A V; Asghari, M

    2012-10-08

    We report the design and characterization of external-cavity DBR lasers built with a III-V-semiconductor reflective-SOA with spot-size converter edge-coupled to SOI waveguides containing Bragg grating mirrors. The un-cooled lasers have wall-plug-efficiencies of up to 9.5% at powers of 6 mW. The lasers are suitable for making power efficient, hybrid WDM transmitters in a CMOS-compatible SOI optical platform.

  8. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  9. High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser.

    Science.gov (United States)

    Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard

    2014-09-22

    Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.

  10. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  11. Proof-of-principle of surface detection with air-guided quantum cascade lasers.

    Science.gov (United States)

    Moreau, Virginie; Colombelli, Raffaele; Perahia, Raviv; Painter, Oskar; Wilson, Luke R; Krysa, Andrey B

    2008-04-28

    We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results.

  12. The Self-Heating Effect of Quantum Cascade Lasers Based on a Spectroscopic Method

    International Nuclear Information System (INIS)

    Lin, Wei; Ai-Zhen, Li; Yong-Gang, Zhang; Yao-Yao, Li

    2009-01-01

    We investigate the self-heating effect of mid-infrared quantum cascade lasers by using a direct-based pulse injecting current and spectroscopy method. Based on the characterization system, the thermal characteristics of gas source MBE grown 8.4 μm InP-based GaInAs/AlInAs DFB-QCLs are evaluated. The method and characterization system are also useful in evaluating the thermal characteristics of other types of mid-infrared diode lasers. (fundamental areas of phenomenology (including applications))

  13. Coherent stacking of picosecond laser pulses in a high-Q optical cavity for accelerator applications

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2007-01-01

    We have performed the harmonic analysis of the steady-state coherent pulse-stacking process in a high-Q Fabry-Perot cavity. The expression for the stacked pulse shape is obtained as a function of both the laser cavity and pulse-stacking cavity parameters. We have also estimated the pulse power gains attainable in the laser-optical system of NESTOR storage ring, which is under development at Kharkov Institute of Physics and Technology. It is shown that high power gains (∼10 4 ) can be, in principle, achieved in a cavity, formed with low-absorption, high reflectivity (R ∼ 0.9999) mirrors, if the laser cavity length will differ exactly by half wavelength from the pulse-stacking cavity length. It implies development of the sophisticated frequency stabilization loop for maintaining the cavity length constant within a sub-nanometer range. At the same time, power gains of ∼10 3 can be obtained with medium reflectivity mirrors (R ∼ 0.999) at considerably lower cost

  14. Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study

    Directory of Open Access Journals (Sweden)

    Stephan Michael

    2016-05-01

    Full Text Available In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.

  15. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    Science.gov (United States)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Corneal tissue ablation using 6.1 μm quantum cascade laser

    Science.gov (United States)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  17. Type-I interband cascade lasers near 3.2 μm

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuchao; Li, Lu; Yang, Rui Q., E-mail: Rui.Q.Yang@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Gupta, James A.; Aers, Geof C.; Dupont, Emmanuel; Baribeau, Jean-Marc; Wu, Xiaohua [National Research Council of Canada, Ottawa K1A 0R6 (Canada); Johnson, Matthew B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2015-01-26

    Interband cascade (IC) lasers have been demonstrated based on type-I InGaAsSb/AlAsSb quantum well (QW) active regions. These type-I IC lasers are composed of 6-cascade stages and InAs/AlSb superlattice cladding layers. In contrast to the use of quinary AlGaInAsSb barriers for active region in previous type-I QW lasers, the type-I QW active region in each stage is sandwiched by digitally graded multiple InAs/AlSb QW electron injector and GaSb/AlSb QW hole injector. The fabricated type-I IC lasers were able to operate in continuous wave and pulsed modes at temperatures up to 306 and 365 K, respectively. The threshold current densities of broad-area lasers were around 300 A/cm{sup 2} at 300 K with a lasing wavelength near 3.2 μm. The implications and prospects of these initial results are discussed.

  18. Type-I interband cascade lasers near 3.2 μm

    International Nuclear Information System (INIS)

    Jiang, Yuchao; Li, Lu; Yang, Rui Q.; Gupta, James A.; Aers, Geof C.; Dupont, Emmanuel; Baribeau, Jean-Marc; Wu, Xiaohua; Johnson, Matthew B.

    2015-01-01

    Interband cascade (IC) lasers have been demonstrated based on type-I InGaAsSb/AlAsSb quantum well (QW) active regions. These type-I IC lasers are composed of 6-cascade stages and InAs/AlSb superlattice cladding layers. In contrast to the use of quinary AlGaInAsSb barriers for active region in previous type-I QW lasers, the type-I QW active region in each stage is sandwiched by digitally graded multiple InAs/AlSb QW electron injector and GaSb/AlSb QW hole injector. The fabricated type-I IC lasers were able to operate in continuous wave and pulsed modes at temperatures up to 306 and 365 K, respectively. The threshold current densities of broad-area lasers were around 300 A/cm 2 at 300 K with a lasing wavelength near 3.2 μm. The implications and prospects of these initial results are discussed

  19. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy

    Science.gov (United States)

    Kumar, Deepak; Gautam, Surya; Kumar, Subodh; Gupta, Saurabh; Srivastava, Hari B.; Thakur, Surya N.; Sharma, Ramesh C.

    2017-04-01

    The paper focuses on development of ultra-sonic detection system based on laser photoacoustic spectroscopic technique and processing of signal for detection of very low quantity chemicals, explosive materials, and mixtures of these hazardous molecules. The detection system has been developed for the first time with specially designed one side open photo-acoustic cell having high quality factor. Explosive and Hazardous materials like RDX, DNT, PETN, Gun Powder, TATP (Tri acetone tri-peroxide) and their simulants like Acetone were detected in 7 to 9 μm wavelength band. Lock in amplifier electronic instrument was used for the detection of hazardous chemicals and mixture of explosives in very low quantity. Detection limit of the photoacoustic ultrasonic sensor was also carried out of powder, liquid and adsorbed on surfaces.

  20. High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide.

    Science.gov (United States)

    Bahriz, M; Lollia, G; Baranov, A N; Teissier, R

    2015-01-26

    We demonstrate the high temperature operation, up to 80°C, of quantum cascade lasers emitting at a wavelength of 20 µm. The lasers are based on the InAs/AlSb materials and take benefit of a low loss plasmon-enhanced dielectric waveguide. The waveguide consists of doped InAs cladding layers and low-doped InAs spacers. For 2.9-mm-long devices, the threshold current density is 4.3 kA/cm2 and the measured peak output power is 7 mW at room temperature. The cavity length dependence of the threshold currents also indicates that very large optical gain is achieved and effectively overcome the strong free carrier absorption.

  1. Spectral properties of a broad-area diode laser with off-axis external-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    . The intensity noise spectrum of the diode laser shows that the intensity noise is increased strongly by the external-cavity feedback. External-cavity modes are excited in the external cavity even in the off-axis configuration. The peak spacing of the intensity noise spectrum shows that single roundtrip external......Spectral properties, both the optical spectrum and the intensity noise spectrum, of a broad-area diode laser with off-axis external-cavity feedback are presented. We show that the optical spectrum of the diode laser system is shifted to longer wavelengths due to the external-cavity feedback......-cavity modes are excited. We believe that the four-wave mixing process in the broad-area diode laser is responsible for the establishment of the external-cavity mode....

  2. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  3. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  4. Cavities

    Science.gov (United States)

    ... Additional Content Medical News Cavities ˈkav-ət-ē (Dental Caries) By James T. Ubertalli, DMD, Private Practice, Hingham, ... access to dental care, and better treatment for tooth decay and periodontal disease. When teeth are lost, chewing is greatly hindered, and speaking ...

  5. Cavity-induced mirror-mirror entanglement in a single-atom Raman laser

    Science.gov (United States)

    Teklu, Berihu; Byrnes, Tim; Khan, Faisal Shah

    2018-02-01

    We address an experimental scheme to analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser inside a doubly resonant cavity. With this aim we investigate the master equations of the atom-cavity subsystem in conjunction with the quantum Langevin equations that describe the interaction of the mirror cavity. The parametric amplification-type coupling induced by the two-photon coherence on the optical bistability of the intracavity mean photon numbers is found and investigated. Under this condition, the optical intensities exhibit bistability for all large values of cavity laser detuning. We also provide numerical evidence for the generation of strong entanglement between the movable mirrors and show that it is robust against environmental thermalization.

  6. The system of enclosed optical cavities as a tool for laser photons storing

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Telegin, Yu.N.

    2004-01-01

    The calculation of the system consisting of two optical cavities enclosed one into another is performed in the plane-wave approximation. It is shown that under definite conditions one can obtain an enhancement of the electromagnetic field in the internal cavity as compared to the case of direct excitation of the cavity with an electromagnetic wave of the same amplitude. The comparative analysis of these two approaches is carried out. We suppose to apply the proposed system with moderate-reflectivity mirrors (R=0.99) for accumulating laser photons in the optical cavity of the X-ray source LESR-N100 based on Compton scattering of the laser beam on relativistic electrons stored in the ring

  7. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  8. Vertical-cavity laser with a novel grating mirror

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol

    Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG...... VCLs have been fabricated. The first version of hybrid VCL is designed for demonstrating in-plane emission into a Si waveguide. The in-plane emission is enabled by the bottom HCG abutting the Si waveguide, which not only functions as a highly reflective mirror but also routes the light from...... dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM-HCG...

  9. Q-switched operation with Fox-Smith-Michelson laser cavity

    International Nuclear Information System (INIS)

    Huang, X; Huang, L; Gong, M

    2008-01-01

    A new kind of three-mirror composite cavity, Fox-Smith-Michelson cavity has been configured. This laser cavity is capable of high power output, owing to the low threshold of Michelson cavity. Also, thanks to the mode selection function of Fox-Smith cavity, stable pulses at high repetition rate can be generated. In our experiment, 15.54 W CW output at 1064 nm has been achieved, with an optic-to-optic conversion efficiency of 42.2%. At the Q-switching repetition rate of 100 kHz, the average output power is 11.92 W, with an optic-to-optic conversion efficiency of 38.2%. For Q-switching frequency from 30 kHz to 100 kHz, the pulse width variation is below 4.4% and the amplitude variation is below 4.8%

  10. Polarization-selectable cavity locking method for generation of laser Compton scattered γ-rays.

    Science.gov (United States)

    Kosuge, Atsushi; Mori, Michiaki; Okada, Hajime; Hajima, Ryoichi; Nagashima, Keisuke

    2014-03-24

    Nowadays, generation of energy-tunable, monochromatic γ-rays is needed to establish a nondestructive assay method of nuclear fuel materials. The γ-rays are generated by collision of laser photons stored in a cavity and relativistic electrons. We propose a configuration of an enhancement cavity capable of performing polarization control fabricated by a combination of a four-mirror ring cavity with a small spot inside a cavity and a three-mirror of reflective optics as an image inverter for polarization-selectable γ-rays. The image inverter introduces a phase shift of specific polarization which can be used to generate an error signal to lock an optical cavity at a resonance condition.

  11. Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.

    2010-09-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or "IR-AFPA", adaptive focal plane arrays. We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

  12. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    Directory of Open Access Journals (Sweden)

    Thorsten Hellert

    2017-12-01

    Full Text Available At the Free-Electron Laser in Hamburg (FLASH and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  13. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    Science.gov (United States)

    Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang

    2017-12-01

    At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  14. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masoumeh Hasani Tabatabaei

    2016-05-01

    Full Text Available Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser.Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablative laser treatment. Each group consisted of two subgroups with different cavity depths of 2mm and 4mm.  The entire cavity floor was in dentin. Two samples from each subgroup were observed under scanning electron microscope (SEM. The external surfaces of other samples were covered with nail varnish (except the prepared cavity and immersed in 0.5% methylene blue solution for 48 hours.  After irrigation of samples with water, they were sectioned in bucco-lingual direction. Then, the samples were evaluated under a stereomicroscope at ×160 magnification. The data were analyzed using two-way ANOVA and Tukey’s HSD test.Results: Two-way ANOVA showed significant difference in permeability between groups 2 and 3 (laser groups with and without further treatment and group 1 (bur group. The highest permeability was seen in the group 1. There was no significant difference in dentin permeability between groups 2 and 3 and no significant difference was observed between different depths (2mm and 4mm.Conclusion: Cavities prepared by laser have less dentin permeability than cavities prepared by diamond bur.

  15. A comparison of Er, Cr: YSGG laser with ultrasonic preparation on the seal of retrograde cavities

    Science.gov (United States)

    Roghanizad, Nasrin; Kalhori, Katayoun AM; Khalilak, Zohreh; Esmaeili, Maryam Ali; de Fatima Zanirato Lizarelli, Rosane

    2015-01-01

    Background and aim: The aim of this in vitro study was to compare Er, Cr: YSGG laser with ultrasonic preparation on the seal of retrograde cavities. Materials and methods: Twenty-eight maxillary anterior teeth were used in this study. After removing the crowns, the canals were prepared with the step-back technique and filled with guttapercha. Three millimeters below the apex; each root was cut with a fissure diamond bur. The root surfaces were then covered with nail polish and three millimeters deep retrograde class I cavities were prepared, using Er, Cr: YSGG laser (group L=12 roots) or ultrasonic retro-tip (group U=12 roots). Four roots were arranged for negative and positive control groups. Retrograde cavities were then filled with mineral trioxide aggregate (MTA) and teeth were placed in 2% methylene blue dye for 72 hours. The amount of dye penetration in sagittal sections of each tooth was measured with a stereomicroscope. An independent sample t-test was used for statistical analysis. Results: Cavities prepared with the Er, Cr: YSGG laser (1.61 + 0.81) showed significantly less micro-leakage than those prepared with the ultrasound (2.55+ 1.84) (P value =0.02). Conclusions: Under the conditions of this research, the use of Er, Cr: YSGG laser for retrograde cavity preparation causes significantly less apical leakage and may increase the success rate of endodontic surgeries. PMID:25941423

  16. Assessing the Performance of the Laser Fluorescence Technique in Detecting Proximal Caries Cavities

    Directory of Open Access Journals (Sweden)

    Majid Akbari

    Full Text Available Introduction: Diagnosing the necessity of cavity preparation and restoration in demineralized proximal areas is always considered as a challenge in restorative treatment planning. The purpose of this study was to assess the performance of the laser fluorescence (LF technique in detection of proximal cavities.Materials & Methods: In this clinical trial, 44 proximal surfaces in 38 dental students were evaluated. The selected patients had radiolucent proximal lesions restricted to inner half of enamel or outer third of dentine in bitewing radiographs (BW. DIAGNOdent pen (LF pen device was used to determine the presence or absence of caries cavities in suspected proximal surfaces. Orthodontic elastic separators were then placed in the contact areas to provide enough space for direct visual and tactile examination. The sensitivity, specificity and accuracy of the laser fluorescence technique were calculated versus the reference standard. The ROC curve was drawn and the best cut-off to determine the presence or absence of proximal cavities was determined.Results: Using DIAGNOdent pen, the optimal cut-off for detecting proximal cavities was 18. The sensitivity, specificity and accuracy of DIAGNOdent pen for diagnosing proximal caries cavities were 100 per cent, 97.3 per cent and 97.7 per cent, respectively. Conclusion: Due to the high diagnostic accuracy of DIAGNOdent pen in detecting proximal caries cavities, it can be used as a valuable supplement in restorative treatment planning.

  17. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    Harmonic resonance leads to period-1 bistability and hysteresis. Inside the period-2 sub-harmonic resonance region, the laser exhibits Feigenbaum sequence and generalized bistability. Keywords. Fibre lasers; chaos; modulation; nonlinear oscillators; optical bistability. PACS Nos 05.45.Ac; 42.55.Wd; 05.45.Tp; 42.55.Rz.

  18. Ultrafast Optics: Vector Cavity Laser - Physics and Technology

    Science.gov (United States)

    2016-06-14

    soliton bunch ( video ). (a) Soliton bunch moving in the cavity (Media 1); (b) Solitons oscillating in the bunch (Media 2). At a relatively stronger...A. Kudlinski, A. Bendahmane, D. Labat, S. Virally , R. T. Murray, E. J. R. Kelleher, and A. Mussot, "simultaneous scalar and cross-phase modulation

  19. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    Science.gov (United States)

    2016-06-14

    soliton bunch ( video ). (a) Soliton bunch moving in the cavity (Media 1); (b) Solitons oscillating in the bunch (Media 2). At a relatively stronger...A. Kudlinski, A. Bendahmane, D. Labat, S. Virally , R. T. Murray, E. J. R. Kelleher, and A. Mussot, "simultaneous scalar and cross-phase modulation

  20. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    Science.gov (United States)

    2016-06-14

    soliton bunch ( video ). (a) Soliton bunch moving in the cavity (Media 1); (b) Solitons oscillating in the bunch (Media 2). At a relatively stronger...A. Kudlinski, A. Bendahmane, D. Labat, S. Virally , R. T. Murray, E. J. R. Kelleher, and A. Mussot, "simultaneous scalar and cross-phase modulation

  1. Detection of acrolein and acrylonitrile with a pulsed room temperature quantum cascade laser

    Science.gov (United States)

    Manne, J.; Jäger, W.; Tulip, J.

    2010-06-01

    We investigated the use of a pulsed, distributed feedback quantum cascade laser centered at 957 cm-1 in combination with an astigmatic Herriot cell with 250 m path length for the detection of acrolein and acrylonitrile. These molecules have been identified as hazardous air-pollutants because of their adverse health effects. The spectrometer utilizes the intra-pulse method, where a linear frequency down-chirp, that is induced when a top-hat current pulse is applied to the laser, is used for sweeping across the absorption line. Up to 450 ns long pulses were used for these measurements which resulted in a spectral window of ~2.2 cm-1. A room temperature mercury-cadmium-telluride detector was used, resulting in a completely cryogen free spectrometer. We demonstrated detection limits of ~3 ppb for acrylonitrile and ~6 ppb for acrolein with ~10 s averaging time. Laser characterization and optimization of the operational parameters for sensitivity improvement are discussed.

  2. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    Science.gov (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  3. Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier

    International Nuclear Information System (INIS)

    Sillard, Pierre

    1998-01-01

    The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr

  4. III-V/SOI vertical cavity laser with in-plane output into a Si waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Semenova, Elizaveta

    2015-01-01

    We experimentally demonstrate an optically-pumped III-V-on-SOI hybrid vertical-cavity laser that outputs light into an in-plane Si waveguide, using CMOS-compatible processes. The laser operates at 1.49 $\\mu$m with a side-mode suppression-ratio of 27 dB and has a similar threshold as long-waveleng......We experimentally demonstrate an optically-pumped III-V-on-SOI hybrid vertical-cavity laser that outputs light into an in-plane Si waveguide, using CMOS-compatible processes. The laser operates at 1.49 $\\mu$m with a side-mode suppression-ratio of 27 dB and has a similar threshold as long...

  5. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    DEFF Research Database (Denmark)

    Schäffer, Stefan Alaric; Christensen, Bjarke Takashi Røjle; Rathmann, Stefan Mossor

    2017-01-01

    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently...... experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow...... atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2]....

  6. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  7. Dual-Cylinder Laser Reference Cavities for LISA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Summary: The Laser Interferometer Space Antenna (LISA) mission is under consideration by NASA and ESA as a joint mission to study gravitational wave signals from a...

  8. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q-switch the ......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser.......Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q...

  9. The Complex Way to Laser Diode Spectra: Example of an External Cavity Laser With Strong Optical Feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    2005-01-01

    An external cavity laser with strong grating-filtered feedback to an antireflection-coated facet is studied with a time-domain integral equation for the electric field, which reproduces the modes of the oscillation condition as steady-state solutions. For each mode, the stability and spectral...... to simulate the large signal time evolution after start from unstable modes....

  10. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  11. Modeling and experimental verification of laser self-mixing interference phenomenon with the structure of two-external-cavity feedback

    Science.gov (United States)

    Chen, Peng; Liu, Yuwei; Gao, Bingkun; Jiang, Chunlei

    2018-03-01

    A semiconductor laser employed with two-external-cavity feedback structure for laser self-mixing interference (SMI) phenomenon is investigated and analyzed. The SMI model with two directions based on F-P cavity is deduced, and numerical simulation and experimental verification were conducted. Experimental results show that the SMI with the structure of two-external-cavity feedback under weak light feedback is similar to the sum of two SMIs.

  12. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  13. Efficient 525 nm laser generation in single or double resonant cavity

    Science.gov (United States)

    Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen

    2018-03-01

    This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.

  14. Quantum cascade laser-based photoacoustic sensor for environmental pollution monitoring

    International Nuclear Information System (INIS)

    Elia, A.; Di Franco, C.; Spagnolo, V.; Lugara, P.M.; Scamarcio, G.

