WorldWideScience

Sample records for carvacrol caryophyllene oxide

  1. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria

    International Nuclear Information System (INIS)

    Monzote, Lianet; Stamberg, Werner; Staniek, Katrin; Gille, Lars

    2009-01-01

    Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some fatalities, leading to its commercial disuse. In this work, we studied the mechanism of toxicity of the essential oil and its major pure ingredients (carvacrol, caryophyllene oxide, and ascaridole, which was synthesized from α-terpinene) with respect to mammalian cells and mitochondria. We observed that all products, but especially caryophyllene oxide, inhibited the mitochondrial electron transport chain. This effect for carvacrol and caryophyllene oxide was mediated via direct complex I inhibition. Without Fe 2+ , ascaridole was less toxic to mammalian mitochondria than other major ingredients. However, evidence on the formation of carbon-centered radicals in the presence of Fe 2+ was obtained by ESR spin-trapping. Furthermore, it was shown that Fe 2+ potentiated the toxicity of ascaridole on oxidative phosphorylation of rat liver mitochondria. The increase of the α-tocopherol quinone/α-tocopherol ratio under these conditions indicated the initiation of lipid peroxidation by Fe 2+ -mediated ascaridole cleavage. Further ESR spin-trapping experiments demonstrated that in addition to Fe 2+ , reduced hemin, but not mitochondrial cytochrome c can activate ascaridole, explaining why ascaridole in peritoneal macrophages from BALB/c mice exhibited a higher toxicity than in isolated mitochondria.

  2. Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits.

    Science.gov (United States)

    Asakawa, Y; Ishida, T; Toyota, M; Takemoto, T

    1986-08-01

    The metabolism of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid was studied in rabbits. Each of these sesquiterpenoids was converted to primary, secondary or tertiary alcohols, among which the primary alcohol was predominant. A vinylic methyl group and an exomethylene group were easily hydroxylated and converted to a glycol via an epoxide in many cases. Eight new metabolites were determined by chemical and spectroscopic methods.

  3. Attenuation of Diabetic Nephropathy by Carvacrol through Anti-oxidative Effects in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hamid Reza Jamshidi

    2018-03-01

    Full Text Available Background and Objectives: Diabetes, a common metabolic disorder, is prevalent in many countries. Nephropathy is a main debate’s side effect. Role of oxidative stress is well known in induction of diabetic nephropathy while carvacrol is a potent anti-oxidant that might attenuate oxidative stress. The aim of this study was to explore the effect of carvacrol in decreasing nephropathy-induced oxidative damage in diabetic rats. Methods: Thirty five Wistar rats (200-250 g were divided to 7 groups. The rats received alloxan (i.p., 200 mg/kg for induction of diabetes. After one week, fasting blood sugar (FBS was assessed and the rats with FBS>250 mg/dL were considered as diabetic. Three weeks after alloxan injection, the blood urea (BUN and creatinine (Cr were determined for confirmation of inducing nephropathy. Then, the animals were treated with carvacrol for one week. Finally, they were anesthetized and blood was collected from animal’s heart for calculation of BUN and Cr. Furthermore, the kidneys were for oxidative stress markers such as glutathione capacity, protein carbonyl, lipid peroxidation and catalase activity. Results: Our results showed that glutathione level and catalase activity significantly increased after treatment with carvacrol. Same results were found in rats that received vitamin E. Also, lipid peroxidation, protein carbonyl content, BUN and Cr levels significantly decreased after treatment with carvacrol in comparison with diabetic rats. Conclusion: Our results showed that carvacrol improved nephropathy-induced oxidative damage similar to vitamin E. Therefore, it may be suggested that carvacrol can be suggested as a useful supplement in decreasing diabetic complaints along with anti-diabetic drugs.

  4. Effect of carvacrol on the oxidative stability of palm oil during frying

    Directory of Open Access Journals (Sweden)

    İnanç, T.

    2014-12-01

    Full Text Available Fats and oils deteriorate physically and chemically at frying temperatures due to several reasons. The objective of this study was to assess the effect of carvacrol on the oxidative stability of palm oil during a repeated frying process. Potatoes were serially fried in carvacrol-added palm oil, BHT-added palm oil and a control oil (without any antioxidants. After each tenth frying cycle, several chemical analyses were carried out on collected samples to evaluate deterioration in the oils. The free fatty acid, para-anisidine, iodine, and total polar component values of the fresh oil were 0.080, 2.85, 57.1 and 7.5, respectively. These values changed to 0.165, 11.80, 46.7, 11.0, respectively for the control oil; 0.151, 11.28, 49.2 and 10.5 for BHT-added oil; 0.140, 7.19, 51.7, 10.0 for carvacrol-added oil after 40 frying cycles. The results revealed that the use of carvacrol could significantly improve the oxidative stability of palm oil when compared to the control samples. This effect was also comparable to BHT. Using carvacrol in frying oil slowed down the rate of the formation of conjugated dienes and trienes compared to the oil with BHT and the control. The frying process significantly changed the viscosity of the oil samples.Las grasas y aceites se deterioran física y químicamente a las temperaturas de fritura debido a diferentes razones. El objetivo de este estudio fue evaluar el efecto del carvacrol en la estabilidad oxidativa del aceite de palma durante el proceso de fritura repetida. Se sometió a fritura repetida patatas en el aceite de palma con carvacrol agregado, en aceite de palma con BHT agregado y en aceite control (sin antioxidante. Después de cada décimo ciclo de fritura, se realizaron diferentes análisis sobre las muestras recogidas para evaluar el deterioro de los aceites. Ácidos grasos libre, para-anisidina, índice de yodo y componentes polares totales del aceite fresco fueron: 0,080, 2,85, 57,1 y 7,5, respectivamente

  5. Caryophyllene oxide exhibits anti-cancer effects in MG-63 human osteosarcoma cells via the inhibition of cell migration, generation of reactive oxygen species and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Zheng Pan

    2016-12-01

    Full Text Available The main objective of the present study was to evaluate the antitumor and apoptotic effects of caryophyllene oxide in MG-63 human osteosarcoma cells. Cell viability of these cells was evaluated by MTT assay while as in vitro wound healing assay was used to study the effect of caryophyllene oxide on cell migration. Fluorescence microscopy and transmission electron microscopy were used to study the changes in cell morphology once the cells undergo apoptosis. Caryophyllene oxide significantly led to cytotoxicity in MG-63 cells showing dose-dependent as well as time-dependent effects. Caryophyllene oxide led to an inhibition of wound closure significantly. At caryophyllene oxide doses of 20, 80 and 120 µM, the percentage of cell migration was shown to be 94.2, 67.1 and 14.8% respectively. With an increase in the caryophyllene oxide dose, the extent of apoptosis also increased characterized by cellular shrinkage, membrane blebbing, chromatin condensation and apoptotic body formation.

  6. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene.

    Science.gov (United States)

    Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru

    2008-12-01

    The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.

  7. Application of Gelidium corneum edible films containing carvacrol for ham packages.

    Science.gov (United States)

    Lim, G O; Hong, Y H; Song, K B

    2010-01-01

    We prepared an edible film of Gelidium corneum (GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life.

  8. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    Science.gov (United States)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  9. Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.

    Science.gov (United States)

    Chalchat, J C; Ozcan, M M

    2006-01-01

    The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.

  10. Biological effects of carvacrol and cinnamaldehyde on Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Angélique Montagu

    2016-07-01

    Full Text Available Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species (ROS in response to environmental stress conditions, such as carvacrol.

  11. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  12. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    2018-06-01

    Full Text Available Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels. Keywords: Caryophyllene, Caryolan-1-ol, Caryophyllene synthase, Caryolan-1-ol synthase, Mevalonate pathway, Bioproduct

  13. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  14. Ex vivo assessment of protective effects of carvacrol against DNA lesions induced in primary rat cells by visible light excited methylene blue (VL+MB).

    Science.gov (United States)

    Slamenova, D; Horvathova, E; Chalupa, I; Wsolova, L; Navarova, J

    2011-01-01

    Carvacrol belongs to frequently occurring phenolic components of essential oils (EOs) and it is present in many kinds of plants. Biological effect of this phenol derivative on human beings is however not sufficiently known. The present study was undertaken to evaluate the level of VL+MB-induced oxidative DNA lesions in hepatocytes and testicular cells (freshly isolated from control or carvacrol-watered rats) by the modified single cell gel electrophoresis (SCGE). The results showed that carvacrol significantly reduced the level of VL+MB-induced oxidized bases (EndoIII- and Fpg-sensitive sites) only in hepatocytes but not in testicular cells. Chromosomal aberration assay of primary hepatocytes, isolated from control or carvacrol-watered rats did not testify any genotoxic activity of carvacrol. We suggest that in vivo applied synthetic carvacrol, whose antioxidative activity was confirmed by DPPH assay, exhibits primarily a strong hepatoprotective activity against oxidative damage to DNA.

  15. Protective Effect of Carvacrol Against Oxidative Stress and Heart Injury in Cyclophosphamide-Induced Cardiotoxicity in Rat

    Directory of Open Access Journals (Sweden)

    Songul Cetik

    2015-08-01

    Full Text Available Possible protective effects of carvacrol (Car against cyclophosphamide (CP-induced cardiotoxicity was examined in this study. Experimental groups of the rats were randomly divided into 13 groups,each including seven animals: Group 1 (control treated with saline; groups 2, 3, and 4 treated with 50, 100, or 150 mg/kg of CP, respectively; group 5 treated with 0.5 mL olive oil; groups 6 and 7 treated with 5.0 and 10 mg/kg of Car, respectively; groups 8, 9, or 10 treated with respective CP plus 5.0 mg/kg of Car; and groups 11, 12, or 13 treated with respective CP plus 10 mg/kg of Car. Serum alanine transaminase (ALT,aspartat transaminase (AST, lactate dehydrogenase (LDH, malondialdehyde (MDA,creatine kinase-MB (CK-MB, total oxidant state (TOS, oxidative stress index (OSI, and levels were high only in the CP groups. There was a dose-dependence on the CP-induced cardiotoxicity. Hemorrhage, inflammatory cell infiltration and the separation of the muscle fibers in the heart tissue supported the biochemical data. With 5.0 and 10 mg/kg Car, there was an important decrease in the CP toxicity and this was related to the oxidative and nitrosative stress in the CP-induced cardiotoxicity. Reduced inflammation and lipid peroxidation in the heart tissue and increase of serum glutathione (GSH and total antioxidant capacity (TAS levels were found when carvacrol was applied. Based on these findings, it could be proposed that Car was a strong candidate in preventing the CP-induced cardiotoxicity but further clinical studies should be done in order to verify its application on humans.

  16. Carvacrol: from ancient flavoring to neuromodulatory agent.

    Science.gov (United States)

    Zotti, Margherita; Colaianna, Marilena; Morgese, Maria Grazia; Tucci, Paolo; Schiavone, Stefania; Avato, Pinarosa; Trabace, Luigia

    2013-05-24

    Oregano and thyme essential oils are used for therapeutic, aromatic and gastronomic purposes due to their richness in active substances, like carvacrol; however, the effects of the latter on the central nervous system have been poorly investigated. The aim of our study was to define the effects of carvacrol on brain neurochemistry and behavioural outcome in rats. Biogenic amine content in the prefrontal cortex and hippocampus after chronic or acute oral carvacrol administration was measured. Animals were assessed by a forced swimming test. Carvacrol, administered for seven consecutive days (12.5 mg/kg p.o.), was able to increase dopamine and serotonin levels in the prefrontal cortex and hippocampus. When single doses were used (150 and 450 mg/kg p.o.), dopamine content was increased in the prefrontal cortex at both dose levels. On the contrary, a significant dopamine reduction in hippocampus of animals treated with 450 mg/kg of carvacrol was found. Acute carvacrol administration only significantly reduced serotonin content in either the prefrontal cortex or in the hippocampus at the highest dose. Moreover, acute carvacrol was ineffective in producing changes in the forced swimming test. Our data suggest that carvacrol is a brain-active molecule that clearly influences neuronal activity through modulation of neurotransmitters. If regularly ingested in low concentrations, it might determine feelings of well-being and could possibly have positive reinforcer effects.

  17. Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene

    Directory of Open Access Journals (Sweden)

    M. E. Jenkin

    2012-06-01

    Full Text Available A degradation mechanism for β-caryophyllene has recently been released as part of version 3.2 of the Master Chemical Mechanism (MCM v3.2, describing the gas phase oxidation initiated by reaction with ozone, OH radicals and NO3 radicals. A detailed overview of the construction methodology is given, within the context of reported experimental and theoretical mechanistic appraisals. The performance of the mechanism has been evaluated in chamber simulations in which the gas phase chemistry was coupled to a representation of the gas-to-aerosol partitioning of 280 multi-functional oxidation products. This evaluation exercise considered data from a number of chamber studies of either the ozonolysis of β-caryophyllene, or the photo-oxidation of β-caryophyllene/NOx mixtures, in which detailed product distributions have been reported. This includes the results of a series of photo-oxidation experiments performed in the University of Manchester aerosol chamber, also reported here, in which a comprehensive characterization of the temporal evolution of the organic product distribution in the gas phase was carried out, using Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS, in conjunction with measurements of NOx, O3 and SOA mass loading. The CIR-TOF-MS measurements allowed approximately 45 time-resolved product ion signals to be detected, which were assigned on the basis of the simulated temporal profiles of the more abundant MCM v3.2 species, and their probable fragmentation patterns. The evaluation studies demonstrate that the MCM v3.2 mechanism provides an acceptable description of β-caryophyllene degradation under the chamber conditions considered, with the temporal evolution of the observables identified above generally being recreated within the uncertainty bounds of key parameters within the mechanism. The studies have highlighted a number of areas of uncertainty or discrepancy

  18. Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products.

    Science.gov (United States)

    Gray Bé, Ariana; Upshur, Mary Alice; Liu, Pengfei; Martin, Scot T; Geiger, Franz M; Thomson, Regan J

    2017-07-26

    The formation of atmospheric cloud droplets due to secondary organic aerosol (SOA) particles is important for quantifying the Earth's radiative balance under future, possibly warmer, climates, yet is only poorly understood. While cloud activation may be parametrized using the surface tension depression that coincides with surfactant partitioning to the gas-droplet interface, the extent to which cloud activation is influenced by both the chemical structure and reactivity of the individual molecules comprising this surfactant pool is largely unknown. We report herein considerable differences in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from α-pinene and β-caryophyllene, the most abundant of the monoterpenes and sesquiterpenes, respectively, that are emitted over the planet's vast forest ecosystems. Oxidation products derived from β-caryophyllene were found to exhibit significantly higher surface activity than those prepared from α-pinene, with the critical supersaturation required for cloud droplet activation reduced by 50% for β-caryophyllene aldehyde at 1 mM. These considerable reductions in the critical supersaturation were found to coincide with free energies of adsorption that exceed ∼25 kJ/mol, or just one hydrogen bond equivalent, depending on the ammonium sulfate and oxidation product concentration in the solution. Additional experiments showed that aldehyde-containing oxidation products exist in equilibrium with hydrated forms in aqueous solution, which may modulate their bulk solubility and surface activity. Equilibration time scales on the order of 10 -5 to 10 -4 s calculated for micrometer-sized aerosol particles indicate instantaneous surface tension depression in the activation processes leading to cloud formation in the atmosphere. Our findings highlight the underlying importance of molecular structure and reactivity when considering cloud condensation activity in

  19. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function

    Directory of Open Access Journals (Sweden)

    Max Krepker

    2018-01-01

    Full Text Available Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP cast films were produced by incorporating carvacrol (a model EO or carvacrol, loaded into halloysite nanotubes (HNTs, via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films’ mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata. The PP/(HNTs-carvacrol nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.

  20. Effect of Carvacrol on Salmonella Saintpaul Biofilms on Stainless ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of carvacrol against Salmonella Saintpaul biofilms on stainless steel surface. Methods: The effects of carvacrol on planktonic cells were evaluated by determining the minimum inhibitory concentration and minimal bactericidal concentration. The action of carvacrol on Salmonella Saintpaul ...

  1. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea.

    Science.gov (United States)

    Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B

    2007-08-27

    This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.

  2. Chemical composition of essential oil in Mosla chinensis Maxim cv. Jiangxiangru and its inhibitory effect on Staphylococcus aureus biofilm formation

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2018-03-01

    Full Text Available The essential oil of Mosla chinensis Maxim cv. Jiangxiangru is known for its antibacterial ability. This study aimed to investigate the chemical composition of Jiangxiangru essential oil and its inhibitory effect on Staphylococcus aureus biofilm formation. Gas chromatography/mass spectrometry (GC–MS was used to determine the chemical composition of Jiangxiangru essential oil. Subsequently, the eight major chemical components were quantitatively analyzed using GC– MS, and their minimum inhibitory concentration (MIC values against S. aureus were tested. Biofilm formation was detected by crystal violet semi-quantitative method and silver staining. Of the 59 peaks detected, 29 were identified by GC–MS. Of these peaks, thymol, carvacrol, p-cymene, γ-terpinene, thymol acetate, α-caryophyllene, 3-carene, and carvacryl acetate were present at a relatively higher concentration. The results of the quantitative test showed that thymol, carvacrol, p-cymene, and γ-terpinene were the major components of the essential oil. Among the eight reference substances, only thymol, carvacrol, and thymol acetate had lower MICs compared with the essential oil. Essential oil, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene showed the better inhibition of S. aureus biofilm formation. When one fourth of the MIC concentrations were used for these substances (0.0625 mg/mL for essential oil, 0.0305 mg/mL for carvacrol, 1.458 mg/mL for carvacryl acetate, 0.1268 mg/mL for α-caryophyllene, and 2.5975 mg/mL for 3-carene, the inhibition rates were over 80%. However, thymol, γ-terpinene, thymol acetate, and p-cymene showed a relatively poor inhibition of S. aureus biofilm formation. When 1× MIC concentrations of these substances were used, the inhibition rates were less than 50%. In conclusion, Jiangxiangru essential oil and its major components, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene, strongly inhibited biofilm formation in S. aureus.

  3. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    Science.gov (United States)

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2018-01-01

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (pcells by detecting vWF and VE-cadherin expression (pmesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (pmesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Dai W

    2016-04-01

    Full Text Available Wei Dai,1,2 Changfu Sun,1,2 Shaohui Huang,1,2 Qing Zhou1,21Department of Oromaxillofacial-Head and Neck Surgery, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People’s Republic of ChinaAbstract: Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.Keywords: carvacrol, proliferation, metastasis and invasion, oral squamous cell carcinoma

  5. Evaluation of the Impact of Varied Carvacrol Concentrations on Salmonella Recovery in Oregano and How Corn Oil Can Minimize the Effect of Carvacrol during Preenrichment.

    Science.gov (United States)

    Beaubrun, Junia Jean-Gilles; Addy, Nicole; Keltner, Zachary; Farris, Samantha; Ewing, Laura; Gopinath, Gopal; Hanes, Darcy E

    2018-06-01

    Phenolic compounds, like carvacrol, in oregano interfere with the detection of foodborne pathogens such as Salmonella enterica. Carvacrol concentration varies based on plant cultivars and growth region. Six oregano cultivars were used to compare the impact of carvacrol concentration on Salmonella and to evaluate the effectiveness of corn oil to help increase Salmonella survival for detection. The results of Agilent 1200 series high-performance liquid chromatography analysis showed that carvacrol concentration in the six oregano cultivars ranged from 64 to 11,200 ppm. Oregano samples were artificially contaminated with S. enterica and were preenriched in Trypticase soy broth with or without 2% (v/v) corn oil. After 18 to 24 h at 37°C, aliquots were transferred to selective enrichment broths. Salmonella was recovered onto xylose lysine Tergitol 4 agar. Six Salmonella serovars were compared, and recovery varied based on carvacrol concentration and serovar. Samples with higher concentrations of carvacrol showed Salmonella recovery only when they were preenriched with corn oil. Based on metagenomic analysis, the microflora associated with the oregano also varied per cultivar. The results show that, as carvacrol levels increased, Salmonella survival decreased. However, the addition of corn oil to the preenrichment broth can minimize the antimicrobial effects of the phenolic compounds, thus allowing for increased detection of Salmonella from oregano cultivars.

  6. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    Science.gov (United States)

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  7. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci.

    Directory of Open Access Journals (Sweden)

    Gloria eMagi

    2015-03-01

    Full Text Available In the present study, we have evaluated the in vitro antibacterial activity of essential oils from Origanum vulgare, Thymus vulgaris, Lavandula angustifolia, Mentha piperita, and Melaleuca alternifolia against 32 erythromycin-resistant [MIC ≥1 µg/mL; inducible, constitutive, and efflux-mediated resistance phenotype; erm(TR, erm(B, and mef(A genes] and cell-invasive Group A streptococci (GAS isolated from children with pharyngotonsillitis in Italy. Over the past decades erythromycin resistance in GAS has emerged in several countries; strains combining erythromycin resistance and cell invasiveness may escape β-lactams because of intracellular location and macrolides because of resistance, resulting in difficulty of eradication and recurrent pharyngitis. Thyme and origanum essential oils demonstrated the highest antimicrobial activity with MICs ranging from 256 to 512 µg/mL. The phenolic monoterpene carvacrol [2-Methyl-5-(1-methylethyl phenol] is a major component of the essential oils of Origanum and Thymus plants. MICs of carvacrol ranged from 64 to 256 µg/mL. In the live/dead assay several dead cells were detected as early as 1 h after incubation with carvacrol at the MIC. In single-step resistance selection studies no resistant mutants were obtained. A synergistic action of carvacrol and erythromycin was detected by the checkerboard assay and calculation of the FIC Index. A 2- to 2048-fold reduction of the erythromycin MIC was documented in checkerboard assays. Synergy (FIC Index ≤0.5 was found in 21/32 strains and was highly significant (p <0.01 in strains where resistance is expressed only in presence of erythromycin. Synergy was confirmed in 17/23 strains using 24-h time-kill curves in presence of carvacrol and erythromycin. Our findings demonstrated that carvacrol acts either alone or in combination with erythromycin against erythromycin-resistant GAS and could potentially serve as a novel therapeutic tool.

  8. Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil

    International Nuclear Information System (INIS)

    Dias, Daiane de O; Colombo, Mariana; Kelmann, Regina G.; De Souza, Tatiane P.; Bassani, Valquiria L.; Teixeira, Helder F.; Veiga, Valdir F.; Limberger, Renata P.

    2012-01-01

    Highlights: ► A SPME-CG method is proposed for β-caryophyllene assay in nanoemulsions containing copaiba oil. ► SPME parameters were optimized for efficient β-caryophyllene extraction. ► The stability-indicating capability and specificity of the method were satisfied. ► Nanoemulsions partially protected β-caryophyllene under stressing conditions. ► The proposed method presents linearity, lows LOD and LOQ, good precision, accuracy and robustness. - Abstract: Recent studies have shown the anti-inflammatory activity of Copaiba oils may be addressed to the high content of β-caryophyllene, the most common sesquiterpene detected, especially in the Copaifera multijuga Hayne species. In the present study, nanoemulsions were proposed as a delivery system for copaiba oil in view to treat locally inflamed skin. This article describes the optimization and validation of a stability-indicating SPME-GC method, for β-caryophyllene analysis in the nanoemulsions produced by high pressure homogenization. SPME methods are performed with PDMS (polydimethylsiloxane) fiber (100 μm). Three SPME parameters were evaluated by a three-level-three-factor Box–Behnken factorial design as potentially affecting the technique efficiency. According to the results obtained, the best conditions to extract β-caryophyllene were: (i) sampling temperature of 45 °C, (ii) sampling time of 20 min and (iii) no NaCl addition. Results coming from the forced degradation tests showed a reduction of β-caryophyllene peak area when both caryophyllene methanolic solution and nanoemulsions were exposed to acid hydrolysis, UV-A irradiation, oxidative (H 2 O 2 ) and thermolitic (60 °C) conditions. Such reduction occurred in lower extent in the nanoemulsions, suggesting a protective effect of the formulation to β-caryophyllene content. Since no degradation products were detected in the same retention time of β-caryophyllene, the specificity of the method was demonstrated. The method was linear in

  9. Optimization of headspace solid-phase microextraction for analysis of {beta}-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Daiane de O; Colombo, Mariana; Kelmann, Regina G. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); De Souza, Tatiane P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal do Amazonas, Manaus, Amazonas (Brazil); Bassani, Valquiria L.; Teixeira, Helder F. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); Veiga, Valdir F. [Departamento de Quimica, Instituto de Ciencias Exatas, UFAM, Av. Gal. Rodrigo Octavio, 6.200 - Japiim, 69.079-000, Manaus - AM (Brazil); Limberger, Renata P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Av. Ipiranga, 2752, CEP 90610-000 (Brazil); and others

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer A SPME-CG method is proposed for {beta}-caryophyllene assay in nanoemulsions containing copaiba oil. Black-Right-Pointing-Pointer SPME parameters were optimized for efficient {beta}-caryophyllene extraction. Black-Right-Pointing-Pointer The stability-indicating capability and specificity of the method were satisfied. Black-Right-Pointing-Pointer Nanoemulsions partially protected {beta}-caryophyllene under stressing conditions. Black-Right-Pointing-Pointer The proposed method presents linearity, lows LOD and LOQ, good precision, accuracy and robustness. - Abstract: Recent studies have shown the anti-inflammatory activity of Copaiba oils may be addressed to the high content of {beta}-caryophyllene, the most common sesquiterpene detected, especially in the Copaifera multijuga Hayne species. In the present study, nanoemulsions were proposed as a delivery system for copaiba oil in view to treat locally inflamed skin. This article describes the optimization and validation of a stability-indicating SPME-GC method, for {beta}-caryophyllene analysis in the nanoemulsions produced by high pressure homogenization. SPME methods are performed with PDMS (polydimethylsiloxane) fiber (100 {mu}m). Three SPME parameters were evaluated by a three-level-three-factor Box-Behnken factorial design as potentially affecting the technique efficiency. According to the results obtained, the best conditions to extract {beta}-caryophyllene were: (i) sampling temperature of 45 Degree-Sign C, (ii) sampling time of 20 min and (iii) no NaCl addition. Results coming from the forced degradation tests showed a reduction of {beta}-caryophyllene peak area when both caryophyllene methanolic solution and nanoemulsions were exposed to acid hydrolysis, UV-A irradiation, oxidative (H{sub 2}O{sub 2}) and thermolitic (60 Degree-Sign C) conditions. Such reduction occurred in lower extent in the nanoemulsions, suggesting a protective effect of the formulation to {beta}-caryophyllene

  10. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats

    International Nuclear Information System (INIS)

    Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V.

    2011-01-01

    Carvacrol is the major constituent of essential oils from aromatic plants. It showed antimicrobial, anticancer and antioxidant properties. Although it was approved for food use and included in the chemical flavorings list, no indication on its safety has been estimated. Since the use of plant extracts is relatively high among women, aim of this study was to evaluate carvacrol effects on female physiology and endocrine profiles by using female rats in proestrus and diestrus phases. Serotonin and metabolite tissue content in prefrontal cortex and nucleus accumbens, after carvacrol administration (0.15 and 0.45 g/kg p.o.), was measured. Drug effects in behavioral tests for alterations in motor activity, depression, anxiety-related behaviors and endocrine alterations were also investigated. While in proestrus carvacrol reduced serotonin and metabolite levels in both brain areas, no effects were observed in diestrus phase. Only in proestrus phase, carvacrol induced a depressive-like behavior in forced swimming test, without accompanying changes in ambulation. The improvement of performance in FST after subchronic treatment with fluoxetine (20 mg/kg) suggested a specific involvement of serotonergic system. No differences were found across the groups with regard to self-grooming behavior. Moreover, in proestrus phase, carvacrol reduced only estradiol levels without binding hypothalamic estradiol receptors. Our study showed an estrous-stage specific effect of carvacrol on depressive behaviors and endocrine parameters, involving serotonergic system. Given the wide carvacrol use not only as feed additive, but also as cosmetic essence and herbal remedy, our results suggest that an accurate investigation on the effects of its chronic exposure is warranted. - Highlights: → Carvacrol induced a depressive-like phenotype in rats, depending on ovarian cyclicity. → Carvacrol selectively reduced serotonin content in female rats in proestrus phase. → Carvacrol reduced serotonin

  11. Antibacterial Effect of Carvacrol and Coconut Oil on Selected Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Božik M.

    2018-03-01

    Full Text Available Essential oils play a prominent role as flavouring agents and fragrances in the food and perfume industries. Carvacrol is a major component of various essential oils, such as oregano and thyme oils, and is responsible for their antimicrobial activity. Lauric acid is a medium-chain fatty acid (MCFA with a high antibacterial potential. Both carvacrol and MCFAs have been used empirically as antimicrobial agents. Here, we tested the inhibitory properties of carvacrol and coconut (Cocos nucifera L. oil containing a high percentage of MCFAs against 5 harmful bacterial pathogens: Escherichia coli, Salmonella Enteritidis, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus cecorum. Gas chromatography (GC-FID analysis of coconut oil showed a high concentration of lauric acid (41%. Microdilution antimicrobial assays showed that the combination of carvacrol and coconut oil had a stronger antibacterial effect against all tested bacteria than both agents separately. We conclude that carvacrol could significantly improve the antibacterial effect of coconut oil.

  12. CCN activity and volatility of β-caryophyllene secondary organic aerosol

    DEFF Research Database (Denmark)

    Frosch, M.; Bilde, Merete; Nenes, A.

    2013-01-01

    In a series of smog chamber experiments, the cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) generated from ozonolysis of beta-caryophyllene was characterized by determining the CCN derived hygroscopicity parameter, kappa(CCN), from experimental data. Two types of CCN...... in experiments without an OH scavenger (i.e. where OH was produced during ozonolysis). In other experiments, lights were turned on, either without or with the addition of HONO (OH source). This led to the formation of more CCN active SOA. SOA was aged up to 30 h through exposure to ozone and (in experiments...... with no OH scavenger present) to OH. In all experiments, the derived kappa(CCN) consistently increased with time after initial injection of beta-caryophyllene, showing that chemical ageing increases the CCN activity of beta-caryophyllene SOA. kappa(CCN) was also observed to depend on supersaturation, which...

  13. Application of edible coating with starch and carvacrol in minimally processed pumpkin.

    Science.gov (United States)

    Santos, Adriele R; da Silva, Alex F; Amaral, Viviane C S; Ribeiro, Alessandra B; de Abreu Filho, Benicio A; Mikcha, Jane M G

    2016-04-01

    The present study evaluated the effect of an edible coating of cassava starch and carvacrol in minimally processed pumpkin (MPP). The minimal inhibitory concentration (MIC) of carvacrol against Escherichia coli, Salmonella enterica serotype Typhimurium, Aeromonas hydrophila, and Staphylococcus aureus was determined. The edible coating that contained carvacrol at the MIC and 2 × MIC was applied to MPP, and effects were evaluated with regard to the survival of experimentally inoculated bacteria and autochthonous microflora in MPP. Total titratable acidity, pH, weight loss, and soluble solids over 7 days of storage under refrigeration was also analyzed. MIC of carvacrol was 312 μg/ml. Carvacrol at the MIC reduced the counts of E. coli and S. Typhimurium by approximately 5 log CFU/g. A. hydrophila was reduced by approximately 8 log CFU/g, and S. aureus was reduced by approximately 2 log CFU/g on the seventh day of storage. Carvacrol at the 2 × MIC completely inhibited all isolates on the first day of Storage. coliforms at 35 °C and 45 °C were not detected (< 3 MPN/g) with either treatment on all days of shelf life. The treatment groups exhibited a reduction of approximately 2 log CFU/g in psychrotrophic counts compared with controls on the last day of storage. Yeast and mold were not detected with either treatment over the same period. The addition of carvacrol did not affect total titratable acidity, pH, or soluble solids and improved weight loss. The edible coating of cassava starch with carvacrol may be an interesting approach to improve the safety and microbiological quality of MPP.

  14. Carvacrol importance in veterinary and human medicine as ecologic insecticide and acaricide

    Directory of Open Access Journals (Sweden)

    Vučinić Marijana

    2011-01-01

    Full Text Available Carvacrol is an active ingredient of essential oils from different plants, mainly from oregano and thyme species. It poseses biocidal activity agains many artropodes of the importance for veterinary and human medicine. Carvacrol acts as repelent, larvicide, insecticide and acaricide. It acts against pest artropodes such as those that serve as mechanical or biological vectors for many causal agents of viral, bacterial and parasitic diseases for animals and humans. Therefore, it may be used not only in pest arthropodes control but in vector borne diseases control, too. In the paper carvacrol bioactivity against mosquitoes, house flies, cockroaches, ticks and mites are described. Potencial modes of carvacrol action on artropodes are given, too. Carvacrol reachs its biotoxicity against arthropodes alone or in combination with other active ingredients from the same plant of its origin, such as tymol, cymen or others. The paper explains reasons for frequently investigations on essential oils and other natural products of plant origin to their biotoxicity against food stored pest or pest of medicinal importance, as well as, needs for their use in agriculture, veterinary and human medicine.

  15. Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats

    Directory of Open Access Journals (Sweden)

    N. Chami

    Full Text Available Carvacrol and eugenol, the main (phenolic components of essential oils of some aromatic plants, were evaluated for their therapeutic efficacy in the treatment of experimental oral candidiasis induced by Candida albicans in immunosuppressed rats. This anticandidal activity was analyzed by microbiological and histopathological techniques, and it was compared with that of nystatin, which was used as a positive control. Microbiologically, carvacrol and eugenol significantly (p<0.05 reduced the number of colony forming units (CFU sampled from the oral cavity of rats treated for eight consecutive days, compared to untreated control rats. Treatment with nystatin gave similar results. Histologically, the untreated control animals showed numerous hyphae on the epithelium of the dorsal surface of the tongue. In contrast no hyphal colonization of the epithelium was seen in carvacrol-treated animals, while in rats treated with eugenol, only a few focalized zones of the dorsal surface of the tongue were occupied by hyphae. In the nystatin treated group, hyphae were found in the folds of the tongue mucosa. Thus, the histological data were confirmed by the microbiological tests for carvacrol and eugenol, but not for the nystatin-treated group. Therefore, carvacrol and eugenol could be considered as strong antifungal agents and could be proposed as therapeutic agents for oral candidiasis.

  16. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema.

    Science.gov (United States)

    Games, Ellen; Guerreiro, Marina; Santana, Fernanda R; Pinheiro, Nathalia M; de Oliveira, Emerson A; Lopes, Fernanda D T Q S; Olivo, Clarice R; Tibério, Iolanda F L C; Martins, Mílton A; Lago, João Henrique G; Prado, Carla M

    2016-10-20

    Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes ( p -cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). Mices received porcine pancreatic elastase (PPE) and were treated with p -cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma ( p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide ( p < 0.05). Monoterpenes p -cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.

  17. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    Science.gov (United States)

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  18. Molecular interactions and redox effects of carvacrol and thymol on myofibrillar proteins using a non-destructive and solvent-free methodological approach.

    Science.gov (United States)

    Lahmar, Aida; Akcan, Tolga; Chekir-Ghedira, Leila; Estévez, Mario

    2018-04-01

    The present study provides molecular insight into the effect of thymol and carvacrol on the oxidative damage caused to myofibrillar proteins by a hydroxyl-radical generating system (HRGS). An innovative model system was designed, in which gels, prepared with increasing levels of myofibrillar proteins, were oxidized by a HRGS (Fe 3+ /H 2 O 2 , 60 °C and 7 days) in the presence of lipids. The molecular affinity between myofibrillar proteins and both terpenes, as well as their effect on the oxidative stability of the gel systems, were studied using a non-destructive and solvent-free procedure based on fluorescence spectroscopy. Carvacrol displayed more affinity than thymol for establishing chemical interactions with protein residues. Both terpenes exhibited a significant antioxidant potential against the generation of lipid-derived volatile carbonyls and against the formation of protein crosslinking. This procedure may be applied to meat products to assess the effectiveness of a given antioxidant additive without size reduction or sample processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  20. ANTIPROLIFERATIVE AND APOPTOTIC EFFECTS OF THE ESSENTIAL OIL OF ORIGANUM ONITES AND CARVACROL ON HEP-G2 CELLS

    Directory of Open Access Journals (Sweden)

    Özlem TOMSUK

    2011-08-01

    Full Text Available The essential oil Origanum onites L. and its phenolic constituent carvacrol were examined for their cytotoxic and apoptotic effects in a human hepatocellular carcinoma cells Hep-G2. WST-1 and neutral red uptake assays were performed to determine the inhibitory effects of the oil and carvacrol on the growth of the cells. Possible induction of apoptosis by Origanum oil and carvacrol was further investigated by acridine orange/ethidium bromide (AO/EB staining. Results showed that the Ori- ganum oil and carvacrol was significantly cytotoxic and induced apoptosis in Hep-G2 cells. IC₅₀ value of essential oil and carvacrol was found about 0,009% (v/v and 500 μM, respectively. After incuba- tion of the cells with Origanum oil and carvacrol, characteristics of apoptotic morphology such as chromatin condensation, shrinkage of the cells and cytoplasmic blebbing was observed. In conclusion, both essential oil and its major constituent carvacrol significantly exhibited cytotoxic and apoptotic activities in hepatocellular carcinoma cells, indicating its potential for use as an anticancer agent.

  1. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D.; Shubert, V. A. [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); Giuliano, B. M. [Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid (Spain); Schnell, M., E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg (Germany)

    2014-07-21

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  2. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    International Nuclear Information System (INIS)

    Schmitz, D.; Shubert, V. A.; Giuliano, B. M.; Schnell, M.

    2014-01-01

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules

  3. Protective Effect of Carvacrol on Renal Functional and Histopathological Changes in Gentamicin-Induced-Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2016-04-01

    Full Text Available Background Nephrotoxicity is one of the most important side effects of the use of gentamicin sulphate (GS resulted in reactive oxygen species generation. Antioxidant compounds played effective roles in reduction of renal injuries caused by using of gentamicin. Carvacrol is a strong antioxidant compound. Objectives The aim of this study is to explore the effect of carvacrol inhibition in lesions of gentamicin-induced nephrotoxicity. Materials and Methods In this experimental study, 32 male mature Sprague-Dawley rats were divided into 4 groups of 8; group1: control, group 2 sham received daily carvacrol injection (74 mg/kg for 12 days, group 3 received daily GS injection (100 mg/kg for 12 days, group 4 received daily GS (100 mg/kg and carvacrol (74 mg/kg for 12 days. After 12 days, rats were anaesthetized, blood sample were obtained and kidneys were removed then stained with hematoxylin and eosin method and then were studied histophatologically. Serum creatinine and urea were measured. Results Flow treatment of nephrotoxic animals with carvacrol could significantly inhibit leukocyte infiltration (9.42% and tubular necrosis (38.18% in comparison with the nephrotoxic untreated group. Carvacrol significantly decreased the levels of urea and creatinine in treated group compared with the nephrotoxic untreated group. Conclusions The findings showed that carvacrol alleviates loss of leukocyte infiltration (9.42% and tubular necrosis and exerts beneficial effects on kidney function test in nephrotoxic group.

  4. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    Science.gov (United States)

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  5. Effect of carvacrol on O157 and non-O157 Shiga toxin producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Alexandros Stratakos

    2017-06-01

    Full Text Available Shiga toxin Escherichia coli (STEC strains are important foodborne bacteria linked to diarrhea, enteritis, hemolytic-uremic syndrome and in some cases death. E. coli O157:H7 is the most common strain amongst STECs however non-O157 STECs have been connected with several outbreaks on an international level.  The use of natural plant extracts to reduce the risk from foodborne pathogens is gaining increasing importance. Therefore in this study, we tested the antibacterial effect of carvacrol, a major component of oregano essential oil, on E. coli serogroups O157, O26, O45, O103, O111, O121, O145 as well as serogroup O104 responsible for the massive outbreak in Germany in 2011. Carvacrol showed antibacterial effect on all strains tested. The relative electric conductivity was assessed in order to investigate the changes in membrane permeability and thus to investigate the antimicrobial mechanism of carvacrol. Results showed that the relative conductivity increased with increasing concentrations of carvacrol which showed that there was an increasing leakage of electrolytes due to disruption of the cell membrane. The data presented here revealed that carvacrol has the potential to be used as a natural antimicrobial against STECs.

  6. Effects of GST Polymorphism on Ameliorative Effect of Curcumin and Carvacrol against DNA Damage Induced by Combined Treatment of Malathion and Parathion

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2016-04-01

    Full Text Available Background: Organophosphorus pesticides has been widely used in agriculture fields to control various crop insects and their extensive use pose human life at threat because of their adverse effects on human health. In this study, we checked the effects of GST polymorphism on ameliorative effect of curcumin and carvacrol against DNA damages. Methods: Comet assay was used to assess the DNA damage and results were expressed as Tail moment. Heparinised fresh blood from healthy individuals was treated with combined concentration of malathion and parathion (i.e. 30 µg/ml of malathion and 2.5 µg/ml of parathion in presence of combination of curcumin and carvacrol (25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol in order to observe the ameliorative role of curcumin and carvacrol. Multiplex PCR was performed for GSTM1 and GSTT1 genotyping. Results: Curcumin in combination with carvacrol (i.e. 25 µg/ml curcumin + 2.5 µg/ml carvacrol and 50 µg/ml curcumin + 5.0 µg/ml carvacrol significantly reduced the DNA damage caused by combined action of malathion and parathion which supports their antigenotoxic property. No significant relationship of GSTT1 and GSTM1 polymorphism with genotoxicity of both the pesticides and antigenotoxic potential of curcumin and carvacrol was observed. Conclusion: Malathion and parathion were genotoxic in human PBL. Curcumin and carvacrol had an antigenotoxic effect against the malathion and parathion while there was not any significant effect of GSTT1 and GSTM1 polymorphism on genotoxicity of these pesticides and antigenotoxicity of curcumin and carvacrol.

  7. [Determination of carvacrol and thymol in Mosla chinensis by HPLC].

    Science.gov (United States)

    Ji, Li; Wang, Fang; Liu, Yuan-yan; Tong, Yan; Li, Xian-duan; Feng, Xue-feng; Huang, Lu-qi; Zhou, Guo-ping

    2004-11-01

    To establish a quantitative method of determination of carvacrol and thymol in Mosla chinensis. The sample was extracted with 95% ethanol, ODS column was used with methanol-water-acetic acid (60:40:2) as mobile phase. The detection wavelength was set at 274 nm. The linearities of carvacrol and thymol were respectively in the range of 0.23-2.15 microg (r = 0.9999) and 0.39-2.36 microg (r = 0.9999); the average recoveries were 99.9% (RSD 1.4%) and 98.6% (RSD 1.3%); the RSD of repeatability were 1.1% and 1.6%. The method is reliable, and can be used for quality control of M. chinensis.

  8. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  9. Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid.

    Science.gov (United States)

    Wang, Qianyun; Lei, Jun; Ma, Junjie; Yuan, Gaofeng; Sun, Haiyan

    2018-01-01

    This study aimed to investigate the effect of chitosan-carvacrol coating with or without caprylic acid (CAP) on the quality of Pacific white shrimp (Litopenaeus vannamei) during 10days of iced storage. The result showed that chitosan-carvacrol coating significantly inhibited the increase in total aerobic plate count (TPC), pH and total volatile basic nitrogen content (TVB-N) of shrimp in comparison with the control. Chitosan-carvacrol coating also delayed the melanosis formation and changes of ΔE values, and improved the texture and sensory properties of shrimp. Moreover, incorporation of CAP potentiated the efficacy of chitosan-carvacrol coating in retarding the increase of TPC and TVB-N. Incorporation of CAP into chitosan-carvacrol coating also enabled the texture characteristics of shrimp to be retained greater degrees. These results suggested that chitosan-carvacrol coating may be promising to be used as active packaging for extending the shelf life, and incorporation of CAP may enhance the efficacy of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol.

    Science.gov (United States)

    Chueca, Beatriz; Pérez-Sáez, Elisa; Pagán, Rafael; García-Gonzalo, Diego

    2017-09-18

    DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of Carvacrol on Salmonella Saintpaul Biofilms on Stainless ...

    African Journals Online (AJOL)

    2025 ... carvacrol on S. saintpaul biofilms on stainless steel surface was evaluated on ... cultures S. saintpaul at 35 ºC were diluted 1:100 .... characteristics of biofilm formation that occur in .... aureus and Salmonella enterica serovar Typhmurium.

  12. High-pressure phase equilibrium data for systems with carbon dioxide, α-humulene and trans-caryophyllene

    International Nuclear Information System (INIS)

    Michielin, Eliane M.Z.; Rosso, Sibele R.; Franceschi, Elton; Borges, Gustavo R.; Corazza, Marcos L.; Oliveira, J. Vladimir; Ferreira, Sandra R.S.

    2009-01-01

    The aim of this work is to report phase equilibrium data for the binary systems (CO 2 + α-humulene) and (CO 2 + trans-caryophyllene), and for the ternary system (CO 2 + α-humulene + trans-caryophyllene). Results from literature show that α-humulene and trans-caryophyllene are the main compounds responsible for the anti-inflammatory and anti-allergic characteristics attributed to the medicinal plant Cordia verbenacea D.C., hence giving importance to the phase behaviour investigation performed in this work. Phase equilibrium experiments were performed in a high-pressure, variable-volume view cell over the temperature range of T = (303 to 343) K and pressures up to 20 MPa. (Liquid + liquid) and (vapour + liquid + liquid) equilibrium were observed at T = 303 K, while (vapour + liquid) phase transitions were verified to occur from T = (313 to 343) K, for all systems studied. Thermodynamic modelling was performed using the Peng-Robinson equation of state and the classical quadratic mixing rules, with a satisfactory agreement between experimental and calculated values

  13. Preparation and evaluation of carvacrol pellets based on PVP solid-dispersion by extrusion-spheronization technique

    Directory of Open Access Journals (Sweden)

    Z. Taghizadeh*

    2017-11-01

    Full Text Available Background and objectives: Carvacrol is one of the main pharmacologically active components of Thymus vulgaris essential oil which has shown several therapeutic effects. There are few works regarding the formulation of essential oils as oral solid dosage forms due to their liquid nature, stability and technical problems. The aim of this study was to combine the solid-dispersion approach and extrusion-spheronization technique to produce pellets with desirable physico-mechanical and release properties. Methods: Solid dispersion matrix (30% of carvacrol in polyvinylpyrrolidone K30 was prepared by solvent evaporation. The matrix was mixed with Avicel and lactose and granulated by water. The wet mass was transformed into pellets by extrusion-spheronization. In order to compare the solid dispersion method with the classic approaches, another pellet formulation was prepared by absorption of carvacrol on Aerosil. The pellets were characterized for size (sieve analysis, shape factors (image analysis, mechanical strength, carvacrol content, and release rate (dissolution test. Accelerated stability test of formulations was also carried out. Results: Using suitable composition of solid dispersion matrix and granulation fluid, the pellets with desirable size and shape and mechanical properties could be produced. PVP-based pellets had higher mechanical strength, slower release rate and improved content and stability. The PVP ratio showed considerable effect on release properties of the pellets. Conclusion: Overall, the results revealed the feasibility of preparing desirable pellets containing carvacrol with acceptable content, stability and release properties which can be administered as hard gelatin capsules.

