WorldWideScience

Sample records for cartilage repair current

  1. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Ralph M. Jeuken

    2016-06-01

    Full Text Available Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

  2. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair: International Cartilage Repair Society Recommendations Based on Current Scientific Evidence and Standards of Clinical Care

    OpenAIRE

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for t...

  3. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  4. Preclinical Studies for Cartilage Repair

    OpenAIRE

    Hurtig, Mark B.; Buschmann, Michael D; Fortier, Lisa A; Hoemann, Caroline D; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral...

  5. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  6. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  7. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  8. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair

    OpenAIRE

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for t...

  9. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  10. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  11. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  12. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne Maria)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  13. Cartilage change after arthroscopic repair for an isolated meniscal tear.

    Science.gov (United States)

    Soejima, Takashi; Murakami, Hidetaka; Inoue, Takashi; Kanazawa, Tomonoshin; Katouda, Michihiro; Nagata, Kensei

    2005-01-01

    To investigate the direct effect to the cartilage caused by the meniscal repair, we examined patients who underwent an isolated meniscal repair without any other abnormalities by arthroscopic examination. A total of 17 patients were examined by second-look arthroscopy after an average interval of 9 months from the meniscal repair, and have been evaluated the status of the repaired meniscus and of the relative femoral condylar cartilage. Changes in the severity of the cartilage lesion between at the time of meniscal repair and the time of the second-look arthroscopy were considered based on the status of the repaired meniscus. Regardless of the healing status of the repair site, it was possible to prevent degeneration in the cartilage in 9 of the 10 patients who demonstrated no degeneration in the meniscal body. Of the 7 patients who demonstrated degeneration in the meniscal body, progression in cartilage degeneration was noted as 1 grade in 2 patients and 2 grades in another 3 patients. Even in those in which stable fusion of the repair site was achieved, the condition of the inner meniscal body was not necessarily maintained favorably in all cases, indicating that degeneration in the meniscal body was a risk factor for cartilage degeneration. It was concluded that recovery could not be expected even at 9 months after the repair if the lesion had already demonstrated degeneration in the meniscal body at the time of repair.

  14. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    OpenAIRE

    Bastiaansen-Jenniskens, Yvonne Maria

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repairing or maintaining the ECM homeostasis. We therefore investigated the ability to modulate the formation of a functional collagen type II network that can ultimately contribute to innovation of car...

  15. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; LI Fo-bao; SHEN Hui-liang; LIAO Wei-ming; LIU Miao; WANG Min; CAO Jun-ling

    2006-01-01

    Objective: To investigate the effect of cancellous bone matrix gelatin (BMG) engineered with allogeneic chondrocytes in repairing articular cartilage defects in rabbits.Methods: Chondrocytes were seeded onto three-dimensional cancellous BMG and cultured in vitro for 12 days to prepare BMG-chondrocyte complexes. Under anesthesia with 2.5% pentobarbital sodium (1 ml/kg body weight), articular cartilage defects were made on the right knee joints of 38 healthy New Zealand white rabbits (regardless of sex, aged 4-5 months and weighing 2.5-3 kg) and the defects were then treated with 2.5 % trypsin.Then BMG-chondrocyte complex (Group A, n=18 ),BMG ( Group B, n=10), and nothing ( Group C, n=10)were implanted into the cartilage defects, respectively. The repairing effects were assessed by macroscopic, histologic,transmission electron microscopic (TEM) observation,immunohistochemical examination and in situ hybridization detection, respectively, at 2, 4, 8, 12 and 24 weeks after operation.Results: Cancellous BMG was degraded within 8 weeks after operation. In Group A, lymphocyte infiltration was observed around the graft. At 24 weeks after operation, the cartilage defects were repaired by cartilage tissues and the articular cartilage and subchondral bone were soundly healed. Proteoglycan and type Ⅱ collagen were detected in the matrix of the repaired tissues by Safranin-O staining and immunohistochemical staining,respectively. In situ hybridization proved gene expression of type Ⅱ collagen in the cytoplasm of chondrocytes in the repaired tissues. TEM observation showed that chondrocytes and cartilage matrix in repaired tissues were almost same as those in the normal articular cartilage. In Group B, the defects were repaired by cartilage-fibrous tissues. In Group C, the defects were repaired only by fibrous tissues.Conclusions : Cancellous BMG can be regarded as the natural cell scaffolds for cartilage tissue engineering.Articular cartilage defects can be repaired by

  16. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.

    Science.gov (United States)

    Ching, Kuan Y; Andriotis, Orestis G; Li, Siwei; Basnett, Pooja; Su, Bo; Roy, Ipsita; Tare, Rahul S; Sengers, Bram G; Stolz, Martin

    2016-07-01

    Articular cartilage defects, when repaired ineffectively, often lead to further deterioration of the tissue, secondary osteoarthritis and, ultimately, joint replacement. Unfortunately, current surgical procedures are unable to restore normal cartilage function. Tissue engineering of cartilage provides promising strategies for the regeneration of damaged articular cartilage. As yet, there are still significant challenges that need to be overcome to match the long-term mechanical stability and durability of native cartilage. Using electrospinning of different blends of biodegradable poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate), we produced polymer scaffolds and optimised their structure, stiffness, degradation rates and biocompatibility. Scaffolds with a poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) ratio of 1:0.25 exhibit randomly oriented fibres that closely mimic the collagen fibrillar meshwork of native cartilage and match the stiffness of native articular cartilage. Degradation of the scaffolds into products that could be easily removed from the body was indicated by changes in fibre structure, loss of molecular weight and a decrease in scaffold stiffness after one and four months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes revealed a hyaline-like cartilage matrix. The ability to fine tune the ultrastructure and mechanical properties using different blends of poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) allows to produce a cartilage repair kit for clinical use to reduce the risk of developing secondary osteoarthritis. We further suggest the development of a toolbox with tailor-made scaffolds for the repair of other tissues that require a 'guiding' structure to support the body's self-healing process.

  17. Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair

    NARCIS (Netherlands)

    Neves, Sara C.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Alves, Natália M.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT

  18. Repair of the superior sulcus deformity using autogenous costal cartilage.

    Science.gov (United States)

    Sutula, F C; Thomas, O

    1982-05-01

    Superior sulcus deformity is a late sequela of surgical anophthalmos. Many methods have been proposed to treat this difficult problem. A technique using autogenous costal cartilage that has resulted in satisfactory repair is presented. In addition to standard photographs and exophthalmometry measurements to follow these patients, a specific device to accurately measure orbital volume gain after operation was fashioned. PMID:7099560

  19. The benefits and limitations of animal models for translational research in cartilage repair.

    Science.gov (United States)

    Moran, Conor J; Ramesh, Ashwanth; Brama, Pieter A J; O'Byrne, John M; O'Brien, Fergal J; Levingstone, Tanya J

    2016-12-01

    Much research is currently ongoing into new therapies for cartilage defect repair with new biomaterials frequently appearing which purport to have significant regenerative capacity. These biomaterials may be classified as medical devices, and as such must undergo rigorous testing before they are implanted in humans. A large part of this testing involves in vitro trials and biomechanical testing. However, in order to bridge the gap between the lab and the clinic, in vivo preclinical trials are required, and usually demanded by regulatory approval bodies. This review examines the in vivo models in current use for cartilage defect repair testing and the relevance of each in the context of generated results and applicability to bringing the device to clinical practice. Some of the preclinical models currently used include murine, leporine, ovine, caprine, porcine, canine, and equine models. Each of these has advantages and disadvantages in terms of animal husbandry, cartilage thickness, joint biomechanics and ethical and licencing issues. This review will examine the strengths and weaknesses of the various animal models currently in use in preclinical studies of cartilage repair. PMID:26915001

  20. Tissue engineering for articular cartilage repair – the state of the art

    Directory of Open Access Journals (Sweden)

    B Johnstone

    2013-05-01

    Full Text Available Articular cartilage exhibits little capacity for intrinsic repair, and thus even minor injuries or lesions may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. While there have been numerous attempts to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, there remain significant challenges in the clinical application of cell-based therapies for cartilage repair. This paper reviews the current state of cartilage tissue engineering with respect to different cell sources and their potential genetic modification, biomaterial scaffolds and growth factors, as well as preclinical testing in various animal models. This is not intended as a systematic review, rather an opinion of where the field is moving in light of current literature. While significant advances have been made in recent years, the complexity of this problem suggests that a multidisciplinary approach – combining a clinical perspective with expertise in cell biology, biomechanics, biomaterials science and high-throughput analysis will likely be necessary to address the challenge of developing functional cartilage replacements. With this approach we are more likely to realise the clinical goal of treating both focal defects and even large-scale osteoarthritic degenerative changes in the joint.

  1. Xenotransplantation of pig chondrocytes: therapeutic potential and barriers for cartilage repair.

    Science.gov (United States)

    Sommaggio, R; Uribe-Herranz, M; Marquina, M; Costa, C

    2016-01-01

    Transplantation may be the best option for the repair of many cartilage lesions including early osteoarthritis. Currently, autologous and allogeneic chondrocytes are grafted into cartilage defects to treat selected patients with moderate clinical success. However, their limited use justifies exploring novel therapies for cartilage repair. Xenotransplantation could become a solution by offering high cell availability, quality and genetic engineering capabilities. The rejection process of xenogeneic cartilage is thus being elucidated in order to develop counteractive strategies. Initial studies determined that pig cartilage xenografts are rejected by a slow process comprising humoral and cellular responses in which the galactose α1,3-galactose antigen participates. Since then, our group has identified key mechanisms of the human response to pig chondrocytes (PCs). In particular, human antibody and complement contribute to PC rejection by inducing a pro-inflammatory milieu. Furthermore, PCs express and up-regulate molecules which are functionally relevant for a variety of cellular immune responses (SLA-I, the potent co-stimulatory molecule CD86, and adhesion molecules VCAM-1 and ICAM-1). These participate by triggering a T cell response, as well as supporting a prominent role of the innate immune responses led by natural killer (NK) cells and monocytes/macrophages. Human NK cells lyse PCs by using selected NK activating receptors, whereas human monocytes are activated by PCs to secrete cytokines and chemokines. All this knowledge sets the bases for the development of genetic engineering approaches designed to avert rejection of xenogeneic chondrocytes and leads the way to developing new clinical applications for cartilage repair. PMID:27377665

  2. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  3. A stem cell-based approach to cartilage repair.

    Science.gov (United States)

    Johnson, Kristen; Zhu, Shoutian; Tremblay, Matthew S; Payette, Joshua N; Wang, Jianing; Bouchez, Laure C; Meeusen, Shelly; Althage, Alana; Cho, Charles Y; Wu, Xu; Schultz, Peter G

    2012-05-11

    Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis. PMID:22491093

  4. The benefits and limitations of animal models for translational research in cartilage repair

    OpenAIRE

    Moran, Conor J.; Ramesh, Ashwanth; Brama, Pieter A. J.; O’Byrne, John M.; O’Brien, Fergal J; Levingstone, Tanya J

    2016-01-01

    Much research is currently ongoing into new therapies for cartilage defect repair with new biomaterials frequently appearing which purport to have significant regenerative capacity. These biomaterials may be classified as medical devices, and as such must undergo rigorous testing before they are implanted in humans. A large part of this testing involves in vitro trials and biomechanical testing. However, in order to bridge the gap between the lab and the clinic, in vivo preclinical trials are...

  5. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke;

    2015-01-01

    repair techniques and evaluating the use of two defects per knee. METHODS: Sixteen fully mature Göttingen minipigs were used. The minipigs received bilateral trochlear osteochondral drill-hole defects or chondral defects (Ø 6 mm), either one defect per knee or two defects per knee. The defects were...... treated with one of the following: Matrix-induced autologous chondrocyte implantation (MACI), microfracture (MFx), autologous-dual-tissue transplantation (ADTT), autologous bone graft, autologous cartilage chips. Empty chondral and osteochondral defects were used as controls. MRI and CT were performed 3...

  6. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue

    OpenAIRE

    Gelse, K; A Olk; Eichhorn, S.; B Swoboda; M Schoene; K Raum

    2010-01-01

    The increasing spectrum of different cartilage repair strategies requires the introduction of adequate non-destructive methods to analyse their outcome in-vivo, i.e. arthroscopically. The validity of non-destructive quantitative ultrasound biomicroscopy (UBM) was investigated in knee joints of five miniature pigs. After 12 weeks, six 5-mm defects, treated with different cartilage repair approaches, provided tissues with different structural qualities. Healthy articular cartilage from each con...

  7. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue

    Directory of Open Access Journals (Sweden)

    K Gelse

    2010-02-01

    Full Text Available The increasing spectrum of different cartilage repair strategies requires the introduction of adequate non-destructive methods to analyse their outcome in-vivo, i.e. arthroscopically. The validity of non-destructive quantitative ultrasound biomicroscopy (UBM was investigated in knee joints of five miniature pigs. After 12 weeks, six 5-mm defects, treated with different cartilage repair approaches, provided tissues with different structural qualities. Healthy articular cartilage from each contralateral unoperated knee joint served as a control. The reflected and backscattered ultrasound signals were processed to estimate the integrated reflection coefficient (IRC and apparent integrated backscatter (AIB parameters. The cartilage repair tissues were additionally assessed biomechanically by cyclic indentation, histomorphologically and immunohistochemically. UBM allowed high-resolution visualisation of the structure of the joint surface and subchondral bone plate, as well as determination of the cartilage thickness and demonstrated distinct differences between healthy cartilage and the different repair cartilage tissues with significant higher IRC values and a steeper negative slope of the depth-dependent backscatter amplitude AIBslope for healthy cartilage. Multimodal analyses revealed associations between IRC and the indentation stiffness. Furthermore, AIBslope and AIB at the cartilage-bone boundary (AIBdC were associated with the quality of the repair matrices and the subchondral bone plate, respectively. This ex-vivo pilot study confirms that UBM can provide detailed imaging of articular cartilage and the subchondral bone interface also in repaired cartilage defects, and furthermore, contributes in certain aspects to a basal functional characterization of various forms of cartilage repair tissues. UBM could be further established to be applied arthroscopically in-vivo.

  8. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  9. Tissue engineering for articular cartilage repair – the state of the art

    OpenAIRE

    Johnstone, B.; Alini, M.; M Cucchiarini; GR Dodge; Eglin, D.; F Guilak; Madry, H.; Mata, A.; RL Mauck; CE Semino; MJ Stoddart

    2013-01-01

    Articular cartilage exhibits little capacity for intrinsic repair, and thus even minor injuries or lesions may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. While there have been numerous attempts to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, there remain significant challenges in the clinical application of cell-based therapies for cartilage repair. This paper reviews the cu...

  10. Dry Arthroscopy With a Retraction System for Matrix-Aided Cartilage Repair of Patellar Lesions

    OpenAIRE

    Sadlik, Boguslaw; Wiewiorski, Martin

    2014-01-01

    Several commercially available cartilage repair techniques use a natural or synthetic matrix to aid cartilage regeneration (e.g., autologous matrix–induced chondrogenesis or matrix-induced cartilage implantation). However, the use of matrix-aided techniques during conventional knee joint arthroscopy under continuous irrigation is challenging. Insertion and fixation of the matrix can be complicated by the presence of fluid and the confined patellofemoral joint space with limited access to the ...

  11. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis

    NARCIS (Netherlands)

    Wiegant, Karen; Intema, Femke; Van Roermund, Peter M.; Barten-Van Rijbroek, Angelique D.; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C.

    2015-01-01

    Objective. Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, a

  12. Repair of articular cartilage defects in minipigs by microfracture surgery and BMSCs transplantation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee. the left defect received microfracture surgery and was injected with 2. 5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results:Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibro-cartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion:Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.

  13. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    Science.gov (United States)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  14. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    OpenAIRE

    Kunz, Manuela; Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional ap...

  15. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    Science.gov (United States)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration.

  16. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  17. Porous polymers for repair and replacement of the knee joint meniscus and articular cartilage

    NARCIS (Netherlands)

    Klompmaker, Jan

    1992-01-01

    The studies presented here were initiated to answer a variety of questions concerning firstly the repair and replacement of the knee joint meniscus and, secondly, the repair of full-thickness defects of articular cartilage. AIMS OF THE STUDIES I To assess the effect of implantation of a porous polym

  18. Dry arthroscopy with a retraction system for matrix-aided cartilage repair of patellar lesions.

    Science.gov (United States)

    Sadlik, Boguslaw; Wiewiorski, Martin

    2014-02-01

    Several commercially available cartilage repair techniques use a natural or synthetic matrix to aid cartilage regeneration (e.g., autologous matrix-induced chondrogenesis or matrix-induced cartilage implantation). However, the use of matrix-aided techniques during conventional knee joint arthroscopy under continuous irrigation is challenging. Insertion and fixation of the matrix can be complicated by the presence of fluid and the confined patellofemoral joint space with limited access to the lesion. To overcome these issues, we developed a novel arthroscopic approach for matrix-aided cartilage repair of patellar lesions. This technical note describes the use of dry arthroscopy assisted by a minimally invasive retraction system. An autologous matrix-induced chondrogenesis procedure is used to illustrate this novel approach.

  19. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration.

    Science.gov (United States)

    Toh, Wei Seong; Foldager, Casper Bindzus; Pei, Ming; Hui, James Hoi Po

    2014-10-01

    Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.

  20. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    Science.gov (United States)

    Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional approach, (b) optically guided method, or (c) template-guided method. For both image-guided groups, harvest and delivery sites were preoperatively planned using custom-made software. During optically guided surgery, instrument position and orientation were tracked and superimposed onto the surgical plan. For the template-guided group, plastic templates were manufactured to allow an exact fit between template and the joint anatomy. Cylindrical holes within the template guided surgical tools according to the plan. Three months postsurgery, both knees were harvested and computed tomography scans were used to compare the reconstructed versus the native pre-injury joint surfaces. For each repaired defect, macroscopic (International Cartilage Repair Society [ICRS]) and histological repair (ICRS II) scores were assessed. Results: Three months after repair surgery, both image-guided surgical approaches resulted in significantly better histology scores compared with the conventional approach (improvement by 55%, P < 0.02). Interestingly, there were no significant differences found in cartilage surface reconstruction and macroscopic scores between the image-guided and the conventional surgeries. PMID:26069658

  1. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  2. Differentiating the extent of cartilage repair in rabbit ears using nonlinear optical microscopy.