    2010-01-01

    We will report here on the design and realization of an optoacoustic sensor for trace gas detection. The sensor consist of a commercial quantum cascade laser and a resonant photoacoustic cell. Two different cell configuration have been investigated: a standard H-cell and an innovative T-cell. We will describe the results obtained in the detection of different gases, such as nitric oxide, which plays an important role in environmental pollution and in medical diagnostics, and formaldehyde, a gas of great interest for indoor and outdoor air pollution.

  15. Analytical Structuring of Periodic and Regular Cascading Solutions in Self-Pulsing Lasers

    Directory of Open Access Journals (Sweden)

    Belkacem Meziane

    2008-01-01

    Full Text Available A newly proposed strong harmonic-expansion method is applied to the laser-Lorenz equations to analytically construct a few typical solutions, including the first few expansions of the well-known period-doubling cascade that characterizes the system in its self-pulsing regime of operation. These solutions are shown to evolve in accordance with the driving frequency of the permanent solution that we recently reported to illustrate the system. The procedure amounts to analytically construct the signal Fourier transform by applying an iterative algorithm that reconstitutes the first few terms of its development.

  16. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers

    Science.gov (United States)

    Khurgin, J. B.; Dikmelik, Y.; Hugi, A.; Faist, J.

    2014-02-01

    One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ˜ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.

  17. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers

    International Nuclear Information System (INIS)

    Khurgin, J. B.; Dikmelik, Y.; Hugi, A.; Faist, J.

    2014-01-01

    One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement

  18. Influence of screening on longitudinal-optical phonon scattering in quantum cascade lasers

    International Nuclear Information System (INIS)

    Ezhov, Ivan; Jirauschek, Christian

    2016-01-01

    We theoretically investigate the influence of screening on electron-longitudinal optical phonon scattering in quantum cascade lasers. By employing ensemble Monte Carlo simulations, an advanced screening model based on the random-phase approximation is compared to the more elementary Thomas-Fermi and Debye models. For mid-infrared structures, and to a lesser extent also for terahertz designs, the inclusion of screening is shown to affect the simulated current and optical output power. Furthermore, it is demonstrated that by using the electron temperature rather than the lattice temperature, the Debye model can be significantly improved

  19. Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, A; Jirauschek, C [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , TU Muenchen, D-80333 Muenchen (Germany); Kubis, T [Walter Schottky Institute, TU Muenchen, D-85748 Garching (Germany); Lugli, P, E-mail: alparmat@mytum.d [Institute of Nanoelectronics, TU Muenchen, D-80333 Muenchen (Germany)

    2009-11-15

    We have applied two different simulation models for the stationary carrier transport and optical gain analysis in resonant phonon depopulation THz Quantum Cascade Lasers (QCLs), based on the semiclassical ensemble Monte Carlo (EMC) and fully quantum mechanical non-equilibrium Green's functions (NEGF) method, respectively. We find in the incoherent regime near and above the threshold current a qualitative and quantitative agreement of both methods. Therefore, we show that THz-QCLs can be successfully optimized utilizing the numerically efficient EMC method.

  20. Importance of Coulomb interactions in bound-to-continuum THz quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, C; Matyas, A [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , Technische Universitaet Muenchen, D-80333 Munich (Germany); Lugli, P, E-mail: jirauschek@tum.d [Institute for Nanoelectronics, Technische Universitaet Muenchen, D-80333 Munich (Germany)

    2009-11-15

    We demonstrate the importance of Coulomb interactions in bound-to-continuum THz quantum cascade lasers, employing an ensemble Monte-Carlo analysis. In such structures, the electron-electron interactions between the closely spaced energy levels in the minibands tend to play a more important role than in resonant-phonon depopulation designs, where the energy levels are more energetically separated and LO phonon scattering prevails. Also a significant conduction band bending due to space charge effects is observed. Thus, especially for bound-to-continuum structures careful modelling of Coulomb interactions is crucial to obtain good agreement with experiment.

  1. Continuous wave operation of quantum cascade lasers with frequency-shifted feedback

    International Nuclear Information System (INIS)

    Lyakh, A.; Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Tsvid, G.; Patel, C. Kumar N.

    2016-01-01

    Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm −1 for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials

  2. Frequency stabilization of multiple lasers on a single medium-finesse cavity

    Science.gov (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye

    2018-04-01

    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  3. Grin-parabolic optical cavity characteristic study in AlGaAs-GaAs laser

    International Nuclear Information System (INIS)

    Martin A, J.A.; Diaz A, P.; Garcia R, F.

    1994-01-01

    In this paper we study theoretically the characteristics of a GaAs-AlGaAs laser transverse optical cavity with a parabolic graded variation of the refractive index (GRIN-SCH). We give an exact solution of the wave equation and analyze the near field distribution as well as the values of the effective refractive index of the fundamental mode. The condition for a mono mode optical cavity are also deduced. The behavior of the confinement factor and the far field in the plane perpendicular to the active region are reported. The results for the GRIN-SCH structure are compared with a similar SCH-straight laser transverse optical cavity. (Author) 11 refs

  4. Selection of a LGp0-shaped fundamental mode in a laser cavity: Phase versus amplitude masks

    CSIR Research Space (South Africa)

    Hasnaoui, A

    2012-01-01

    Full Text Available -plate (absorbing ring) set inside a diaphragmed laser cavity for selecting a pure LGp0 mode of radial order, p. We analyse, for each type of mask, the origin of the transverse mode selection, and contrary to what one might expect we find that it is not necessary...

  5. Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    2016-01-01

    Full Text Available We study stability of self-injection locking realized with DFB laser coupled with an external fiber optic ring cavity. Polarization behavior of the radiation circulating in the feedback loop is reported. Two regimes of mode hopping have been observed; one of them is accompanied by polarization bistability involving two orthogonal polarization states.

  6. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  7. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    Science.gov (United States)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; hide

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  8. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  9. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    Science.gov (United States)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  10. Waveguide and articulated arm for Er:YAG laser system: shape and depth of laser cavity in hard dental tissues

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Miyagi, Mitsunobu; Wang, You; Shi, Yi-Wei; Dolezalova, Libuse; Hamal, Karel; Krejsa, Otakar; Kubelka, Jiri; Prochazka, Stanislav

    1998-04-01

    The aim of our study was to verify the efficiency of delivery systems for Er:YAG laser radiation which could be used in dentistry. The influence of increasing energy and number of pulses on a profile and depth of drilled holes was investigated. Er:YAG laser was operating in a free-running mode, generating a length of pulses 200 microsecond with a maximum energy of 500 mJ. The delivery systems investigated were an articulated arm and a fluorocarbon polymer-coated silver hollow glass waveguide. The prepared hard tissues were a sliced part of enamel, dentine and ivory. The laser radiation was directed on them by focusing optics (CaF2 lens) together with the cooling water to ensure that the tissues will not be burned. For the evaluation of shapes, depth and profiles of the prepared cavities the metallographic microscope, x-ray microtomograph and scanning electron microscope were used. From the results it was observed that the profile and depth of the cavities prepared by the laser radiation delivered by the various systems (waveguide or articulated arm) are not the same. The laser radiation delivered by waveguide produces a larger diameter cavity with a lower depth. The holes are smoother and without side effects.

  11. VUV free electron laser with a distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Fujita, M.; Asakawa, M. [Osaka Univ. (Japan)] [and others

    1995-12-31

    Development of FEL to the VUV/x-ray regime is looked as one of the possible directions to its success. For eliminating the need for optical cavities, difficult to be built at that regime, we propose a VUV (50nm) SASE FEL. According to Pellegrini`s scaling law, for a 290MeV/200A e-beam passing through a 10.8m long and 2cm period wiggler, a high peak power 85.5MW and a high average brightness 2.44 X 10{sup +21} (photons/[mm{sup 2}.mrad{sup 2}.bw]) can be obtained. However, it requires {epsilon} n=2.3mm.mrad and {Delta}{gamma}/{gamma} = 0.15% about one order above the practical parameters we can realize. For enhancing the efficiency and decreasing the requirements on the e-beam quality and the wiggler length, we put forward a concept of VUV FEL with a distributed feedback cavity. In x-ray region, the natural periodicity of crystals provides strong Bragg coupling and it has been demonstrated as the parametric radiation. In vuv region, current intense research on superlattice can provide a periodical structure with a short period in 250 {Angstrom} order. High-performance vuv multilayer coatings on the inner-wall of the waveguide are used to guide the spontaneous emission and decrease the x-ray ohmic losses on the roundtrip passes. By this DFB cavity structure, it is expected to realize the lasing in a smaller size. Other practical methods such as the optical klystron for shortening the wiggler length and the tapper wiggler for enhancing the saturation power are also considered. The analytical considerations are based on the 1-D FEL equations and 1-D perturbation theory of dielectric waveguide.

  12. High-Q, Low-Threshold Monolithic Perovskite Thin-Film Vertical-Cavity Lasers.

    Science.gov (United States)

    Chen, Songtao; Zhang, Cheng; Lee, Joonhee; Han, Jung; Nurmikko, Arto

    2017-04-01

    A vertical-cavity surface-emitting perovskite laser is achieved using a microcavity configuration where CH 3 NH 3 PbI 3 thin solid films are embedded within a custom GaN-based high-quality (Q-factor) resonator. This single-mode perovskite laser reaches a low threshold (≈7.6 µJ cm -2 ) at room temperature and emits spatially coherent Gaussian laser beams. The devices allow direct access to the study of perovskite gain dynamics and material robustness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  14. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    International Nuclear Information System (INIS)

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-01

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing

  15. Hollow waveguides for the transmission of quantum cascade laser (QCL) energy for spectroscopic applications

    Science.gov (United States)

    Harrington, James A.; Bledt, Carlos M.; Kriesel, Jason M.

    2011-03-01

    Spectroscopy in the long-wave infrared (LWIR) wavelength region (8 to 12 μm) is useful for detecting trace chemical compounds, such as those indicative of weapons of mass destruction (WMD). To enable the development of field portable systems for anti-proliferation efforts, current spectroscopy systems need to be made more robust, convenient, and practical (e.g., miniaturized). Hollow glass waveguides have been used with a Quantum Cascade Laser source for the delivery of single-mode laser radiation from 9 to 10 μm. The lowest loss measured for a straight, 484 μm-bore guide was 0.44 dB/m at 10 μm. The smallest 300 μm-bore waveguide transmitted singlemode radiation even while bent to radii less than 30 cm.

  16. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galli, I.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Giusfredi, G.; Cancio, P.; De Natale, P. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Siciliani de Cumis, M. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); Borri, S. [CNR-IFN-Istituto di Fotonica e Nanotecnologie, Via Amendola 173, 70126 Bari, BA (Italy); Montori, A. [LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Akikusa, N. [Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan); Yamanishi, M. [Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)

    2013-03-25

    We report on the linewidth narrowing of a room-temperature mid-infrared quantum cascade laser by phase-locking to a difference-frequency-generated radiation referenced to an optical frequency comb synthesizer. A locking bandwidth of 250 kHz, with a residual rms phase-noise of 0.56 rad, has been achieved. The laser linewidth is narrowed by more than 2 orders of magnitude below 1 kHz, and its frequency is stabilized with an absolute traceability of 2 Multiplication-Sign 10{sup -12}. This source has allowed the measurement of the absolute frequency of a CO{sub 2} molecular transition with an uncertainty of about 1 kHz.

  17. Very short wavelength (λ=3.1-3.3 μm) quantum cascade lasers

    International Nuclear Information System (INIS)

    Devenson, J.; Barate, D.; Cathabard, O.; Teissier, R.; Baranov, A. N.

    2006-01-01

    Quantum cascade lasers emitting at wavelengths as short as 3.1-3.3 μm are reported. Such high intersubband emission energies (up to 400 meV) have been obtained thanks to the high conduction band offset of the InAs/AlSb material system. The structures, grown by molecular beam epitaxy on InAs substrates, are based on the bound-to-continuum design and use a low loss plasmon enhanced waveguide consisting of n + -InAs cladding layers with InAs/AlSb superlattice spacers surrounding the active zone. The lasers exhibit threshold current densities close to 3 kA/cm 2 at 83 K and operate in pulsed mode up to 240 K

  18. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Feng [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Stocker, Michael [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Pham, John [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Towner, Frederick [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Shen, Kun [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Wang, Jie [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA; Lascola, Kevin [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA

    2018-03-26

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFB ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.

  19. Frequency and phaselock control of a 3 THz quantum cascade laser.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin S. (Massachusetts Institute of Technology, Cambridge, MA); Hu, Qing (Massachusetts Institute of Technology, Cambridge, MA); Reno, John Louis; Boreiko, R. T. (University of Colorado, Boulder, CO); Betz, A. L. (University of Colorado, Boulder, CO); Kumar, S. (Massachusetts Institute of Technology, Cambridge, MA)

    2005-03-01

    We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with 1-part-in-108 accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.

  20. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    Science.gov (United States)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  1. Passive cavity laser and tilted wave laser for Bessel-like beam coherently coupled bars and stacks

    Science.gov (United States)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.; Vashanova, K. A.; Kulagina, M. M.; Schmidt, N. Y.

    2015-03-01

    Ultralarge output apertures of semiconductor gain chips facilitate novel applications that require efficient feedback of the reflected laser light. Thick (10-30 μm) and ultrabroad (>1000 μm) waveguides are suitable for coherent coupling through both near-field of the neighboring stripes in a laser bar and by applying external cavities. As a result direct laser diodes may become suitable as high-power high-brightness coherent light sources. Passive cavity laser is based on the idea of placing the active media outside of the main waveguide, for example in the cladding layers attached to the waveguide, or, as in the case of the Tilted Wave Laser (TWL) in a thin waveguide coupled to the neighboring thick waveguide wherein most of the field intensity is localized in the broad waveguide. Multimode or a single vertical mode lasing is possible depending on the coupling efficiency. We demonstrate that 1060 nm GaAs/GaAlAs-based Tilted Wave Lasers (TWL) show wall-plug efficiency up to ~55% with the power concentrated in the two symmetric vertical beams having a full width at half maximum (FWHM) of 2 degrees each. Bars with pitch sizes in the range of 25-400 μm are studied and coherent operation of the bars is manifested with the lateral far field lobes as narrow as 0.1° FWHM. As the near field of such lasers in the vertical direction represents a strongly modulated highly periodic pattern of intensity maxima such lasers or laser arrays generate Bessel-type beams. These beams are focusable similar to the case of Gaussian beams. However, opposite to the Gaussian beams, such beams are self-healing and quasi non-divergent. Previously Bessel beams were generated using Gaussian beams in combination with an axicon lens or a Fresnel biprism. A new approach does not involve such complexity and a novel generation of laser diodes evolves.

  2. Optimizing optical nonlinearities in GaInAs/AlInAs quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Gajić Aleksandra D.

    2014-01-01

    Full Text Available Regardless of the huge advances made in the design and fabrication of mid-infrared and terahertz quantum cascade lasers, success in accessing the ~3-4 mm region of the electromagnetic spectrum has remained limited. This fact has brought about the need to exploit resonant intersubband transitions as powerful nonlinear oscillators, consequently enabling the occurrence of large nonlinear optical susceptibilities as a means of reaching desired wavelengths. In this work, we present a computational model developed for the optimization of second-order optical nonlinearities in In0.53Ga0.47As/Al0.48In0.52As quantum cascade laser structures based on the implementation of the Genetic algorithm. The carrier transport and the power output of the structure were calculated by self-consistent solutions to the system of rate equations for carriers and photons. Both stimulated and simultaneous double-photon absorption processes occurring between the second harmonic generation-relevant levels are incorporated into rate equations and the material-dependent effective mass and band non-parabolicity are taken into account, as well. The developed method is quite general and can be applied to any higher order effect which requires the inclusion of the photon density equation. [Projekat Ministarstva nauke Republike Srbije, br. III 45010

  3. A wide area Bipolar Cascade Resonant Cavity Light Emitting Diode for a Hybrid Range-Intensity Sensor

    Science.gov (United States)

    Turner, Reginald J.

    Autonomous Ground Vehicles (AGV) will require high-speed, real-time three dimensional (3-D) image processing to navigate treacherous terrain in order to complete their assigned mission without a human in the loop. LIDAR scanners of the 3-D variety, provide the necessary area coverage for 3-D image processing, but lack the speed to deliver the collected data for real-time processing. A novel Hybrid Range-Intensity System (HRIS) has been proposed for imaging large swaths of area very rapidly. This system is comprised of two infrared cameras, an illumination source, a control and coordination system to position the cameras, and signal processing algorithms to extract the contour image of the scene. This dissertation focused on the development of an illuminator for the HRIS. This illuminator enables faster image rendering and reduces the potential of errors in return signal data, that could be generated from extremely rough terrain. Four major achievements resulted from this work, which advance the field of 3-D image acquisition. The first is that the TJ is an effective current spreading layer for LEDs with mesa width up to 140 mum and current densities of ˜ 1 x 106A/cm2. The TJ allows fabrication of an efficient illuminator, with required geometry for the HRIS to operate as a real-time 3-D imaging system. Secondly, a design for a Bipolar Cascade-Resonant Cavity Light Emitting Diode (BC-RCLED) has been accomplished, that will illuminate the FOV of the hybrid-ranged intensity system with a single sweep of the beam. This device is capable of producing ˜ 330 mW of output power. Additionally, from this work, key parameters for HRIS design were identified. Using a collection optic with a 15 cm diameter, an HRIS mounting height of 1.5 m, and a detector integration time of 330 msec, a SNR of 20 dB was achieved. Lastly, we demonstrated that the BC-RCLED designed for the HRIS can deliver sufficient energy to produce the required SNR. Also, through parametric analysis, we

  4. Active mode control of solid state laser using an intra-cavity beam shaper

    Science.gov (United States)

    Liu, Wenguang; Zhou, Qiong; Yan, Baozhu; Jiang, Zongfu

    2015-05-01

    In high power solid state lasers, thermal lens effect always give rise to the multi-modes oscillation in the resonator. The beam quality will deteriorate with the increase of output power. In this paper, an intra-cavity beam shaper is introduced to actively compensate the thermal lens in the laser resonator. One round trip ABCD matrix of the resonator with an intra-cavity beam shaper and thermal lens is calculated. The design parameters with wide stable zone are concluded through the ABCD matrix. The mode size and stability diagram of the resonator are calculated under different focal length of the thermal lens. The relationship between the adjustment of the intra-cavity beam shaper and the mode size under different thermal lenses are concluded, and general method to actively control the modes contents by adjusting the intra-cavity beam shaper is introduced. The effectiveness and performance of active mode control with the intra-cavity beam shaper are verified by simulations of the output modes of resonators. It shows that the M2 factor is well maintained below 1.6 even the focal length of the thermal lens changes from 5m to 0.5m.

  5. 5.5 W of Diffraction-Limited Green Light Generated by SFG of Tapered Diode Lasers in a Cascade of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Andersen, Peter Eskil

    2015-01-01

    Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems.......Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems....

  6. High-accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N2O5) in an atmospheric simulation chamber using a quantum cascade laser.

    Science.gov (United States)

    Yi, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur, Cecile; Cassez, Andy; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2017-12-04

    A spectroscopic instrument based on a mid-infrared external cavity quantum cascade laser (EC-QCL) was developed for high-accuracy measurements of dinitrogen pentoxide (N 2 O 5 ) at the ppbv-level. A specific concentration retrieval algorithm was developed to remove, from the broadband absorption spectrum of N 2 O 5 , both etalon fringes resulting from the EC-QCL intrinsic structure and spectral interference lines of H 2 O vapour absorption, which led to a significant improvement in measurement accuracy and detection sensitivity (by a factor of 10), compared to using a traditional algorithm for gas concentration retrieval. The developed EC-QCL-based N 2 O 5 sensing platform was evaluated by real-time tracking N 2 O 5 concentration in its most important nocturnal tropospheric chemical reaction of NO 3 + NO 2 ↔ N 2 O 5 in an atmospheric simulation chamber. Based on an optical absorption path-length of L eff = 70 m, a minimum detection limit of 15 ppbv was achieved with a 25 s integration time and it was down to 3 ppbv in 400 s. The equilibrium rate constant K eq involved in the above chemical reaction was determined with direct concentration measurements using the developed EC-QCL sensing platform, which was in good agreement with the theoretical value deduced from a referenced empirical formula under well controlled experimental conditions. The present work demonstrates the potential and the unique advantage of the use of a modern external cavity quantum cascade laser for applications in direct quantitative measurement of broadband absorption of key molecular species involved in chemical kinetic and climate-change related tropospheric chemistry.