  14. Inhibition of melanogenesis by β-caryophyllene from lime mint essential oil in mouse B16 melanoma cells.

    Science.gov (United States)

    Yang, C-H; Huang, Y-C; Tsai, M-L; Cheng, C-Y; Liu, L-L; Yen, Y-W; Chen, W-L

    2015-10-01

    Volatile essential oils of mint species are used for cosmetics and in skin care products. In this study, we evaluated the main chemical components of the lime mint and the anti-melanogenic properties of its main components. The essential oil was analysed by gas chromatography-mass spectrometry (GC/MS). The anti-melanogenic effects of mint essential oil and β-caryophyllene were investigated in B16F10 murine melanoma cells. The main components of lime mint essential oil were found to be D-limonene (41.10%), D-carvone (8.58%), δ-selinene (6.73%) and β-caryophyllene (6.24%). The lime mint essential oil reduced melanin production in a dose-dependent manner in murine B16F10 cells. β-Caryophyllene, one of the main compounds in lime mint essential oil, could reduce melanogenesis by down-regulating the expression of MITF, TRP-1, TRP-2 and tyrosinase, resulting in a decrease in melanin content decrease. These results reveal that lime mint essential oil and β-caryophyllene are considered to be valuable as potential skin-whitening agents. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Effects of oregano oil, carvacrol, cinnamaldehyde, and citral on antimicrobial, mechanical and barrier properties of carrot puree films

    Science.gov (United States)

    Wang, Xinwei; Liu, Huan; Wei, Jing; Ma, Zhongsu

    2011-02-01

    The effects against staphfloccus aureus and escherichia coli of oregano oil, carvacrol, cinnamaldehyde, and citral in chitosan-corn starch-gelatin-carrot puree films at 0.5% to 3% (w/w) concentrations were investigated along with the mechanical and barrier properties of the films. The presence of oregano oil, carvacrol, cinnamaldehyde, and citral did not change the good oxygen barrier of the films, but did significantly modify tensile properties and water vapor permeability, and made films darker. The data also show that the antimicrobial activities were in the following order: cinnamaldehyde > carvacrol > oregano oil > citral. Moreover, the antimicrobial films were more effective against staphfloccus aureus than against the escherichia coli. This study showed that oregano oil, carvacrol, cinnamaldehyde, and citral, especially the first three, could be used to prepare antimicrobial edible films for food applications.

  16. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Vasconcelos, Sara Edwirgens Costa Benício; Melo, Hider Machado; Cavalcante, Theodora Thays Arruda; Júnior, Francisco Eduardo Aragão Catunda; de Carvalho, Mário Geraldo; Menezes, Francisca Gleire Rodrigues; de Sousa, Oscarina Viana; Costa, Renata Albuquerque

    2017-09-16

    The emergence of multidrug-resistant bacteria is a worldwide concern and in order to find an alternative to this problem, the occurrence of antimicrobial compounds in Plectranthus amboinicus essential oil was investigated. Thus, this study aims to determine susceptibility of Staphylococcus aureus isolated from food to antibiotics, P. amboinicus essential oil (PAEO) and carvacrol. Leaves and stem of P. amboinicus were used for extraction of essential oil (PAEO) by hydrodistillation technique and EO chemical analysis was performed by gas chromatography coupled to a mass spectrometer. S. aureus strains (n = 35) isolated from food and S. aureus ATCC 6538 were used to evaluate the antimicrobial and antibiofilm activity of PAEO and carvacrol. All strains (n = 35) were submitted to antimicrobial susceptibility profile by disk diffusion method. Determination of MIC and MBC was performed by microdilution technique and antibiofilm activity was determined by microtiter-plate technique with crystal violet assay and counting viable cells in Colony Forming Units (CFU). Carvacrol (88.17%) was the major component in the PAEO. Antibiotic resistance was detected in 28 S. aureus strains (80%) and 12 strains (34.3%) were oxacillin and vancomycin-resistant (OVRSA). From the 28 resistant strains, 7 (25%) showed resistance plasmid of 12,000 bp. All strains (n = 35) were sensitive to PAEO and carvacrol, with inhibition zones ranging from 16 to 38 mm and 23 to 42 mm, respectively. The lowest MIC (0.25 mg mL -1 ) and MBC (0.5 mg mL -1 ) values were observed when carvacrol was used against OVRSA. When a 0.5 mg mL -1 concentration of PAEO and carvacrol was used, no viable cells were found on S. aureus biofilm. The antibacterial effect of carvacrol and PAEO proves to be a possible alternative against planktonic forms and staphylococcal biofilm.

  17. Carvacrol attenuates serum levels of total protein, phospholipase A2 and histamine in asthmatic guinea pig

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2016-11-01

    Full Text Available Objective: Pharmacological effects of carvacrol such as its anti-inflammatory activities have been shows. In this study the effects of carvacrol on serum levels of total protein (TP, phospholipase A2 (PLA2 and histamine in sensitized guinea pigs was evaluated. Materials and Methods: Sensitized guinea pigs were given drinking water alone (group S, drinking water containing three concentrations of carvacrol (40, 80 and 160 µg/ml or dexamethasone. Serum levels of TP, PLA2 and histamine were examined I all sensitized groups as well as a non-sensitized control group (n=6 for each group. Results: In sensitized animals, serum levels of TP, PLA2 and histamine were significantly increased compared to control animals (p

  18. High-pressure phase equilibrium data for systems with carbon dioxide, {alpha}-humulene and trans-caryophyllene

    Energy Technology Data Exchange (ETDEWEB)

    Michielin, Eliane M.Z.; Rosso, Sibele R [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil); Franceschi, Elton; Borges, Gustavo R; Corazza, Marcos L; Oliveira, J Vladimir [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99700-000 (Brazil); Ferreira, Sandra R.S. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil)], E-mail: sandra@enq.ufsc.br

    2009-01-15

    The aim of this work is to report phase equilibrium data for the binary systems (CO{sub 2} + {alpha}-humulene) and (CO{sub 2} + trans-caryophyllene), and for the ternary system (CO{sub 2} + {alpha}-humulene + trans-caryophyllene). Results from literature show that {alpha}-humulene and trans-caryophyllene are the main compounds responsible for the anti-inflammatory and anti-allergic characteristics attributed to the medicinal plant Cordia verbenacea D.C., hence giving importance to the phase behaviour investigation performed in this work. Phase equilibrium experiments were performed in a high-pressure, variable-volume view cell over the temperature range of T = (303 to 343) K and pressures up to 20 MPa. (Liquid + liquid) and (vapour + liquid + liquid) equilibrium were observed at T = 303 K, while (vapour + liquid) phase transitions were verified to occur from T = (313 to 343) K, for all systems studied. Thermodynamic modelling was performed using the Peng-Robinson equation of state and the classical quadratic mixing rules, with a satisfactory agreement between experimental and calculated values.

  19. Carvacrol, (−)-borneol and citral reduce convulsant activity in rodents

    African Journals Online (AJOL)

    Yomi

    2010-09-27

    Sep 27, 2010 ... Carvacrol, a monoterpenic phenol present in essential oils of the Labiatae family, has been used .... (GABAA-BZD) receptor antagonist, flumazenil (File and Pellow, ..... Effects of borneol on the level of DNA damage induced in.

  20. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis.

    Science.gov (United States)

    Botelho, Marco Antonio; Rao, Vietla Satyanarayana; Montenegro, Danusa; Bandeira, Mary Anne Menezes; Fonseca, Said Gonçalves Cruz; Nogueira, Nadia Accioly Pinto; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne Castro

    2008-04-01

    Carvacrol and dimeric chalcones are the respective bioactive components of Lippia sidoides and Myracrodruon urundeuva, popular medicinal plants of Northeastern Brazil with proven antimicrobial and antiinflammatory properties. Periodontal disease is associated with inflammation and microbiological proliferation, thus the study aimed to investigate the effect of a topical gel based on carvacrol and chalcones in the experimental periodontal disease (EPD) in rats. Animals were treated with carvacrol and/or chalcones gel, immediately after EPD induction, three times a day for 11 days. Appropriate controls were included in the study. Animals were weighed daily. They were killed on day 11, the mandibles dissected and alveolar bone loss was measured. The periodontium were examined at histopathology and the neutrophil influx into the gingiva was assayed using myeloperoxidase activity. The bacterial flora were assessed through culture of the gingival tissue. Alveolar bone loss was significantly (p < 0.05) inhibited by combined carvacrol and chalcones gel, compared with the vehicle and non-treated groups. The treatment with the combined gel reduced tissue lesion at histopathology, decreased myeloperoxidase activity in gingival tissue and inhibited the growth of oral microorganisms as well as the weight loss. Carvacrol and chalcones combination gel has a beneficial effect upon EPD in this model. (c) 2008 John Wiley & Sons, Ltd.

  1. Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol.

    Science.gov (United States)

    Pol, I E; Mastwujk, H C; Slump, R A; Popa, M E; Smid, E J

    2001-07-01

    Carvacrol was used as a third preservative factor to enhance further the synergy between nisin and pulsed electric field (PEF) treatment against vegetative cells of Bacillus cereus. When applied simultaneously with nisin (0.04 microg/ml), carvacrol (0.5 mM) enhanced the synergy found between nisin and PEF treatment (16.7 kV/cm, 30 pulses) in potassium-N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES) buffer. The influence of food ingredients on bactericidal activity was tested using skimmed milk that was diluted to 20% with sterile demineralized water. The efficacy of PEF treatment was not affected by the presence of proteins, and results found in HEPES buffer correlated well with results in milk (20%). Nisin showed less activity against B. cereus in milk. Carvacrol was not able to enhance the synergy between nisin and PEF treatment in milk, unless used in high concentrations (1.2 mM). This concentration in itself did not influence the viable count. Carvacrol did act synergistically with PEF treatment in milk, however not in HEPES buffer. This synergy was not influenced by proteins in milk, as 5% milk still allows synergy between carvacrol and PEF treatment to the same extent as 20% milk.

  2. Effect of Carvacrol on Salmonella Saintpaul Biofilms on Stainless ...

    African Journals Online (AJOL)

    HP

    Nostro A, Sudano Roccaro A, Bisignano G, Marino A,. Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F,. Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 2007; 56: 519-. 523. 7. Pérez-Conesa D, Cao J, Chen L, McLandsborough L,.

  3. Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol

    Directory of Open Access Journals (Sweden)

    Silvia E. Burruel-Ibarra

    2013-11-01

    Full Text Available Chitosan films (CF with carvacrol (CAR [0.5%, 1.0% and 1.5% v/v] were prepared by the emulsion method. The retained CAR, water solubility, water vapor permeability (WVP, optical, mechanical properties, antibacterial and antioxidant capacity of films were analyzed. The results indicate that the retention of CAR in the CF was ≈50%. The incorporation of CAR to CF decreased the water solubility, the WVP, the yellowing and transparency and the tensile strength, but increased the stiffness. Microcapsules with diameters of 2 to 7 µm were found on the surface CF-CAR. The CF-CAR with highest CAR concentrations showed antibacterial activity against S. typhimurium and E. coli O157:H7. The CF-CAR had higher antioxidant capacity and an increased protective effect against oxidation of erythrocytes in different grades. These results suggest potential applications of CF-CAR as active packaging to preserve food products.

  4. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables.

    Science.gov (United States)

    de Sousa, Jossana Pereira; de Azerêdo, Geíza Alves; de Araújo Torres, Rayanne; da Silva Vasconcelos, Margarida Angélica; da Conceição, Maria Lúcia; de Souza, Evandro Leite

    2012-03-15

    This study assessed the occurrence of an enhancing inhibitory effect of the combined application of carvacrol and 1,8-cineole against bacteria associated with minimally processed vegetables using the determination of Fractional Inhibitory Concentration (FIC) index, time-kill assay in vegetable broth and application in vegetable matrices. Their effects, individually and in combination, on the sensory characteristics of the vegetables were also determined. Carvacrol and 1,8-cineole displayed Minimum Inhibitory Concentration (MIC) in a range of 0.6-2.5 and 5-20 μL/mL, respectively, against the organisms studied. FIC indices of the combined application of the compounds were 0.25 against Listeria monocytogenes, Aeromonas hydrophila and Pseudomonas fluorescens, suggesting a synergic interaction. Application of carvacrol and 1,8-cineole alone (MIC) or in a mixture (1/8 MIC+1/8 MIC or 1/4 MIC+1/4 MIC) in vegetable broth caused a significant decrease (pvegetable broth and in experimentally inoculated fresh-cut vegetables. A similar efficacy was observed in the reduction of naturally occurring microorganisms in vegetables. Sensory evaluation revealed that the scores of the most-evaluated attributes fell between "like slightly" and "neither like nor dislike." The combination of carvacrol and 1,8-cineole at sub-inhibitory concentrations could constitute an interesting approach to sanitizing minimally processed vegetables. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Carvacrol, (−)-borneol and citral reduce convulsant activity in rodents

    African Journals Online (AJOL)

    Yomi

    2010-09-27

    Sep 27, 2010 ... Carvacrol, a monoterpenic phenol present in essential oils of the Labiatae family, has been used through the ages as a source of flavor in food and for medicinal purposes. Borneol is a monoterpene found in several species of Artemisia and Dipterocarpaceae, used for anxiety, pain and anesthesia in.

  6. Carvacrol Induces Heat Shock Protein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7▿

    Science.gov (United States)

    Burt, Sara A.; van der Zee, Ruurd; Koets, Ad P.; de Graaff, Anko M.; van Knapen, Frans; Gaastra, Wim; Haagsman, Henk P.; Veldhuizen, Edwin J. A.

    2007-01-01

    The essential oils of oregano and thyme are active against a number of food-borne pathogens, such as Escherichia coli O157:H7. Carvacrol is one of the major antibacterial components of these oils, and p-cymene is thought to be its precursor in the plant. The effects of carvacrol and p-cymene on protein synthesis in E. coli O157:H7 ATCC 43895 cells were investigated. Bacteria were grown overnight in Mueller-Hinton broth with a sublethal concentration of carvacrol or p-cymene, and their protein compositions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by Western blotting. The presence of 1 mM carvacrol during overnight incubation caused E. coli O157:H7 to produce significant amounts of heat shock protein 60 (HSP60) (GroEL) (P < 0.05) and inhibited the synthesis of flagellin highly significantly (P < 0.001), causing cells to be aflagellate and therefore nonmotile. The amounts of HSP70 (DnaK) were not significantly affected. p-Cymene at 1 mM or 10 mM did not induce HSP60 or HSP70 in significant amounts and did not have a significant effect on flagellar synthesis. Neither carvacrol (0.3, 0.5, 0.8, or 1 mM) nor p-cymene (0.3, 0.5, or 0.8 mM) treatment of cells in the mid-exponential growth phase induced significant amounts of HSP60 or HSP70 within 3 h, although numerical increases of HSP60 were observed. Motility decreased with increasing concentrations of both compounds, but existing flagella were not shed. This study is the first to demonstrate that essential oil components induce HSP60 in bacteria and that overnight incubation with carvacrol prevents the development of flagella in E. coli O157:H7. PMID:17526792

  7. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice

    Directory of Open Access Journals (Sweden)

    Roller Sibel

    2005-06-01

    Full Text Available Abstract Background Outbreaks of food poisoning associated with drinking un-pasteurised apple juice contaminated with enterohaemorrhagic Escherichia coli O157:H7 are a cause of serious illness and occasionally death. Whilst a well-established heat process (pasteurisation will readily eliminate the pathogen, some consumers are demanding more fresh-like foods that have not been subjected to processing methods that are perceived as severe and may lead to loss of flavour and vitamins. Therefore, alternative methods are being investigated to replace pasteurisation and improve the safety of minimally-processed juices. The addition of natural antimicrobial substances such as the phenolic substances carvacrol and p-cymene (derived from the essential oils of herbs and spices provides a potential new route to assure safety and extend the shelf-life of raw fruit juices. The aim of this study was to evaluate the addition of very low concentrations (0.25–1.25 mM of carvacrol and p-cymene both individually and in combination as a novel means of controlling Escherichia coli O157:H7 in un-pasteurised apple juice. Results When inoculated at a level of 4 log CFU/ml into un-pasteurised apple juice (pH 3.20 ± 0.06, Escherichia coli O157:H7 survived for up to 3 and 19 days at 25° and 4°C, respectively. Treatment of the juice with 1.25 mM carvacrol or p-cymene reduced the numbers of E. coli O157:H7 to undetectable levels within 1–2 days at both storage temperatures. The effective concentrations of carvacrol could be reduced even further by combining it at 0.5 mM with cymene at 0.25 mM. The phenolic compounds were biocidal against both spoilage yeasts and E. coli O157:H7 thereby increasing the shelf-life and improving the safety of un-pasteurised apple juice, particularly when stored at chill temperatures. Conclusion The results showed that the natural antimicrobial compounds carvacrol and p-cymene could potentially be used to extend the shelf life and improve

  8. In vitro antimicrobial activities of cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene against Mycoplasma hominis clinical isolates.

    Science.gov (United States)

    Sleha, Radek; Mosio, Petra; Vydrzalova, Marketa; Jantovska, Alexandra; Bostikova, Vanda; Mazurova, Jaroslava

    2014-06-01

    The aim of this study was to evaluate the antimicrobial effects of five natural substances against 50 clinical isolates of Mycoplasma hominis. The in vitro activity of selected natural compounds, cinnamon bark oil, anethole, carvacrol, eugenol and guaiazulene, was investigated against 50 M. hominis isolates cultivated from cervical swabs by the broth dilution method. All showed valuable antimicrobial activity against the tested isolates. Oil from the bark of Cinnamomum zeylanicum (MBC90 = 500 µg/mL) however was found to be the most effective. Carvacrol (MBC90 = 600 µg/mL) and eugenol (MBC90 = 1000 µg/mL) also possessed strong antimycoplasmal activity. The results indicate that cinnamon bark oil, carvacrol and eugenol have strong antimycoplasmal activity and the potential for use as antimicrobial agents in the treatment of mycoplasmal infections.

  9. β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters.

    Science.gov (United States)

    Alquézar, Berta; Volpe, Haroldo Xavier Linhares; Magnani, Rodrigo Facchini; de Miranda, Marcelo Pedreira; Santos, Mateus Almeida; Wulff, Nelson Arno; Bento, Jose Mauricio Simões; Parra, José Roberto Postali; Bouwmeester, Harro; Peña, Leandro

    2017-07-17

    Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-β-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-β-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-β-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.

  10. Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays.

    Science.gov (United States)

    Pinheiro, Patrícia Fontes; Costa, Adilson Vidal; Alves, Thammyres de Assis; Galter, Iasmini Nicoli; Pinheiro, Carlos Alexandre; Pereira, Alexandre Fontes; Oliveira, Carlos Magno Ramos; Fontes, Milene Miranda Praça

    2015-10-21

    The essential oil of Plectranthus amboinicus and its chemotypes, carvacrol and thymol, were evaluated on the germination and root and aerial growth of Lactuca sativa and Sorghum bicolor and in acting on the cell cycle of meristematic root cells of L. sativa. The main component found in the oil by analysis in gas chromatography-mass spectrometry and gas chromatography flame ionization detection was carvacrol (88.61% in area). At a concentration of 0.120% (w v(-1)), the oil and its chemotypes retarded or inhibited the germination and decreased root and aerial growth in monocot and dicot species used in the bioassays. In addition, all substances caused changes in the cell cycle of the meristematic cells of L. sativa, with chromosomal alterations occurring from the 0.015% (w v(-1)) concentration. The essential oil of P. amboinicus, carvacrol, and thymol have potential for use as bioherbicides.

  11. Selection and production of oregano rich in essential oil and carvacrol

    NARCIS (Netherlands)

    Mheen, van der H.J.C.J.

    2005-01-01

    There is an increasing interest in oregano essential oil and its component carvacrol for the use as a feed additive with antimicrobial properties, enhancing the health of poultry and pigs. This chapter describes the initial agronomic attempts (in the years 2001-2004) to acquire and develop Origanum

  12. The impact of cooking and delivery modes of thymol and carvacrol on retention and bioaccessibility in starchy foods.

    Science.gov (United States)

    Aravena, Gabriela; García, Olga; Muñoz, Ociel; Pérez-Correa, José R; Parada, Javier

    2016-04-01

    Oregano and thyme possess beneficial properties for human health, mainly attributable to monoterpenes such as thymol and carvacrol. The main objective of this research was to assess, on starchy food, the impact of cooking (boiling and baking) and delivery (ground leaves and essential oil) modes on retention and bioaccessibility of thymol and carvacrol. Retention was assessed after cooking, while bioaccessibility was estimated in cooked samples using an in vitro digestion model. Our results indicate that bioaccessibility was weakly dependent on cooking and delivery modes (27-33%). Boil cooking presented 20% more retention than baking for both compounds. When essential oil was added to the food matrix, thymol was retained almost 25% more when compared with ground leaves' addition. Conversely, carvacrol was retained 39% more when ground leaves were added. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Use of β-caryophyllene to combat bacterial dental plaque formation in dogs.

    Science.gov (United States)

    Pieri, Fábio Alessandro; Souza, Marina Campos de Castro; Vermelho, Ligia Lobato Ramos; Vermelho, Marina Lobato Ramos; Perciano, Pedro Griffo; Vargas, Fabiano Souza; Borges, Andréa Pacheco Batista; da Veiga-Junior, Valdir Florêncio; Moreira, Maria Aparecida Scatamburlo

    2016-10-01

    Periodontal disease is a highly prevalent illness that affects many dogs, reaching up to 85 % prevalence in individuals over the age of 4 years. Currently the drug of choice for combating the formation of dental plaque in these animals, the etiologic agent of the disease, is chlorhexidine, which has several side effects reported. Thus, surveys are conducted throughout the world in order to identify potential substitutes for antimicrobial therapy and prevention of periodontal disease. The objective of the work was to evaluate the antimicrobial activity of β-caryophyllene against bacteria from dog's dental plaque in vitro and in vivo. The minimum inhibitory concentration was evaluated by agar microdilution assay, the induction or inhibition of bacterial adherence by sub-inhibitory concentrations in 96-well plates, and reduction of dental plaque formation in mongrel dogs subjected to topical solution with β-caryophyllene for 15 days. Results showed minimum inhibitory concentrations above 100 mg/mL for 25 % of the isolates, 100 mg/mL for 3 %, 50 mg/mL for 25 %, 25 mg/mL for 12 %, 12.5 mg/mL for 19 % and 6.25 mg/mL for 16 %. Bacterial adherences of three Enterococcus sp., one Streptococcus sp., one Haemophilus sp., one Aerococcus sp., one Bacillus sp. and one Lactococcus sp. isolates were inhibited by subinhibitory concentration. One Lactococcus sp., one Bacillus sp. and one Streptococcus sp. were stimulated to adhere by concentrations of 0.19, 1.56 and 0.78 mg/mL, respectively. In vivo assay showed reduction in dental plaque formation by β-caryophyllene, with final plaque coverage of 23.3 ± 2.6 % of the total area of the teeth, with significant difference compared with chlorhexidine group (37.5 ± 3.7 % - p dog's dental plaque-forming bacteria representing a suitable alternative to the use of chlorhexidine in prophylaxis and treatment of periodontal disease of dogs.

  14. Selected oxidized fragrance terpenes are common contact allergens.

    Science.gov (United States)

    Matura, Mihaly; Sköld, Maria; Börje, Anna; Andersen, Klaus E; Bruze, Magnus; Frosch, Peter; Goossens, An; Johansen, Jeanne D; Svedman, Cecilia; White, Ian R; Karlberg, Ann-Therese

    2005-06-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance terpenes and some oxidation fractions and compounds. Oxidized linalool and its hydroperoxide fraction were found to be common contact allergens. Of the patients tested, 1.3% showed a positive reaction to oxidized linalool and 1.1% to the hydroperoxide fraction. About 0.5% of the patients reacted to oxidized caryophyllene whereas 1 patient reacted to oxidized myrcene. Of the patients reacting to the oxidized terpenes, 58% had fragrance-related contact allergy and/or a positive history for adverse reaction to fragrances. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

  15. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    Science.gov (United States)

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  16. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells.

    Science.gov (United States)

    Hu, Yawei; Zeng, Ziling; Wang, Baojie; Guo, Shougang

    2017-10-01

    Amyloid β (Aβ) is the major component of senile plaques (SP) in the brains of Alzheimer's disease (AD) patients, and serves as an inflammatory stimulus for microglia. Trans-caryophyllene (TC), a major component in the essential oils derived from various species of medicinal plants, has displayed its neuro-protective effects in previous studies. However, whether TC has a protective role in AD remains unknown. In this study, the effects of TC on Aβ 1-42 -induced neuro-inflammation were investigated. We found that TC reduced the release of LDH in BV-2 microglial cells treated with Aβ 1-42 . In addition, pretreatment of BV2 microglia with TC at concentrations of 10, 25, and 50μM prior to Aβ stimulation led to significant inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and secretion of pro-inflammatory cytokines. Notably, our results indicate that TC remarkably attenuated Aβ 1-42 -activated overexpression of toll-like receptor 4 (TLR4). We further demonstrated that TC markedly reversed Aβ 1-42 -induced phosphorylation and degradation of IκBα, nuclear translocation of p65, and NF-κB transcriptional activity. These findings suggest that TC may have therapeutic potential for the treatment of AD. Copyright © 2017. Published by Elsevier B.V.

  17. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags.

    Science.gov (United States)

    Zhu, Libin; Olsen, Carl; McHugh, Tara; Friedman, Mendel; Jaroni, Divya; Ravishankar, Sadhana

    2014-01-01

    The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot, and hibiscus-based edible films against Salmonella Newport in bagged organic leafy greens. The leafy greens tested included organic Romaine and Iceberg lettuce, and mature and baby spinach. Each leafy green sample was washed, dip inoculated with S. Newport (10⁷ CFU/mL), and dried. Each sample was put into a Ziploc® bag. Edible films pieces were put into the Ziploc bag and mixed well. The bags were sealed and stored at 4 °C. Samples were taken at days 0, 3, and 7 for enumeration of survivors. On all leafy greens, 3% carvacrol films showed the best bactericidal effects against Salmonella. All 3 types of 3% carvacrol films reduced the Salmonella population by 5 log₁₀ CFU/g at day 0 and 1.5% carvacrol films reduced Salmonella by 1 to 4 log₁₀ CFU/g at day 7. The films with 3% cinnamaldehyde showed 0.5 to 3 log reductions on different leafy greens at day 7. The films with 0.5% and 1.5% cinnamaldehyde and 0.5% carvacrol also showed varied reductions on different types of leafy greens. Edible films were the most effective against Salmonella on Iceberg lettuce. This study demonstrates the potential of edible films incorporated with carvacrol and cinnamaldehyde to inactivate S. Newport on organic leafy greens. © 2013 Institute of Food Technologists®

  19. Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact.

    Science.gov (United States)

    Moon, Hyeree; Rhee, Min Suk

    2016-01-18

    Here, we examined the antimicrobial effects of soy sauce containing essential oils (EOs) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes at 22°C and 4°C. To screen a variety of combined effects, soy sauce was mixed with six different EOs (carvacrol, thymol, eugenol, trans-cinnamaldehyde, β-resorcylic acid, and vanillin), each at a concentration of 1mM for 10 min. None of the oils showed bactericidal activity when used alone. Soy sauce combined with carvacrol and thymol induced the greatest antibacterial activity against all tested bacteria; therefore, these oils were further tested at 0.25, 0.5, and 1mM (0.0039%, 0.0078%, and 0.0157%) for 1, 5, and 10 min at 4°C and 22°C. In addition, sensory evaluation of soy sauce containing each EO at 0.25, 0.5, 1, and 2mM was performed using the nine point hedonic test. Carvacrol or thymol (1mM) eliminated all the test bacteria (initial population, 7.0-7.5logCFU/ml) in 1-5 min at 22°C and within 10 min at 4°C. L. monocytogenes was slightly more tolerant at 4°C, which may be attributable to the ability of the cell membrane to adapt to low temperatures. The sensory scores for soy sauce containing EOs were not significantly different from that of soy sauce without EOs (P>0.05). The stability of EO efficacy in soy sauce was also verified. These results suggest that carvacrol and thymol act synergistically with other factors present in soy sauce to increase antimicrobial activity against major foodborne pathogens at both 4°C and 22°C. The synergism may be attributable to the combination of factors (mainly high salt concentration and low pH imparted by organic acids) present in soy sauce and the membrane attacking properties of carvacrol and thymol. This method will facilitate the production of microbiologically safe soy sauce, soy sauce-based marinades, and various marinated foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2.

    Science.gov (United States)

    Llana-Ruiz-Cabello, María; Gutiérrez-Praena, Daniel; Pichardo, Silvia; Moreno, F Javier; Bermúdez, José María; Aucejo, Susana; Cameán, Ana María

    2014-02-01

    Essential oils used as additives in the food industry due to its flavour, antimicrobial and antioxidant properties. Therefore, human can be exposed orally to these compounds through the ingestion of foods. In this sense, the present work aims to assess toxicological effects of oregano essential oil on the digestive tract. In concrete, the cytotoxic effects of two components of the oregano essential oils, carvacrol and thymol, and their mixture, on the intestinal cells line Caco-2 after 24 and 48 h of exposure are studied. The basal cytotoxicity endpoints assayed (total protein content, neutral red uptake and the tetrazolium salt reduction) and the annexin/propidium iodide staining indicated that carvacrol and the mixture carvacrol/thymol induced toxic effects. Moreover, a morphological study was performed in order to determine the ultrastructural cellular damages caused by these substances. The main morphological alterations were vacuolated cytoplasm, altered organelles and finally cell death. In addition, although no cytotoxic effects were recorded for thymol at any concentration and time of exposure, ultrastructural changes evidenced cellular damage such as lipid degeneration, mitochondrial damage, nucleolar segregation and apoptosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Antigenotoxic Effect of Curcumin and Carvacrol against Parathion Induced DNA Damage in Cultured Human Peripheral Blood Lymphocytes and Its Relation to GSTM1 and GSTT1 Polymorphism

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2014-01-01

    Full Text Available In recent years, the use of organophosphorus pesticides has been extensively increased and these compounds signify a major class of agricultural pesticides today. We studied antigenotoxic potential of curcumin and carvacrol against the parathion induced DNA damage in cultured peripheral blood lymphocytes using sister chromatid exchanges as a biomarker of genotoxicity. Heparinised fresh blood from healthy individuals was treated with 2.5 μg/mL concentration of parathion in presence of curcumin and carvacrol in order to observe the antigenotoxic potential of both curcumin and carvacrol. Significant reduction (P0.05 of GSTT1 and GSTM1 polymorphism on genotoxicity of parathion and antigenotoxic potential of curcumin and carvacrol.

  2. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission.

    Science.gov (United States)

    Melo, Francisca Helvira Cavalcante; Venâncio, Edith Teles; de Sousa, Damião Pergentino; de França Fonteles, Marta Maria; de Vasconcelos, Silvânia Maria Mendes; Viana, Glauce Socorro Barros; de Sousa, Francisca Cléa Florenço

    2010-08-01

    Carvacrol (5-isopropyl-2-methylphenol) is a monoterpenic phenol present in the essencial oil of many plants. It is the major component of the essential oil fraction of oregano and thyme. This work presents the behavioral effects of carvacrol in animal models of elevated plus maze (EPM), open field, Rotarod and barbiturate-induced sleeping time tests in mice. Carvacrol (CVC) was administered orally, in male mice, at single doses of 12.5; 25 and 50 mg/kg while diazepam 1 or 2 mg/kg was used as standard drug and flumazenil (2.5 mg/kg) was used to elucidate the possible anxiolytic mechanism of CVC on the plus maze test. The results showed that CVC, at three doses, had no effect on the spontaneous motor activity in the Rotarod test nor in the number of squares crossed in the open-field test. However, CVC decreased the number of groomings in the open-field test. In the plus maze test, CVC, at three doses significantly increased all the observed parameters in the EPM test and flumazenil was able to reverse the effects of diazepam and CVC. Therefore, CVC did not alter the sleep latency and sleeping time in the barbiturate-induced sleeping time test. These results show that CVC presents anxiolytic effects in the plus maze test which are not influenced by the locomotor activity in the open-field test.

  3. Effect of thymol and carvacrol on nutrient digestibility in rams fed high or low concentrate diets.

    Science.gov (United States)

    Zamiri, M J; Azizabadi, E; Momeni, Z; Rezvani, M R; Atashi, H; Akhlaghi, A

    2015-01-01

    Published data on the effects of essential oils (EO) on in vivo nutrient digestibility in sheep are contradictory. In 2 experiments, the effect of thymol and carvacrol on nutrient digestibility was studied in sheep fed with high (70%) or low (52%) concentrate diets, using incomplete Latin Square designs. The essential oils were mixed with the concentrate portion of the diet at the rate of 0.0, 0.3, or 0.6 g per kg dry matter (DM) diet. Supplementation of thymol had no significant effect on digestibility of dry matter (DM), organic matter (OM), crude protein (CP) and acid detergent fiber (ADF). The main effect of thymol on neutral detergent fiber (NDF) and ether extract (EE) digestibility and on nitrogen balance (NB) was significant (Pdigestibility. The main effect of carvacrol on ruminal ammonia levels and NB was significant, but within each level of dietary concentrate no significant differences were observed in ammonia levels and NB. Inclusion of 0.3 g/kg diet DM of carvacrol or thyme was more effective than 0.6 g/kg diet DM in terms of NB but neither dose affected nutrient digestibility. Future research should determine the long-term effects of essential oils on digestibility and performance in sheep, before recommendation can be made for their use under practical husbandry conditions.

  4. Development of a HS-SPME-GC-MS/MS Method for the Quantitation of Thymol and Carvacrol in Bovine Matrices and To Determine Residue Depletion in Milk and Tissues.

    Science.gov (United States)

    Armorini, Sara; Yeatts, James E; Mullen, Keena A E; Mason, Sharon E; Mehmeti, Elmira; Anderson, Kevin L; Washburn, Steve P; Baynes, Ronald E

    2016-10-11

    Thymol and carvacrol may be present in several phytoceutical products but there are no well-defined methods to measure these compounds in meat and milk from treated animals. U.S. regulatory authorities deem their presence as an adulteration of food. A rapid and sensitive HS-SPME-GC-MS/MS method was developed for the detection of thymol and carvacrol in bovine milk, plasma, liver, kidney, and fat. Inter- and intraday precision values were all less than 15.7 and 20.2% for thymol and carvacrol, respectively. The accuracy was in ranges of 69.9-111.8% for thymol and 74.0-119.2% for carvacrol. With the exception of fat tissue, stability studies showed that both compounds are stable over a 2 month period. A pilot pharmacokinetic study was conducted to evaluate the developed analytical method and to provide initial estimates of thymol and carvacrol depletion in plasma, milk, and several tissues. Treatment of lactating dairy cattle with phytoceutical products containing these substances resulted in low but measurable residue levels at 96 h for liver and 36 h for milk with very short apparent plasma and milk half-lives (<3.0 h).

  5. Assessment of carvacrol for control of avian aspergillosis in intratracheally challenged chickens in comparison to voriconazole with a reference on economic impact.

    Science.gov (United States)

    Tartor, Y H; Hassan, F A M

    2017-11-01

    This study was designed to investigate the efficacy of essential oils as an alternative prophylaxis and treatment for avian aspergillosis. The in vitro susceptibility of Aspergillus fumigatus strains to antifungal drugs and carvacrol, thymol, eugenol, thymoquinone and cinnamon was determined using the macrodiffusion and microdilution methods. Carvacrol has antifungal activity in comparison to voriconazole (VCZ) (MIC 0·5, 0·25 μg ml -1 respectively). While cinnamon, euganol, thymol and thymoquinone displayed moderate to weak inhibitory activity. For the efficacy study, five groups of 10-day-old chicks (n = 48) were infected intratracheally either with A. fumigatus conidia or saline (negative control). Chicks in carvacrol prophylactic and treatment (CRPT) group were fed for 10 days beginning from hatch with carvacrol (200 mg kg -1 per diet) supplemented diets. VCZ (VCZT:20 mg kg -1 body weight (BW)), carvacrol treatment (CRT, CRPT) was started upon appearance of the first clinical signs and continued for 10 days. Birds were monitored for an additional 15 days following treatment. Fungal burden and therapeutic efficacy were assessed by survival, BW, quantitative (q) culture (CFU), quantitative real-time PCR (qPCR) and histopathological changes at several time points. Serum biochemical changes were also assessed. VCZT, CRPT, CRT in comparison to the sham-treated (SHAM) group have prolonged survival (87·5, 83·4, 79·2, 41·7% respectively). In VCZT and CRPT, a significant reduction in clinical signs, lesions, CFU and qPCR counts to the limit of detection were observed. CRPT has the lowest BW reduction, economic losses and significant low total cholesterol levels. Carvacrol has a promising potential to be used as a prophylactic and treatment against A. fumigatus. Prognosis of avian aspergillosis is often poor due to delayed diagnosis and treatment failure. However, the widespread uses of azole prophylaxis in birds are thought to be the major driver of

  6. Atividade antifúngica e toxicidade dos monoterpenos citral e carvacrol

    OpenAIRE

    Lima, Igara Oliveira

    2011-01-01

    A candidíase tem sido a principal infecção fúngica relatada em ambiente hospitalar, tendo como a principal espécie envolvida a Candida albicans. Essa realidade tem estimulado pesquisas no intuito encontrar alternativas terapêuticas. Os terpenos tem sido fortes candidatos como agentes antifúngicos, o que necessitou investigar também sua toxicidade. O objetivo desse trabalho foi de avaliar a atividade antifúngica, o modo de ação do citral e do carvacrol, a cinética de morte micro...

  7. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis, Is a Selective Apoptosis Inducer for Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Eitan Amiel

    2012-01-01

    Full Text Available The biblical balm of Gilead (Commiphora gileadensis was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.

  8. Selected oxidized fragrance terpenes are common contact allergens

    DEFF Research Database (Denmark)

    Matura, Mihaly; Sköld, Maria; Börje, Anna

    2005-01-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form...... allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance...

  9. Compositional Analysis of Lavandula pinnata Essential Oils.

    Science.gov (United States)

    Argentieri, Maria Pia; De Lucia, Barbara; Cristiano, Giuseppe; Avatoa Pinarosa

    2016-03-01

    The genus Lavandula includes about thirty species plus a number of intraspecific taxa and hybrids, which are distributed in the Mediterranean area. The traditional use of lavender both as perfume or medicinal plant is known since antiquity. Nowadays several species are extensively cultivated for the extraction of their essential oils (EOs) which are used in manufactured products like cosmetics and perfumes or in phytotherapy. Lavandula pinnata L. f. (syn L. pinnata Lundmark) is a rare species native to the Canary Islands used in folk medicine as relaxant and also a valuable remedy against bites. To the best of our knowledge, EOs from L. pinnata have been very little studied. The present paper reports on the quali- and quantitative compositional profile of the EOs distilled (by a Spring type apparatus) from the aerial parts (flowers and leaves) of this species cultivated in soilless conditions. Chemical analyses by means of GC and GC-MS techniques have indicated that oxygenated monoterpenes are the main constituents of both the flowers (68.30%) and the leaves (83.65%). Carvacrol is the main compound which characterizes the EOs of this species. In addition, discrete amounts of spathulenol (12.22%) and caryophyllene oxide (14.62%) have been detected in flowers EOs, while leaves EOs contained small amounts of carvacrol methyl ether (2.52%).

  10. Punctaporonins H–M: Caryophyllene-Type Sesquiterpenoids from the Sponge-Associated Fungus Hansfordia sinuosae

    Directory of Open Access Journals (Sweden)

    Zehong Wu

    2014-06-01

    Full Text Available Six new caryophyllene-based sesquiterpenoids named punctaporonins H–M (1–6, together with punctaporonin B (7 and humulane (8 were isolated from the fermentation broth of the sponge-derived fungus Hansfordia sinuosae. Their structures were determined by the extensive HRESIMS and NMR spectroscopic analysis, including the X-ray crystallographic data for the assignment of the absolute configurations of punctaporonins H–I (1–2. The isolated compounds were evaluated for antihyperlipidemic, cytotoxic and antimicrobial activities, and punctaporonin K (4 exhibited potent effects to reduce the triglycerides and total cholesterol in the intracellular levels.

  11. The Suppression of Adjuvant-induced Inflammation and the Inhibition of the Serum and Tissue IL-17, TNF-α and IL-1β levels by Thymol and Carvacrol

    Directory of Open Access Journals (Sweden)

    Nasser Gholijani

    2017-06-01

    Full Text Available Background and Aim: Thymol and carvacrol are two important components of thyme that have multiple medicinal uses. This study investigates the in vivo effects of these natural products on adjuvant-induced inflammation and secretion of interleukin (IL-17 and key inflammatory cytokines in rats. Materials and Methods: We injected complete Freund’s adjuvant (CFA into the hind paws of rats in order to induce inflammation. Each of the CFA-treated rat groups received gavages of thymol, carvacrol, or vehicle (CFA-only group. Rats’ paws and ankle edema were measured and then we were able to determine an inflammatory score based on the results. After 72 h of inflammation induction, sera were collected and subsequently inflamed tissue extracts were prepared for cytokine assay by ELISA. Results: Both components significantly decreased paw edema in rats (p<0.01. Thymol decreased ankle edema to 61.6% of edema in CFA-only rats (p<0.001. We observed a decreased inflammatory score in the thymol and carvacrol-treated rats. The evaluation of the tissue and serum inflammatory cytokine levels showed that both components decreased tumor necrosis factor (TNF-α levels (p<0.05. Thymol and carvacrol reduced interleukin (IL-1β serum and tissue levels, respectively. These components reduced tissue levels of IL-17 from 148.4±13.4pg/ml in CFA-only rats to 90.1±18.9pg/ml (thymol and 82.3±9.2pg/ml (carvacrol. Both components decreased serum IL-17 levels in rats (p<0.05. In comparison, the anti-inflammatory drug, indomethacin, reduced the inflammatory score and decreased tissue TNF-α and IL-1β levels but did not affect IL-17 production. Conclusion: Carvacrol and thymol could relieve inflammation symptoms possibly by downregulating serum and tissue IL-17 expression in addition to key pro-inflammatory cytokines, TNFα and IL-1β.

  12. A preliminary study of the effect of phytoadditive carvacrol on the trace elements (Cu, Mn and Zn content in fish tissues

    Directory of Open Access Journals (Sweden)

    EBRU YILMAZ

    2014-04-01

    Full Text Available Phytoadditives have gained increasing interest as feed additives for fish. The aim of the present study was to determine whether selected dietary phytoadditive can influence the bioavailability of several trace elements (Cu, Mn and Zn, which play an important role in the physiological processes. The experiments were carried out at a commercial trout farm. A total of 420 juvenile rainbow trout (mean weight ± SD = 10.79±0.57, Oncorhynchus mykiss, were randomly allocated into four different treatments with three replicates each. Fish were kept in raceways (3X0.8X0.4 m at 10±1°C with a natural photoperiod. Proper amount of carvacrol was sprayed on 1 kg of commercial trout diet to prepare four diets with 0 (Control, C0, 1 (C1, 3 (C3 and 5 (C5 carvacrol g/kg diet. Fish were fed to apparent satiation three times per day. The feeding trial lasted four weeks. Then, in different type of fish tissues (muscle, liver and pyloric caeca from fish fed with diets enriched in carvacrol, beneficial elements (Cu, Mn and Zn were analysed by atomic adsorption spectrophotometer. Results showed that the levels of Cu, Zn and Mn were especially significantly increase by C1 diet in all tissues (muscle, liver and pyloric caeca except muscle and pyloric caeca Zn. The results of this experiment indicate that the carvacrol had the ability to potentiate the trace element retention. Although bioaccumulations of Cu, Zn and Mn in the muscle, liver and pyloric caeca are well demonstrated, the exact mechanisms of phytoadditives are still only partially understood. More investigations are required to detail the mechanisms involved in phytoadditives this enhancement.

  13. In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E-2 biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Kokoška, L.; Přibylová, Marie; Vaněk, Tomáš; Maršík, Petr

    2009-01-01

    Roč. 32, č. 1 (2009), s. 75-78 ISSN 0253-6269 R&D Projects: GA ČR GA525/08/1179; GA MŠk 1P04OC926.001 Institutional research plan: CEZ:AV0Z50380511 Keywords : Carvacrol * Cyclooxygenase * Prostaglandin Subject RIV: GM - Food Processing Impact factor: 1.159, year: 2009

  14. Effect of the essential volatile oils isolated from Thymbra capitata (L. Cav. on olive and sunflower oils

    Directory of Open Access Journals (Sweden)

    Pedro, L.

    2003-09-01

    Full Text Available The chemical composition of the volatile constituents of the oils isolated from different parts of Thymbra capitata collected at different developmental stages were analysed by GC and GC/MS. The antioxidant ability of the oils isolated from T. capitata was evaluated determining the peroxide values, on olive and sunflower oils, stored at 60 ºC. These peroxide values were compared with those obtained when BHT, carvacrol and control (without adding antioxidants were used and subjected to the same conditions. The best yield oil was obtained from the whole aerial part of T. capitata collected during the flowering phase. The major component of the oils was carvacrol. Relative high amounts of p-cymene, γ-terpinene and β-caryophyllene were also found. BHT revealed to be the best antioxidant when the olive oil was used. On sunflower oil, the antioxidant ability of BHT was not so evident, being the carvacrol-rich essential oils of T. capitata or carvacrol more important antioxidants.Se analizaron, mediante GC y GC/MS, los componentes volátiles de aceites aislados de las distintas partes de la Thymbra capitata, recogida en diferentes etapas de desarrollo. Se evaluó la actividad antioxidante de estos aceites de la T. capitata, midiendo el índice de peróxidos, en aceites de oliva y girasol, almacenados a 60 ºC. Estos índices de peróxidos se compararon con los obtenidos cuando no se agregó ningún antioxidante (control y cuando se utilizó BHT o carvacrol, en las mismas condiciones de almacenamiento. El mayor rendimiento en aceite se obtuvo de la parte aérea de T. capitata recogida durante la etapa de floración. El componente mayoritario de los aceites fue el carvacrol. También se encontraron, cantidades relativamente elevadas, de p-cimeno, γ-terpineno y β-cariofileno. El mejor antioxidante para el aceite de oliva resultó ser el BHT. En el aceite del girasol, la actividad antioxidante del BHT no fue tan evidente, mientras que el

  15. Guajavadimer A, a Dimeric Caryophyllene-Derived Meroterpenoid with a New Carbon Skeleton from the Leaves of Psidium guajava.

    Science.gov (United States)

    Li, Chuang-Jun; Ma, Jie; Sun, Hua; Zhang, Dan; Zhang, Dong-Ming

    2016-01-15

    Guajavadimer A (1), a dimeric sesquiterpene-based meroterpenoid which possessed an unprecedented two caryophyllenes, a benzylphlorogulcinol, and a flavonone-fused complicated stereochemical skeleton, was isolated from the leaves of Psidium guajava L. Its structure and absolute configuration were elucidated on the basis of spectroscopic data and X-ray crystallography. Guajavadimer A (1) showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells.

  16. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

    NARCIS (Netherlands)

    Burt, Sara A|info:eu-repo/dai/nl/140114432; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A|info:eu-repo/dai/nl/19545264X

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms.

  17. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    Science.gov (United States)

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  18. Carvacrol as the inhibitor of cyclooxygenase-1 and -2, the key enzymes of prostaglandin biosynthesis: in vitro assays

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Landa, Přemysl; Přibylová, Marie; Vaněk, Tomáš; Kokoška, L.