    Science.gov (United States)

    Zhu, X Q; Xu, Y H; Liao, C X; Liu, W G; Cheng, K K; Chen, J X

    2015-11-01

    Nonlinear optical microscopy (NLOM) was used as a noninvasive and label-free tool to detect and quantify the extent of the cartilage recovery. Two cartilage injury models were established in the outer ears of rabbits that created a different extent of cartilage recovery based on the presence or absence of the perichondrium. High-resolution NLOM images were used to measure cartilage repair, specifically through spectral analysis and image texture. In contrast to a wound lacking a perichondrium, wounds with intact perichondria demonstrated significantly larger TPEF signals from cells and matrix, coarser texture indicating the more deposition of type I collagen. Spectral analysis of cells and matrix can reveal the matrix properties and cell growth. In addition, texture analysis of NLOM images showed significant differences in the distribution of cells and matrix of repaired tissues with or without perichondrium. Specifically, the decay length of autocorrelation coefficient based on TPEF images is 11.2 ± 1.1 in Wound 2 (with perichondrium) and 7.5 ± 2.0 in Wound 1 (without perichondrium), indicating coarser image texture and faster growth of cells in repaired tissues with perichondrium (p < 0.05). Moreover, the decay length of autocorrelation coefficient based on collagen SHG images also showed significant difference between Wound 2 and 1 (16.2 ± 1.2 vs. 12.2 ± 2.1, p < 0.05), indicating coarser image texture and faster deposition of collagen in repaired tissues with perichondrium (Wound 2). These findings suggest that NLOM is an ideal tool for studying cartilage repair, with potential applications in clinical medicine. NLOM can capture macromolecular details and distinguish between different extents of cartilage repair without the need for labelling agents.

  3. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-lin; CHEN Wen-zhi; ZHOU Kun; WANG Zhi-biao

    2005-01-01

    Objective: To investigate the effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Methods: Ten adult New Zealand rabbits with bilateral full-thickness osteochondral defects on the cartilage surface of intercondylar fossas were used in this study. The wounds in the left knees were treated with low-intensity pulsed ultrasound as the experimental group. The right knees received no treatment as the control group. All the animals were killed at 8 weeks after injury and the tissues in the wounds were collected for gross appearance grading, histological grading and proteoglycan quantity. Results: The scores of the gross appearance grades, histological grades and the optical density of toluidine blue of the tissues in the experimental group were significantly higher than those of the controls at 8 weeks after injury (P<0.05). Conclusions: Low-intensity pulsed ultrasound can accelerate the repair of injured articular cartilage.

  4. Single-step scaffold-based cartilage repair in the knee: A systematic review.

    Science.gov (United States)

    Fischer, Stefan; Kisser, Agnes

    2016-12-01

    Chondral lesions are difficult-to-treat entities that often affect young and active people. Moreover, cartilage has limited intrinsic healing potential. The purpose of this systematic literature review was to analyse whether the single-step scaffold-based cartilage repair in combination with microfracturing (MFx) is more effective and safe in comparison to MFx alone. From the three identified studies, it seems that the single-step scaffold-assisted cartilage repair in combination with MFx leads to similar short- to medium-term (up to five years follow-up) results, compared to MFx alone. All of the studies have shown improvements regarding joint functionality, pain and partly quality of life. PMID:27408497

  5. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  6. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    Science.gov (United States)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  7. Perichondrium/cartilage composite graft for repairing large tympanic membrane perforations and hearing improvement

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-wei; YANG Hua; GAO Ru-zhen; YU Rong; GAO Zhi-qiang

    2010-01-01

    Background The main risk factors for postoperative failure in tympanoplasties are large perforations that are difficult to repair, annular perforations, and a tympanic membrane (TM) with extensive granular myringitis that require middle ear exploration and mastoidectomy. The aim of this study was to investigate a novel technique of perichondrium/cartilage composite graft for repairing the large TM perforation in the patient of otitis media.Methods Retrospective chart reviews were conducted for 102 patients with large tympanic membrane perforations, who had undergone tympanoplasty from August 2005 to August 2008. Tympanoplasty or tympanomastoidectomy using a perichondrium/cartilage composite graft was analyzed. The tragal or conchal perichondrium/cartilage was used to replace the tympanic membrane in patients.Results Patients aged from 13 to 67 years were followed up in average for 24 months (10-36 months). Seventy-four ears (72.61%) were used the tragal perichondrium/cartilage as graft material and 27 ears (27.39%) were used the conchal perichondrium/cartilage. Graft take was successful in all patients. Postoperative complications such as wound infection, hematoma, or sensorineural hearing loss were not identified. Nine patients (8.82%) had the partial ossicular replacement prosthesis, 14 patients (13.72%) using the autologous curved incus and 79 patients (77.45%) without prosthesis. Successful closure occurred in 92% of the ears. A total of 85.8% patients achieved a postoperative hearing improvement.Conclusions The graft underlay tympanoplasty using perichonddum/cartilage composite is effective for the majority of patients with large perforation. The hearing was improved even if the mastoidectomy was required in the patients with otitis media with extensive granulation.

  8. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study.

    Science.gov (United States)

    Iyer, Kartik; Dearman, Bronwyn L; Wagstaff, Marcus J D; Greenwood, John E

    2016-01-01

    Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction. PMID:26284639

  9. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury.

    Science.gov (United States)

    Man, Zhentao; Hu, Xiaoqing; Liu, Zhenlong; Huang, Hongjie; Meng, Qingyang; Zhang, Xin; Dai, Linghui; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Zhou, Chunyan; Ao, Yingfang

    2016-11-01

    Cartilage tissue engineering is the hotspot of cartilage repair. The allogenic chondrocytes appear to be a promising source of seed cells in cartilage tissue engineering. In this study, we aimed to transplant allogenic chondrocytes with chitosan hydrogel (CS)-demineralized bone matrix (DBM) hybrid scaffold (CS/DBM) to repair rabbit cartilage injury with one-step operation. After the CS/DBM scaffold was successfully fabricated, it showed that the porous CS filled the large pores of DBM, which improved the distribution of seed cells in the CS/DBM scaffold. The allogenic chondrocytes at second passage were transplanted with different scaffolds to repair rabbit cartilage injury. Twenty-four weeks after surgery, the cartilage defect in the CS/DBM group was successfully filled as shown by MRI. Moreover, the histological score of CS/DBM group was significantly higher than that of the other groups. On the aspect of biomechanical property, the regenerated cartilage in the CS/DBM group were superior to those in the other groups as determined by nanoindentation. Meanwhile, no obvious inflammatory response was observed after the transplantation of allogenic chondrocytes at 24 weeks post-surgery. Furtherly, gene expression profile for cells within the repair tissue was compared with the allogenic chondrocytes before transplantation using Agilent microarray and RT-qPCR. The results showed that some genes beneficial to cartilage regeneration, such as BMP-7, HGF, and IGF-1, were upregulated one month after transplantation. Consequently, our study demonstrated that the transplantation of allogenic chondrocytes with CS/DBM scaffold successfully repaired rabbit cartilage injury with only one-step operation, thereby providing new insights into cartilage tissue engineering. PMID:27636153

  10. Current Trends in Laparoscopic Ventral Hernia Repair

    OpenAIRE

    Misiakos, Evangelos P.; Patapis, Paul; Zavras, Nick; Tzanetis, Panagiotis; Machairas, Anastasios

    2015-01-01

    Background and Objectives: The purpose of this study was to analyze the surgical technique, postoperative complications, and possible recurrence after laparoscopic ventral hernia repair (LVHR) in comparison with open ventral hernia repair (OVHR), based on the international literature. Database: A Medline search of the current English literature was performed using the terms laparoscopic ventral hernia repair and incisional hernia repair. Conclusions: LVHR is a safe alternative to the open met...

  11. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Science.gov (United States)

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  12. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  13. Effect of nitric oxide synthase inhibitor on proteoglycan metabolism in repaired articular cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    孙炜; 金大地; 王吉兴; 秦立赟; 刘晓霞

    2003-01-01

    Objective: To study the effect of nitric oxide synthase inhibitor, S-methyl thiocarbamate (SMT), on proteoglycan metabolism in repaired articular cartilage in rabbits. Methods: Twenty-four male New Zealand white rabbits, aged 8 months and weighing 2.5 kg±0.2 kg, were used in this study. Cartilage defects in full thickness were created on the intercondylar articular surface of bilateral femurs of all the rabbits. Then the rabbits were randomly divided into 3 groups (n=8 in each group). The defects in one group were filled with fibrin glue impregnated with recombinant human bone morphogenetic protein-2 (rhBMP-2, BMP group), in one group with fibrin glue impregnated with rhBMP-2 and hypodermic injection with SMT (SMT group) and in the other group with nothing (control group). All the animals were killed at one year postoperatively. The tissue sections were stained with safranine O-fast green and analyzed by Quantiment 500 system to determine the content of glycosaminoglycan through measuring the percentage of safranine O-stained area, the thickness of cartilages and the mean gray scale (average stain intensity). Radiolabelled sodium sulphate (Na235SO4) was used to assess the proteoglycan synthesis. Results: At one year postoperatively, the percentage of safranine O-stained area, the mean gray scale and the cartilage thickness of the repaired tissues in SMT group were significantly higher than those of BMP group (P<0.01) and the control group (P<0.05). Result of incorporation of Na235SO4 showed that the proteoglycan synthesis in SMT group was higher than those of BMP group and the control group (P<0.01). Conclusions: SMT, a nitric oxide synthase inhibitor, can significantly increase the content of glycosaminoglycan and proteoglycan synthesis, and computer-based image analysis is a reliable method for evaluating proteoglycan metabolism.

  14. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério

    2015-04-01

    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  15. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications.

    Science.gov (United States)

    Bugbee, William D; Pallante-Kichura, Andrea L; Görtz, Simon; Amiel, David; Sah, Robert

    2016-01-01

    The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194

  16. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  17. Cartilage Tissue Engineering: the effect of different biomaterials, cell types and culture methods

    NARCIS (Netherlands)

    W.J.C.M. Marijnissen (Willem)

    2006-01-01

    textabstractChapter 1 outlines the normal structure and composition of articular cartilage and the inefficient spontaneous healing response after focal damage. Current surgical treatment options are briefly discussed and tissue engineering techniques for the repair of articular cartilage defects

  18. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Nehrer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.nehrer@meduniwien.ac.at; Domayer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schatz, K. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bindreiter, U. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kotz, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Repair of articular cartilage represents a significant clinical problem and although various new techniques - including the use of autologous chondrocytes - have been developed within the last century the clinical efficacy of these procedures is still discussed controversially. Although autologous chondrocyte transplantation (ACT) has been widely used with success, it has several inherent limitations, including its invasive nature and problems related to the use of the periosteal flap. To overcome these problems autologous chondrocytes transplantation combined with the use of biodegradable scaffolds has received wide attention. Among these, a hyaluronan-based scaffold has been found useful for inducing hyaline cartilage regeneration. In the present study, we have investigated the mid-term efficacy and safety of Hyalograft[reg] C grafts in a group of 36 patients undergoing surgery for chronic cartilage lesions of the knee. Clinical Outcome was assessed prospectively before and at 12, 24, and 36 months after surgery. No major adverse events have been reported during the 3-year follow-up. Significant improvements of the evaluated scores were observed (P < 0.02) at 1 year and a continued increase of clinical performance was evident at 2 and 3 years follow-up. Patients under 30 years of age with single lesions showed statistically significant improvements at all follow-up visits compared to those over 30 with multiple defects (P < 0.01). Hyalograft[reg] C compares favorably with classic ACT and is particularly indicated in younger patients with single lesions. The graft can be implanted through a miniarthrotomy and needs no additional fixation with sutures except optional fibrin gluing at the defect borders. These results suggest that Hyalograft[reg] C is a valid alternative to ACT.

  19. Cartilage repair materials used for repair of sports-induced knee cartilage injuries%软骨修复材料在运动性膝关节软骨损伤修复中的作用

    Institute of Scientific and Technical Information of China (English)

    孙皓; 左健

    2011-01-01

    BACKGROUND: To evaluate the effect of cartilage repair materials on the repair of knee cartilage injuries so as to support a certain experience for medical and scientific research workers.METHODS: An electronic search of Wanfang database was performed using the keywords of “biomaterials; articular cartilage;injuries; repair” to retrieve articles about repair materials for knee cartilage injuries published between 2000-01 and 2011-03.Repetitive articles, review and Meta analysis were excluded, and finally 26 articles were eligible.RESULTS: Knee cartilage injuries are commonly seen in sports-induced injuries. The main treatment is to repair cartilage defects in the knee with autogenous bone graft. The new cartilage substitute material is still in the phase of animal tests. The long-term efficacy and biomechanical changes in model animals need further studies, and then the related clinical trials can be done.CONCLUSION: There are many important and difficult problems to be explored in the basic and clinical research concerning the repair of knee cartilage injuries. However, a new progress from biomaterial grafts to reconstructed active bone is realized in the repair of knee cartilage injuries. With the development and research of various new-type materials, the repair of knee cartilage injuries can be increasingly perfect.%背景:评价软骨修复材料在膝关节软骨损伤修复中的效果,为医务、科研工作者的研究提供一定的借鉴.方法:采用电子检索的方式,在万方数据库(http://www.wanfangdata.com.cn/)中检索2000-01/2011-03关于修复材料在膝关节软骨损伤研究的文章,关键词为"生物材料;关节软骨;缺损;修复".排除重复研究、普通综述或Meta分析类文章,筛选纳入26篇文献进行评价.结果:膝关节软骨损伤在运动性损伤中较为常见,现在主要的治疗方法是自体骨软骨移植修复膝关节软骨缺损.新型的软骨替代材料研究仍处于动物试验阶段,且

  20. Articular Cartilage Repair Using Marrow Stimulation Augmented with a Viable Chondral Allograft: 9-Month Postoperative Histological Evaluation

    Directory of Open Access Journals (Sweden)

    James K. Hoffman

    2015-01-01

    Full Text Available Marrow stimulation is frequently employed to treat focal chondral defects of the knee. However, marrow stimulation typically results in fibrocartilage repair tissue rather than healthy hyaline cartilage, which, over time, predisposes the repair to failure. Recently, a cryopreserved viable chondral allograft was developed to augment marrow stimulation. The chondral allograft is comprised of native viable chondrocytes, chondrogenic growth factors, and extracellular matrix proteins within the superficial, transitional, and radial zones of hyaline cartilage. Therefore, host mesenchymal stem cells that infiltrate the graft from the underlying bone marrow following marrow stimulation are provided with the optimal microenvironment to undergo chondrogenesis. The present report describes treatment of a trochlear defect with marrow stimulation augmented with this novel chondral allograft, along with nine month postoperative histological results. At nine months, the patient demonstrated complete resolution of pain and improvement in function, and the repair tissue consisted of 85% hyaline cartilage. For comparison, a biopsy obtained from a patient 8.2 months after treatment with marrow stimulation alone contained only 5% hyaline cartilage. These outcomes suggest that augmenting marrow stimulation with the viable chondral allograft can eliminate pain and improve outcomes, compared with marrow stimulation alone.

  1. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    Science.gov (United States)

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016. PMID:26573959

  2. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Hesper, Tobias; Bittersohl, Daniela; Krauspe, Ruediger; Zilkens, Christoph [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Center of Hip Preservation and Children' s Orthopaedics, San Diego, CA (United States); Welsch, Goetz H. [Medical University of Vienna, MR Center, Department of Radiology, Vienna (Austria); Bittersohl, Bernd [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Heinrich-Heine University, Medical School, Department of Orthopaedics, Duesseldorf (Germany)

    2014-10-15

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  3. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    International Nuclear Information System (INIS)

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  4. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    OpenAIRE

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When d...

  5. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.

    Directory of Open Access Journals (Sweden)

    Niina Hopper

    Full Text Available This study characterized peripheral blood mononuclear cells (PBMC in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1 MSC alone; (2 MSCs and PBMCs at a ratio of 20:1; (3 MSCs and PBMC at a ratio of 2:1 and (4 PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006. However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%. This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007, BMP6 10.7-fold (p = 0.0004, GDF5 2.0-fold (p = 0.002 and COL1 5.0-fold (p = 0.046. The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key

  6. Use of bone morphogenetic proteins in mesenchymal stemcell stimulation of cartilage and bone repair

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The extracellular matrix-associated bone morphogeneticproteins (BMPs) govern a plethora of biological processes.The BMPs are members of the transforming growthfactor-β protein superfamily, and they actively participateto kidney development, digit and limb formation,angiogenesis, tissue fibrosis and tumor development.Since their discovery, they have attracted attentionfor their fascinating perspectives in the regenerativemedicine and tissue engineering fields. BMPs havebeen employed in many preclinical and clinical studiesexploring their chondrogenic or osteoinductive potentialin several animal model defects and in human diseases.During years of research in particular two BMPs, BMP2and BMP7 have gained the podium for their use inthe treatment of various cartilage and bone defects.In particular they have been recently approved foremployment in non-union fractures as adjunct therapies.On the other hand, thanks to their potentialities inbiomedical applications, there is a growing interest instudying the biology of mesenchymal stem cell (MSC),the rules underneath their differentiation abilities, andto test their true abilities in tissue engineering. In fact,the specific differentiation of MSCs into targeted celltypelineages for transplantation is a primary goal of theregenerative medicine. This review provides an overviewon the current knowledge of BMP roles and signaling inMSC biology and differentiation capacities. In particularthe article focuses on the potential clinical use of BMPsand MSCs concomitantly, in cartilage and bone tissuerepair.

  7. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair

    Science.gov (United States)

    Goldshmid, Revital; Cohen, Shlomit; Shachaf, Yonatan; Kupershmit, Ilana; Sarig-Nadir, Offra; Seliktar, Dror; Wechsler, Roni

    2015-01-01

    Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen’s adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™—a product cleared in the EU for cartilage repair—was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis. PMID:26411496

  8. Local Morphological Response of the Distal Femoral Articular–Epiphyseal Cartilage Complex of Young Foals to Surgical Stab Incision and Potential Relevance to Cartilage Injury and Repair in Children

    Science.gov (United States)

    Hendrickson, Eli H.S.; Ekman, Stina; Carlson, Cathy S.; Dolvik, Nils I.