  7. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  8. Quantum Cascade Lasers (QCLs) for standoff explosives detection : LDRD 138733 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Lisa Anne; Linker, Kevin Lane

    2009-09-01

    Continued acts of terrorism using explosive materials throughout the world have led to great interest in explosives detection technology, especially technologies that have a potential for remote or standoff detection. This LDRD was undertaken to investigate the benefit of the possible use of quantum cascade lasers (QCLs) in standoff explosives detection equipment. Standoff detection of explosives is currently one of the most difficult problems facing the explosives detection community. Increased domestic and troop security could be achieved through the remote detection of explosives. An effective remote or standoff explosives detection capability would save lives and prevent losses of mission-critical resources by increasing the distance between the explosives and the intended targets and/or security forces. Many sectors of the US government are urgently attempting to obtain useful equipment to deploy to our troops currently serving in hostile environments. This LDRD was undertaken to investigate the potential benefits of utilizing quantum cascade lasers (QCLs) in standoff detection systems. This report documents the potential opportunities that Sandia National Laboratories can contribute to the field of QCL development. The following is a list of areas where SNL can contribute: (1) Determine optimal wavelengths for standoff explosives detection utilizing QCLs; (2) Optimize the photon collection and detection efficiency of a detection system for optical spectroscopy; (3) Develop QCLs with broader wavelength tunability (current technology is a 10% change in wavelength) while maintaining high efficiency; (4) Perform system engineering in the design of a complete detection system and not just the laser head; and (5) Perform real-world testing with explosive materials with commercial prototype detection systems.

  9. Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers

    Science.gov (United States)

    Choa, Fow-Sen

    2013-12-01

    Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.

  10. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    CERN Document Server

    Lettry, Jacques; Köster, U; Georg, U; Jonsson, O; Marzari, S; Fedosseev, V

    2003-01-01

    The chemical selectivity of the target and ion-source production system is an asset for Radioactive Ion-Beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps Ionization has such selectivity. However, the selectivity of the ISOLDE Resonant Ionization Laser Ion-Source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion bunch sometimes spreads over more than 1...

  11. Successful development of innovative fabrication technique based on laser welding, for superconducting RF cavities - results and path ahead

    International Nuclear Information System (INIS)

    Khare, Prashant; Upadhyay, B.N.; Dwivedi, Jishnu

    2013-01-01

    Superconducting radio frequency (SCRF) cavities are the heart of any particle accelerator based on SCRF technology. All over the world, efforts are being made to develop a technique which can bring down the cost and time of fabrication of these cavities. The present day fabrication method of SCRF cavities uses Electron beam welding (EBW) technique. The cavities fabricated by this method turn out to be expensive and take long fabrication time. To overcome such difficulties related with EBW process, an innovative concept for fabrication of SCRF cavities based on laser welding was formulated at RRCAT. International patent application was immediately launched for this work, to protect intellectual property rights of DAE

  12. Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation

    Directory of Open Access Journals (Sweden)

    D. Reschke

    2010-07-01

    Full Text Available The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY. The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semiautomated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational.

  13. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tronciu, V Z; Mirasso, Claudio R; Colet, Pere [Instituto de Fisica Interdisciplinar y Sistemas Complejos (IFISC) CSIC-UIB, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)], E-mail: vasile@ifisc.uib.es

    2008-08-14

    We report the results of numerical investigations of the dynamical behaviour of an integrated device composed of a semiconductor laser and a double cavity that provides optical feedback. Due to the influence of the feedback, under the appropriate conditions, the system displays chaotic behaviour appropriate for chaos-based communications. The optimal conditions for chaos generation are identified. It is found that the double cavity feedback requires lower feedback strengths for developing high complexity chaos when compared with a single cavity. The synchronization of two unidirectional coupled (master-slave) systems and the influence of parameters mismatch on the synchronization quality are also studied. Finally, examples of message encoding and decoding are presented and discussed.

  14. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...

  15. Step-Tapered Active-Region Mid-Infrared Quantum Cascade Lasers and Novel Fabrication Processes for Buried Heterostructures

    Science.gov (United States)

    2015-07-28

    and InAs/ AlSb /GaSb (or InAs/ AlSb /InAs) [19], since large conduction-band discontinuity is required to prevent electrons in the upper lasing state...lasers operating up to 400 K”, Appl. Phys. Lett., 97, 031108 (2010). [19] A. N. Baranov and R. Teissier. “Quantum cascade lasers in the InAs/ AlSb material

  16. Transverse mode tailoring in diode lasers based on coupled large optical cavities

    Science.gov (United States)

    Gordeev, N. Yu; Maximov, M. V.; E Zhukov, A.

    2017-08-01

    The key principles of transverse mode engineering in edge-emitting lasers with broadened waveguides based on coupled large optical cavity (CLOC) structures are presented. The CLOC laser design is shown to be an effective approach for reducing the optical loss, broadening the waveguide, and lowering the beam divergence. Having simulated the sensitivity of the CLOC design to variations in layer thicknesses and compositions we have shown its high robustness. Advanced versions of the CLOC laser structures having two extra passive waveguides have been treated and shown to effectively eliminate several transverse modes. We have considered an application of the CLOC concept for waveguides with shifted active regions aimed at reducing laser thermal and electric resistances.

  17. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    Science.gov (United States)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  18. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity

    Science.gov (United States)

    Zou, Feng; Wang, Zhaokun; Wang, Ziwei; Bai, Yang; Li, Qiurui; Zhou, Jun

    2017-07-01

    We present a widely tunable all-fiber mode-locked laser based on semiconductor saturable absorber mirror (SESAM) with a linear cavity design. An easy-to-use tunable bandpass filter based on thin film cavity technology is employed to tune the wavelength. By tuning the filter and adjusting the polarization controller, mode-locked operation can be achieved over the range of 1023 nm-1060 nm. With the polarization controller settled, mode-locked operation can be preserved and the wavelength can be continuously tuned from 1030 nm to 1053 nm. At 1030 nm, the laser delivers 9.6 mw average output power with 15.4 ps 10.96 MHz pulses at fundamental mode-locked operation.

  19. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space.

    Science.gov (United States)

    Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Schiemangk, Max; Sahm, Alexander; Wicht, Andreas; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2014-04-07

    We present a micro-integrated, extended cavity diode laser module for space-based experiments on potassium Bose-Einstein condensates and atom interferometry. The module emits at the wavelength of the potassium D2-line at 766.7 nm and provides 27.5 GHz of continuous tunability. It features sub-100 kHz short term (100 μs) emission linewidth. To qualify the extended cavity diode laser module for quantum optics experiments in space, vibration tests (8.1 g(RMS) and 21.4 g(RMS)) and mechanical shock tests (1500 g) were carried out. No degradation of the electro-optical performance was observed.

  20. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  1. Three-dimensional laser anemometer measurements in a linear turbine vane cascade

    Science.gov (United States)

    Zimmerman, D. R.

    Laser anemometer (LDA) measurements are presented which were made in a transparent test-section containing a linear cascade of four C3X turbine vanes. The velocity components corresponding to the 'axial' and 'circumferential' components were measured with the 0.4880 (blue) and 0.4765 micrometer (violet) wavelengths from an argon-ion laser. The blue and violet beams were transmitted through the transparent sidewalls. The 'radial' velocity component was measured with the 0.5145 micrometer (green) wavelength from the same laser. The green beams, aimed downstream through the inlet, were brought into position with a fiber optic cable and an optical train identical to the blue and violet optics. The three-color, six-beam, mutually-orthogonal LDA was brought to a common focal point. The optics were fixed in space and the test section was mounted on a milling machine. The data acquisition by three photomultipliers and three frequency counters was controlled by a coincidence timer and a microcomputer.

  2. Quantum-cascade lasers with emission wavelength 3-5 μm

    Science.gov (United States)

    Masselink, W. T.; Semtsiv, M. P.

    2010-10-01

    Quantum-cascade lasers (QCLs) operating in the 3-5 μm spectral region are increasingly finding application in a number of areas including gas sensing for both environmental and medical uses, communication, and infrared countermeasures. QCLs emitting at wavelengths near 4 μm and below have been especially challenging, requiring a very large conduction band discontinuity, a small electron effective mass, but also a relatively mature materials system. The focus of this contribution is on our own QCL designs based on the use of strain compensation with very high levels of strain in the individual layers; barriers based on AlAs, wells on In0.73Ga0.27As, and the entire structure on average lattice-matched to InP. For more flexibility to control both strain and conduction band potential, "composite barriers" are used, composed of AlAs and Al0.5In0.5As. Indirect valleys within the well material that can limit the photon energy to the energy difference between these valleys and the lower laser state are also pushed to higher energy by using strained In0.73Ga0.27As wells. Combining these design components, we have produced QCLs emitting at wavelengths covering the entire range down to 3 μm. These lasers have demonstrated high power in narrow stripes at cryogenic as well as room temperatures together with excellent beam quality.

  3. Laser anemometer measurements and computations in an annular cascade of high turning core turbine vanes

    Science.gov (United States)

    Goldman, Louis J.; Seasholtz, Richard G.

    1992-01-01

    An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes designed for a high bypass ratio engine. These vanes were based on a redesign of the first-stage stator, of a two-stage turbine, that produced 75 degrees of flow turning. Tests were conducted on a 0.771 scale model of the engine size stator. The advanced LA fringe system was designed to employ thinner than usual laser beams resulting in a 50-micron-diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained both upstream, within, and downstream of the stator vane row at the design exit critical velocity ratio of 0.896 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible with calculations from a 3-D inviscid flow analysis. The data are presented in both graphic and tabulated form so that they may be readily used to compare against other turbomachinery computations.

  4. Passive mode locking in a multisegment laser diode with an external cavity

    International Nuclear Information System (INIS)

    Andreeva, E V; Magnitskiy, Sergey A; Koroteev, Nikolai I; Salik, E; Feinberg, J; Starodubov, D S; Shramenko, M V; Yakubovich, S D

    1999-01-01

    The structure and operating conditions of multisegment laser (GaAl)As diodes with passive locking of the modes of an external cavity (bulk and fibre) were optimised. Regular trains of optical single pulses of picosecond duration were generated in a spectral range 850 - 860 nm. The peak power of these pulses was several watts and the repetition rate was near 1 GHz. Under certain conditions these output pulses were linearly chirped, i.e. they were suitable for subpicosecond time compression. Laboratory prototypes were made of miniature light-emitting modules with these characteristics. (lasers)

  5. Edge-emitting lasers based on coupled large optical cavity with high beam stability

    Science.gov (United States)

    Serin, A.; Gordeev, N.; Payusov, A.; Shernyakov, Y.; Kalyuzhnyy, y.; Mintairov, S.; Maximov, M.

    2017-11-01

    In this paper we present a study on temperature and current stability of far-field patterns of lasers based on the coupled large optical cavity (CLOC) concept. Previously it has been shown that the CLOC structures allows effective suppressing of high-order mode lasing in broadened waveguides. For the first time we report on transverse single-mode emission from the CLOC lasers with 4.8 μm thick waveguide. Using broadened waveguide allowed us to reduce the divergence of the far-field patterns down to 14° in continuous-wave (CW) regime. Far-field patterns proved to be insensitive to current and temperature changes.

  6. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  7. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    of the mode selection properties of the new structure is rigorously analyzed and compared to other structures reported in the literature. The possibility of engineering the emission shape while retaining strong single mode operation is highly desirable for low-cost mid-range optical interconnects applications......A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  8. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    . By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective...... solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm...

  9. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small......-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain...

  10. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form......-factor, mechanical stability and low cost when combined with a monolithically integrated photodiode detector....

  11. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3...

  12. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    NARCIS (Netherlands)

    Kloosterman, J.L.; Hayton, D.J.; Ren, Y.; Kao, T.Y.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Hu, Q.; Walker, C.K.; Reno, J.L.

    2013-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448?THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741?THz. A quasi-optical, superconducting NbN

  13. Numerical study of base effects on population inversion in DF chemical laser cavity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sung; Baek, Seung Wook [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Division of Aerospace Engineering, Department of Mechanical Engineering

    2006-10-15

    Nowadays a chemical laser is globally studied and examined as a means of new high strategic weapon system or industrial equipment system. Different from the other laser systems, the chemical laser system has a great advantage in that a high power laser beam with megawatt range can be easily generated. In order to do that, the chemical laser system employs a supersonic mixing and chemical reaction in the cavity. In the DF chemical laser system, F atom as an oxidant and D{sub 2} molecule as a fuel are injected and reacted so that the DF excited molecules are produced. These phenomena occur in a non-equilibrium state. The excited molecules are degenerated into the lower level energy states so as to generate the laser beam by means of the stimulated emission. Therefore, more excited molecules in higher energy level are desirable in order to generate a higher power laser beam by controlling a flow mixing and chemical reaction in the cavity. There are a lot of factors that may affect mixing and chemical reaction in producing excited molecules. Usually, the chemical laser system adopts a diffusion type of injection system with base. Thereby, a recirculation zone is formed behind the base which determines characteristics of mixing and chemical reaction. In this study, the effects of base height on the population inversion, that is one of the most important aspects in the chemical laser system, are numerically investigated. The results are discussed by considering three base heights of 0.4, 0.8 and 1.6mm. Major results reveal that a transition of DF(1)-DF(0) as one of population inversions takes place in the whole range of cavity while its value decreases as the base height increases. On the contrary, the region over which the transitions of DF(2)-DF(1) and DF(3)-DF(2) occur, increases as the base height increases, while so does its value. Therefore, as the base height decreases, the maximum small signal gain (SSG) becomes higher in the v{sub 1-0} transition, whereas it

  14. 186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design

    Science.gov (United States)

    Kumar, Sushil; Hu, Qing; Reno, John L.

    2009-01-01

    Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.

  15. Polarization-independent gain in mid-infrared interband cascade lasers

    Directory of Open Access Journals (Sweden)

    K. Ryczko

    2016-11-01

    Full Text Available We have calculated the gain function of a type-II W-design AlSb/InAs/GaAsSb/InAs/AlSb quantum wells to be used in an active region of interband cascade lasers, for two linear polarizations of in-plane propagating light: transverse-electric and transverse-magnetic. The effect of external electric field, imitating the conditions in a working device, has also been taken into account. We have proposed an active region design suitable for practical realization of mid-infrared lasing devices with controllable polarization properties. We have also demonstrated a way to achieve polarization-independent gain in mid-infrared emitters, which has not been reported so far.

  16. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    International Nuclear Information System (INIS)

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A.; Teissier, R.; Baranov, A. N.; Magen, C.

    2014-01-01

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences

  17. Elastic strains at interfaces in InAs/AlSb multilayer structures for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, J.; Gatel, Ch.; Warot-Fonrose, B.; Ponchet, A. [CEMES CNRS-UPR 8011, Université de Toulouse, 31055 Toulouse (France); Teissier, R.; Baranov, A. N. [IES CNRS-UMR 5214, 34095 Montpellier (France); Magen, C. [INA-Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2014-01-20

    InAs/AlSb multilayers similar to those used in quantum cascade lasers have been grown by molecular beam epitaxy on (001) InAs substrates. Elastic strain is investigated by high resolution transmission electron microscopy. Thin interfacial regions with lattice distortions significantly different from the strain of the AlSb layers themselves are revealed from the geometrical phase analysis. Strain profiles are qualitatively compared to the chemical contrast of high angle annular dark field images obtained by scanning transmission electron microscopy. The strain and chemical profiles are correlated with the growth sequences used to form the interfaces. Tensile strained AlAs-like interfaces tend to form predominantly due to the high thermal stability of AlAs. Strongly asymmetric interfaces, AlAs-rich and (Al, In)Sb, respectively, can also be achieved by using appropriate growth sequences.

  18. High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links.

    Science.gov (United States)

    Lee, Jin Hyoung; Shubin, Ivan; Yao, Jin; Bickford, Justin; Luo, Ying; Lin, Shiyun; Djordjevic, Stevan S; Thacker, Hiren D; Cunningham, John E; Raj, Kannan; Zheng, Xuezhe; Krishnamoorthy, Ashok V

    2014-04-07

    A highly efficient silicon (Si) hybrid external cavity laser with a wavelength tunable ring reflector is fabricated on a complementary metal-oxide semiconductor (CMOS)-compatible Si-on-insulator (SOI) platform and experimental results with high output power are demonstrated. A III-V semiconductor gain chip is edge-coupled into a SOI cavity chip through a SiN(x) spot size converter and Si grating couplers are incorporated to enable wafer-scale characterization. The laser output power reaches 20 mW and the highest wall-plug efficiency of 7.8% is measured at 17.3 mW in un-cooled condition. The laser wavelength tuning ranges are 8 nm for the single ring reflector cavity and 35 nm for the vernier ring reflector cavity, respectively. The Si hybrid laser is a promising light source for energy-efficient Si CMOS photonic links.

  19. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  20. Fundamental transverse mode selection and self-stabilization in large optical cavity diode lasers under high injection current densities

    Science.gov (United States)

    Avrutin, Eugene A.; Ryvkin, Boris S.; Payusov, Alexey S.; Serin, Artem A.; Gordeev, Nikita Yu

    2015-11-01

    It is shown that in high-power, large optical cavity laser diodes at high injection currents, the optical losses due to nonuniform carrier accumulation in the optical confinement layer can ensure the laser operation in the fundamental transverse mode. An experimental demonstration of switching from second order mode to fundamental mode in large optical cavity lasers with current and/or temperature increase is reported and explained, with the calculated values for the switching current and temperature in good agreement with the measurements. The results experimentally prove the nonuniform nature of carrier accumulation in the confinement layer and may aid laser design for optimizing the output.

  1. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter

    International Nuclear Information System (INIS)

    Song, Rui; Chen, Hong-Wei; Chen, Sheng-Ping; Hou, Jing; Lu, Qi-Sheng

    2011-01-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked fiber laser with a long cavity length over 700 m is demonstrated. A band pass filter is inserted into the laser cavity to stabilize the lasing wavelength. Some interesting phenomena are observed and discussed. The central wavelength, repetition rate, average power and single pulse energy of the laser are 1064 nm, 281.5 kHz, 11 mW and 39 nJ, respectively. The laser operates stably without Q-switching instabilities, which greatly reduces the damage opportunities of the SESAM

  2. Whispering-gallery-mode laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry.

    Science.gov (United States)

    Zhao, Gang; Hausmaninger, Thomas; Ma, Weiguang; Axner, Ove

    2017-08-15

    The whispering-gallery-mode (WGM) laser is a type of laser that has an exceptionally narrow linewidth. Noise-immune cavity-enhanced optical heterodyne molecular spectrometry, which is a detection technique with extraordinary properties that benefit from narrow linewidth lasers, has been realized with a WGM laser. By locking to a cavity with a finesse of 55 000, acetylene and carbon dioxide could be simultaneously detected down to an unprecedented noise equivalent absorption per unit length of 6.6×10 -14   cm -1 over 150 s, corresponding to 5 ppt of C 2 H 2 .

  3. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  4. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector.

    Science.gov (United States)

    Lee, Seung-Min; Gong, Su-Hyun; Kang, Jin-Ho; Ebaid, Mohamed; Ryu, Sang-Wan; Cho, Yong-Hoon

    2015-05-04

    Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices.

  5. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers

    International Nuclear Information System (INIS)

    Yamanishi, Masamichi; Hirohata, Tooru; Hayashi, Syohei; Fujita, Kazuue; Tanaka, Kazunori

    2014-01-01

    Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the present model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz

  6. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  7. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  8. The effect of Er, Cr:YSGG laser irradiation on the apical leakage of retrograde cavity

    Science.gov (United States)

    Asnaashari, Mohammad; Fekrazad, Reza; Dehghan Menshadi, Fatemeh; Seifi, Massoud

    2009-01-01

    INTRODUCTION: Controversial results have been reported when organic acids, ultrasonic instruments and laser techniques were used to remove smear layer in endodontic treatments. The aim of this study was to evaluate the effect of removing debris and smear layer by Er,Cr:YSGG laser irradiation on the apical leakage of retrograde cavities. MATERIALS AND METHODS: In this ex vivo study, 24 extracted mandibular single-rooted teeth were selected and instrumented up to K-file size #35. Approximately 3 mm of root apices were dissected perpendicular to the root’s long axis. Retrograde cavities with 3 mm depth were prepared and the teeth were randomly assigned to two groups. In one group, the retrograde cavities were filled with amalgam and in the other group, the dentinal surface of the retrograde cavities were lased with Er,Cr:YSGG laser (2W, 15 seconds, G4 tip). The cavities were filled with amalgam; all tooth surfaces except for dissected outsides were covered with blue wax. Then the teeth were immersed in 2% methylene blue dye for 48 hours. The amount of dye penetration into sagittal sections was measured by stereomicroscope at ×20 magnification by two independent observers who were blinded to the experiment. Data were statistically analyzed using student t-test. RESULTS: This study demonstrated that dye penetration was 0.8 mm (±0.53) in the lased and 0.97 mm (±0.54) in the non-lased group. It showed that, Er,Cr:YSGG laser can remove the debris and smear layer and consequently reduces the amount of dye penetration, although, the difference between the two groups was not statistically significant. CONCLUSION: This study showed that dye penetration was less in lased group because of the better seal of the dissected surface due to the better removal of the debris and smear layer by laser; further investigations are recommended in this field. [Iranian Endodontic Journal 2009;4(4):144-8] PMID:24019836

  9. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation

    Directory of Open Access Journals (Sweden)

    Rösch Markus

    2018-01-01

    Full Text Available We report on a heterogeneous active region design for terahertz quantum cascade laser based frequency combs. Dynamic range, spectral bandwidth and output power have been significantly improved with respect to previous designs. When individually operating the lasers, narrow and stable intermode beatnote indicate frequency comb operation up to a spectral bandwidth of 1.1 THz, while in a dispersion-dominated regime a bandwidth up to 1.94 THz at a center frequency of 3 THz can be reached. A self-detected dual-comb setup has been used to verify the frequency comb nature of the lasers.