    2006-01-01

    Roč. 72, č. 11 (2006), s. 1010 ISSN 0032-0943. [Annual Congress on Medicinal Plant Research. 29.08.2006-02.09.2006, Helsinki] R&D Projects: GA MŠk(CZ) 1P04OC926.001 Institutional research plan: CEZ:AV0Z40550506 Keywords : carvacrol * cyclooxygenase-1 and -2 * prostaglandins Subject RIV: CE - Biochemistry

  19. Composición y capacidad antioxidante in-vitro de aceites esenciales ricos en Timol, Carvacrol, trans-Anetol o Estragol Composition and in-vitro antioxidant capacity of essential oils rich in Thymol, Carvacrol, trans-Anethole or Estragole

    Directory of Open Access Journals (Sweden)

    Amner Muñoz-Acevedo

    2009-12-01

    Full Text Available Se determinó por cromatografía de gases acoplada a espectrometría de masas (GC-MS la composición química de aceites esenciales (AE, aislados por hidrodestilación asistida por la radiación de microondas (MWHD, de las especies vegetales aromáticas Artemisia dracunculus, Foeniculum vulgare, Illicium verum, Lippia micromera, Lippia origanoides, Ocimum spp., Plectranthus amboinicus, Tagetes filifolia, Tagetes lucida y Thymus vulgaris. Los valores de capacidades antioxidantes in vitro de estos aceites esenciales, se obtuvieron usando los ensayos de decoloración del catión-radical ABTS+• (metodologías convencional y con dilución en microplacas y la oxidación del ácido linoleico, inducida por O2 y Fe+2. El potencial inhibitorio de ABTS+• fue más alto para los aceites esenciales que contienen fenoles (carvacrol y timol, que para los aceites esenciales ricos en éteres (trans-anetol y estragol. La actividad antioxidante mediante el ensayo ABTS+• modificado en orden decreciente fue: AE Plectranthus amboinicus ≥ AE Lippia origanoides >> AE Thymus vulgaris > AE Lippia micromera >>> AE Tagetes lucida (flores > AE Ocimum sp. > AE Tagetes lucida (hojas > AE Illicium verum > AE Tagetes filifolia (Cenivam > AE Foeniculum vulgare. Salud UIS 2009; 41: 287-294Gas chromatography coupled to mass spectrometry (GC-MS was used to determine the chemical composition of essential oils (EO isolated by microwave-radiation-assisted hydrodistillation (MWHD of Artemisia dracunculus, Foeniculum vulgare, Illicium verum, Lippia micromera, Lippia origanoides, Ocimum sp., Plectranthus amboinicus, Tagetes filifolia, Tagetes lucida and Thymus vulgaris. in vitro antioxidant capacity values using ABTS+• discoloration assays (traditional and microplate methods and the linoleic acid oxidation (with O2 and Fe+2 of these essential oils were obtained. Essential oils with phenols (carvacrol and thymol high content showed higher total antioxidant capacity values than

  20. Chemical Diversity in Lippia alba (Mill. N. E. Brown Germplasm

    Directory of Open Access Journals (Sweden)

    Arie Fitzgerald Blank

    2015-01-01

    Full Text Available The aim of this study was to perform chemical characterization of Lippia alba accessions from the Active Germplasm Bank of the Federal University of Sergipe. A randomized block experimental design with two replications was applied. The analysis of the chemical composition of the essential oils was conducted using a gas chromatograph coupled to a mass spectrometer. The chemical composition of the essential oils allowed the accessions to be allocated to the following six groups: group 1: linalool, 1,8-cineole, and caryophyllene oxide; group 2: linalool, geranial, neral, 1,8-cineol, and caryophyllene oxide; group 3: limonene, carvone, and sabinene; group 4: carvone, limonene, g-muurolene, and myrcene; group 5: neral, geranial, and caryophyllene oxide; and group 6: geranial, neral, o-cymene, limonene, and caryophyllene oxide.

  1. Application of Optimized Vortex-Assisted Surfactant-Enhanced DLLME for Preconcentration of Thymol and Carvacrol, and Their Determination by HPLC-UV: Response Surface Methodology.

    Science.gov (United States)

    Ghaedi, Mehrorang; Roosta, Mostafa; Khodadoust, Saeid; Daneshfar, Ali

    2015-08-01

    A novel vortex-assisted surfactant-enhanced dispersive liquid-liquid microextraction combined with high-performance liquid chromatography (VASEDLLME-HPLC) was developed for the determination of thymol and carvacrol (phenolic compound). In this method, the extraction solvent (CHCl3) was dispersed into the aqueous samples via a vortex agitator and addition of the surfactant (Triton X-100). The preliminary experiments were undertaken to select the best extraction solvent and surfactant. The influences of effective variables were investigated using a Plackett-Burman 2(7-4) screening design and then, the significant variables were optimized by using a central composite design combined with desirability function. Working under optimum conditions specified as: 140 µL CHCl3, 0.08% (w/v, Triton X-100), 3 min extraction time, 6 min centrifugation at 4,500 rpm, pH 7, 0.0% (w/v) NaCl permit achievement of high and reasonable linear range over 0.005-4.0 mg L(-1) with R(2) = 0.9998 (n = 10). The separation of thymol and carvacrol was achieved in <14 min using a C18 column and an isocratic binary mobile phase acetonitrile-water (55:45, v/v) with a flow rate of 1.0 mL min(-1). The VASEDLLME is applied for successful determination of carvacrol and thymol in different thyme and pharmaceutical samples with relative standard deviation <4.7% (n = 5). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Sublethal injury and virulence changes in Listeria monocytogenes and Listeria innocua treated with antimicrobials carvacrol and citral.

    Science.gov (United States)

    Silva, A; Genovés, S; Martorell, P; Zanini, S F; Rodrigo, D; Martinez, A

    2015-09-01

    The aim of this study was to evaluate the effect of two antimicrobial substances, carvacrol and citral, on Listeria monocytogenes and Listeria innocua cells, as well as possible virulence changes in injured cells, using Caenorhabditis elegans as a model test. The results indicated that the percentage of sublethal damage was higher in L. monocytogenes than in L. innocua. The results of the study carried out by using C. elegans indicated that C. elegans fed in a lawn of L. monocytogenes previously treated with carvacrol showed a loss in life span (p ≤ 0.05) as compared with L. monocytogenes treated with citral, Escherichia coli OP50 as a negative control, and treated and untreated L. innocua. Egg laying was also affected: worms fed in a lawn of treated and untreated L. monocytogenes laid fewer eggs than those fed in a lawn of treated and untreated L. innocua or fed with OP50 as a negative control. Worms fed in a lawn of treated and untreated L. innocua also laid fewer eggs than those fed with OP50 as a negative control. A phenotype named bag of worms and an undescribed new one, "vulva inflammation", were also observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and indigenous flora in marinated beef and marinade.

    Science.gov (United States)

    Moon, Hyeree; Kim, Nam Hee; Kim, Soon Han; Kim, Younghoon; Ryu, Jee Hoon; Rhee, Min Suk

    2017-07-01

    An effective bactericidal cold-marinating method for beef products is described, exploiting the synergism between soy sauce and natural compounds (carvacrol, CV or thymol, TM) to reduce microbiological risks. Beef slices inoculated with Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium (3.1-3.5logCFU/g) were marinated in a teriyaki sauce with or without CV and TM (0.3 and 0.5%). After 1, 3, and 7days at 4°C, indigenous microflora population, color, lipid oxidation, marinade uptake, and pH of marinated beef and leftover marinade samples were examined. Teriyaki sauce alone did not reduce or inhibit any of the target pathogens or indigenous bacteria, while 0.5% CV- or TM-containing teriyaki sauce inactivated all inocula without recovery within 7days (p0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    Science.gov (United States)

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  5. Effects of Lippia sidoides essential oil, thymol, p-cymene, myrcene and caryophyllene on rat sciatic nerve excitability

    Directory of Open Access Journals (Sweden)

    R. Barbosa

    2017-10-01

    Full Text Available Lippia sidoides Cham is a typical herb species of Northeast Brazil with widespread use in folk medicine. The major constituents of the essential oil of L. sidoides (EOLs are thymol, p-cymene, myrcene, and caryophyllene. Several studies have shown that the EOLs and its constituents have pharmacological effects, including antibacterial, anti-inflammatory, antioxidant and neuroprotective activity. Therefore, this work aimed to investigate the effects of the EOLs and their main constituents on rat sciatic nerve excitability. The sciatic nerves of adult Wistar rats were dissected and mounted in a moist chamber. Nerves were stimulated by square wave pulses, with an amplitude of 40 V, duration of 100 μs to 0.2 Hz. Both EOLs and thymol inhibited compound action potential (CAP in a concentration-dependent manner. Half maximal inhibitory concentration for CAP peak-to-peak amplitude blockade were 67.85 and 40 µg/mL for EOLs and thymol, respectively. CAP peak-to-peak amplitude was significantly reduced by concentrations ≥60 µg/mL for EOLs and ≥30 µg/mL for thymol. EOLs and thymol in the concentration of 60 µg/mL significantly increased chronaxie and rheobase. The conduction velocities of 1st and 2nd CAP components were also concentration-dependently reduced by EOLs and thymol in the range of 30-100 µg/mL. Differently from EOLs and thymol, p-cymene, myrcene and caryophyllene did not reduce CAP in the higher concentrations of 10 mM. These data demonstrated that EOLs and thymol inhibited neuronal excitability and were promising agents for the development of new drugs for therapeutic use.

  6. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens

    Directory of Open Access Journals (Sweden)

    M.A. Botelho

    2007-03-01

    Full Text Available Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae, popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7% and carvacrol (16.7%. The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  7. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens.

    Science.gov (United States)

    Botelho, M A; Nogueira, N A P; Bastos, G M; Fonseca, S G C; Lemos, T L G; Matos, F J A; Montenegro, D; Heukelbach, J; Rao, V S; Brito, G A C

    2007-03-01

    Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  8. Apple, carrot, and hibiscus edible films containing the plant antimicrobials carvacrol and cinnamaldehyde inactivate Salmonella Newport on organic leafy greens in sealed plastic bags

    Science.gov (United States)

    The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot and hibiscus based edible films against Salmonella Newport in contaminated organic leafy greens. The leafy greens tested included romaine and iceberg lettuce, and ...

  9. Short communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves.

    Science.gov (United States)

    Kissels, W; Wu, X; Santos, R R

    2017-02-01

    Bovine respiratory disease is the major problem faced by cattle, specially calves, leading to reduced animal performance and increased mortality, consequently causing important economic losses. Hence, calves must be submitted to antibiotic therapy to counteract this infection usually initiated by the combination of environmental stress factors and viral infection, altering the animal's defense mechanism, and thus allowing lung colonization by the opportunistic bacteria Mannheimia haemolytica and Pasteurella multocida. Essential oils appear to be candidates to replace antibiotics or to act as antibiotic adjuvants due to their antimicrobial properties. In the present study, we aimed to evaluate the 4 essential oil components carvacrol, thymol, trans-anethole, and 1,8 cineole as antibacterial agents or as adjuvants for the antibiotics doxycycline and tilmicosin against M. haemolytica and P. multocida. Bacteria were cultured according to standard protocols, followed by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration. A checkerboard assay was applied to detect possible interactions between components, between antibiotics, and between components and antibiotics. Doxycycline at 0.25 and 0.125 μg/mL inhibited the growth of P. multocida and M. haemolytica, respectively, whereas tilmicosin MIC values were 1.0 and 4.0 μg/mL for P. multocida and M. haemolytica, respectively. Carvacrol MIC values were 2.5 and 1.25 mM for P. multocida and M. haemolytica, respectively, whereas thymol MIC values were 1.25 and 0.625 mM for P. multocida and M. haemolytica, respectively. Trans-anethole and 1,8 cineole did not present any antibacterial effect even at 40 mM against the investigated pathogens. All minimum bactericidal concentration values were the same as MIC, except when thymol was tested against M. haemolytica, being twice the MIC data (i.e., 1.25 mM thymol). Based on fractional inhibitory concentration checkerboard assay, no

  10. Inhibitory effect of trans-caryophyllene (TC) on leukocyte-endothelial attachment.

    Science.gov (United States)

    Zhang, Zhen; Yang, Chunfeng; Dai, Xinlun; Ao, Yu; Li, Yumei

    2017-08-15

    trans-Caryophyllene (TC) is a major component found in the essential oils of many spices and foods/medicinal plants. It is a natural sesquiterpene and has been the subject of numerous studies. However, the effects of TC on vascular inflammation remain unknown. In this study, we reported that TC treatment in human umbilical vein endothelial cells (HUVECs) prevented attachment of monocytic leukemia cell line THP-1 cells to endothelial cells. In addition, in vivo results indicate that TC inhibited macrophage infiltration to the aortic surface and reduced total serum levels of cholesterol and triglycerides. Importantly, administration of TC could inhibit the induction of vascular cell adhesion molecule-1 (VCAM-1) both in vitro and in vivo. Notably, our data indicate that the inhibitory effects of TC on the expression of VCAM-1 are mediated by the JAK2/STAT1/IRF-1 pathway. TC is a specific agonist of the type 2 cannabinoid receptor (CB2R). Importantly, we further verified that the inhibitory effects of TC on the expression of IRF-1 and VCAM-1 are dependent on activation of CB2R. Inhibition of CB2R by either specific inhibitors or RNA interference abolished the inhibitory effects of TC on the expression of IRF-1 and VCAM-1. Our results suggest that TC might have a capacity to suppress the development of atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications.

    Science.gov (United States)

    Luzi, Francesca; Fortunati, Elena; Giovanale, Geremia; Mazzaglia, Angelo; Torre, Luigi; Balestra, Giorgio Mariano

    2017-11-01

    Kiwi Actinidia deliciosa pruning residues were here used for the first time as precursors for the extraction of high performing cellulose nanocrystals (CNC) by applying a bleaching treatment followed by an acidic hydrolysis. The resultant cellulosic nanostructures, obtained by an optimize extraction procedure (0.7% wt/v two times of sodium chlorite NaClO 2 ) followed by an hydrolysis step, were then used as reinforcements phases in poly(vinyl alcohol) (PVA) blended with natural chitosan (CH) based films and also combined, for the first time, with carvacrol used here as active agent. Morphological and optical characteristics, mechanical response, thermal and migration properties, moisture content and antioxidant and antimicrobial assays were conducted. The morphological, optical and colorimetric results underlined that no particular alterations were induced on the transparency and color of PVA and PVA_CH blend by the presence of CNC and carvacrol, while they were able to modulate the mechanical responses, to induce antioxidant activities maintaining the migration levels below the permitted limits and suggesting the possible application in industrial sectors. Finally, inhibitions on bacterial development were detected for multifunctional systems, suggesting their protective function against microorganisms contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Chemical composition, larvicidal action, and adult repellency of Thymus magnus against Aedes albopictus.

    Science.gov (United States)

    Park, Young-Uk; Koo, Hyun-Na; Kim, Gil-Hah

    2012-09-01

    Thymus magnus, an endemic species, is found in the Republic of Korea. The volatile compounds extracted by SPME from T. magnus were investigated for their chemical composition and electrophysiological response against the Asian tiger mosquito, Aedes albopictus. The volatile compounds of T. magnus as determined by gas chromatography mass spectrometry were gamma-terpinene (33.0%), thymol (29.9%), beta-bisabolene (8.9%), p-cymene (8.3%), alpha-terpinene (5.0%), myrcene (4.7%), beta-caryophyllene (4.0%), alpha-thujene (2.7%), camphene (1.3%), carvacrol (1.2%), and alpha-pinene (1.1%). Among these candidates, thymol exhibited complete (100%) repellent activity against female Ae. albopictus, an effect that was confirmed through evaluating the electrophysiological response on the antenna of Ae. albopictus. The effectiveness of a binary 1:2 mixture of thymol and vanillin (0.05:0.1 microl per cm2) was found to be significantly more effective than thymol alone for a period of 120 min. In addition, thymol, alpha-terpinene, and carvacrol showed high larvicidal activity against on the third-stage larvae with LC50 values of 0.9 microl per 100 ml.

  13. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Lenise de Lima Silva

    Full Text Available There is an increasing demand for inexpensive and safe anesthetics that can reduce fish stress caused by some procedures such as capture and handling. In this context, the present study evaluated the potential of essential oils (EO of three Brazilian native plants (Hesperozygis ringens, Lippia sidoides and Ocotea acutifolia as anesthetics for the silver catfish - Rhamdia quelen. Moreover, an analysis was made of the chemical composition of these oils and their influence on stress parameter. EO of H. ringens and O. acutifolia were effective as anesthetics, without behavioral side effects. EO of O. acutifolia (150 µL L-1 promoted an increase in blood glucose level. Regarding to the composition, pulegone accounts for 96.63% of the EO of H. ringens, and caryophyllene oxide amounts to 56.90% of the EO of O. acutifolia. Two chemotypes, thymol and carvacrol (68.40% and 67.89%, respectively were verified for EO of L. sidoides. Both samples of EO of L. sidoides showed anesthetic activity in silver catfish, but exposure also caused loss of mucus and mortality. Thus, only the EO of H. ringens and O. acutifolia are advised for anesthetic use

  14. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil.

    Science.gov (United States)

    Horvathova, Eva; Navarova, Jana; Galova, Eliska; Sevcovicova, Andrea; Chodakova, Lenka; Snahnicanova, Zuzana; Melusova, Martina; Kozics, Katarina; Slamenova, Darina

    2014-07-16

    Selected components of plant essential oils and intact Rosmarinus officinalis oil (RO) were investigated for their antioxidant, iron-chelating, and DNA-protective effects. Antioxidant activities were assessed using four different techniques. DNA-protective effects on human hepatoma HepG2 cells and plasmid DNA were evaluated with the help of the comet assay and the DNA topology test, respectively. It was observed that whereas eugenol, carvacrol, and thymol showed high antioxidative effectiveness in all assays used, RO manifested only antiradical effect and borneol and eucalyptol did not express antioxidant activity at all. DNA-protective ability against hydrogen peroxide (H2O2)-induced DNA lesions was manifested by two antioxidants (carvacrol and thymol) and two compounds that do not show antioxidant effects (RO and borneol). Borneol was able to preserve not only DNA of HepG2 cells but also plasmid DNA against Fe(2+)-induced damage. This paper evaluates the results in the light of experiences of other scientists.

  15. Protective Effect of Carvacrol against Gut Dysbiosis and Clostridium difficile Associated Disease in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Kumar Venkitanarayanan

    2017-04-01

    Full Text Available This study investigated the effect of carvacrol (CR, a phytophenolic compound on antibiotic-associated gut dysbiosis and C. difficile infection in a mouse model. Five to six-week-old C57BL/6 mice were randomly divided into seven treatment groups (challenge and control of eight mice each. Mice were fed with irradiated feed supplemented with CR (0, 0.05, and 0.1%; the challenge groups were made susceptible to C. difficile by orally administering an antibiotic cocktail in water and an intra-peritoneal injection of clindamycin. Both challenge and control groups were infected with 105CFU/ml of hypervirulent C. difficile (ATCC 1870 spores or PBS, and observed for clinical signs for 10 days. Respective control groups for CR, antibiotics, and their combination were included for investigating their effect on mouse enteric microflora. Mouse body weight and clinical and diarrhea scores were recorded daily post infection. Fecal samples were collected for microbiome analysis using rRNA sequencing in MiSeq platform. Carvacrol supplementation significantly reduced the incidence of diarrhea and improved the clinical and diarrhea scores in mice (p < 0.05. Microbiome analysis revealed a significant increase in Proteobacteria and reduction in the abundance of protective bacterial flora in antibiotic-treated and C. difficile-infected mice compared to controls (p < 0.05. However, CR supplementation positively altered the microbiome composition, as revealed by an increased abundance of beneficial bacteria, including Firmicutes, and significantly reduced the proportion of detrimental flora such as Proteobacteria, without significantly affecting the gut microbiome diversity compared to control. Results suggest that CR could potentially be used to control gut dysbiosis and reduce C. difficile infection.

  16. Effect of a specific combination of carvacrol, cinnamaldehyde, and Capsicum oleoresin on the growth performance, carcass quality and gut integrity of broiler chickens

    Directory of Open Access Journals (Sweden)

    M. H. H. Awaad

    2014-05-01

    Full Text Available Aim: The effect of a specific combination (SC of carvacrol, cinnamaldehyde, and Capsicum oleoresin was investigated on productive performance and immune response in broiler chickens. Materials and Methods: Six hundred one-day-old broiler chickens were randomly allocated into two groups for 5 weeks. The SC was supplemented at 100 ppm of ration (presence or absence. Results: Treatment of broiler chickens with the SC improved productive performance variables as compared with the blank control birds. It decreased total mortality, increased final body weight, weight gain, production number and decreased final feed conversion ratio (FCR (P<0.05. The SC had a positive effect on carcass quality and enhanced HI titer against Newcastle disease (ND virus vaccine, as compared to their untreated control group (P<0.05. The SC treated birds had higher values of intestinal diameter than the control ones. Conclusion: It could be concluded that administration of a specific combination of carvacrol, cinnamaldehyde, and Capsicum oleoresin to broiler chickens improved chicken zootechnical performance response variables, had a potent immuno-modulatory effect (potentiated immune response and improved gut integrity. Eventually, this combination could be used as a replacement to the controversial feed additives (antibiotic growth promoters.

  17. Chemical Constituents and Activity of Murraya microphylla Essential Oil against Lasioderma serricorne.

    Science.gov (United States)

    You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Yang, Kai; Wang, Cheng-Fang; Geng, Zhu-Feng; Du, Shu-Shan; Deng, Zhi-Wei; Wang, Yong-Yan

    2015-09-01

    The chemical composition, contact and repellent activities of the essential oil from Murraya microphylla branches and leaves against Lasioderma serricorne adults were determined and six compounds from the essential oil were isolated as well. The essential oil of M microphylla obtained by hydrodistillation was analyzed by gas chromatography-mass spectrometric (GC-MS) analysis; 22 compounds were identified. The main constituents of the essential oil included β-caryophyllene (18.0%), α-pinene (13.8%), spathulenol (9.5%), α-humulene (6.0%), γ-elemene (5.1%) and zingiberene (4.6%), followed by α-cadinol (3.9%) and caryophyllene oxide (3.8%). Six of these compounds were isolated and fully identified as α-pinene, β-caryophyllene, α-humulene, caryophyllene oxide, spathulenol and α-cadinol. L. serricorne adults had different sensitivities to the crude essential oil and isolated compounds. α-Humulene exhibited the strongest contact activity against L. serricorne, showing an LD50 value of 13.1 µg adult(-1). However, spathulenol, the crude essential oil and α-cadinol showed stronger contact activity against L. serricorne than caryophyllene oxide and β-caryophyllene. The essential oil, α-humulene and spathulenol showed comparable repellency against L. serricorne adults at 2 h after exposure, relative to the positive control, DEET. The results demonstrate that the essential oil and isolated compounds exhibited important contact and repellent activities against L. serricorne. Thus, they could become potential natural insecticides or repellents for control of insects in stored products.

  18. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey.

    Science.gov (United States)

    Dolan, Marc C; Jordan, Robert A; Schulze, Terry L; Schulze, Christopher J; Manning, Mark Cornell; Ruffolo, Daniel; Schmidt, Jason P; Piesman, Joseph; Karchesy, Joseph J

    2009-12-01

    We evaluated the ability of the natural, plant-derived acaricides nootkatone and carvacrol to suppress Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae). Aqueous formulations of 1 and 5% nootkatone applied by backpack sprayer to the forest litter layer completely suppressed I. scapularis nymphs through 2 d. Thereafter, the level of reduction gradually declined to nootkatone was less effective, but at a 5% concentration, the level of control was similar or greater to that observed with I. scapularis through 21 d postapplication. Initial applications of 0.05% carvacrol were ineffective, but a 5% carvacrol formulation completely suppressed nymphs of both species through 2 d and resulted in significant reduction in I. scapularis and A. americanum nymphs through 28 and 14 d postapplication, respectively. Backpack sprayer applications of 5% nootkatone to the shrub and litter layers resulted in 100% control of I. scapularis adults through 6 d, but the level of reduction declined to 71.5% at 28 d postapplication. By contrast, high-pressure applications of 2% nootkatone to the litter layer resulted in 96.2-100% suppression of both I. scapularis and A. americanum nymphs through 42 d, whereas much lower control was obtained from the same formulation applied by backpack sprayer. Backpack sprayer application of a 3.1% nootkatone nanoemulsion resulted in 97.5-98.9 and 99.3-100% reduction in I. scapularis and A. americanum nymphs, respectively, at 1 d postapplication. Between 7 d and 35 d postapplication, the level of control varied between 57.1% and 92.5% for I. scapularis and between 78.5 and 97.1% for A. americanum nymphs. The ability of natural products to quickly suppress and maintain significant control of populations of these medically important ticks at relatively low concentrations may represent a future alternative to the use of conventional synthetic acaricides.

  19. Chemical composition and antimicrobial activity of the essential oil from Satureja horvatii Šilić (Lamiaceae

    Directory of Open Access Journals (Sweden)

    BRANISLAVA LAKUSIC

    2008-07-01

    Full Text Available The present paper describes the chemical composition and antimicrobial activity of the essential oil of the endemic species Satureja horvatii Šilić, collected in Montenegro. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. From the 34 compounds representing 100 % of the oil, the major compound was the phenolic monoterpene thymol (63.37 %. The oil contained smaller amounts of g-terpinene (7.49 %, carvacrol methyl ether (4.92 %, carvacrol (4.67 %, p-cymene (4.52%, a-terpinene (1.81 %, borneol (1.58 %, a-thujene (1.56 %, b-caryophyllene (1.55 % and b-myrcene (1.44 %. The antimicrobial activity of the essential oil of S. horvatii was evaluated using the agar diffusion and broth microdilution methods. The essential oil exhibited antimicrobial activity to varying degrees against all the tested strains. The maximum activity of S. horvatii oil was observed against Gram-positive bacteria (Micrococcus luteus, Staphylococcus epidermidis, Staphylococcus aureus and Enterococcus faecalis and against the yeast (Candida albicans. The oil exhibited moderate activity against the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and weak activity against Pseudomonas aeruginosa. This study confirms that the essential oil of S. horvatii possesses antimicrobial activities in vitro against medically important pathogens.

  20. Inhibition and inactivation of Salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol.

    Science.gov (United States)

    Soni, Kamlesh A; Oladunjoye, Ademola; Nannapaneni, Ramakrishna; Schilling, M Wes; Silva, Juan L; Mikel, Benjy; Bailey, R Hartford

    2013-02-01

    Persistence of Salmonella biofilms within food processing environments is an important source of Salmonella contamination in the food chain. In this study, essential oils of thyme and oregano and their antimicrobial phenolic constituent carvacrol were evaluated for their ability to inhibit biofilm formation and inactivate preformed Salmonella biofilms. A crystal violet staining assay and CFU measurements were utilized to quantify biofilm cell mass, with evaluating factors such as strain variation, essential oil type, their concentrations, exposure time, as well as biofilm formation surface. Of the three Salmonella strains, Salmonella Typhimurium ATCC 23564 and Salmonella Typhimurium ATCC 19585 produced stronger biofilms than Salmonella Typhimurium ATCC 14028. Biofilm formation by different Salmonella strains was 1.5- to 2-fold higher at 22°C than at 30 or 37°C. The presence of nonbiocidal concentrations of thyme oil, oregano oil, and phenolic carvacrol at 0.006 to 0.012% suppressed Salmonella spp. biofilm formation 2- to 4-fold, but could not completely eliminate biofilm formation. There was high correlation in terms of biofilm inactivation, as determined by the crystal violet-stained optical density (at a 562-nm wavelength) readings and the viable CFU counts. Reduction of biofilm cell mass was dependent on antimicrobial concentration. A minimum concentration of 0.05 to 0.1% of these antimicrobial agents was needed to reduce a 7-log CFU biofilm mass to a nondetectable level on both polystyrene and stainless steel surfaces within 1 h of exposure time.

  1. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  2. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    Science.gov (United States)

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  3. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  4. [Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].

    Science.gov (United States)

    Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I

    2016-01-01

    The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.

  5. Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus.

    Science.gov (United States)

    Araújo, L X; Novato, T P L; Zeringota, V; Maturano, R; Melo, D; DA Silva, B C; Daemon, E; DE Carvalho, M G; Monteiro, C M O

    2016-12-01

    The effects of combinations of the monoterpenes thymol and carvacrol and the phenylpropanoid eugenol in larvae of Rhipicephalus microplus (Canestrini, 1888) (Acari: Ixodidae) and Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) were assessed by the larval packet test. The CompuSyn program was used to make qualitative assessments of the effects (synergistic, additive and antagonistic) of the associations. The effects of all combinations tested against R. microplus larvae were synergistic, with combination indices (CIs) eugenol and thymol + eugenol have synergistic effects in R. microplus and R. sanguineus s.l. larvae. © 2016 The Royal Entomological Society.

  6. Inhibition of lard oxidation by fractions of different essential oils

    Directory of Open Access Journals (Sweden)

    Milos, Mladen

    2005-12-01

    Full Text Available The ability to inhibit lard oxidation by the essential oils of Origanum vulgare L. spp. hirtum , Thymus vulgaris L., Thymus serpyllum L., Satureja montana L. and Satureja cuneifolia Ten. was examined. Except Satureja cuneifoila Ten. essential oil, all the essential oils studied showed a strong phenolic profile characterized by the presence of phenolic monoterpenes - thymol and carvacrol. The Rancimat method has been applied on lard spiked with essential oils and their fractions. The ability of the essential oils tested and their fractions to act as inhibitors of the lipid oxidation process was lower in comparison with reference antioxidants (BHA and BHT, ascorbic acid and a -tocopherol. The antioxidant effect of the antioxidants tested was dose-dependent. Induction time of pure lard is not effected by the quantity of the oil sample in the reacting system.Se examinó la capacidad de los aceites esenciales de Origanum vulgare L. spp. hirtum , Thymus vulgaris L., Thymus serpyllum L., Satureja montana L. y Satureja cuneifolia Ten. para inhibir la oxidación de la manteca de cerdo pura. Excepto Satureja cuneifolia Ten., todos los aceites esenciales mostraron un acusado perfil fenólico caracterizado por la presencia de fenoles monoterpénicos- timol y carvacrol. El método Rancimat ha sido aplicado a manteca de cerdo sembrada con los aceites esenciales y sus fracciones. La capacidad de los aceites y sus fracciones para actuar como inhibidores de la oxidación de lípidos fue menor en comparación con la de antioxidante sintéticos (BHA y BHT, ácido ascórbico y a -tocoferol. El efecto antioxidante de las sustancias ensayadas dependió de la dosis. El periodo de inducción de la manteca de cerdo pura no se afectó por la cantidad de muestra presente en el sistema de reacción.

  7. Volatile constituents of the aerial parts of Vietnamese Polygonum odoratum L.

    NARCIS (Netherlands)

    Dung, N.X.; Le, Van Hac; Leclercq, P.A.

    1995-01-01

    The volatile compds. isolated from the aerial parts of Vietnamese P. odoratum were analyzed by a combination of high resoln. GC and HR-GC/MS. More than 50 compds. were detected, of which 28 were identified. The main compds. were b-caryophyllene (36.5%), dodecanal (11.4%) and caryophyllene oxide

  8. (E-Caryophyllene and α-Humulene: Aedes aegypti Oviposition Deterrents Elucidated by Gas Chromatography-Electrophysiological Assay of Commiphora leptophloeos Leaf Oil.

    Directory of Open Access Journals (Sweden)

    Rayane Cristine Santos da Silva

    Full Text Available Aedes aegypti is responsible for the transmission of dengue, a disease that infects millions of people each year. Although essential oils are well recognized as sources of compounds with repellent and larvicidal activities against the dengue mosquito, much less is known about their oviposition deterrent effects. Commiphora leptophloeos, a tree native to South America, has important pharmacological properties, but the chemical profile and applicability of its essential oil in controlling the spread of the dengue mosquito have not been investigated. The aim of this study was to determine the composition of C. leptophloeos leaf oil and to evaluate its larvicidal and oviposition deterrent effects against A. aegypti. Fifty-five components of the essential oil were detected by gas chromatography (GC-mass spectrometry, with α-phellandrene (26.3%, (E-caryophyllene (18.0% and β-phellandrene (12.9% identified as the major constituents. Bioassays showed that the oil exhibited strong oviposition deterrent effects against A. aegypti at concentrations between 25 and 100 ppm, and possessed good larvicidal activity (LC50 = 99.4 ppm. Analysis of the oil by GC coupled with electroantennographic detection established that seven constituents could trigger antennal depolarization in A. aegypti gravid females. Two of these components, namely (E-caryophyllene and α-humulene, were present in substantial proportions in the oil, and oviposition deterrence assays confirmed that both were significantly active at concentrations equivalent to those present in the oil. It is concluded that these sesquiterpenes are responsible, at least in part, for the deterrent effect of the oil. The oviposition deterrent activity of the leaf oil of C. leptophloeos is one of the most potent reported so far, suggesting that it could represent an interesting alternative to synthetic insecticides. The results of this study highlight the importance of integrating chemical and

  9. Volatile constituents of the seed and fruit skin oils of Catimbium latilabre (Ridl.) Holtt. from Vietnam

    NARCIS (Netherlands)

    Leclercq, P.A.; Dung, N.X.; Chinh, T.D.; Rang, D.D.

    1994-01-01

    The volatile constituents of the seed and fruit skin oils of C. latilabre from Vietnam were analyzed by a combination of high resoln. GC and GC/MS. More than 55 components were present in the seed oil, of which the major ones were b-caryophyllene (25.8%), camphor (11.2%), caryophyllene oxide (5.7%),

  10. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species.

    Science.gov (United States)

    Quintero Ruiz, Nathalia; Córdoba Campo, Yuri; Stashenko, Elena E; Fuentes, Jorge Luis

    2017-07-01

    The antigenotoxicity against ultraviolet radiation (UV)-induced DNA damage of essential oils (EO) from Lippia species was studied using SOS Chromotest. Based on the minimum concentration that significantly inhibits genotoxicity, the genoprotective potential of EO from highest to lowest was Lippia graveolens, thymol-RC ≈ Lippia origanoides, carvacrol-RC ≈ L. origanoides, thymol-RC > Lippia alba, citral-RC ≈ Lippia citriodora, citral-RC ≈ Lippia micromera, thymol-RC > L. alba, myrcenone-RC. EO from L. alba, carvone/limonene-RC, L. origanoides, α-phellandrene-RC and L. dulcis, trans-β-caryophyllene-RC did not reduce the UV genotoxicity at any of the doses tested. A gas chromatography with flame ionization detection analysis (GC-FID) was conducted to evaluate the solubility of the major EO constituents under our experimental conditions. GC-FID analysis showed that, at least partially, major EO constituents were water-soluble and therefore, they were related with the antigenotoxicity detected for EO. Constituents such as p-cymene, geraniol, carvacrol, thymol, citral and 1,8-cineole showed antigenotoxicity. The antioxidant activity of EO constituents was also determined using the oxygen radical antioxidant capacity (ORAC) assay. The results showed that the antigenotoxicity of the EO constituents was unconnected with their antioxidant activity. The antigenotoxicity to different constituent binary mixtures suggests that synergistic effects can occur in some of the studied EO. © 2017 The American Society of Photobiology.

  11. Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor.

    Science.gov (United States)

    Martínez, L C; Plata-Rueda, A; Colares, H C; Campos, J M; Dos Santos, M H; Fernandes, F L; Serrão, J E; Zanuncio, J C

    2017-12-14

    The study identified insecticidal effects from the cinnamon and clove essential oils in Tenebrio molitor L. (Coleoptera: Tenebrionidae). The lethal concentrations (LC50 and LC90), lethal time, and repellent effect on larvae, pupae, and adults of T. molitor after exposure to six concentrations of each essential oil and toxic compounds were evaluated. The chemical composition of the cinnamon oil was also determined and primary compounds were eugenol (10.19%), trans-3-caren-2-ol (9.92%), benzyl benzoate (9.68%), caryophyllene (9.05%), eugenyl acetate (7.47%), α-phellandrene (7.18%), and α-pinene (6.92%). In clove essential oil, the primary compounds were eugenol (26.64%), caryophyllene (23.73%), caryophyllene oxide (17.74%), 2-propenoic acid (11.84%), α-humulene (10.48%), γ-cadinene (4.85%), and humulene oxide (4.69%). Cinnamon and clove essential oils were toxic to T. molitor. In toxic chemical compounds, eugenol have stronger contact toxicity in larvae, pupae, and adult than caryophyllene oxide, followed by α-pinene, α-phellandrene, and α-humulene. In general, the two essential oils were toxic and repellent to adult T. molitor. Cinnamon and clove essential oils and their compounds caused higher mortality and repellency on T. molitor and, therefore, have the potential for integrated management programs of this insect.

  12. Essential Oils from Leaves of Medicinal Plants of Brazilian Flora: Chemical Composition and Activity against Candida Species

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Mendes Ferreira da Costa

    2017-05-01

    Full Text Available Background: The biotechnological potential of medicinal plants from Brazilian Caatinga and the Atlantic Forest has not been extensively studied. Thus, screening programs are important in prospecting for compounds for developing new drugs. The purpose of this study was to determine the chemical composition and to evaluate the anti-Candida activity of essential oils from leaves of Hymenaea courbaril var. courbaril, Myroxylon peruiferum, and Vismia guianensis. Methods: The oils were extracted through hydrodistillation and their chemical compositions were analyzed by gas chromatography coupled with mass spectrometry. Antifungal activity against C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, and C. krusei was evaluated by determining the minimal inhibitory (MIC and fungicidal (MFC concentrations. Results: The major compounds of the oils were caryophyllene oxide and trans-caryophyllene for H. courbaril; spathulenol, α-pinene, and caryophyllene oxide for M. peruiferum; and caryophyllene oxide and humulene epoxide II for V. guianensis oil. The oils showed antifungal activity against all the strains tested, and the MIC values ranged between 0.625 and 1.25 μL/mL and MFC from 0.625 to 2.5 μL/mL. Conclusion: The essential oils from the species studied have the potential to be evaluated as clinical applications in the treatment of candidiasis.

  13. Chemical composition of the leaf essential oils of Murraya koenigii (L. Spreng and Murraya paniculata (L. Jack

    Directory of Open Access Journals (Sweden)

    Jasim Uddin Chowdhury

    2008-06-01

    Full Text Available The chemical composition of the leaf oils of Murraya koenigii (L. Spreng and M. paniculata (L. Jack from Bangladesh was studied by gas chromatography mass spectroscopy (GC-MS. M. koenigii oil contained 39 compounds of which the major is 3-carene (54.2% followed by caryophyllene (9.5%. Oil of M. paniculata contained 58 compounds of which the major are caryophyllene oxide (16.6%, b-caryophyllene (11.8%, spathulenol (10.2%, b-elemene (8.9%, germacrene D (6.9% and cyclooctene, 4-methylene-6-(1-propenylidene (6.4%. The compositions of both oils varied qualitatively and quantitatively.

  14. Chemical composition of the leaf essential oils of Murraya koenigii (L. Spreng and Murraya paniculata (L. Jack

    Directory of Open Access Journals (Sweden)

    Jasim Uddin Chowdhury

    2008-12-01

    Full Text Available The chemical composition of the leaf oils of Murraya koenigii (L. Spreng and M. paniculata (L. Jack from Bangladesh was studied by gas chromatography mass spectroscopy (GC-MS. M. koenigii oil contained 39 compounds of which the major is 3-carene (54.2% followed by caryophyllene (9.5%. Oil of M. paniculata contained 58 compounds of which the major are caryophyllene oxide (16.6%, beta-caryophyllene (11.8%, spathulenol (10.2%, beta-elemene (8.9%, germacrene D (6.9% and cyclooctene, 4-methylene-6-(1-propenylidene (6.4%. The composi-tions of both oils varied qualitatively and quantitatively.

  15. Effect of Thymus vulgaris and Bunium persicum essential oils on the oxidative stability of virgin olive oil

    International Nuclear Information System (INIS)

    Keramat, M.; Golmakani, M.T.

    2016-01-01

    Natural antioxidants are becoming a major focus because natural food ingredients are safer than synthetic types. The aim of this study was to investigate the protective effects of Thymus vulgaris and Bunium persicum essential oils (EO) on the oxidation of virgin olive oil (VOO) during accelerated storage. The antioxidant activities of EOs were compared with those of α-tocopherol and BHT. GC/MS analyses revealed that thymol (28.50%), p-cymene (27.14%), carvacrol (18.36%), and γ-terpinene (4.97%) are the main components of T. vulgaris EO, while cuminaldehyde (32.81%), γ-terpinene (16.02%) and p-cymene (14.07%) are the main components of B. persicum EO. Both EOs provided protection for the VOO, inhibiting the formation of primary and secondary oxidation products although T. vulgaris EO showed greater protection against the oxidation process than B. persicum EO. The effect of T. vulgaris essential oil on the oxidation inhibition of VOO was similar to that of BHT. α-Tocopherol showed no measurable effect on improving the oxidative stability of VOO. This study suggests that T. vulgaris and B. persicum EOs can be used to improve the oxidative stability of VOO. [es

  16. Volatile Constituents of Three Myrsine L. Species from Brazil

    Directory of Open Access Journals (Sweden)

    Arthur L. Corrêa

    2017-01-01

    Full Text Available The chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of Myrsine rubra, Myrsine gardneriana and Myrsine parvifolia and the fruits of Myrsine parvifolia were elucidated by a combination of GC and GC-MS analyses. The main constituents of the native M. parvifolia were caryophyllene oxide (14.4%, β-caryophyllene (12.6% and γ-Muurolene (7.9% of the leaves oil and β-caryophyllene (11.7%, δ-Cadinene (7.1% of the fruit oil. The volatile oil of the endemic M. rubra leaves was dominated by β-caryophyllene (17.2%, γ-Muurolene (11.1%, Germacrene B (10.0%. The essential oil of the native M. gardneriana leaves was characterized by β-caryophyllene (18.0%, γ-Muurolene (8.4%. These three Myrsine species are similar in the dominance of sesquiterpenes. By contrast, monoterpenes were found only in the volatile oil from the fruits of M. parvifolia. To the best of our knowledge, this study is the first report on the volatile constituents of M. rubra, M. gardneriana, M. parvifolia.

  17. New volatile constituents from leaves of Stemodia trifoliata (Link.) Reichb. (Schrophulariaceae)

    International Nuclear Information System (INIS)

    Silva, Wildson Max B. da; Assuncao, Joao Carlos da C.; Araujo, Renata M.; Silveira, Edilberto R.; Pessoa, Otilia D.L.

    2009-01-01

    The leaf essential oils of Stemodia trifoliata (Scrophulariaceae), collected at the same month of two different years (August 2005 and 2006), were analyzed by GC-MS and GC-FID. A total of 22 volatile components represented by sesquiterpenes and diterpenes was identified. β-Caryophyllene (9.4-15.4%) and caryophyllene oxide (6.2-9.0%) were the major compounds identified in the sesquiterpene fraction, while the diterpenoids 6α-acetoxymanoyl oxide (13.9-23.2%) and 6α-hydroxymanoyl oxide (25.1-29.7%) were the main constituents of the diterpene fraction. The two novel manoyl oxide derivatives had their structures established by means of spectroscopic methods, particularly 1D and 2D NMR. This work describes for the first time the chemical investigation on the volatile composition of S. trifoliata. (author)

  18. New volatile constituents from leaves of Stemodia trifoliata (Link.) Reichb. (Schrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wildson Max B. da; Assuncao, Joao Carlos da C.; Araujo, Renata M.; Silveira, Edilberto R.; Pessoa, Otilia D.L. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: opessoa@ufc.br

    2009-07-01

    The leaf essential oils of Stemodia trifoliata (Scrophulariaceae), collected at the same month of two different years (August 2005 and 2006), were analyzed by GC-MS and GC-FID. A total of 22 volatile components represented by sesquiterpenes and diterpenes was identified. {beta}-Caryophyllene (9.4-15.4%) and caryophyllene oxide (6.2-9.0%) were the major compounds identified in the sesquiterpene fraction, while the diterpenoids 6{alpha}-acetoxymanoyl oxide (13.9-23.2%) and 6{alpha}-hydroxymanoyl oxide (25.1-29.7%) were the main constituents of the diterpene fraction. The two novel manoyl oxide derivatives had their structures established by means of spectroscopic methods, particularly 1D and 2D NMR. This work describes for the first time the chemical investigation on the volatile composition of S. trifoliata. (author)

  19. Antifungal, cytotoxic and chemical analyses of essential oils of Lippia origanoides H.B.K grown in Colombia Actividad antifúngica, citotó;xica y composición química de aceites esenciales de Lippia origanoides H.B.K recolectadas en Colombia

    Directory of Open Access Journals (Sweden)

    Liliana Betancur-Galvis

    2011-08-01

    Full Text Available Introduction: Aspergillus fumigatus is most commonly associated to invasive aspergillosis. Strong antifungal activity against A. fumigatus of L. origanoides essential oil gives a new added value to this natural product from Boyacá-Colombia. Aims: The increase in fungal infections, the development of resistance and toxicity of wide-spectrum antifungals have led to a constant search for therapeutic alternatives. The chemical composition, antifungal and cytotoxic activity of nine essential oils obtained from L. origanoides were evaluated and the relationship between the antifungal activities of the oil and of its major components were explored. Methods and Results: Antifungal activity was determined following the protocols AFST-EUCAST for Candida krusei and C. parapsilosis, and CLSI-M38A for Aspergillus fumigatus and A. flavus. The GC-MS analysis identified three chemotypes: thymol, carvacrol and p-cymene/trans-beta-caryophyllene. The essential oil of the thymol chemotype was the most active in antifungal assays with MIC values of 157.5, 198.4, 125 and 31 μg ml-1 against C. parapsilosis, C. krusei, A. flavus and A. fumigatus, respectively. The major components carvacrol and thymol were not active against A. fumigatus at concentrations below 157.5 μg ml-1. In general, the oils were not cytotoxic. Conclusions: The essential oil of the thymol chemotype of L. origanoides from the region of Boyacá- Colombia showed the highest antifungal activity against A. fumigatus among all the oils and major components tested. Salud UIS 2011; 43 (2: 141-148Introducción: La infección por el hongo Aspergillus fumigatus está más comúnmente asociada a la aspergilosis invasiva. La fuerte actividad antimicótica del aceite esencial de L. origanoides contra A. fumigatus ha dado un nuevo valor agregado a este producto natural de Boyacá-Colombia. Objetivo: El aumento de las infecciones por hongos, el desarrollo de la resistencia y la toxicidad de los antif

  20. Components from the Essential oil of Centaurea aeolica Guss. and C. diluta Aiton from Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Mariem Ben Jemia

    2015-06-01

    Full Text Available Volatile components from florets, leaves and stems and branches of Centaurea aeolica Guss. harvested in Lipari, Sicily, Italy, were analysed by gas phase chomatography (GC and gas chomatography mass spectrometry (GC-MS. The main constituents were β-eudesmol, caryophyllene oxide, ( E -12-norcaryophyll-5-en-2-one and hexahydrofarnesylacetone in flowers, hexahydrofarnesylacetone, 2-methyloctadecane and tricosane in the leaves and hexadecanoic acid , caryophyllene oxide and β-eudesmol in the stems and branches . The analysis of the essential oil of the aerial parts of Centaurea diluta Aiton gave mainly fatty acids and derivatives, the main ones being hexadecanoic acid and (Z,Z-9,12-octadecadienoic acid methyl ester.

  1. Volatile constituents of Ocotea sinuata (Mez) Rohwer (Lauraceae) of Costa Rica

    International Nuclear Information System (INIS)

    Hernandez, Lorena; Ciccio, Jose F.; Chaverri, Carlos

    2007-01-01

    The chemical composition was determined of the essential oils extracted from twigs, bark and leaves of the tree Ocotea sinuata (Mez) Rohwer (Lauraceae), which grows in wild form in Costa Rica. The analyses were effected by means of the technology of gas chromatography in capillary column, using detectors of ionization at flame (FID) and spectrometry of masses (GC/MS). Eighty eight (88) compounds were identified. The oils were found to be of nature terpenic. The major constituents of the twigs were β-caryophyllene (18,4%), viridiflorol (11,3%), caryophyllene oxide (8,7%), germacrene D (7,7%), camphene (4,5%), and α-pinene (4,4%). The main constituents from bark oil were germacrene D (14.8%), β- caryophyllene(10,5%), camphene (10,3%), α-pinene (10,1%), viridiflorol (8,7%), β-pinene (4,7%) and α-copaene (4,6%). The main constituents from leaf oil were germacrene D (30,6%), β- caryophyllene (30,1%) and viridiflorol (8,9%). (author) [es

  2. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens.