    2013-01-01

    Objective: Describe the local morphological response of the articular–epiphyseal cartilage complex to surgical stab incision in the distal femur of foals, with emphasis on the relationship between growth cartilage injury, enchondral ossification, and repair. Design: Nine foals were induced into general anesthesia at the age of 13 to 15 days. Four full-thickness stab incision defects were created in the cartilage on the lateral aspect of the lateral trochlear ridge of the left distal femur. Follow-up examination was carried out from 1 to 49 days postoperatively, including examination of intact bones, sawed slabs, and histological sections. Results: Incision defects filled with cells displaying fibroblast-, chondrocyte-, and osteoblast-like characteristics, potentially validating the rationale behind the drilling of stable juvenile osteochondritis dissecans lesions in children. Incisions induced necrosis within the cartilage on the margins at all depths of the defects. Sharp dissection may therefore be contraindicated in cartilage repair in young individuals. Incisions caused a focal delay in enchondral ossification in 2 foals, apparently related to the orientation of the incision defect relative to the direction of ossification. Defects became progressively surrounded by subchondral bone, in which granulation tissue containing clasts and foci of osteoblast-like cells was observed. Continued enchondral ossification was therefore likely to result in healing of uncomplicated defects to morphologically normal bone. Conclusions: Epiphyseal growth cartilage injury had the potential to exert a negative effect on enchondral ossification. Enchondral ossification exerted a beneficial effect on repair. This relationship warrants consideration in future studies of cartilage injury and repair within the articular–epiphyseal cartilage complex of all species. PMID:26069670

  9. Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea

    Directory of Open Access Journals (Sweden)

    Weijie Zhang

    2014-01-01

    Full Text Available Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.

  10. Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea.

    Science.gov (United States)

    Zhang, Weijie; Lian, Qin; Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.

  11. REPAIR OF SHEEP ARTICULAR-CARTILAGE DEFECTS WITH A RABBIT COSTAL PERICHONDRIAL GRAFT

    NARCIS (Netherlands)

    HOMMINGA, GN; BULSTRA, SK; KUIJER, R; VANDERLINDEN, AJ

    1991-01-01

    A xenograft of costal rabbit perichondrium was transplanted to an articular cartilage defect in a sheep knee. After 12 weeks, cartilage was formed with increased calcification of the basal layer and a mean of 74 percent collagen type 11. The synovium did not show any infiltration, indicating the abs

  12. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  13. 运动性关节软骨损伤修复材料的选择及其生物力学特征%Selection and biomechanical features of repair materials for exercise-induced articular cartilage injury

    Institute of Scientific and Technical Information of China (English)

    王洪博; 刘东兴; 任志杰; 尹树仁

    2011-01-01

    itself. Under physiological load, the articular cartilage often places in stress environments.According to its structure and characteristics of cartilage, it should have good biomechanical properties as an artificial cartilage replacement material.OBJECTIVE: To summarize the application progress of repair materials for the exercise-induced articular cartilage injury and biomechanical characteristics as an alternative biomaterial.METHODS: Using “articular cartilage, biomaterials, biomechanics” in Chinese and “tissue engineering, articular cartilage,scaffold material, biomechanics” in English as the key words, a computer-based retrieval of China Academic Journal Full-text database and PubMed database was performed from January 1993 to October 2010. Articles related to exercise-induced articular cartilage injury and repair, currently used biomaterials in the repair of articular cartilage injury and its biomechanical characteristics as an alternative biomaterial; duplicated research or Meta analysis was eliminated. Twenty articles mainly focus on the biomechanical characteristics of repair materials in the repair of exercise-induced articular cartilage defects.RESULTS AND CONCLUSION: Articular cartilage is an anisotropic, heterogeneous, viscoelastic and permeable material that is filled with liquid, it has unique mechanical properties. The biomechanics of injured articular cartilage are different from the original cartilage, and easy to degenerate. Mechanical properties of osteochondral transplantation are the best for recent period; acellular cartilage matrix and small intestine submucosa matrix have certain mechanical strength; the greatest drawback of ordinary polyvinyl alcohol hydrogel is insufficient mechanical properties; polyvinyl alcohol has good flexibility and high elastic property,and similar mechanical properties with human articular cartilage; n-HA slurry and polyamide 66 composite in a solvent, they are similar to natural bone in terms of chemical

  14. Full-thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin

    OpenAIRE

    Xu, Xingquan; Shi, Dongquan; Shen, Yeshuai; Xu, Zhihong; Dai, Jin; Chen, Dongyang; Teng, Huajian; Jiang, Qing

    2015-01-01

    Introduction Microfracture does not properly repair full-thickness cartilage defects. The purpose of this study was to evaluate the effect of intraarticular injection of the small-molecule compound kartogenin (KGN) on the restoration of a full-thickness cartilage defect treated with microfracture in a rabbit model. Methods Full-thickness cartilage defects (3.5 mm in diameter and 3 mm in depth) were created in the patellar groove of the right femurs of 24 female New Zealand White rabbits. The ...

  15. Current trends in laparoscopic groin hernia repair: A review

    OpenAIRE

    Pahwa, Harvinder Singh; Kumar, Awanish; Agarwal, Prerit; Agarwal, Akshay Anand

    2015-01-01

    Hernia is a common problem of the modern world with its incidence more in developing countries. Inguinal hernia is the most common groin hernia repaired worldwide. With advancement in technology operative techniques of repair have also evolved. A PubMed and COCHRANE database search was accomplished in this regard to establish the current status of laparoscopic inguinal hernia repair in view of recent published literature. Published literature support that laparoscopic hernia repair is best su...

  16. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Juan Antonio Marchal

    2013-03-01

    Full Text Available Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i skin; (ii cartilage; (iii bone; (iv nerve; and (v cardiac.

  17. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  18. Quantifying the lubricity of mechanically tough polyvinyl alcohol hydrogels for cartilage repair.

    Science.gov (United States)

    Ling, Doris; Bodugoz-Senturk, Hatice; Nanda, Salil; Braithwaite, Gavin; Muratoglu, Orhun K

    2015-12-01

    Polyvinyl alcohol hydrogels are biocompatible and can be used as synthetic articular cartilage. Their mechanical characteristics can be tailored by various techniques such as annealing or blending with other hydrophilic polymers. In this study, we quantified the coefficient of friction of various candidate polyvinyl alcohol hydrogels against cobalt-chrome alloy or swine cartilage using a new rheometer-based method. We investigated the coefficient of friction of polyvinyl alcohol-only hydrogels and blends with polyethylene glycol, polyacrylic acid, and polyacrylamide against swine cartilage and polished cobalt-chrome surfaces. The addition of the functional groups to polyvinyl alcohol, such as acrylamide (semi-interpenetrating network) and acrylic acid (blend), significantly reduced the coefficient of friction. The coefficient of friction of the polyvinyl alcohol-only hydrogel was measured as 0.4 ± 0.03 against cobalt-chrome alloy, and 0.09 ± 0.004 against cartilage, while those measurements for the polyvinyl alcohol-polyacrylic acid blends and polyvinyl alcohol-polyacrylamide semi-interpenetrating network were 0.07 ± 0.01 and 0.1 ± 0.003 against cobalt-chrome alloy, and 0.03 ± 0.001 and 0.02 ± 0.001 against cartilage, respectively. There was no significant or minimal difference in the coefficient of friction between samples from different regions of the knee, or animals, or when the cartilage samples were frozen for 1 day or 2 days before testing. However, changing lubricant from deionized water to ionic media, for example, saline or simulated body fluid, increased the coefficient of friction significantly. PMID:26614798

  19. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  20. Allogeneic Bone Marrow Transplant from MRL/MpJ Super-Healer Mice Does Not Improve Articular Cartilage Repair in the C57Bl/6 Strain.

    Directory of Open Access Journals (Sweden)

    Catherine A Leonard

    Full Text Available Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ "super-healer" mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant.The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ "super-healer" mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints.Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair.The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.

  1. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review

    NARCIS (Netherlands)

    Vonk, L.A.; Windt, de T.S.; Slaper-Cortenbach, Ineke C.M.; Saris, D.B.F.

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, wh

  2. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why : A concise review

    NARCIS (Netherlands)

    Vonk, Lucienne A.; De Windt, Tommy S.; Slaper-Cortenbach, Ineke C M; Saris, Daniël B F

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies, wh

  3. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  4. Current trends in laparoscopic groin hernia repair: A review.

    Science.gov (United States)

    Pahwa, Harvinder Singh; Kumar, Awanish; Agarwal, Prerit; Agarwal, Akshay Anand

    2015-09-16

    Hernia is a common problem of the modern world with its incidence more in developing countries. Inguinal hernia is the most common groin hernia repaired worldwide. With advancement in technology operative techniques of repair have also evolved. A PubMed and COCHRANE database search was accomplished in this regard to establish the current status of laparoscopic inguinal hernia repair in view of recent published literature. Published literature support that laparoscopic hernia repair is best suited for recurrent and bilateral inguinal hernia although it may be offered for primary inguinal hernia if expertise is available. PMID:26380826

  5. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    Science.gov (United States)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  6. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model

    OpenAIRE

    Chung, Jun Young; Song, Minjung; Ha, Chul-Won; Kim, Jin-A; Lee, Choong-Hee; Park, Yong-Beom

    2014-01-01

    Introduction The present work was designed to explore the feasibility and efficacy of articular cartilage repair using composites of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) and four different hydrogels in a rat model. Methods Full-thickness articular cartilage defects were created at the trochlear groove of femur in both knees of rats. Composites of hUCB-MSCs and four different hydrogels (group A, 4% hyaluronic acid; group B, 3% alginate:30% pluronic (1:1, v/v); ...

  7. Mesenchymal stem cells promote articular cartilage repair and regeneration%间充质干细胞促进关节软骨的修复与再生

    Institute of Scientific and Technical Information of China (English)

    朱瑜琪; 王金荣; 王智耀

    2015-01-01

    背景:关节软骨损伤后,软骨组织几乎没有修复能力,关节软骨损伤的修复一直是临床工作的难点。  目的:探讨修复关节软骨损伤的干细胞种类及其生物学特性,明确干细胞在修复关节软骨损伤中的作用及优缺点。  方法:由第一作者检索1998至2015年PubMed数据及CNKI中国期刊全文数据库,英文检索词“Articular cartilage injury,Mesenchymal stem cels,regeneration”;中文检索词“关节软骨损伤,间充质干细胞,再生”,纳入47篇文献进行分析。  结果与结论:关节软骨损伤最有效的修复方案是以细胞为基础的治疗方法,来源于骨髓、脂肪及脐血的间充质干细胞均有较强的成软骨特性和克隆能力。骨髓间充质干细胞具有更高的分化潜能,对软骨缺损有修复作用,来源于脐血的间充质干细胞致瘤性低,脂肪源性干细胞的生长增殖速度更快。干细胞复合天然载体材料如胶原、明胶、纤维蛋白和藻酸盐等可促进细胞黏附、分化和增殖,以此构建组织工程软骨将有效修复关节软骨缺损。%BACKGROUND:After articular cartilage injury, the injured cartilage almost has no self-healing ability. Articular cartilage injury repair has been always a difficulty in clinical work. OBJECTIVE:To explore the types and biological characteristics of stem cels for articular cartilage repair and to ensure the role and relative merits of stem cel transplantation in articular cartilage repair. METHODS:PubMed and CNKI were retrieved by the first author for relevant articles published from 1998 to 2015 using the keywords of “articular cartilage injury, mesenchymal stem cels, regeneration” in English and Chinese, respectively. Finaly, 47 articles were included in result analysis. RESULTS AND CONCLUSION: Stem cel therapy is the most effective method for repair of articular cartilage injury. Mesenchymal stem cels from bone

  8. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage

    Directory of Open Access Journals (Sweden)

    CH Evans

    2009-12-01

    Full Text Available We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2 was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated” tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.

  9. Effect of low-energy shock waves in microfracture holes in the repair of articular cartilage defects in a rabbit model

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; LI Zhong-li; FU Yang-mu; WANG Zhi-gang; WEI Min; ZHAO Bin; ZHANG Li; ZHU Juan-li

    2011-01-01

    Background Microfracture is a type of bone marrow stimulation in arthroscopic cartilage repair. However, the overall concentration of the mesenchymal stem cells is quite low and declines with age, and in the end the lesion is filled by fibrocartilage. The aim of this research was to investigate a novel method of enhancing microfracture by determining whether low-energy shock waves in microfracture holes would facilitate cartilage repair in a rabbit model.Methods Full-thickness cartilage defects were created at the medial femoral condyle of 36 mature New Zealand white rabbits without penetrating subchondral bone. The rabbits were randomly divided into three groups. In experimental group A, low-energy shock-wave therapy was performed in microfracture holes (diameter, 1 mm) at an energy flux density (EFD) of 0.095 m J/mm2 and 200 impulses by DolorClast Master (Electro Medical Systems SA, Switzerland)microprobe (diameter, 0.8 mm). In experimental group B, microfracture was performed alone. The untreated rabbits served as a control group. At 4, 8, and 12 weeks after the operations, repair tissues at the defects were analyzed stereologically, histologically, and immunohistochemically.Results The defects were filled gradually with repair tissues in experimental groups A and B, and no repair tissues had formed in the control group at 12 weeks. Repair tissues in experimental group A contained more chondrocytes,proteoglycans, and collagen type Ⅱ than those in experimental group B. In experimental group B, fibrous tissues had formed at the defects at 8 and 12 weeks. Histological analysis of experimental group A showed a better Wakitani score (P <0.05) than in experimental group B at 8 and 12 weeks after the operation.Conclusions In the repair of full-thickness articular cartilage defects in rabbits, low-energy shock waves in microfracture holes facilitated the production of hyaline-like cartilage repair tissues more than microfracture alone. This model demonstrates a new

  10. Ultrasonography and Radiography Evaluation of the Cartilage Graft in Repair of Experimentally Induced Radial Bone Defect in Rabbit

    Directory of Open Access Journals (Sweden)

    Foad Sadi

    2010-01-01

    Full Text Available We would like to thank to the Faculty of Specialized Veterinary Sciences research council. Science and Research Branch of Islamic Azad University, Punak Tehran for approval and financial support to finish this project. Problems statement: The purpose of this research was to determine the biological effect of cartilage graft as a bone defect filler and osteogenetic stimulation to speed up bone healing too. Approach: Sixteen adult male New Zealand white rabbits having body weight ranged from 3.0-3.5 Kg. Under general anesthesia, a segmental full thickness bone defect of 10 mm in length was created in the middle of the right radial shaft in all rabbits. They were divided into two groups of 6 rabbits each. Group I was considered as control and the fractured site was fixed using finger bone plate with 4 screws, whereas the ear cartilage of 1×1 cm graft was used to fill the gap after fracture fixation in Group II. Rabbits in two groups were subdivided into 2 subgroups of 1 and 2 months duration with 4 rabbits in each. Radiography and two dimensional and color Doppler sonography were done before and after creating defects and on 15, 30 and 60 days to evaluate local reaction as far as new blood vessels network and callus formation are concerned. Results: On the radiographs during the whole process, bone repair in Group I was not as perfect as those in Group II samples and trace of internal callus filled the gap incompletely in 60 days in Group I, whereas in Group II internal callus almost was formed on 30 days and in addition intercortical callus was seen supporting to cover and filled the gap completely in this group. Sonographic findings confirmed the protrusion of newly formed blood vascular network in 30 days in Group I and from 15 days in Group II and remarkably increased till end of observation period. Conclusion: Cartilage graft is suitable alternative bone filler and radiography and sonography are reliable techniques to trace local reaction at

  11. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial

    OpenAIRE

    Shive, Matthew S.; Stanish, William D; McCormack,Robert; Forriol, Francisco; Mohtadi, Nicholas; Pelet, Stéphane; Desnoyers, Jacques; Méthot, Stéphane; Vehik, Kendra; Restrepo, Alberto

    2015-01-01

    Objective The efficacy and safety of BST-CarGel®, a chitosan scaffold for cartilage repair was compared with microfracture alone at 1 year during a multicenter randomized controlled trial in the knee. This report was undertaken to investigate 5-year structural and clinical outcomes. Design The international randomized controlled trial enrolled 80 patients, aged 18 to 55 years, with grade III or IV focal lesions on the femoral condyles. Patients were randomized to receive BST-CarGel® treatment...

  12. Stem Cell-assisted Approaches for Cartilage Tissue Engineering.

    Science.gov (United States)

    Park, In-Kyu; Cho, Chong-Su

    2010-05-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.

  13. Evaluation of Three-Dimensional Chitosan-Agarose-Gelatin Cryogel Scaffold for the Repair of Subchondral Cartilage Defects: An In Vivo Study in a Rabbit Model

    OpenAIRE

    Gupta, Ankur; Bhat, Sumrita; Jagdale, Pankaj R.; Bhushan P Chaudhari; Lidgren, Lars; Gupta, Kailash C.; Kumar, Ashok

    2014-01-01

    In this study, the potential of a chitosan-agarose-gelatin (CAG) cryogel scaffold for the repair of subchondral cartilage defects was explored in female New Zealand white rabbits. Custom-made CAG cryogel scaffold was implanted in a surgically created subchondral defect (diameter of 4 mm, depth of 4 mm) in knee joint of rabbit. The repair of the subchondral defect was evaluated at regular time interval by both macroscopic as well as microscopic examinations. The gross evaluation of the scaffol...

  14. rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair.

    Science.gov (United States)

    Frisch, J; Rey-Rico, A; Venkatesan, J K; Schmitt, G; Madry, H; Cucchiarini, M

    2016-03-01

    Administration of therapeutic gene sequences coding for chondrogenic and chondroreparative factors in bone marrow aspirates using the clinically adapted recombinant adeno-associated virus (rAAV) vector may provide convenient, single-step approaches to improve cartilage repair. Here, we tested the ability of distinct rAAV constructs coding for the potent SOX9, transforming growth factor beta (TGF-β) and insulin-like growth factor I (IGF-I) candidate factors to modify marrow aspirates from minipigs to offer a preclinical large animal model system adapted for a translational evaluation of cartilage repair upon transplantation in sites of injury. Our results demonstrate that high, prolonged rAAV gene transfer efficiencies were achieved in the aspirates (up to 100% for at least 21 days) allowing to produce elevated amounts of the transcription factor SOX9 that led to increased levels of matrix synthesis and chondrogenic differentiation and of the growth factors TGF-β and IGF-I that both increased cell proliferation, matrix synthesis and chondrogenic differentiation (although to a lower level than SOX9) compared with control (lacZ) condition. Remarkably, application of the candidate SOX9 vector also led to reduced levels of hypertrophic differentiation in the aspirates, possibly by modulating the β-catenin, Indian hedgehog and PTHrP pathways. The present findings show the benefits of modifying minipig marrow concentrates via rAAV gene transfer as a future means to develop practical strategies to promote cartilage repair in a large animal model.

  15. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis.