  10. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method.

    Science.gov (United States)

    Feng, Ting; Ding, Dongliang; Yan, Fengping; Zhao, Ziwei; Su, Hongxin; Yao, X Steve

    2016-08-22

    High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

  11. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    Science.gov (United States)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  12. Sensitive detection of acrolein and acrylonitrile with a pulsed quantum-cascade laser

    Science.gov (United States)

    Manne, J.; Lim, A.; Tulip, J.; Jäger, W.

    2012-05-01

    We report on spectroscopic measurements of acrolein and acrylonitrile at atmospheric pressure using a pulsed distributed feedback quantum-cascade laser in combination with intra- and inter-pulse techniques and compare the results. The measurements were done in the frequency region around 957 cm-1. In the inter-pulse technique, the laser is excited with short current pulses (5-10 ns), and the pulse amplitude is modulated with an external current ramp resulting in a ˜2.3 cm-1 frequency scan. In the intra-pulse technique, a linear frequency down-chirp during the pulse is used for sweeping across the absorption line. Long current pulses up to 500 ns were used for these measurements which resulted in a spectral window of ˜2.2 cm-1 during the down-chirp. These comparatively wide spectral windows facilitated the measurements of the relatively broad absorption lines (˜1 cm-1) of acrolein and acrylonitrile. The use of a room-temperature mercury-cadmium-telluride detector resulted in a completely cryogen-free spectrometer. We demonstrate ppb level detection limits within a data acquisition time of ˜10 s with these methodologies.

  13. Deformable mirrors for intra-cavity use in high-power thin-disk lasers.

    Science.gov (United States)

    Piehler, Stefan; Dietrich, Tom; Wittmüss, Philipp; Sawodny, Oliver; Ahmed, Marwan Abdou; Graf, Thomas

    2017-02-20

    We present deformable mirrors for the intra-cavity use in high-power thin-disk laser resonators. The refractive power of these mirrors is continuously adaptable from -0.7 m-1 to 0.3 m-1, corresponding to radii of curvature ranging between 2.86 m (convex) and 6.67 m (concave). The optimized shape of the mirror membrane enables a very low peak-to-valley deviation from a paraboloid deformation over a large area. With the optical performance of our mirrors being equal to that of standard HR mirrors, we were able to demonstrate the tuning of the beam quality of a thin-disk laser in a range of M2 = 3 to M2 = 1 during laser operation at output powers as high as 1.1 kW.

  14. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  15. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  16. Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics

    International Nuclear Information System (INIS)

    Torcini, Alessandro; Barland, Stephane; Giacomelli, Giovanni; Marin, Francesco

    2006-01-01

    The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realistic values of the linewidth enhancement factor α, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high α values

  17. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel

    2008-07-21

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10{sup -4} in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  18. Successful development of world's first laser welded SCRF cavity at RRCAT technique and advantages

    International Nuclear Information System (INIS)

    Khare, Prashant A.; Upadhyay, Brahmanand; Ghosh, Rupul

    2015-01-01

    A novel technique to fabricate Superconducting Radio Frequency (SCRF) cavities with the help of laser welding process without using vacuum environment has been developed for the first time in the world, at RRCAT , Indore, Department of Atomic Energy. The first cavity was fabricated and tested to give an accelerating gradient of 31.6 MV/m with quality factor of 1 x 1010 at 2K. This performance matches with internationally accepted performance levels expected from a well fabricated SCRF cavity. This technique has advantages like 25 times lower capital cost and very significantly lower operating cost.The paper describes the technique and advantages associated with this technique. In this technique, a pulsed Nd:YAG laser was used and high purity argon environment (less than 3 ppm), is maintained during welding. A multi-cell (5-cell), 1.3 GHz SCRF cavity has now been fabricated using this technique. This is the first multi-cell cavity which has been fabricated completely by laser welding technique at RRCAT. The advantages of this fabrication technique are numerous, such as, reduced fabrication cost, small Heat affected zone (HAZ), no necessity of high vacuum etc. and hence is highly suitable for large scale production of cavities. This paper also describes the technique, method of fabrication and experience in fabrication of multi-cell cavity by laser welding route. (author)

  19. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  20. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  1. Intersubband spontaneous emission from GaN-based THz quantum cascade laser

    Science.gov (United States)

    Terashima, W.; Hirayama, H.

    2013-03-01

    We studied on terahertz-quantum cascade lasers (THz-QCLs) using III-Nitride semiconductors, which are promising materials for the realization of the unexplored frequency range from 5 to 12 THz and the higher temperature operation on THz-QCLs, because these compounds have much larger longitudinal optical phonon energies (> 18 THz) than those of conventional GaAs-based materials (~ 9 THz). Firstly, we showed clearly that it is possible to design a GaN-based quantum cascade (QC) structure which operates in the THz range in which population inversion can be obtained, by performing numerical calculations based on a self-consistent rate equation model. Secondly, we succeeded in the stack of QC structure with a large number of periods and the drastic improvement of structural properties of QC structure, by introducing a new growth technique named "a droplet elimination by thermal annealing (DETA)" in which utilized the differences of the properties between metals (Al, Ga) and Nitrides (AlN, GaN) into molecular beam epitaxy. Finally, we for the first time successfully observed spontaneous electroluminescence due to intersubband transitions with peaks at frequencies from 1.4 to 2.8 THz from GaN/AlGaN QCL devices fabricated with using the DETA technique grown on a GaN substrate and a metal organic chemical vapor deposition (MOCVD)-AlN template on a sapphire substrate. In this paper, we demonstrate recent achievements on the quantum design, fabrication technique, and electroluminescence properties of GaN-based QCL structures.

  2. Displacement sensor based on intra-cavity tuning of dual-frequency gas laser

    Science.gov (United States)

    Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang

    2018-01-01

    A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.

  3. Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser

    Science.gov (United States)

    Hsu, L.; Chi, L. C.; Wang, S. C.; Pan, Ci-Ling

    1999-09-01

    We show a unique dual-wavelength external-cavity laser diode with frequency tracking capability and obtain a stable beat frequency between the dual-wavelength output. By using a Fabry-Perot interferometer as the frequency discriminator and the time-gating technique in a servo loop, the peak-to-peak frequency fluctuations were stabilized, with respect to the Fabry-Perot cavity, to 86 kHz in the dual-wavelength output at 802.5 and 804.5 nm, and to 17 kHz in their 0.9 THz beat signal. Similar performance was achieved for tuning of the dual wavelength separation ranging from 0.2 to 4 nm.

  4. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  5. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.

    Science.gov (United States)

    Zhu, X; Cassidy, D T

    1996-08-20

    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  6. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL)

    Science.gov (United States)

    McInerney, John G.

    2016-03-01

    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  7. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten

    2008-07-01

    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  8. High Power Optical Cavity Design and Concept of Operations for a Shipboard Free Electron Laser Weapon System

    Science.gov (United States)

    2003-12-01

    CAVITY DESIGN AND CONCEPT OF OPERATIONS FOR A SHIPBOARD FREE ELECTRON LASER WEAPON SYSTEM by Timothy S. Fontana December 2003 Thesis...Free Electron Laser Weapon System 6. AUTHOR(S) LT Timothy S. Fontana, USN 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...OPERATIONS FOR A SHIPBOARD FREE ELECTRON LASER WEAPON SYSTEM Timothy S. Fontana Lieutenant, United States Navy B.S., United States Naval Academy

  9. A low-temperature external cavity diode laser for broad wavelength tuning

    Science.gov (United States)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  10. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  11. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  12. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-01-01

    Roč. 16, č. 9 (2016), 1428:1-11 ISSN 1424-8220 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fabry-Perot cavity * unbalance Michelson interferometer * noise suppression * heterodyne interferometry * displacement measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.677, year: 2016

  13. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasma interaction

    Science.gov (United States)

    Feng, Q. S.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; Cao, L. H.; He, X. T.

    2017-07-01

    Anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascades have been researched using the Vlasov-Maxwell simulation. In high-intensity laser-plasma interactions, stimulated anti-Stokes Brillouin scattering (SABS) will occur after second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early phase of SBS evolution, only first stage SBS appears and total SBS reflectivity comes from first stage SBS. However, when high-stage SBS and SABS occur, SBS reflectivity will display burst behavior and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, SBS rescattering including SABS is an important saturation mechanism of SBS and should be taken into account in high-intensity laser-plasma interaction.

  14. Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.; Glinskiy, I. A.; Zenchenko, N. V.; Ponomarev, D. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Zaycev, A. A. [National Research University of Electronic Technology (MIET) (Russian Federation); Zubov, F. I.; Zhukov, A. E.; Cirlin, G. E.; Alferov, Zh. I. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)

    2017-04-15

    The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of the laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.

  15. Three component laser anemometer measurements in an annular cascade of core turbine vanes with contoured end wall

    Science.gov (United States)

    Goldman, Louis J.; Seasholtz, Richard G.

    1988-01-01

    The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.

  16. Functional model for gas sensing based on quantum cascade lasers; Funktionsmuster zur Gasdetektion auf Basis von Quantenkaskadenlasern

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, T.; Rohr, J. [m.u.t. GmbH, Wedel (Germany)

    2005-06-01

    Quantum cascade lasers represent an almost ideal light source for infrared gas analysis. They allow sensitive and selective measurements in the mid-infrared. The detection of combustion gases for early fire detection represents an interesting field of application, where further technologic benefits are shown to advantage. The focus of this report is on the technical realization of a functional model and the electronic components. (orig.)

  17. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  18. Recent progress toward realizing GaN-based THz quantum cascade laser

    Science.gov (United States)

    Hirayama, H.; Terashima, W.

    2013-12-01

    We are studying on terahertz-quantum cascade lasers (THz-QCLs) using III-nitride semiconductor, which is a material having potentials for realizing wide frequency range of QCL, i.e., 1-15 THz and 1-10 μm, including an unexplored terahertz frequency range from 5 to 12 THz. GaN-based QCLs also have potential to realize room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor in comparison with GaAs or InP is that it has much higher longitudinal optical phonon energies (ELO) (> 90meV) than those of conventional GaAs-based materials (~ 36 meV). We designed a GaN/AlGaN QCL that can operates in THz frequency range, and fabricated the GaN/AlGaN QCL devices by using molecular beam epitaxy (MBE). We demonstrated dramatic improvement of structural properties of QC stacking layers by introducing a novel growth technique "a droplet elimination by thermal annealing (DETA) method". We have observed inter-subband spontaneous emissions under current injection with peak frequencies from 1.4 to 2.8 THz from GaN/AlGaN QCL devices. The intensity of the emission was much improved by fabricating them on a low threading dislocation density (TDD) AlN/AlGaN template prepared by metal-organic chemical-vapor epitaxy (MOCVD) on a sapphire substrate.

  19. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers

    Science.gov (United States)

    Westberg, J.; Sterczewski, L. A.; Wysocki, G.

    2017-04-01

    Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.

  20. Room temperature negative differential resistance in terahertz quantum cascade laser structures

    Energy Technology Data Exchange (ETDEWEB)

    Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing [Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Reno, John L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, MS 1303, Albuquerque, New Mexico 87185-1303 (United States)

    2016-08-22

    The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding, we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.

  1. A Noninvasive In Vivo Glucose Sensor Based on Mid-Infrared Quantum Cascade Laser Spectroscopy

    Science.gov (United States)

    Werth, Alexandra; Liakat, Sabbir; Xu, Laura; Gmachl, Claire

    Diabetes affects over 387 million people worldwide; a number which grows every year. The most common method of measuring blood glucose concentration involves a finger prick which for some can be a harrowing process. Therefore, a portable, accurate, noninvasive glucose sensor can significantly improve the quality of life for many of these diabetics who draw blood multiple times a day to monitor their glucose levels. We have implemented a noninvasive, mobile glucose sensor using a mid-infrared (MIR) quantum cascade laser (QCL), integrating sphere, and thermal electrically (TE) cooled detector. The QCL is scanned from 8 - 10 microns wavelength over which are distinct absorption features of glucose molecules with little competition of absorption from other molecules found in the blood and interstitial fluid. The obtained absorption spectra are analyzed using a neural network algorithm which relates the small changes in absorption to the changing glucose concentration. The integrating sphere has increased the signal-to-noise ratio from a previous design, allowing us to use the TE-cooled detector which increases mobility without loss of accuracy.

  2. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    Science.gov (United States)

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  3. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    Olafur Jonasson

    2016-06-01

    Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.

  4. Development of a Multi-Objective Evolutionary Algorithm for Strain-Enhanced Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    David Mueller

    2016-07-01

    Full Text Available An automated design approach using an evolutionary algorithm for the development of quantum cascade lasers (QCLs is presented. Our algorithmic approach merges computational intelligence techniques with the physics of device structures, representing a design methodology that reduces experimental effort and costs. The algorithm was developed to produce QCLs with a three-well, diagonal-transition active region and a five-well injector region. Specifically, we applied this technique to Al x Ga 1 - x As/In y Ga 1 - y As strained active region designs. The algorithmic approach is a non-dominated sorting method using four aggregate objectives: target wavelength, population inversion via longitudinal-optical (LO phonon extraction, injector level coupling, and an optical gain metric. Analysis indicates that the most plausible device candidates are a result of the optical gain metric and a total aggregate of all objectives. However, design limitations exist in many of the resulting candidates, indicating need for additional objective criteria and parameter limits to improve the application of this and other evolutionary algorithm methods.

  5. Genetic algorithm applied to the optimization of quantum cascade lasers with second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Gajić, A. [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Telekom Srbija, a.d., Takovska 2, 11000 Belgrade (Serbia); Radovanović, J., E-mail: radovanovic@etf.bg.ac.rs; Milanović, V. [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Indjin, D.; Ikonić, Z. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-02-07

    A computational model for the optimization of the second order optical nonlinearities in GaInAs/AlInAs quantum cascade laser structures is presented. The set of structure parameters that lead to improved device performance was obtained through the implementation of the Genetic Algorithm. In the following step, the linear and second harmonic generation power were calculated by self-consistently solving the system of rate equations for carriers and photons. This rate equation system included both stimulated and simultaneous double photon absorption processes that occur between the levels relevant for second harmonic generation, and material-dependent effective mass, as well as band nonparabolicity, were taken into account. The developed method is general, in the sense that it can be applied to any higher order effect, which requires the photon density equation to be included. Specifically, we have addressed the optimization of the active region of a double quantum well In{sub 0.53}Ga{sub 0.47}As/Al{sub 0.48}In{sub 0.52}As structure and presented its output characteristics.

  6. A field-deployable compound-specific isotope analyzer based on quantum cascade laser and hollow waveguide

    Science.gov (United States)

    Wu, Sheng; Deev, Andrei

    2013-01-01

    A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.

  7. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  8. Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing

    Science.gov (United States)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao

    2018-01-01

    A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.

  9. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  10. Laser frequency stabilization and control of optical cavities with suspended mirrors for the VIRGO interferometric detector of gravitational waves

    International Nuclear Information System (INIS)

    Barsuglia, Matteo

    1999-01-01

    The VIRGO detector is an interferometer with 3 km Fabry-Perot cavities in the arms. It is aimed at the detection of gravitational radiation emitted by astrophysical sources. This thesis comprises two independent parts. The first part is devoted to the laser frequency stabilization. In the second one we present a study of a suspended cavity. We determine the impact of laser frequency fluctuations on the overall VIRGO sensitivity. We study the frequency stabilization of the interferometer considered as an ultra-stable standard and we evaluate the noise pertaining to different signals taken into consideration. A strategy of control is discussed. We then study the VIRGO mode-cleaner prototype, a 30 m suspended triangular cavity, for which we have developed a control in order to keep it locked. Finally, we characterize this cavity in terms of mode spectra, finesse and mechanical transfer functions. (author)

  11. Thermal lensing effects on lateral leakage in GaN-based vertical-cavity surface-emitting laser cavities.

    Science.gov (United States)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Calciati, Marco; Goano, Michele; Haglund, Åsa

    2017-05-01

    Lateral leakage of light has been identified as a detrimental loss source in many suggested and experimentally realized GaN-based VCSELs. In the present work we include thermal effects to realistically account for the substantial Joule heating in these devices. In contrast to what could be expected from the previous results, the induced thermal lensing does not make antiguided cavities more positively guided, so that they approach the unguided regime with extremely high lateral leakage. Rather, thermal lensing strongly suppresses lateral leakage for both antiguided and guided cavities. This is explained in terms of lowered launch of power from the central part of the cavity and/or lower total internal reflection in the peripheral part; the former effect is active in all cavities whereas the latter only contributes to the very strongly reduced leakage in weakly antiguided cavities. Thermal lensing suppresses lateral leakage both for the fundamental and the first higher order mode, but a strong modal discrimination is still achieved for the antiguided cavities. Thus, strongly antiguided cavities could be used to achieve single-mode devices, but at the cost of slightly higher threshold gain and stronger temperature dependent performance characteristics.

  12. Spectrophotometric resonant measurement of wavelength phase dispersion on femtosecond laser cavities and single elements during their fabrication

    Science.gov (United States)

    Bukhshtab, Michael A.

    1996-02-01

    A spectrophotometric reflection technique and measurement results of wavelength phase dispersion on femtosecond laser cavities and distinct elements are reported. In contrast to novel frequency-domain and interferometric Fourier-transform methods, the proposed reflection-based measurement procedure maintains a notably high sensitivity while studying either cavities or single elements. Resolved phase spectrums are evaluated using a standard spectrophotometer with a single-beam reflection attachment.

  13. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most of the c......The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....

  14. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  15. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  16. 5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.; Sigrist, M. W.

    2010-08-01

    Mid-IR tunable VECSELs (Vertical External-Cavity Surface-Emitting Lasers) emitting at 4-7 μm wavelengths and suitable for spectroscopic sensing applications are described. They are realized with lead-chalcogenide (IV-VI) narrow band gap materials. The active part, a single 0.6-2-μm thick PbTe or PbSe gain layer, is grown onto an epitaxial Bragg mirror consisting of two or three Pb1- y Eu y Te/BaF2 quarter-wavelength layer pairs. All layers are deposited by MBE in a single run employing a BaF2 or Si substrate, no further processing is needed. The cavity is completed with an external curved top mirror, which is again realized with an epitaxial Bragg structure. Pumping is performed optically with a 1.5-μm laser. Maximum output power for pulsed operation is currently up to >1 Wp at -173°C and >10 mW at 10°C. In continuous wave (CW) operation, 18 mW at 100 K are reached. Still higher operating temperatures and/or powers are expected with better heat-removal structures and better designs employing QW (Quantum-Wells). Advantages of mid-IR VECSELs compared to edge-emitting lasers are their very good beam quality (circular beam with 15 μm are accessible with Pb1- y X y Z (X=Sr, Eu, Sn, Z=Se, Te) and/or including QW.

  17. New cascade laser transitions in CH2F2 pumped with the 9R32 line of a cw CO2 laser

    International Nuclear Information System (INIS)

    Nieswand, C.

    1991-11-01

    New cascade laser transitions of 12 CH 2 F 2 at 172.50μm, 208.83μm, 220.44μm, 223.99μm,and 250.61μm are reported. A waveguide FIR laser was pumped with a quasi cw 12 C 16 O 2 laser operating on the 9R32 line. Together with the already known lines at 184.3μm, 196.1μm and 235.9μm, the laser lines can be assigned to rotational transitions in the ν 9 vibrational band of 12 CH 2 F 2 and to refill transitions of the vibrational ground state ν 0 . 1 fig., 2 tabs., 6 refs. (author)

  18. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  19. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  20. Volume Bragg grating external cavities for the passive phase locking of high-brightness diode laser arrays: theoretical and experimental study

    DEFF Research Database (Denmark)

    Paboeuf, David; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2011-01-01

    We describe the theoretical modeling of the external-cavity operation of a phase-locked array of diode lasers in two configurations, the self-imaging cavity based on the Talbot effect and the angular-filtering cavity. Complex filtering functions, such as the transmission or reflection of a volume...