    Science.gov (United States)

    Miladi, Hanene; Zmantar, Tarek; Chaabouni, Yassine; Fedhila, Kais; Bakhrouf, Amina; Mahdouani, Kacem; Chaieb, Kamel

    2016-10-01

    In this study thymol (THY) and carvacrol (CAR), two monoterpenic phenol produced by various aromatic plants, was tested for their antibacterial and efflux pump inhibitors potencies against a panel of clinical and foodborne pathogenes. Our results demonstrated a substantial susceptibility of the tested bacteria toward THY and CAR. Especially, THY displayed a strong inhibitory activity (MIC's values ranged from 32 to 64 μg/mL) against the majority of the tested strains compared to CAR. Moreover, a significant reduction in MIC's of TET and benzalkonium chloride (QAC) were noticed when tested in combinations with THY and CAR. Their synergic effect was more significant in the case of THY which resulted a reduction of MIC's values of TET (2-8 fold) and QAC (2-8 fold). We noted also that THY and CAR inhibited the ethidium bromide (EtBr) cell efflux in a concentration-dependent manner. The rate of EtBr accumulation in food-borne pathogen was enhanced with THY and CAR (0, 250 and 500 μg/mL). The lowest concentration causing 50% of EtBr efflux inhibition (IC 50) was noticed in Salmonella enteritidis (1129) at 150 μg/mL of THY and 190 μg/mL of CAR respectively. These findings indicate that THY and CAR may serve as potential sources of efflux pump inhibitor in food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium pachyphyllum Fruits against Two Grain Storage Insects

    Directory of Open Access Journals (Sweden)

    Hui-Wen Dong

    2012-12-01

    Full Text Available The aim of this research was to determine chemical composition and insecticidal activity of the essential oil of Illicium pachyphyllum fruits against two grain storage insects, Sitophilus zeamais and Tribolium castaneum, and to isolate any insecticidal constituents from the essential oil. The essential oil of I. pachyphyllum fruits was obtained by hydrodistillation and analyzed by GC-MS. A total of 36 components of the essential oil were identified, with the principal compounds in the essential oil being trans-ρ-mentha-1(7,8-dien-2-ol (24.56%, D-limonene (9.79%, caryophyllene oxide (9.32%, and cis-carveol (5.26% followed by β-caryophyllene (4.63% and bornyl acetate. Based on bioactivity-guided fractionation, the three active constituents were isolated and identified as trans-ρ-mentha-1(7,8-dien-2-ol, D-limonene and caryophyllene oxide. The essential oil of I. pachyphyllum fruits exhibited contact toxicity against S. zeamais and T. castaneum adults, with LD50 values of 17.33 μg/adult and 28.94 μg/adult, respectively. trans-p-Mentha-1(7,8-dien-2-ol (LD50 = 8.66 μg/adult and 13.66 μg/adult, respectively exhibited stronger acute toxicity against S. zeamais and T. castaneum adults than either caryophyllene oxide (LD50 = 34.09 μg/adult and 45.56 μg/adult and D-limonene (LD50 = 29.86 μg/adult and 20.14 μg/adult. The essential oil of I. pachyphyllum possessed fumigant toxicity against S. zeamais and T. castaneum adults with LC50 values of 11.49 mg/L and 15.08 mg/L, respectively. trans-p-Mentha-1(7,8-dien-2-ol exhibited stronger fumigant toxicity against S. zeamais and T. castaneum adults, respectively, with LC50 values of 6.01 mg/L and 8.14 mg/L, than caryophyllene oxide (LC50 = 17.02 mg/L and 15.98 mg/L and D-limonene (LC50 = 33.71 mg/L and 21.24 mg/L. The results indicate that the essential oil of I. pachyphyllum fruits and its constituent compounds have potential for development into natural insecticides or fumigants for the control of

  4. Constituents of Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L. and Bidens pilosa L. from Nigeria.

    Science.gov (United States)

    Ogunbinu, Akinola O; Flamini, Guido; Cioni, Pier L; Adebayo, Muritala A; Ogunwande, Isiaka A

    2009-04-01

    The essential oils of four plant species from Nigeria have been extracted by hydrodistillation and analyzed by GC and GC-MS. The oils of Cajanus cajan were comprised of sesquiterpenes (92.5%, 81.2% and 94.3% respectively in the leaves, stem and seeds). The major compounds identified were alpha-himachalene (9.0-11.5%), beta-himachalene (8.0-11.0%), gamma-himachalene (6.9-8.1%), alpha-humulene (7.1-8.7%) and alpha-copaene (4.5-5.6%). However, monoterpenoid compounds (81.8%) dominated the oil of Moringa oleifera with an abundance of alpha-phellandrene (25.2%) and p-cymene (24.9%). On the other hand, aldehydes (52.8%) occurred in the highest amount in Heliotropium indicum, represented by phenylacetaldehyde (22.2%), (E)-2-nonenal (8.3%) and (E, Z)-2-nonadienal (6.1%), with a significant quantity of hexahydrofarnesylacetone (8.4%). The leaf and stem oils of Bidens pilosa were dominated by sesquiterpenes (82.3% and 59.3%, respectively). The main compounds in the leaf oil were caryophyllene oxide (37.0%), beta-caryophyllene (10.5%) and humulene oxide (6.0%), while the stem oils had an abundance of hexahydrofarnesyl acetone (13.4%), delta-cadinene (12.0%) and caryophyllene oxide (11.0%). The observed chemical patterns differ considerably from previous investigations.

  5. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    Science.gov (United States)

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration.

  6. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean

    International Nuclear Information System (INIS)

    Souza, Silvia R.; Blande, James D.; Holopainen, Jarmo K.

    2013-01-01

    The roles that ozone and nitric oxide (NO), the chief O 3 precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O 3 inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O 3 did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O 3 (NO/O 3 ) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O 3 treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate–glutathione cycle and O 3 and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds. -- Highlights: •NO and O 3 disturb antioxidant defenses and cause lipid peroxidation in lima bean plants. •Exposure to NO before exposure to O 3 does not alter the antioxidant defenses and malondialdehyde levels. •The total sum of induced volatiles is reduced in plants that are exposed to NO and then O 3 . •The antioxidant system and induced VOC emission were balanced by pre-exposure to NO before O 3 . -- Capsule: Nitric oxide modulates the ozone-induced oxidative stress in lima bean by cross-tolerance effect

  7. Chemical Composition, Larvicidal and Cytotoxic Activities of the Essential Oils from two Bauhinia Species

    Directory of Open Access Journals (Sweden)

    Leôncio M. de Sousa

    2016-05-01

    Full Text Available The essential oils obtained by hydrodistilation from leaves of Bauhinia pulchella Benth. and Bauhinia ungulata L. were analysed by GC-FID and GC-MS. The major components of B. pulchella essential oil were identified as a -pinene (23.9%, caryophyllene oxide (22.4% and b -pinene (12.2%, while in the B. ungulata essential oil were caryophyllene oxide (23.0%, (E-caryophyllene (14.5% and a -copaene (7.2%. The essential oils were subsequently evaluated for their larvicidal and cytotoxic activities. Larval bioassay against Aedes aegypti of B. pulchella and B. ungulata essential oils showed LC 50 values of 105.9 ± 1.5 and 75.1 ± 2.8 m g/mL, respectively. The essential oils were evaluated against four human cancer cells lines: HL-60 (pro-myelocytic leukemia, MCF-7 (breast adenocarcinoma, NCI-H292 (lung carcinoma and HEP-2 ( cervical adenocarcinoma, showing IC 50 values in the range of 9.9 to 53.1 m g/mL. This is the first report on chemical composition of essential from leaves of B. pulchella and on larvicidal and cytotoxic activities of the essential oils.

  8. A strategy based on gas chromatography-mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil.

    Science.gov (United States)

    Wang, Haiyang; Gu, Dongyu; Wang, Miao; Guo, Hong; Wu, Huijuan; Tian, Guangliang; Li, Qian; Yang, Yi; Tian, Jing

    2017-06-09

    The discovery of leads from medicinal plants is crucial to drug development. The present study presents a strategy based on GC-MS coupled with molecular docking for analysis, identification and prediction of protein tyrosine phosphatase 1B inhibitors in the essential oil from Himalayan Cedar (HC). The essential oil with IC 50 value of 120.71±0.26μg/mL exhibited potential activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. After GC-MS analysis, 35 compounds were identified from this oil. The identified compounds were individually docked with PTP1B. Caryophyllene oxide with the lowest binding energy of -6.28kcal/mol was completely wrapped by the active site of PTP1B. The docking results indicated that caryophyllene oxide has potential PTP1B inhibitory activity and may be responsible for the PTP1B inhibitory activity of the essential oil. Caryophyllene oxide in the essential oil of Himalayan Cedar was isolated by HSCCC and the PTP1B inhibitory activity of this compound was then evaluated; the IC 50 value was 31.32±0.38μM. The result revealed that the present strategy can effectively discover the active composition from the complex mixture of medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Membrane Destruction and DNA Binding of Staphylococcus aureus Cells Induced by Carvacrol and Its Combined Effect with a Pulsed Electric Field.

    Science.gov (United States)

    Wang, Lang-Hong; Wang, Man-Sheng; Zeng, Xin-An; Zhang, Zhi-Hong; Gong, De-Ming; Huang, Yan-Bo

    2016-08-17

    Carvacrol (5-isopropyl-2-methylphenol, CAR) is an antibacterial ingredient that occurs naturally in the leaves of the plant Origanum vulgare. The antimicrobial mechanism of CAR against Staphylococcus aureus ATCC 43300 was investigated in the study. Analysis of the membrane fatty acids by gas chromatography-mass spectrometry (GC-MS) showed that exposure to CAR at low concentrations induced a marked increase in the level of unbranched fatty acids (from 34.90 ± 1.77% to 62.37 ± 4.26%). Moreover, CAR at higher levels severely damaged the integrity and morphologies of the S. aureus cell membrane. The DNA-binding properties of CAR were also investigated using fluorescence, circular dichroism, molecular modeling, and atomic-force microscopy. The results showed that CAR bound to DNA via the minor-groove mode, mildly perturbed the DNA secondary structure, and induced DNA molecules to be aggregated. Furthermore, a combination of CAR with a pulsed-electric field was found to exhibit strong synergistic effects on S. aureus.

  10. Chemical Composition, Antioxidant and Anticholinesterase Activities of the Essential oil of Origanum rotundifolium Boiss. from Turkey

    Directory of Open Access Journals (Sweden)

    Hilal Özbek

    2017-09-01

    Full Text Available The essential oil was obtained by hydrodistillation from the aerial parts of Origanum rotundifolium Boiss. Its chemical content and composition were analyzed by using a gas chromatography (GC-FID and gas chromatography-mass spectrometry (GC-MS. Total phenolic content of the essential oil was determined as 132.39 µg gallic acid equivalent by Folin–Ciocalteu’s method and the major component was identified as carvacrol (56.8 % along with p-cymene (13.1 %, (Z- b -ocimene (5.4 %, b -caryophyllene (3.9 %, borneol (3.4 % and thymol (3.2 %. After chemical characterization, the essential oil was evaluated for its antioxidant activity by DPPH free radical, superoxide anion radical and hydrogen peroxide scavenging activities as well as ferrous ion-chelating power test, ABTS radical cation decolorization assay and ferric thiocyanate methods. Besides antioxidant activity, acetylcholinesterase and butyrylcholinesterase inhibitory activities of the essential oil were also evaluated by Ellman’s method. It demonstrated inhibitory activities on AChE and BuChE, key enzymes in the pathogenesis of Alzheimer’s disease (AD, in addition to significant antioxidant activity.

  11. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    Full Text Available Carvacrol (CAR, a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials.

  12. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents.

    Science.gov (United States)

    Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Legault, Jean

    2017-05-25

    Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  13. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents

    Directory of Open Access Journals (Sweden)

    Héloïse Coté

    2017-05-01

    Full Text Available Background: Tanacetum vulgare L. (Asteraceae is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean, Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  14. Chemical composition and in vitro antimicrobial activity of the essential oils of two Helichrysum species from Tanzania.

    Science.gov (United States)

    Bougatsos, Christos; Ngassapa, Olipa; Runyoro, Deborah K B; Chinou, Ioanna B

    2004-01-01

    The chemical composition of the essential oils obtained from the aerial parts of Helichrysum cymosum and H. fulgidum, from Tanzania, were analyzed by GC and GC/MS. A total of sixty-five compounds, representing 92.4% and 88.2% of the two oils, respectively, were identified. trans-Caryophyllene, caryophyllene oxide, beta-pinene, p-cymene, spathulenol and beta-bourbonene were found to be the main components. Furthermore, the oils were tested against six gram (+/-) bacteria and three pathogenic fungi. It was found that the oil of H. fulgidum exhibited significant antimicrobial activity, while the oil of H. cymosum was not active at all.

  15. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Ar

    Directory of Open Access Journals (Sweden)

    Merajuddin Khan

    2016-11-01

    Full Text Available The chemical components of essential oils derived from leaves and flowers of Lantana camara growing in Saudi Arabia are analyzed for the first time using gas chromatography techniques (GC–MS, GC–FID, Co-GC, LRI determination, and database and literature searches on two different stationary phase columns (polar and nonpolar. This analysis led to the identification of total 163 compounds from leaves and flowers oils. 134 compounds were identified in the oil obtained from leaves of L. camara, whereas 127 compounds were identified in the oil obtained from flowers; these compounds account for 96.3% and 95.3% of the oil composition, respectively. The major components in the oil from leaves were cis-3-hexen-1-ol (11.3%, 1-octen-3-ol (8.7%, spathulenol (8.6%, caryophyllene oxide (7.5% and 1-hexanol (5.8%. In contrast, the major compounds in the flowers oil were caryophyllene oxide (10.6%, β-caryophyllene (9.7%, spathulenol (8.6%, γ-cadinene (5.6% and trans-β-farnesene (5.0%. To the best of our knowledge, cis-3-hexen-1-ol and 1-octen-3-ol that were identified as major components in this study have not been reported earlier from Lantana oils.

  16. 2236-IJBCS-Article-Stephen Samwell

    African Journals Online (AJOL)

    hp

    Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, ... observed high mosquito repellent activity for the essential oil fractions from A. hexapetalus could be attributed ... Keywords: Essential oils, mosquito repellent properties, Annonaceae, β-caryophyllene oxide, cadinol, cubenol.

  17. Composition of the Essential Oil of Salvia ballotiflora (Lamiaceae and Its Insecticidal Activity

    Directory of Open Access Journals (Sweden)

    Norma Cecilia Cárdenas-Ortega

    2015-05-01

    Full Text Available Essential oils can be used as an alternative to using synthetic insecticides for pest management. Therefore, the insectistatic and insecticidal activities of the essential oil of aerial parts of Salvia ballotiflora (Lamiaceae were tested against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae. The results demonstrated insecticidal and insectistatical activities against this insect pest with concentrations at 80 µg·mL−1 resulting in 20% larval viability and 10% pupal viability. The larval viability fifty (LV50 corresponded to a concentration of 128.8 µg·mL−1. This oil also increased the duration of the larval phase by 5.5 days and reduced the pupal weight by 29.2% withrespect to the control. The GC-MS analysis of the essential oil of S. ballotiflora showed its main components to be caryophyllene oxide (15.97%, and β-caryophyllene (12.74%, which showed insecticidal and insectistatical activities against S. frugiperda. The insecticidal activity of β-caryophyllene began at 80 µg·mL−1, giving a larval viability of 25% and viability pupal of 20%. The insectistatic activity also started at 80 µg·mL−1 reducing the pupal weight by 22.1% with respect to control. Caryophyllene oxide showed insecticidal activity at 80 µg·mL−1 giving a larval viability of 35% and viability pupal of 20%.The insectistatic activity started at 400 µg·mL−1 and increased the larval phase by 8.8% days with respect to control. The LV50 values for these compounds were 153.1 and 146.5 µg·mL−1, respectively.

  18. Contact and Repellant Activities of Zerumbone and Its Analogues from the Essential Oil of Zingiber zerumbet (L.) Smith against Lasioderma serricorne.

    Science.gov (United States)

    Wu, Yan; Guo, Shan-Shan; Huang, Dong-Ye; Wang, Cheng-Fang; Wei, Jian-Yu; Li, Zhi-Hua; Sun, Jian-Sheng; Bai, Jia-Feng; Tian, Zhao-Fu; Wang, Ping-Juan; Du, Shu-Shan

    2017-04-03

    The contact toxicity and repellent activities of the essential oil extracted from the rhizomes of Zingiber zerumbet (L.) Smith (Zingiberaceae) was evaluated against cigarette beetles (Lasioderma serricorne). The essential oil obtained by hydrodistillation was investigated by GC-FID and GC-MS. The main constituents of the essential oil were zerumbone (40.2%), α-caryophyllene (8.6%), humulene epoxide II (7.3%), camphene (5.9%) and fenchene (4.7%). Zerumbone and its analogues totally are accounting for 60.3% of the essential oil. It was found that the essential oil possessed contact toxicity against L. serricorne adults with a LD 50 value of 48.3 µg/adult. α-Caryophyllene (LD 50 = 13.1 µg/adult) exhibited stronger contact toxicity against L. serricorne than humulene oxide (LD 50 = 31.2 µg/adult), β-caryophyllene (LD 50 = 35.5 µg/adult) and zerumbone (LD 50 = 42.4 µg/adult). Moreover, α-caryophyllene possessed strong repellent activity (Class IV and V, respectively) against the beetles at 78.63 nL/cm 2 , after 2 and 4 h treatment. The results indicate that zerumbone and its analogues might be developed into natural insecticides or repellents for control of cigarette beetles, but their bioactivities are affected by their structures.

  19. Chemical composition and antimicrobial activity of the essential oil of Hyptis pectinata (l.) Poit

    International Nuclear Information System (INIS)

    Santos, Patricia O.; Costa, Marcilene de J. C.; Alves, Jose A.B.; Nascimento, Paula F.C.; Melo, Dangelly L.F.M. de; Barbosa Junior, Antonio M.; Trindade, Rita de C.; Blank, Arie F.; Arrigoni-Blank, Maria F.; Alves, Pericles B.; Nascimento, Maria da Paz F. do

    2008-01-01

    Essential oil was extracted from leaves of Hyptis pectinata using hydrodistillation, and its composition determined using GC-FID and GC-MS. Chemical analysis showed that there was a predominance of sesquiterpenes, of which b-caryophyllene (18.34%), caryophyllene oxide (18.00%) and calamusenone (24.68%) were measured for the first time in the genus Hyptis. Twenty-one compounds were identified, and calamusenone was isolated using preparative thin layer chromatography with a silica gel plate (60 PF 254 ). The minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) were determined for various pathogenic microorganisms. H. pectinata oil was most effective against Gram (+) bacteria and yeasts. (author)

  20. Chemical composition and antimicrobial activity of the essential oil of Hyptis pectinata (l.) Poit

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Patricia O.; Costa, Marcilene de J. C.; Alves, Jose A.B.; Nascimento, Paula F.C.; Melo, Dangelly L.F.M. de; Barbosa Junior, Antonio M.; Trindade, Rita de C. [Universidade Federal de Sergipe, Aracaju, SE (Brazil). Dept. de Morfologia]. E-mail: ritinhat@hotmail.com; Blank, Arie F. [Universidade Federal de Sergipe, Aracaju, SE (Brazil). Dept. de Engenharia Agronomica; Arrigoni-Blank, Maria F. [Nucleo de Ciencias Biologicas, Itabaiana, SE (Brazil). Campus Prof. Alberto Carvalho; Alves, Pericles B. [Universidade Federal de Sergipe, Aracaju, SE (Brazil). Dept. de Quimica; Nascimento, Maria da Paz F. do [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica

    2008-07-01

    Essential oil was extracted from leaves of Hyptis pectinata using hydrodistillation, and its composition determined using GC-FID and GC-MS. Chemical analysis showed that there was a predominance of sesquiterpenes, of which b-caryophyllene (18.34%), caryophyllene oxide (18.00%) and calamusenone (24.68%) were measured for the first time in the genus Hyptis. Twenty-one compounds were identified, and calamusenone was isolated using preparative thin layer chromatography with a silica gel plate (60 PF{sub 254}). The minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) were determined for various pathogenic microorganisms. H. pectinata oil was most effective against Gram (+) bacteria and yeasts. (author)

  1. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul Essential oils from Myrcia species native to Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Renata P. Limberger

    2004-12-01

    Full Text Available Essential oils from M. richardiana, M. arborescens, M. selloi, M. oligantha, M. rostrata, M. lajeana, M. obtecta, M. pubipetala and M. hatschbachii were obtained by hydrodistillation and analyzed by GC and GC/MS. Sixty-seven compounds have been identified ranging from 90-99% of the oil contents. All analyzed species were rich in cyclic sesquiterpenes (66-99%, mainly those from the cadinane, caryophyllane and germacrane cyclization pathway, among them b-caryophyllene, germacrene D, bicyclogermacrene, d-cadinene, spathulenol, caryophyllene oxide, globulol and a-cadinol. The acyclic sesquiterpene series was well represented by M. lajeana (32.1%, with 25,3% of (E-nerolidyl acetate.

  2. Chemical Composition, and Antibacterial (against Staphylococcus aureus and Free-Radical-Scavenging Activities of the Essential Oil of Scrophularia amplexicaulis Benth.

    Directory of Open Access Journals (Sweden)

    Ardalan Pasdaran

    2012-07-01

    Full Text Available Chemical composition of the essential oil obtained from the aerial parts of Scrophularia amplexicaulis Benth. was analyzed, for the first time, by the gas chromatography/mass spectrometry (GC-MS and gas chromatography/flame ionization detection (GC-FID. A total yield of 3 mg of essential oil per100 g of plant dry mass was obtained, and 27 compounds were identified, representing 97. 7 % of total oil. The essential oil were characterized by a high content of oxygenated monoterpenes and phenolic derivatives. The main constituents were eugenol (53.8%, eugenol acetate (24.5%, b -caryophyllene (5.7%, caryophyllene oxide (6.4% and aromadendrene oxide II (2.1%. The antimicrobial activity of the essential oil was tested against Staphylococcus aureus using the well diffusion method, and t he free-radical-scavenging activity was assessed by the 2,2-diphenyl-picryl-hydrazyl (DPPH assay.

  3. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: estragole, trans-anethole, β-caryophyllene and myrcene.

    Science.gov (United States)

    Donati, Maddalena; Mondin, Andrea; Chen, Zheng; Miranda, Fabricio Mendes; do Nascimento, Baraquizio Braga; Schirato, Giulia; Pastore, Paolo; Froldi, Guglielmina

    2015-01-01

    The essential oils (EOs) from the Brazilian species Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis were examined for their chemical constituents, and antioxidant and antimicrobial activities. The composition of EOs was determined by using gas chromatography coupled with mass spectrometry analysis, while the antioxidant activity was evaluated through the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. Furthermore, the antimicrobial activity was investigated against Escherichia coli and Pseudomonas aeruginosa (both Gram-negative), Staphylococcus aureus (Gram-positive) and Candida parapsilosis (fungus). The main components of C. zehntneri, P. emarginatus and S. brasiliensis were identified as estragole, trans-anethole, β-caryophyllene and myrcene. Among the EOs, P. emarginatus showed the highest antioxidant activity, with an IC50 of 7.36 mg/mL and a Trolox equivalent antioxidant capacity of 3748 μmol/g determined by DPPH and ORAC assays, respectively. All EOs showed low activities against the bacterial strains tested, whereas the C. zehntneri oil and its main constituent estragole exhibited an appreciable antifungal activity against C. parapsilosis.

  4. Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce.

    Science.gov (United States)

    Wieczyńska, Justyna; Cavoski, Ivana

    2018-09-01

    In this study, bio-based emitting sachets containing eugenol (EUG), carvacrol (CAR) and trans-anethole (ANT) were inserted into cellulose (CE) and polypropylene (PP) pillow packages of organic ready-to-eat (RTE) iceberg lettuce to investigate their functional features. EUG, CAR and ANT sachets in CE; and CAR in PP packages showed antimicrobial activities against coliforms (Δlog CFU g -1 of -1.38, -0.91, -0.93 and -0.93, respectively). EUG and ANT sachets in both packages reduced discoloration (ΔE of 9.5, 1.8, 9.4 and 5.6, respectively). ANT in both, and EUG only in PP packages induced biosynthesis of caffeoyl derivatives (C a T A , D i C a T A , D i C a Q A ), total phenolics and antioxidant activity (FRAP). Also, ANT and EUG in both packages improved overall freshness and odor. Principal component analysis separated ANT and EUG from CAR in both packages. The Pearson correlation confirmed that overall quality improvements were more pronounced by ANT inside the packages in comparison to EUG and CAR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    Science.gov (United States)

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly

  6. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  7. GC-MS analysis and cytotoxic activity of essential oils from the leaves of Abrus precatorius L. Gaertn

    Directory of Open Access Journals (Sweden)

    Abdulkabir Oladele Oladimeji

    2016-05-01

    Full Text Available Objective: To determine the chemical constituents, cytotoxic activity and possible applications of the essential oils from the leaves of Abrus precatorius L. Gaertn. Methods: Hydro-distillation using Clevenger-type apparatus was employed to obtain the essential oils. Oil analysis was performed using an HP 6890 gas chromatograph coupled with an HP 5973 mass selective detector. The cytotoxicity bioassay was carried out using the brine shrimp lethality test. Results: Forty-five compounds were identified representing 100% of the oil. The principal components were γ-cadinene (19.1%, α-selinene (15.3%, α-cubenene (12.8%, β-caryophyllene (8.2%, germacrene B (7.9%, α-copaene (7.7% and linalool (6.3%. Others are caryophyllene oxide (5.5%, β-elemene (5.4% and α-caryophyllene (4.0%. The oil was potent with the LC50 value of 0.45 μg/mL. Conclusions: The essential oil from the leaves of Abrus precatorius L. Gaertn. could hold promise for future applications in the treatment of cancer-related diseases, in addition to flavor and fragrance industry.

  8. Effect of Thymus vulgaris and Bunium persicum essential oils on the oxidative stability of virgin olive oil; Efecto de aceites esenciales de tomillo y comino negro sobre la estabilidad oxidativa de aceites de oliva virgen

    Energy Technology Data Exchange (ETDEWEB)

    Keramat, M.; Golmakani, M.T.

    2016-07-01

    Natural antioxidants are becoming a major focus because natural food ingredients are safer than synthetic types. The aim of this study was to investigate the protective effects of Thymus vulgaris and Bunium persicum essential oils (EO) on the oxidation of virgin olive oil (VOO) during accelerated storage. The antioxidant activities of EOs were compared with those of α-tocopherol and BHT. GC/MS analyses revealed that thymol (28.50%), p-cymene (27.14%), carvacrol (18.36%), and γ-terpinene (4.97%) are the main components of T. vulgaris EO, while cuminaldehyde (32.81%), γ-terpinene (16.02%) and p-cymene (14.07%) are the main components of B. persicum EO. Both EOs provided protection for the VOO, inhibiting the formation of primary and secondary oxidation products although T. vulgaris EO showed greater protection against the oxidation process than B. persicum EO. The effect of T. vulgaris essential oil on the oxidation inhibition of VOO was similar to that of BHT. α-Tocopherol showed no measurable effect on improving the oxidative stability of VOO. This study suggests that T. vulgaris and B. persicum EOs can be used to improve the oxidative stability of VOO. [Spanish] En los antioxidantes naturales se está centrando actualmente más la atención dado que los ingredientes naturales son más seguros que los sintéticos. El objetivo de este estudio fue estudiar el efecto protector de aceites esenciales (AE) de tomillo y comino negro en la oxidación del aceite de oliva virgen (AOV) durante un almacenamiento acelerado. Las actividades antioxidantes de los AE se compararon con las del α-tocoferol y BHT. Los análisis de GC/MS mostraron que timol (28,50%), p-cimeno (27,14%), carvacrol (18,36%), y γ-terpineno (4,97%) son los principales componentes de AE de tomillo, mientras que cuminaldehido (32,81%), γ-terpineno (16,02%) y p-cimeno (14,07%) lo son de AE de comino negro. Ambos AE proporcionan protección al AOV, inhibiendo la formación de productos de oxidaci

  9. rett produc Congo ted cas ced in to: Nsam ssava two tra m

    African Journals Online (AJOL)

    sunny

    2-Nonanone. 1.0451. Linalol GIVAUDAN. 2.4808. CIS-ROSE OXIDE. 0.5274. Ocimene « Neo-allo ». 0.7592. Camphor. 0.5182. 2-Methyl butyl angelate. 0.2858. Menthone. 2.4612. Iso-menthone. 1.1662. Terpinene-4-ol. 1.1721. Methyl salicylate. 0.7165. Estragol. 33.8179. Methyl thymol ether. 0.7945. Methyl carvacrol ether.

  10. Influence of Salicylic Acid on the Antimicrobial Potential of Stevia ...

    African Journals Online (AJOL)

    Results: Chloroform extracts had the highest amount of α-cadinol, spathulenol, caryophyllene oxide, methyl salicylate and safranal in the SA-treated plants, and were 8, 10, 18, 14 and 11 %, respectively, higher than the non-SA treated control. In the anti-microbial tests, chloroform extract exhibited the highest diameter of ...

  11. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods

    Directory of Open Access Journals (Sweden)

    E.L. Souza

    2013-01-01

    Full Text Available This study evaluated the influence of the phenolic compounds carvacrol (CAR and thymol (THY on some physiological characteristics and on the modulation of the secretion of some staphylococcal virulence factors, that is, coagulase and enterotoxin. This study also investigated possible mechanisms for the establishment of the anti-staphylococcal activity of these compounds. Sublethal concentrations (0.3 and 0.15 µL/mL of CAR and THY inhibited the activity of the enzymes coagulase and lipase and led to a decrease in salt tolerance. At the tested sublethal concentrations, both CAR and THY led to a total suppression of enterotoxin production. The loss of a 260-nm-absorbing material and an efflux of potassium ions occurred immediately after the addition of CAR and THY at 0.6 and 1.2 µL/mL and increased up to 120 min of exposure. Electron microscopy of cells exposed to CAR and THY (0.6 µL/mL revealed that individual cells appeared to be deformed, with projections of cellular material. The observations of leakage of cellular material and an altered cell surface suggest that gross damage to a cell's cytoplasmic membrane, which results in a disruption in protein secretion, could be responsible for the anti-staphylococcal properties of CAR and THY.

  12. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    Science.gov (United States)

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Chemical profile of Taxodium distichum winter cones

    Directory of Open Access Journals (Sweden)

    Đapić Nina M.

    2017-01-01

    Full Text Available This work is concerned with the chemical profile of Taxodium distichum winter cones. The extract obtained after maceration in absolute ethanol was subjected to qualitative analysis by gas chromatography/mass spectrometry and quantification was done by gas chromatography/ flame ionization detector. The chromatogram revealed the presence of 53 compounds, of which 33 compounds were identified. The extract contained oxygenated monoterpenes (12.42%, sesquiterpenes (5.18%, oxygenated sesquiterpenes (17.41%, diterpenes (1.15%, and oxygenated diterpenes (30.87%, while the amount of retinoic acid was 0.32%. Monoacylglycerols were detected in the amount of 4.32%. The most abundant compounds were: caryophyllene oxide (14.27%, 6,7-dehydro-ferruginol (12.49%, bornyl acetate (10.96%, 6- deoxy-taxodione (9.50% and trans-caryophyllene (4.20%.

  14. Chemical composition and fumigant effect of essentialoil of Lippia sidoides Cham. and monoterpenes against Tenebrio molitor (L. (coleoptera: tenebrionidae Composição química e efeito fumigante do óleo essencial de Lippia sidoides Cham. e monoterpenos sobre Tenebrio molitor (L. (Coleoptera: Tenebrionidae

    Directory of Open Access Journals (Sweden)

    Rafaela Karin Lima

    2011-08-01

    Full Text Available The chemical composition of Lippia sidoides essential oils obtained by hydrodistillation was characterized and quantified by GC/MS and their insecticidal activity by fumigation test was assayed against Tenebrio molitor. Moreover, the toxicity of monoterpenes carvacrol, 1,8-cineol and thymol were also evaluated when applied alone or in binary (1:1 or tertiary (1:1:1 mixture. The essential oil of L. sidoides has as major constituents carvacrol (31.68%, ρ-cymene (19.58%, 1,8-cineole (9.26% and ϒ-terpinene (9.21%, from a 21 compounds identified, being 92.53% of total. Both compounds have insecticidal activity against T. molitor, being the degree of toxicity of carvacrol > 1,8-cineole > L. sidoides essential oil > thymol, and its respectively LC50 at 24h were 5.53; 5.71; 8.04 and 14.71 µL/L air. When the different mixture of carvacrol, 1,8-cineole and thymol was assayed against T. molitor, the synergism among them was observed. For the mixture of carvacrol:1,8-cineole LC50 was 5.34 µL/L air; carvacrol:thymol 7.67 µL/L air; 1,8-cineole:thymol 7.51 µL/L air and carvacrol:1,8-cineole:thymol 6.34 µL/L air. Mainly, the monoterpene thymol had a synergic effect, which increased the toxicity of carvacrol and 1,8-cineole, both in binary mixture like carvacrol:thymol and 1,8-cineole:thymol.A composição química do óleo essencial de Lippia sidoides obtido por hidrodestilação foi caracterizada e quantificada por GC/MS, bem como sua atividade inseticida por teste de fumigação foi avaliada sobre Tenebrio molitor. Além disso, a toxicidade dos monoterpenos carvacrol, 1,8-cineol e timol, também foi avaliada quando esses compostos foram aplicados isoladamente, ou em misturas binárias (1:1, ou terciárias (1:1:1. O óleo essencial de L. sidoides tem como principais constituintes o carvacrol (31,68%, ρ-cimeno (19,58%, 1,8-cineol (9,26% e ϒ-terpineno (9,21%, em 21 compostos identificados, sendo 92,53% do total. Ambos os compostos possuem atividade

  15. Phytochemical Analysis and In Vitro Antimicrobial and Free-Radical-Scavenging Activities of the Essential Oils from Euryops arabicus and Laggera decurrens

    Directory of Open Access Journals (Sweden)

    Nawal M. Al-Musayeib

    2011-06-01

    Full Text Available The essential oils of the aerial part of two Asteraceae species, namely Euryops arabicus Steud. and Laggera decurrens (Vahl. Hepper and Wood, were studied by GC and GC/MS. In parallel the antimicrobial and antioxidant activities were evaluated. The investigation led to the identification of 48 and 44 compounds for both plants, respectively. The essential oil of E. arabicus was rich in oxygenated sesquiterpenes (39.9%. The oil also contained a high content of sesquiterpene hydrocarbons (24.1%. Compounds such as caryophyllene oxide (8.6%, T-cadinol (7.0%, spathulenol (5.2%, (E-β-caryophyllene (6.0% and 2-epi-(E-β-caryophyllene (6.0% were the main constituents of the oil. Oxygenated monoterpenes also predominated in L. decurrens (46.3%. The thymoquinone-derivative, 3-methoxy-2-methyl-5-(1-methylethyl-2,5-cyclohexadiene-1,4-dione (28.1%, thymol (5.7% and eudesma-11-en-4a-ol (7.0% were the most abundant constituents. Both essential oils showed antimicrobial activity with MIC-values between 0.13–5.25 mg/mL. Furthermore, only the essential oil of L. decurrens exhibited a strong antioxidant activity (91% at 500 µg/mL.

  16. Seasonal variation in the essential oil of Pilocarpus microphyllus Stapf.

    Directory of Open Access Journals (Sweden)

    FRANCISCA S. N. TAVEIRA

    2003-03-01

    Full Text Available The essential oils of the leaves and fine stems of Pilocarpus microphyllus, collected on iron mineralized soil of the Serra de Carajás, Southeast of Pará State, Brazil, during the rainy and dry seasons, were obtained by hydrodistillation and analyzed by GC-MS. The main identified compounds were 2-tridecanone, beta-caryophyllene, 2-pentadecanone, caryophyllene oxide and germacrene D. Their percentage contents varied with the season, the greater values having been detected mainly in the rainy season. For 2-tridecanone and beta-caryophyllene the higher values were observed in the fine stem oils for the former, and in the leaf oils for the latter. For 2-pentadecanone, caryophyllene oxide and germacrene D they were also in the leaf oils. In general, the leaf oils were very distinguishable from those of fine stem oils, even in the same specimen.Os óleos essenciais das folhas e galhos finos de Pilocarpus microphyllus, coletado em solo mineralizado com ferro, na Serra de Carajás, Sudeste do Pará, Brasil, durante as estações chuvosa e seca, foram obtidos por hidrodestilação e analisados por GC-MS. Os principais compostos identificados foram 2-tridecanona, beta-cariofileno, 2-pentadecanona, óxido de cariofileno e germacreno D. Seus teores percentuais variam com a estação, embora os maiores valores tenham sido detectados principalmente na estação chuvosa. Para 2-tridecanona e beta-cariofileno os valores mais expressivos foram observados nos óleos de galhos finos, para o primeiro, e nos óleos das folhas, para o útimo. Para 2-pentadecanona, óxido de cariofileno e germacreno D, os valores mais altos foram, também, nos óleos das folhas. Em geral, os óleos das folhas se apresentaram muito distintos em relação aos galhos finos, assim como também no mesmo espécime.

  17. Chemical Composition and Toxicity against Sitophilus zeamais and Tribolium castaneum of the Essential Oil of Murraya exotica Aerial Parts

    Directory of Open Access Journals (Sweden)

    Zhi Long Liu

    2010-08-01

    Full Text Available In our screening program for new agrochemicals from Chinese medicinal herbs, Murraya exotica was found to possess insecticidal activity against the maize weevil, Sitophilus zeamais and red flour beetle, Tribolium castaneum. The essential oil of aerial parts of M. exotica was obtained by hydrodistillation and investigated by GC and GC-MS. The main components of M. exotica essential oil were spathulenol (17.7%, a-pinene (13.3%, caryophyllene oxide (8.6%, and a-caryophyllene (7.3%. Essential oil of M. exotica possessed fumigant toxicity against S. zeamais and T. castaneum adults with LC50 values of 8.29 and 6.84 mg/L, respectively. The essential oils also show contact toxicity against S. zeamais and T. castaneum adults with LD50 values of 11.41 and 20.94 mg/adult, respectively.

  18. Antibacterial Actions and Potential Phototoxic Effects of Volatile oils of Foeniculum sp. (fennel, Salvia sp. (sage, Vitis sp. (grape, Lavandula sp. (lavender

    Directory of Open Access Journals (Sweden)

    Elif Ayse Erdogan Eliuz

    2016-09-01

    Full Text Available In the present study, the volatile compounds of essential oil of Foeniculum vulgare (fennel, Salvia officinalis (sage, Vitis vinifera (grape, Lavandula angustifolia (lavender were analysed by gas chromatography-mass spectrometry (GC-MS using the Nist and Willey libraries. It was determined that the main components of Foeniculum sp. were anethole (41.11%, carvacrol (9.18%. whereas main components of Salvia sp were 1.8 cineole (34.09%, caryophyllene (10.95%, camphor (9.44%, α-pinene (8.42%. Vitis sp. contained linoleic acid (36.98%, 2,4-decadienal (30.79%. Finally, volatile component of Lavandula sp. was linalool (33.57%, linalyl acetate (30.74%. Photoxic antibacterial activity of volatile oil of those plants against Escherichia coli (ATCC 25293, Klebsiella pneumoniae (10031, Salmonella thyphimurium, Bacillus subtilis (ATCC 6633, Staphylococcus aureus (ATCC 25925, Enterococcus feacalis (ATCC 29212 were examined by using disc diffusion method. We demonstrated that volatile oil effectively can be activated by a standard LED light. In vitro, significant phototoxicity was demonstrated by volatile oil of Foeniculum sp. and Vitis sp. (P < 0.05, while minor phototoxicity was induced by Lavandula sp. Therefore, volatile oil of plant can be considered as a potential photosensitizer in the photochemical therapy.

  19. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany essential oil

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2015-05-01

    Full Text Available Background: Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective: The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design: O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and by the sulforhodamine B (SRB assay, respectively. Results: The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%, γ-terpinene (8.4%, p-cymene (6.1%, linalool (1.4%, and caryophyllene (1.3%. O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus

  20. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  1. Effects of the essential oil of Lippia gracilis Schauer on caulinary shoots of heliconia cultivated in vitro Efeito do óleo essencial de Lippia gracilis Schauer sobre ápices caulinares de heliconia cultivadas in vitro

    Directory of Open Access Journals (Sweden)

    C.C. Albuquerque

    2012-01-01

    Full Text Available The effects of thymol and carvacrol and the essential oil of Lippia gracilis on caulinary shoots of heliconia were evaluated. After disinfection, the shoots were inoculated into MS medium and subjected to the treatments with 420 µL L-1 of essential oil (EO of L. gracilis; 420 µL L-1 of thymol; 420 µL L-1 of carvacrol; 210 µL L-1 of thymol and 210 µL L-1 of carvacrol. The control treatment consisted of the MS medium without any phytoregulators. The main components of EO from L. gracilis are carvacrol, ρ-cimene, and thymol. Seven days after the initiation of the experiments, 36.3% of the control treatment shoots were necrotized, but 90% of the caulinary shoots exposed to EO, thymol, or carvacrol appeared necrotized. Transmission electron microscopy of the shoots revealed that the treatment with EO, thymol, or carvacrol caused the destruction of the plasma cell membranes, and the cell organelles and the nucleus were hardly evident. The EO and its main constituent were toxic to caulinary shoots of heliconia.O efeito do timol, carvacrol e óleo essencial de Lippia gracilis foi observado sobre ápices caulinares de heliconia. Após a desinfestação os ápices foram inoculados em meio MS com os tratamentos de 420 µL L-1 do óleo essencial (OE de L. gracilis; 420 µL L-1 de timol; 420 µL L-1 de carvacrol; 210 µg L-1 de timol e 210 µL L-1 de carvacrol. O tratamento controle consistiu de meio MS sem fitorreguladores. Os principais componentes do OE foram carvacrol, ρ-cimeno e timol. Sete dias após o início do experimento 36,3% dos ápices submetidos ao tratamento controle e 90% dos ápices caulinares expostos ao EO, timol ou carvacrol necrosaram. A microscopia eletrônica de transmissão dos ápices caulinares revelou que os tratamentos com OE, timol e carvacrol provocaram desestruturação da membrana plasmática das células. As organelas e o núcleo não estavam evidentes. O OE e seus principais constituintes foram tóxico para os

  2. Neuroprotective Effect of β-Caryophyllene on Cerebral Ischemia-Reperfusion Injury via Regulation of Necroptotic Neuronal Death and Inflammation: In Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Mei Yang

    2017-10-01

    Full Text Available Necrotic cell death is a hallmark feature of ischemic stroke and it may facilitate inflammation by releasing intracellular components after cell-membrane rupture. Previous studies reported that β-caryophyllene (BCP mitigates cerebral ischemia-reperfusion (I/R injury, but the underlying mechanism remains unclear. We explored whether BCP exerts a neuroprotective effect in cerebral I/R injury through inhibiting necroptotic cell death and inflammation. Primary neurons with and without BCP (0.2, 1, 5, 25 μM treatment were exposed to oxygen-glucose deprivation and re-oxygenation (OGD/R. Neuron damage, neuronal death type and mixed lineage kinase domain-like (MLKL protein expression were assessed 48 h after OGD/R. Furthermore, mice underwent I/R procedures with or without BCP (8, 24, 72 mg/kg, ip.. Neurologic dysfunction, cerebral infarct volumes, cell death, cytokine levels, necroptosis core molecules, and HMGB1-TLR4 signaling were determined at 48 h after I/R. BCP (5 μM significantly reduced necroptotic neurons and MLKL protein expression following OGD/R. BCP (24, 72 mg/kg, ip. reduced infarct volumes, neuronal necrosis, receptor-interaction protein kinase-1 (RIPK1, receptor-interaction protein kinase-3 (RIPK3 expression, and MLKL phosphorylation after I/R injury. BCP also decreased high-mobility group box 1 (HMGB1, toll-like receptor 4 (TLR4, interleukin-1β (IL-1β, and tumor necrosis factor-α (TNF-α levels. Thus, BCP alleviates ischemic brain damage potentially by inhibiting necroptotic neuronal death and inflammatory response. This study suggests a novel application for BCP as a neuroprotective agent.

  3. Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants.

    Science.gov (United States)

    Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima

    2017-04-12

    Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.

  4. Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus.

    Science.gov (United States)

    Jin, Jeong Ho; Lee, Dong-Ung; Kim, Yeong Shik; Kim, Hyun Pyo

    2011-02-01

    From the 70% ethanol extract of the rhizomes of Cyperus rotundus (CRE), several major constituents including the sesquiterpene derivatives (valencene, nootkatone, and caryophyllene α-oxide), monoterpenes (β-pinene, 1,8-cineole, and limonene) and 4-cymene were isolated and examined for their anti-allergic activity in vitro and in vivo. In rat basophilic leukemia (RBL)-1 cells, the sesquiterpenes strongly inhibited 5-lipoxygenase-catalyzed leukotrienes production. In addition, they inhibited β-hexosaminidase release by antigen-stimulated RBL-2H3 cells, with valencene having the highest inhibitory effect. CRE inhibited leukotrienes production and β-hexosaminidase release at 300 μg/mL. It was also found that the most active sesquiterpene (valencene) and CRE inhibited β-hexosaminidase degranulation by inhibiting the initial activation reaction, Lyn phosphorylation, in IgE-stimulated RBL-2H3 cells. Moreover, CRE, valencene and nootkatone significantly inhibited the delayed-type hypersensitivity reaction in mice when administered orally at 50-300 mg/kg. In conclusion, C. rotundus and its constituents, valencene, nootkatone, and caryophyllene α-oxide, exert anti-allergic activity in vitro and in vivo. These sesquiterpenes, but not monoterpenes, certainly contribute to the anti-allergic activity of the rhizomes of C. rotundus.

  5. Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity.

    Science.gov (United States)

    Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E

    2013-01-01

    Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol

  6. Comparative analysis of essential oil components of two Pinus species from Taibai Mountain in China.

    Science.gov (United States)

    Zhang, Yuan; Wang, Zhezhi

    2010-08-01

    Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more gamma-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, alpha-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.

  7. Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae).

    Science.gov (United States)

    Jordan, Robert A; Schulze, Terry L; Dolan, Marc C

    2012-01-01

    We conducted field trials to compare the relative repellent activity of two natural product compounds (nootkatone and carvacrol) with commercially available plant-derived (EcoSMART organic insect repellent) and permethrin-based (Repel Permanone) repellents against adult Ixodes scapularis Say and Amblyomma americanum (L.) (Acari: Ixodidae) by using treated coveralls. One day after treatment, nootkatone and carvacrol provided 100% repellency of I. scapularis adults, with nootkatone maintaining complete protection through 3 d, whereas carvacrol showed steadily declining repellency against I. scapularis during the 7-d course of the trials. Nootkatone was at least as effective against host-seeking A. americanum as against I. scapularis through 3 d. Carvacrol provided little protection against A. americanum adults. Both natural compounds performed well initially in comparison with the commercial products. After 7 d, nootkatone was the most effective against both species followed in order of activity by Permanone, EcoSMART, and carvacrol. Nootkatone seems to have offer considerable potential as a clothing repellent against both I. scapularis and A. americanum.

  8. Chemical analysis of particulate and gaseous products from the monoterpene oxidation in the SAPHIR chamber during the EUCAARI campaign 2008

    Science.gov (United States)

    Kahnt, A.; Iinuma, Y.; Herrmann, H.; Mentel, T. F.; Fisseha, R.; Kiendler-Scharr, A.