    Science.gov (United States)

    Asahara, Hiroshi

    2016-08-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  16. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis

    Science.gov (United States)

    2016-01-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  17. 聚羟基烷酸酯聚合物负载软骨细胞修复同种异体喉软骨缺损%Polyhydroxyalkanoate polymer carrying chondrocytes for repair of allogeneic laryngeal cartilage defects

    Institute of Scientific and Technical Information of China (English)

    吴延平; 吴方

    2015-01-01

    BACKGROUND:Laryngeal cartilage defect has a higher incidence, mainly presenting with pain, sweling, and dysfunction after onset. Currently, surgical treatment is the most used in clinical treatment of laryngeal cartilage defect. Although conventional materials can effectively improve symptoms, there is a poor long-term efficacy. In recent years, there are many clinical studies on cartilage tissue engineering, but less about the actual use in the otorhinolaryngology department. OBJECTIVE:To investigate the effect of polyhydroxyalkanoate polymer carrying chondrocytes on the repair of alogeneic laryngeal cartilage defects. METHODS:Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHH) served as the extracelular matrix. Tissue engineering technology was used to prepare cel-material composite. Primary tissue-engineered cartilage tissue was transplanted directly into rabbit thyroid cartilage defect (experimental group A), or implanted into a more mature tissue-engineered cartilage for the repair of thyroid cartilage defect (experimental group B). In the experiment, PHBHH group and simple chondrocyte group were set as controls. Repairing effects on thyroid cartilage defect were evaluated through gross and histological observation. RESULTS AND CONCLUSION:Chondrocytes in the primary tissue-engineered cartilage tissues were beaded under scanning electron microscope, and after 4 weeks of culture, a large amount of jely-shaped substrates were visible. Findings from electron microscope observation showed that the cels were distributed on the surface of composite material and cavernous voids, displaying a plurality of smal round projections. Surgical treatment was successful in al the rabbits, and there was no dyspnea and eating difficulties after surgery. One rabbit appeared to have brief wheezing in the experimental group A, two rabbits died of diarrhea in the experimental B group at 2 weeks after surgery. PHBHH composite carrying chondrocytes had certain hardness. At 4 weeks

  18. Assessment of cartilage repair after chondrocyte transplantation with a fibrin-hyaluronan matrix – Correlation of morphological MRI, biochemical T2 mapping and clinical outcome

    International Nuclear Information System (INIS)

    Objective: To evaluate change over time of clinical scores, morphological MRI of cartilage appearance and quantitative T2 values after implantation with BioCart™II, a second generation matrix-assisted implantation system. Methods: Thirty-one patients were recruited 6–49 months post surgery for cartilage defect in the femoral condyle. Subjects underwent MRI (morphological and T2-mapping sequences) and completed the International Knee Documentation Committee (IKDC) questionnaire. MRI scans were scored using the MR Observation of Cartilage Repair Tissue (MOCART) system and cartilage T2-mapping values were registered. Analysis included correlation of IKDC scores, MOCART and T2 evaluation with each other, with implant age and with previous surgical intervention history. Results: IKDC score significantly correlated with MOCART score (r = −0.39, p = 0.031), inversely correlated with previous interventions (r = −0.39, p = 0.034) and was significantly higher in patients with longer follow-up time (p = 0.0028). MOCART score was slight, but not significantly higher in patients with longer term implants (p = 0.199). T2 values were significantly lower in patients with longer duration implants (p < 0.001). This trend was repeated in patients with previous interventions, although to a lesser extent. Conclusions: Significant improvement with time from BioCart™II implantation can be expected by IKDC scoring and MRI T2-mapping values. Patients with previous knee operations can also benefit from this procedure.

  19. Automatic ICRS scoring of cartilage lesions using arthroscopic OCT images

    OpenAIRE

    te Moller, Nikae; Pitkanen, M; Liukkonen, J.; Puhakka, P H; Brommer, Harold; J.S. Jurvelin; van Weeren, René; Toyras, J.

    2014-01-01

    Articular cartilage injury is a common cause of chronic disability in both humans and animals. Current treatment strategies offer several possibilities and in order to select the optimal repair procedure, accurate determination of size and severity of a lesion is important [1,2]. Recently, an equine ex vivo study showed that arthroscopic optical coherence tomography (OCT) provides high resolution optical images of the cartilage layer [3]. Furthermore, in that study morphological characteristi...

  20. Connective tissue growth factor and articular cartilage repair%结缔组织生长因子与关节软骨的修复

    Institute of Scientific and Technical Information of China (English)

    张世松; 张志峰; 黄健

    2015-01-01

    BACKGROUND:Connective tissue growth factor has the potential to stimulate the differentiation of mesenchymal cels into chondrocytes, can promote the proliferation and differentiation of chondrocytes, and also can promote the expression of type II colagen and proteoglycan in the articular cartilage. So, the connective tissue growth factor plays an important role in the articular cartilage repair along with other growth factors. OBJECTIVE: To focus on the structure of connective tissue growth factor, its function in articular cartilage repair and the interactions with other factors. METHODS: A search across the databases of PubMed (January 1980 to July 2014) was performed, with the key words of “connective tissue growth factor, connective tissue growth factor and articular cartilage, articular cartilage damage, articular cartilage repairment” in English and “articular cartilage injury” in Chinese. Studies with the obsolete, repetitive or unrelated content were excluded. A total of 32 papers were included in thi study. RESULTS AND CONCLUSION: Connective tissue growth factor has the potential to stimulate the differentiation of mesenchymal cels into chondrocytes, can promote the proliferation, differentiation and maturity of chondrocytes, can maintain the extracelular matrix synthesis and balance, and also can promote the expression of type II colagen and proteoglycan in the articular cartilage. Along with other growth factors, connective tissue growth factor exerts an important role in the articular cartilage repair. Connective tissue growth factor is the key factor of chondrocyte growth, proliferation and differentiation, which is throughout the process of cartilage repair. Studies have shown that articular chondrocytes from patients with osteoarthritis show an increase in the number positively correlated with the expressions of fibroblast growth factor 1 and connective tissue growth factor. Connective tissue growth factor interacts with articular cartilage

  1. Sellar repair with autologous muscle and composite septal cartilage grafts for treatment of cerebrospinal fluid leakage following trans-sphenoidal pituitary surgery

    Science.gov (United States)

    El Shazly, Ayman A.; El Wardany, Mohammed A.; Abo El Ezz, Tamer A.

    2016-01-01

    Context: Many reconstructive techniques have been proposed to prevent postoperative cerebrospinal fluid (CSF) leakage after trans-sphenoidal pituitary surgery. However, no total agreement has been reached to the best technique. Aim: Assessment of the efficacy of sellar repair with autologous muscle and composite septal cartilage grafts for treatment of intraoperative and delayed postoperative CSF leakage following trans-sphenoidal pituitary surgery without the use of postoperative external lumbar CSF drain. Study Design: This is a retrospective case series study, level IV evidence. Materials and Methods : Twenty three patients were involved in this study. Seventeen patients had intraoperative CSF leakage and were treated immediately by our technique. Six patients had postoperative CSF rhinorrhea and had delayed treatment with our technique after failure of conservative measures and external lumbar CSF drainage for more than three days. The technique involved intradural placement of autologous muscle graft supplemented with extradural composite septal cartilage graft, composed of a piece of the posterior cartilaginous septum with its covering mucoperichondrium on one side only to fit into the sellar defect as a double layer button. Results: CSF leak was of grade 1 in 6 patients (26.1%), grade 2 in 10 patients (43.5%) and grade 3 in 7 patients (30.4%). None of the patients in our study had postoperative CSF leak after the use of our technique during the follow up period (mean 24 ± 10.47 standard deviation months). None of the patients developed treatment-related complications. All the patients had well developed mucosal covering of the sellar defect after two months. Conclusion: Our technique of sellar repair by using autologous muscle and composite septal cartilage grafts is effective in treatment of intraoperative and delayed postoperative CSF leakage following trans-sphenoidal pituitary surgery without the use of postoperative external lumbar CSF drain even in

  2. Lubricin reduces cartilage--cartilage integration.

    Science.gov (United States)

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  3. Cartilage Engineering and Microgravity

    Science.gov (United States)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  4. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee

    NARCIS (Netherlands)

    Bouwmeester, SJM; Beckers, JMH; Kuijer, R; van der Linden, AJ; Bulstra, SK

    1997-01-01

    Eighty-eight patients with articular cartilage defects in the knee were treated by perichondrial arthroplasty between 1986 and 1992. An autogenous strip of costal perichondrium was fixed in place with fibrin glue, followed by immobilisation, continuous passive motion, and partial weightbearing. The

  5. Automatic ICRS scoring of cartilage lesions using arthroscopic OCT images

    NARCIS (Netherlands)

    te Moller, Nikae; Pitkanen, M; Liukkonen, J.; Puhakka, P H; Brommer, Harold; Jurvelin, J.S.; van Weeren, René; Toyras, J.

    2014-01-01

    Articular cartilage injury is a common cause of chronic disability in both humans and animals. Current treatment strategies offer several possibilities and in order to select the optimal repair procedure, accurate determination of size and severity of a lesion is important [1,2]. Recently, an equine

  6. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair

    OpenAIRE

    Snyder, Timothy N; Madhavan, Krishna; Intrator, Miranda; Dregalla, Ryan C.; Park, Daewon

    2014-01-01

    Background Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invas...

  7. Experimental articular cartilage repair in the Göttingen minipig: the influence of multiple defects per knee

    OpenAIRE

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Vingtoft, Louise; Rölfing, Jan Hendrik Duedal; Ringgaard, Steffen; Lind, Martin

    2015-01-01

    Background A gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies. Ideally, the animal model should allow for testing of clinically relevant treatments and the biological response should be reproducible and comparable to humans. This allows for a reliable translation of results to clinical studies.This study aimed at verifying the Göttingen ...

  8. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  9. In vitro targeted magnetic delivery and tracking of superparamagnetic iron oxide particles labeled stem cells for articular cartilage defect repair.

    Science.gov (United States)

    Feng, Yong; Jin, Xuhong; Dai, Gang; Liu, Jun; Chen, Jiarong; Yang, Liu

    2011-04-01

    To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized cartilage defect site in an in vitro phantom by applying magnetic force. Meanwhile, non-invasive imaging techniques were use to track SPIO-labeled MSCs by magnetic resonance imaging (MRI). Human bone marrow MSCs were cultured and labeled with SPIO. Fresh degenerated human osteochondral fragments were obtained during total knee arthroplasty and a cartilage defect was created at the center. Then, the osteochondral fragments were attached to the sidewalls of culture flasks filled with phosphate-buffered saline (PBS) to mimic the human joint cavity. The SPIO-labeled MSCs were injected into the culture flasks in the presence of a 0.57 Tesla (T) magnetic force. Before and 90 min after cell targeting, the specimens underwent T2-weighted turbo spin-echo (SET2WI) sequence of 3.0 T MRI. MRI results were compared with histological findings. Macroscopic observation showed that SPIO-labeled MSCs were steered to the target region of cartilage defect. MRI revealed significant changes in signal intensity (P<0.01). HE staining exibited that a great number of MSCs formed a three-dimensional (3D) cell "sheet" structure at the chondral defect site. It was concluded that 0.57 T magnetic force permits spatial delivery of magnetically labeled MSCs to the target region in vitro. High-field MRI can serve as an very sensitive non-invasive technique for the visualization of SPIO-labeled MSCs.

  10. Editorial Commentary: The Search for the Cartilage "Holy Grail": Are We There Yet?

    Science.gov (United States)

    Weber, Alexander E; Cole, Brian J

    2016-07-01

    A study by Zhang et al. provided a Level IV systematic review of 23 studies (13 clinical and 10 basic science) that examined the current state of single-stage procedures for cartilage repair. The results of this review suggested that in the short-term (minimum 2-year follow-up), single-stage cell-based cartilage procedures significantly improve pain and function from the preoperative state and provide comparable defect fill and tissue quality as compared with their predecessor 2-stage procedures. The authors should be commended for summarizing the current state of single-stage cartilage repair techniques; however, further work must be done to find the cartilage restoration "holy grail." PMID:27373184

  11. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture (MF) treatment for adult unstable osteochondritis dissecans (OCD) in the ankle: correlations with clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Lu, Rong; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Shang, Xiliang; Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China)

    2014-08-15

    To quantitatively evaluate cartilage repair after microfracture (MF) for ankle osteochondritis dissecans (OCD) using MRI and analyse correlations between MRI and clinical outcome. Forty-eight patients were recruited and underwent MR imaging, including 3D-DESS, T2-mapping and T2-STIR sequences, and completed American Orthopaedic Foot and Ankle Society (AOFAS) scoring. Thickness index, T2 index of repair tissue (RT) and volume of subchondral bone marrow oedema (BME) were calculated. Subjects were divided into two groups: group A (3-12 months post-op), and group B (12-24 months post-op). Student's t test was used to compare the MRI and AOFAS score between two groups and Pearson's correlation coefficient to analyse correlations between them. Thickness index and AOFAS score of group B were higher than group A (P < 0.001, P < 0.001). T2 index and BME of group B were lower than group A (P < 0.001, P = 0.012). Thickness index, T2 index and BME were all correlated with AOFAS score (r = 0.416, r = -0.475, r = -0.353), but BME was correlated with neither thickness index nor T2 index. Significant improvement from MF can be expected on the basis of the outcomes of quantitative MRI and AOFAS score. MRI was correlated with AOFAS score. BME is insufficient as an independent predictor to evaluate repair quality, but reduction of BME can improve the patient's clinical outcome. (orig.)

  12. [Current cell therapy strategies for repairing the central nervous system].

    Science.gov (United States)

    Féron, F

    2007-09-01

    One of the chief contemporary goals of neurologists and neuroscientists is to find a way to overcome the debilitating effects of brain diseases, especially neurodegenerative diseases. Since very few molecules have been found to be efficient in curing the patients and even halting the progression of the symptoms, cell therapy is now seen as an attractive alternative. Two therapeutic strategies are currently under investigation: i) the "substitution" strategy, based on grafts of cells capable of differentiating in the appropriate cells and restoring lost functions and ii) the "neuroprotective" or "conservative" strategy aiming to increase the resistance of spared cells to the toxicity of their environment and to reinforce the body's own mechanisms of healing. Twenty years ago, foetal neuroblasts were the first cells to be transplanted in the brains of patients with Parkinson's or Huntington disease. A phase II clinical trial is presently conducted in France for the latter disorder. However, the numerous ethical and technical issues raised by the use of embryonic and foetal cells have directed the focus of clinicians and researchers towards substitute cell types. In this review, we summarise the main findings of the most recent basic studies and clinical trials based on: i) the grafting of surrogate adult cells such as bone marrow mesenchymal stem cells and olfactory ensheathing cells; ii) the potential therapeutic applications of neuropoiesis - the persistent neurogenesis in the brain - as a source for tissue engraftment and as self-repair by a person's own indigenous population of pluripotent cells and iii) immune-based therapy (autologous activated macrophages and T cell vaccination) as well as administration of immunomodulatory molecules. Unexpectedly, it has been found that undifferentiated adult stem cells can display immune-like functions when they home in on an inflamed brain area while immune cells and immunosuppressors can improve functional and

  13. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  14. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes%新型壳聚糖水凝胶结合软骨细胞修复兔关节软骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    Ming ZHAO; Zhu CHEN; Kang LIU; Yu-qing WAN; Xu-dong LI; Xu-wei LUO; Yi-guang BAI; Ze-long YANG; Gang FENG

    2015-01-01

    Objective: In our previous work, we prepared a type of chitosan hydrogel with excelent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by com-bining 1,6-disocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondro-cytes that had been cultured for one weekin vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologicaly and immuno-histochemicaly. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P  创新点:利用自主研发的具有良好生物相容性和稳定性的壳聚糖水凝胶与软骨细胞,在体外初步构建组织工程软骨,并尝试利用其修复缺损的关节软骨,从而为关节软骨缺损的修复提供了一种新的治疗方法。  方法:取兔肋软骨体外培养扩增,获得P2代软骨细胞,将其种植到冻干的壳聚糖水凝胶上,体

  15. Cartilage Wound Healing and Integration

    NARCIS (Netherlands)

    P.K. Bos (Koen)

    2006-01-01

    textabstractThe intrinsic regeneration capacity of articular cartilage following injury is limited. Partialthickness defects are not repaired and full-thickness defects are repaired with fi brocartilage. Untreated, these defects may progress to early osteoarthritis. The goal of surgical treatment

  16. 腺病毒携带骨形态发生蛋白14基因转染脂肪干细胞修复损伤关节软骨%Adipose-derived stem cells transfected with adenovirus carrying bone morphogenetic protein 14 for repair of articular cartilage injury

    Institute of Scientific and Technical Information of China (English)

    马洪斌; 李运祥; 王铭伦

    2015-01-01

    BACKGROUND:The articular cartilage has weak self-repair ability, mainly due to its lack of trophoblast cels in blood vessels and slow cel metabolism. Current treatment methods cannot restore the original function of the cartilage tissue, and cartilage tissue engineering in recent years has garnered increasing attention. OBJECTIVE:To observe the effect of adipose-derived stem cels transfected with bone morphogenetic protein 14 combined with type I colagen sponge scaffold on the repair of articular cartilage injury in the knee of rabbits. METHODS: Adipose-derived stem cels were isolated and cultured from rabbit subcutaneous adipose tissue, and transfected with Ad-CMV-BMP-14-IRES-hrGFP-1. Type I colagen sponge scaffold with the transfected adipose-derived stem cels was used to repair articular cartilage injury in the knee of rabbits. Twelve weeks after operation, the articular tissue was taken for gross assessment and histological evaluation. RESULTS AND CONCLUSION: The expressions of bone morphogenetic protein 14, type II colagen and Sox-9 were higher in cels transfected with bone morphogenetic protein 14 than untransfected ones. At 12 weeks after operation, adipose-derived stem cels transfected with bone morphogenetic protein 14 combined with type I colagen sponge scaffold had good repair effect on articular cartilage injuries, and the injured cartilage tissues were smooth and had good texture, color and integration junction; adipose-derived stem cels combined with type I colagen sponge scaffold could partialy repair the injured cartilage tissues that had similar color and texture to normal tissues, and there was a remarkable boundary between the repaired tissue and normal cartilage tissue;simple type I colagen sponge scaffold was almost colapsed, and no hyaline cartilage tissue formed. These findings indicate that transfection of bone morphogenetic protein 14 can strengthen the ability of adipose-derived stem cels dramaticaly to repair cartilage injuries.%背景

  17. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  18. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  19. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  20. Ⅱ型胶原海绵填充材料修复兔关节软骨缺损%Repair of articular cartilage defect in rabbit with type Ⅱ collagen sponge filling material

    Institute of Scientific and Technical Information of China (English)

    贺敬义; 龙瑞芳

    2005-01-01

    背景:修复关节软骨缺损一直是骨科医师致力解决的难题,以前采用自体软骨膜、骨膜或异体骨软骨片移植,但存在供体来源有限、固定困难,以及出现软骨内骨化、软骨下骨与修复性软骨的分层现象等.Ⅱ型胶原是软骨基质的主要成分,对关节软骨缺损的修复应有一定的作用.目的:探讨Ⅱ型胶原海绵对修复关节软骨缺损的效果.设计:随机对照的实验研究.地点和材料:实验地点为广州市创伤外科研究所.材料:普通级成年雄性纯种新西兰兔24只48膝,体质量(2.29±0.25)kg,标准饲料分笼喂养.干预:在股骨滑车面钻孔为直径5 mm、深3 mm的全层关节软骨缺损,按随机数分为填充组(左膝关节缺损部位植入Ⅱ型胶原海绵)和对照组(右膝关节缺损部位作为空白对照).主要观察指标:术后12周内,每双数周对缺损修复情况行大体形态和组织学观察.结果:10~12周,对照组:缺损区由白色、质软、按压无阻抗的组织修复,修复组织仍低于周围关节面,边界仍清晰可辨,组织学以类似炎症反应的机制修复缺损,最终以透明变性的纤维组织的增生来填补缺损部位;填充组:缺损区由半透明状、质韧光滑有光泽,按压有阻抗并有弹性的组织修复,修复组织与周围软骨外形上已基本相似,不易区分,组织学未见有炎症反应的过程,内骨组织和软骨组织增生活跃,并可见大量类骨组织和骨小梁形成,新生软骨和周围软骨组织融合,并与周围组织连接.Ⅱ型胶原对关节软骨缺损的修复有明显的促进作用,修复结果接近正常软骨.结论:自行研制的高纯度Ⅱ型胶原海绵,对关节软骨缺损具有良好的促进修复作用,且组织相容性好,无明显的毒副作用.%BACKGROUND: The repair of articular cartilage defect is always a problem that is dedicatedly solved by doctors of orthopaedics. Autologous perichondrium, periosteum or allografting

  1. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.; Van Herwaarden, Joost A.