  1. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  2. Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100 nJ pulses.

    Science.gov (United States)

    Demirbas, Umit; Hong, Kyung-Han; Fujimoto, James G; Sennaroglu, Alphan; Kärtner, Franz X

    2010-02-15

    We report a low-cost cavity-dumped Cr:colquiriite laser for generating enhanced pulse energies. Four single-mode laser diodes were used to pump a Cr:LiSAF laser, which was mode locked with a semiconductor saturable absorber mirror. Cavity dumping at 10 kHz repetition rate, the laser generated approximately 120 fs pulses at approximately 825 nm, with 112 nJ pulse energies and approximately 0.93 MW of peak power, using only approximately 600 mW of incident pump power. At higher dumping rates of up to 1 MHz, reduced pulse energies of 62 nJ could be generated. Two-photon absorption in the saturable absorber mirror limits pulse durations, while Q-switching instabilities limit pulse energy extraction.

  3. Microleakage of Er:YAG laser and dental bur prepared cavities in primary teeth restored with different adhesive restorative materials.

    Science.gov (United States)

    Baghalian, Ali; Nakhjavani, Yahya B; Hooshmand, Tabassom; Motahhary, Pouria; Bahramian, Hoda

    2013-11-01

    The purpose of this study was to evaluate and compare the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation and conventional dental bur cavity preparation on in vitro microleakage of class V cavities restored with different adhesive restorative materials and two types of self-etching adhesives in primary teeth. Standard class V cavities were prepared on 80 extracted primary, and the teeth were randomly divided into eight subgroups prepared either by dental bur or Er:YAG laser irradiation and then restored with self-cured glass ionomer (GI), resin-modified glass ionomer (RMGI), resin composite and Clearfil SE Bond (two-step self-etching adhesive), and resin composite and Clearfil S3 Bond (one-step self-etching adhesive). Restorations were finished and stored in distilled water at 37 °C for 24 h and then subjected to thermocycling. All the teeth were sealed with nail varnish, placed in a silver nitrate solution, and then vertically cut in a buccolingually direction. Subsequently, the specimens were evaluated for gingival and occlusal microleakage using a stereomicroscope. Data were analyzed using Kruskal-Wallis test followed by Mann-Whitney test. Wilcoxon test was used for comparing occlusal microleakage with gingival microleakage at p laser irradiation resulted in a significantly higher degree of microleakage only at the gingival margins for teeth restored with GI or RMGI, or composite and Clearfil S3 Bond compared with the bur preparation. The Er:YAG laser-prepared teeth restored with composite and Clearfil SE Bond demonstrated a better marginal seal on occlusal and gingival margins compared with that of bur-prepared cavities. The degree of microleakage in class V cavities was affected by the type of adhesive restorative materials, type of self-etching adhesive, cavity margin location, and tooth preparation method either by Er:YAG laser or dental bur.

  4. Marginal microleakage in vitro study on class V cavities prepared with Er:YAG laser and etched with acid or etched with Er:YAG laser and acid

    International Nuclear Information System (INIS)

    Tavares, Henrique Dutra Simoes

    2001-01-01

    Microleakage at the interface between the teeth and the restorative materials remains a problem with composite resin restorations. Microleakage at the gingival margins of class V cavities restorations still challenge as they are usually placed in dentin and/or cementum. Previous studies have shown that the cavity preparation with Er:YAG laser is possible. It has been reported that Er:YAG laser has ability to create irregular surface providing micromechanical retention for adhesive dental restorative materials and to improve marginal sealing. The purpose of this in vitro study was to evaluate the marginal microleakage on class V cavities prepared with Er:YAG laser and etched with acid or with Er:YAG laser and acid, in compared to those prepared and etched conventionally. Thirty human molars were divided into three groups, namely: group I - prepared with Er:YAG laser (KaVo KEY Laser II - Germany) and etched with 37% phosphoric acid; group II - prepared with Er:YAG laser and etched with Er:YAG laser and 37% phosphoric acid; group III (control group) - prepared with high speed drill and etched with 37% phosphoric acid. All cavities were treated with same adhesive system (Single Bond - 3M) and restored with the composite resin (Z100 - 3M), according to the manufacturer's instructions. The specimens were stored at 37 deg C in water for 24 hours, polished with Sof-Lex discs (3M), thermally stressed, sealed with a nail polish coating except for the area of the restoration and 1 mm around it, and immersed in a 50% aqueous solution of silver nitrate for 24 hours. After that, the specimens were rinsed in water, soaked in a photodeveloping solution and exposed to a fluorescent light for 8 hours. The teeth were embedded in an autopolymerizing resin and sectioned longitudinally using a diamond saw microtome under running water. The sections were photographed. The microleakage at the occlusal cavity and at the gingival margins of each specimen was evaluated with scores (0-3) by

  5. Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism

    Science.gov (United States)

    Fördös, T.; Jaffrès, H.; Postava, K.; Seghilani, M. S.; Garnache, A.; Pištora, J.; Drouhin, H. J.

    2017-10-01

    We present a general method for the modeling of semiconductor lasers such as a vertical-cavity surface-emitting laser and a vertical-external-cavity surface-emitting laser containing multiple quantum wells and involving anisotropies that may reveal (i) a local linear birefringence due to the strain field at the surface or (ii) a birefringence in quantum wells due to phase amplitude coupling originating from the reduction of the biaxial D2 d symmetry group to the C2 v symmetry group at the III-V ternary semiconductor interfaces. From a numerical point of view, a scattering S-matrix recursive method is implemented using a gain or amplification tensor derived analytically from the Maxwell-Bloch equations. It enables one to model the properties of the emission (threshold, polarization, and mode splitting) from the laser with multiple quantum well active zones by searching for the resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is presently used for the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments. The method can be generalized to find the laser eigenmodes in the most general case of circular polarized pumps (unbalance between the spin-up and spin-down channels) and/or dichroism allowing an elliptically polarized light emission as recently demonstrated experimentally when the linear birefringence is almost compensated [Joly et al., Opt. Lett. 42, 651 (2017), 10.1364/OL.42.000651].

  6. In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth

    Directory of Open Access Journals (Sweden)

    P.V.M. Uday Mohan

    2016-01-01

    Full Text Available Background: The survival of atraumatic restorative treatment (ART restorations would be enhanced if near total elimination of cariogenic microorganisms could be done in the process of cavity cleaning before placing a restoration. Thus, use of disinfecting agents for achieving this goal could herald a new beginning in the field of contemporary dentistry. Aim: To assess and compare the cavity disinfection efficacy of APF gel, Brazilian Propolis, Diode Laser, and 2% chlorhexidine (CHX. Materials and Methods: The study was a randomized, single blinded, parallel grouped, active controlled trial. Eighty primary molars in 68 children with cavitated dentinal occlusal caries were randomly assigned into four groups (20 teeth each Group I: APF gel; Group II: Propolis; Group III: Diode Laser, and Group IV: 2% CHX (control. After cavity preparation using ART procedure, dentinal samples collected before and after disinfection with respective agent of the group. These samples were subjected to microbiological evaluation, for total viable count (TVC on blood agar, Streptococcus mutans on mutans-sanguis (MS agar, and Lactobacilli (LB on Rogosa agar. Results: Intragroup comparison (Wilcoxon signed rank test showed significant reductions in TVC, MS, and LB counts in all the groups. Pairwise Mann–Whitney test showed APF gel had least bacterial reductions among the agents tested. Conclusion: This study illustrated the need for cavity disinfection. Diode Laser and Brazilian Propolis are equally effective as 2% CHX in cavity disinfection.

  7. Flattop mode shaping of a vertical cavity surface emitting laser using an external-cavity aspheric mirror.

    Science.gov (United States)

    Yang, Zhaohui; Leger, James

    2004-11-01

    Both square-shaped and circular-shaped flattop modes were experimentally demonstrated in extended-cavity broad-area VCSELs using aspheric feedback mirrors. These refractive aspheric mirrors were fabricated by electron-beam lithography on curved substrates. Excellent single-mode operation and improved power extraction efficiency were observed. The three-mirror structure of the VCSEL and the state-of-the-art fabrication of the aspheric mirror contribute to the superior VCSEL performance. The modal loss analysis using a rigid three-mirror-cavity simulation method is discussed.

  8. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    . Though both sides of the grating layer are not surrounded by low refractive-index materials as in high-index-contrast gratings (HCGs), the HG can provide a near-unity reflectivity over a broader wavelength range than HCGs, or work as a resonator with a quality (Q) factor as high as 109. The physics...... behind these reflector and resonator properties are studied thoroughly. A HG structure comprising a III-V cap layer with a gain material and a Si grating layer enables the realization of a compact vertical cavity laser integrated on Si platform, which has a superior thermal property and fabrication......-factor is investigated, which shows that the uncertainty in the Q-factor can be several orders of magnitude larger than the uncertainty in the resonance frequency. Next, the HG is shown to possess a near-unity reflectivity in a broad wavelength range, which can be broader than the HCG, since the cap layer introduces...

  9. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers

    Science.gov (United States)

    Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang

    2018-02-01

    In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).

  10. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering

    Science.gov (United States)

    Qiu, Tiequn; Wu, Jianfeng; Strandjord, Lee K.; Sanders, Glen A.

    2014-05-01

    A bench-top resonator fiber optic gyroscope (RFOG) was assembled and tested, showing encouraging progress toward navigation grade performance. The gyro employed a fiber length of 19 meters of polarizing fiber for the sensing coil which was wound on an 11.5 cm diameter PZT cylinder. A bias stability of approximately 0.1 deg/hr was observed over a 2 hour timeframe, which is the best bias stability reported to date in an RFOG to our knowledge. Special care was taken to minimize laser phase noise, including stabilization to an optical cavity which was also used for optical filtering, giving angle random walk (ARW) values in the range of 0.008 deg/rt-hr. The ARW performance and bias stability are within 2x and 10x, respectively, of many civil inertial navigation grade requirements.

  11. Polarized γ source based on Compton backscattering in a laser cavity

    Directory of Open Access Journals (Sweden)

    V. Yakimenko

    2006-09-01

    Full Text Available We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC, and the Compact Linear Collider (CLIC. This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO_{2} laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  12. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order...... to improve the mode-locking performance, such as reducing the pulsewidth and time-bandwidth product as much as possible. Timing jitter is determined by means of extensive numerical simulations of the model, demontrating that an external modulation is required in order to maintain moderate timing......-jitter and phase-noise levels at low frequencies. The effect of the driving conditions is investigated in order to achieve short pulses and low timing jitter. Our results are in qualitative agreement with reported experiments and predictions obtained from the master equation for mode-locking....

  13. Cavity-augmented frequency tripling of a continuous wave mode-locked laser

    International Nuclear Information System (INIS)

    McConnell, Gail; Ferguson, Allister I.; Langford, Nigel

    2001-01-01

    We present a model and experimental investigation of a singly-resonant optical cavity to enhance the nonlinear conversion efficiency of a continuous wave mode-locked all-solid-state laser source to produce an efficient source of ultraviolet radiation. For input pulses of approximately 33 ps duration at 4.4 ns intervals, our model predicts greater than 30% conversion from fundamental to third harmonic which is particularly attractive for fundamental sources of modest average power. Experimentally, we have achieved overall optical conversion efficiencies from fundamental to third harmonic wavelength typically greater than 11%, compared with less than 0.4% in a single pass geometry. We have measured an average power of 320 mW at λ=355 nm at picosecond pulse duration, which corresponds to a generated third harmonic average power of 0.5 W. (author)

  14. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  15. Scanning electron microscopy evaluation of the interaction pattern between dentin and resin after cavity preparation using Er:YAG laser

    International Nuclear Information System (INIS)

    Schein, Marcelo Thome

    2001-01-01

    The aim of this study was to describe the interaction pattern formed between dentin and resin on cavities prepared with an erbium laser (Er:YAG). The morphological aspect of the irradiated dentin after acid etching was also observed. Ten dentin disks were obtained from fresh extracted third molars. Each disk received two cavities, one prepared with a conventional high-speed drill, while the other cavity was obtained by the use of an Er:YAG laser (KaVo KEY Laser, KaVo Co.). The laser treatment was performed with 250 mJ/pulse, 4 Hz, non contact mode, focused beam, and a fine water mist was used. Five disks were prepared for morphological analysis of the acid etched dentin. The other five disks had their cavities restored with Single Bond (3M) followed by Z100 resin (3M). The specimens were observed under scanning electron microscopy after dentin-resin interface demineralization and deproteinization. It was observed that the morphological characteristics of the acid-etched irradiated dentin were not favorable to the diffusion of monomers through the collagen network. The dentin resin interfacial aspect of irradiated dentin, after acid etching, showed thin tags and scarce hybridization zones, which agreed with the morphology of the irradiated and acid-etched dentin substrate observed. (author)

  16. The effect of an Er,Cr:YSGG laser on external adaptation of healthy and decayed cavities

    Science.gov (United States)

    Kabbach, William; Rodrigues Tonetto, Mateus; Frizzera, Fausto; Zezéll, Denise Maria; Coelho Bandéca, Matheus; Alves Campos, Edson; Henrique Borges, Alvaro; Ferrarezi Andrade, Marcelo

    2014-05-01

    The aim of this study was to evaluate the influence of chlorhexidine and Er,Cr:YSGG laser irradiation on the bond strength and external adaptation in mixed healthy and caries-affected class V cavities before and after thermal cycling. Thirty-six cavity preparations were made in mixed class V buccal human molars, half of them being artificially caries-induced. Any remaining affected dentin was removed from the cavity with a round burr at low speed. The teeth were divided into six groups, according to cleaning agent for both healthy and caries-induced dentin: no treatment, chlorhexidine and erbium, chromium-doped: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation. A Filtek P90 (3M ESPE, St Paul, MN, USA) silorane adhesive restorative system was used. The specimens were subjected to 5000 thermal cycles (5-55 °C 60 min). Epoxy replicas were obtained to characterize the external adaptation under scanning electron microscopy. The average percentages of non-continuous margins were 5.41% and 6.49% in enamel dentin before thermal cycling and 25% and 33.7% after thermal cycling, respectively. The caries-affected and laser irradiated cavities showed higher non-continuous margins. Thermal cycling was able to raise the percentage of non-continuous margin for all groups. Chlorhexidine did not affect the marginal adaptation results, and the Er,Cr: YSGG laser irradiation showed significantly worse results compared with the control group.

  17. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.

  18. Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels

    Science.gov (United States)

    Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard

    2018-01-01

    Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.

  19. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    Science.gov (United States)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  20. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  2. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  3. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  4. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction

    Science.gov (United States)

    Feng, Qingsong; Zheng, Chunyang; Liu, Zhanjun; Xiao, Chengzhuo; Wang, Qing; Cao, Lihua; He, Xiantu

    2017-10-01

    The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early time of SBS evolution, only the first stage SBS appears, and the total SBS reflectivity comes from the first stage SBS. However, when the high-stage SBS and SABS occur, the SBS reflectivity will appear a burst behavior, and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11375032, 11575035, 11475030 and 11435011), National Basic Research Program of China (Grant No. 2013CB834101) and Science Challenge Project, No. TZ2016005.

  5. Widely tunable eye-safe laser by a passively Q-switched photonic crystal fiber laser and an external-cavity optical parametric oscillator

    International Nuclear Information System (INIS)

    Chang, H L; Zhuang, W Z; Huang, W C; Huang, J Y; Huang, K F; Chen, Y F

    2011-01-01

    We report on a widely tunable passively Q-switched photonic crystal fiber (PCF) laser with wavelength tuning range up to 80 nm. The PCF laser utilizes an AlGaInAs quantum well/barrier structure as a saturable absorber and incorporates an external-cavity optical parametric oscillator (OPO) to achieve wavelength conversion. Under a pump power of 13.1 W at 976 nm, the PCF laser generated 1029-nm radiation with maximum output energy of 750 μJ and was incident into an external-cavity OPO. The output energy and peak power of signal wave was found to be 138 μJ and 19 kW, respectively. By tuning the temperature of nonlinear crystal, periodically poled lithium niobate (PPLN), in the OPO, the signal wavelength in eye-safe regime from 1513 to 1593 nm was obtained

  6. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  7. Production of superconducting 1.3-GHz cavities for the European X-ray Free Electron Laser

    Science.gov (United States)

    Singer, W.; Brinkmann, A.; Brinkmann, R.; Iversen, J.; Matheisen, A.; Moeller, W.-D.; Navitski, A.; Reschke, D.; Schaffran, J.; Sulimov, A.; Walker, N.; Weise, H.; Michelato, P.; Monaco, L.; Pagani, C.; Wiencek, M.

    2016-09-01

    The production of over 800 1.3-GHz superconducting (SC) cavities for the European X-ray Free Electron Laser (EXFEL), the largest in the history of cavity fabrication, has now been successfully completed. In the past, manufacturing of SC resonators was only partly industrialized; the main challenge for the EXFEL production was transferring the high-performance surface treatment to industry. The production was shared by the two companies RI Research Instruments GmbH (RI) and Ettore Zanon S.p.A. (EZ) on the principle of "build to print". DESY provided the high-purity niobium and NbTi for the resonators. Conformity with the European Pressure Equipment Directive (PED) was developed together with the contracted notified body TUEV NORD. New or upgraded infrastructure has been established at both companies. Series production and delivery of fully-equipped cavities ready for cold rf testing was started in December 2012, and finished in December 2015. More than half the cavities delivered to DESY as specified (referred to "as received") fulfilled the EXFEL specification. Further improvement of low-performing cavities was achieved by supplementary surface treatment at DESY or at the companies. The final achieved average gradient exceeded the EXFEL specification by approximately 25%. In the following paper, experience with the 1.3-GHz cavity production for EXFEL is reported and the main lessons learned are discussed.

  8. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  9. Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves

    Science.gov (United States)

    Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander

    2017-10-01

    The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.

  10. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  11. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    Science.gov (United States)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  12. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  13. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  14. Transverse mode dynamics in vertical-cavity surface-emitting lasers: Spatiotemporal versus modal expansion descriptions

    International Nuclear Information System (INIS)

    Mulet, Josep; Balle, Salvador

    2002-01-01

    We discuss the range of validity of a modal description for the spatiotemporal dynamics of the optical field in vertical-cavity surface-emitting lasers. We focus on the secondary pulsations that appear during the turn-off transients when the injection current is modulated by a square-wave signal. We compare the results obtained with both a full spatiotemporal model [J. Mulet and S. Balle, IEEE J. Quantum. Electron. 38, 291 (2002)] and a modal expansion derived from this model. We find that the results obtained from the two descriptions agree for strong lateral guiding. However, for weak lateral guiding we find differences because the optical-field profile changes significantly due to spatial changes in the refractive index induced by the carrier density. The reason is that in the full spatiotemporal model a shrinkage of the mode profile occurs, which leads to an enhancement of the secondary pulsations. This effect is not included in the modal expansion, and it determines the limits of validity of such an approach for gain-guided devices

  15. Preliminary tests of a pseudo spectral Fourier propagation code to be used for high gain laser cavity studies

    International Nuclear Information System (INIS)

    Agnesi, A.; Gabetta, G.; Flora, F.; Hermensent, T.; Reali, G.T.

    1988-01-01

    Numerical methods for simulation of loaded laser cavities are largely devoted to the dynamic evolution of the transverse field distribution. Results on transverse field profile evolution have been published using various numerical methods like finite-difference schemes, Gaussian mode expansion and spectral methods based on trigonometric polynomial mode expansion. The latter methods is particular advantageous because of the existence of very efficient algorithms such as Fast Fourier Transform (FFT). A similar approach is used to solve the field in unstable laser cavities with high gain active medium such as XeCl. The preliminary test presented here constitute the first attempt to optimize our numerical code for nonlinear behaviors such as self-focussing and bistability

  16. SIMCON 3.0 eight channel FPGA-based cavity simulator and controller for VUV free-electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.; Czarski, Tomasz; Koprek, Waldemar; Romaniuk, Ryszard S.

    2006-10-01

    The work describes integrated system of hardware controller and simulator of superconductive cavity. The controller was realized on FPGA chip Xilinx-VirtexII-V4000. The solution uses DSP EMBEDDED BOARD positioned on a LLRF Modular Control Platform. The algorithm was realized in VHDL using hardware multiplication components existing in VirtexII series of chips. There was obtained implementation of a device working in real-time according to the control condition demands of LLRF system for TESLA superconductive cavities. The system is predicted as a developmental stage for FLASH accelerator and FEL laser and next for XFEL. The paper describes in detail functional layer, parameter programming, control basics for particular blocks, monitoring of real-time processes. There are presented results of system usage for control of the module ACC1 of FLASH laser.