    2009-04-01

    The atmospheric oxidation of monoterpenes leads to multifunctional products with lower vapour pressure. These products condense and coagulate to existing particles leading to particle formation and growth. In order to obtain better insights into the mechanisms and the importance of sources to organic aerosol, a mixture of monoterpenes was oxidised in the SAPHIR outdoor chamber during the EUCAARI campaign in 2008. The mixture was made of α-pinene, β-pinene, limonene, 3-carene and ocimene, representing a typical monoterpene emission from a boreal forest. In addition, two sesquiterpenes (α-farnesene and caryophyllene) were reacted together with the monoterpene mixture in some experiments. The VOC (volatile organic compound) mixture was reacted under tropospheric oxidation and light conditions in a prolonged time scale over two days. In the present study, a special emphasis is put on the detection of carbonyl compounds from the off-line analysis of collected filter and denuder samples from the campaign in 2008. The oxidation products which contain carbonyl groups are important first stable intermediates during the monoterpene and sesquiterpene oxidation. They react further with atmospheric oxidants to form lower volatile acidic compounds, contributing to secondary organic aerosol (SOA). Commonly used methods for the analysis of carbonyl compounds involve derivatisation steps prior to separation and subsequent UV or MS detection. In the present study, 2,4-dinitrophenylhydrazine (DNPH) was used to derivatise the extracted filter and denuder samples. The DNPH converts aldehyde- and keto-groups to stable hydrazones, which can be purified afterwards using a solid phase extraction (SPE) cartridge. The derivatised samples were analysed with HPLC/ESI-TOFMS which allowed us to determine the exact chemical formula of unknown products. In addition to known carbonyl compounds from monoterpene oxidation such as pinonaldehyde and nopinon, previously unreported molecular masses

  9. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Ildikó [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Soran, Maria-Loredana, E-mail: loredana.soran@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Opriş, Ocsana; Truşcă, Mihail Radu Cătălin [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Niinemets, Ülo [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Copolovici, Lucian [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Drăgoi Street, Arad 310330 (Romania)

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  10. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    International Nuclear Information System (INIS)

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-01-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  11. Chemical Composition and Antioxidant Activity of Essential Oils and Methanol Extracts of Different Parts from Juniperus rigida Siebold & Zucc.

    Science.gov (United States)

    Liu, Qiaoxiao; Li, Dengwu; Wang, Wei; Wang, Dongmei; Meng, Xiaxia; Wang, Yongtao

    2016-09-01

    The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α-caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α-pinene and β-myrcene mainly existed in berries essential oils and α-ionone only in needles essential oils. The high-performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources. © 2016 Wiley-VHCA AG, Zürich.

  12. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.

    Science.gov (United States)

    Yin, Hsin-Bai; Chen, Chi-Hung; Kollanoor-Johny, Anup; Darre, Michael J; Venkitanarayanan, Kumar

    2015-09-01

    Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed. © 2015 Poultry Science Association Inc.

  13. Supplementation with plant extracts (carvacrol, cinnamaldehyde and capsaicin): its effects on acid-base status and productive performance in growing/finishing bull calves.

    Science.gov (United States)

    Hernández, Joaquín; Benedito, José Luís; Vázquez, Patricia; Pereira, Victor; Méndez, Jesús; Sotillo, Juan; Castillo, Cristina

    2009-01-01

    This study investigated the in vivo effects of a commercial blend of plant extracts (carvacrol, cinnamaldehyde and capsaicin) on blood acid-base balance and serum lactate levels in a 148-day feedlot experimentwith 24 double-muscled Belgian Blue bull calves. Animals were allotted randomly to one of two experimental groups: 1) a control group (C, no supplementation; n = 10), and 2) a group receiving dietary supplementation with a combination of plant extracts (PE, 100 mg per kg DM of concentrate; n = 14). All animals received a high-grain ration, typical of diets fed commercially to feedlot cattle in Spain, consisting mainly of barley plus other components in proportions depending on the production phase. Production data (weight, DMI, ADG and feed-to-gain ratio) were recorded, and venous blood pH, pCO2, HCO3(-), Base Excess -BE- and serum L-lactate were determined. Apparently, beneficial effects of supplementation on production parameters were observed in both growing and finishing periods, though statistically significant effects were only observed in the finishing period. As regards blood parameters, no significant effects of supplementation (or the supplementation x time interaction) were observed, except for an effect on blood pH in the growing period, when supplemented animals showed significantly higher values than controls. A beneficial supplementation x time interactive effect was observed on serum L-lactate levels: from the first week of the study until the end, supplemented animals showed significantly lower levels than controls. These in vivo results support the utility of this dietary supplement in feedlot cattle receiving a barley-based high-grain diet.

  14. Anti-spasmodic assessment of hydroalcoholic extract and essential oil of aerial part of Pycnocycla caespitosa Boiss. & Hausskn on rat ileum contractions.

    Science.gov (United States)

    Sadraei, Hassan; Asghari, Gholamreza; Alipour, Mahdi

    2016-01-01

    Pycnocycla caespitosa is an essential oil-containing plant naturally growing in southwest of Iran. The extract of this plant has been used as remedy in traditional medicine. Another species of Pycnocyla (P. spinosa) possessed antispasmodic activity. The pharmacological objective of this study was to look for relaxant effect of hydroalcoholic extract and essential oil of P. caespitosa on rat isolated ileum contractions for comparison with loperamide. The essential oil and the hydroalcoholic extract were prepared by hydrodistillation and percolation techniques, respectively. For antispasmodic studies a section of rat ileum was suspended in an organ bath containing Tyrode's solution. The tissue was stimulated with electrical field stimulation (EFS), KCl (80 mM) and acetylcholine (ACh 0.5 μM). The tissue was kept under 1 g tension at 37°C and continuously gassed with O2. The essential oil content in the aerial parts of P. caespitosa was found to be 0.16 % ml/g. The essential oil was analyzed by gas chromatography and gas chromatography-mass spectrometry. Seventy constituents, representing 97 % of the oil were identified. The major components of the oil were carvacrol (7.1%), β-eudesmol (6.4 %), ρ-cymene (5.7%), caryophyllene oxide (3.6%), α-pinine (1.4%) and α-phelandrene (1.1%). The hydroalcoholic extract of P. caespitosa inhibited the response to KCl (IC50 = 48 ± 3 μg/ml), ACh (IC50 = 61 ± 14.7 μg/ml) and EFS (IC50 = 77 ± 17 μg/ml) in a concentration-dependent manner. The essential oil of P. caespitosa also inhibited rat ileum contractions. The IC50 values for KCl, ACh and EFS were 9.2 ± 1.2 μg/ml, 7.6 ± 0.8 μg/ml and 6.4 ± 0.8 μg/ml, respectively. The inhibitory effect of both the essential oil and the extract were reversible. This research confirms the anti-spasmodic activity of both the essential oil and the extract of P. caespitosa on smooth muscle contraction of ileum.

  15. Antifungal Activity of the Volatiles of High Potency Cannabis sativa L. Against Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Amira S. Wanas

    2016-03-01

    Full Text Available The n-hexane extracted volatile fraction of high potency Cannabis sativa L (Cannabaceae . was assessed in vitro for antifungal, antibacterial and antileishmanial activities. The oil exhibited selective albeit modest, antifungal activity against Cryptococcus neoformans with an IC 50 value of 33.1 µg/mL. Biologically-guided fractionation of the volatile fraction resulted in the isolation of three major compounds (1-3 using various chromatographic techniques. The chemical structures of the isolated compounds were identified as α-humulene (1, b -caryophyllene (2 and caryophyllene oxide (3 using GC/FID, GC/MS, 1D- and 2D-NMR analyses, respectively. Compound 1 showed potent and selective antifungal activity against Cryptococcus neoformans with IC 50 and MIC values of 1.18 m g/mL and 5.0 m g/mL respectively. Whereas compound 2 showed weak activity (IC 50 19.4 µg/mL, while compound 3 was inactive against C. neoformans.

  16. Composition and chemical variability of Corsican Pinus halepensis cone oil.

    Science.gov (United States)

    Nam, Anne-Marie; Casanova, Joseph; Tomi, Félix; Bighelli, Ange

    2014-09-01

    The composition of the essential oil isolated from cones of Pinus halepensis grown in Corsica has been investigated by a combination of chromatographic (CC, GC) and spectroscopic (MS, 13C NMR) techniques. In total, 48 compounds that accounted for 95.5% of the whole composition have been identified. α-Pinene (47.5%) was the major component followed by myrcene (11.0%), (E)-β-caryophyllene (8.3%) and caryophyllene oxide (5.9%). Various diterpenes have been identified by 13C NMR in the fractions of CC. Fifteen oil samples isolated from cones harvested in three forests have been analyzed and two groups of similar importance have been differentiated within the 15 compositions. Oil samples of the first group contained α-pinene (mean 45.0 g/100 g, SD = 5.5) as the major component. The composition of samples of the second group was dominated by myrcene (mean 30.3 g/100g, SD = 9.0) and α-pinene (mean 24.6 g/100 g, SD = 3.1).

  17. Biodiversity within Melissa officinalis: Variability of Bioactive Compounds in a Cultivated Collection

    Directory of Open Access Journals (Sweden)

    Remigius Chizzola

    2018-01-01

    Full Text Available Phytochemical characters were evaluated in a five-year-old lemon balm collection consisting of 15 and 13 subspecies officinalis and altissima accessions, respectively. Stems were lower in essential oil than leaves. First cut leaves (June gave more oil than those of the second cut (August. Subspecies officinalis plants had leaf oils rich in geranial, neral and citronellal in various proportions in the first cut. However, in the second cut the oils from all accessions appeared very similar with 80–90% geranial plus neral. Leaf oils of subsp. altissima contained sesquiterpenes (β-caryophyllene, caryophyllene oxide, germacrene D and also further monoterpenes in the second cut. Leaves had higher rosmarinic acid (RA contents than stems. More RA was in subsp. officinalis than subsp. altissima leaves. First cut leaves were richer in RA than those from second cut. Total phenolics and antioxidant parameters showed that lemon balm is a valuable source of plant antioxidants.

  18. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey.

    Science.gov (United States)

    Yuce, E; Yildirim, N; Yildirim, N C; Paksoy, M Y; Bagci, E

    2014-06-15

    The essential oil composition and in vitro antioxidant and antifungal activity of the Salvia sclarea L. from Munzur Valley in Tunceli, Turkey were evaluated in this research. The in vitro antifungal activity of ethanol, hexane and aqueous extracts of S. sclarea against pathogen fungi Epicoccum nigrum and Colletotrichum coccodes were investigated. The essential oil of aerial parts of S. sclarea was obtained by hydrodistillation and was analysed by GC and GC—MS. Total antioxidant status was determined by using Rel assay diagnostics TAS assay kit (Lot.RL024) by Multiscan FC (Thermo). 33 compounds were identified representing the 85.0% of the total oil. The most abundant components (>5%) of the S. sclarea essential oils were caryophyllene oxide (24.1%), sclareol (11.5%), spathulenol (11.4%), 1H-naphtho (2,1,6) pyran (8.6%) and b—caryophyllene (5.1%). The best antifungal and antioxidant effect was seen in ethanolic S. sclarea extract. It can be said that Salvia sclerae could be used as natural antioxidant.

  19. A study on the seasonal variation of the essential oil composition from Plectranthus hadiensis and its antibacterial activity.

    Science.gov (United States)

    Sripathi, Raju; Jayagopal, Dharani; Ravi, Subban

    2018-04-01

    The chemical composition and seasonal variation of the essential oil from the aerial parts of Plectranthus hadiensis grown during the rainy and summer seasons in the Western Ghats of India was analysed by GC-MS technique. The analysis of rainy season oil led to the identification of 31 compounds, representing 96.4% of the essential oil and the winter season oil led to 25 compounds, representing 95.1% of the oil. Most of the compounds were sesquiterpenes and oxygenated monoterpenes. The major components of the rainy season oil were L-fenchone (30.42%), β-farnesene (11.87%), copaene(11.10%), 2,3-dimethyl hydroquinone (10.78%), α-caryophyllene(8.41%) and piperitone oxide (3.94%) and of the summer season oil are L-fenchone (31.55%), copaene(11.93%), β-farnesene (10.45%), 1,8-naphthalenedione, 8a-ethylperhydro (10.06%), α-caryophyllene(6.36%), piperitone oxide (5.79%) and limonene(4.63%). Antibacterial activity of the essential oil of P. hadiensis was tested using zone of inhibition and minimum inhibition concentration methods. Both the oils inhibited the organisms and showed the zone of inhibition in the range of 20-35 mm with MIC values between 32 and 64 mg/dL.

  20. Chemical Composition and Insecticidal Activity of Essential Oils from Zanthoxylum dissitum Leaves and Roots against Three Species of Storage Pests.

    Science.gov (United States)

    Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan

    2015-05-04

    This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.

  1. Chemical constituents and antioxidant activity of the essential oil from leaves of Annona vepretorum Mart. (Annonaceae).

    Science.gov (United States)

    Araújo, Camila de Souza; de Oliveira, Ana Paula; Lima, Rafaely Nascimento; Alves, Péricles Barreto; Diniz, Tâmara Coimbra; da Silva Almeida, Jackson Roberto Guedes

    2015-01-01

    Annona vepretorum (AV) is a native tree from Caatinga biome (semiarid region of Brazil) popularly known as "araticum" and "pinha da Caatinga." This study was carried out to evaluate the chemical constituents and antioxidant activity (AA) of the essential oil from the leaves from AV (EO-Av) collected in Petrolina, Pernambuco, Brazil. Fresh leaves of AV were cut into pieces, and subjected to distillation for 2 h in a clevenger-type apparatus. Gas chromatograph (GC) analyses were performed using a mass spectrometry/flame ionization detector. The identification of the constituents was assigned on the basis of comparison of their relative retention indices. The antioxidant ability of the EO was investigated through two in vitro models such as radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl method and β-carotene-linoleate-model system. The positive controls (ascorbic acid, butylated hydroxyanisole and butylated hydroxytoluene) were those using the standard solutions. Assays were carried out in triplicate. The oil showed a total of 21 components, and 17 were identified, representing 93.9% of the crude EO. Spathulenol (43.7%), limonene (20.5%), caryophyllene oxide (8.1%) and α-pinene (5.5%) were found to be the major individual constituents. Spathulenol and caryophyllene oxide could be considered chemotaxonomic markers of these genera. The EO demonstrated weak AA.

  2. Anesthetic activity and bio-guided fractionation of the essential oil of Aloysia gratissima (Gillies & Hook.) Tronc. in silver catfish Rhamdia quelen.

    Science.gov (United States)

    Benovit, Simone C; Silva, Lenise L; Salbego, Joseânia; Loro, Vania L; Mallmann, Carlos A; Baldisserotto, Bernardo; Flores, Erico M M; Heinzmann, Berta M

    2015-09-01

    This work aimed to determine the efficacy of the essential oil of A. gratissima as anesthetic for silver catfish, and to perform the bio-guided fractionation of essential oil aiming to isolate compounds responsible for the noted effects. Fish were submitted to anesthesia bath with essential oil, its fractions and isolated compounds to determine time of anesthetic induction and recovery. Eugenol (50 mg L(-1)) was used as positive control. Essential oil of A. gratissima was effective as an anesthetic at concentrations of 300 to 900 mg L(-1). Fish presented involuntary muscle contractions during induction and recovery. The bio-guided fractionation of essential oil furnished E-(-)-pinocamphone, (-)-caryophyllene oxide, (-)-guaiol and (+)-spathulenol. E-(-)-pinocamphone caused the same side effects observed for essential oil. (-)-Caryophyllene oxide, (-)-guaiol and (+)-spathulenol showed only sedative effects at proportional concentrations to those of the constituents in essential oil. (+)-Spathulenol (51.2 mg L(-1)) promoted deep anesthesia without side effects. A higher concentration of (+)-spathulenol, and lower or absent amounts ofE-(-)-pinocamphone could contribute to increase the activity and safety of the essential oil of A. gratissima. (+)-Spathulenol showed potent sedative and anesthetic activities in silver catfish, and could be considered as a viable compound for the development of a new anesthetic.

  3. Characterization of the chemical composition of the essential oils from Annona emarginata (Schltdl. H. Rainer 'terra-fria' and Annona squamosa L.

    Directory of Open Access Journals (Sweden)

    Felipe Girotto Campos

    2014-01-01

    Full Text Available The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl. H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E-caryophyllene (29.29%, (Z-caryophyllene (16.86%, γ-muurolene (7.54%, α-pinene (13.86%, and tricyclene (10.04%. Ten substances were detected in the oil from A. squamosa, primarily (E-caryophyllene (28.71%, (Z-caryophyllene (14.46%, α-humulene (4.41%, camphene (18.10%, α-pinene (7.37%, β-pinene (8.71%, and longifolene (5.64%. Six substances were common to both species: (E-caryophyllene, (Z-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.

  4. Atividade antimicrobiana de óleos essenciais de condimentos frente a Staphylococcus spp isolados de mastite caprina Antimicrobial activities of essential oils extracted from spices against Staphylococcus spp isolated from goat mastitis

    Directory of Open Access Journals (Sweden)

    Marcelo Dal Pozzo

    2011-04-01

    Full Text Available Avaliou-se a atividade antimicrobiana dos óleos essenciais (OEs de Origanum vulgare (orégano, Thymus vulgaris (tomilho, Lippia graveolens (lípia, Zingiber officinale (gengibre, Salvia officinalis (sálvia, Rosmarinus officinalis (alecrim e Ocimum basilicum (manjericão, bem como de frações majoritárias carvacrol, timol, cinamaldeído e cineol frente a 33 isolados de Staphylococcus spp oriundos de rebanhos leiteiros caprinos. A concentração inibitória mínima (CIM e a concentração bactericida mínima (CBM foram determinadas por meio da técnica de microdiluição em caldo. Observou-se atividade antimicrobiana para os OEs de orégano, lípia e tomilho, bem como para as frações majoritárias de carvacrol, timol e cinamaldeído. A ordem decrescente de atividade foi orégano = tomilho > lípia. As frações majoritárias carvacrol, timol e cinamaldeído evidenciaram melhor atividade do que os óleos essenciais e, dentre elas, carvacrol e cinamaldeído foram mais ativas que o timol.The antimicrobial activity of some essencial oils was evaluated as follows: Origanum vulgare (oregano, Thymus vulgaris (thyme, Lippia graveolens (Mexican oregano, Zingiber officinale (ginger, Salvia officinalis (sage, Rosmarinus officinalis (rosemary and Ocimum basilicum (basil, as well as the majority constituents carvacrol, thymol, cinnamaldehyde and cineole against 33 Staphylococcus spp isolates from herds of dairy goats. The minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC were determined for each isolate by using broth microdilution method. Antimicrobial activity observed on the essencial oils of oregano, mexican oregano, thymus, well as to majoritary constituents of carvacrol, thymol and cinnamaldehyde. The descending order of antimicrobial activity were oregano = thyme > mexican oregano. The majority constituents carvacrol, thymol, cinnamaldehyde presented themselves more active than the verified by the essencial oils

  5. Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities.

    Science.gov (United States)

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Compositions of true lavender (Lavandula angustifolia) and spike lavender (Lavandula latifolia) essential oils, cultivated and extracted in the Southeast of Spain, were determined by gas chromatography coupled with mass spectrometry detection, obtaining both relative (peak area) and absolute (using standard curves) concentrations. Linalool (37-54 %), linalyl acetate (21-36 %) and (E)-β-caryophyllene (1-3 %) were the most abundant components for L. angustifolia. Linalool (35-51 %), eucalyptol (26-32 %), camphor (10-18 %), α-pinene (1-2 %), α-terpineol (1-2 %) and α-bisabolene (1-2 %) were the most abundant components for L. latifolia. The characterization was completed with enantioselective gas chromatography, in which the determined main molecules were (-)-linalool, (-)-linalyl acetate and (+)-camphor. (S)-(-)-camphene, (R)-(+)-limonene, (1R, 9S)-(-)-(E)-β-caryophyllene and (1R, 4R, 6R, 10S)-(-)-caryophyllene oxide were found in this study as the predominant enantiomers in Spanish L. angustifolia. The characterised essential oils were tested for their antioxidant activity against free radicals ABTS, DPPH, ORAC, chelating, and reducing power. Inhibitory activity on lipoxygenase was observed indicating a possible anti-inflammatory activity, mainly due to linalool, camphor, p-cymene and limonene. These results can be the starting point for a future study of the potential use of L. angustifolia and L. latifolia essential oils as natural cosmetic and natural pharmaceutical ingredients for several skin diseases. Georg Thieme Verlag KG Stuttgart · New York.

  6. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

    Science.gov (United States)

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Muhialdin, Belal J.; Alhelli, Amaal M.

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE. PMID:27642353

  7. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L. Oil

    Directory of Open Access Journals (Sweden)

    Nameer Khairullah Mohammed

    2016-01-01

    Full Text Available The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE and cold press (CP to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO were Caryophyllene (17.47% followed by thymoquinone (TQ (11.80%, 1,4-Cyclohexadiene (7.17%, longifolene (3.5%, and carvacrol (1.82%. The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE. This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

  8. Analysis of essential oil of eaglewood tree (Aquilaria agallocha Roxb. by gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Mohammad Nazrul Islam Bhuiyan

    2009-06-01

    Full Text Available The study was carried out to find out the differences in composition of oils obtained from healthy, naturally infected and artificially screws wounds eaglewood (Aquilaria agallocha Roxb. using gas chromatography mass spectrometry (GC-MS analysis. Natural healthy plants agar contained octacosane (19.83%, naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl-, [1R-(1.alpha.,7.beta.,8a.alpha.]- (12.67%, 5-isobutyramido-2-methyl pyrimidine (13.52%, caryophyllene oxide (11.25% and (.+-.-cadinene (5.46%. Natural infected plants agar (super agar contained cycloheptane, 4-methylene-1-methyl-2-(2-methyl-1-propen-1-yl-1-vinyl- (46.17%, caryophyllene oxide (33.00% and 7-Isopropenyl-4a-methyl-1-methylenedecahydronaphthalene (20.83%. Artificially screw injected plants agar contained diisooctyl phthalate (71.97%, 1H-Cycloprop[e]azulen-4-ol, decahydro-1,1,4,7-tetramethyl-, [1ar-(1a.alpha.,4.beta.,4a.beta., 7.alpha., 7a.beta., 7b.alpha.]- (9.16%, hexadecanoic acid (7.05%, naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl-, [1R-(1.alpha.,7.beta.,8a.alpha.]- (6.45% and aristolene (5.36%. This study showed a marked difference in the oil compositions among the treatments with regards to their quality.

  9. Fumigant Compounds from the Essential Oil of Chinese Blumea balsamifera Leaves against the Maize Weevil (Sitophilus zeamais

    Directory of Open Access Journals (Sweden)

    Sha Sha Chu

    2013-01-01

    Full Text Available Essential oil of Chinese medicinal herb, Blumea balsamifera leaves, was found to possess fumigant toxicity against the maize weevils, Sitophilus zeamais. The main components of the essential oil of B. balsamifera were 1,8-cineole (20.98%, borneol (11.99%, β-caryophyllene (10.38%, camphor (8.06%, 4-terpineol (6.49%, α-terpineol (5.91%, and caryophyllene oxide (5.35%. Bioactivity-guided chromatographic separation of the essential oil on repeated silica gel columns led to isolate five constituent compounds, namely, 1,8-cineole, borneol, camphor, α-terpineol, and 4-terpineol. 1,8-Cineole, 4-terpineol, and α-terpineol showed pronounced fumigant toxicity against S. zeamais adults (LC50 = 2.96 mg/L, 4.79 mg/L, and 7.45 mg/L air, resp. and were more toxic than camphor (LC50 = 21.64 mg/L air and borneol (LC50 = 21.67 mg/L air. The crude essential oil also possessed strong fumigant toxicity against S. zeamais adults (LC50 = 10.71 mg/L air.

  10. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit

    Directory of Open Access Journals (Sweden)

    Adriano dos Santos Cavalcanti

    Full Text Available AbstractEssential oils extracted from Schinus molle L. and Schinus terebinthifolius Raddi, Anacardiaceae, leaves and fruit hydrodistillation, as well as, their chemical composition and extraction kinetic were evaluated. For this proposal, 6 h extraction and aliquots collected at sequencing different times (0.5, 1, 2, 4 and 6 h were carried out allowing calculating accumulated content (% w/w and verifying essential oil chemical profile. β-caryophyllene (35.2%, α-pinene (28.1% and germacrene D (15.5% represent S. terebinthifolius dried leaves essential oil major components, as well as, α-pinene (44.9%, germacrene D (17.6% and β-pinene (15.1% in the fruit. Cubenol (27.1%, caryophyllene oxide (15.3% and spathulenol (12.4% represent S. molle dried leaves essential oil major components, and β-pinene (36.3% α-pinene (20.3%, germacrene D (12.1% and spathulenol in the fruit. Essential oil extraction kinetics showed a hyperbolic distribution; monoterpene content presented exponential decay in time function and sesquiterpene showed exponential growth. Faster monoterpene extraction than the sesquiterpene extraction was observed, however, both presented increasing exponential distribution.

  11. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential

    OpenAIRE

    Ismail Amri; Mohsen Hanana; Bassem Jamoussi; Lamia Hamrouni

    2017-01-01

    The chemical composition of essential oils isolated by hydrodistillation from the needles of Tunisian Pinus nigra L. subsp. laricio was analyzed by GC and GC/MS. 27 compounds were identified, representing 97.9% of total oil, which was found to be rich in oxygenated diterpenes (38.5%) particularly manool oxide (38%) and sesquiterpene hydrocarbons (41.4%) that included germacrene D (16.7%), δ-cadinene (9%) and (E)-caryophyllene (8.9%). Results of the herbicidal effects of the oil when tested on...

  12. Chemical composition of essential oil from in vitro grown peperomia obtusifolia through gc-ms

    International Nuclear Information System (INIS)

    Ilyasi, S.; Naz, S.; Aslam, F.

    2014-01-01

    Apical meristems and nodal plant parts were used for mass propagation of Peperomia obtusifolia. Different concentrations of BAP (6-benzylaminopurine), TDZ (Thidiazuron) and KIN (Kinetin) were used in MS medium. The highest shoot proliferation and multiplication formation occurred in the MS basal medium containing 1.0 mg/mL BAP. Maximum number of shoots and shoot lengths were 9.80, 0.50 and 35.40, 2.92 cm respectively. Rooting response was the best in MS basal medium fortified with 1.0 mg/mL BAP plus 0.5 mg/mL NAA (alpha-naphthalene acetic acid). For acclimatization, the rooted plantlets were transferred to the greenhouse. The volatile oil of this In vitro grown P. obtusifolia was extracted by hydro-distillation and investigated by gas chromatography/mass spectrometry (GC-MS). The chromatographic analysis of oil showed 35 constituents of which, 16 volatile compounds contributing 65.0% of the total oil constituents could be identified. The major components identified in this oil were sesquiterpenes such as caryophyllene (17.17%), apiol (16.65%), alpha-cardinol (2.12%) and alpha-caryophyllene (1.90%). The monoterpenes such as R-alpha-Pinene(1.00%), camphene (0.84%), borneal (0.32%) and limonene (0.25%) were also identified. The tau-muurolol (0.68%), gamma- Elemene (0.63%), copaene (0.43%) and tau.-cadinol (0.27%) were present comparatively in minor percentages. The caryophyllene oxide (2.95%) was oxygenated sesquiterpene, 3,5-Dimethoxy-4-hydroxycinnamic acid (0.53%) and asarone (0.41%) were phenyl-propanoids. (author)

  13. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds.

    Science.gov (United States)

    Laznik, Z; Trdan, S

    2013-07-01

    Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    Directory of Open Access Journals (Sweden)

    Evandro eDe Souza

    2015-07-01

    Full Text Available Cherry tomato (Lycopersicon esculentum Mill fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI from M. circinelloides in combination with carvacrol (CAR in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25 °C, 12 days and 12 °C, 24 days. During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids and titratable acidity was evaluated. CHI and CAR displayed MIC values of 7.5 mg/mL and 10 µL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL and CAR (5 or 2.5 µL/mL strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL and CAR (2.5 or 1.25 µL/mL inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage.

  15. Assessing in Vitro Acaricidal Effect and Joint Action of a Binary Mixture Between Essential Oil Compounds (Thymol, Phellandrene, Eucalyptol, Cinnamaldehyde, Myrcene, Carvacrol Over Ectoparasitic Mite Varroa Destructor (Acari: Varroidae

    Directory of Open Access Journals (Sweden)

    Brasesco Constanza

    2017-12-01

    Full Text Available Varroa destructor (Anderson & Trueman, 2000 causes the most important parasitosis of beekeeping in the world. For this reason, prevention is needed to avoid colony death. The most typical treatments involve synthetic acaricides. However, the use of these acaricides results in the emergence of resistant populations of mites to these products and in the appearances of drug residues in products of the hives. Compounds of essential oils have emerged as an alternative to traditional acaricides; however the toxicity produced by these mixtures is currently poorly explored. The aim of this work was to assess, by means of in vitro tests with adult bees, how acaricidal action and toxic interactions in a binary mixture of essential oil compounds (Thymol, Phellandrene, Eucalyptol, Cinnamaldehyde, Myrcene, and Carvacrol affect V. destructor. Calculations of LC50 ’s of the individual compounds on A. mellifera and V. destructor made clear that the toxic effect of each compound is different for both species. Thymol and Phellandrene turned out to be lethal for mites at lower concentrations than for bees. The binary mixture of these two substances presented a different toxicity than one produced by each pure compound, as it was highly selective for mites in bioassays at 24 hours through complete exposure to both A. mellifera and V. destructor. These results make such formulations optimal substances to be considered as alternative controls for the parasitosis.

  16. Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7.

    Science.gov (United States)

    Campion, Alicia; Morrissey, Ruth; Field, Des; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2017-08-01

    Cronobacter sakazakii and Escherichia coli O157:H7 are well known food-borne pathogens that can cause severe disease. The identification of new alternatives to heating to control these pathogens in foods, while reducing the impact on organoleptic properties and nutritional value, is highly desirable. In this study, nisin and its bioengineered variants, nisin V and nisin S29A, are used alone, or in combination with plant essential oils (thymol, carvacrol and trans-cinnamaldehyde) or citric acid, with a view to controlling C. sakazakii and E. coli O157:H7 in laboratory-based assays and model food systems. The use of nisin variants (30 μM) with low concentrations of thymol (0.015%), carvacrol (0.03%) and trans-cinnamaldehyde (0.035%) resulted in extended lag phases of growth compared to those for corresponding nisin A-essential oil combinations. Furthermore, nisin variants (60 μM) used in combination with carvacrol (0.03%) significantly reduced viable counts of E. coli O157:H7 (3-log) and C. sakazakii (4-log) compared to nisin A-carvacrol treatment. Importantly, this increased effectiveness translated into food. More specifically, sub-inhibitory concentrations of nisin variants and carvacrol caused complete inactivation of E. coli O157:H7 in apple juice within 3 h at room temperature compared to that of the equivalent nisin A combination. Furthermore, combinations of commercial Nisaplin and the food additive citric acid reduced C. sakazakii numbers markedly in infant formula within the same 3 h period. These results highlight the potential benefits of combining nisin and variants thereof with carvacrol and/or citric acid for the inhibition of Gram negative food-borne pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model.

    Science.gov (United States)

    Ran, Chao; Hu, Jun; Liu, Wenshu; Liu, Zhi; He, Suxu; Dan, Bui Chau Truc; Diem, Nguyen Ngoc; Ooi, Ei Lin; Zhou, Zhigang

    2016-05-01

    Essential oils (EOs) are commonly used as animal feed additives. Information is lacking on the mechanisms driving the beneficial effects of EOs in animals, especially the role played by the intestinal microbiota of the host. The purpose of this study was to clarify the relative contribution of direct effects of EOs on the physiology and immune system of tilapia and indirect effects mediated by the intestinal microbiota by using a germ-free zebrafish model. Juvenile hybrid tilapia were fed a control diet or 1 of 4 treatment diets containing 60-800 mg Next Enhance 150 (NE) (an EO product containing equal levels of thymol and carvacrol)/kg for 6 wk. The key humoral and cellular innate immune parameters were evaluated after the feeding period. In another experiment, the gut microbiota of tilapia fed a control or an NE diet (200 mg/kg) for 2 wk were transferred to 3-d postfertilization (dpf) germ-free (GF) zebrafish, and the expression of genes involved in innate immunity and tight junctions was evaluated in zebrafish at 6 dpf. Lastly, NE was directly applied to 3-dpf GF zebrafish at 3 doses ranging from 0.2 to 20 mg/L, and the direct effect of NE on zebrafish was evaluated after 1 and 3 d. NE supplementation at 200 mg/kg enhanced phagocytosis activity of head kidney macrophages (×1.36) (P tilapia compared with the control (P tilapia through a combination of factors, i.e., primarily through a direct effect on host tissue (immune-stimulating) but also an indirect effect mediated by microbial changes (immune-relieving). © 2016 American Society for Nutrition.

  18. Chemical composition of the essential oils of Centaurea tomentella Hand.-Mazz. and C. haussknechtii Boiss. (Asteraceae) collected wild in Turkey and their activity on microorganisms affecting historical art craft.

    Science.gov (United States)

    Bruno, Maurizio; Modica, Aurora; Catinella, Giorgia; Canlı, Cem; Arasoglu, Tülin; Çelik, Sezgin

    2018-04-18

    In the present study the chemical composition of the essential oils from aerial parts of Centaurea tomentella Hand.-Mazz. and C. haussknechtii Boiss. collected in Turkey was evaluated by GC and GC-MS. The main components of C. tomentella L. were hexadecanoic acid (19.7%), caryophyllene oxide (6.6%) and spathulenol (4.8%) whereas C. haussknechtii was rich in hexadecanoic acid (26.2%), (Z,Z)-9,12-octadecadienoic acid (19.3%), heptacosane (5.3%) and nonacosane (5.1%). Antibacterial and antifungal activities against some microorganisms infesting historical art craft, were also determined.

  19. Harvest time on the content and chemical composition of essential oil from leaves of guava

    Directory of Open Access Journals (Sweden)

    Elizabeth Aparecida Josefi da Silva

    Full Text Available ABSTRACT: The essential oil plants contents can be affected by several factors. For example, in certain plants, collection time has been observed to affect the content and chemical composition of the essential oil obtained from the plant. The objective of this study was to evaluate the effect of collection time on the content and chemical composition of the essential oil from guava ( Psidium guajava L. leaves. Leaves were collected at different times of the day and the content and chemical composition of their essential oil was determined. Collection time did not qualitatively affect the chemical composition of the essential oil. However, concentration of certain substances in the oil, such as α-humulene and trans-caryophyllene, did significantly vary at different collection times. The main constituents of the essential oil of Psidium guajava are limonene (2.2-4.4%, trans-caryophyllene (18.1-17.1%, α-humulene (26.3-20.4%, aromadendrene (7.6-12.2%, α-selinene (7.3-11.3%, caryophyllene oxide (3.7-3.3%, humulene epoxide II (4.1-1.9%, and selin-11-en-4α-ol (7.2-11.1%. Leaves collected at 7:00 AM had higher essential oil production, with a content of 0.38% (d.b., whereas leaves collected at 7:00 PM had lower essential oil production, 0.24% (d.b.. Chemical analysis showed that sesquiterpene compounds represented the highest concentration (62.0%, and monoterpenoids and monoterpenes represented the lowest concentrations (1.1 and 2.2%, respectively. Chemical classes that underwent major changes with respect to collection time were monoterpenes, sesquiterpenes, and sesquiterpenoids (2.2-4.4%, 63.8-61.7%, and 15.9-13.2%, respectively.

  20. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    Science.gov (United States)

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  1. Analysis of Volatile Components of Adenosma indianum (Lour. Merr. by Steam Distillation and Headspace Solid-Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2013-01-01

    Full Text Available The essential oil of Adenosma indianum (Lour. Merr. plays an important role in its antibacterial and antiphlogistic activities. In this work, the volatile components were extracted by steam distillation (SD and headspace solid-phase microextraction (HS-SPME and analysed by gas chromatography-mass spectrometry (GC-MS. A total of 49 volatile components were identified by GC-MS, and the major volatile components were α-limonene (20.59–35.07%, fenchone (15.79–31.81%, α-caryophyllene (6.98–10.32%, β-caryophyllene (6.98–10.19%, and piperitenone oxide (1.96–11.63%. The comparison of the volatile components from A. indianum (Lour. Merr. grown in two regions of China was reported. Also, the comparison of the volatile components by SD and HS-SPME was discussed. The results showed that the major volatile components of A. indianum (Lour. Merr. from two regions of China were similar but varied with different extraction methods. These results were indicative of the suitability of HS-SPME method for simple, rapid, and solvent-free analysis of the volatile components of the medicinal plants.

  2. Screening of the odour-activity and bioactivity of the essential oils of leaves and flowers of Hyptis Passerina Mart. from the Brazilian Cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, Barbara D.; Amorim, Ana Carolina L.; Rezende, Claudia M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Inst. de Quimica]. E-mail: crezende@iq.ufrj.br; Miranda, Ana Luisa P. de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Farmacia; Alves, Ruy J.V. [Museu Nacional, Rio de Janeiro, RJ (Brazil). Dept. de Botanica. Herbario; Barbosa, Jussara P.; Costa, Gisela L. da [Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Lab. de Taxonomia, Bioquimica e Bioprospeccao de Fungos

    2009-07-01

    The chemical profile of the essential oils obtained from the leaves and flowers of Hyptis passerina Mart., a rare species of the Brazilian Cerrado, has been determined for the first time. Analyses by GC-MS showed sesquiterpenes as major compounds. {beta}-epi-acorenol (35.7% and 32.8%, respectively from leaf and flower essential oils), was isolated and identified by 1D and 2D NMR. The flower-derived oil presented a higher concentration of hydrocarbon and oxygenated monoterpenes, while the leaf-oil was richer in diterpenes. The global odour impressions of both oils were given by direct analysis and GC-MS-O and were characterized as herbaceous with tea notes, and green, cooked and woody impressions for leaf-oil; herbaceous, with spicy, woody and minty notes for flower-oil. {beta}-epi-acorenol, spathulenol, {beta}-caryophyllene, and caryophyllene oxide were relevant for the odour-activity of both oils, as well as minor constituents, such as linalool. The antimicrobial activity was investigated by means of agar diffusion disc method and contact bioautography, against Gram-positive and negative bacteria and yeast. Both oils presented to be bioactive against the tested microorganisms with significant inhibition level. (author)

  3. Composition of the essential oil from the leaves of tree domestic varieties and one wild variety of the guava plant (Psidium guajava L., Myrtaceae

    Directory of Open Access Journals (Sweden)

    Rafaela Karin de Lima

    Full Text Available The compositions of the essential oils from the leaves of three domestic varieties of the guava tree Psidium guajava L. (Paluma, Século XXI and Pedro Sato and of one wild variety were compared. Essential oils were extracted by steam distillation, the components were identified by gas chromatography coupled to mass spectrometry GC-MS, and the apparent concentrations were determined by gas chromatography with a flame ionization detector. The results demonstrated that the three essential oils contained many common substances with a prevalence of 1,8-cineole, whereas the essential oil of the Paluma variety contained 1,8-cineole (42.68% as the major constituent, as well as α-terpineol (38.68%. The principal components of the essential oil of the Século XXI variety were 1,8-cineole (18.83%, trans-caryophyllene (12.08%, and selin-11-en-4-αol (20.98%, while those of the Pedro Sato variety and of the wild plant were 1,8-cineole (17.68% and (12.83%, caryophyllene oxide (9.34% and (9.09%, and selin-11-en-4-α-ol (21.46% and (22.19%, respectively.

  4. Screening of the odour-activity and bioactivity of the essential oils of leaves and flowers of Hyptis Passerina Mart. from the Brazilian Cerrado

    International Nuclear Information System (INIS)

    Zellner, Barbara D.; Amorim, Ana Carolina L.; Rezende, Claudia M.; Miranda, Ana Luisa P. de; Alves, Ruy J.V.; Barbosa, Jussara P.; Costa, Gisela L. da

    2009-01-01

    The chemical profile of the essential oils obtained from the leaves and flowers of Hyptis passerina Mart., a rare species of the Brazilian Cerrado, has been determined for the first time. Analyses by GC-MS showed sesquiterpenes as major compounds. β-epi-acorenol (35.7% and 32.8%, respectively from leaf and flower essential oils), was isolated and identified by 1D and 2D NMR. The flower-derived oil presented a higher concentration of hydrocarbon and oxygenated monoterpenes, while the leaf-oil was richer in diterpenes. The global odour impressions of both oils were given by direct analysis and GC-MS-O and were characterized as herbaceous with tea notes, and green, cooked and woody impressions for leaf-oil; herbaceous, with spicy, woody and minty notes for flower-oil. β-epi-acorenol, spathulenol, β-caryophyllene, and caryophyllene oxide were relevant for the odour-activity of both oils, as well as minor constituents, such as linalool. The antimicrobial activity was investigated by means of agar diffusion disc method and contact bioautography, against Gram-positive and negative bacteria and yeast. Both oils presented to be bioactive against the tested microorganisms with significant inhibition level. (author)

  5. Anti-Proliferative Effects of Siegesbeckia orientalis Ethanol Extract on Human Endometrial RL-95 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chi-Chang Chang

    2014-12-01

    Full Text Available Endometrial cancer is a common malignancy of the female genital tract. This study demonstrates that Siegesbeckia orientalis ethanol extract (SOE significantly inhibited the proliferation of RL95-2 human endometrial cancer cells. Treating RL95-2 cells with SOE caused cell arrest in the G2/M phase and induced apoptosis of RL95-2 cells by up-regulating Bad, Bak and Bax protein expression and down-regulation of Bcl-2 and Bcl-xL protein expression. Treatment with SOE increased protein expression of caspase-3, -8 and -9 dose-dependently, indicating that apoptosis was through the intrinsic and extrinsic apoptotic pathways. Moreover, SOE was also effective against A549 (lung cancer, Hep G2 (hepatoma, FaDu (pharynx squamous cancer, MDA-MB-231 (breast cancer, and especially on LNCaP (prostate cancer cell lines. In total, 10 constituents of SOE were identified by Gas chromatography-mass analysis. Caryophyllene oxide and caryophyllene are largely responsible for most cytotoxic activity of SOE against RL95-2 cells. Overall, this study suggests that SOE is a promising anticancer agent for treating endometrial cancer.

  6. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Directory of Open Access Journals (Sweden)

    Gian Luigi Rana

    2012-02-01

    Full Text Available Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare, previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products.

  7. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw.

    Science.gov (United States)

    Medeiros, R; Passos, G F; Vitor, C E; Koepp, J; Mazzuco, T L; Pianowski, L F; Campos, M M; Calixto, J B

    2007-07-01

    alpha-Humulene and trans-caryophyllene are sesquiterpene compounds identified in the essential oil of Cordia verbenacea which display topical and systemic anti-inflammatory effects in different experimental models. However, the molecular mechanisms through which they exert their anti-inflammatory activity still remain unclear. Here, we evaluate the effects of alpha-humulene and trans-caryophyllene on the acute inflammatory responses elicited by LPS. The biological activities of alpha-humulene and trans-caryophyllene were investigated in a model of acute inflammation in rat paw, induced by LPS and characterized by paw oedema, neutrophil recruitment, cytokine production, activation of MAP kinases and NF-kappaB and up-regulated expression of kinin B(1) receptors. Treatment with either alpha-humulene or trans-caryophyllene effectively reduced neutrophil migration and activation of NF-kappaB induced by LPS in the rat paw. However, only alpha-humulene significantly reduced the increase in TNF-alpha and IL-1beta levels, paw oedema and the up-regulation of B(1) receptors following treatment with LPS. Both compounds failed to interfere with the activation of the MAP kinases, ERK, p38 and JNK. Both alpha-humulene and trans-caryophyllene inhibit the LPS-induced NF-kappaB activation and neutrophil migration, although only alpha-humulene had the ability to prevent the production of pro-inflammatory cytokines TNF-alpha and IL-1beta and the in vivo up-regulation of kinin B(1) receptors. These data provide additional molecular and functional insights into the beneficial effects of the sesquiterpenes alpha-humulene and trans-caryophyllene isolated from the essential oil of Cordia verbenacea as agents for the management of inflammatory diseases.

  8. A thin-layer chromatography method for the identification of three different olibanum resins (Boswellia serrata, Boswellia papyrifera and Boswellia carterii, respectively, Boswellia sacra).

    Science.gov (United States)

    Paul, Michael; Brüning, Gerit; Bergmann, Jochen; Jauch, Johann

    2012-01-01

    Resins of the genus Boswellia are currently an interesting topic for pharmaceutical research since several pharmacological activities (e.g. anti-inflammatory, anti-microbial, anti-tumour) are reported for extracts and compounds isolated from them. Unambiguous identification of these resins, by simple and convenient analytical methods, has so far not clearly been verified. For differentiation and identification of three important Boswellia species (Boswellia serrata Roxb., Boswellia papyrifera Hochst. and Boswellia carterii Birdw., respectively Boswellia sacra Flueck.), possible even for minimally equipped laboratories, a thin-layer chromatography (TLC) method was developed, allowing unambiguous identification of the three species. Crude resin samples (commercial samples and a voucher specimen) were extracted with methanol or diethyl ether and subjected to TLC analysis (normal phase). A pentane and diethyl ether (2:1) with 1% acetic acid eluent was used. Chromatograms were analysed by UV detection (254 nm) and dyeing with anisaldehyde dyeing reagent. Significant spots were isolated and structures were assigned (mass spectrometry; nuclear magnetic resonance spectroscopy). Incensole and incensole acetate are specific biomarkers for Boswellia papyrifera. Boswellia carterii/Boswellia sacra reveal ß-caryophyllene oxide as a significant marker compound. Boswellia serrata shows neither incensole acetate nor ß-caryophyllene oxide spots, but can be identified by a strong serratol and a sharp 3-oxo-8,24-dien-tirucallic acid spot. The TLC method developed allows unambiguous identification of three different olibanum samples (Boswellia papyrifera, Boswellia serrata, Boswellia carterii/Boswellia sacra). Evidence on the specific biosynthesis routes of these Boswellia species is reported. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Dihydropyranoflavones from Pongamia pinnata

    OpenAIRE

    Yin, Hao; Zhang, Si; Wu, Jun; Nan, Haihan

    2006-01-01

    From the stem bark of Pongamia pinnata, two new compounds, 3-methoxy-(3²,4²-dihydro- 3²-hydroxy-4²-acetoxy)-2²,2²-dimethylpyrano-(7,8:5 ²,6²)-flavone and 3-methoxy-(3²,4²-dihydro-4²- hydroxy-3²-acetoxy)-2²,2²-dimethylpyrano-(7,8:5 ²,6²)-flavone, were isolated, along with six known compounds, caryophyllene oxide, obovatachalcone, 8-hydroxy-6-methoxy-3-pentyl-1H-isochromen-1-one, 6,7,2,2-dimethylchromono-8,gamma,gamma-dimethylallylflavanon e, isolonchocarpin, ovaliflavanone A. Their structures ...

  10. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Science.gov (United States)

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  11. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  12. Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Nesterkina Mariia

    2018-03-01

    Full Text Available Repellent activity of monoterpenoid esters (1-6 with neurotransmitter amino acids (GABA and glycine was investigated against Aedes aegypti by using a “cloth-patch” assay and compared to reference standard N,N-diethyl-3-methylbenzamide (DEET. Monoterpenoid esters showed repellent activity with minimum effective dosages (MED in the range of 0.031-0.469 mg/cm2. The carvacrol ester of GABA (2, MED of 0.031 ± 0.008 mg/cm2 exhibited the highest repellency of six monoterpenoid esters tested in comparison to the standard repellent DEET (MED of 0.009 ± 0.002 mg/cm2; however, the repellent activity of carvacrol-glycine ester (5 decreased 4-fold compared to the carvacrol-GABA derivative (2. The repellent activities of menthol GABA (1, MED= 0.375 ± 0.000 mg/cm2 and glycine ester (4, MED=0.312 ± 0.063 mg/cm2 were similar The guaiacol-glycine ester (6 was 3.75-fold more efficacious than the guaiacol ester of GABA (3. In the present study, we report repellent efficacy of prolonged exposure to GABA and glycine esters of menthol, carvacrol, guaiacol (1-6 as compared to the repellent activities of their monoterpene moieties alone.