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  2. 聚乳酸-乙醇酸共聚物/羟基磷灰石复合支架修复喉软骨缺损%Polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold repairs laryngeal cartilage defect

    Institute of Scientific and Technical Information of China (English)

    刘永刚; 周香桃

    2015-01-01

    BACKGROUND:The traditional repair methods for laryngeal cartilage defect are restricted by donor source, rejection, which are difficult to be popularized. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold in repair of laryngeal cartilage defect. METHODS: A total of 20 Wistar rats were randomly divided into polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold and polylactic acid-glycolic acid copolymer scaffold groups. Polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold and polylactic acid-glycolic acid copolymer scaffold were respectively used for repair after the establishment of laryngeal cartilage defect models. RESULTS AND CONCLUSION: The laryngeal cartilage defect diameter of rats at 3, 5 and 7 days after modeling in the polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold group was significantly smaler than that in the polylactic acid-glycolic acid copolymer scaffold group. The laryngeal cartilage defect of rats in the polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold group was basicaly repaired and presented with a smooth surface, and there were no clear boundaries with surrounding tissues; however, the laryngeal cartilage defect of rats in the polylactic acid-glycolic acid copolymer scaffold group had indentations with a rough surface, and there were obvious boundaries with surrounding tissues. These results demonstrate that polylactic acid-glycolic acid copolymer/hydroxyapatite composite scaffold can promote the repair of laryngeal cartilage defect part, and its repair effect is more ideal.%背景:喉软骨缺损传统的修复方法受到供体来源、排斥反应等限制,因而难以推广。目的:观察聚乳酸-乙醇酸共聚物/羟基磷灰石复合支架修复喉软骨缺损的效果。方法:将20只Wistar 大鼠随机分为聚乳酸-乙醇酸共聚物/羟基磷灰石复合支架组和聚

  3. Green fluorescent protein as marker in chondrocytes overexpressing human insulin-like growth factor-1 for repair of articular cartilage defects in rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-kun; LIU Yi; SONG Zhi-ming; FU Chang-feng; XU Xin-xiang

    2007-01-01

    Objective:To label the primary articular chondrocytes overexpressing human insulin-like growth factor ( hIGF-1 ) with green fluorescent protein (GFP) for repair of articular cartilage defects in rabbits. Methods:GFP cDNA was inserted into pcDNA3.1-hIGF-1 to label the expression vector.The recombinant vector,pcGI,a mammalian expression vector with multiple cloning sites under two respective cytomegalovirus promoters/enhancers,was transfected into the primary articular chondrocytes with the help of lipofectamine.After the positive cell clones were selected by G418,G418-resistant chondrocytes were cultured in medium for 4 weeks.The stable expression of hIGF-1 in the articular chondrocytes was determined by in situ hybridization and immunocytochemical analysis and the GFP was confirmed under a fluorescence microscope. Methyl thiazolyl tetrazolium (MTT) and flow cytometer methods were employed to determine the effect of transfection on proliferation of chondrocytes. Gray value was used to analyze quantitatively the expression of type Ⅱ collagen. Results:The expression of hIGF-1 and GFP was confirmed in transfected chondrocytes by in situ hybridization, immunocytochemical analysis and fluorescence microscope observation. Green articular chondrocytes overexpressing hIGF-1 could expand and maintain their chondrogenic phenotypes for more than 4 weeks.After the transfection of IGF-1,the proliferation of chondrocytes was enhanced and the chondrocytes could effectively maintain the expression of type Ⅱ collagen. Conclusions:The hIGF-1 eukaryotic expression vector containing GFP marker gene has been successfully constructed.GFP,which can be visualized in real time and in situ, is stably expressed in articular chondrocytes overexpressing hIGF-1.The labeled articular chondrocytes overexpressing hIGF-1 can be applied in cell-mediated gene therapy as well as for other biomedical purposes of transgenic chondrocytes.

  4. Research Progress of Pulse Electromagnetic Field in Cartilage Defects Repair%脉冲电磁场用于软骨缺损修复的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘印

    2013-01-01

    软骨缺损是临床上常见的一种关节退行性病变,是由于关节处的组织失衡而导致的机械性或生物性损伤.脉冲电磁场作为非侵入性的疗法,已获广泛应用,可以促使软骨干细胞组织增生及分化,使骨髓中的干细胞移植到软骨缺损处,从而修复软骨组织.实验和研究表明,脉冲电磁场刺激对软骨缺损来说是一种有前途的治疗手段.总结分析有关脉冲电磁场治疗软骨缺损的体外、体内、临床研究概况,为今后的深入研究提供参考.%Cartilage defect is a clinically common kind of degenerative joint disease,due to the imbalance of joint organization in mechanical or biological damage.As a noninvasive treatment,pulse electromagnetic field has been widely used,it can stimulate the proliferation and differentiation of stem cells,the transplantation of the bone marrow stem cell into the cartilage defects place to repair cartilage fiber.Experiment and studies indicate that pulse electromagnetic field is a promising treatment for cartilage defect.Here is to provide a reference basis for I further studies from the perspectives of pulse electromagnetic field treatment of cartilage defects in vitro,in vivo,and in clinical.

  5. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  6. 单侧唇裂鼻软骨不同程度畸形的个性化整复%Customized repair of unilateral cleft lip nasal deformities based on different degree of nasal cartilage framework deformities

    Institute of Scientific and Technical Information of China (English)

    杜本军; 王生钰

    2012-01-01

    目的 探讨采用不同强度自体组织植入、固定矫正单侧唇裂鼻软骨不同程度畸形的临床应用效果.方法 根据鼻尖及软骨支架畸形的程度和鼻尖偏斜程度,选取鼻中隔软骨、肋软骨及髂骨作为鼻小柱支架材料.对自2006年10月至2010年10月期间收治的30例单侧唇裂鼻畸形患者的临床资料进行回顾性分析.结果 术后创口愈合良好,无并发症发生.平均随访6个月,植入材料固位良好、无移位,效果满意.结论 鼻中隔软骨、肋软骨及髂骨作为单侧唇裂鼻畸形整复术中鼻小柱的支架材料,可对抗不同强度的应力,避免术后复发.%Objective To discuss the application of different autologous tissue graft for the repair of unilateral cleft lip nasal deformities based on different degree of nasal cartilage framework deformities. Methods Autologous septal cartilage, costal cartilage and iliac bone were implanted as the nasal tip framework according to different deformities. A retrospective study on 30 patients with unilateral cleft lip nasal deformity received from October 2006 to October 2010 was performed. Results All cases healed primarily without postoperative complications. After 6 months follow-up on average, satisfactory results were received in all cases without implants shift. Conclusion It can accommodate to varying force by customized repair of unilateral cleft lip nasal deformities by autologous septal cartilage, costal cartilage and iliac bone implant as scaffolds without recurrence.

  7. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  8. Current Stem Cell Delivery Methods for Myocardial Repair

    OpenAIRE

    Sheng, Calvin C.; Li Zhou; Jijun Hao

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as ske...

  9. Current stem cell delivery methods for myocardial repair.

    Science.gov (United States)

    Sheng, Calvin C; Zhou, Li; Hao, Jijun

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs), mesenchymal stem cells (MSCs), and cardiac stem cells (CSCs). To engraft these cells into patients' damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation) have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration. PMID:23509740

  10. Current focus of stem cell application in retinal repair

    Institute of Scientific and Technical Information of China (English)

    Maria L Alonso-Alonso; Girish Kumar Srivastava

    2015-01-01

    The relevance of retinal diseases, both in society'seconomy and in the quality of people's life who suffer withthem, has made stem cell therapy an interesting topic forresearch. Embryonic stem cells (ESCs), induced pluripotentstem cells (iPSCs) and adipose derived mesenchymal stemcells (ADMSCs) are the focus in current endeavors as asource of different retinal cells, such as photoreceptorsand retinal pigment epithelial cells. The aim is to applythem for cell replacement as an option for treating retinaldiseases which so far are untreatable in their advancedstage. ESCs, despite the great potential for differentiation,have the dangerous risk of teratoma formation as wellas ethical issues, which must be resolved before startinga clinical trial. iPSCs, like ESCs, are able to differentiatein to several types of retinal cells. However, the processto get them for personalized cell therapy has a high costin terms of time and money. Researchers are working toresolve this since iPSCs seem to be a realistic option fortreating retinal diseases. ADMSCs have the advantagethat the procedures to obtain them are easier. Despiteadvancements in stem cell application, there are stillseveral challenges that need to be overcome beforetransferring the research results to clinical application.This paper reviews recent research achievements of theapplications of these three types of stem cells as well asclinical trials currently based on them.

  11. Current stem cell delivery methods for myocardial repair.

    Science.gov (United States)

    Sheng, Calvin C; Zhou, Li; Hao, Jijun

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs), mesenchymal stem cells (MSCs), and cardiac stem cells (CSCs). To engraft these cells into patients' damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation) have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration.

  12. Current Stem Cell Delivery Methods for Myocardial Repair

    Directory of Open Access Journals (Sweden)

    Calvin C. Sheng

    2013-01-01

    Full Text Available Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs, the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs, mesenchymal stem cells (MSCs, and cardiac stem cells (CSCs. To engraft these cells into patients’ damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration.

  13. Repair of nonunions by electrically pulsed current stimulation.

    Science.gov (United States)

    Zichner, L

    1981-01-01

    Five congenital and 52 acquired nonunions of bone were stimulated using an invasive device. The unit delivered a constant but pulsed right-angled current of positive polarity measuring 20 to 25 muAmps (voltage of 750 mV) and a frequency of 20 Hz. The power pack encapsulated in epoxy resin was implanted at the time of operative fragment stabilization. THe cathode was inserted at the site of the nonunion gap. After two to 12 months, all but two of the acquired nonunions and one of the congenital pseudarthroses healed. In the unsuccessful cases, the bone ends were often totally necrotic. Four cases required reimplantation because of broken wires or expiration of the battery, and two cases failed owing to purulent infection. Electrostimulation is an adjuvant treatment to fragment stabilization in hyporeactive and hypovascular or congenital pseudarthroses. Electrical stimuli may be assumed to simulate conditions which are essential for bone healing.

  14. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    OpenAIRE

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The ob...

  15. Micro fracture surgery combined with sodium hyaluronate injection on repairing knee joint cartilage injury%微骨折术联合玻璃酸钠注射修复膝关节软骨损伤

    Institute of Scientific and Technical Information of China (English)

    付昌马; 钱春生; 章有才; 刘群; 周思启; 杨祖华

    2013-01-01

    Objective To research microfracture surgery combined with sodium hyahuronate injection repair knee cartilage injury patient outcomes,and analyse arthroscopic cartilage damage outerbridge grading cartilage damage in patients with or without a merger meniscus injury,whether the merger withinthe sideslip film folds of the treatment effect.Methods To select forty patients with knee cartilage damage who accepted arthroscopic surgery treatment in the third people' s hospital of hefei from april 2011 to January 2012,the trauma caused by cartilage damage in 9 cases,cartilage damage caused by arthritis in 31 cases.Divided them into three groups based on outerbridge different grade.Using two sample t-test to test knee function Lysholm score between each group before and after surgery,the knee function lysholm score before and after whether combined with the merger meniscus injury surgery,knee function Lysholm score before and after whether the merger medial synovial plica surgery and knee function Lysholm score before and after surgery in 40 cases of knee cartilage dmage used two sample t-test to compare.Results Knee cartilage injury patients included in the study,40 patients were involved in the result analysis,statistical results in the first three months of follow-up:①There had significant differences with knee function Lysholm score before and after surgery between each group (P <0.05).②The knee function Lysholm scores were significant different before and after whether combined with the merger meniscus injury surgery (P < 0.05).③There had significant differences with the knee function Lysholm score before and after whether the merger medial synovial plica surgery (P < 0.05).④The differences of knee function Lysholm score before and after surgery in 40 cases of knee cartilage damage patients was statistically significant(P < 0.05).Conclusions It would be receive a satisfactory therapeutic effect of micro fracture surgery combined with sodium hyaluronate

  16. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    Osteoarthritis (OA) is a widespread, chronic joint disease for which there are currently no effective treatments beyond symptom relief. The lack of any approved disease modifying osteoarthritic drugs may partly be explained by insufficient disease understanding, but may also be tied to the absence...... spatial cartilage changes that were observed in our study and in recent literature. The cartilage “Activity” marker is shown to have a state-of-the-art performance in separating healthy knees from OA knees and is also shown to predict knee replacement which is a clinically relevant endpoint for OA....

  17. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    OpenAIRE

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  18. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering.

  19. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure.

    Science.gov (United States)

    Reboredo, Jenny W; Weigel, Tobias; Steinert, Andre; Rackwitz, Lars; Rudert, Maximilian; Walles, Heike

    2016-09-01

    Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage. PMID:27185494

  20. Tissue engineering technology and biomaterials for repair of sports articular cartilage injury%组织工程技术及生物材料修复运动性关节软骨损伤

    Institute of Scientific and Technical Information of China (English)

    马金玉; 薛媛; 杨洪武

    2011-01-01

    January 1993 to October 2010 was performed for related articles, using "articular cartilage, tissue engineering technology, biomaterials" for the Chinese key words and "tissue engineering, articular cartilage, scaffold material" for the English key words, duplicated research or Meta analysis were eliminated. Twenty-three papers mainly discuss seed cells,scaffolds, cytokines and their properties in the repair of sports articular cartilage injury.RESULTS : Totally 104 studies were screened out by computer search, according to inclusion and exclusion criteria, studies regarding the seed cells and bio-scaffolds for cartilage tissue engineering, as well as cytokines for tissue engineering were summarized and analyzed. Seed cells are the primary factor restricting clinical application of tissue engineered cartilage, the common seed cells include cartilage cells, bone marrow stromal stem cells and embryonic stem cells; bio-scaffold materials includes natural materials and synthetic biodegradable polymers; the growth factors for cartilage tissue engineering include transforming growth factor, bone morphogenetic protein, fibroblast growth factor, insulin-like growth factor and so on.CONCLUSION: So far, there is no ideal materials for the seed cells and scaffold materials of engineered cartilage, as well as culture environment, the focus of future research is a kind of tissue engineered articular cartilage with good performance.However, many studies are still in the experimental stage, and some problems need to be solved, especially after tissue engineering scaffolds are implanted, whether the material degradation is synchronized with cell functioning, thus altering genetic materials, gene expression or gene mutation, their clinical application requires relevant scholars and experts to constantly practice and explore.

  1. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  2. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    Science.gov (United States)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  3. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    Science.gov (United States)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  4. Tensorial electrokinetics in articular cartilage.

    Science.gov (United States)

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  5. Strategies for osteochondral repair: Focus on scaffolds

    OpenAIRE

    Seo, S J; Mahapatra, C.; Singh, R. K.; Knowles, J. C.; Kim, H. W.

    2014-01-01

    Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mec...

  6. Engineered cartilage covered ear implants for auricular cartilage reconstruction.

    Science.gov (United States)

    Lee, Sang Jin; Broda, Christopher; Atala, Anthony; Yoo, James J

    2011-02-14

    Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement. PMID:21182236

  7. Clinical Effect of Microfracture Combined with Hyaluronic Acid Injection to Repair Knee Joint Cartilage Injury%微骨折术联合玻璃酸钠注射修复膝关节软骨损伤

    Institute of Scientific and Technical Information of China (English)

    付昌马; 钱春生; 章有才

    2013-01-01

    目的 研究关节镜下微骨折术(microfracture,MF)联合玻璃酸钠(hyaluronic acid,HA)注射修复膝关节软骨损伤患者的治疗效果.方法 收集2011年4月至2012年9月在合肥市第三人民医院关节镜手术治疗的40例膝关节软骨损伤患者,其中外伤导致的软骨损伤9例,骨关节炎(退变)导致的软骨损伤31例.对40例膝关节软骨损伤患者采用关节镜下微骨折术,缺损面积0.5~9 cm2,平均3.3 cm2;术后立即注射玻璃酸钠20 mg,术后第1周,第2周均注射HA 20 mg;术后8周膝关节功能Lysholm得分采用两样本均数t检验;采用Tegner运动评级进行膝关节功能评价.结果 纳入研究的40例膝关节软骨损伤患者均进入结果分析.40例膝关节软骨损伤患者手术前后膝关节功能Lysholm得分有差异(P<0.05).40例膝关节软骨损伤患者手术后Tegner运动评级优15例,良20例,差5例,优良率87.5%.结论 微骨折术联合玻璃酸钠注射修复膝关节软骨损伤取得满意的治疗效果.关节镜下微骨折术联合玻璃酸钠注射修复操作方便,方法简单.不管是退变的膝关节软骨损伤还是外伤的软骨损伤,均可明显改善患者的关节功能和减轻疼痛症状.%Objective To explore the clinical effect of arthroscopic microfracture surgery combined sodium hyaluronate injection to repair knee cartilage damage. Methods 40 patients who accept arthroscopic surgery in the Third People's Hospital of Hefei 2011-04/2012-09 were analyzed. There were 9 cases with traumatic cartilage injury. And 31 cases with knee cartilage damage caused by osteoarthritis. The defect area ranged from 0. 5 cm2 to 9 cm2,with an average of 3. 3 cm2. Sodium hyaluronate (HA) 20 mg was injected immediately after surgery,one week,two weeks and eight weeks after surgery. Knee function Lysholm score and Tegner movement rating were analyzed. Results The Lysholm score improved after surgery (P<0. 05). According to Tegner movement rating,there were

  8. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  9. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  10. A Review of Current Concepts in Flexor Tendon Repair: Physiology, Biomechanics, Surgical Technique and Rehabilitation.