  17. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  18. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  19. Morphological evaluation of cavity preparation surface after duraphat and Er:YAG laser treatment by scanning electronic microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Luciane Borelli

    2002-01-01

    The treatment of dental surface using different lasers to prevent dental caries has been studied for several on last years. The purpose of this in vitro study was to evaluate the morphological changes on dentin surface from pulpal wall of cavity preparations performed by high-speed drill, treated with 2,26% fluoride varnish (Duraphat) and Er:YAG laser, and then submitted after receiving or not to EDTA 15% treatment. Twenty Class V cavities were performed on ten humans molars. The specimens were randomly divided in to 4 groups: group 1- treatment with Duraphat followed by Er:YAG laser irradiation (120 mJ/ 4 Hz); group 2: Er:YAG laser irradiation, same parameters, followed by Duraphat treatment; group 3- same group 1 followed by immersion in EDTA (5 min); group 4 - same as group 2 followed by immersion in EDTA (5 min). The specimens were processed for SEM analysis. The micrographs showed that Duraphat treatment promoted morphological changes on dentin, closing dentinal tubules; the specimens treated by Duraphat and Er:YAG laser and immersed in EDTA (group 3) showed homogeneous surface, closed and protected dentinal tubules, maintenance of the fluoride varnish on the dentin surface and around the dentinal tubules, showing feasible and efficiency of these therapies the feasibility.(author)

  20. Extending the wavelength range of single-emitter diode lasers for medical and sensing applications: 12xx-nm quantum dots, 2000-nm wells, > 5000-nm cascade lasers

    Science.gov (United States)

    Crump, Paul; Patterson, Steve; Elim, Sandrio; Zhang, Shiguo; Bougher, Mike; Patterson, Jason; Das, Suhit; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Wise, Damian; DeFranza, Mark; Bell, Jake; Farmer, Jason; DeVito, Mark; Martinsen, Rob; Kovsh, Alexey; Toor, Fatima; Gmachl, Claire F.

    2007-02-01

    Diode lasers supply high power densities at wavelengths from 635-nm to 2000-nm, with different applications enabled by providing this power at different wavelengths. As the range of available wavelengths broadens, many novel medical and atmospheric applications are enabled. Traditional quantum well lasers provide high performance in the range 635- nm to 1100-nm range for GaAs-based devices and 1280-nm to 2000-nm for InP, leaving a notable gap in the 1100 to 1280-nm range. There are many important medical and sensing applications in this range and quantum dots produced using Stranski-Krastanow self-organized MBE growth on GaAs substrates provide an alternative high performance solution. We present results confirming broad area quantum dot lasers can deliver high optical powers of 16-W per emitter and high power conversion efficiency of 35% in this wavelength range. In addition, there are growing applications for high power sources in wavelengths > 1500-nm. We present a brief review of our current performance status in this wavelength range, both with conventional quantum wells in the 1500-nm to 2500-nm range and MOCVD grown quantum cascade lasers for wavelengths > 4000-nm. At each wavelength, we review the designs that deliver this performance, prospects for increased performance and the potential for further broadening the availability of novel wavelengths for high power applications.

  1. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  2. Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers

    Science.gov (United States)

    Pierścińska, D.; Gutowski, P.; Hałdaś, G.; Kolek, A.; Sankowska, I.; Grzonka, J.; Mizera, J.; Pierściński, K.; Bugajski, M.

    2018-03-01

    In this work we report on the performance of mid-infrared quantum cascade lasers (QCLs) based on strained InGaAs/AlGaAs grown by molecular beam epitaxy on GaAs substrate. Structures were grown with indium content from 1% to 6% in GaAs quantum wells (QW) and 45% of Al in AlGaAs barrier layers. The design results in strained heterostructure, however, no strain relaxation was observed as documented by x-ray diffraction measurements up to ∼3% of In content in QWs. The investigation of heterostructures and devices was performed, including structural measurements and electrooptical characterization of devices. Devices fabricated from epi wafers with 2.64% of In exhibited performance largely improved over GaAs/AlGaAs QCLs. Roughly two times reduction of the threshold current density was observed at lasing wavelength ∼9.45 μm. The lasers operated in pulsed mode up to T = 50 °C with characteristic temperature T 0 = 115 K. The decrease of the threshold current density has been mainly attributed to the reduction of interface roughness scattering and the increase of activation energy for the escape of carriers from the upper laser level to the 3D continuum. Further increase of In content in QWs resulted in the deterioration of device parameters.

  3. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm

    International Nuclear Information System (INIS)

    Shterengas, Leon; Liang, Rui; Kipshidze, Gela; Hosoda, Takashi; Belenky, Gregory; Bowman, Sherrie S.; Tober, Richard L.

    2014-01-01

    The cascade pumping scheme reduced the threshold current density of high power type-I quantum well GaSb-based λ ∼ 3 μm diode lasers down to ∼100 A/cm 2 at room temperature. Laser heterostructures had single GaInAsSb quantum well gain stages connected in series by means of GaSb/AlSb/InAs tunnel junctions followed by InAs/AlSb electron injectors. Devices with densely stacked two and three gain stages and 100-μm-wide aperture demonstrated peak power conversion efficiency of 16% and continuous wave output power of 960 mW. Corresponding narrow ridge lasers demonstrated above 100 mW of output power. The experiment showed that the bandwidth of the gain and its rate of increase with current depended strongly on the thickness of AlSb layer separating electron injectors from quantum wells. The possible impact of electron injector interfaces and ionized impurities on the carrier scattering and recombination in the active quantum well is discussed.

  4. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm

    Energy Technology Data Exchange (ETDEWEB)

    Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu; Liang, Rui; Kipshidze, Gela; Hosoda, Takashi; Belenky, Gregory [State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Bowman, Sherrie S.; Tober, Richard L. [Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)

    2014-10-20

    The cascade pumping scheme reduced the threshold current density of high power type-I quantum well GaSb-based λ ∼ 3 μm diode lasers down to ∼100 A/cm{sup 2} at room temperature. Laser heterostructures had single GaInAsSb quantum well gain stages connected in series by means of GaSb/AlSb/InAs tunnel junctions followed by InAs/AlSb electron injectors. Devices with densely stacked two and three gain stages and 100-μm-wide aperture demonstrated peak power conversion efficiency of 16% and continuous wave output power of 960 mW. Corresponding narrow ridge lasers demonstrated above 100 mW of output power. The experiment showed that the bandwidth of the gain and its rate of increase with current depended strongly on the thickness of AlSb layer separating electron injectors from quantum wells. The possible impact of electron injector interfaces and ionized impurities on the carrier scattering and recombination in the active quantum well is discussed.

  5. Hybrid III-V/SOI single-mode vertical-cavity laser with in-plane emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Semenova, Elizaveta

    2015-01-01

    We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold.......We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold....

  6. An interband cascade laser-based in situ absorption sensor for nitric oxide in combustion exhaust gases

    Science.gov (United States)

    Diemel, O.; Pareja, J.; Dreizler, A.; Wagner, S.

    2017-05-01

    A direct absorption nitric oxide sensor for combustion exhaust gas measurements, based on an interband cascade laser operating at 5.2 µm, is presented. The sensor was applied to the hot air co-flow of an auto-ignition test rig (800-1300 K), which contains nitric oxide mole fractions of the order of 1 mol%, due to prior microwave plasma heating. The effect of non-uniform temperature along the beam path, on both absorption line strength and gas density, was included in mole fraction measurements at various co-flow temperatures and velocities. At an absorption length of only 82 mm, a noise-limited detection limit of 30 ppm with a 10 ms observation time was achieved at 800 K. The results were compared in detail to previously measured mole fractions, using a sampling gas analyzer.

  7. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Thermal annealing of lattice-matched InGaAs/InAlAs Quantum-Cascade Lasers

    Science.gov (United States)

    Mathonnière, Sylvain; Semtsiv, M. P.; Ted Masselink, W.

    2017-11-01

    We describe the evolution of optical power, threshold current, and emission wavelength of a lattice-matched InGaAs/InAlAs Quantum-Cascade Laser (QCL) emitting at 13 μm grown by gas-source molecular-beam epitaxy under thermal annealing. Pieces from the same 2-in wafer were annealed at 600 °C, 650 °C, or 700 °C for 1 h; one control piece remained unannealed. No change in threshold current and emission wavelength was observed. The slope efficiency and maximum emission power increase for the 600 °C anneal, but higher annealing temperatures resulted in degraded performance. This result stands in contrast with the observation that strain-compensated structures cannot withstand annealing temperature of 600 °C. Useful information for post-growth processing steps and the role of interface roughness in QCL performance are obtained.

  9. Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser.

    Science.gov (United States)

    Wang, Zhen; Li, Zhili; Ren, Wei

    2016-02-22

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor has been developed for the sensitive detection of ethylene (C2H4) at 10.5 µm using a continuous-wave distributed-feedback quantum cascade laser. At this long-wavelength infrared, the key acoustic elements of quartz tuning fork and micro-resonators were optimized to improve the detection signal-to-noise ratio by a factor of >4. The sensor calibration demonstrated an excellent linear response (R2>0.999) to C2H4 concentration at the selected operating pressure of 500 and 760 Torr. With a minimum detection limit of 50 parts per billion (ppb) achieved at an averaging time of 70 s, the sensor has been deployed for measuring the C2H4 efflux during the respiration of biological samples in an agronomic environment.

  10. Optimization of THz semi-insulating surface plasmon waveguide structures of GaSb/AlSb quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yeong Hwan; Park, Bum Doo; Yu, Jae Su [Kyung Hee University, Yongin (Korea, Republic of)

    2012-11-15

    We designed and analyzed the semi-insulating surface plasmon waveguide structures of GaSb based quantum cascade lasers (QCLs) operating in the terahertz (THz) region of 2.6 - 6.5 THz using the finite element method. For improving the guiding property of THz QCL waveguide structures, a low threshold gain (g{sub th}) and a high optical confinement (Γ) could be achieved by optimizing the doping concentration and the thickness of plasma layer, the waveguide width, the substrate thickness, and the number of stages in active core region at various operating frequencies (2.6 - 6.5 THz). The effect of different substrates on the g{sub th} and Γ of THz QCL waveguide structures was also investigated.

  11. Fabrication and Operation of Integrated Distributed Bragg Reflector Thermally Tunable Quantum Cascade Lasers

    Science.gov (United States)

    Cheng, Liwei

    Quantum cascade lasers (QCLs) that emit in the mid-infrared (IR) range between 3 and 10 µm of the electromagnetic spectrum play an important role in optical gas sensing and molecular spectroscopic applications because several important environmental molecules such as CO, CO2, CH 4, and NH3 are known to exhibit strong absorption lines in this mid-IR range. To differentiate such fine absorption features as narrow as a few angstroms, a single-mode QCL with an extremely narrow spectral linewidth, broadly tunable over the molecular absorption fingerprints and operating at sufficient optical power at room temperature, is highly desirable. We present, in this dissertation, two major studies on mid-IR QCLs, one being an improvement in device performance through a buried-heterostructure (BH) regrowth study, and the other being a realization of single-mode, tunable QCLs integrated with a distributed-Bragg-reflector (DBR) grating and thermal tuning mechanism. Efficient heat dissipation in the QCL active region, which is crucial for high optical-power operation, can be effectively achieved using BH waveguides laterally embedded with InP grown by metal-organic chemical vapor disposition (MOCVD). We have experimentally examined the effects of the structural features of mesas, such as the mesa orientation, geometry, sidewall-etched profile, and the length of oxide overhang, on the BH regrowth. We find that the mesa oriented in the [011¯] direction with smoothly etched sidewalls produces a satisfactory planar growth profile and uniform lateral growth coverage and that a mesa-height-to-overhang-length ratio between 2.5 and 3.0 is effective in reducing anomalous growth in the vicinity of oxide edges. As a result, high-power QCLs capable of producing multi-hundred milliwatts at room temperature at ˜4.6 µm and ˜7.9 µm through reproducible BH regrowth results have been demonstrated. We have also demonstrated single-mode tunable QCLs operating at ˜7.9 µm with an internal DBR

  12. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

    Science.gov (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.

    2018-01-01

    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  13. Comparative study of the influence of cavity preparation with high-speed rotation or Er:YAG laser on infiltration of aesthetic restorations

    Science.gov (United States)

    Costa, D. P. T. S.; Beatrice, L. C. S.; Guerra, L. S. C.; Ribeiro, M. A.; Zanin, F. A. A.; Queiroga, A. S.; Limeira Júnior, F. A.; Gerbi, M. E. M. M.

    2010-04-01

    The aim of the present study was to compare marginal infiltration in Class V cavities prepared on extracted human premolars with either high-speed rotation or a Er:YAG laser. Class V cavities were executed on the vestibular and lingual faces of twelve premolars, with high-speed rotation or a Er:YAG laser (300 mJ, 4 Hz, and 3 W), and cavity surfaces were conditioned with 37% phosphoric acid combined with laser treatment (80 mJ, 5 Hz, 3 W) or without laser treatment in the following manner: G1—high-speed rotation + conditioning with phosphoric acid; G2—high-speed rotation + conditioning with laser and phosphoric acid; G3—laser + conditioning with phosphoric acid; and G4—laser + conditioning with laser and phosphoric acid. Specimens were restored with the composite resin, thermocycled and immersed in 0.5% basic fuchsin for 24 h. Specimens were then cross-cut and analyzed using a stereoscopic magnifying glass. Evaluations were submitted to the Kruskall-Wallis statistical test. No significant differences were found between the averages of the groups ( p > 0.05). High-speed rotation and Er:YAG laser for the confection of cavity preparation exhibited a similar performance with regard to marginal infiltration.

  14. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    Science.gov (United States)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  15. High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers

    Science.gov (United States)

    2012-10-01

    Ω is the Rabi frequency associated with the optical field and is defined as (in the unit of energy) Ω...offset δU in Eq. (3.1). For QC lasers with design wavelength >8μm, lattice - matched In0.53Ga0.47As/Al0.48In0.52As on InP is used; for QC lasers with

  16. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  17. Physical Approaches to Designing a Two-Cascade Terahertz Laser Generating Difference-Frequency Radiation in a Nonlinear Optical ZnGeP2 Crystal

    Science.gov (United States)

    Gribenyukov, A. I.; Dyomin, V. V.; Polovtsev, I. G.; Yudin, N. N.

    2018-03-01

    An optical layout of a two-cascade frequency converter of the mid-IR laser radiation into the terahertz (THz) radiation is proposed. In the first stage it is assumed to convert the Tm:YLF-laser frequency in a Cr+2:ZnSe polycrystal into the radiation with the wavelength 2-3 μm. The second cascade can be presented as a parametric conversion of the frequencies of two laser sources operating in the 2-3 μm range into the THz radiation via the difference-frequency mixing in a nonlinear optical ZnGeP2 crystal. The estimates of the terahertz output signal are reported.

  18. Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ=19 μm) with metal-metal resonators

    Energy Technology Data Exchange (ETDEWEB)

    Chastanet, D.; Bousseksou, A., E-mail: adel.bousseksou@u-psud.fr; Julien, F.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Institut d' Electronique Fondamentale, Univ. Paris Sud, UMR 8622 CNRS, 91405 Orsay (France); Lollia, G.; Bahriz, M.; Laffaille, P.; Baranov, A. N.; Teissier, R., E-mail: teissier@univ-montp2.fr [Institut d' Electronique du Sud, Univ. Montpellier 2, UMR 5214 CNRS, 34095 Montpellier (France)

    2014-01-13

    We demonstrate quantum cascade lasers in the InAs/AlSb material system emitting at wavelengths of λ = 19 μm and λ = 21 μm. The maximum operating temperatures are 291 K and 250 K, and the threshold current densities at 78 K are as low as 0.6 kA/cm{sup 2} and 1.3 kA/cm{sup 2} for the lasers emitting at λ = 19 μm and λ = 21 μm, respectively. These values represent the best performance to date for quantum cascade lasers operating above λ = 16 μm. Although the devices employ metal-metal waveguide geometries, the diffraction effects which typically hinder the output beam of THz devices are not observed.

  19. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  20. Study of the Propagation of Short Pulse Laser With Cavity Using ...

    African Journals Online (AJOL)

    ... several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities. Keywords: Optical fiber, short pulse, bandwidth, ...

  1. Numerical Investigation of Vertical Cavity Lasers With High-Contrast Gratings Using the Fourier Modal Method

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2016-01-01

    We explore the use of a modal expansion technique, Fourier modal method (FMM), for investigating the optical properties of vertical cavities employing high-contrast gratings (HCGs). Three techniques for determining the resonance frequency and quality factor (Q-factor) of a cavity mode are compared...

  2. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh

    2016-01-01

    A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375

  3. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  4. Mid-IR quantum cascade lasers as an enabling technology for a new generation of chemical analyzers for liquids

    Science.gov (United States)

    Lendl, B.; Reidl-Leuthner, C.; Ritter, W.

    2011-01-01

    This presentation introduces a chemical analyzer (The ERACHECK) which is based on quantum cascade laser technology for measuring oil-in-water. Using these mid-IR lasers, it was possible to develop a portable, robust and highly precise analyzer for the measurement of oil-in-water, a parameter which is vital in the petrochemical industry for process control and environmental analysis. The overall method employs a liquid-liquid extraction step of the aqueous sample using a cyclic, aliphatic hydrocarbon such as cyclohexane. Quantification is based on measurement of the C-H deformation vibrations of the extracted hydrocarbons in the cyclic extraction solvent. The developed method is linear from 0.5 - 2000 ppm of oil in water, with precisions well below 15% in terms of r.s.d for repeated measurements. The portability of the ERACHECK and its robustness has been key for its successful use on oil rigs as well as petrochemical production sites on land. The values provided by the ERACHECK correlate well with those obtained by the former CFC (Freon 113) based method for oil in water, which is no longer in use in industrialized countries due to the ozone depleting effect of the CFCs employed.

  5. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor

    Science.gov (United States)

    Lewicki, Rafał; Kosterev, Anatoliy A.; Thomazy, David M.; Risby, Terence H.; Solga, Steven; Schwartz, Timothy B.; Tittel, Frank K.

    2011-01-01

    A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited for real time breath analysis, due to the fast gas exchange inside a compact QEPAS gas cell. An air-cooled DFB-QCL was designed to target the interference-free NH3 absorption line located at 967.35 cm-1 (λ~10.34 μm). The laser is operated at 17.5 °C, emitting ~ 24 mW of optical power at the selected wavelength. A 1σ minimum detectable concentration of ammonia for the line-locked NH3 sensor is ~ 6 ppb with 1 sec time resolution. The NH3 sensor, packaged in a 12"x14"x10" housing, is currently installed at a medical breath research center in Bethlehem, PA and tested as an instrument for non-invasive verification of liver and kidney disorders based on human breath samples.

  6. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  7. Laser anemometer measurements and computations for transonic flow conditions in an annular cascade of high turning core turbine vanes

    Science.gov (United States)

    Goldman, Louis J.

    1993-01-01

    An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.

  8. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  9. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor; Laser de fibra optica compuesto por dos cavidades acopladas: aplicacion como sensor de fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), A.P. 51 y 216, 72000 Puebla (Mexico); May A, M. [Universidad Autonoma del Carmen (UNACAR) Av. 56 No. 4 por Av. Concordia, Campeche (Mexico); Shlyagin, M.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada (CICESE), 22860 Ensenada, Baja California (Mexico)]. e-mail: ravsa100@hotmail.com

    2004-07-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  10. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle

    Science.gov (United States)

    Yeh, P. S.; Chang, C.-C.; Chen, Y.-T.; Lin, D.-W.; Liou, J.-S.; Wu, C. C.; He, J. H.; Kuo, H.-C.

    2016-12-01

    A GaN-based vertical-cavity surface emitting laser (VCSEL) structure featuring a silicon-diffusion-defined current blocking layer for lateral confinement is described. Sub-milliamp threshold currents were achieved for both 3- and 5-μm-aperture VCSELs under continuous-wave operation at room temperature. The vertical cavity was defined by a top dielectric distributed Bragg reflector (DBR) and a bottom epitaxial DBR. The emission spectrum exhibited a single peak at 411.2 nm with a linewidth of 0.4 nm and a side mode suppression ratio of more than 10 dB before device packaging. The full-width-at-half-maximum divergence angle of the 3-μm-aperture VCSEL was as small as approximately 5° which is the lowest number reported. These results implied the 3-μm-aperture VCSEL was in near single-mode operation.

  11. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  12. Steady-state characteristics of lateral p-n junction vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Ryzhii, V.; Tsutsui, N.; Khmyrova, I.; Ikegami, T.; Vaccaro, P. O.; Taniyama, H.; Aida, T.

    2001-09-01

    We developed an analytical device model for lateral p-n junction vertical-cavity surface-emitting lasers (LJVCSELs) with a quantum well active region. The model takes into account the features of the carrier injection, transport, and recombination in LJVCSELs as well as the features of the photon propagation in the cavity. This model is used for the calculation and analysis of the LJVCSEL steady-state characteristics. It is shown that the localization of the injected electrons primarily near the p-n junction and the reabsorption of lateral propagating photons significantly effects the LJVCSELs performance, in particular, the LJVCSEL threshold current and power-current characteristics. The reincarnation of electrons and holes due to the reabsorption of lateral propagating photons can substantially decrease the threshold current.