  13. Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

    OpenAIRE

    Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José María

    2017-01-01

    Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous f...

  14. Volatile Compounds of the Leaves and Flowers of Lavandula dhofarensis A.G. Miller

    Directory of Open Access Journals (Sweden)

    John R. Williams

    2013-12-01

    Full Text Available The leaves and flowers of Lavandula dhofarensis were collected from the Dhofar region of Oman and hydro-distilled to give low boiling volatiles, which did not condense at 10 oC.  The dichloromethane extract of the hydrosol was analyzed by GC/FID and GC/MS. Sixty four compounds were identified in the volatiles of the leaves, accounting for 78.7% of the total.  The major components were caryophyllene oxide (8.0%, germacrene (7.9%, spathulenol (7.8%, and b-caryophyllene (6.6%. Eighty six compounds were also identified in the volatiles of the leaves plus flowers, comprising 94.5% of the total. The major compounds were camphor (12.9%, viridiflorol (10.5%, a-terpinyl acetate (7.5%, valerenal (7.2%, a-gurjunene (5.6%, and spathulenol (5.5%. Compounds such as linalool, linalyl acetate, 1,8-cineole, and b-ocimene, which are usually found as the major components of lavender oils, were either absent or detected at low levels  (<0.1% in the hydrosol of L. dhofarensis. This investigation showed that the fragrance essence of L. dhofarensis is different from the other Lavandula species. L. dhofarensisis is regionally endemic to wetter areas of Oman.

  15. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  16. Identification of Insecticidal Constituents from the Essential Oil from the Aerial Parts Stachys riederi var. japonica.

    Science.gov (United States)

    Quan, Meirong; Liu, Qi Zhi; Liu, Zhi Long

    2018-05-17

    The essential oil of Stachys riederi var. japonica (Family: Lamiaceae) was extracted by hydrodistillation and determined by GC and GC-MS. A total of 40 components were identified, representing 96.01% of the total oil composition. The major compounds in the essential oil were acetanisole (15.43%), anisole (9.43%), 1,8-cineole (8.07%), geraniol (7.89%), eugenol (4.54%), caryophyllene oxide (4.47%), caryophyllene (4.21%) and linalool (4.07%). Five active constituents (acetanisole, anisole, 1,8-cineole, eugenol and geraniol) were identified by bioactivity-directed fractionation. The essential oil possessed fumigant toxicity against maize weevils ( Sitophilus zeamais ) and booklice ( Liposcelis bostrychophila ), with LC 50 values of 15.0 mg/L and 0.7 mg/L, respectively. Eugenol and anisole exhibited stronger fumigant toxicity than the oil against booklice. 1,8-Cineole showed stronger toxicity, and anisole as well as eugenol exhibited the same level of fumigant toxicity as the essential oil against maize weevils. The essential oil also exhibited contact toxicity against S. zeamais adults and L. bostrychophila , with LC 50 values of 21.8 µg/adult and 287.0 µg/cm², respectively. The results indicated that the essential oil of S. riederi var. japonica and its isolates show potential as fumigants, and for their contact toxicity against grain storage insects.

  17. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains.

    Science.gov (United States)

    Scalas, Daniela; Mandras, Narcisa; Roana, Janira; Tardugno, Roberta; Cuffini, Anna Maria; Ghisetti, Valeria; Benvenuti, Stefania; Tullio, Vivian

    2018-05-03

    Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. Six C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic

  18. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    L. A. Kotyuk

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  19. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Kotyuk L. A.

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  20. Study on essential oils from the leaves of two Vietnamese plants: Jasminum subtriplinerve C.L. Blume and Vitex quinata (Lour) F.N. Williams.

    Science.gov (United States)

    Dai, Do N; Thang, Tran D; Ogunwande, Isiaka A; Lawal, Oladipupo A

    2016-01-01

    The essential oil constituents of the leaves of Jasminum subtriplinerve (Oleaceae) and Vitex quinata (Verbanaceae) cultivated in Vietnam were analysed by gas chromatography--flame ionisation detector (GC-FID) and gas chromatography--mass spectrometry (GC-MS) techniques. The main constituents identified in J. subtriplinerve were mainly oxygenated monoterpenes represented by linalool (44.2%), α-terpineol (15.5%), geraniol (19.4%) and cis-linalool oxide (8.8%). The quantitative significant components of V. quinata were terpene hydrocarbons comprising of β-pinene (30.1%), β-caryophyllene (26.9%) and β-elemene (7.4%). The chemical compositions of the essential oils are being reported for the first time.

  1. Antioxidant activities and essential oil composition of Herba Artemisiae Scopariae from China.

    Science.gov (United States)

    Jiang, Shan; Lai, Pengxiang; Li, Jie; Wang, Guichun

    2012-01-01

    The essential oil in traditional Chinese medicine (TCM) Herba Artemisiae Scopariae (HAC) grown in China was obtained by hydrodistillation and studied by GC and GC-MS. Twenty compounds were identified representing 96.6% of the essential oil, of which the most prominent were n-hexadecanoic acid (33.1%), caryophyllene oxide (19.1%) and spathulenol (9.9%). The antioxidant activity of the essential oil (25-400 µg/ml) of HAC was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) assay. The essential oil of HAC exhibited a strong antioxidant activity, which possess a good potential for use in the food and pharmaceutical industry.

  2. Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis

    Directory of Open Access Journals (Sweden)

    Abdeslam Jaafari

    2012-06-01

    Full Text Available Monoterpenes have been identified as responsible of important therapeutic effects of plant-extracts. In this work, we try to compare the cytotoxic effect of six monoterpenes (carvacrol, thymol, carveol, carvone, eugenol and isopulegol as well as their molecular mechanisms. The in vitro antitumor activity of the tested products, evaluated against five tumor cell lines, show that the carvacrol is the most cytotoxic monoterpene. The investigation of an eventual synergistic effect of the six natural monoterpenes with two anticancer drugs revealed that there is a significant synergy between them (p<5%. On the other hand, the effect of the tested products on cell cycle progression was examined by flow cytometry after DNA staining in order to investigate the molecular mechanism of their cytotoxic activity. The results revealed that carvacrol and carveol stopped the cell cycle progression in S phase; however, thymol and isopulegol stopped it in G0/G1 phase. Regarding carvone and eugenol, no effect on cell cycle was observed.

  3. TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium

    International Nuclear Information System (INIS)

    Ueda, Takashi; Yamada, Takahiro; Ugawa, Shinya; Ishida, Yusuke; Shimada, Shoichi

    2009-01-01

    The thermo-transient receptor potential (thermoTRP) subfamily is composed of channels that are important in nociception and thermo-sensing. Here, we show a selective expression of TRPV3 channel in the distal colon throughout the gastrointestinal tract. Expression analyses clearly revealed that TRPV3 mRNA and proteins were expressed in the superficial epithelial cells of the distal colon, but not in those of the stomach, duodenum or proximal colon. In a subset of primary epithelial cells cultured from the distal colon, carvacrol, an agonist for TRPV3, elevated cytosolic Ca 2+ concentration in a concentration-dependent manner. This response was inhibited by ruthenium red, a TRPV channel antagonist. Organotypic culture supported that the carvacrol-responsive cells were present in superficial epithelial cells. Moreover, application of carvacrol evoked ATP release in primary colonic epithelial cells. We conclude that TRPV3 is present in absorptive cells in the distal colon and may be involved in a variety of cellular functions.

  4. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  5. Antinociceptive Effect of the Essential Oil from Croton conduplicatus Kunth (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Raimundo Gonçalves de Oliveira Júnior

    2017-05-01

    Full Text Available Medicinal plants have been widely used in the treatment of chronic pain. In this study, we describe the antinociceptive effect of the essential oil from Croton conduplicatus (the EO 25, 50, and 100 mg/kg, i.p., a medicinal plant native to Brazil. Antinociceptive activity was investigated by measuring the nociception induced by acetic acid, formalin, hot plate and carrageenan. A docking study was performed with the major constituents of the EO (E-caryophyllene, caryophyllene oxide, and camphor. The EO reduced nociceptive behavior at all doses tested in the acetic acid-induced nociception test (p < 0.05. The same was observed in both phases (neurogenic and inflammatory of the formalin test. When the hot-plate test was conducted, the EO (50 mg/kg extended the latency time after 60 min of treatment. The EO also reduced leukocyte migration at all doses, suggesting that its antinociceptive effect involves both central and peripheral mechanisms. Pretreatment with glibenclamide and atropine reversed the antinociceptive effect of the EO on the formalin test, suggesting the involvement of KATP channels and muscarinic receptors. The docking study revealed a satisfactory interaction profile between the major components of the EO and the different muscarinic receptor subtypes (M2, M3, and M4. These results corroborate the medicinal use of C. conduplicatus in folk medicine.

  6. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  7. Chemical constituents and evaluation of cytotoxic and antifungal activity of Lantana camara essential oils

    Directory of Open Access Journals (Sweden)

    Lídia B. P. Medeiros

    2012-12-01

    Full Text Available The essential oil (EO of aerial parts of Lantana camara L., Verbenaceae, from Simões, Piaui, Northeast of Brazil, were obtained by hydrodistillation and analyzed by GC-FID and GC-MS techniques. In total, 68 compounds were identified. The most representative compounds of the oil were mono and sesquiterpenes. The main compounds found in the oil of the leaves in different months were β-caryophyllene (10.5%, in June of 2009, sabinene (7.98%, in September of 2008, limonene (7.68%, in September of 2008, spathulenol (11.64%, in September of 2008. The oil from stems of L. camara was characterized by a largest amount of sesquiterpenoids, with spatulenol (15.9% and caryophyllene oxide (17.1% in June of 2009, as main components. β-Gurjunene (32.7%, in September of 2008 was the most prominent compound in the stems oils, which was absent or at very low relative abundance in leaves. L. camara essential oils from leaves were cytotoxic to V79 mammalian cells and also to Artemia salina, showing 50% lethal concentration (LC50 values from 0.23 µg/mL. The in vitro data obtained in this study suggested that EO may also be effective treating yeast infection in patients infected with fluconazole and terbinafine resistant isolates, but its toxicity must be monitored carefully.

  8. Chemical constituents and evaluation of cytotoxic and antifungal activity of Lantana camara essential oils

    Directory of Open Access Journals (Sweden)

    Lídia B. P. Medeiros

    2012-08-01

    Full Text Available The essential oil (EO of aerial parts of Lantana camara L., Verbenaceae, from Simões, Piaui, Northeast of Brazil, were obtained by hydrodistillation and analyzed by GC-FID and GC-MS techniques. In total, 68 compounds were identified. The most representative compounds of the oil were mono and sesquiterpenes. The main compounds found in the oil of the leaves in different months were β-caryophyllene (10.5%, in June of 2009, sabinene (7.98%, in September of 2008, limonene (7.68%, in September of 2008, spathulenol (11.64%, in September of 2008. The oil from stems of L. camara was characterized by a largest amount of sesquiterpenoids, with spatulenol (15.9% and caryophyllene oxide (17.1% in June of 2009, as main components. β-Gurjunene (32.7%, in September of 2008 was the most prominent compound in the stems oils, which was absent or at very low relative abundance in leaves. L. camara essential oils from leaves were cytotoxic to V79 mammalian cells and also to Artemia salina, showing 50% lethal concentration (LC50 values from 0.23 µg/mL. The in vitro data obtained in this study suggested that EO may also be effective treating yeast infection in patients infected with fluconazole and terbinafine resistant isolates, but its toxicity must be monitored carefully.

  9. Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts

    Directory of Open Access Journals (Sweden)

    M. Song

    2017-09-01

    Full Text Available Particles containing secondary organic material (SOM are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS occurs at high relative humidity (RH (greater than  ∼  95 % in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than  ∼  95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  10. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    Science.gov (United States)

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  11. Characteristic Changes in the Aroma Profile of Patchouli Depending on Manufacturing Process.

    Science.gov (United States)

    Hasegawa, Toshio; Yoshitome, Kazuma; Fujihara, Takashi; Santoso, Mardi; Aziz, Muhammad Abdul

    2017-08-01

    Patchouli is used as an incense material and essential oil. The characteristic odor of patchouli leaves results from the drying process used in their production; however, there have to date been no reports on the changes in the odor of patchouli leaves during the drying process. We investigated the aroma profile of dried patchouli leaves using the hexane extracts of fresh and dried patchouli leaves. We focused on the presence or absence of the constituents of the fresh and dried extracts, and the differences in the content of the common constituents. Fourteen constituents were identified as characteristic of dried patchouli extract odor by gas chromatography-olfactometry analysis. The structures of seven of the 14 constituents were determined by gas chromatography-mass spectrometry (α-patchoulene, seychellene, humulene, α-bulnesene, isoaromadendrene epoxide, caryophyllene oxide, and patchouli alcohol). The aroma profile of the essential oil obtained from the dried patchouli leaves was clearly different from that of dried patchouli. The aroma profile of the essential oil was investigated by a similar method. We identified 12 compounds as important odor constituents. The structures of nine of the 12 constituents were determined by gas chromatography-mass spectrometry (cis-thujopsene, caryophyllene, α-guaiene, α-patchoulene, seychellene, α-bulnesene, isoaromadendrene epoxide, patchouli alcohol, and corymbolone). Comparing the odors and constituents demonstrated that the aroma profile of patchouli depends on the manufacturing process.

  12. Variability of Pinus halepensis Mill. Essential Oils and Their Antioxidant Activities Depending on the Stage of Growth During Vegetative Cycle.

    Science.gov (United States)

    Djerrad, Zineb; Djouahri, Abderrahmane; Kadik, Leila

    2017-04-01

    The impact of growth stages during vegetative cycle (B 0  - B 5 ) on chemical composition and antioxidant activities of Pinus halepensis Mill. needles essential oils was investigated for the first time. GC and GC/MS analyses pointed to a quantitative variability of components; terpene hydrocarbons derivatives, represented by α-pinene (8.5 - 12.9%), myrcene (17.5 - 21.6%), p-cymene (7.9 - 11.9%) and (Z)-β-caryophyllene (17.3 - 21.2%) as major components, decreased from 88.9% at B 0 growth stage to 66.9% at B 5 growth stage, whereas oxygenated derivatives, represented by caryophyllene oxide (5.4 - 12.6%) and terpinen-4-ol (0.4 - 3.3%) as major components, increased from 7% at B 0 growth stage to 28.4% at B 5 growth stage. Furthermore, our findings showed that essential oil of P. halepensis needles collected at B 5 growth stage possess higher antioxidant activities by four different testing systems than those collected at B 0  - B 4 growth stages. This highlighted variability led to conclude that we should select essential oils to be investigated carefully depending on growth stage, in order to have the highest effectiveness of essential oil in terms of biological activities for human health purposes. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. Chemical composition of essential oil and hexane extract and antioxidant activity of various extracts of Acmella uliginosa (Sw. Cass flowers from Indonesia

    Directory of Open Access Journals (Sweden)

    Askal Maimulyanti

    2016-07-01

    Full Text Available Medicinal plants are rich sources of natural antioxidant which are used in the prevention and treatment of disease like artherosclerosis, heart stroke, diabetes and cancer and to delay the process of aging. Acmella uliginosa (Sw. Cass is an edible herb traditionally used in the treatment of many diseases. Analysis of volatile components in the flower extract used gas chromatography-mass spectrometry. The results showed the main components of the essential oil were caryophyllene (21.27%, caryophyllene oxide (15.49%, and 3-carene (10.73%. The main components of the hexane extract were N-isobutyl-2E,6Z,8E-decatrienamide (37.80%, α-pinene (4.98% and hexadacanoic acid-methyl ester (4.78%. The antioxidant activity of A. uliginosa (Sw. Cass flower from Indonesia was determined using 1,1, diphenyl-2-picryl hydrazine (DPPH free radical scavenging assay. The IC50 (defined as the total antioxidant necessary to decrease the initial DPPH radical by 50% of extracts was calculated. A comparative study determined that A. uliginosa (Sw. Cass in methanol extract showed higher antioxidant potential (IC50 = 96.83 μg/mL compared to ethyl acetate extract (IC50 = 123.46 μg/mL and n-hexane extract (905.92 μg/mL against DPPH free radicals.

  14. The Chemical Diversity of Lantana camara: Analyses of Essential Oil Samples from Cuba, Nepal, and Yemen.

    Science.gov (United States)

    Satyal, Prabodh; Crouch, Rebecca A; Monzote, Lianet; Cos, Paul; Awadh Ali, Nasser A; Alhaj, Mehdi A; Setzer, William N

    2016-03-01

    The aerial parts of Lantana camara L. were collected from three different geographical locations: Artemisa (Cuba), Biratnagar (Nepal), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 39 L. camara essential oil compositions revealed eight major chemotypes: β-caryophyllene, germacrene D, ar-curcumene/zingiberene, γ-curcumen-15-al/epi-β-bisabolol, (E)-nerolidol, davanone, eugenol/alloaromadendrene, and carvone. The sample from Cuba falls into the group dominated by (E)-nerolidol, the sample from Nepal is a davanone chemotype, and the sample from Yemen belongs to the β-caryophyllene chemotype. The chemical composition of L. camara oil plays a role in the biological activity; the β-caryophyllene and (E)-nerolidol chemotypes showed antimicrobial and cytotoxic activities. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Environ: E00355 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00355 Artemisia annua stem and leaf Crude drug Artemisinin [CPD:C09538], Artemisinic acid, Art...emisilactone, Artemisinol, Kaempferol [CPD:C05903], Coumarins, Comphene [CPD:C06076 C06304], 1,...8-Cineole [CPD:C09844], D-alpha-Cadinene [CPD:C16815], Caryophyllene epoxide [CPD:C16908], Cuminal, Artemisia alcohol, Art...phyllene [CPD:C09629], gamma-Caryophyllene Artemisia annua [TAX:35608] ... Asteraceae (daisy family) Artemisia annua stem and leaf (dried) ...

  16. Eleutherococcus senticosus (Araliaceae) Leaf Morpho-Anatomy, Essential Oil Composition, and Its Biological Activity Against Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Zhai, Chunmei; Wang, Mei; Raman, Vijayasankar; Rehman, Junaid U; Meng, Yonghai; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Khan, Zhenkun; Khan, Ikhlas A

    2017-05-01

    The roots of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., a well-known medicinal plant from Eastern Asia, are used worldwide for their known beneficial medicinal properties. Recently, the leaves have been used as an alternative to the roots. The present study was aimed at exploring the leaf essential oil as a potential source of compounds for mosquito management. Gas chromatography/mass spectrometry analysis of the leaf essential oil revealed 87 compounds, constituting 95.2% of the oil. α-Bisabolol (26.46%), β-caryophyllene (7.45%), germacrene D (6.87%), β-bisabolene (4.95%), and α-humulene (3.50%) were five of the major constituents. The essential oil was subjected to biting deterrence and repellent activity against mosquito Aedes aegypti. The biting deterrence of the oil produced a proportion not biting (PNB) value of 0.62 at 10 µg/cm2 as compared with 0.86 of control DEET (N,N-diethyl-3-methylbenzamide) at a standard dose of 25 nmol/cm2. Among individually selected compounds present in the oil (α-bisabolol, β-caryophyllene, α-humulene, and caryophyllene oxide), only α-bisabolol produced a PNB value of 0.80, equivalent to DEET at 25 nmol/cm2, whereas the others were not repellent. The artificial mixture (AMES-1) of these four selected compounds produced a relatively high PNB value of 0.80. The repellent activity measured by minimum effective dosage (MED) for α-bisabolol and α-humulene produced MED values of 0.094 and 0.104 mg/cm2, respectively, as compared with 0.023 mg/cm2 of DEET. The leaf essential oil, the artificial mixture (AMES-1), and other binary and tertiary combinations of major compounds showed no repellent activity. In addition, morpho-anatomical features of the leaf are provided for correct identification of the species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Chemical Diversity and Biological Activity of the Volatiles of Five Artemisia Species from Far East Russia

    Directory of Open Access Journals (Sweden)

    Gulmira Özek

    2014-05-01

    Full Text Available Artemisia argyi , A. feddei, A. gmelinii, A. manshurica, and A. olgensis (Asteraceae were collected in Far East Russia. Oils were hydrodistilled and simultaneously analyzed by GC-FID and GC/MS. Main constituents were found as follows in Artemisia oils: selin-11-en-4 a -ol (18.0%, 1,8-cineole (14.2.0%, artemisia alcohol (12.9%, borneol (9.7% in A. argyi; camphor (31.2%, 1,8-cineole (17.6%, a -thujone (5.7% in A. feddei; longiverbenone (12.0%, isopinocamphone (8.9%, 1,8-cineole (6.7%, camphor (5.8%, trans-p-menth-2-en-1-ol (5.3% in A. gmelinii; germacrene D (11.2%, rosifoliol (10.1%, caryophyllene oxide (6.8%, eudesma-4(15,7-dien-1 b -ol (5.6% in A. manshurica; eudesma-4(15,7-dien-1 b -ol (6.9%, caryophyllene oxide (5.6%, guaia-6,10(14-dien-4 b -ol (5.1% and hexadecanoic acid (5.0% in A. olgensis. Oils were subsequently submitted for antifungal and antimosquito evaluations. Artemisia species oils showed biting deterrent effects in Aedes aegypti and Artemisia gmelinii oil with the most active biting deterrence index values of 0.82 ± 0.1 at 10 m g/mL. Larval bioassay of A. gmelinii and A. olgensis oils showed higher larvicidal activity against Ae. aegypti larvae with LD50 values of 83.8 (72.6 – 95.7 ppm and 91.0 (73.8 – 114.5 ppm, respectively. Antifungal activity was evaluated against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides using direct overlay bioautography assay and all showed non-selective weak antifungal activity. Antioxidant evaluations of the oils were performed by using b -carotene bleaching, Trolox equivalent and DPPH tests. The tested Artemisia oils demonstrated moderate antioxidant activity.

  18. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions.

    Science.gov (United States)

    Noroozisharaf, Alireza; Kaviani, Maryam

    2018-05-01

    Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m -2 . Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m -2 ). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p -cymene (4.24%), borneol (3.42%), trans -caryophyllene (1.70%) and cis -sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m -2 humic acid. There was a linear relationship ( R 2  = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m -2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris .

  19. Chemical constituents of the fruits of Copaifera langsdorffii Desf; Constituintes quimicos dos frutos de Copaifera langsdorffii Desf

    Energy Technology Data Exchange (ETDEWEB)

    Lima Neto, Jose de Sousa [Universidade Federal do Piaui, Teresina, PI (Brazil). Dept. de Quimica; Gramosa, Nilce Viana; Silveira, Edilberto Rocha [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: nilce@dqoi.ufc.br

    2008-07-01

    Phytochemical investigation of the hexane extract of fruit shells of Copaifera langsdorffii Desf. (Caesalpinioideae) afforded ent-kaur-16-en-19-oic acid, polyalthic acid, nivenolide and the mixture of caryophyllene oxide and ent-kaur-16-en-19-oic acid. The chloroform extract of unripe seeds led to the isolation of coumarin and the GC/MS analysis of the extract allowed the identification of 81.8% of the fatty acid composition after hydrolysis followed by methylation. The main fatty acid identified was oleic acid (33.1%). The isolation of all secondary metabolites was accomplished by modern chromatographic methods and the structure determination was accomplished by spectrometric methods (IR, MS, NMR {sup 1}H and {sup 13}C). (author)

  20. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    International Nuclear Information System (INIS)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes; Lima, William Cardoso; Soares, Marcos Antonio; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena

    2013-01-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  1. "Chemical composition and antimicrobial activity of the essential oil of Ferulago Bernardii Tomk. and M. Pimen"

    Directory of Open Access Journals (Sweden)

    "Farahnaz Khalighi-Sigaroodi

    2005-05-01

    Full Text Available The chemical composition of the essential oil of the aerial parts of Ferulago Bernardii from Iran was analysed by GC and GC/MS. Sixty constituents were found representing 87.9% of the oil. The main constituents of the essential oil were 2,4,5-trimethyl-benzaldehyde (21.2%, α-pinene (17.0%,spathulenol (5.0%, cis-chrysanthenyl acetate (4.4% and caryophyllene oxide (3.2%. Antimicrobial activity of the essential oil of Ferulago Bernardii by the broth dilution method in comparison with Gentamycin and Fluconazole as standard showed weak activity against Staphylococcus aureus, Bacilus subtilis, Escherichia coli, Candida albicans and Aspergillus niger. The essential oil did not show any activity against Pseudomonas aeruginosa.

  2. Chemical constituents from stems of Simaba guianensis subesp. ecaudata (Cronquist); Constituintes quimicos dos galhos de Simaba guianensis subesp. ecaudata (Cronquist)

    Energy Technology Data Exchange (ETDEWEB)

    Nunomura, Rita de Cassia Saraiva [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Quimica; Pinto, Angelo C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Nunomura, Sergio Massayoshi; Pohlit, Adrian Martin [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Coordenacao de Tecnologia e Inovacao; Amaral, Ana Claudia Fernandes, E-mail: ritasn@ufam.edu.br [Fundacao Oswaldo Cruz (FIOCRUZ/Farmanguinhos), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Simaba guianensis subesp. ecaudata (Simaroubaceae) is a tree found in the Brazilian Amazon. This work describes for the first time the fractionation of stems of this species that resulted in the isolation of the cytotoxic triterpene piscidinol A, the alkaloid 9-methoxycanthin-6-one, caryophyllene oxide, also isolated for the first time from this species and a new alkaloid (6-methoxy-(9H-{beta}-carbolin-1-il)- (Z)-2-propenoic acid). Quantification of 9-methoxycanthin-6-one in different extracts and fractions of stems of S. guianensis by high performance liquid chromatography was also performed. The concentration of 9-methoxycanthin-6-one in methanolic and aqueous extracts were inferior to the known cytotoxic concentration of this compound. (author)

  3. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    International Nuclear Information System (INIS)

    Lacroix, M.; Chiasson, F.; Borsa, J.; Ouattara, B.

    2004-01-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect

  4. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Chiasson, F.; Borsa, J.; Ouattara, B

    2004-10-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect.

  5. Chemical composition and fungicidal activity of the essential oil of Thymus vulgaris against Alternaria citri

    Directory of Open Access Journals (Sweden)

    Erica A. Soto Mendívil

    2006-01-01

    Full Text Available Se analizó químicamente el aceite esencial de tomillo (Thymus vulgaris L. por Cromatografía de Gases/Espectroscopia de Masas y se evaluó su actividad fungicida. Los principales constituyentes fueron borneol (28.4%, timol (16.6%, carvacrol metil eter (9.6%, camfeno (6.9%, α-humulene (6.4% y carvacrol (5.0%. Las pruebas de actividad fungicida (in vitro indicaron que la concentración de 1000ppm del aceite esencial de tomillo fue efectivo para inhibir a Alternaria citri, cuando se adicionó al medio de cultivo agar papa dextrosa

  6. Efecto in vitro de aceites esenciales de tres especies de Lippia sobre Moniliophthora roreri (Cif. y Par. Evans et al., agente causante de la moniliasis del cacao (Theobroma cacao L. In vitro effect of essential oils of three Lippia species on Moniliophthora roreri (Cif. and Par. Evans et al., causative agent of moniliasis of cocoa (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Betty Stefany Lozada

    2012-04-01

    100% germination and micelial growth when they were used at concentrations from 800 to 1000 µg/ml. Concentrations of 200 µg/ml also showed an effect on fungal isolates, being the EOs obtained from L. origanoides (EO2 and EO3 the most active. These were mainly composed of thymol, p-cymene, g-terpinene, timilo acetate, carvacrol, b-myrcene, trans- b-caryophyllene. Significant differences (P < 0.05 on susceptibility were observed between the two fungal strains studied, being generally more susceptible the isolated M2 that the ATCC strain. The EOs of L. origanoides are candidates for use as biofungicides possible to control the moniliasis. Future studies oriented to determinate the in vivo antifungal activity of these EOs and its major components are required.

  7. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  8. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-01-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga 2 O 3 , In 2 O 3 , and SnO 2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga 2 O, In 2 O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO 2 , somewhat lower for In 2 O 3 , and the lowest for Ga 2 O 3 . Our findings can be generalized to further oxides that possess related sub-oxides

  9. Phytochemical analysis of Pinus eldarica bark

    Science.gov (United States)

    Iravani, S.; Zolfaghari, B.

    2014-01-01

    Bark extract of Pinus pinaster contains numerous phenolic compounds such as catechins, taxifolin, and phenolic acids. These compounds have received considerable attentions because of their anti-inflammatory, antimutagenic, anticarcinogenic, antimetastatic and high antioxidant activities. Although P. pinaster bark has been intensely investigated in the past; there is comparably less information available in the literature in regard to P. eldarica bark. Therefore, the aim of this study was to determine the chemical composition of P. eldarica commonly found in Iran. A reversed-phase high pressure liquid chromatography (RP-HPLC) method for the determination of catechin, caffeic acid, ferulic acid, and taxifolin in P. pinaster and P. eldarica was developed. A mixture of 0.1% formic acid in deionized water and 0.1% formic acid in acetonitrile was used as the mobile phase, and chromatographic separation was achieved on a Nova pack C18 at 280 nm. The two studied Pinus species contained high amounts of polyphenolic compounds. Among four marker compounds, the main substances identified in P. pinaster and P. eldarica were taxifolin and catechin, respectively. Furthermore, the composition of the bark oil of P. eldarica obtained by hydrodistillation was analyzed by gas chromatography/mass spectroscopy (GC/MS). Thirty-three compounds accounting for 95.1 % of the oil were identified. The oils consisted mainly of mono- and sesquiterpenoid fractions, especially α-pinene (24.6%), caryophyllene oxide (14.0%), δ-3-carene (10.7%), (E)-β-caryophyllene (7.9%), and myrtenal (3.1%). PMID:25657795

  10. Chemical composition and anti-inflamatory, anti-nociceptive and antipyretic activity of rhizome essential oil of Globba sessiliflora Sims. collected from Garhwal region of Uttarakhand

    Directory of Open Access Journals (Sweden)

    Ravendra Kumar

    2017-07-01

    Full Text Available Background & Aim: Family Zingiberaceae is worldwide in distribution. Plants of the zingiberaceae family are used in traditional herbal folk medicine besides their uses in spices, cosmetic, ornamental, food preservatives etc. In Uttarakhand the herbs grow from sub-tropical to temperate region. Globba sessiliflora Simsrhizomes were collected at maturity stage in November from Garhwal region of Uttarakhand, India. In present communication the medicinal use of various zingiberaceous herb provoked us to study the chemical diversity and pharmacological activity determination of this important traditional herb. Experimental: The essential oil was extracted using hydrodistillation method and analyzed by GC-MS. Anti-inflamatory, anti-nociceptive and antipyretic activities of essential oil were experimently determined using mice model. Results: The major compounds identified were β-eudesmol (27.6%, (E-β-caryophyllene (24.3%, α-humulene (3.0%, (6E-nerolidol (4.1%, caryophyllene oxide (9.7%, γ-eudesmol (6.4% and τ-muurolol (8.3% besides other minor constituents. Essential oil of G. sessiliflora rhizome showed good anti-inflamatory, anti-nociceptive and antipyretic activities at the dose level of 100 mg/kg body weight. The oral administration of the essential oil exhibited no toxicity at 400, 600 and 800 mg/kg b.wt. concentration. Ibuprofen, indomthacin and paracetamol were used as standard drugs for comparison. Recommended applications/industries: G. sessiliflora essential oil can be used as herbal remedy for its nontoxicityanti-inflamatory, anti-nociceptive and antipyretic activities.

  11. Essential Oil Composition, Antioxidant, Antidiabetic and Antihypertensive Properties of Two Afromomum Species.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Olasehinde, Tosin Abiola; Oboh, Ganiyu

    2017-01-01

    This study was designed to assess the antioxidant, antidiabetic and antihypertensive effects of essential oils from A. melegueta and A. danielli seeds. The essential oils were extracted via hydrodistillation, dried with anhydrous Na 2 SO 4 and characterized using gas chromatography-mass spectrometry (GC-MS). Antioxidant properties and inhibition of some pro-oxidant induced lipid peroxidation in rats' pancreas and heart homogenates were also determined. The results revealed that eugenol, eucalyptol, α-terpineol, α-caryophyllene and β-caryophyllene were the most abundant components in A. melegueta and A. danielli seeds. The essential oils inhibited α-amylase, α-glucosidase and angiotensin-I-converting enzyme in vitro. A.melegueta oil showed a higher α-amylase and α- glucosidase inhibitory activities with EC 50 values of 139.00 µL/mL and 91.83 µL/mL respectively than A. danielli. However, A. danielli oil (EC 50 = 48.73 µL/mL) showed the highest ACE inhibitory acivity. The highest NO radical scavenging ability was observed in A. melegueta oil while A. danielli had the highest OH radical scavenging and Fe 2+ - chelating ability. Furthermore, both essential oils inhibited SNP and Fe 2+ - induced lipid peroxidation in rats' pancreas and heart respectively in a dose dependent manner. This study reveals the biochemical principle by which essential oils from A. danielli and A.melegueta seed elicits their therapeutic effects on type-2 diabetes and hypertension.

  12. Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves

    Directory of Open Access Journals (Sweden)

    Marivane Lemos

    Full Text Available AbstractGastric ulcer is a prevalent gastrointestinal disease, and the drugs currently used in the treatment produce several adverse effects. In this context, the search for new therapeutic antiulcer agents is essential, and medicinal plants have great potential. Here, we investigated the gastroprotective properties of Copaifera langsdorffii Desf., Fabaceae, hydroalcoholic extract obtained from leaves and its isolated compounds. The phytochemistry studies and the compounds isolations were performed using chromatographic and spectroscopic methodologies. The hydroalcoholic extract was evaluated using ethanol/HCl, non-steroidal anti-inflammatory drug, stress-induced-ulcer and chronic ulcer-model. The effects on gastric content volume, pH, total acidity and mucus stomach production were evaluated in the pylorus ligated-model. The C. langsdorffii extract obtained from leaves (50, 250 or 500 mg/kg reduced the injured area compared to control group in all experiments. The extract showed a significant decrease in the total gastric juice acidity and an increase in mucus production (500 mg/kg when compared to vehicle. Among isolated compounds (30 mg/kg α-humulene, β-caryophyllene and caryophyllene oxide showed greater gastroprotective activity in the ethanol/HCl induced ulcer model. The data herein obtained shown that C. langsdorffii leaves extract and isolated compounds from it, presented gastroprotective properties in different animal models of gastric ulcer. These effects may be associated with the ability of the extract to decrease gastric secretion and increase the mucus production.

  13. Essential oils from Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae Óleos essenciais de Calyptranthes concinna, C. lucida and C. rubella (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Renata Pereira Limberger

    2002-09-01

    Full Text Available Essential oils from Calyptranthes concinna, C. lucida and C. rubella, collected in Southern Brazil, were analyzed by GC and GC/MS. Sixty-two compounds were identified representing about 98% of the oil contents. All samples were rich in cyclic sesquiterpenes (more than 90 %, mainly those from cadinane, bisabolane and germacrane cyclization pathway. The mainly components characterized were bicyclogermacrene (22.1% in C. concinna;11.7% in C. rubella, cis-calamenene (10.3% in C. concinna, beta-caryophyllene (16.5% in C. rubella; 9.4% in C. lucida, beta-bisabolene (25.5% in C. lucida, spathulenol (15.4% in C. rubella and caryophyllene oxide (7.6% in C. concinna.Os óleos essenciais de Calyptranthes concinna, C. lucida e C. rubella, coletadas no sul do Brasil, foram analisados por GC/FID e GC/MS. Sessenta e dois constituintes foram identificados representando cerca de 98% do óleo. Todas as amostras mostraram-se ricas em sesquiterpenos cíclicos (mais de 90%, principalmente aquelas da via de ciclização dos cadinanos, bisabolanos e germacranos. Os principais constituintes caracterizados foram biciclogermacreno (22,1% em C. concinna; 11,7% em C. rubella, cis-calameneno (10,3% em C. concinna, betacariofileno (16,5% em C. rubella; 9,4% em C. lucida, beta-bisaboleno (25,5% em C. lucida, espatulenol (15,4% em C. rubella e óxido de cariofileno (7,6% em C. concinna.

  14. Allelopathic Activity and Chemical Composition of Rhynchosia minima (L.) DC. Essential Oil from Egypt.

    Science.gov (United States)

    Abd El-Gawad, Ahmed M; El-Amier, Yasser A; Bonanomi, Giuliano

    2018-01-01

    Aromatic plants attract the attention of many researchers worldwide due to their worthy applications in agriculture, human prosperity, and the environment. Essential oil (EO) could be exploited as effective alternatives to synthetic compounds as it has several biological activities including allelopathy. The EO from the aerial parts of Rhynchosia minima was extracted by hydrodistillation and investigated by gas chromatography/mass spectrometry (GC/MS). Different concentrations (50, 100, 150 and 200 μL L -1 ) of the EO were prepared for investigation of their allelopathic potential on two weeds; Dactyloctenium aegyptium and Rumex dentatus. Twenty-eight compounds, mainly sesquiterpenes (69.13%) were determined. The major compounds are α-eudesmol, 2-allyl-5-tert-butylhydroquinone, caryophyllene oxide, trans-caryophyllene, and τ-cadinol. The EO from the R. minima showed a significant inhibition of D. aegyptium and R. dentatus germination, while the seedling growth was stimulated. Therefore, it is not recommended to treat these noxious weeds with the EO of R. minima before the germination. In contrast, the apparent stimulatory effect on the seedling growth offers further studies to use the EO of R. minima to enhance the fitness of different economic crops. However, characterization of green bio-herbicides such as EO (allelochemicals) from wild plants raises a new opportunity for the incorporation of new technology of bio-control against the noxious weeds. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Evaluation of Antibacterial Activity of Satureja Khuzestanica J. Essential Oil against Standard and Isolated Strains of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Sheida Akbari-Shahabi

    2014-10-01

    Full Text Available Background: The purpose of this study was to determine antibacterial activity of essential oil of Satureja khuzestanica against Listeria monocytogenes (PTCC1295 and strains isolated from breast milk show that. Materials and Methods: In this descriptive-analytic study, Essence of leave’s plant was extracted and identified its compounds and then carvacrol was isolated. Antibacterial activities were examined by agar dilution method against L. monocytogenes. Minimum inhibitory concentration (MIC and minimum bacterial concentration (MBC were carried out by micro dilution method. Then bacterial suspension injected the BALB/c mice. Forty-eight h after seeing the listeriosis disease signs were started the treatment. Ampicillin (10 μg/disc and trimethoprim (5 g were used as controls. Results: The results showed that the inhibitory zone diameter standard and essential oils for strains isolated species were respectively 59 and 50 mm. This amount was determined by carvacrol, respectively, 60 and 48 mm. Inhibition zone diameter measurements for standard strains of ampicillin and trimethoprim tedious strains, respectively, 21, 40, 18 and 33 mm, respectively. The minimum inhibitory concentration of essential oils, carvacrol and ampicillin than standard strains, respectively 1.56, 1.56 and 155×10˗8 μg/mL and MBC 3.125, 3.125 and 125×10-7 μg/mL was determined by the ratio of the strain 3.125, 3.125 and 0.0062 μg/mL and MBC was 6.25, 6.25 and 0.025 μg/mL. Conclusion: This study showed that bacterial cleansing properties of essential oil of this plant have a strong and effective combination that is carvacrol.

  16. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  17. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  18. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    International Nuclear Information System (INIS)

    Lacroix, M.; Chiasson, F.

    2004-01-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5x10 7 CFU/ml). Active compounds were added at the concentration corresponding to ((1)/(30)) of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D 10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D 10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi

  19. Extraction of the essential oil from endemic Origanum bilgeri P.H.Davis with two different methods: comparison of the oil composition and antibacterial activity.

    Science.gov (United States)

    Sözmen, Fazli; Uysal, Burcu; Köse, Elif Odabaş; Aktaş, Ozgür; Cinbilgel, Ilker; Oksal, Birsen S

    2012-07-01

    The antibacterial activity and chemical composition of the essential oils (EOs) isolated from Origanum bilgeri P.H.Davis by two different extraction methods, i.e., hydrodistillation (HD) and solvent-free microwave extraction (SFME), were examined. This endemic Origanum species had shown very good antibacterial activity. The composition of the O. bilgeri EOs obtained by SFME and HD was investigated by GC/MS analysis. The main components of the oils obtained by both methods were carvacrol (90.20-84.30%), p-cymene (3.40-5.85%), γ-terpinene (0.47-1.20%), and thymol (0.69-1.08%). The EO isolation by SFME offered many important advantages, including a higher extraction yield, a shorter extraction time, and a higher content of the active component carvacrol. The carvacrol-rich oils obtained by both HD and SFME showed a good antibacterial activity. The largest inhibition zones were observed for the O. bilgeri EO obtained by SFME. Our study suggests that O. bilgeri EO has the potential to be used as preventative against bacterial contamination in many foods, instead of the common synthetic antimicrobial products. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  1. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  2. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  3. Chemical Composition of the Essential Oils of Cyperus rotundus L. from South Africa

    Directory of Open Access Journals (Sweden)

    Oladipupo A. Lawal

    2009-08-01

    Full Text Available The essential oils from the rhizomes of Cyperus rotundus L. collected from two different locations (Empangeni-A and KwaDlangezwa-B; both in the Kwa-Zulu Natal Province of South Africa were obtained by hydrodistillation and analyzed by capillary GC and GC/MS. Forty-one and 43 components were identified, representing 89.9% and 92.0% of sample A and sample B, respectively. α-Cyperone (11.0%, myrtenol (7.9%, caryophyllene oxide (5.4% and β-pinene (5.3% were major compounds in the oil of sample A. The main constituents of the oil of sample B were β-pinene (11.3%, α-pinene (10.8%, α- cyperone (7.9%, myrtenol (7.1% and α-selinene (6.6%.

  4. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  5. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  6. Essential oil of trees of the genus Ocotea (Lauraceae in Costa Rica. I. Ocotea brenesii

    Directory of Open Access Journals (Sweden)

    Carlos Chaverri

    2005-09-01

    Full Text Available The chemical composition of the essential oils from leaves and wood of Ocotea brenesii Standl. growing wild in Costa Rica was determined by capillary GC/FID and GC/MS. From the leaves, 4 compounds were identified, corresponding to 85.9% of the oil, and from the wood 57 compounds were identified corresponding to 69.0% of the oil. The major constituents identified in the leaf oil were α -copaene (21.1%, δ -cadinene (9.2%, spathulenol (7.3%, globulol (5.6% and β -caryophyllene (5.2%. The major constituents of the wood oil were α -copaene (6.6%, caryophyllene oxide (6.3%, β -caryophyllene (6.1% and humulene epoxide (4.6%. Rev. Biol. Trop. 53(3-4: 431-436. Epub 2005 Oct 3.Se determinó la composición química de los aceites esenciales obtenidos de las hojas y de la madera del árbol Ocotea brenesii Standl., perteneciente a la familia Lauraceae, que crece en forma silvestre en Costa Rica. Para el estudio se utilizaron técnicas de cromatografía de gases capilar con detector de ionización de flama (GC/FID y cromatografía de gases capilar acoplada a un detector de espectrometría de masas (GC/MS. Del aceite volátil de las hojas fueron identificados 64 constituyentes, que correspondieron a un 85.9% del aceite. Del aceite de la madera se identificaron 57 compuestos que correspondieron a un 69.0% del aceite. Los constituyentes mayoritarios que se identificaron en el aceite de las hojas fueron α -copaeno (21.1%, δ -cadineno (9.2%, espatulenol (7.3%, globulol (5.6% y β -cariofileno (5.2%. Los constituyentes mayoritarios del aceite de la madera fueron α -copaeno (6.6%, σxido de cariofileno (6.3%, β -cariofileno (6.1% y el epσxido del humuleno (4.6%. La composiciσn de los aceites es de naturaleza terpιnica y no presentaron compuestos del tipo fenilpropanoide o bencenoide que son constituyentes característicos de la mayoría de los aceites de plantas del género Ocotea investigados anteriormente.

  7. Effects of seasonal changes in feeding management under part-time grazing on terpene concentrations of ewes' milk.

    Science.gov (United States)

    Abilleira, Eunate; Virto, Mailo; Nájera, Ana Isabel; Albisu, Marta; Pérez-Elortondo, Francisco José; Ruiz de Gordoa, Juan Carlos; de Renobales, Mertxe; Barron, Luis Javier R

    2011-05-01

    Terpene composition of ewes' raw milk from nine commercial flocks was analysed from February to July. Ewes' diet consisted of concentrate and conserved forage in winter (indoor feeding) and part-time grazing from spring (transition and outdoor feeding). Regardless of the feeding, limonene and β-phellandrene were the most abundant monoterpenes and β-caryophyllene showed the highest concentrations among sesquiterpenes. Terpene content increased in the milks of commercial flocks when animals were reared under grazing management. Monoterpenes were detected in the milks of all the commercial flocks throughout the season, whereas sesquiterpenes were only detected in the milks from flocks grazing on non-cultivated community-owned grasslands in which a higher biodiversity of plant species grew. These preliminary results indicated that β-caryophyllene could be a potential pasture-diet marker in the case of milks from animals grazing a higher biodiversity of plant species but in-depth studies including information on terpene composition of plants ingested by the animals are necessary to evaluate the suitability of β-caryophyllene or another terpenoid compound as pasture biomarker.

  8. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii

    Directory of Open Access Journals (Sweden)

    Poonam Kumari

    2017-11-01

    Full Text Available Cryptococcosis is an emerging and recalcitrant systemic infection occurring in immunocompromised patients. This invasive fungal infection is difficult to treat due to the ability of Cryptococcus neoformans and Cryptococcus laurentii to form biofilms resistant to standard antifungal treatment. The toxicity concern of these drugs has stimulated the search for natural therapeutic alternatives. Essential oil and their active components (EO-ACs have shown to possess the variety of biological and pharmacological properties. In the present investigation the effect of six (EO-ACs sourced from Oregano oil (Carvacrol, Cinnamon oil (Cinnamaldehyde, Lemongrass oil (Citral, Clove oil (Eugenol, Peppermint oil (Menthol and Thyme oil (thymol against three infectious forms; planktonic cells, biofilm formation and preformed biofilm of C. neoformans and C. laurentii were evaluated as compared to standard drugs. Data showed that antibiofilm activity of the tested EO-ACs were in the order: thymol>carvacrol>citral>eugenol=cinnamaldehyde>menthol respectively. The three most potent EO-ACs, thymol, carvacrol, and citral showed excellent antibiofilm activity at a much lower concentration against C. laurentii in comparison to C. neoformans indicating the resistant nature of the latter. Effect of the potent EO-ACs on the biofilm morphology was visualized using scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM, which revealed the absence of extracellular polymeric matrix (EPM, reduction in cellular density and alteration in the surface morphology of biofilm cells. Further, to realize the efficacy of the EO-ACs in terms of human safety, cytotoxicity assays and co-culture model were evaluated. Thymol and carvacrol as compared to citral were the most efficient in terms of human safety in keratinocyte- Cryptococcus sp. co-culture infection model suggesting that these two can be further exploited as cost-effective and non-toxic anti

  9. In vitro activity of essential oils of Lippia sidoides and Lippia gracilis and their major chemical components against Thielaviopsis paradoxa, causal agent of stem bleeding in coconut palms

    Directory of Open Access Journals (Sweden)

    Rejane Rodrigues da Costa e Carvalho

    2013-01-01

    Full Text Available Essential oils of Lippia sidoides, Lippia gracilis and their main chemical components were investigated for in vitro control of Thielaviopsis paradoxa. Mycelial growth and a number of pathogen conidia were inhibited by the essential oil of L. sidoides at all concentrations tested (0.2; 0.5; 1.0; 3.0 µL mL-1. L. sidoides oil contained 42.33% thymol and 4.56% carvacrol, while L. gracilis oil contained 10% thymol and 41.7% carvacrol. Mycelial growth and conidial production of T. paradoxa were completely inhibited by thymol at a 0.3 µL m-1 concentration. The results suggest that thymol could potentially be used for controlling coconut stem bleeding.