    Science.gov (United States)

    Singh, Rohit; Rymer, Ben; Theobald, Peter; Thomas, Peter B M

    2015-12-28

    Historically, the surgical treatment of flexor tendon injuries has always been associated with controversy. It was not until 1967, when the paper entitled Primary repair of flexor tendons in no man's land was presented at the American Society of Hand Surgery, which reported excellent results and catalyzed the implementation of this technique into worldwide practice. We present an up to date literature review using PubMed and Google Scholar where the terms flexor tendon, repair and rehabilitation were used. Topics covered included functional anatomy, nutrition, biome-chanics, suture repair, repair site gapping, and rehabilitation. This article aims to provide a comprehensive and complete overview of flexor tendon repairs. PMID:26793293

  11. Stem cells for liver tissue repair:Current knowledge and perspectives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Stem cells from extra- or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated.Therefore,they are being increasingly considered for future applications in liver cell therapy.In that field,liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation,while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures.However,the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype,both in vitro and in vivo.Furthermore,the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures.The present review focuses on the current knowledge of the stern cell potential for liver therapy.We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo.We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.

  12. Engineering articular cartilage using newly developed carrageenan basedhydrogels

    OpenAIRE

    Popa, Elena Geta

    2014-01-01

    Articular cartilage holds specific functionality in the human body creating smooth gliding areas and allowing the joints to move easily without pain. However, due to its avascular nature and to the low metabolic activity of the constituent cells-the chondrocytes, cartilage has a low regenerative potential. The current surgical options to treat damaged cartilage are not long lasting and involve frequent revisions. Tissue engineering may provide an alternative approach for cartilage...

  13. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  14. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  15. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  16. 骨形态发生蛋白与碱性成纤维细胞生长因子联合修复软骨缺损的效果评价%Effects of recombinant human bone morphogenetic protein combined with basic fibroblast growth factor on the repair of articular cartilage defects

    Institute of Scientific and Technical Information of China (English)

    朱国华; 蔡建平; 郭翠玲; 廖家新; 刘勇; 罗洪涛; 许国华; 胡红涛

    2012-01-01

    背景:多种细胞生长因子在骨软骨代谢过程中的协同作用越来越受到重视,但目前复合细胞生长因子修复软骨缺损报道较少,且修复效果尚无定论.目的:探讨骨形态发生蛋白和碱性成纤维细胞生长因子联合应用修复关节软骨缺损的效果.方法:24 只日本大耳白兔建立骨软骨缺损模型后随机等分为4 组,对照组缺损处仅填塞明胶海绵,其他3 组在对照组基础上,缺损处分别注射骨形态发生蛋白和碱性成纤维细胞生长因子、骨形态发生蛋白、碱性成纤维细胞生长因子.结果与结论:大体观察显示联合应用2 种细胞因子后,软骨缺损面基本修复但稍不平整,单独使用其中1 种细胞因子缺损面未完全修复,对照组无明显修复.联合应用2 种细胞因子缺损部位软骨细胞数多于其他3 组(P < 0.05),且Ⅱ型胶原免疫组化染色深于其他组.提示联合应用骨形态发生蛋白和碱性成纤维细胞生长因子可以促进关节软骨损伤的修复,疗效优于单独应用骨形态发生蛋白或碱性成纤维细胞生长因子.%BACKGROUND: The synergy of various cell growth factors attracts more and more attention in the course of cartilage metabolism.However, there are few reports of repairing cartilage defects with combined cell growth factors, and the effect remains unknown atpresent.OBJECTIVE: To study the repairing effect of recombinant human bone morphogenetic protein (rhBMP) combined with basicfibroblast growth factor (bFGF) on articular cartilage defects.METHODS: After the model of articular cartilage defects was made, 24 Japan big-eared white rabbits were randomly divided intofour groupsforintervention: rhBMP combined with bFGF (group A), single rhBMP (group B), single bFGF (group C), the fourthgroup was without injection and just filled with gelatin sponge (group D).RESULTS AND CONCLUSION: In general observation, articular cartilage defects were basically repaired but slightly

  17. Repairing allogenic thyroid cartilage defects using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) seeded with chondrocytes%聚羟基烷酸酯聚合物负载软骨细胞修复同种异体喉软骨缺损

    Institute of Scientific and Technical Information of China (English)

    孙安科; 李万同; 刘松波; 张贺; 孙伟; 陈伟; 史春海; 唐维维

    2013-01-01

    ,直接应用初级组织工程软骨组织可节省时间、成本、工作量及操作环节,避免二次皮下手术的痛苦,是比较实用的方法之一。%BACKGROUND:A great development has been achieved in essential research on tissue engineered cartilage. However, its real application in otolaryngology has been rarely reported. It is faced with the topic to explore the simple and convenient method of repairing laryngeal cartilage by tissue engineering technique. OBJECTIVE:To compare the effect of porous spongy poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) seeded with chondrocytes or using senior tissue engineered cartilage in repairing al ogenic thyroid cartilage defects.METHODS:Chondrocytes at passage 3 were harvested from infant rabbits within 3 days. Porous spongy poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) seeded with chondrocytes composites were made by tissue engineering technique. The chondrocyte-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites were co-cultured in vitro to form junior tissue engineered cartilage. And then respectively used for repairing the thyroid cartilage defects and directly transplanted with junior tissue engineered cartilage (experimental group A, n=5), or firstly the junior tissue engineered cartilage to be implanted subcutaneously for a period of time to further maturity for relative senior tissue engineered cartilage and secondly to be transplanted (experimental group B, n=5) into adult New Zealand white rabbits. Simple poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) sponge scaffold (control group A, n=4) and chondrocyte suspensions(control group B, n=4) were used as reparative materials in defect areas as control groups. Final y, the reparative effect was respectively studied grossly and histological y at 4 weeks (experimental group B) and 8 weeks (experimental group A, control group A and control group B) after transplantation. RESULTS AND CONCLUSION:The cartilage defects were wel repaired in the

  18. A review of current concepts in flexor tendon repair: physiology, biomechanics, surgical technique and rehabilitation.

    Directory of Open Access Journals (Sweden)

    Rohit Singh

    2015-12-01

    Full Text Available Historically, the surgical treatment of flexor tendon injuries has always been associated with controversy. It was not until 1967, when the paper entitled Primary repair of flexor tendons in no man’s land was presented at the American Society of Hand Surgery, which reported excellent results and catalyzed the implementation of this technique into world-wide practice. We present an up to date literature review using PubMed and Google Scholar where the terms flexor tendon, repair and rehabilitation were used. Topics covered included functional anatomy, nutrition, biomechanics, suture repair, repair site gapping, and rehabilitation. This article aims to provide a comprehensive and complete overview of flexor tendon repairs.

  19. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  20. 间充质干细胞源性微囊泡和诱导性多潜能干细胞促进关节软骨修复的进展%Articular cartilage repair using mesenchymal stem cells-derived microvesicles and induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    侯威宇; 程艳伟; 向川

    2015-01-01

    BACKGROUND:Induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles have been confirmed in various tissue repairs, which are expected to become more effective and safe therapy for articular cartilage repair. OBJECTIVE:To overal understand the research progress in the use of induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles in articular cartilage repair. METHODS: A computer-based search of PubMed and CNKI was performed by the first author for articles related to stem cel treatment of osteoarthritis published from 2003 to 2015. The keywords were “articular cartilage injury, bone marrow mesenchymal stem cels” in English and Chinese, respectively. In the same field, articles published recently or in authorized journals were preferred. RESULTS AND CONCLUSION:Articular cartilage injury is stil a difficulty in the orthopedics. Many repair methods have been reported, but they al have limitations. Induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles bring a new hope for patients with articular cartilage injury. However, there are stil many problems to be solved, such as extracting and purifying a large amount of cels, proliferation and differentiation potentials, and mechanism underlying cartilage repair.%背景:间充质干细胞源性微囊泡和诱导性多潜能干细胞在多个领域的组织修复作用已被证实,两者有望成为修复关节软骨损伤更有效、更安全的治疗方法。目的:综述间充质干细胞源性微囊泡和诱导性多潜能干细胞促进软骨修复的研究进展。方法:由第一作者应用计算机检索PubMed、中国期刊全文数据库(CNKI)2003年至2015年8月相关文献,英文检索词为“Articular cartilage injury,Bone marrow mesenchymal stem cels”,中文检索词为“软骨损伤,骨髓间充质干细胞”。选择文章内容与干细胞治疗骨关节炎有关者,同一领域文献则选择近期发表在权威

  1. Minced articular cartilage--basic science, surgical technique, and clinical application.

    Science.gov (United States)

    McCormick, Frank; Yanke, Adam; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Minced articular cartilage procedures are attractive surgical approaches for repairing articular cartilage, as they are 1-staged, autologous, and inserted on a carrier that can potentially be placed arthroscopically. The principle of mincing the autologous donor cartilage is to create a larger surface area for cartilage expansion. Placement on a scaffold carrier allows for a chondro-inductive and chondro-conductive milieu. Early animal and preclinical models have demonstrated hyaline-like tissue repair. Further work needs to be conducted in this promising approach. PMID:19011553

  2. Repair of rabbit articular cartilage and subchondral defects using porous silk fibroin/hydroxyapatite combined with adipose-derived stromal cells%多孔丝素蛋白/羟基磷灰石复合脂肪间充质干细胞修复兔关节软骨及软骨下骨缺损

    Institute of Scientific and Technical Information of China (English)

    鞠刚; 徐卫袁; 张亚; 张兴祥; 严飞; 沙卫平

    2011-01-01

    BACKGROUND: Silk fibroin/hydroxyapatite (SF/HA) is a good scaffold for three-dimensional culture of cells, and is a common material to repair bone defect with good biocompatibility. Adipose -derived stem cells (ADSCs) which can differentiate into bone and cartilage cells are ideal for repairing cartilage defect.OBJECTIVE: To observe the effects of the repair of articular cartilage and subchondral defects in rabbit knee joints with transforming growth factor-?1 and insulin like growth factor-1 in combination with SF/HA and ADSCs.METHODS: A total of 56 New Zealand rabbits were selected, and 2 were used for cultures of ADSCs, which were seeded onto SF/HA at a concentration of 3×109/L. The remaining 54 rabbits were used to establish model of articular cartilage and subchondral defects and randomly assigned to composite, simple and blank control groups. The composite and simple groups were respectively implanted with SF/HA/ADSCs scaffold and SF/HA scaffold. The blank control group was not implanted any materials. Repair of defects was observed and compared by gross, imaging and histological observations.RESULTS AND CONCLUSION: At 12 weeks, gross observation, CT, MRI and histological observations demonstrated that the articular cartilage and subchondral defects were repaired entirely in composite group. The color of repaired tissues was similar to surrounding cartilage. There was no evidence of the residue of silk fibroin or the infiltration of leukocytes. Defects were repaired partially and repaired with cartilage fibrosa in simple group. However, defects remained unchanged in blank control group.Results showed that SF/HA with ADSCs composite could successfully repair articular cartilage and subchondral defects of a rabbit knee joints and the effect was superior to SF/HA scaffold alone. The method for repairing the full-thickness hyaline cartilage defects and reconstructing anatomical structure and function of joints using SF/HA with ADSCs is feasible and promising to

  3. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  4. A review of current concepts in flexor tendon repair: physiology, biomechanics, surgical technique and rehabilitation.

    OpenAIRE

    Rohit Singh; Ben Rymer; Peter Theobald; Thomas, Peter B.M.

    2015-01-01

    Historically, the surgical treatment of flexor tendon injuries has always been associated with controversy. It was not until 1967, when the paper entitled Primary repair of flexor tendons in no man’s land was presented at the American Society of Hand Surgery, which reported excellent results and catalyzed the implementation of this technique into worldwide practice. We present an up to date literature review using PubMed and Google Scholar where the terms flexor tendon, repair and rehabilitat...

  5. Autologous chondrocyte transplantation for the treatment of articular cartilage defects in the knee joint. Techniques and results; Autologe Chondrozytentransplantation zur Behandlung von Knorpeldefekten des Kniegelenks. Techniken und Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, S.; Kutscha-Lissberg, F.; Aldrian, S.; Resinger, C.; Singer, P.; Zeller, P.; Vecsei, V. [Universitaetsklinik fuer Unfallchirurgie, Medizinische Universitaet Wien (Austria)

    2004-08-01

    Currently the use of autologous chondrocytes as a cartilage-repair procedure for the repair of injured articular cartilage of the knee joint, is recommended. This review presents the technique of autologous chondrocyte transplantation (ACT) and their modifications as matrix-associated autologous chondrocyte transplantation (MACT). Beside the surgical procedure the experimental and clinical results are discussed. Furthermore the major complications and the indication guidelines are presented. Articular cartilage in adults has a poor ability to self-repair after a substantial injury. Surgical therapeutic efforts in treating cartilage defects have focused on bringing new cells capable of chondrogenesis into the lesions. With ACT good to excellent clinical results are seen in isolated posttraumatic lesions of the knee joint in the younger patient with the formation of hyalinelike repair tissue. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. The current limitations include osteoarthritic defects and higher patient age. With the right indication and operative technique ACT is an effective and save option for the treatment of large full thickness cartilage defect of the knee joint. (orig.) [German] Zur Behandlung umschriebener Defekte des artikulaeren Kniegelenkgelenkknorpels wird der Einsatz autologer Knorpelzellen zunehmend als neue biologische Methode empfohlen. Die Technik der autologen Chondrozytentransplantation (ACT) und deren Modifikationen als matrixassoziierte autologe Chondrozytentransplantation (MACT) werden dargestellt. Es erfolgt ein Ueberblick ueber die experimentellen und klinischen Ergebnisse mit der Darstellung der haeufigsten Komplikationen und den derzeit gueltigen Indikationsrichtlinien. Unter Verwendung qualitativ hochwertiger Zellen zeigen besonders posttraumatische Knorpeldefekte bei juengeren Patienten eine hohe Erfolgsquote mit der Ausbildung eines hyalinartigen

  6. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration

    Directory of Open Access Journals (Sweden)

    P Kiviranta

    2007-04-01

    Full Text Available In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g., arising from collagen network damage or proteoglycan depletion. We have recently investigated several novel quantitative biophysical methods, including ultrasound indentation, quantitative ultrasound techniques and magnetic resonance imaging, for diagnosing the degenerative changes of articular cartilage, typical for OA. In this study, the combined results of these novel diagnostic methods were compared with histological (Mankin score, MS, compositional (proteoglycan, collagen and water content and mechanical (dynamic and equilibrium moduli reference measurements of the same bovine cartilage samples. Receiver operating characteristics (ROC analysis was conducted to judge the diagnostic performance of each technique. Indentation and ultrasound techniques provided the most sensitive measures to differentiate samples of intact appearance (MS=0 from early (13 degeneration. Furthermore, these techniques were good predictors of tissue composition and mechanical properties. The specificity and sensitivity analyses revealed that the mechano-acoustic methods, when further developed for in vivo use, may provide more sensitive probes for OA diagnostics than the prevailing qualitative X-ray and arthroscopic techniques. Noninvasive quantitative MRI measurements showed slightly lower diagnostic performance than mechano-acoustic techniques. The compared methods could possibly also be used for the quantitative monitoring of success of cartilage repair.

  7. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  8. Human DNA repair disorders in dermatology: A historical perspective, current concepts and new insight.

    Science.gov (United States)

    Moriwaki, Shinichi

    2016-02-01

    Products of DNA damage, such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs), are continually formed in genomes after exposure to UV radiation. When these DNA damages remain unrepaired in essential DNA sites for prolonged periods, DNA replication and transcription are hampered or mutation is induced, which may cause cell death, cellular senescence, and carcinogenesis of the skin. To protect against such UV-induced DNA damage, living organisms nicely retain "DNA repair systems", which can efficiently repair "harmful" DNA damage through precise mechanisms by the integrated functions of many proteins. In humans, the failure of DNA repair systems causes a variety of disorders. Dermatological conditions such as hereditary photodermatoses, xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are caused by congenital functional defects in the nucleotide excision repair (NER) system or the translesion synthesis (TLS) system. In this review, we describe the historical progress, recent findings, and future prospects of studies of human diseases associated with DNA-repair defects. PMID:26493104

  9. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    OpenAIRE

    M Pei; Li JT; Shoukry, M; Y Zhang

    2011-01-01

    Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the ...