  13. Effects of Er, Cr:YSGG laser irradiation on external adaptation of restorations in caries-affected cavities

    International Nuclear Information System (INIS)

    Tonetto, Mateus Rodrigues; Saad, José Roberto Cury; Campos, Edson Alves de; Neto, Sizenando de Toledo Porto; De Andrade, Marcelo Ferrarezi; Bandéca, Matheus Coelho; Borges, Alvaro Henrique; Pinto, Shelon Cristina Souza

    2013-01-01

    This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values. (letter)

  14. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  15. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems

    Science.gov (United States)

    Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.

    2016-03-01

    A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.

  16. Highly integrated coupled cavity photonic crystal laser with on-chip power control on the AlGaIn/AsSb material system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M; Bauer, A; Lehnhardt, T; Forchel, A [Technische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: Mirjam.Mueller@physik.uni-wuerzburg.de

    2008-07-02

    We present a multi-segment photonic crystal coupled cavity laser device on GaSb with a microstructured internal photodiode. This monolithically integrated power monitor is added as a third segment to a coupled cavity laser and is separated from the active device by six rows of two-dimensional photonic crystals, acting as highly reflecting mirrors. There is no additional fabrication step needed to integrate this feature into the coupled cavity laser, resulting in a highly integrated laser device of only 800 {mu}m length. The device with lasing wavelength around 1955 nm shows single mode emission over a tuning range of as large as 16 nm and exhibits output powers of up to 9 mW.

  17. Highly integrated coupled cavity photonic crystal laser with on-chip power control on the AlGaIn/AsSb material system

    International Nuclear Information System (INIS)

    Mueller, M; Bauer, A; Lehnhardt, T; Forchel, A

    2008-01-01

    We present a multi-segment photonic crystal coupled cavity laser device on GaSb with a microstructured internal photodiode. This monolithically integrated power monitor is added as a third segment to a coupled cavity laser and is separated from the active device by six rows of two-dimensional photonic crystals, acting as highly reflecting mirrors. There is no additional fabrication step needed to integrate this feature into the coupled cavity laser, resulting in a highly integrated laser device of only 800 μm length. The device with lasing wavelength around 1955 nm shows single mode emission over a tuning range of as large as 16 nm and exhibits output powers of up to 9 mW

  18. Effect of type of cavity preparation (bur,Er:YAG laser and restorative materials on prevention of caries lesion

    Directory of Open Access Journals (Sweden)

    Masumeh Hasani Tabatabaei

    2017-03-01

    Full Text Available Background and Aims: Despite the reduction of incidence of dental caries in recent years, this disease is common and many efforts were conducted to decrease the prevalence of dental caries. On the other hand secondary caries lesions are the main reason for replacement of direct restorations. Therefore, the aim of the current study was to evaluate suitable methods of preparation and restorative materials to reduce caries recurrence. Materials and Methods: In this experimental study, eighty human teeth were collected and stored in normal saline. The teeth were soft-tissue debrided and cleaned with water/pumice slurry and rubber cups in a low-speed handpiece. Speciments were randomly divided in two main groups. Cavities were prepared with diamond burs or Er:YAG laser (10 Hz, 300 mJ, 3W. Each group was divided into 4 sub-groups, and restored with a glass-ionomer cement (Fuji IX, resin modified glass-ionomer (Fuji II LC, total etch bonding + composite resin or self-etch bonding + composite resin. The specimens were submitted to pH cycling. Speciments were then sectioned, polished and Vickers microhardness measurements were performed on each specimen. Differences among the medians were analyzed using two way ANOVA test at a 95% confidence level and Tukey test. Results: Statistical analysis showed significant difference in the type of substrate (enamel, dentin in both main groups (P<0.0001 but no differences in the caries lesion development between the cavities restored with the same material and prepared with diamond burs or Er:YAG laser. Conclusion: The Er:YAG laser used for cavity preparation and different types of restorative materials used did not show the ability to guarantee significantly more acid-resistance tooth structure against demineralization.

  19. Coagulation and ablation of biological soft tissue by quantum cascade laser with peak wavelength of 5.7 μm

    Directory of Open Access Journals (Sweden)

    Keisuke Hashimura

    2014-05-01

    Full Text Available Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL, which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.

  20. Development of III-Sb metamorphic DBR membranes on InP for vertical cavity laser applications

    Science.gov (United States)

    Addamane, S. J.; Mansoori, A.; Renteria, E. J.; Dawson, N.; Shima, D. M.; Rotter, T. J.; Hains, C. P.; Dawson, L. R.; Balakrishnan, G.

    2016-04-01

    Sb-based metamorphic DBR membranes are developed for InP-based vertical cavity laser applications. The reflectivity of the metamorphic DBR membrane is compared to the reflectivity of a lattice-matched DBR to characterize the optical quality of the DBR membrane. The metamorphic interface between InP and the III-antimonides is found to degrade the reflectivity of the DBR. Therefore, the growth temperature for the metamorphic DBR is optimized in order to obtain highly reflective (>99.8%) III-Sb thin-film membranes.

  1. Needle-like focus generation by radially polarized halo beams emitted by photonic-crystal ring-cavity laser

    Science.gov (United States)

    Kitamura, Kyoko; Nishimoto, Masaya; Sakai, Kyosuke; Noda, Susumu

    2012-11-01

    Focused fields that possess a small spot size and long depth of focus (DOF) are expected to lead to the further development of optical applications. Here, we develop a photonic-crystal ring-cavity laser that emits a beam with a radially polarized halo shape (rinner/router > 0.9). This beam has a needle-like focus with a spot size of less than 0.4λ and a depth of focus longer than 10 λ for a 0.9 numerical aperture objective lens. We evaluate the focusing properties of the emitted beam and demonstrate that it has a longer depth of focus than conventional beams.

  2. Vertical-cavity surface-emitting lasers enable high-density ultra-high bandwidth optical interconnects

    Science.gov (United States)

    Chitica, N.; Carlsson, J.; Svenson, L.-G.; Chacinski, M.

    2015-03-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELs) are key components enabling power- and cost-efficient, high-density, ultra-high bandwidth parallel optical interconnects for data center and high-performance computing applications. This paper presents recent developments at TE Connectivity (TE) in the area of 25 Gb/s per channel-class VCSEL and optical transmitter technology for applications such as 100G and 400G Ethernet and Enhanced Data Rate InfiniBand pluggable and mid-board connectivity solutions.

  3. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  4. Self-mixing interference in dual-wavelength fiber ring laser using cascaded fiber Bragg gratings

    Science.gov (United States)

    Xia, Wei; Zhou, Xiuzhen; Zhang, Congcong; Li, Chuncheng; Wang, Ming

    2013-11-01

    Self-mixing interference in dual-wavelength fiber ring laser (FRL) with serial connection of fiber Bragg gratings (FBGs) is presented. Wavelength division multiplexing and active sensing is achieved by extracting single wavelength and adding feedback to the system. The expression of the optical output power of dual-wavelength fiber ring laser is analyzed when optical feedback is introduced. The gain competition and the intensities alternation among the applied channels are discussed. We apply the developed system for displacement measurements of two moving objects and investigate the influence on output signals under different feedback conditions. The experimental results show that this system has improved efficiency to expand the channels and maintains many advantages of self-mixing interference, validating the feasibility for implementation in a dual-channel displacement sensor at the same time.

  5. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  6. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  7. [The observation of surface morphology of enamal and temperature of dental pulp cavity in vitro after irradiated by Er:YAG laser].

    Science.gov (United States)

    Ye, Lijun; Liu, Luchuan; Deng, Manjing; Liu, Na; Wu, Xi; Dong, Zhengmou

    2012-04-01

    To observe the changes of surface morphology and temperature of dental pulp cavity in vitro after irradiated by Er:YAG laser with different energy and irradiation time. All of the 96 samples from 24 teeth in vitro were collected from dental clinical departments then divided into two groups (group A and group B) randomly. We chose the energy of 20 Hz, and 1, 2, 3, 4, 5, 6 W to treat the samples in group A and group B and the irradiation time was 10s or 20s. We recorded the temperature changes of dental pulp cavity by digital thermometer and observe the morphology of tooth enamel by scanning electron microscope (SEM). With the extension of irradiation time and increasing of energy, the temperatures of dental pulp cavity were significantly increased after the treatment of Er: YAG laser. The two groups of tooth enamel surface morphology were changed after irradiated by Er: YAG laser with different energy and irradiation time. However, there was no melting and carbonation on the surface of tooth enamel after the treatment of Er:YAG laser in two groups. The temperatures of dental pulp cavity were increased after irradiated by increasing laser energy density fom 1 W to 6 W. No melting or carbonized phenomenon was found in enamel within the energy of 1 W to 6 W. All the data would provide evidences for clinical treatment of cavity.

  8. Modular PbSrS/PbS mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Zogg, H.; Cao, D.; Kobayashi, S.; Yokoyama, T.; Ishida, A.

    2011-07-01

    A mid-infrared vertical external cavity surface emitting laser (VECSEL) based on undoped PbS is described herein. A 200 nm-thick PbS active layer embedded between PbSrS cladding layers forms a double heterostructure. The layers are grown on a lattice and thermal expansion mismatched Si-substrate. The substrate is placed onto a flat bottom Bragg mirror again grown on a Si substrate, and the VECSEL is completed with a curved top mirror. Pumping is done optically with a 1.55 μm laser diode. This leads to an extremely simple modular fabrication process. Lasing wavelengths range from 3-3.8 μm at 100-260 K heat sink temperature. The lowest threshold power is ˜210 mWp and highest output power is ˜250 mWp. The influence of the different recombination mechanism as well as free carrier absorption on the threshold power is modeled.

  9. Complex delay dynamics of high power quantum cascade oscillators

    Science.gov (United States)

    Grillot, F.; Newell, T. C.; Gavrielides, A.; Carras, M.

    2017-08-01

    Quantum cascade lasers (QCL) have become the most suitable laser sources from the mid-infrared to the THz range. This work examines the effects of external feedback in different high power mid infrared QCL structures and shows that different conditions of the feedback wave can produce complex dynamics hence stabilization, destabilization into strong mode-competition or undamping nonlinear oscillations. As a dynamical system, reinjection of light back into the cavity also can also provoke apparition of chaotic oscillations, which must be avoided for a stable operation both at mid-infrared and THz wavelengths.

  10. Measurement of Urban Air Quality by an Open-Path Quantum Cascade Laser Absorption Spectrometer in Beijing During Summer 2008

    Science.gov (United States)

    Michel, A. P.; Liu, P. Q.; Yeung, J. K.; Zhang, Y.; Baeck, M. L.; Pan, X.; Dong, H.; Wang, Z.; Smith, J. A.; Gmachl, C. F.

    2009-05-01

    The 2008 Olympic Games focused attention on the air quality of Beijing, China and served as an important test-bed for developing, deploying, and testing new technologies for analysis of air quality and regional climate in urban environments. Poor air quality in urban locations has a significant detrimental effect on the health of residents while also impacting both regional and global climate change. As a result, there exists a great need for highly sensitive trace gas sensors for studying the atmosphere of the urban environment. Open-path remote sensors are of particular interest as they can obtain data on spatial scales similar to those used in regional climate models. Quantum cascade lasers (QCLs) can be designed for operation in the mid-infrared (mid-IR) with a central wavelength anywhere between 3 to 24 μm and made tunable over a wavelength interval of over 0.1 μm. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, pulsed Daylight Solutions Inc. QCL for measurement of trace gases. The system is aimed at applications with path lengths ranging from approximately 0.1 to 1.0 km. The system is designed to continuously monitor multiple trace gases [water vapor (H2O), ozone (O3), ammonia (NH3), and carbon dioxide (CO2)] in the lower atmosphere. A field campaign from July to September 2008 in Beijing used QCLOPS to study trace gas concentrations before, during, and after the Olympic Games in an effort to capture changes induced by emissions reduction methods. QCLOPS was deployed at the Institute of Atmospheric Physics - Chinese Academy of Sciences on the roof of a two-story building, at an approximate distance of 2 miles from the Olympic National Stadium ("The Bird's Nest.") QCLOPS operated with an open-path round trip distance of approximately 75 m. The system ran with minimal human interference, twenty-four hours per day for the full campaign period. In order to

  11. Nitrous Oxide Emission Flux Measurements for Ecological Systems with an Open-Path Quantum Cascade Laser-Based Sensor

    Science.gov (United States)

    Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter

  12. Laser

    OpenAIRE

    Du, K.; Loosen, P.; Herziger, G.

    1991-01-01

    Laser, consisting of a beam path multiple-folded by means of two cavity end mirrors and having at least one reflector folding the laser beam retroreflectively, the axis of which is arranged offset in parallel to the axis of a further reflector. So that the laser exhibits an improved beam quality while retaining its comparatively low adjustment sensitivity, the beam path is folded at least twice by means of the retoreflective reflector.

  13. A GaInAsP/InP Vertical Cavity Surface Emitting Laser for 1.5 m m operation

    Science.gov (United States)

    Sceats, R.; Balkan, N.; Adams, M. J.; Masum, J.; Dann, A. J.; Perrin, S. D.; Reid, I.; Reed, J.; Cannard, P.; Fisher, M. A.; Elton, D. J.; Harlow, M. J.

    1999-04-01

    We present the results of our studies concerning the pulsed operation of a bulk GaInAsP/InP vertical cavity surface emitting laser (VCSEL). The device is tailored to emit at around 1.5 m m at room temperature. The structure has a 45 period n-doped GaInAsP/InP bottom distributed Bragg reflector (DBR), and a 4 period Si/Al2O3 dielectric top reflector defining a 3-l cavity. Electroluminescence from a 16 m m diameter top window was measured in the pulsed injection mode. Spectral measurements were recorded in the temperature range between 125K and 240K. Polarisation, lasing threshold current and linewidth measurements were also carried out at the same temperatures. The threshold current density has a broad minimum at temperatures between 170K and 190K, (Jth=13.2 kA/cm2), indicating a good match between the gain and the cavity resonance in this temperature range. Maximum emitted power from the VCSEL is 0.18 mW at 180K.

  14. Influence of cavity preparation with Er,Cr:YSGG laser and restorative materials on in situ secondary caries development.

    Science.gov (United States)

    Jorge, Ana Carolina Tedesco; Cassoni, Alessandra; de Freitas, Patrícia Moreira; Reis, André Figueiredo; Brugnera Junior, Aldo; Rodrigues, Jose Augusto

    2015-02-01

    The aim of this study was to evaluate the influence of cavity preparation and restorative materials containing fluorides in the prevention of secondary caries lesion development in situ. A total of 120 blocks obtained from human teeth were divided into two groups and standardized cavities were prepared using diamond burs (DB) or Er,Cr:YSGG-laser [20 Hz, 4.0W, 55% water, 65% air (LA)]. They were divided into three subgroups according to the restorative material (n=20): glass-ionomer cement (GI), resin modified glass-ionomer (RM) or composite resin (CR). Blocks were fixed in palatal intra-oral appliances worn in situ by 20 human volunteers, who dropped 20% sucrose solution eight times daily. After 21 days, blocks were removed and restorations were cross-sectioned to evaluate microhardness [Knoop hardness number (KHN)] underneath enamel surface from 30 to 200 μm. Factors "cavity preparation," "restorative materials," and "depth" were evaluated by three way ANOVA, followed by Tukey test (plaser increases caries resistance of enamel walls, and reduce caries lesion depth development regardless of fluoride presence in the restorative material. CR showed higher caries lesion development than GI, and RM showed intermediate results.

  15. Analysis of soft-aperture Kerr-lens mode-locking in Ti:sapphire laser cavities using nonlinear ABCD-matrix

    International Nuclear Information System (INIS)

    Lee, Yong Woo; Cha, Yong Ho; Rhee, Yong Joo; Yoo, Byung Duk; Lee, Byoung Chul

    2004-01-01

    We have numerically analyzed the effect of soft-aperture Kerr-lens mode locking in Ti:sapphire laser cavities. Because the Kerr-lens effect depends on the intracavitiy power, we used nonlinear ABCD-matrix to calculated the power-dependent beam mode inside a cavity. In soft-aperture Kerr-lens mode locking, the Kerr-lens effect is strongly dependent on the position of the crystal, the separation of two curved mirrors, and the cavity length. Figure 1 is the schematic of the Ti:sapphire laser cavity used in our calculation. It consists of a Ti:sapphire crystal (Kerr medium), two curved mirrors, and flat mirrors. Lc is the Ti:sapphire crystal length, D1 the length between M1 and M3, D2 the length between M2 and M4, L1 the length between the crystal and M1, and L2 the length between crystal and M2

  16. Broadband mid-infrared and THz chemical detection with quantum cascade laser multi-heterodyne spectrometers (Conference Presentation)

    Science.gov (United States)

    Westberg, Jonas; Sterczewski, Lukasz A.; Patrick, Link; Wysocki, Gerard

    2017-05-01

    Majority of chemical species of interest in security and safety applications (e.g. explosives) have complex molecular structures that produce unresolved rotational-vibrational spectroscopic signatures in the mid-infrared. This requires spectroscopic techniques that can provide broadband coverage in the mid-IR region to target broadband absorbers and high resolution to address small molecules that exhibit well-resolved spectral lines. On the other hand, many broadband mid-IR absorbers exhibit well-resolved rotational components in the THz spectral region. Thus, development of spectroscopic sensing technologies that can address both spectral regions is of great importance. Here we demonstrate recent progress towards broadband high-resolution spectroscopic sensing applications with Fabry-Perot quantum cascade lasers (QCLs) and frequency combs using multi-heterodyne spectroscopy (MHS) techniques. In this paper, we will present spectroscopic sensing of large and small molecules in the mid-IR region using QCLs operating at 8.5µm. An example high-resolution, broadband MHS of ammonia (small molecule) and isobutane (broadband absorber) at atmospheric pressure in the 1165-1190 cm^-1 range will be discussed. We have developed a balanced MHS system for mitigation of the laser intensity fluctuations. Absorption spectroscopy as well as dispersion spectroscopy with minimum fractional absorption down to 10^-4/Hz1/2 and fast spectral acquisition capabilities down to 10 µs/spectrum range will be demonstrated. In order to mitigate the shortcomings of the limited chemical selectivity in the mid-IR, THz QCL based spectrometer is currently under development to provide spectral de-congestion and thus significantly improve chemical identification. Preliminary characterization of the performance of THZ QCL combs for the THz QCL-MHS will be presented.

  17. Dynamics and performance of the free electron laser at Super-Aco with a harmonic RF cavity set on 500 MHz

    International Nuclear Information System (INIS)

    Nutarelli, D.

    2000-01-01

    This work is dedicated to the development of the potentialities of the free electron laser that has been installed on the storage ring Super-Aco at Orsay university. We have studied the dynamics of the electron beam inside a harmonic RF cavity set on 500 MHz. The impact of the geometric characteristics of the optical cavity on the transverse overlapping between laser radiation and the electron beam has been studied in details. An important part of the work has been the assessment of the optical characterization of the dielectric multi-layer mirrors of the cavity. For that purpose a complete system has been designed to assess the changes in optical properties of mirrors during laser operation. Another important part of this work was the study of the interaction process between laser radiation and the electron bunch leading to saturation. This interaction process has been simulated through a new model and some predictions given by this model have been successfully confronted to experimental data. The installation of the harmonic RF cavity has led to a significant increase of the laser radiation gain and the value of the mean power of the laser radiation has reached 300 mW. An interesting application of this technique is the generation of high energy gamma photons through Compton backscattering. A collimated 35 MeV-energy photon beam has been produced at Super-Aco with a rate of 5.10 6 photons per second. (A.C.)

  18. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  19. Thermo-elasto-plastic simulations of femtosecond laser-induced structural modifications: Application to cavity formation in fused silica

    Science.gov (United States)

    Beuton, Romain; Chimier, Benoît; Breil, Jérôme; Hébert, David; Maire, Pierre-Henri; Duchateau, Guillaume

    2017-11-01

    The absorbed laser energy of a femtosecond laser pulse in a transparent material induces a warm dense matter region relaxation of which may lead to structural modifications in the surrounding cold matter. The modeling of the thermo-elasto-plastic material response is addressed to predict such modifications. It has been developed in a 2D plane geometry and implemented in a hydrodynamic Lagrangian code. The particular case of a tightly focused laser beam in the bulk of fused silica is considered as a first application of the proposed general model. It is shown that the warm dense matter relaxation, influenced by the elasto-plastic behavior of the surrounding cold matter, generates both strong shock and rarefaction waves. Permanent deformations appear in the surrounding solid matter if the induced stress becomes larger than the yield strength. This interaction results in the formation of a sub-micrometric cavity surrounded by an overdense area. This approach also allows one to predict regions where cracks may form. The present modeling can be used to design nanostructures induced by short laser pulses.