  10. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model.

    Science.gov (United States)

    Soković, Marina; Glamočlija, Jasmina; Marin, Petar D; Brkić, Dejan; van Griensven, Leo J L D

    2010-10-27

    The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined. The antibacterial activity of these oils and their main components; i.e. camphor, carvacrol, 1,8-cineole, linalool, linalyl acetate, limonene, menthol, a-pinene, b-pinene, and thymol were assayed against the human pathogenic bacteria Bacillus subtilis, Enterobacter cloacae, Escherichia coli O157:H7, Micrococcus flavus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis, S. epidermidis, S. typhimurium, and Staphylococcus aureus. The highest and broadest activity was shown by O. vulgare oil. Carvacrol had the highest antibacterial activity among the tested components.

  11. Quantitative chemical analysis for the standardization of copaiba oil by high resolution gas chromatography; Analise quimica quantitativa para a padronizacao do oleo de copaiba por cromatografia em fase gasosa de alta resolucao

    Energy Technology Data Exchange (ETDEWEB)

    Tappin, Marcelo R.R.; Pereira, Jislaine F.G.; Lima, Lucilene A.; Siani, Antonio C. [Farmanguinhos - Inst. de Tecnologia em Farmacos, Rio de Janeiro, RJ (Brazil)]. E-mail: siani@far.fiocruz.br; Mazzei, Jose L. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica; Ramos, Monica F.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Farmacia. Dept. de Medicamentos

    2004-04-01

    Quantitative GC-FID was evaluated for analysis of methylated copaiba oils, using trans-(-)-caryophyllene or methyl copalate as external standards. Analytical curves showed good linearity and reproducibility in terms of correlation coefficients (0.9992 and 0.996, respectively) and relative standard deviation (< 3%). Quantification of sesquiterpenes and diterpenic acids were performed with each standard, separately. When compared with the integrator response normalization, the standardization was statistically similar for the case of methyl copalate, but the response of trans-(-)-caryophyllene was statistically (P < 0.05) different. This method showed to be suitable for classification and quality control of commercial samples of the oils. (author)

  12. Quantitative chemical analysis for the standardization of copaiba oil by high resolution gas chromatography

    International Nuclear Information System (INIS)

    Tappin, Marcelo R.R.; Pereira, Jislaine F.G.; Lima, Lucilene A.; Siani, Antonio C.; Mazzei, Jose L.; Ramos, Monica F.S.

    2004-01-01

    Quantitative GC-FID was evaluated for analysis of methylated copaiba oils, using trans-(-)-caryophyllene or methyl copalate as external standards. Analytical curves showed good linearity and reproducibility in terms of correlation coefficients (0.9992 and 0.996, respectively) and relative standard deviation (< 3%). Quantification of sesquiterpenes and diterpenic acids were performed with each standard, separately. When compared with the integrator response normalization, the standardization was statistically similar for the case of methyl copalate, but the response of trans-(-)-caryophyllene was statistically (P < 0.05) different. This method showed to be suitable for classification and quality control of commercial samples of the oils. (author)

  13. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Chiasson, F

    2004-10-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5x10{sup 7} CFU/ml). Active compounds were added at the concentration corresponding to ((1)/(30)) of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D{sub 10} values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D{sub 10} values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.

  14. Analysis and evaluation of compounds from Cichorium intybus aromatic water trade market samples

    Directory of Open Access Journals (Sweden)

    A. Hosseini*

    2017-11-01

    Full Text Available Background and objectives: Cichorium intybus products are one of the best sellers in market Because of their effect on treatment of infection, poisoning, diabetes and allergy. This is the first study about Cichorium intybus market samplephytochemical compounds and the aim of this study was to define a method to recognize the original products. Methods: The sample compounds were extracted by liquid-liquid method and evaluated by GC-MS and compared with the references like Adams 2007. The obtained phytochemical data were analyzed with SPSS and classified by dendrogram method and was compared with the data earned from the standard sample. Results: Forty one compounds were detected. Carvacrol was available in all samples from 1.14 to 39.34%. Also, thymol was present in most of samples from 1.24 to 69.32%. Moreover, we understood that some compounds like pulegone, carvone, carvacrol and piperitenone could be detected in all samples mostly with different percentages. Some linear hydrocarbon was detected in this method along with some other unexpected compounds like cinnamaldehyde. Conclusion: Existence of some impure compounds like: pulegone, carvone, piperitenone and cinnamaldehyde in trade samples showed cleaning of container might not have been proper. Carvacrol and thymol are common compounds to define acceptable standard for Cichorium intybus aromatic water.

  15. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  16. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  17. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao; Wang, Qingxiao; Yang, Yang; Zhang, Bei; Zhang, Xixiang

    2012-01-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  18. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  19. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential

    Directory of Open Access Journals (Sweden)

    Ismail Amri

    2017-05-01

    Full Text Available The chemical composition of essential oils isolated by hydrodistillation from the needles of Tunisian Pinus nigra L. subsp. laricio was analyzed by GC and GC/MS. 27 compounds were identified, representing 97.9% of total oil, which was found to be rich in oxygenated diterpenes (38.5% particularly manool oxide (38% and sesquiterpene hydrocarbons (41.4% that included germacrene D (16.7%, δ-cadinene (9% and (E-caryophyllene (8.9%. Results of the herbicidal effects of the oil when tested on Phalaris canariensis L., Trifolium campestre Schreb. and Sinapis arvensis L., indicated that the oil completely inhibited germination and seedling growth at a high concentration (5 μL/mL−1, while at low doses the oil acted by decreasing germination and partially inhibiting seedling growth of all tested weeds.

  20. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  1. Nisine geholpen met hordentechnologie

    NARCIS (Netherlands)

    Jong, de L.S.

    2001-01-01

    Een combinatie van nisine met carvacrol, thymol of carvon leidde tot een synergistische reductie van het aantal levensvatbare cellen van Listeria monocytogenes en Bacillus cereus. Verslag van een promotieonderzoek

  2. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  3. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  4. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  5. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  6. GC-MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability.

    Science.gov (United States)

    Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  7. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  8. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2010-10-01

    Full Text Available The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined. The antibacterial activity of these oils and their main components; i.e. camphor, carvacrol, 1,8-cineole, linalool, linalyl acetate, limonene, menthol, a-pinene, b-pinene, and thymol were assayed against the human pathogenic bacteria Bacillus subtilis, Enterobacter cloacae, Escherichia coli O157:H7, Micrococcus flavus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis, S. epidermidis, S. typhimurium, and Staphylococcus aureus. The highest and broadest activity was shown by O. vulgare oil. Carvacrol had the highest antibacterial activity among the tested components.

  9. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae.

    Science.gov (United States)

    Araújo, Mário J C; Câmara, Cláudio A G; Born, Flávia S; Moraes, Marcílio M; Badji, César A

    2012-06-01

    The chemical composition of essential oil of leaves of Piper aduncum L., growing wild in a fragment of the Atlantic Rainforest biome in northeastern Brazil, was determined through gas chromatography-mass spectrometry. The acaricidal activity and repellency of the essential oil and its components [dillapiole (0.28 g/ml), α-humulene (0.016 g/ml), (E)-nerolidol (0.0007 g/ml) and β-caryophyllene (0.0021 g/ml)] were evaluated in the laboratory against adults of Tetranychus urticae Koch. The mites were more susceptible to the oil in fumigation tests (LC(50) = 0.01 μl/l of air) than in contact test with closed Petri dish (LC(50) = 7.17 μl/ml); mortality was reduced by approximately 50 % in the latter test. The repellent action of the oil and toxicity by fumigation and contact did not differ significantly from the positive control (eugenol). The repellent activity was attributed to the components (E)-nerolidol, α-humulene and β-caryophyllene, whereas toxicity by fumigation and contact was attributed to β-caryophyllene. The effect of Piper oil and the role of its components regarding host plant preference with a two-choice leaf disk test are also discussed.

  10. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes.

    Science.gov (United States)

    Sarker, Lukman S; Demissie, Zerihun A; Mahmoud, Soheil S

    2013-11-01

    The essential oil (EO) of Lavandula is dominated by monoterpenes, but can also contain small amounts of sesquiterpenes, depending on species and environmental conditions. For example, the sesquiterpene 9-epi-caryophyllene can make up to 8 % of the EO in a few species, including those commercially propagated for EO production. Here, we report the cloning and functional characterization of 9-epi-caryophyllene synthase (LiCPS) from the glandular trichomes of Lavandula x intermedia, cv. Grosso. The 1,617 bp open reading frame of LiCPS, which did not encode a transit peptide, was expressed in Escherichia coli and the recombinant protein purified by Ni-NTA agarose affinity chromatography. The ca. 60 kDa recombinant protein specifically converted farnesyl diphosphate to 9-epi-caryophyllene. LiCPS also produced a few monoterpenes when assayed with the monoterpene precursor geranyl diphosphate (GPP), but--unlike most monoterpene synthases--was not able to derive detectable amounts of any products from the cis isomer of GPP, neryl diphosphate. The LiCPS transcripts accumulated in developing L. x intermedia flowers and were highly enriched in glandular trichomes, but were not detected in leaves suggesting that the transcriptional expression of this gene is spatially and developmentally regulated.

  11. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  12. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce grisebach) grown in Northern Greece.

    Science.gov (United States)

    Koukos, P K; Papadopoulou, K I; Patiaka, D T; Papagiannopoulos, A D

    2000-04-01

    The composition of essential oils from twigs and needles of Balkan pine (Pinus peuce Gris.) grown in northern Greece was investigated. The compounds were identified by using GC-MS analysis. The twig oil was rich in alpha-pinene (7.38%), beta-pinene (12.46%), beta-phellandrene (26.93%), beta-caryophyllene (4.48%), and citronellol (12.48%), and the needle oil was rich in alpha-pinene (23.07%), camphene (5.52%), beta-pinene (22.00%), beta-phellandrene (6.78%), bornyl acetate (9.76%), beta-caryophyllene (3.05%), and citronellol (13.42%). The mean oil yield was 2.85% for twigs and 0. 57% for needles.

  13. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  14. Essential oils as biological alternatives to protect date palm (Phoenix dactylifera L. against Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Ismail Amri

    2014-09-01

    Full Text Available The aims of this research were to determine the chemical composition of the essential oil of three Tunisian plants and to evaluate their biological activity against eggs, larvae, and adult insects of Ectomyelois ceratoniae Zeller. The essential oils extracted from leaves of Thymus capitatus (L. Hoffmanns. & Link, Rosmarinus officinalis L. and needles of Pinus halepensis Mill. were analyzed by gas chromatography-mass spectrometry; 34, 16, and 56 constituents were identified, respectively. The major constituents were (Z-caryophyllene (23.8%, β-myrcene (20.5% and α-pinene (13.3% in P. halepensis oil, carvacrol (66.9%, p-cymene (9.1%, and δ-terpinene (6.2% in T. capitatus oil and 1,8-cineole (47.5%, camphor (14.9%, α-pinene (14.1%, and borneol (13.1% in R. officinalis oil. The insecticidal effects of essential oils on eggs, larvae, and adults of E. ceratoniae were investigated. Ovicidal activity of oils was studied by spray on eggs while larvicidal and adulticidal activities were assessed by fumigation and spray. Number of hatched eggs was verified after 10 d, larva and adult mortalities were observed after 6, 12, and 24 h. Globally, eggs and larvae were the most resistant to the three different oils, needing higher doses to obtain a higher mortality. The spray method was most effective than fumigation. Essential oil extracted from T. capitatus proved to be very toxic towards E. ceratoniae on all three phases at the dose of 20 μL mL-1 (100% inhibition, followed by the oil from R. officinalis (90-100% inhibition, nevertheless, weak activity was obtained with P. halepensis oil (68.3-85% inhibition. Results obtained may suggest that the essential oils of T. capitatus and R. officinalis possess high insecticidal activity and therefore, can be used in biotechnological application as natural preservative in stored dates and could be useful in managing populations of E. ceratoniae in field.

  15. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  16. Impact of essential oils on the taste acceptance of tomato juice, vegetable soup, or poultry burgers.

    Science.gov (United States)

    Espina, Laura; García-Gonzalo, Diego; Pagán, Rafael

    2014-08-01

    Despite the vast body of available literature on the possibilities of essential oils (EOs) as food preservatives or functional ingredients, the sensory impact of their addition to foods has barely been approached. This work focuses on the hedonic taste acceptance of 3 food products (tomato juice, vegetable soup, and poultry burgers) when they are incorporated with potentially antimicrobial concentrations (20 to 200 μL/L) of 6 selected EOs (lemon, pennyroyal mint, thyme, and rosemary) and individual compounds (carvacrol, p-cymene). Although addition of 20 μL/L of pennyroyal mint or lemon EO did not change the taste acceptance of tomato juice, higher concentrations of these compounds or any concentration of the other 4 compounds did. In vegetable soup, the tolerance limit for rosemary EO, thyme EO, carvacrol, or p-cymene was 20 μL/L, while the addition of 200 μL/L of lemon EO was accepted. Tolerance limits in poultry burgers were established in 20 μL/L for carvacrol and thyme EOs, 100 μL/L for pennyroyal mint EO and p-cymene, and 200 μL/L for lemon and rosemary EOs. Moreover, incorporation of pennyroyal mint EO to tomato juice or poultry burgers, and enrichment of vegetable soup with lemon EO, could contribute to the development of food products with an improved sensory appeal. © 2014 Institute of Food Technologists®

  17. Inactivation of spoiling microorganisms in apple juice by a combination of essential oils' constituents and physical treatments.

    Science.gov (United States)

    Chueca, Beatriz; Ramírez, Nayeli; Arvizu-Medrano, Sofía M; García-Gonzalo, Diego; Pagán, Rafael

    2016-07-01

    A combination of different hurdles, such as mild heat (54 ℃ for 10 min) or pulsed electric field (25 pulses; 25 kV/cm; 3.35 kJ/cm per pulse) treatments and essential oils constituents (carvacrol, citral, and (+)-limonene), to reduce spoiling bacteria and yeasts in apple juice was evaluated. For this purpose, the heat and pulsed electric field resistances of five strains of Leuconostoc spp. and five Saccharomyces spp. strains were assayed, achieving different inactivation levels for each treatment and strain. For instance, Leuconostoc fallax 74, the most heat-resistant strain, was the second-most sensitive strain to pulsed electric field. The most resistant strains were exposed to combined processes of heat or pulsed electric field and 0.2 µl/ml essential oils constituents. The combination of heat and essential oils constituents proved to be synergistic against both microorganisms in apple juice. The most effective was the combination of mild heat and carvacrol, which caused the inactivation of 99% of L. fallax 74 and 99.99% of Saccharomyces cerevisiae CECT 1172 cells. Therefore, this study shows the great potential of carvacrol, citral, and (+)-limonene in combined treatments with mild heat to achieve a higher degree of inactivation of spoiling microorganisms in apple juice, and thus, to extend its shelf life. © The Author(s) 2015.

  18. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum.

    Directory of Open Access Journals (Sweden)

    Yoshiro Saito

    Full Text Available Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer.

  19. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  20. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  1. Environmental and seasonal impacts on the chemical composition of Satureja horvatii Šilić (Lamiaceae) essential oils.

    Science.gov (United States)

    Lakušić, Branislava; Ristić, Mihailo; Slavkovska, Violeta; Milenković, Marina; Lakušić, Dmitar

    2011-03-01

    The chemical composition of the essential oils of Satureja horvatii Šilić from two natural habitats (Mt. Orjen and Mt. Lovćen in Montenegro) and from cultivated plants (Belgrade, Serbia) were characterized. For the latter, plants from the locus classicus, i.e., Orjenske Lokve (Mt. Orjen), were transferred to Belgrade and, after three years of cultivation, the chemical composition of their essential oils at different phenological stages was analyzed. The essential oils were obtained from the aerial parts of the plants by hydrodistillation and analyzed by GC and GC/MS. The yields and chemical compositions of the S. horvatii oils showed significant differences between the plants collected in the natural habitats and those from cultivation, as well as between the plants at different phenological stages. In the populations from the natural habitats, growing in Mediterranean conditions, the most abundant oil constituents were the phenols thymol (63.7% in the samples from Mt. Orjen) or carvacrol (68.1% in the samples from Mt. Lovćen), while the oils from the cultivated plants (Belgrade), growing in continental conditions, were dominated by linalool (up to 65.8 and 55.9% in average). The basic characteristics of the essential oil from plants at the early phenological stage (before flowering) were high percentages of linalool (37.4%), thymol (27.3%), and carvacrol (12.2%). At the stage of flowering, the percentage of linalool (56.6-57.5%) increased, while those of thymol (15.5-15.8%) and carvacrol (1.4-1.5%) significantly decreased. The essential oil of plants in the full stage of fruiting was characterized by the domination of linalool (58.4 and 65.8%) and lower percentages of thymol (7.6 and 1.3%) and carvacrol (0.7 and 0.1%). In conclusion, the oil composition of S. horvatii was found to depend on the pedoclimatic conditions of the habitat and the phenological stage of the plants. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25 0 C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the α-pinene and β-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the α-pinene oxide and β-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer

  3. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  4. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  5. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  6. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes.

    Science.gov (United States)

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Giménez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2016-05-01

    Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne.

    Science.gov (United States)

    Zhang, Wen-Juan; You, Chun-Xue; Yang, Kai; Chen, Ran; Wang, Ying; Wu, Yan; Geng, Zhu-Feng; Chen, Hai-Ping; Jiang, Hai-Yan; Su, Yang; Lei, Ning; Ma, Ping; Du, Shu-Shan; Deng, Zhi-Wei

    2014-01-01

    Artemisia argyi Lévl. et Van., a perennial herb with a strong volatile odor, is widely distrbuted in the world. Essential oil obtained from Artemisia argyi was analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 32 components representing 91.74% of the total oil were identified and the main compounds in the oil were found to be eucalyptol (22.03%), β-pinene (14.53%), β-caryophyllene (9.24%) and (-)-camphor (5.45%). With a further isolation, four active constituents were obtained from the essential oil and identified as eucalyptol, β-pinene, β-caryophyllene and camphor. The essential oil and the four isolated compounds exhibited potential bioactivity against Lasioderma serricorne adults. In the progress of assay, it showed that the essential oil, camphor, eucalyptol, β-caryophyllene and β-pinene exhibited strong contact toxicity against L. serricorne adults with LD50 values of 6.42, 11.30, 15.58, 35.52, and 65.55 μg/adult, respectively. During the fumigant toxicity test, the essential oil, eucalyptol and camphor showed stronger fumigant toxicity against L. serricorne adults than β-pinene (LC50 = 29.03 mg/L air) with LC50 values of 8.04, 5.18 and 2.91 mg/L air. Moreover, the essential oil, eucalyptol, β-pinene and camphor also exhibited the strong repellency against L. serricorne adults, while, β-caryophyllene exhibited attracting activity relative to the positive control, DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components. The results indicate that the essential oil of A. argyi and the isolated compounds have potential to be developed into natural insecticides, fumigants or repellents in controlling insects in stored grains and traditional Chinese medicinal materials.

  8. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  9. Sesquiterpenes and other constituents from leaves of Pterodon pubescens Benth (Leguminosae); Sesquiterpenos e outros constituintes das folhas de Pterodon pubescens Benth (Leguminosae)

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Mayker Lazaro Dantas; Garcez, Fernanda Rodrigues; Garcez, Walmir Silva, E-mail: walmir.garcez@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Instituto de Quimica; Abot, Alfredo Raul [Universidade Estadual de Mato Grosso do Sul (UEMS), Aquidauana, MS (Brazil)

    2014-05-15

    In addition to β-sitosterol, stigmasterol, phaeophitin A, luteolin, kaempferol, quercetin, (+)-catechin, quercetin-3-O-α-L-rhamnopyranoside, rutin, and p-hydroxy-benzoic acid, six known sesquiterpenes, namely (rel)-2β,6β-epoxy-5β-hydroxy-isodaucane, oplopanone, 1β,6α-dihydroxy-4(15)-eudesmene, caryophyllene oxide, α-cadinol, and spathulenol, were isolated from the leaves of Pterodon pubescens (Leguminosae) growing in the Cerrado of Mato Grosso do Sul, Brazil. The (rel)-2β,6β-epoxy-5β-hydroxy-isodaucane corresponds to the correct structure of homalomenol D. The sesquiterpene oplopanone, which bears a modified cadinane skeleton, is being reported for the first time in this genus. The structures of the compounds were determined on the basis of spectral data (MS, IR, and NMR-1D and 2D) and subsequent comparison with data reported in the literature. (author)

  10. Sesquiterpenes and other constituents from leaves of Pterodon pubescens Benth (Leguminosae)

    International Nuclear Information System (INIS)

    Miranda, Mayker Lazaro Dantas; Garcez, Fernanda Rodrigues; Garcez, Walmir Silva

    2014-01-01

    In addition to β-sitosterol, stigmasterol, phaeophitin A, luteolin, kaempferol, quercetin, (+)-catechin, quercetin-3-O-α-L-rhamnopyranoside, rutin, and p-hydroxy-benzoic acid, six known sesquiterpenes, namely (rel)-2β,6β-epoxy-5β-hydroxy-isodaucane, oplopanone, 1β,6α-dihydroxy-4(15)-eudesmene, caryophyllene oxide, α-cadinol, and spathulenol, were isolated from the leaves of Pterodon pubescens (Leguminosae) growing in the Cerrado of Mato Grosso do Sul, Brazil. The (rel)-2β,6β-epoxy-5β-hydroxy-isodaucane corresponds to the correct structure of homalomenol D. The sesquiterpene oplopanone, which bears a modified cadinane skeleton, is being reported for the first time in this genus. The structures of the compounds were determined on the basis of spectral data (MS, IR, and NMR-1D and 2D) and subsequent comparison with data reported in the literature. (author)

  11. Chemical Composition of the Essential Oils of the Flowers, Leaves and Stems of Two Senecio polyanthemoides Sch. Bip. Samples from South Africa

    Directory of Open Access Journals (Sweden)

    Lawal A. Oladipupo

    2009-06-01

    Full Text Available The essential oils of the flowers, leaves and stems of Senecio polyanthemoides Sch. Bip. Samples collected from two different localities within the city of uMhlathuze, KwaZulu-Natal Province (South Africa were isolated by hydrodistillation and analyzed using GC and GC/MS. Twenty-six constituents were identified, representing an average of 86.0 - 99.6% of the total oil composition. The chemical profile reveals the dominance of monoterpenoid compounds, although some quantitative variance was noticed. The main constituents of the oils were limonene (3.1 – 43.0%, p-cymene (4.9-36.3%, β-selinene (1.3-32.7%, α-pinene (1.8-21.4%, β-pinene (7.6-16.5% and 1,8-cineole (9.3-11.4%, caryophyllene oxide (4.1-13.4% and humulene epoxide II (8.6-10.3%.

  12. Volatile Components of the Essential Oil of Artemisia montana and Their Sedative Effects.

    Science.gov (United States)

    Kunihiro, Kento; Myoda, Takao; Tajima, Noriaki; Gotoh, Kotaro; Kaneshima, Tai; Someya, Takao; Toeda, Kazuki; Fujimori, Takane; Nishizawa, Makoto

    2017-08-01

    The sedative effects of volatile components in the essential oil of Artemisia montana ("Yomogi") were investigated and measured using gas chromatography-mass spectrometry (GC-MS). Major components identified included 1,8-cineol, camphor, borneol, α-piperitone, and caryophyllene oxide. Among them, 1,8-cineol exhibited the highest flavor dilution (FD) value in an aroma extract dilution analysis (AEDA), followed by borneol, o-cymene, β-thujone, and bornyl acetate. The sedative effects of yomogi oil aroma were evaluated by sensory testing, analysis of salivary α-amylase activity, and measurement of relative fluctuation of oxygenated hemoglobin concentration in the brain using near-infrared spectroscopy (NIRS). All results indicated the stress-reducing effects of the essential oil following nasal exposure, and according to the NIRS analysis, 1,8-cineol is likely responsible for the sedative effects of yomogi oil.

  13. Antimalarial, Anticancer, Antimicrobial Activities and Chemical Constituents of Essential Oil from the Aerial Parts of Cyperus kyllingia Endl.

    Directory of Open Access Journals (Sweden)

    Sorachai Khamsan

    2011-01-01

    Full Text Available The chemical constituents of the essential oil from Cyperus kyllingia Endl. were analyzed by a GC, GC-MS. Twenty-three compounds were identified, accounting for 93.75% of the total oil that consisted mainly of oxygenated sesquiterpenes (53.52%, particularly sesquiterpene hydrocarbons (38.97%, and carboxylic acid (1.26%. The most representative compounds were a -cadinol (19.32 %, caryophyllene oxide (12.17%, a -muurolol (11.58 %, a -humulene (9.85%, and a -atlantone (6.07%. The oil showed significant activities against Plasmodium falcipalum (K1, multi drug resistant strain and NCI-H187 (Small Cell Lung Cancer with the IC 50 values of 7.52 and 7.72 µg/mL, respectively. The oilexhibited highly active against Staphylococcus aureus ATCC25923 and moderately active against Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27553, Aspergillus flavus and Candida albicans.

  14. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  15. Oxidation films morphology

    International Nuclear Information System (INIS)

    Paidassi, J.

    1960-01-01

    After studying the oxidation of several pure polyvalent metals (Fe, Cu, Mn, Ni, U) and of their oxides at high temperature and atmospheric pressure, the author suggests how to modify the usual representation of the oxide film (a piling of different oxide layers, homogeneous on a micrographic scale with a equi-axial crystallisation, free of mechanical tensions, with flat boundary surfaces) to have it nearer to reality. In this first part, the author exposes the study of the real micrographic structure of the oxidation film and gives examples of precipitation in the oxides during the cooling of the oxidised sample. (author) [fr

  16. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    Science.gov (United States)

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC 50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Exposure to Anacardiaceae Volatile Oils and Their Constituents Induces Lipid Peroxidation within Food-Borne Bacteria Cells

    Directory of Open Access Journals (Sweden)

    Ricardo M. Montanari

    2012-08-01

    Full Text Available The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA. The major constituents in Anacardium humile leaves oil were (E-caryophyllene (31.0% and α-pinene (22.0%, and in Anacardium occidentale oil they were (E-caryophyllene (15.4% and germacrene-D (11.5%. Volatile oil from Astronium fraxinifolium leaves were dominated by (E-β-ocimene (44.1% and α-terpinolene (15.2%, whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%. However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  18. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  19. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  20. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  1. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  2. Experimental investigation and thermodynamic simulation of the uranium oxide-zirconium oxide-iron oxide system in air

    Czech Academy of Sciences Publication Activity Database

    Petrov, Y. B.; Udalov, Y. P.; Šubrt, Jan; Bakardjieva, Snejana; Sázavský, P.; Kiselová, M.; Selucký, P.; Bezdička, Petr; Joumeau, C.; Piluso, P.

    2011-01-01

    Roč. 37, č. 2 (2011), s. 212-229 ISSN 1087-6596 Institutional research plan: CEZ:AV0Z40320502 Keywords : uranium oxide * zirconium oxide * iron oxide * fusibility curve * oxygen partial pressure * crystallization * phase composition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.492, year: 2011

  3. It has been suggested that oxidative stress, especially oxidative ...

    African Journals Online (AJOL)

    nabipour

    2012-02-14

    Feb 14, 2012 ... 1Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran. 2Department of Cardiology ... oxidative modification of low-density lipoproteins (LDL), may play a causative role in ... the oxidation of lipids in the cell membrane especially the oxidation of LDL.

  4. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    Science.gov (United States)

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  5. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    Science.gov (United States)

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  6. Oxidation kinetics of (B6O) boron oxide

    International Nuclear Information System (INIS)

    Makarov, V.S.; Solov'ev, N.E.; Ugaj, Ya.A.

    1987-01-01

    Reactivity of B 6 O to oxygen is investigated. It is shown that the process of B 6 O oxidation in the air in the temperature range 760-1150 K results in the maximum transformation degree equal to 0.35. At the initial stages oxidation proceeds in kinetic regime, at final stages - in diffusion one, and high viscosity of B 2 O 3 probably affects the oxidation process

  7. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  8. A simple and rapid lysis method for preparation of genomic DNA ...

    African Journals Online (AJOL)

    Yomi

    2011-12-07

    Dec 7, 2011 ... phenolic component of the essential oils of oregano and thyme (Lagouri ... to its hydrophobic nature, carvacrol induces this effect by damage of ..... Improved method for determination of antimicrobial activity of essentials oils in.

  9. The 2016 oxide electronic materials and oxide interfaces roadmap

    DEFF Research Database (Denmark)

    Lorenz, M.; Rao, M. S. Ramachandra; Venkatesan, T.

    2016-01-01

    of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap......, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies.In summary, we do hope that this oxide roadmap appears as an interesting...

  10. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †.

    Science.gov (United States)

    Afzal, Adeel; Dickert, Franz L

    2018-04-20

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.

  11. Volatile Compounds with Characteristic Odor of Essential Oil from Magnolia obovata Leaves by Hydrodistillation and Solvent-assisted Flavor Evaporation.

    Science.gov (United States)

    Miyazawa, Mitsuo; Nakashima, Yoshimi; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi; Chavasiri, Warinthorn

    2015-01-01

    The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.

  12. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    Science.gov (United States)

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  13. Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics

    Science.gov (United States)

    2007-12-01

    natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE perchloroethylene HSO5− peroxymonosulfate PNDA p...properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and stability in the subsurface, and develop a standardized natural...chlorinated ethenes For contaminant oxidation by activated S2O82−, it is more difficult to develop a general description of kobs vs. T because there are

  14. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  15. The oxidation; Okislenie

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, V I

    1961-07-01

    In this chapter of book author determine that alkylene tetra hydro-{gamma}-piron, oxidated by potassium permanganate in all cases of passed oxidation gave oxidation products, confirmatory their structure.

  16. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  17. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2017-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2)....

  18. Every plant for himself; the effect of a phenolic monoterpene on germination and biomass of Thymus pulegioides and T. serpyllum.

    DEFF Research Database (Denmark)

    Jensen, Catrine Grønberg; Ehlers, Bodil

    2009-01-01

    Thyme plants are known for their production of aromatic oils, whose main component is terpenes. The plants leach terpenes to their surroundings and thereby affect the seed germination and biomass of associated plants, but also potentially themselves. A variation in the dominant terpenes produced...... by thyme plants is found both within and among species. In Denmark two thyme species (Thymus pulegioides and T. serpyllum) are naturally occurring. The essential oil of T. pulegioides in Denmark is mainly dominated by one monoterpene; 'carvacrol'. In contrast, the essential oil of T. serpyllum constitutes...... and growth of both T. pulegioides and T. serpyllum. We compared the performance of seeds and seedlings of both thyme species on soil treated with carvacrol versus control soil. We found no effect of treatment on germination, but we detected a highly significant effect of treatment on seedling biomass...

  19. Mechanism of 1, 1-d2 propene oxidation over oxide catalysts

    International Nuclear Information System (INIS)

    Portefaix, J.L.; Figueras, F.; Forissier, M.

    1980-01-01

    CD 2 CHCH 3 was oxidized over bismuth molybdate, tin-antimony mixed oxides and supported molybdenum and vanadium oxide catalysts. The deuterium retention is high ( > 90%) in the recovered propene. Percentage retentions of deuterium in the acrolein agree with literature data when bismuth molybdate is used as catalyst. On Sb-Sn-O and supported Mo and V oxides, no isotope effect is noticed for the abstraction of the second hydrogen from the olefin. The slow step of the reaction may therefore be different for the oxidation of propene on Bi-Mo-O and Sb-Sn-O. The ethanal produced by oxidation of CD 2 CHCH 3 contains only minor amounts of deuterium, whatever the catalyst used. It is suggested that partial oxidation of propene to acrolein and C-C bond rupture are parallel reactions which involve different intermediates. Possible mechanisms adapted from organic chemistry are presented to explain these findings. 4 tables

  20. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  1. Oxidation of urate by a therapeutic nitric oxide/air mixture

    International Nuclear Information System (INIS)

    Hicks, M.; Nguyen, L.; Day, R.; Rogers, P.

    1996-01-01

    Full text: Little is known about the potential toxicological consequences of therapeutic exposure of lung tissue to inhaled nitric oxide (NO). This route of administration is currently being successfully employed for the treatment of pulmonary hypertension and other lung pathologies including acute reperfusion injury in lung transplant patients. The toxicity of NO lies in its ability to act as an oxidant either in its own right or in concert with oxygen or with the superoxide free radical. One important interaction may be the reaction of these products with protective antioxidants in the lung epithelial lining fluid. One such antioxidant found in significant concentrations in both upper and lower airways is uric acid. In the present study, urate solutions (30μM) were exposed to a therapeutic concentration of NO gas, (35 ppm in air), for up to 90 minutes. Oxidative changes were followed spectrophotometrically and by HPLC. Significant loss of uric acid was observed with a concomitant formation of nitrite and allantoin, the stable oxidation product of NO and the major oxidation product of uric acid, respectively. No oxidation of urate was observed in the presence of air alone or when urate was incubated with nitrite. Uric acid oxidation could also be prevented by passing the NO / air stream through 10% KOH before the uric acid solution. This strategy removed trace amounts of higher oxides of nitrogen, (especially NO 2 ), from the NO / air stream. Thus, therapeutic inhalation of NO may deplete soluble antioxidants such as uric acid, especially during long-term chronic exposure unless care is taken to minimise formation of higher oxides of nitrogen

  2. In vivo screening of five phytochemicals/extracts and a fungal immunomodulatory protein against colibacillosis in broilers

    NARCIS (Netherlands)

    Peek, H.W.; Halkes, S.B.A.; Tomassen, M.M.M.; Mes, J.J.; Landman, W.J.M.

    2013-01-01

    Five phytochemicals/extracts (an extract from Echinacea purpurea, a ß-glucan-rich extract from Shiitake, betaine [Betain™], curcumin from Curcuma longa [turmeric] powder, carvacrol and also a recombinant fungal immunomodulatory protein [FIP] from Ganoderma lucidum) cloned and expressed in

  3. Effect of the Lithium Oxide Concentration on a Reduction of Lanthanide Oxides

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Jeong, Myeong-Soo; Do, Jae-Bum; Seo, Chung-Seok

    2007-01-01

    The pyrochemical reduction process of spent oxide fuel is one of the options to handle spent PWR fuels in Korea. After spent oxide fuel is converted to a metallic form, fission products will be removed from the resultant uranium and higher actinide metals by an electrorefining process. The chemical behaviors of lanthanide oxides during the pyrochemical process has been extensively studied. It was also reported that about 30 to 50% of several lanthanide oxides were reduced to corresponding metals by an electrolytic reduction process having 1 wt% of a lithium oxide concentration. Korea Atomic Energy Research Institute (KAERI), however, has been used 3 wt% of lithium oxide to increase the applied current of the electrolytic reduction process. Though it was reported that U 3 O 8 was reduced to uranium metal having a high reduction yield at 3 wt% of the Li 2 O concentration, the effect of the lithium oxide concentration on the reduction of lanthanide oxides has not been clarified

  4. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  5. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2015-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2). © 2015 ECS - The Electrochemical Society...

  6. Characteristic odor components of essential oil from Scutellaria laeteviolacea.

    Science.gov (United States)

    Miyazawa, Mitsuo; Nomura, Machi; Marumoto, Shinsuke; Mori, Kiyoshige

    2013-01-01

    The essential oils from aerial parts of Scutellaria laeteviolacea was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The characteristic odor components were also detected in the oil using gas chromatography-olfactometry (GC-O) analysis and aroma extraction dilution analysis (AEDA). As a result, 100 components (accounting for 99.11 %) of S. laeteviolacea, were identified. The major components of S. laeteviolacea oil were found to be 1-octen-3-ol (27.72 %), germacrene D (21.67 %),and β-caryophyllene (9.18 %). The GC-O and AEDA results showed that 1-octen-3-ol, germacrene D, germacrene B, and β-caryophyllene were the most characteristic odor components of the oil. These compounds are thought to contribute to the unique flavor of this plant.

  7. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  8. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    Science.gov (United States)

    2009-05-01

    methyl tert butyl ether NAPL non-aqueous phase liquid NOD natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE...and persulfate; and Technical Objective 2, assess how soil properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and...to develop a general description of kobs vs. T because there are many reactions that can contribute to the concentration of the reactive intermediate

  9. Screening of the constituents, antimicrobial and antioxidant activity of endemic Origanum hypericifolium O. Schwartz & P.H. Davis.

    Science.gov (United States)

    Celik, Ali; Nur Herken, E; Arslan, Idris; Zafer Ozel, M; Mercan, Nazime

    2010-10-01

    The chemical compositions, total phenol content, antioxidant and antimicrobial activities with oxidant status of the essential oil from an endemic Turkish species, Origanum hypericifolium, were investigated. Steam distillation (SD) was used to isolate the essential oils, and the chemical analyses were performed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity was tested by agar disc diffusion method against Morganella morganii (clinic isolate), Micrococcus flavus (clinic isolate), Micrococcus luteus NRLL B-4375, Proteus vulgaris RSKK 96026, Escherichia coli ATCC 11230, Escherichia coli ATCC 25922, Yersinia enterecolitica RSKK 1501, Staphylococcus aureus ATCC 25923, S. aureus ATCC 25933, S. aureus ATCC 12598, S. aureus (clinic isolate), MRSA 1 (clinic isolate), MRSA 2 (clinic isolate), MRSA 3 (clinic isolate) and MRSA 4 (clinic isolate). The major compounds found in volatiles of O. hypericifolium were p-cymene, carvacrol and γ-terpinene. Results showed that O. hypericifolium has the potential for being used in food and medicine because of its antioxidant and antibacterial activity.

  10. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  11. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Laboratory

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  12. Duff reaction on phenols: Characterization of non steam volatile products

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Bhattacharya, J.

    New products having structures 1 and 2 have been characterized in the Duff reaction thymol arid carvacrol. These products have been identified as 2.6'-dithymylmethane 1 and 5.5' -dicarvacryl methane 2 respectively on the basis of spectral data...

  13. Composition comprising lignin and antidi arrheal component

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to a composition comprising lignin and at least one compound selected from the group consisting of bromelain, papain, tannin, carvacrol, thymol, alliin, allicin, fenugreek seed, egg, poppy, poppy seeds, humic acid, roots, kaolin, catechu, cellulase, flavonoid...

  14. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.; Stroosnijder, M.F.

    1991-01-01

    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  15. Spectrographic determination of impurities in high-purity tantalum oxide and niobium oxide

    International Nuclear Information System (INIS)

    Anderson, S.T.G.; Russell, G.M.

    1990-01-01

    The development of spectrographic methods by direct current arc excitation and carrier distillation for the determination of impurities in tantalum and niobium oxides are described. Iron, silicon, aluminium, titanium, calcium, silver, tin, magnesium, and manganese can be determined in tantalum oxide and niobium oxide in concentrations ranging from 3 to 300 p.p.m. Niobium can be determined in tantalum oxide in concentrations ranging from 10 to 300 p.p.m. Tantalum cannot be determined in niobium oxide, and tungsten cannot be determined in either matrix as a result of the absence of sensitive lines in the spectra of these elements. Relative standard deviations of analyte element concentrations are in the region of 0,18 for tantalum oxide samples, and 0,13 for niobium oxide samples. A detailed laboratory method is included. 4 figs., 4 tabs., 3 refs

  16. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  17. Antimicrobial activity and composition of the volatiles of Cinnamomum tamala Nees. and Murraya koenigii (L. Spreng. from Uttarakhand (India

    Directory of Open Access Journals (Sweden)

    Manindra Mohan

    2012-05-01

    Full Text Available Objective: To examine the composition of Cinnamomum tamala and Murraya koenigii essential oils and their antimicrobial activities against nine microbial strains. Methods: Essential oils were obtained by hydrodistillation from the leaves of two spice trees and were analyzed by GC and GC/MS. The oils were also tested for their antimicrobial activity using broth micro dilution method. Results: Cinnamaldehyde (37.85% and cis-linalool oxide (29.99% were the main components characterized in the oil of C. tamala, whereas α -pinene (39.93%, sabinene (13.31% and trans-caryophyllene (9.02% detected as the major constituents in M. koenigii oil. C. tamala oil exhibited significant antifungal activity and satisfactory antibacterial activity, while lesser antimicrobial activity was observed in M. koenigii oil. Conclusions: The present study suggested that C. tamala oil was more effective against bacterial and fungal strains as compared with M. koenghii oil.

  18. Sesquiterpenos e outros constituintes das folhas de Pterodon pubescens Benth (Leguminosae

    Directory of Open Access Journals (Sweden)

    Mayker Lazaro Dantas Miranda

    2014-06-01

    Full Text Available In addition to β-sitosterol, stigmasterol, phaeophitin A, luteolin, kaempferol, quercetin, (+-catechin, quercetin-3-O-α-L-rhamnopyranoside, rutin, and p-hydroxy-benzoic acid, six known sesquiterpenes, namely (rel-2β,6β-epoxy-5β-hydroxy-isodaucane, oplopanone, 1β,6α-dihydroxy-4(15-eudesmene, caryophyllene oxide, α-cadinol, and spathulenol, were isolated from the leaves of Pterodon pubescens (Leguminosae growing in the Cerrado of Mato Grosso do Sul, Brazil. The (rel-2β,6β-epoxy-5β-hydroxy-isodaucane corresponds to the correct structure of homalomenol D. The sesquiterpene oplopanone, which bears a modified cadinane skeleton, is being reported for the first time in this genus. The structures of the compounds were determined on the basis of spectral data (MS, IR, and NMR-1D and 2D and subsequent comparison with data reported in the literature.

  19. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  20. Influence of rare earth oxides in the oxidation of chromia forming alloys

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1989-01-01

    The influence of superficial application of rare earth oxides such as CeO sub(2), La sub(2)O sub(3), Nd sub(2)O sub(3), Sm sub(2)O sub(3), and Gd sub(2)O sub (3) to AISI 304 and 310 stainless steels, on their isothermal oxidation behavior at 900 sup(0) and 1000 sup(0)C, and cyclic oxidation behavior between 20 sup(0) and 1000 sup(0)C has been studied. The application of rare earth oxides (REO) has been found to increase the oxidation resistance at AISI 304. No significant improvements in oxidation resistance of AISI 310 were noted. The oxidation resistance of AISI 304 was highest in the presence of CeO sub(2) on its surface. The other REO in decreasing order of influence on oxidation resistance are La sub(2)O sub(3), Nd sub(2)O sub(3), Sm sub(2)O sub(3) and Gd sub(2)O sub(3). SEM investigations of the oxide scale morphology revealed that the improved resistance is probably due to the formation of a thin layer of fine grained compact Cr sub(2)O sub(3) and the higher adhesion of the scale to its increased plasticity. (author)

  1. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lu, Ke-Miao; Lee, Wen-Jhy; Liu, Shih-Hsien; Lin, Ta-Chang

    2014-01-01

    Highlights: • Non-oxidative and oxidative torrefaction of biomass is studied. • Two fibrous biomasses and two ligneous biomasses are tested. • SEM observations of four biomasses are provided. • Fibrous biomass is more sensitive to O 2 concentration than ligneous biomass. • The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. - Abstract: Oxidative torrefaction is a method to reduce the operating cost of upgrading biomass. To understand the potential of oxidative torrefaction and its impact on the internal structure of biomass, non-oxidative and oxidative torrefaction of two fibrous biomass materials (oil palm fiber and coconut fiber) and two ligneous ones (eucalyptus and Cryptomeria japonica) at 300 °C for 1 h are studied and compared with each other. Scanning electron microscope (SEM) observations are also performed to explore the impact of torrefaction atmosphere on the lignocellulosic structure of biomass. The results indicate that the fibrous biomass is more sensitive to O 2 concentration than the ligneous biomass. In oxidative torrefaction, an increase in O 2 concentration decreases the solid yield. The energy yield is linearly proportional to the solid yield, which is opposite to the behavior of non-oxidative torrefaction. The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. As a whole, ligneous biomass can be torrefied in oxidative environments at lower O 2 concentrations, whereas fibrous biomass is more suitable for non-oxidative torrefaction

  2. Synthesis of graphene oxide through different oxidation degrees for solar cells

    Science.gov (United States)

    Zhang, Xiaoshan; Wang, Huan; Huang, Tianjiao; Wen, Lingling; Zhou, Liya

    2018-03-01

    Graphene is known as an electro-chemical material and widely used in electro-chemical devices, especially in solar cell. Decreasing the thickness of the layer is a critical way to improve the electrochemical property of solar cells as far as possible. Among the various oxidation approaches, presented herein is a facile approach, which is easier, less cost and more effective, environmental benign with the greener processing and without any requirement for post purification, towards the synthesis of graphene oxide (GO) with different oxidation degrees by potassium ferrate (K2FeO4). A modified method using less amount of oxidizing agent is reported herein. It is the pretreatment of the synthesis of graphite, which maintains the thermal cycle of the system. This novel reports to compound GO with controlled oxidation degrees can not only increase the quantity of oxygen-containing functional groups on GO surface, increase space between graphene oxide layer and facilitate the dispersion of graphene in aqueous solution. Thus, the modified method shows prospect for large-scale production of graphene oxide and its novel application, in addition to its derivative and market potential for solar cells.

  3. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  4. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  5. COMPOSITION AND BACTERICIDAL ACTIVITY AGAINST BENEFICIAL AND PATHOGENIC BACTERIA OF OREGANO ESSENTIAL OILS FROM FOUR CHEMOTYPES OF Origanum AND Lippia GENUS

    Directory of Open Access Journals (Sweden)

    L. Betancourt

    2012-01-01

    Full Text Available Diversos estudios demuestran la actividad antibacterial de distintos quimiotipos de aceites esenciales de orégano (OEO, carvacrol y timol, contra bacterias patógenas Gram positivas y Gram negativas, pero muy poca información está disponible sobre el efecto de los OEO en bacterias benéficas. El objetivo de este estudio fue comparar la composición y concentración mínima bactericida (CMB de OEO de quimiotipos del género Origanum: O. vulgare L. ssp. hirtum (OH, O. majorana (OM y O. vulgare L. (OL cultivados en Colombia, frente Lippia origanoides Kunth (LO nativo del Alto Pa-tía en Colombia y O. vulgare L. ssp. hirtum cultivado en Grecia (OG. Los OEO se ob-tuvieron por arrastre de vapor, la composición se determinó por cromatografía de gases acoplada a espectrometría de masas y la actividad antibacteriana mediante el método de dilución en caldo y cultivo en agar. Se evaluaron tres quimiotipos de OEO: OH y OG tipo-carvacrol, LO y OL tipo-timol y OM rico en compuestos sabinilo. Las variedades de orégano producidas bajo condiciones de invernadero a alta altitud mostraron un alto contenido de precursores. Un valor similar de concentración mínima bactericida contra Salmonella enteritidis (0.098 mg/mL fue observada para carvacrol, OH y LO. La más baja actividad bactericida contra las bacterias benéficas Lactobacillusacidophilusy Bifidobacterium breve fue observada para OM (6.25 mg/mL y LO (50 mg/mL, respectivamente. Estos resultados mostraron que LO, nativo de Colombia presentó un efecto antibacteriano comparable a OH y carvacrol contra enterobacterias patógenas y una baja actividad bactericida contra las bacterias benéficas. Estos resultados mostraron un efecto bactericida selectivo contra bacterias benéficas y patógenas de los quimiotiposOriganum ssp. y L. origanoides. Se comprobó un buen potencial de L. origanoides para uso como aditivo antimicrobiano para la salud humana y animal.