  10. 壳聚糖水凝胶复合脂肪间充质干细胞修复兔关节软骨缺损%Chitosan hydrogel composite with adipose-derived stem cells for repair of rabbit articular cartilage defect

    Institute of Scientific and Technical Information of China (English)

    林涛; 陈竹; 袁德超; 刘康; 向小聪; 周玉川; 冯刚

    2016-01-01

    Objective To fabricate a novel tissue-engineered cartilage with adipose-derived stem cells (ADSCs) seeded on the chitosan hydrogel scaffold to repair articular cartilage defect.Methods Adipose tissue and costal cartilage were harvested from New Zealand rabbits,and ADSCs in passage one and chondrocytes were obtained after the samples were digested and cultured in vitro.ADSCs were digested,suspended,seeded onto the sterile chitosan gel,and cultured in vitro for 1 week to fabricate the tissue-engineered cartilage.The defects were respectively filled with the tissue-engineered cartilage (composite group),chondrocyte suspension (cell group),chitosan gel (material group) and nothing at all (control group).At postoperative 12 weeks,cartilage repair was evaluated using the gross examination,histological staining,immunohistochemical staining and international cartilage repair society (ICRS) histological score.Results Effect of cartilage repair in composite group was significantly better compared to other groups.The regenerated tissue in composite group seemed tightly bound in normal tissue,with similar structure and extracellular matrix secretion.ICRS histological score in composite group was (13.89 ± 0.14) points,which differed significantly from (7.06 ± 0.19) points in control group,(7.14 ± 0.22) points in cell group and (7.46 ± 0.26) points in material group (P <0.01).Conclusion The tissue-engineered cartilage with ADSCs seeded onto the chitosan hydrogel is effective for repair of articular cartilage defect.%目的 探讨利用脂肪间充质干细胞(ADSCs)复合壳聚糖水凝胶支架构建的组织工程软骨修复兔关节软骨缺损的效果. 方法 分别取新西兰大白兔皮下脂肪和肋软骨,消化后体外扩增培养分别得到P1代ADSCs和软骨细胞.将ADSCs消化后制成细胞悬液,并种植于灭菌后的壳聚糖水凝胶上,体外培养1周构建组织工程软骨,将构建的组织工程软骨植入到兔的关节软骨缺损处.实

  11. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  12. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    Science.gov (United States)

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  13. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Chengde Gao

    2014-03-01

    Full Text Available Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.

  14. 滑膜间充质干细胞修复软骨损伤:具有临床转化机制的话题%Synovial mesenchymal stem cells-based therapy for cartilage repair An issue concerning clinical transformation

    Institute of Scientific and Technical Information of China (English)

    陈康; 曾意荣; 樊粤光; 曾建春; 李杰; 李飞龙; 范帅

    2014-01-01

    BACKGROUND:Cartilage injury is stil one of the clinical problems difficult to be treated completely so far. Recently, the discovery of synovial mesenchymal stem cells (SMSCs) has brought about the new hope to cartilage repair. OBJECTIVE:To explore the process concerning SMSCs-based therapy for cartilage repair in the past few years, such as the characteristics of SMSCs, culture conditions, preclinical and clinical studies, and then to summarize the literatures published in recent years. METHODS:A computed-based online search of PubMed and SpringerLink databases was performed using the key words of“synovial mesenchymal stem cells, cartilage repair”for literatures published from January 1993 to May 2013. RESULTS AND CONCLUSION:Final y, 37 articles were included. SMSCs have a greater proliferative capability, colony-forming potential and chondrogenic potential than other mesenchymal stem cells. The diseases such as osteoarthritis and rheumatoid arthritis can influence the characteristics of SMSCs. Numerous articles have aimed at the studies of cellculture in vitro and celltransplantation in vivo. However, the process of SMSCs therapy is mostly at its preliminary stage. Reports on its unique characteristics, optimal culture conditions and the high-quality clinical studies are stil largely lacking. In a word, though further studies are needed, SMSCs appear to be a promising cellsource for cartilage repair in the future.%背景:软骨损伤目前仍然是临床上难以完全治愈的一大难题。近来,滑膜间充质干细胞的发现为该病变的治疗带来了新的希望。  目的:综合近几年文献探讨滑膜间充质干细胞的特性、培养条件、临床前及临床研究等关于软骨修复的研究进展。  方法:应用计算机检索1993年1月至2013年5月 PubMed 数据库和SpringerLink 数据库中的相关文章,检索词为“synovial mesenchymal stem cel s, cartilage repair”,并参阅其他相关的著作及高

  15. 含自体富集骨髓干细胞松质骨移植修复兔关节软骨大面积缺损的实验研究%Large Area Articular Cartilage Defect Repaired with Cancellous Bone Enriching Bone Marrow Stem Cells

    Institute of Scientific and Technical Information of China (English)

    胡德新; 朱博; 应小樟; 石仕元

    2014-01-01

    目的:探讨含自体富集骨髓干细胞松质骨移植修复兔关节软骨大面积缺损的生物学特性和效果。方法30只新西兰大白兔用利刀切除股骨髁全层关节软骨达关节软骨表面积的20%以上,制成关节软骨大面积缺损模型。实验组30条膝关节取含自体富集骨髓干细胞松质骨移植修复关节软骨缺损;对照组30条膝关节软骨缺损不作任何处理。于术后4、8、12周分批处死动物取材,分别进行膝关节活动度测定、大体观察、光镜观察,并对观察指标进行统计学分析。结果各观察节点实验组兔膝关节活动度均优于对照组(P<0.01),于术后12周膝关节活动度已基本接近正常。实验组兔膝关节再生软骨的表面积已基本完全填充造模缺损区,而对照组造模区缺损依然严重,仅修复20%左右,两组差异有统计学意义(P<0.01);实验组再生软骨与周边软骨愈合良好,再生软骨的厚度为周边正常软骨的三分之二左右,表面较光滑平整,无凹陷。电镜下,造模缺损区被再生软骨组织覆盖,表面光滑平整,周围和正常软骨组织接合较好,基质染色变深,软骨细胞数量增多,且大多为透明软骨细胞,可见潮线。结论含自体富集骨髓干细胞松质骨移植能以类透明软骨形式修复兔关节软骨的大面积缺损。%Objective To evaluate the therapeutic efficacy of cancellous bone enriching bone marrow stem cells in treatment of large area defects of articular cartilage in weight-bearing joints. Methods Sixty knees from 30 adult rabbits were randomly divided into experimental and control groups (n=30 in each). Full-thickness articular cartilage defects in the femoral condyle of the knees were created. Cancellous bone enriching bone marrow stem cells was implanted for repair of the defects in experimental group. Spontaneous evolution occurred in control group. Rabbits were sacrificed in both

  16. Endovascular Repair of Aortic Dissection in Marfan Syndrome: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Rosario Parisi

    2015-07-01

    Full Text Available Over the last decades, improvement of medical and surgical therapy has increased life expectancy in Marfan patients. Consequently, the number of such patients requiring secondary interventions on the descending thoracic aorta due to new or residual dissections, and distal aneurysm formation has substantially enlarged. Surgical and endovascular procedures represent two valuable options of treatment, both associated with advantages and drawbacks. The aim of the present manuscript was to review endovascular outcomes in Marfan syndrome and to assess the potential role of Thoracic Endovascular Aortic Repair (TEVAR in this subset of patients.

  17. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  18. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  19. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  20. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  1. Bone and cartilage wedge technique in posttraumatic enophthalmos treatment

    OpenAIRE

    Lieger, O; Zix, J; Kruse, A; Goldblum, D.

    2010-01-01

    OBJECTIVE: To evaluate a new surgical method, using calvarial bone graft combined with a wedge of irradiated homologous costal cartilage, for the revision repair of posttraumatic enophthalmos. METHODS: This retrospective study was performed from January 1, 2003, through December 31, 2007. Eight patients were diagnosed as having unilateral posttraumatic enophthalmos. All the patients had previously undergone insufficient primary repair of their orbital fractures. In the revision surgery a ...

  2. 慢速梯度降温冷冻保存同种异体骨软骨移植治疗膝关节全层软骨缺损(附三例报告)%Osteochondral allografts of step cooling cryopreservation for repair of full-thickness articular cartilage defect of knee joint (report of 3 cases)

    Institute of Scientific and Technical Information of China (English)

    亓建洪; 赵建莉; 张明; 闫新峰; 张延明

    2012-01-01

    目的 总结冷冻保存同种异体骨软骨移植物治疗3例膝关节全层骨软骨缺损的手术方法及疗效.方法 应用梯度降温冷冻保存的6枚同种异体骨软骨移植物治疗3例膝关节全层骨软骨缺损,2例在关节镜下同种异体骨软骨移植,1例行关节切开移植.膝关节股骨髁关节软骨全层缺损平均面积2.16cm2.所有患者在手术后第1个月、第3个月时进行膝关节MRI检查,了解移植物与周围骨软骨组织的愈合情况.并于门诊复查时进行Brittberg-Peterson膝关节功能评分,了解功能恢复情况.结果 随访4~6个月,平均4.7个月.所有患者术后疼痛消失;无排异反应发生.术后3个月时,MRI 检查示术后移植物与宿主软骨下骨整合良好,移植软骨组织结构与内部信号良好.Brittberg-Peterson评分术后6个月比手术前明显降低.结论 经梯度降温冷冻保存的同种异体骨软骨移植治疗膝关节软骨缺损早期效果满意.%Objective To introduce the repair method of full-thickness articular cartilage of knee join through osteochondral allograft of step cooling cryopresercvation and its early clinical outcome. Methods Three patients who suffered from full-thickness defect of knee articular cartilage were treated by transplantation of osteochondral allograft cryopreserved in step cooling under arthroscopy or arthrectomy. The average cartilage defect was 2.16 cm2. All patients were examined by MRI to display the integrating of allograft with surrounding tissues at 1st month, 3rd month postoperatively, and evaluate the function of operative knee through Brittberg-Peterson score system. Results The average follow-up time was 4.7 months (range: 4-6 months). All patients' pain disappeared. The Brittberg-Peterson score decreased remarkably from 97.5 preoperatively to 10.0 at ? Six months postoperatively. The integration of allograft with subchondral bone surrounding was well, and the structure and internal signal of

  3. Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration.

    Science.gov (United States)

    Li, Xuezhou; Ding, Jianxun; Zhang, Zhengzheng; Yang, Modi; Yu, Jiakuo; Wang, Jincheng; Chang, Fei; Chen, Xuesi

    2016-03-01

    Recently, cartilage tissue engineering (CTE) attracts increasing attention in cartilage defect repair. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a thermogel of poly(L-lactide-co-glycolide)-poly(ethylene glycol)-poly(L-lactide-co-glycolide) (PLGA-PEG-PLGA) to fabricate an appropriate microenvironment of bone marrow mesenchymal stem cells (BMSCs) for effective cartilage regeneration. More integrative and smoother repaired articular surface, more abundant characteristic glycosaminoglycans (GAGs) and collagen II (COL II), and less degeneration of normal cartilage were obtained in the KGN and BMSCs coloaded thermogel group in vivo. In conclusion, the KGN-loaded PLGA-PEG-PLGA thermogel can be utilized as an alternative support for BMSCs to regenerate damaged cartilage in vivo. PMID:26844837

  4. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  5. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  6. 应用生物蛋白胶与胚胎软骨细胞混合移植修复兔膝关节实验性软骨缺损区%Repair of experimental defects of articular cartilage in rabbits with homografts of fibrin sealant and embryonic chondrocytes

    Institute of Scientific and Technical Information of China (English)

    陆敏安; 杨渊; 肖增明; 李世德

    2005-01-01

    BACKGROUND:Research about the repair of articular cartilage with heterograft chondrocytes is frequently reported, but the method may cause immune rejection. Since the embryonic cells possess lower antigenicity and stronger proliferation capability, it is hoped that they can be used as a novel carrier substitute in tissue engineering research.DESIGN: A randomized grouping observation and comparative experiment.SETTING: Histological Embryonic Laboratory in Guangxi Medical University.MATERIALS: A big white adult New Zealand rabbit pregnant for 4 weeks was adopted; and another 24 big white adult New Zealand rabbits were selected, with no limitationin whether they were female or male and with a body mass of 2 to 2.5 kg.METHODS: This experiment was carried out at the Histological Embryonic Laboratory in Guangxi Medical University between December 2000and June 2002. The models of defects in articular cartilage were made artificially in femur medial malleolus of the mature rabbits. In the experimental group, defects were repaired by the implantation of Fibrin Sealant and embryonic chondrocytes mixture, but for the control group, only Fibrin Sealant was implanted or nothing was done about the defect. The restoration of articular cartilage defect was then observed 4,8 and 12 weeks after the operation, and was scored according to modified Pineda's method. The standard consists of 5 items, I.e., cellular morphology, matrix staining, surfacing smoothness, cartilage thickness and host union. 0 refers to normal and the higher the score is, the more serious the pathological changes are.MAIN OUTCOME MEASURES: ①The general observation of rabbit knee joint; ② Histological observation of rabbit knee joints; ③ Histological semi-quantitative score of articular cartilage; ④ Appraisal of the curative effect of articular cartilage defects.RESULTS: Totally 24 rabbits were enrolled in this experiment and all entered the stage of result analysis. ① The general observation of rabbit

  7. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  8. One-stage repair of part auricle defect with advancement skin flap post aurem associated with costal cartilage transplantation%耳后推进皮瓣联合肋软骨移植一次性修复部分耳廓缺损

    Institute of Scientific and Technical Information of China (English)

    吴玉家; 周国勇; 常春娟; 贾赤宇

    2011-01-01

    目的:介绍一种一次性修复外伤后部分耳廓缺损的方法。方法:以耳廓缺损缘为蒂形成耳后推进皮瓣,取自体肋软骨雕刻成片状支架与缺损缘拼接,形成耳后筋膜瓣覆盖支架后侧,联合肋软骨供区全厚皮片移植一次性修复部分耳廓缺损。结果:临床应用8例,缺损一次性修复,双侧耳对称,外形满意。结论:联合应用以缺损缘为蒂的耳后推进皮瓣及自体肋软骨移植技术可一次性修复外伤性部分耳廓缺损,具有治疗周期短、效果可靠的特点。%Objective To introduce the method of one stage repair of part auricle defect post-injury with advancement skin flap post aurem associated with costal cartilage transplantation. Methods Firstly an advancement skin flap post aurem was produced which pedicle was located in the defect edge of auricle.and then an autogenous costal cartilage graft was obtained and carved to a schistic frame which was jointed to the defect edge of auricle. The posterior surface of the frame was cover with post aurem fascial flap and full thick skin graft from donor site of costal cartilage. Results Eight cases were applied with the method and the defects were one-stage repaired with satisfying symmetrical auricle shapes. Conclusion The method can restore part auricle defect by one stage which means short treatment period and reliable therapeutic effect.

  9. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  10. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  11. Auricle reconstruction with expanded auricle posterior flap on mastoidea and auto rib cartilage bracket for repair of congenital microtia%皮肤扩张及自体肋软骨支架法全耳廓成形术矫正先天性小耳畸形

    Institute of Scientific and Technical Information of China (English)

    于仁义; 刘顺利; 陈铭锐; 刘本立; 卞东会; 武铠

    2013-01-01

    目的 探讨耳后乳突区皮肤扩张及自体肋软骨支架法全耳廓成形术矫正先天性小耳畸形的临床效果.方法 21例先天性小耳畸形患者,分3期进行手术治疗.Ⅰ期:患侧耳后乳突区皮下埋置50 ml肾形扩张器,术后定期注水,扩张皮肤3~4个月,平均注水(80.51±3.87) ml,达预定量后稳定养护1个月.Ⅱ期:取自体肋软骨,雕刻成由4层软骨构成的耳支架,整体为倒立的海螺样外观,将扩张皮瓣覆盖于整个自体肋软骨支架表面,再造耳廓.Ⅲ期:Ⅱ期术后3个月对成形耳进行细节性修整.结果 21例患者手术均获成功,成形耳廓大小、外形均与健侧相似,医患双方满意.结论 耳后乳突区皮肤扩张法所扩张的皮肤,可覆盖于整个自体肋软骨支架表面,术后耳廓外形逼真,立体感强.%Objective To explore the clinical effect of auricle reconstruction with expanded auricle posterior flap on mastoidea and auto rib cartilage bracket for repair of congenital microtia.Methods Twenty-one eligible patients with congenital auricle malformation and defect were recruited into this study and three-stage operation was performed.A 50 ml kidney-shaped expander was implanted at mastoid process area to expand skin in stage Ⅰ surgery,followed by a regular affusion to expand skin for 3 to 4 months.The average total waterflood was (80.51 ± 3.87) ml.The volume remained stable for 1 month,once up to the predetermined amount.In stage Ⅱ surgery autogenous costal cartilage was taken and carved into inverted conch shape.Auricle was reconstructed with the expanded flap to cover the auto rib cartilage bracket.The stage Ⅲ surgery was performed for details dressing of the auricle after 3 months.Results All 21 cases underwent operation successfully.Reconstructed ear auricles were similar to uninjured sides in size and shape.Both doctors and patients were contented with the auricles.Conclusions Expanded auricle posterior flap on mastoidea can cover

  12. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  13. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  14. Early efficacy study of matrix-induced autologous chondrocyte implantation repairing knee joint cartilage injury%基质诱导自体软骨细胞移植修复膝关节软骨损伤的早期疗效

    Institute of Scientific and Technical Information of China (English)

    王庆; 黄华扬; 张涛; 郑小飞; 李凭跃; 沈洪园; 陈加荣

    2016-01-01

    目的:探讨基质诱导自体软骨细胞移植修复膝关节软骨损伤的可行性及早期疗效。方法回顾性分析2012年4月至2013年3月13例单侧膝关节局灶性软骨缺损患者资料,男11例,女2例;年龄19~37岁,平均27.5岁;膝关节软骨缺损面积2.3~7.5 cm2,平均4.2 cm2;国际软骨损伤修复协会(ICRS )分级为Ⅲ级3例,Ⅳ级10例,均出现膝关节疼痛症状[视觉模拟评分(visual analogue scale, VAS)>3分]。13例患者均使用基质诱导软骨细胞移植技术进行软骨细胞移植。术后进行规范化功能康复锻炼。结果术后随访1年,1例患者因术后6.5个月下楼梯时扭伤膝关节致半月板损伤行关节镜下半月板修补术而剔除该患者术后12个月的评分,以避免结果偏倚。膝关节活动度,术后3个月(123.1°±8.0°)较术前(135.4°±5.7°)减少,膝关节损伤和骨关节炎评分(knee injury and use osteoarthritis outcome score, KOOS)的5个子集均较术前降低,Lysholm评分[(65.7±9.4)分]较术前[(71.2±12.3)分]无明显变化,国际膝关节评分委员会评分(International Knee Documentation Committee, IKDC)[(26.1±3.9)分]较术前[(43.5±6.5)分]减少;术后6、12个月的膝关节活动度(136.1°±6.1°、135.1°±3.6°)、Lysholm评分[(80.6±9.6)分、(86.6±9.2)分]、IKDC评分[(53.3±5.8)分、(62.8±7.2)分]、KOOS评分均较术前明显提高。术后12个月软骨修复组织磁共振评分[(73.3±17.9)分]较术前[(51.5±12.6)分]明显提高。结论基质诱导自体软骨细胞移植技术可有效修复膝关节软骨损伤,改善膝关节功能,具有良好的近期疗效。%Objective To study the feasibility and early efficacy of matrix⁃induced autologous chondrocyte implantation repairing knee joint cartilage injury. Methods The Matrix⁃induced autologous chondrocyte implantation was used to repair knee joint

  15. Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2009-12-01

    Full Text Available Background: Cell-based treatment approach using differentiatedmesenchymal stem cells (MSCs and mature chondrocyteshas been considered as an advanced treatment for cartilage repair.We investigated the differentiated level of these two celltypes that is crucial for their repair capacity for cartilage defectat a co-culture micro mass system.Methods: Passaged-2 MSCs isolated from the mouse bonemarrow and the primary-cultured chondrocytes obtained fromrat costal cartilage were mixed at different ratios including 1:1,1:2, and 2:1, and cultivated in the micro mass culture systems(experimental groups. Both the MSCs and chondrocytes alonein micro mass cultures were considered as the controls. After21 days, the cultures were sectioned and examined by toluidineblue staining. Furthermore, the cells at different groups wereanalyzed by semiquantitative reverse transcription-polymerasechain reaction using the specific primers designed to detect theexpression of both mouse and rat cartilage-specific genes.Results: According to the toluidine blue staining, metachromaticstain appeared to be more intense at 1:2 ratios than theother groups. Based on semiquantitative analysis, all coculturespossessed significantly more cartilage-specific geneexpression than the controls (P<0.01. While mouse aggrecanand collagen II genes had significantly more expression at 1:2ratio, rat collagen II gene was expressed in higher rate at coculturewith 2:1 ratio (P<0.01.Conclusion: Co-culture of MSCs with mature chondrocytesseemed to provide an appropriate microenvironment wherebythe two cell types exhibit higher differentiated phenotype thanwhen they were cultured alone, and sufficient to be used as thecellular material for repair of cartilage defects.