  20. High resolution quantum cascade laser studies of the ν3 band of methyl fluoride in solid para-hydrogen.

    Science.gov (United States)

    McKellar, A R W; Mizoguchi, Asao; Kanamori, Hideto

    2011-09-28

    Spectra of solid para-H(2) doped with CH(3)F at 1.8 K are studied in the ν(3) region (~1040 cm(-1)) using a quantum cascade laser source. As shown previously, residual ortho-H(2) in the sample (~1000 ppm) gives rise to distinct spectral features due to clusters of the form CH(3)F-(ortho-H(2))(N), with N = 0, 1, 2, 3, etc. Brief annealing at 7 K is found to give narrower spectral lines (≥0.006 cm(-1)) than conventional (5 K) annealing, and causes the N = 3 and 4 lines to fragment into two or more components. The N = 3 line is observed to be particularly stable and persistent. The N = 0 line (no ortho-H(2) neighbors) is resolved into two closely spaced (≈0.007 cm(-1)) components which are assigned to the K = 0 and 1 states of CH(3)F rotating around its C(3v) symmetry axis (ortho- and para-CH(3)F, respectively). Similar K-structure is also evident for other lines. Weak but persistent features ("N = 1/2 lines") are observed mid way between N = 0 and 1. © 2011 American Institute of Physics

  1. Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements

    Directory of Open Access Journals (Sweden)

    A. T. Vermeulen

    2007-08-01

    Full Text Available A quantum cascade laser spectrometer was evaluated for eddy covariance flux measurements of CH4 and N2O using three months of continuous measurements at a field site. The required criteria for eddy covariance flux measurements including continuity, sampling frequency, precision and stationarity were examined. The system operated continuously at a dairy farm on peat grassland in the Netherlands from 17 August to 6 November 2006. An automatic liquid nitrogen filling system for the infrared detector was employed to provide unattended operation of the system. The electronic sampling frequency was 10 Hz, however, the flow response time was 0.08 s, which corresponds to a bandwidth of 2 Hz. A precision of 2.9 and 0.5 ppb Hz−1/2 was obtained for CH4 and N2O, respectively. Accuracy was assured by frequent calibrations using low and high standard additions. Drifts in the system were compensated by using a 120 s running mean filter. The average CH4 and N2O exchange was 512 ngC m−2 s−1 (2.46 mg m−2 hr−1 and 52 ngN m−2 s−1 (0.29 mg m−2 hr−1. Given that 40% of the total N2O emission was due to a fertilizing event.

  2. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers.

    Science.gov (United States)

    Sakuraba, Ryohsuke; Iwakawa, Kento; Kanno, Kazutaka; Uchida, Atsushi

    2015-01-26

    We experimentally demonstrate fast physical random bit generation from bandwidth-enhanced chaos by using three-cascaded semiconductor lasers. The bandwidth-enhanced chaos is obtained with the standard bandwidth of 35.2 GHz, the effective bandwidth of 26.0 GHz and the flatness of 5.6 dB, whose waveform is used for random bit generation. Two schemes of single-bit and multi-bit extraction methods for random bit generation are carried out to evaluate the entropy rate and the maximum random bit generation rate. For single-bit generation, the generation rate at 20 Gb/s is obtained for physical random bit sequences. For multi-bit generation, the maximum generation rate at 1.2 Tb/s ( = 100 GS/s × 6 bits × 2 data) is equivalently achieved for physical random bit sequences whose randomness is verified by using both NIST Special Publication 800-22 and TestU01.

  3. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France

    Directory of Open Access Journals (Sweden)

    Rabih Maamary

    2016-02-01

    Full Text Available A room-temperature continuous-wave (CW quantum cascade laser (QCL-based methane (CH4 sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2 of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1 detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model of NOAA.

  4. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  5. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Jabłonski, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Krouský, Eduard; Ullschmied, Jiří; Liska, R.; Kucharik, M.

    2015-01-01

    Roč. 57, č. 1 (2015), 014007 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser ion acceleration * laser plasma * fast ignition * ion diagnostics * LICPA Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 2.404, year: 2015

  6. Cavity design for single-frequency Yb:YAB microchip lasers

    International Nuclear Information System (INIS)

    Burns, P.; Dawes, J.M.; Piper, J.A.

    2000-01-01

    Full text: We have proposed a cavity configuration for compact, stable, single-frequency operation in Yb:YAB. Modelling of the cavity output in the infrared and green has shown that sufficient mode discrimination can be achieved within the tuning range of the crystal. Experiments are planned to demonstrate efficient single longitudinal mode infrared operation of the devices that can be extended to include the self-frequency-doubled output. Details of the modelling and preliminary results will be presented at the conference

  7. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    Science.gov (United States)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  8. Effects of low-intensity GaAlAs laser radiation (λ=660 nm) on dentine-pulp interface after class I cavity preparation

    International Nuclear Information System (INIS)

    Godoy, Bruno Miranda

    2003-01-01

    The aim of this study was to investigate the effects of low-intensity irradiation with GaAlAs laser (red emission) on the ultrastructure of dentine-pulp interface after conventionally prepared class I cavity preparation. Two patients with 8 premolars for extraction indicated for orthodontic reasons. Class I cavities were prepared in these teeth that were then divided into two groups. The first group received a treatment with laser with continuous emission, λ=660 nm, with maximum power output of 30 mW. The dosimetry applied was of approximately 2J/cm 2 , directly and perpendicularly into the cavity in only one section. After the irradiation, the cavities were filled with composite resin. The second group received the same treatment, except by the laser therapy. Twenty-eight days after the preparation, the teeth were extracted and were processed for transmission electron microscopy analysis. Two sound teeth, without any preparation, were also studied. The irradiated group presented odontoblastic processes in higher contact with the extracellular matrix and the collagen fibers appeared more aggregated and organized than those of control group. These results were also observed in the healthy-teeth. Thus, we suggest that laser irradiation accelerates the recovery of the dental structures involved in the cavity preparation at the pre-dentine level. (author)

  9. Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Borodziuk, S.; Pisarczyk, T.; Chodukowski, T.; Krouský, Eduard; Mašek, Karel; Skála, Jiří; Ullschmied, Jiří; Rhee, Y.-J.

    2010-01-01

    Roč. 96, č. 25 (2010), "251502-1"-"251502-3" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : collimators * plasma accelerators * plasma density * plasma production by laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.820, year: 2010

  10. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design

    DEFF Research Database (Denmark)

    Bach, L.; Kaiser, W.; Reithmaier, J.P.

    2003-01-01

    Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.......Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device....

  11. Enlargement of the inversionless lasing domain by using broad-area cavities

    CERN Document Server

    Mompart, J; Ahufinger, V; García-Ojalvo, J; Corbalán, R; Vilaseca, R

    2003-01-01

    We investigate analytically and numerically the role of diffraction in the operation of a broad-area inversionless laser in a cascade three-level configuration. Through a linear stability analysis of the trivial non-lasing solution and numerical integration of the corresponding Maxwell-Schroedinger equations, we show that off-axis emission allows stationary inversionless lasing over a cavity detuning range much larger than in small-aspect-ratio cavities and in conventionally inverted three-level lasers. In addition, we investigate inversionless lasing in a self-pulsing regime in the presence of diffraction, which leads to rich spatiotemporal dynamics.

  12. Theory and Modeling of Lasing Modes in Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Benjamin Klein

    1998-01-01

    modes that the VCSEL can support are then determined by matching the gain necessary for the optical system in both magnitude and phase to the gain available from the laser's electronic system. Examples are provided.

  13. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    Science.gov (United States)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an

  14. Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available Self-injection locking of DFB laser implemented through the laser coupling with an external fiber optic ring cavity allows its direct employment as an interrogating light source for a phase sensitive OTDR acoustic sensor. Distributed detection and localization of dynamic perturbations of the optical fiber is experimentally demonstrated at the distance of 9270 m. Keywords: Self-injection locking, Optical fiber resonator, φ-OTDR

  15. Amplification of an Autodyne Signal in a Bistable Vertical-Cavity Surface-Emitting Laser with the Use of a Vibrational Resonance

    Science.gov (United States)

    Chizhevsky, V. N.

    2018-01-01

    For the first time, it is demonstrated experimentally that a vibrational resonance in a polarization-bistable vertical-cavity surface-emitting laser can be used to increase the laser response in autodyne detection of microvibrations from reflecting surfaces. In this case, more than 25-fold signal amplification is achieved. The influence of the asymmetry of the bistable potential on the microvibration-detection efficiency is studied.

  16. Semiconductor Laser with a Self-Pumped Phase Conjugate External Cavity

    Science.gov (United States)

    1992-10-01

    virtually the case for the DPCM . It shows the greatest potential for laser phasing, of any geometry. In that device, two independent pump beams are... DPCM in that respect, except that only a single pump beam is used. Thus its study falls under the self-imposed guidelines of applicability for laser...PPCM, as in its cousin the DPCM , the beams are constrained so that only a single grating is written. Consequently, the reflection intensity is stable [61

  17. High-power extended cavity laser optimized for optical pumping ot Rb

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Číp, Ondřej; Lazar, Josef

    2007-01-01

    Roč. 18, č. 9 (2007), N77-N80 ISSN 0957-0233 R&D Projects: GA ČR GA102/04/2109; GA MŠk(CZ) LC06007; GA AV ČR IAA200650504; GA AV ČR IAA1065303 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * emission linewidth * diffraction grating * optical pumping * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.297, year: 2007

  18. Long Path Quantum Cascade Laser Based Sensor for Environment Sensing/Ambient Detection of CH4 and N2O

    Science.gov (United States)

    Castillo, P. C.; Sydoryk, I.; Gross, B.; Moshary, F.

    2013-12-01

    Methane (CH4) and Nitrous Oxide (N2O) are long-lived greenhouse gases in the atmosphere with significant global warming effects. These gases also are known to be produced in a number of anthropogenic settings such as manure management systems, which releases substantial GHGs and is mandated by the EPA to provide continuous monitoring. In addition, natural gas leaks in urban areas is another source of strong spatially inhomogeneous methane emissions Most open path methods for quantitative detection of trace gases utilize either Fourier Transform Spectrometer (FTIR) or near-IR differential optical absorption spectroscopy (DOAS). Although, FTIR is suitable for ambient air monitoring measurement of more abundant gases such as CO2 and H20 etc., the lack of spectral resolution makes the retrieval of weaker absorbing features such as N20 more difficult. On the other hand, conventional DOAS systems can be large and impractical. As an alternative, we illustrate a robust portable quantum cascade laser (QCL) approach for simultaneous detection of CH4 and N2O. In particular, gas spectra were recorded by ultrafast pulse intensity (thermal) chirp tuning over the 1299 - 1300cm-1 spectral window. Etalon measurements insure stable tuning was obtained. To deal with multiple species, a LSQ spectral fitting approach was used which accounted for both the overlapping trace gases , background water vapor as well as detector drift and calibration. In summary, ambient concentrations of CH4 with and N2O with accuracy < 1% was obtained on the order of 5ms using optical paths of 500 m path length. In addition, unattended long term operation was demonstrated and validations using other sensors when possible were shown to be consistent. The system accuracy is limited by systemic errors, which are still being explored.

  19. Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2007-10-01

    Full Text Available Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error. Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event may be responsible for part of the measured flux.

  20. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    Science.gov (United States)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  1. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    Science.gov (United States)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution

  2. Investigation of cavity mode and excitonic transition in an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser structure by variable-temperature micro-photoluminescence, reflectance and photomodulated reflectance

    International Nuclear Information System (INIS)

    Yu, J L; Chen, Y H; Jiang, C Y; Zhang, H Y

    2012-01-01

    Variable-temperature micro-photoluminescence (μ-PL), reflectance (R) and photomodulated reflectance (PR) have been used to study an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser (VCSEL) structure. μ-PL and R spectra have been recorded at different temperatures between 80 K and 300 K By comparing μ-PL with R spectra, both the excitonic transition and cavity mode are clearly identified. The Variable-temperature μ-PL and PR results of the etched sample with the top distributed Bragg reflectors (DBR) being removed further confirmed our identification. Our results demonstrate that variable-temperature μ-PL is a powerful noninvasive tool to measure accurate the quantum well transition and the cavity mode alignment.

  3. Analytical and Numerical Calculations of Two-Dimensional Dielectric Photonic Band Gap Structures and Cavities for Laser Acceleration

    CERN Document Server

    Samokhvalova, Ksenia R; Liang Qian, Bao

    2005-01-01

    Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.

  4. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  5. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  6. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  7. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  8. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  9. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  10. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  11. Conversion of Stability of Femtosecond Stabilized Mode-locked Laser to Optical Cavity Length

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Číp, Ondřej; Čížek, Martin; Mikel, Břetislav; Lazar, Josef

    2010-01-01

    Roč. 57, č. 3 (2010), s. 636-640 ISSN 0885-3010 R&D Projects: GA ČR GA102/09/1276; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133; GA MPO 2A-3TP1/113; GA ČR GA102/07/1179 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser * Fabry-Perot * interferometer * length etalon Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.460, year: 2010

  12. Microleakage of Self-Etch Adhesive System in Class V Cavities Prepared by Using Er:YAG Laser with Different Pulse Modes.

    Science.gov (United States)

    Phanombualert, Jutipond; Chimtim, Pijitta; Heebthamai, Thitirat; Weera-Archakul, Wilawan

    2015-09-01

    In vitro studies evaluated cementum surface morphology and microleakage of three different energy density parameters of Erbium: Yttrium Aluminum Garnet (Er:YAG) laser compared with diamond bur preparation on class V cavities with self-etch adhesive system and composite resin restoration. Standard class V cavities were prepared at cervical area below the cementoenamel junction (CEJ) in 80 extracted premolars, by using a diamond bur on the buccal surface. All teeth were randomly allocated into four groups: Group 1, diamond bur; Group 2, Er:YAG 50 mJ/15 Hz, 3.77 J/cm(2); Group 3, Er:YAG 75 mJ/15 Hz, 5.65 J/cm(2); and Group 4, Er:YAG 100 mJ/15 Hz, 7.53 J/cm(2). Five cavities from each group were evaluated by scanning electron microscopy (SEM). The 15 remaining cavities from each group were restored with self-etch adhesive and nano-hybrid composite. After thermocycling, all sample teeth were immersed in 0.2% methylene blue dye and sectioned buccolingually. Statistics were analyzed using the one way ANOVA and Mann-Whitney U tests with Bonferroni correction. The morphology showed micro-irregularities in the cementum surface of the laser group with the absence of a smear layer. The microstructure characteristics were increased surface roughness followed by increasing laser energy transmission. The Er:YAG laser groups were statistically significant, with less microleakage than the diamond bur group (pself-etch adhesive system. Therefore, the microleakage of Er:YAG laser irradiation was significantly decreased compared with diamond bur cavities.

  13. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  14. Operational characteristics of dual gain single cavity Nd:YVO laser

    Indian Academy of Sciences (India)

    Diode Pumped Solid State Laser Group; £Biomedical Applications Section, Center for Advanced. Technology, Indore 452 013, .... incident pump power. The overall losses by the coupling optics were not greater than 5%. ... wavelength, n the refractive index of the gain medium, dn/dT the thermal-optic coeffi- cient of n, αT the ...

  15. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    Science.gov (United States)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  16. Optical spectroscopy and energy transfer in amorphous AlN-doped erbium and ytterbium ions for applications in laser cavities.

    Science.gov (United States)

    Maqbool, Muhammad; Corn, Tyler R

    2010-09-15

    Sputter-deposited thin-film amorphous AlN:Er (1 at. %) emits at 554 and 561 nm as a result of (2)H(11/2)→(4)I(15/2) and (4)S(3/2)→(4)I(15/2) transitions. AlN:Yb (1 at. %) gives a weak emission peak at 966 nm as a result of (2)F(5/2)→(2)F(7/2). The codoping of Er and Yb in AlN results in energy transfer from Er(+3) to Yb(+3) and enhances the Yb(+3) emissions by an order of magnitude. Transfer of electrons occurs from the (4)S(3/2) state of Er(+3) to the (2)F(5/2) state of Yb(+3). The weak emission from Yb(+3), when excited by a 532 nm laser in the absence of Er(+3), confirms that the luminescence enhancement in ytterbium is due to energy transfer and not to direct green light excitation by the erbium emission. A possibility of population inversion and a four-level laser cavity formation exists in the Er(+3)-Yb(+3) system.

  17. A feasible procedure in dental practice: the treatment of oral dysplastic hyperkeratotic lesions of the oral cavity with the CO2 laser.

    Science.gov (United States)

    Santos, Nicole R Silva; Aciole, Gilberth T S; Marchionni, Antonio M T; Soares, Luiz G P; dos Santos, Jean Nunes; Pinheiro, Antônio L B

    2010-10-01

    The aim of this work is to report some cases of surgical removal of hyperkeratotic lesions of the oral cavity with the CO(2) laser. Hyperkeratosis is an abnormal thickening of the stratum corneum caused by increased deposition of keratin, and its histopathologic features show wide variations. These changes are significant because they determine different biologic behavior. Several techniques are used to treat these lesions, including scalpel incision, electrosurgery, cryosurgery, photodynamic therapy, and some drugs. The use of surgical lasers has been proposed as an effective way of treating such lesions safely. The CO(2) laser is the most used laser on the oral cavity because of its affinity for water and high absorption by the oral mucosa. Several benefits of the use of the CO(2) laser are reported in the literature in regard to surgical procedures carried out on the oral cavity. All patients had histopathologic diagnosis of hyperkeratosis and mild epithelial dysplasia and were routinely prepared for surgery under local anesthesia. The surgical procedures were carried out by using a CO(2) laser (Sharplan 20 C; Laser Industries, Tel Aviv, Israel, λ10,600 nm, φ∼2 mm, CW/RSP). The beam was focused to delimit each lesion, and then lesions were excised, and the removed specimens were sent for histopathology. At the end of the surgery, the beam was used in a defocused manner to promote better hemostasis. Neither sutures nor dressings were used after the surgery. No medication but mouthwashes was prescribed to all patients in the postoperative period. The use of the CO(2) laser does not reduce the risk of relapses of the lesion, but it is an easy-to-use technique and results in both a quick surgical procedure and trouble-free postoperative period and may be safely used in dental practice.

  18. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Wojcik, Michael D.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2004-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.

  19. Assessment of morphological changes and permeability of apical dentin surfaces induced by Nd:Yag laser irradiation through retrograde cavity surfaces.

    Science.gov (United States)

    Arisu, Hacer Deniz; Bala, Oya; Alimzhanova, Goulnara; Türköz, Emin

    2004-05-15

    The purpose of this in vitro study was to observe the morphological changes and apical dye penetration at apical dentin surfaces induced by Nd:YAG laser irradiation at different power settings with and without a laser initiator. Seventy five single rooted human maxillary anterior teeth were used. Following the establishment of the working lengths, the root canals were enlarged with step-back technique. The apex of each root was resected 3 mm perpendicular to its long axis. Standard Class I cavities of 2 mm depth and 2 mm width were prepared. The teeth were randomly divided into five groups with fifteen teeth in each. In Group 1, the retrograde cavity preparations were lased with Nd:YAG laser at 2 W and those in Group 2 preparations were lased with Nd:YAG laser at 3.2 W. In Group 3, the retrograde cavity surfaces were lased with Nd:YAG laser at 2 W following the application of India ink. Group 4 was lased with the same settings of Group 2 after an absorbent cotton point soaked with India ink was inserted into the cut dentinal surfaces and the inner walls of the apical preparations. Group 5 served as control. Five teeth from each group were examined using scanning electron microscopy (SEM). The amounts of smear layer, debris, and recrystalized dentin present were assessed and scored. Retrograde cavities of ten teeth from each group were filled with amalgam to examine apical dye penetration. The teeth were immersed in 2% basic fuscin and kept for 48 hours. Dye penetration was evaluated by stereomicroscope at a magnification of X10. The results showed the usage of India ink with Nd:YAG laser enhanced the amount of melting and recrystalization of dentin and the radiation and initiator increased the leakage.

  20. 980 nm high brightness external cavity broad area diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2009-01-01

    We demonstrate of-axis spectral beam combining applied to a 980 nm high power broad area diode laser bar. The experiments yielded 9 W of optical power at 30 A of operating current and the measured M2 values of the combined beam from 12 emitters were 1.9 and 6.4 for the fast and the slow axis......, respectively. The slow axis beam quality was 5-6 times better than the value obtained from a single emitter in free running mode. A high brightness of 79 MW/cm2-str was achieved using this configuration. To our knowledge, this is the highest brightness level ever achieved from a broad area diode laser bar....