  6. Composition and Chemical Variability of the Needle Oil from Pinus halepensis growing in Corsica.

    Science.gov (United States)

    Nam, Anne-Marie; Tomi, Félix; Gibernau, Marc; Casanova, Joseph; Bighelli, Ange

    2016-04-01

    The composition of oil samples isolated from needles of Pinus halepensis growing in three locations in Corsica (Saleccia, Capo di Feno, and Tre Padule) has been investigated by combination of chromatographic (GC with retention indices) and spectroscopic (MS and (13)C-NMR) techniques. In total, 35 compounds that accounted for 77 - 100% of the whole composition have been identified. α-Pinene, myrcene, and (E)-β-caryophyllene were the major component followed by α-humulene and 2-phenylethyl isovalerate. Various diterpenes have been identified as minor components. 47 Oil samples isolated from pine needles have been analyzed and were differentiated in two groups. Oil samples of the first group (15 samples) contained myrcene (M = 28.1 g/100 g; SD = 10.6) and (E)-β-caryophyllene (M = 19.0 g/100 g; SD = 2.2) as major components and diterpenes were absent. All these oil samples were isolated from pine needles harvested in Saleccia. Oil samples of the second group (32 samples) contained mostly (E)-β-caryophyllene (M = 28.7 g/100 g; SD = 7.9), α-pinene (M = 12.3 g/100 g; SD = 3.6), and myrcene (M = 11.7 g/100 g; SD = 7.3). All these oil samples were isolated from pine needles harvested in Capo di Feno and Tre Padule. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  8. Interface and oxide traps in high-κ hafnium oxide films

    International Nuclear Information System (INIS)

    Wong, H.; Zhan, N.; Ng, K.L.; Poon, M.C.; Kok, C.W.

    2004-01-01

    The origins of the interface trap generation and the effects of thermal annealing on the interface and bulk trap distributions are studied in detail. We found that oxidation of the HfO 2 /Si interface, removal of deep trap centers, and crystallization of the as-deposited film will take place during the post-deposition annealing (PDA). These processes will result in the removal of interface traps and deep oxide traps and introduce a large amount of shallow oxide traps at the grain boundaries of the polycrystalline film. Thus, trade-off has to be made in considering the interface trap density and oxide trap density when conducting PDA. In addition, the high interface trap and oxide trap densities of the HfO 2 films suggest that we may have to use the SiO 2 /HfO 2 stack or hafnium silicate structure for better device performance

  9. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  10. Oxidation of uraninite

    International Nuclear Information System (INIS)

    Janeczek, J.; Ewing, R.C.

    1993-06-01

    Samples of uraninite and pitchblende annealed at 1200 degrees C in H 2 , and untreated pitchblende were sequentially oxidized in air at 180-190 degrees C, 230 degrees C, and 300 degrees C. Uraninite and untreated pitchblende oxidized to the U 4 O 9 -type oxide, and their x-ray symmetry remained isometric up to 300 degrees C. Reduced pitchblende, after oxidation to UO 2+x and U 4 O 9 -type oxides, transformed into α-U 3 O 8 at 300 degrees C. Two major mechanisms control uraninite and untreated pitchblende stability during oxidation: 1. Th and/or lanthanide elements maintain charge balance and block oxygen interstitials near impurity cations; 2. the uraninite structure saturates with respect to excess and radiation-induced oxygen interstitials. Untreated pitchblende during oxidation behaved similarly to irradiated UO 2 in spent nuclear fuel; whereas, reduced pitchblende resembled non-irradiated UO 2 . An analysis of the data in the literature, as well as our own efforts (XRD, EMPA, SEM, AEM) to identify U 3 O 7 in samples form Cigar Lake, Canada, failed to provide conclusive evidence of the natural occurrence of tetragonal αU 3 O 7 . Most probably, reported occurrences of U 3 O 7 are mixtures of isometric uraninites of slightly different compositions, 45 refs

  11. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Acute oral toxicity study of Thymus serrulatus and Thymus schimperi ...

    African Journals Online (AJOL)

    carvacrol chemotypes) than in those treated with the thymol chemotypes (Ofl, Ala, Tar, and Bal). The organ to body weight ratios of the control group were either significantly higher than or comparable to that of the treatment groups implying that the ...

  13. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  14. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  15. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections.

    Science.gov (United States)

    Asdadi, A; Hamdouch, A; Oukacha, A; Moutaj, R; Gharby, S; Harhar, H; El Hadek, M; Chebli, B; Idrissi Hassani, L M

    2015-12-01

    To study the composition, the antioxidant activity and the in vitro antifungal action anti-Candida species of essential oils extracted from seeds of Vite xagnus-castus L. The essential oils were extracted using Clevenger-type apparatus and analyzed by gas chromatography/mass spectrometry (GC/MS). The antioxidant activity was analyzed using the DPPH free radical-scavenging method. Susceptibility tests for Candida albicans (12), C. dubliniensis (1), C. glabrata (3), C. krusei (3), C. parapsilosis (6), C. lusitaniae (1), C. famata (1) and C. tropicalis (3) were expressed as inhibition zone by the disc-diffusion method and as minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) by the broth macrodilution method, compared to amphotricin B and fluconazol as standard drugs. Major components were: 1,8-cineole (19.61%), sabinene (14.57%), α-pinene (9.76%), β-farnesene (6.04%), β-caryophyllene oxide (5.83%) and β-caryophyllene (5.02%). A low antioxidant activity was found (IC50=1.072mg/ml), but it can be exploited. V. agnus-castus seeds essential oils disosed a 35-58mm zone of inhibition (mean: 49mm) against all 30 isolates tested. In broth macrodilution method, all the tested Candida species were susceptible to the essential oils and this activity was concentration-dependent. MIC values varied from 0.13 to 2.13mg/ml V. agnus-castus seeds essential oils. Results of this study indicated that the oils of plant origin could be used as potential anti-Candida species causative agents of nosocomial infections. These oils exhibited a noticeable antifungal activity against the selected fungi. The natural antifungal substances are inexpensive and have fewer side effects, they may represent alternative therapies for candidiasis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    Science.gov (United States)

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. LINKED ARTICLES

  17. GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado

    Science.gov (United States)

    Amelia, B.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U.; Sulistyoningrum, A. S.; Haib, J.

    2017-07-01

    The largest clove production contributors in Indonesia are mostly coming from Java and Manado. Different flavor among clove origins is caused by chemical constituents in clove oil. Unfortunately, scientific research and publications about flavor in clove from Indonesia's origin are still limited. The objective of this research is to determine significant differences of constituents in terms of flavor in clove oil originated from Java and Manado. The essential oils were isolated from cut clove bud samples by steam distillation method. The chemical constituents of clove bud oil were analyzed by using gas chromatography-mass spectrometry (GC-MS). Constituents were then identified by comparing the results of the chromatogram and reference retention time using Wiley mass spectra library (Wiley W9N11). Thirty-six and thirty-four chemical constituents were identified based on GC-MS from clove oil collected from Java and Manado, respectively. Major classes of compounds are sesquiterpenes, phenyl propanoid, oxygenated sesquiterpenes, and esters. Different compositions in major constituents were found between both origins. Clove Java contained eugenol (55.60 %), eugenyl acetate (20.54 %), caryophyllene (14.84 %), and α-humulene (2.75 %). While, in clove Manado, the composition were eugenol (74.64 %), caryophyllene (12.79 %), eugenyl acetate (8.70 %), and α-humulene (1.53 %). Moreover, minor constituents β-elemene (0.04 %), α-cadinene (0.05 %) and ledol (0.06 %) were existed only in clove Java, while clove Manado had some unique minor constituents which were not found in clove Java, i.e. β-gurjunene (0.04 %), γ-cadinene %), and humulene oxide (0.05 %). In conclusion, both clove oils from Java and Manado contained same major chemical constituents but different in their composition. In addition, some minor constituents existed only in specific origin.

  18. Constituintes químicos fixos e voláteis dos talos e frutos de Piper tuberculatum Jacq. e das raízes de P. hispidum H. B. K. Fixed and volatile chemical constituents from stems and fruits of Piper tuberculatum Jacq. and from roots of P. hispidum H. B. K.

    Directory of Open Access Journals (Sweden)

    Valdir Alves Facundo

    2008-12-01

    Full Text Available Os óleos essenciais dos frutos e talos finos de Piper tuberculatum e das raízes de P. hispidum, coletados no estado de Rondônia, foram obtidos por hidrodestilação e analisados por GC e GC-MS. Foram identificados como constituintes majoritários, nos óleos dos frutos e talos finos de P. tuberculatum, o óxido de cariofileno (32,1% e (26,6% e o (E-cariofileno (17,7% e (12,3%, respectivamente. No óleo essencial das raízes de P. hispidum, foram identificados, como constituintes majoritários, o dilapiol (57,5%, a elemicina (24,5% e o apiol (10,2%. Do extrato etanólico dos frutos de P. tuberculatum, foram isolados os esteróides β-sitosterol e estigmasterol, as amidas piplartina e dihidropiplartina e um derivado do ácido cinâmico, o ácido 3,4,5-trimetoxi-dihidrocinâmico.The essential oils of the fruits and fine stems of Piper tuberculatum and of the roots of P. hispidum, collected in the state of Rondônia, had been gotten by hydrodistillation and analyzed by GC and GC-MS. Caryophyllene oxide - 32,1% in fruits and 26,6% in fine stem, and (E-caryophyllene - 17,7% in fruits and 12,3% in fine stems, were identified as the major constituents in such parts of P. tuberculatum. In the essential oil of the roots of P. hispidum, dillapiol (57,5%, elemicine (24,5% and apiole (10,2% were identified as the most abundant constituents. From the ethanolic extract of the fruits of P. tuberculatum, the steroids β-sitosterol and stigmasterol, the amides piplartine and dihidropiplartine and the derivative of the cinâmico acid 3,4,5-trimethoxy-dihidrocinâmic acid were isolated.

  19. [Analysis of the chemical constituents of volatile oils of Metasequoia glyptostroboides leave].

    Science.gov (United States)

    Shong, E; Lui, R

    1997-10-01

    The chemical constituents of volatile oils of Metasequoia glyptostroboides leave were analyzed by GC-MS-DS. 27 constituents were identified, alpha-pinene (70.65%) and caryophyllene (10.38%) of them are main components.

  20. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation

    Directory of Open Access Journals (Sweden)

    Pietro eCeli

    2015-10-01

    Full Text Available This review examines the role that oxidative stress, and protein oxidation in particular, plays in nutrition, metabolism and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions such as respiratory diseases and parasitic infection; however some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions such as reproduction, nutrition, metabolism, lactation, gut health and neonatal physiology. As the characterization of the mechanisms by which oxidative stress may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins.

  1. Atividade in vitro do óleo essencial de Origanum vulgare frente à Sporothrix Schenckii In vitro activity of the essential oil of Origanum vulgare against Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M.B. Cleff

    2008-04-01

    Full Text Available In vitro activity of the essential oil Origanum vulgare against Sporothrix schenckii was determined by the MIC (Minimum Inhibitory Concentration. For this, seven samples of S. schenckii were studied, two isolated from two cases of human sporotrichosis and five isolated from cats. Analysis of the essential oil was carried out in a gas chromatograph (GC/FID for the identification and quantification of thymol and carvacrol (antifungal agents. MIC was obtained based on the microdilution method according to the adapted document NCCLS-M 27A2 for fitopharmacy. All the isolates presented sensibility to the essential oil. S. schenckii was inhibited in a concentration of 0.25% (250m l/ml. Chromatographic analysis showed that thymol concentration was bigger than carvacrol. The antifungal activity demonstrated by the essential oil of O. vulgare against S. Schenckii stimulates the accomplishment of more studies, including in vivo studies.

  2. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  3. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  4. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  5. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang

    2015-01-01

    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  6. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    OpenAIRE

    Gandhiraman, Ram P.; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E.; Chen, Bin; Meyyappan, M.

    2014-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties...

  7. Oxidation of zirconium alloys in steam: influence of tetragonal zirconia on oxide growth mechanism

    International Nuclear Information System (INIS)

    Godlewski, J.

    1990-07-01

    The oxidation of zirconium alloys in presence of steam, presents after a 'parabolic' growth law, an acceleration of the oxidation velocity. This phenomenon limits the use of zirconium alloys as nuclear fuel cladding element. In order to determine the physico-chemical process leading to this kinetic transition, two approaches have been carried out: the first one has consisted to determine the composition of the oxide layer and its evolution with the oxidation time; and the second one to determine the oxygen diffusion coefficients in the oxide layers of pre- and post-transition as well as their evolution with the oxidation time. The composition of the oxide layers has been determined by two analyses techniques: the X-ray diffraction and the laser Raman spectroscopy. This last method has allowed to confirm the presence of tetragonal zirconium oxide in the oxide layers. Analyses carried out by laser Raman spectroscopy on oxides oblique cuttings have revealed that the tetragonal zirconium oxide is transformed in monoclinic phase during the kinetic transition. A quantitative approach has allowed to corroborate the results obtained by these two techniques. In order to determine the oxygen diffusion coefficients in the oxides layers, two diffusion treatments have been carried out: 1)under low pressure with D 2 18 O 2 ) under high pressure in an autoclave with H 2 18 O. The oxygen 18 concentration profiles have been obtained by two analyses techniques: the nuclear microprobe and the secondary ions emission spectroscopy. The obtained profiles show that the mass transport is made by the volume and particularly by the grain boundaries. The corresponding diffusion coefficients have been calculated with the WHIPPLE and LE CLAIRE solution. The presence of tetragonal zirconium oxide, its relation with the kinetic transition, and the evolution of the diffusion coefficients with the oxidation time, are discussed in terms of internal stresses in the oxide layer and of the oxide layer

  8. Gas Chromaotography-Mass Spectrometry Analysis of Insecticidal ...

    African Journals Online (AJOL)

    Insecticidal Essential Oil Derived from Chinese Ainsliaea fragrans Champ ex Benth ... Methods: The essential oil of A. fragrans aerial parts was obtained by hydrodistillation and analyzed by ..... toxicity than the crude oil. Caryophyllene showed.

  9. Sputtered indium oxide films

    International Nuclear Information System (INIS)

    Gillery, F.H.

    1986-01-01

    A method is described for depositing on a substrate multiple layer films comprising at least one primary layer of a metal oxide and at least one primary layer of a metal other than the metal of the oxide layer. The improvement described here comprises improving the adhesion between the metal oxide and metal layers by depositing between the layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers. An article of manufacture is described comprising a nonmetallic substrate, and deposited thereon in any order: a. at least one coating layer of metal; b. at least one coating layer of an oxide of a metal other than the metal of the metal layer; and c. deposited between the metal and metal oxide layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers

  10. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth Govaerts

    Directory of Open Access Journals (Sweden)

    Vladimir Morocho

    2018-01-01

    Full Text Available The phytochemical investigation of both volatile and fixed metabolites of Clinopodium taxifolium (Kunth Govaerts (Lamiaceae was performed for the first time. It allowed the isolation and characterization of the essential oil and six known compounds: carvacrol (1, squalane (2, uvaol (3, erythrodiol (4, ursolic acid (5, and salvigenin (6. Their structures were identified and characterized by Nuclear Magnetic Resonance (NMR and Gas Chromatography coupled to Mass Spectroscopy (GC-MS, and corroborated by literature. The essential oil of the leaves was obtained by hydrodistillation in two different periods and analyzed by GC-MS and GC coupled to Flame Ionization Detector (GC-FID. A total of 54 compounds were detected, of which 42 were identified (including trace constituents. The major constituents were carvacrol methyl ether (18.9–23.2%, carvacrol (13.8–16.3% and, carvacryl acetate (11.4–4.8%. The antibacterial activities were determined as Minimum Inhibition Concentration (MIC against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa and Micrococcus luteus. The hexane and methanol extracts exhibited activity only against Klebsiella pneumoniae (250 and 500 μg/mL respectively, while the ethyl acetate extract was inactive. The hypoglycemic activity was evaluated by the in vitro inhibition of α-glucosidase. The ethyl acetate (EtOAc extract showed strong inhibitory activity with IC50 = 24.88 µg/mL, however methanolic and hexanic extracts showed weak activity. As a pure compound, only ursolic acid showed a strong inhibitory activity, with IC50 = 72.71 μM.

  11. Shelf-life extension of gilthead seabream fillets by osmotic treatment and antimicrobial agents.

    Science.gov (United States)

    Tsironi, T N; Taoukis, P S

    2012-02-01

    The objectives of the study were to evaluate the effect of selected antimicrobial agents on the shelf life of osmotically pretreated gilthead seabream and to establish reliable kinetic equations for shelf-life determination validated in dynamic conditions. Fresh gilthead seabream (Sparus aurata) fillets were osmotically treated with 50% high dextrose equivalent maltodextrin (HDM, DE 47) plus 5% NaCl and 0·5% carvacrol, 0·5% glucono-δ-lactone or 1% Citrox (commercial antimicrobial mix). Untreated and treated slices were aerobically packed and stored isothermally (0-15°C). Microbial growth and quality-related chemical indices were modelled as functions of temperature. Models were validated at dynamic storage conditions. Osmotic pretreatment with the use of antimicrobials led to significant shelf-life extension of fillets, in terms of microbial growth and organoleptic deterioration. The shelf life was 7 days for control samples at 5°C. The osmotic pretreatment with carvacrol, glucono-δ-lactone and Citrox allowed for shelf-life extension by 8, 10 and 5 days at 5°C, respectively. The results of the study show the potential of adding carvacrol, glucono-δ-lactone or Citrox in the osmotic solution to extend the shelf life and improve commercial value of chilled osmotically pretreated fish products. The developed models can be a reliable tool for predicting the shelf life of fresh or minimally processed gilthead seabream fillets in the real chill chain. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. Essential Oils as Biocides for the Control of Fungal Infections and Devastating Pest (Tuta absoluta) of Tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Bouayad Alam, Samira; Dib, Mohammed El Amine; Djabou, Nassim; Tabti, Boufeldja; Gaouar Benyelles, Nassira; Costa, Jean; Muselli, Alain

    2017-07-01

    Thymus capitatus and Tetraclinis articulata essential oils as well their major components (carvacrol and α-pinene) were evaluated for their antifungal and insecticidal activities. Both oils showed good in vitro antifungal activity against Fusarium oxysporum, Aspergillus niger, Penicillium sp., Alternaria alternata, and Botrytis cinerea, the fungi causing tomato rot. In vivo results indicate the efficacies of both essential oils and carvacrol of reduce postharvest fungal pathogens, such as B. cinerea and Al. alternata that are responsible of black and gray rot of tomato fruit. Disease incidence of Al. alternata and B. cinerea decreased on average from 55% to 80% with essential oil of Th. capitatus and pure carcvacrol, while Te. articulata essential oil exhibited inhibition of fungal growth of 55% and 25% against Al. alternata and B. cinerea, respectively, with concentration of 0.4 μl/l air. The insecticidal activity of Th. capitatus and Te. articulata essential oils exhibited also a good insecticidal activity. At the concentration of 0.2 μl/ml air, the oils caused mortality over 80% for all larval stages of Tuta absoluta and 100% mortality for the first-instar after 1.5 h only of exposure. α-Pinene presented lower insecticidal and antifungal activities compared to essential oils of Th. capitatus, Te. articulata and pure carvacrol. Thus, these essential oils can be used as a potential source to develop control agents to manage some of the main pests and fungal diseases of tomato crops. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  14. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  15. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  16. Thermal oxidation of silicon with two oxidizing species

    International Nuclear Information System (INIS)

    Vild-Maior, A.A.; Filimon, S.

    1979-01-01

    A theoretical model for the thermal oxidation of silicon in wet oxygen is presented. It is shown that the presence of oxygen in the oxidation furnace has an important effect when the water temperature is not too high (less than about 65 deg C). The model is in good agreement with the experimental data. (author)

  17. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  18. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  19. Review Of Plutonium Oxidation Literature

    International Nuclear Information System (INIS)

    Korinko, P.

    2009-01-01

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles ( 250 (micro)m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

  20. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?

    Science.gov (United States)

    Sofer, Zdeněk; Luxa, Jan; Jankovský, Ondřej; Sedmidubský, David; Bystroň, Tomáš; Pumera, Martin

    2016-09-19

    It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Østergaard, Thomas M.; Giordano, Livia; Castelli, Ivano Eligio

    2018-01-01

    Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO(2) oxide surfaces. We compare...

  2. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  3. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus

    Science.gov (United States)

    Plant-derived natural products can serve as an alternative to synthetic compounds for control of ticks of veterinary and medical importance. Lippia gracilis is an aromatic plant that produces essential oil with high content of carvacrol and thymol monoterpenes. These monoterpenes have high acaricida...

  4. Oxidation of zirconium-aluminum alloys

    International Nuclear Information System (INIS)

    Cox, B.

    1967-10-01

    Examination of the processes occurring during the oxidation of Zr-1% A1, Zr-3% A1, and Zr-1.5% A1-0.5% Mo alloys has shown that in steam rapid oxidation occurs predominantly around the Zr 3 A1 particles, which at low temperatures appear to be relatively unattacked. The unoxidised particles become incorporated in the oxide, and become fully oxidised as the film thickens. This rapid localised oxidation is preceded by a short period of uniform film growth, during which the oxide film thickness does not exceed ∼200A-o. Thus the high oxidation rates can probably be ascribed to aluminum in solution in the zirconium matrix, although its precise mode of operation has not been determined. Once the solubility limit of aluminum is exceeded, the size, distribution and number of intermetallic particles affects the oxidation rate merely by altering the distribution of regions of metal giving high oxidation rates. The controlling process during the early stages of oxidation is electron transport and not ionic transport. Thus, the aluminum in the oxide film is presumably increasing the ionic conductivity more than the electronic. The oxidation rates in atmospheric pressure steam are very high and their irregular temperature dependence suggests that the oxidation rate will be pressure dependent. This was confirmed, in part, by a comparison with oxidation in moist air. It was found that the rate of development of white oxide around intermetallic particles was considerably reduced by the decrease in the partial pressure of H 2 O; the incubation period was not much different, however. (author)

  5. Chemical composition and antibacterial activity of the essential oil of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... essential oil of Pinus caribaea from Nigeria. O. Oluwadayo ... Key words: Pinus caribbea, Pinaceae, essential oil, β-phellandrene, β-caryophyllene, antibacterial. .... cones of Pinus. Pinea, P. halepensis, P. pinaster and P. nigra.

  6. Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides

    Science.gov (United States)

    Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu

    2012-10-01

    Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.

  7. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  8. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  9. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  10. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  11. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    Science.gov (United States)

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  12. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  13. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  14. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation.

    Science.gov (United States)

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins.

  15. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  16. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  17. PREFACE: Semiconducting oxides Semiconducting oxides

    Science.gov (United States)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  18. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  19. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    Science.gov (United States)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  20. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  1. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  2. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  3. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers

    International Nuclear Information System (INIS)

    Qian Li; Jing Sun; Dexin Ding; Qingliang Wang; Wenge Shi; Eming Hu; Xiaoyu Jiang; University of South China, Hengyang; Xingxing Wang

    2017-01-01

    In order to develop and apply mixed iron- and sulfur-oxidizers in uranium bioleaching, the characteristics of a mixed iron- and sulfur-oxidizing consortium (Consortium ISO) were comparatively investigated versus an iron-oxidizing consortium (Consortium IO). The results showed, the Consortium ISO exerted stronger oxidative ability and acid-producing ability than Consortium IO did. The synergy of sulfur-oxidizers and iron-oxidizers could change the structure and properties of the passivation substance, and work positively for eliminating the accumulation of passivation substance. In the bioleaching process, the uranium bioleaching experiments showed the recovery percentage of uranium reached 99.5% with Consortium ISO, 6.3% more than that of Consortium IO. (author)

  4. Thin zirconium oxides

    International Nuclear Information System (INIS)

    Oviedo, Cristina

    2000-01-01

    Polycrystalline Zr and two pure Zr single-crystal samples, one oriented with the normal to the surface parallel to the c-axis of the hcp structure (Z1) and the other with the normal perpendicular to c (Z2), were oxidised at 10 -8 , 10 -7 and 10 -6 Torr and room temperature. Oxidation kinetics, composition and thicknesses of the oxide films formed in each case were analyzed using XPS (X-ray Photoelectron Spectroscopy) as the main technique. The oxidation kinetics followed logarithmic laws in all cases. The deconvolution of XPS Zr3d peaks indicated the formation of two Zr-O compounds before the formation of ZrO 2 . Varying the photoelectrons take-off angle, the compound distribution inside the oxide films could be established. Thus, it was confirmed that the most external oxide, in contact with the gas, was ZrO 2 . The thickness of the films grown at the different pressures was determined. In the polycrystalline samples, thicknesses between 15 and 19 ± 2Angstroem were obtained for pressures between 10 -8 and 10 -6 Torr, in close coincidence with the determined ones for Z2. The thicknesses measured in Z1 were smaller, reaching 13 ± 2Angstroem for the oxidations performed at 10 -6 Torr. (author)

  5. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  6. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  7. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  8. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  9. Chemical composition and antifungal activities of essential oils of Satureja thymbra L. and Salvia pomifera ssp. calycina (Sm.) Hayek

    NARCIS (Netherlands)

    Glamoclija, J.; Sokovic, M.; Vukojevic, J.; Milenkovic, I.; Griensven, van L.J.L.D.

    2006-01-01

    This work covers the chemical composition and antifungal activities of essential oils isolated from savory (Satureja thymbra) and sage (Salvia pomifera ssp. calycina) analyzed using GC/MS. The main components of S. thymbra oil were gamma-terpinene (23.2%) and carvacrol (48.5%). The main components

  10. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  11. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    2018-05-01

    Full Text Available Graphene oxide (GO, modified with anti-aging agent p-phenylenediamine (PPD, was added into nitrile rubber (NBR in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Raman, and X-ray diffraction (XRD. Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA show an increased storage modulus (G’ and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn–Wall–Ozawa (FWO equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical properties (tensile strength and elongation at break of both before and after aged NBR/GO–PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  12. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    Science.gov (United States)

    Kronawitter, Coleman Xaver

    Photoelectrochemistry and its associated technologies show unique potential to facilitate the large-scale production of solar fuels—those energy-rich chemicals obtained through conversion processes driven by solar energy, mimicking the photosynthetic process of green plants. The critical component of photoelectrochemical devices designed for this purpose is the semiconductor photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with respect to the redox couple of the electrolyte to drive the relevant electrochemical reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient and stable conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions. The unique range of functional properties of oxides, and especially the oxides of transition metals, relates to their associated diversity of cation oxidation states, cation electronic configurations, and crystal structures. In this dissertation, the use of metal oxide films, nanomaterials, and heterostructures in photoelectrodes enabling the solar-driven oxidation of water and generation of hydrogen fuel is examined. A range of transition- and post-transition-metal oxide material systems and nanoscale architectures is presented. The first chapters present results related to electrodes based on alpha-phase iron(III) oxide, a promising visible-light-active material widely investigated for this application. Studies of porous films fabricated by physical vapor deposition reveal the importance of structural quality, as determined by the deposition substrate temperature, on photoelectrochemical performance. Heterostructures with nanoscale feature dimensionality are explored and reviewed in a later chapter

  13. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  15. Oxidation-resistant cermet

    Science.gov (United States)

    Phillips, W. M.

    1977-01-01

    Chromium metal alloys and chromium oxide ceramic are combined to produce cermets with oxidation-resistant properties. Application of cermets includes use in hot corrosive environments requiring strong resistive materials.

  16. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  17. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  18. Direct oxide reducing method

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu.

    1995-01-01

    Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)

  19. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  20. Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species.

    Science.gov (United States)

    Messaoud, C; Chograni, H; Boussaid, M

    2012-11-01

    A comparative study of essential oil composition, polyphenol content and antioxidant activities of Lavandula coronopifolia, Lavandula multifida and Lavandula stoechas subsp. stoechas were reported. Qualitative and quantitative variations in the composition of oils according to species were shown. Lavandula coronopifolia's oil was characterised by high proportions of trans-β-ocimene (26.9%), carvacrol (18.5%), β-bisabolene (13.1%) and myrcene (7.5%). The main components of L. multifida oil are carvacrol (65.1%) and β-bisabolene (24.7%). Lavandula stoechas oil is rich in fenchone (34.3%) and comphor (27.4%). The total phenolic and flavonoid contents also significantly varied among species. Lavandula coronopifolia exhibits the highest phenolic and flavonoid contents (31.3 mg GAE g(-1) and 16.3 mg RE g(-1), respectively), followed by L. multifida (30.8 mg GAE g(-1) and 12.3 mg RE g(-1)). Methanolic extracts and essential oils displayed significant antioxidant activities. The level of antioxidant capacity varied according to extracts and species.

  1. Inhibitory effects of selected Turkish spices and oregano components on some foodborne fungi.

    Science.gov (United States)

    Akgül, A; Kivanç, M

    1988-05-01

    The inhibitory effects of 10 selected Turkish spices, oregano essential oil, thymol and carvacrol towards growth of 9 foodborne fungi were investigated in culture media with pH 3.5 and 5.5. The antifungal effects of sodium chloride, sorbic acid and sodium benzoate and the combined use of oregano with sodium chloride were also tested under the same conditions for comparison. Of the spices tested, only sodium chloride were also tested under the same conditions for comparison. Of the spices tested, only oregano at 1.0, 1.5, 2.0% (w/v) levels showed effect on all fungi. 8% (w/v) sodium chloride was less effective than oregano. Oregano essential oil, thymol or carvacrol at concentrations of 0.025% and 0.05% completely inhibited the growth of all fungi, showing greater inhibition than sorbic acid at the same concentrations. The combined use of oregano and sodium chloride exhibited a synergistic antifungal effect.

  2. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) andOriganum vulgare L.

    Science.gov (United States)

    Faleiro, Leonor; Miguel, Graça; Gomes, Sónia; Costa, Ludmila; Venâncio, Florencia; Teixeira, Adriano; Figueiredo, A Cristina; Barroso, José G; Pedro, Luis G

    2005-10-19

    Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.

  3. Chemical constituents isolated from the bark of Guatteria blepharophylla (Annonaceae) and their antiproliferative and antimicrobial activities

    International Nuclear Information System (INIS)

    Costa, Emmanoel V.; Marques, Francisco de Assis; Maia, Beatriz H.L.N.S.; Pinheiro, Maria Lucia B.; Braga, Raquel M.; Delarmelina, Camila; Duarte, Marta Cristina T.; Ruiz, Ana Lucia T.G.; Carvalho, Joao Ernesto de

    2011-01-01

    Phytochemical study of the bark of Guatteria blepharophylla (Mart.) Mart. afforded twelve compounds, namely two sesquiterpenes, caryophyllene oxide (1) and spathulenol (3), one xanthone, lichexanthone (2), a mixture of steroids, b-sitosterol (4), and stigmasterol (5), and seven isoquinoline alkaloids, O-methylmoschatoline (6), lysicamine (7), nornuciferine (8), liriodenine (9), isocoreximine (10), subsessiline (11), and isomoschatoline (12). Their structures were established on the basis of spectroscopic methods. Compounds 1-6, 11 and 12 were reported for the first time in this species. The 13 C NMR (nuclear magnetic resonance) data for the compounds 11 and 12 are described for the first time in the literature. The antiproliferative activity against human tumour cell lines and antimicrobial activities were investigated for the major compounds. Compound 9 showed significant activity against cell lines of breast (MCF-7, Michigan Cancer Foundation-7), superior to the positive control doxorubicin. Compound 12 presented antifungal activity similar to the positive control nystatin against Candida albicans. (author)

  4. Composition of essential oils from the leaves of six species of the Baccharis genus from 'campos de altitude' of the atlantic forest of Sao Paulo; Composicao quimica dos oleos essenciais das folhas de seis especies do genero Baccharis de 'campos de altitude' da Mata Atlantica Paulista

    Energy Technology Data Exchange (ETDEWEB)

    Lago, Joao Henrique G.; Romoff, Paulete; Favero, Oriana A. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades]. E-mail: joaolago@mackenzie.com.br; Soares, Marisi G.; Baraldi, Patricia T.; Correa, Arlene G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Souza, Fatima O. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Curadoria do Herbario

    2008-07-01

    The essential oils from the leaves of six species of the Baccharis genus (B. dracunculifolia, B. microdonta, B. regnelli, B. schultzii, B. trimera, and B. uncinella), collected in the 'Campos de Altitude' of the Atlantic Forest (SP), were extracted using hydrodistillation procedures and analyzed by GC and GC/MS. There was a predominance of sesquiterpenes in all studied oils as {beta}-elemene in B. dracunculifolia and B. regnelli, {alpha}-humulene in B. trimera, {gamma}-gurjunene in B. schultzii, bicyclogermacrene in B. regnelli, {delta}-cadinene in B. regnelli and B. uncinella, spathulenol in B. schultzii, caryophyllene oxide in B. microdonta and guaiol in B. uncinella. However, a high amount of monoterpenes was also observed in B. uncinella ({alpha}-pinene), B. regnelli ({delta}-car-3-ene) and B. schultzii (limonene). The chemical compounds of the essential oils of B. schultzii, B. regnelli and B. microdonta are described for the first time in this work. (author)

  5. Composition of the Essential Oil of Aristolochia Manshurientsis Kom

    Science.gov (United States)

    Zhao, Xiuhong; Xin, Guang; Zhao, Lichun; Xiao, Zhigang; Xue, Bai

    2018-03-01

    This study demonstrated the chemical constituents of the essential oil of Aristolochia manshurientsis Kom and improved the essential oil efficiency by the enzyme-assisted extraction followed by hydrodistillation. The essential oils of Aristolochia manshurientsis Kom acquired by hydrodistillation after the solvent extraction with and without the assistance of cellulase have been investigated by gas chromatography/Mass spectrometry (GC-MS). The predominant constituents of both types of essential oils are camphene, 1,7,7-trimethyl-bicyclo [2.2.1] hept-2-yl acetate, 1,6-dimethyl-4-(1-methylethyl) naphthalene, caryophyllene oxide, borneol, and (-)-Spathulenol. The enzyme-assisted extraction not only increased extracting efficiency of the essential oil from 4.93% to 9.36%, but also facilitated the extraction of additional eight compounds such as 2-methano(-6,6-dimethyl) bicycle [3.1.1] hept-2-ene, (+)--terpineol and 1-propyl-3-(propen-1-yl) adamantane, which were not identified from the non-enzyme extraction sample.

  6. Estudo fitoquímico da madeira de Guarea macrophylla (Meliaceae Phytochemical study of the wood from Guarea macrophylla (Meliaceae

    Directory of Open Access Journals (Sweden)

    João Henrique G. Lago

    2009-01-01

    Full Text Available In the present work, the crude ethanol extract from wood of G. macrophylla was submitted to liquid/liquid partition between hexane, CH2Cl2, EtOAc and n-BuOH. Each phase was individually chromatographed over silica gel, Sephadex LH-20 or Amberlite XAD-2 to give eight terpene derivatives, such as five sesquiterpenoids (caryophyllene oxide, guai-6-en-10β-ol, spathulenol, aromadendrane-4β,10α-diol and aloaromadendrane-4α,10β-diol as well as three triterpenoids (cicloart-24-ene-3β,23(R*-diol, cicloart-24-ene-3β,23(S*-diol, and cicloart-23E-ene-3β,25-diol. Additionally, were isolated three fatty acids (linolenic, linoleic and stearic, two steroids (sitosterol and stigmasterol and sacarose. The structures of all these compounds were characterized by spectrometric analysis, mainly mass spectrometry and NMR and comparison of these data described in the literature.

  7. Chemical constituents isolated from the bark of Guatteria blepharophylla (Annonaceae) and their antiproliferative and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Emmanoel V.; Marques, Francisco de Assis; Maia, Beatriz H.L.N.S., E-mail: noronha@ufpr.b [Universidade Federal do Parana (DQ/UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Pinheiro, Maria Lucia B. [Universidade Federal do Amazonas (DQ/UFAM), Manaus, AM (Brazil). Dept. de Quimica; Braga, Raquel M. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica; Delarmelina, Camila; Duarte, Marta Cristina T.; Ruiz, Ana Lucia T.G.; Carvalho, Joao Ernesto de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Div. de Microbiologia e Div. Farmacologia e Toxicologia

    2011-07-01

    Phytochemical study of the bark of Guatteria blepharophylla (Mart.) Mart. afforded twelve compounds, namely two sesquiterpenes, caryophyllene oxide (1) and spathulenol (3), one xanthone, lichexanthone (2), a mixture of steroids, b-sitosterol (4), and stigmasterol (5), and seven isoquinoline alkaloids, O-methylmoschatoline (6), lysicamine (7), nornuciferine (8), liriodenine (9), isocoreximine (10), subsessiline (11), and isomoschatoline (12). Their structures were established on the basis of spectroscopic methods. Compounds 1-6, 11 and 12 were reported for the first time in this species. The {sup 13}C NMR (nuclear magnetic resonance) data for the compounds 11 and 12 are described for the first time in the literature. The antiproliferative activity against human tumour cell lines and antimicrobial activities were investigated for the major compounds. Compound 9 showed significant activity against cell lines of breast (MCF-7, Michigan Cancer Foundation-7), superior to the positive control doxorubicin. Compound 12 presented antifungal activity similar to the positive control nystatin against Candida albicans. (author)

  8. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage.

    Science.gov (United States)

    Koldaş, Serkan; Demirtas, Ibrahim; Ozen, Tevfik; Demirci, Mehmet Ali; Behçet, Lütfi

    2015-03-15

    A detailed phytochemical analysis of Origanum vulgare L. ssp. viride (Boiss.) Hayek was carried out and the antioxidant activities of five different crude extracts were determined. The antiproliferative activities of the extracts were determined using the xCELLigence system (Real Time Cell Analyzer). Differences between the essential oil and volatile organic compound profiles of the plant were shown. The main component of the essential oil was caryophyllene oxide, while the main volatile organic compounds were sabinene and eucalyptol as determined by HS-GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Ten phenolic compounds were found in the extracts from O. vulgare and Origanum acutidens: rosmarinic acid (in highest abundance), chicoric acid, caffeic acid, p-coumaric acid, gallic acid, quercetin, apigenin-7-glucoside, kaempferol, naringenin and 4-hydroxybenzaldehyde. This study provides first results on the antiproliferative and antioxidant properties and detailed phytochemical screening of O. vulgare ssp. viride (Boiss.) Hayek. © 2014 Society of Chemical Industry.

  9. Composition of essential oils from the leaves of six species of the Baccharis genus from 'campos de altitude' of the atlantic forest of Sao Paulo

    International Nuclear Information System (INIS)

    Lago, Joao Henrique G.; Romoff, Paulete; Favero, Oriana A.; Soares, Marisi G.; Baraldi, Patricia T.; Correa, Arlene G.; Souza, Fatima O.

    2008-01-01

    The essential oils from the leaves of six species of the Baccharis genus (B. dracunculifolia, B. microdonta, B. regnelli, B. schultzii, B. trimera, and B. uncinella), collected in the 'Campos de Altitude' of the Atlantic Forest (SP), were extracted using hydrodistillation procedures and analyzed by GC and GC/MS. There was a predominance of sesquiterpenes in all studied oils as β-elemene in B. dracunculifolia and B. regnelli, α-humulene in B. trimera, γ-gurjunene in B. schultzii, bicyclogermacrene in B. regnelli, δ-cadinene in B. regnelli and B. uncinella, spathulenol in B. schultzii, caryophyllene oxide in B. microdonta and guaiol in B. uncinella. However, a high amount of monoterpenes was also observed in B. uncinella (α-pinene), B. regnelli (δ-car-3-ene) and B. schultzii (limonene). The chemical compounds of the essential oils of B. schultzii, B. regnelli and B. microdonta are described for the first time in this work. (author)

  10. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    OpenAIRE

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functi...

  11. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation

    OpenAIRE

    Pietro eCeli; Pietro eCeli; Gianfranco eGabai

    2015-01-01

    This review examines the role that oxidative stress, and protein oxidation in particular, plays in nutrition, metabolism and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional m...

  12. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  13. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  15. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank

    2009-01-01

    First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...... the Ni surfaces to other metals of interest. This allows the reactivity over the different metals to be understood in terms of two reactivity descriptors, namely, the carbon and oxygen adsorption energies. By combining a simple free-energy analysis with microkinetic modeling, activity landscapes of anode...

  16. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  17. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, T. [Kansas State Univ., Manhattan, KS (United States); Wei, D. [Kansas State Univ., Manhattan, KS (United States); Nepal, N. [Naval Research Lab. (NRL), Washington, DC (United States); Garces, N. Y. [Naval Research Lab. (NRL), Washington, DC (United States); Hite, J. K. [Naval Research Lab. (NRL), Washington, DC (United States); Meyer, H. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddy, C. R. [Naval Research Lab. (NRL), Washington, DC (United States); Baker, Troy [Nitride Solutions, Wichita, KS (United States); Mayo, Ashley [Nitride Solutions, Wichita, KS (United States); Schmitt, Jason [Nitride Solutions, Wichita, KS (United States); Edgar, J. H. [Kansas State Univ., Manhattan, KS (United States)

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  18. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  19. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  20. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    International Nuclear Information System (INIS)

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-01-01

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  1. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  2. Oxidation of tritium by hopcalite bed

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Masabumi; Shinnai, Kohsuke; Matsunaga, Sohichi; Kinoshita, Yoshihiko

    1984-08-01

    Oxidation by the catalyst bed with a metal oxide and subsequent adsorption to the porous dehydrative reagents is supposed to be effective process for scavenging tritium from an inert atmosphere. Use of spongy copper oxide or wires of copper oxide is not recommended to use as the metal oxide catalyst from the view point of mass transfer because of sintering and of limited effective surface area. Use of hopcalites and copper oxide-kieselguhr are examined in this study and it is concluded that hopcalites are more suitable as the metal oxide catalyst because they not only remain the oxidation power on hydrogen isotopes even at an ambient temperature, but also show a negligible drop in oxidation performances with repeated regeneration. The effective temperature is about 400/sup 0/C for hopcalites and 300-600/sup 0/C for copper oxide-kieselguhr to use as the oxidation bed of tritium.

  3. Oxidation of tritium by hopcalite bed

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Shinnai, Kohsuke; Matsunaga, Sohichi; Kinoshita, Yoshihiko

    1984-01-01

    Oxidation by the catalyst bed with a metal oxide and subsequent adsorption to the porous dehydrative reagents is supposed to be effective process for scavenging tritium from an inert atmosphere. Use of spongy copper oxide or wires of copper oxide is not recommended to use as the metal oxide catalyst from the view point of mass transfer because of sintering and of limited effective surface area. Use of hopcalites and copper oxide-kieselguhr are examined in this study and it is concluded that hopcalites are more suitable as the metal oxide catalyst because they not only remain the oxidation power on hydrogen isotopes even at an ambient temperature, but also show a negligible drop in oxidation performances with repeated regeneration. The effective temperature is about 400 0 C for hopcalites and 300--600 0 C for copper oxide-kieselguhr to use as the oxidation bed of tritium. (author)

  4. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    Science.gov (United States)

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differential Response of a Local Population of Entomopathogenic Nematodes to Non-Native Herbivore Induced Plant Volatiles (HIPV) in the Laboratory and Field.

    Science.gov (United States)

    Rivera, Monique J; Rodriguez-Saona, Cesar; Alborn, Hans T; Koppenhöfer, Albrecht M

    2016-12-01

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which they were identified. We compared (E)-β-caryophyllene and pregeijerene in the highbush blueberry (Vaccinium corymbosum) agroecosystem in their ability to enhance the attraction of EPN to and efficacy against the system's herbivore, oriental beetle (Anomala orientalis). The relative attractiveness of (E)-β-caryophyllene and pregeijerene to a local isolate of the EPN species Steinernema glaseri was tested in a six-arm olfactometer in the laboratory to gather baseline values of attraction to the chemicals alone in sand substrate before field tests. A similar arrangement was used in a V. corymbosum field by placing six cages with assigned treatments and insect larvae with and without compound into the soil around the base of 10 plants. The cages were removed after 72 h, and insect baits were retrieved and assessed for EPN infection. The lab results indicate that in sand alone (E)-β-caryophyllene is significantly more attractive than pregeijerene to the local S. glaseri isolate Conversely, there was no difference in attractiveness in the field study, but rather, native S. glaseri were more attracted to cages with G. mellonella larvae, no larvae, and cages with the blank control and G. mellonella larvae.

  6. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  7. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  8. Guajadial: an unusual meroterpenoid from guava leaves Psidium guajava.

    Science.gov (United States)

    Yang, Xiao-Long; Hsieh, Kun-Lung; Liu, Ji-Kai

    2007-11-22

    Guajadial (1), a novel caryophyllene-based meroterpenoid, was isolated from the Leaves of Psidium guajava (guava). The structure and relative stereochemistry of guajadial (1) were elucidated by extensive spectroscopic analysis. A possible biosynthetic pathway for 1 was proposed.

  9. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  10. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  11. Poly(ethylene oxide)–Poly(propylene oxide)-Based Copolymers for ...

    African Journals Online (AJOL)

    Amphiphilic poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO)-based copolymers are thermoresponsive materials having aggregation properties in aqueous medium. As hydrosolubilizers of poorly water-soluble drugs and improved stability of sensitive agents, these materials have been investigated for improvement ...

  12. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    International Nuclear Information System (INIS)

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  13. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim

  14. Molecular theory of graphene oxide.

    Science.gov (United States)

    Sheka, Elena F; Popova, Nadezhda A

    2013-08-28

    Applied to graphene oxide, the molecular theory of graphene considers its oxide as a final product in the succession of polyderivatives related to a series of oxidation reactions involving different oxidants. The graphene oxide structure is created in the course of a stepwise computational synthesis of polyoxides of the (5,5) nanographene molecule governed by an algorithm that takes into account the molecule's natural radicalization due to the correlation of its odd electrons, the extremely strong influence of the structure on properties, and a sharp response of the molecule behavior on small actions of external factors. Taking these together, the theory has allowed for a clear, transparent and understandable explanation of the hot points of graphene oxide chemistry and suggesting reliable models of both chemically produced and chemically reduced graphene oxides.

  15. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan, E-mail: swaminathan@kist.re.kr [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of); Krishna, Nanda Gopala [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kim, Dong-Ik, E-mail: dongikkim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of)

    2015-10-30

    Highlights: • Initial oxidation characteristics of Cu-bearing austenitic stainless steel at 650 °C were studied. • Strong segregation and oxidation of Mn and Nb were found in the entire oxide scale. • Surface coverage by metallic Cu-rich precipitates increases with exposure time. • Chemical heterogeneity of oxide scale revealed initial oxidation to be non-selective. • Fe-Cr and Mn-Cr mixed oxides were realized along with binary oxides of Fe, Cr and Mn. - Abstract: Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr{sub 2}O{sub 4} and MnCr{sub 2}O{sub 4} along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  16. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  17. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Komen, Jasper; Kemp, Stephan

    2011-01-01

    Fatty acids (FAs) can be degraded via different mechanisms including alpha-, beta- and omega-oxidation. In humans, a range of different genetic diseases has been identified in which either mitochondrial FA beta-oxidation, peroxisomal FA beta-oxidation or FA alpha-oxidation is impaired. Treatment

  18. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  19. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  20. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...