  16. MR cartilage imaging in assessment of the regenerative power of autologous peripheral blood stem cell injection in knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Khaled A. Ahmad

    2014-09-01

    Conclusion: Limited good level of evidence showed that repeated intra-articular injections of autologous PBSC resulted in an improvement of the quality of articular cartilage repair and physical function as observed by MRI and clinical assessment.

  17. Costal Cartilage Grafts in Rhinoplasty.

    Science.gov (United States)

    Fedok, Fred G

    2016-01-01

    Cartilage grafts are regularly used in rhinoplasty. Septal and auricular donor sites are commonly used. Many situations compel the surgeon to use other alternative donor sites, including revision rhinoplasty and trauma. Many patients have a small amount of native septal cartilage and are unable to provide adequate septal cartilage to be used for frequently performed rhinoplasty maneuvers. The rib cage provides an enormous reserve of costal cartilage that can be carved into a variety of necessary grafts. A description of the technique of harvesting costal cartilage, a review of complications and management, and illustrative cases examples are included. PMID:26616708

  18. Comprehensive Profiling of Cartilage Extracellular Matrix Formation and Maturation Using Sequential Extraction and Label-free Quantitative Proteomics*

    OpenAIRE

    Wilson, Richard; Diseberg, Anders F.; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J.; Gorman, Jeffrey J.; Bateman, John F.

    2010-01-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture sy...

  19. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  20. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  1. Meniscus repair and regeneration: review on current methods and research potential

    Directory of Open Access Journals (Sweden)

    C Scotti

    2013-01-01

    Full Text Available Meniscus regeneration is an unsolved clinical challenge. Despite the wide acceptance of the degenerative consequences of meniscectomy, no surgical procedure has succeeded to date in regenerating a functional and long-lasting meniscal fibrocartilage. Research proposed a number of experimental approaches encompassing all the typical strategies of regenerative medicine: cell-free scaffolds, gene therapy, intra-articular delivery of progenitor cells, biological glues for enhanced bonding of reparable tears, partial and total tissue engineered meniscus replacement. None of these approaches has been completely successful and can be considered suitable for all patients, as meniscal tears require specific and patient-related treatments depending on the size and type of lesion. Recent advances in cell biology, biomaterial science and bioengineering (e.g., bioreactors have now the potential to drive meniscus regeneration into a series of clinically relevant strategies. In this tutorial paper, the clinical need for meniscus regeneration strategies will be explained, and past and current experimental studies on meniscus regeneration will be reported.

  2. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  3. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  4. Spontaneous Minced Cartilage Procedure for Unexpectedly Large Femoral Condyle Surface Defect.

    Science.gov (United States)

    Salzmann, G M; Baumann, G A; Preiss, S

    2016-01-01

    Articular cartilage defects at the knee joint are being identified and treated with increasing frequency. Chondrocytes may have strongest potential to generate high-quality repair tissue within the defective region, in particular when large diameter defects are present. Autologous chondrocyte implantation is not available in every country. We present a case where we spontaneously covered an acute cartilage defect, which was significantly larger than expected and loose during initial arthroscopic inspection after reading preoperative MRI, by mincing the separated fragment and directly implanting the autologous cartilage chips into the defective region. PMID:27504207

  5. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput.

  6. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  7. Transcriptomic profiling of cartilage ageing

    OpenAIRE

    Mandy Jayne Peffers; Xuan Liu; Peter David Clegg

    2014-01-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older dono...

  8. Fibrin Sealant: A Review of the History, Biomechanics, and Current Applications for Prosthetic Fixation in Hernia Repair.

    Science.gov (United States)

    Watson, Jefferson Tyler; Webb, David L; Stoikes, Nathaniel F N; Voeller, Guy R

    2015-11-01

    The role of surgical adhesives in hernia repair has continued to evolve. The purpose of this chapter is to review the role of fibrin sealant and its application in general surgery for mesh fixation, specifically the history, biomechanics, and clinical utilization. The utilization of fibrin sealant for repair of groin hernias, both open and laparoscopic, ventral hernias, and hiatal hernias will be discussed. PMID:26696538

  9. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage.

    Science.gov (United States)

    Macpherson, J V; O'Hare, D; Unwin, P R; Winlove, C P

    1997-11-01

    The scanning electrochemical microscope (SECM) is a scanned probe microscope that uses the response of a mobile ultramicroelectrode (UME) tip to determine the reactivity, topography, and mass transport characteristics of interfaces with high spatial resolution. SECM strategies for measuring the rates of solute diffusion and convection through samples of cartilage, using amperometric UMEs, are outlined. The methods are used to determine the diffusion coefficients of oxygen and ruthenium(III) hexamine [Ru(NH3)6(3+)] in laryngeal cartilage. The diffusion coefficient of oxygen in cartilage is found to be approximately 50% of that in aqueous electrolyte solution, assuming a partition coefficient of unity for oxygen between cartilage and aqueous solution. In contrast, diffusion of Ru(NH3)6(3+) within the cartilage sample cannot be detected on the SECM timescale, suggesting a diffusion coefficient at least two orders of magnitude lower than that in solution, given a measured partition coefficient for Ru(NH3)6(3+) between cartilage and aqueous solution, Kp = [Ru(NH3)6(3+)]cartilage/[RU(NH3)6(3+)]solution = 3.4 +/- 0.1. Rates of Ru(NH3)6(3+) osmotically driven convective transport across cartilage samples are imaged at high spatial resolution by monitoring the current response of a scanning UME, with an osmotic pressure of approximately 0.75 atm across the slice. A model is outlined that enables the current response to be related to the local flux. By determining the topography of the sample from the current response with no applied osmotic pressure, local transport rates can be correlated with topographical features of the sample surface, at much higher spatial resolution than has previously been achieved. PMID:9370471

  10. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p < 0.05) than those based on conventional arthroscopy. The higher ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p < 0.05) along the ICRS scale. However, no significant correlation between ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. PMID:25023111

  11. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  12. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  13. Effects of microcurrent therapy on excisional elastic cartilage defects in young rats.

    Science.gov (United States)

    Tangerino Filho, Edson Pereira; Fachi, José Luis; Vasconcelos, Israel Costa; Dos Santos, Glaucia Maria Tech; Mendonça, Fernanda Aparecida Sampaio; de Aro, Andrea Aparecida; Pimentel, Edson Rosa; Esquisatto, Marcelo Augusto Marretto

    2016-06-01

    The effects of microcurrent application on the elastic cartilage defects in the outer ear of young animals were analyzed. Sixty male Wistar rats were divided into a control (CG) and a treated group (TG). An excisional lesion was created in the right outer ear of each animal. Daily treatment was started after 24h and consisted of the application of a low-intensity (20μA) continuous electrical current to the site of injury for 5min. The animals were euthanized after 7, 14 and 28 days of injury and the samples were submitted to analyses. In CG, areas of newly formed cartilage and intense basophilia were seen at 28 days, while in TG the same observations were made already at 14 days. The percentage of birefringent collagen fibers was higher in CG at 28 days. The number of connective tissue cells and granulocytes was significantly higher in TG. Ultrastructural analysis revealed the presence of chondrocytes in TG at 14 days, while these cells were observed in CG only at 28 days. Cuprolinic blue staining and the amount of glycosaminoglycans were significantly higher in TG at 14 days and 28 days. The amount of hydroxyproline was significantly higher in TG at all time points studied. The active isoform of MMP-2 was higher activity in TG at 14 days. Immunoblotting for type II collagen and decorin was positive in both groups and at all time points. The treatment stimulated the proliferation and differentiation of connective tissue cells, the deposition of glycosaminoglycans and collagen, and the structural reorganization of these elements during elastic cartilage repair.

  14. Implantation of scaffold-free engineered cartilage constructs in a rabbit model for chondral resurfacing.

    Science.gov (United States)

    Brenner, Jillian M; Ventura, Nicole M; Tse, M Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Hurtig, Mark B; Waldman, Stephen D

    2014-02-01

    Joint resurfacing techniques offer an attractive treatment for damaged or diseased cartilage, as this tissue characteristically displays a limited capacity for self-repair. While tissue-engineered cartilage constructs have shown efficacy in repairing focal cartilage defects in animal models, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of larger defects. In a previous study, we developed a novel approach to generate large, scaffold-free cartilaginous constructs from a small number of donor cells (20 000 cells to generate a 3-cm(2) tissue construct). As comparable thicknesses to native cartilage could be achieved, the purpose of the present study was to assess the ability of these constructs to survive implantation as well as their potential for the repair of critical-sized chondral defects in a rabbit model. Evaluated up to 6 months post-implantation, allogenic constructs survived weight bearing without a loss of implant fixation. Implanted constructs appeared to integrate near-seamlessly with the surrounding native cartilage and also to extensively remodel with increasing time in vivo. By 6 months post-implantation, constructs appeared to adopt both a stratified (zonal) appearance and a biochemical composition similar to native articular cartilage. In addition, constructs that expressed superficial zone markers displayed higher histological scores, suggesting that transcriptional prescreening of constructs prior to implantation may serve as an approach to achieve superior and/or more consistent reparative outcomes. As the results of this initial animal study were encouraging, future studies will be directed toward the repair of chondral defects in more mechanically demanding anatomical locations. PMID:24571514

  15. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis.

    Science.gov (United States)

    Dvir-Ginzberg, Mona; Mobasheri, Ali; Kumar, Ashok

    2016-07-01

    The past decade has witnessed many advances in the understanding of sirtuin biology and related regulatory circuits supporting the capacity of these proteins to serve as energy-sensing molecules that contribute to healthspan in various tissues, including articular cartilage. Hence, there has been a significant increase in new investigations that aim to elucidate the mechanisms of sirtuin function and their roles in cartilage biology, skeletal development, and pathologies such as osteoarthritis (OA), rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD). The majority of the work carried out to date has focused on SIRT1, although SIRT6 has more recently become a focus of some investigations. In vivo work with transgenic mice has shown that Sirt1 and Sirt6 are essential for maintaining cartilage homeostasis and that the use of sirtuin-activating molecules such as resveratrol may have beneficial effects on cartilage anabolism. Current thinking is that SIRT1 exerts positive effects on cartilage by encouraging chondrocyte survival, especially under stress conditions, which may provide a mechanism supporting the use of sirtuin small-molecule activators (STACS) for future therapeutic interventions in OA and other degenerative pathologies of joints, especially those that involve articular cartilage. PMID:27289467

  16. Computational aspects in mechanical modeling of the articular cartilage tissue.

    Science.gov (United States)

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  17. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  18. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  19. Microfracture for the treatment of cartilage defects in the knee joint - A golden standard?

    Science.gov (United States)

    Erggelet, Christoph; Vavken, P

    2016-01-01

    The evidence for the effectiveness of the microfracture procedure is largely derived from case series and few randomized trials. Clinical outcomes improve with microfracture for the most part, but in some studies these effects are not sustained. The quality of cartilage repair following microfracture is variable and inconsistent due to unknown reasons. Younger patients have better clinical outcomes and quality of cartilage repair than older patients. When lesion location was shown to affect microfracture outcome, patients with lesions of the femoral condyle have the best clinical improvements and quality of cartilage repair compared with patients who had lesions in other areas. Patients with smaller lesions have better clinical improvement than patients with larger lesions. The necessity of long postoperative CPM and restricted weight bearing is widely accepted but not completely supported by solid data. Maybe new developments like the scaffold augmented microfracture(6) will show even more consistent clinical and biological results as well as faster rehabilitation for the treatment of small to medium sized cartilage defects in younger individuals. All in all there is limited evidence that micro fracture should be accepted as gold standard for the treatment of cartilage lesions in the knee joint. There is no study available which compares empty controls or non-surgical treatment/physiotherapy with microfracture. According to the literature there is even evidence for self regeneration of cartilage lesions. The natural history of damaged cartilage seems to be written e.g. by inflammatory processes, genetic predisposition and other factors. Possibly that explains the large variety of the clinical outcome after micro fracture and possibly the standard tools for evaluation of new technologies (randomized controlled trials, case series, etc.) are not sufficient (anymore). Future technologies will be evaluated by big data from international registries for earlier

  20. Microfracture for the treatment of cartilage defects in the knee joint - A golden standard?

    Science.gov (United States)

    Erggelet, Christoph; Vavken, P

    2016-01-01

    The evidence for the effectiveness of the microfracture procedure is largely derived from case series and few randomized trials. Clinical outcomes improve with microfracture for the most part, but in some studies these effects are not sustained. The quality of cartilage repair following microfracture is variable and inconsistent due to unknown reasons. Younger patients have better clinical outcomes and quality of cartilage repair than older patients. When lesion location was shown to affect microfracture outcome, patients with lesions of the femoral condyle have the best clinical improvements and quality of cartilage repair compared with patients who had lesions in other areas. Patients with smaller lesions have better clinical improvement than patients with larger lesions. The necessity of long postoperative CPM and restricted weight bearing is widely accepted but not completely supported by solid data. Maybe new developments like the scaffold augmented microfracture(6) will show even more consistent clinical and biological results as well as faster rehabilitation for the treatment of small to medium sized cartilage defects in younger individuals. All in all there is limited evidence that micro fracture should be accepted as gold standard for the treatment of cartilage lesions in the knee joint. There is no study available which compares empty controls or non-surgical treatment/physiotherapy with microfracture. According to the literature there is even evidence for self regeneration of cartilage lesions. The natural history of damaged cartilage seems to be written e.g. by inflammatory processes, genetic predisposition and other factors. Possibly that explains the large variety of the clinical outcome after micro fracture and possibly the standard tools for evaluation of new technologies (randomized controlled trials, case series, etc.) are not sufficient (anymore). Future technologies will be evaluated by big data from international registries for earlier

  1. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.

    Science.gov (United States)

    Owen, John R; Wayne, Jennifer S

    2011-07-01

    The superficial tangential zone (STZ) plays a significant role in normal articular cartilage's ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. This finite element study examined the STZ's role in normal and repaired articular surfaces under different contact conditions. Contact area and pressure distributions were allowed to change with time, tension-compression nonlinearity modeled collagen behavior in the STZ, and nonlinear geometry was incorporated to accommodate finite deformation. Responses to loading via impermeable and permeable rigid surfaces were compared to loading via normal cartilage, a more physiologic condition, anticipating the two rigid loading surfaces would bracket that of normal. For models loaded by normal cartilage, an STZ placed over the inferior repair region reduced the short-term axial compression of the articular surface by 15%, when compared to a repair without an STZ. Covering the repair with a normal STZ shifted the flow patterns and strain levels back toward that of normal cartilage. Additionally, reductions in von Mises stress (21%) and an increase in fluid pressure (13%) occurred in repair tissue under the STZ. This continues to show that STZ properties of sufficient quality are likely critical for the survival of transplanted constructs in vivo. However, response to loading via normal cartilage did not always fall within ranges predicted by the rigid surfaces. Use of more physiologic contact models is recommended for more accurate investigations into properties critical to the success of repair tissues.

  2. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography

    OpenAIRE

    Palmer, Ashley W.; Guldberg, Robert E.; Levenston, Marc E.

    2006-01-01

    Small animal models of osteoarthritis are often used for evaluating the efficacy of pharmacologic treatments and cartilage repair strategies, but noninvasive techniques capable of monitoring matrix-level changes are limited by the joint size and the low radiopacity of soft tissues. Here we present a technique for the noninvasive imaging of cartilage at micrometer-level resolution based on detecting the equilibrium partitioning of an ionic contrast agent via microcomputed tomography. The appro...

  3. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  4. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  5. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit

    Directory of Open Access Journals (Sweden)

    Amir Sotoudeh

    2013-05-01

    Full Text Available PURPOSE: Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS: In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II. Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS: In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION: The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.

  6. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  7. Dynamic Response of Femoral Cartilage in Knees With Unicompartmental Osteoarthritis

    Directory of Open Access Journals (Sweden)

    A. Vidal-Lesso

    2011-08-01

    Full Text Available The objective of the present work was to determine the dynamic indentation response, stiffness and relaxation curvesfor the shear and the bulk modulus of femoral knee cartilage with no visual damage in cases under unicompartmentalosteoarthritis.A cyclic displacement of 0.5 mm in axial direction was applied with a 3 mm plane-ended cylindrical indenter at specificpoints in the femoral knee cartilage specimens of seven patients with unicompartmental osteoarthritis (UOA. Theindentation force over time was recorded and next the maximum stiffness in all cycles was obtained and compared.Also, the relaxation curves for the shear and the bulk modulus of cartilage were obtained in this work.A decrease in the maximum indentation force was observed comparing between indentation cycles; it was of 6.75 ±0.71% from cycle 1 to cycle 2 and 4.70 ± 0.31% for cycle 2 to cycle 3. Stiffness values changed with a mean of 3.35 ±0.39% from cycle 1 to cycle 2 and 1.40 ± 0.71% from cycle 2 to cycle 3. Moreover, relaxation curves for the shearmodulus and the bulk modulus showed the nonlinear behavior of articular cartilage with UOA.Our results showed that cartilage specimens with no visual damage in UOA preserve a nonlinear viscoelastic behaviorand its stiffness increases through the loading cycles. Our work provides experimental values for generating a morerealistic cartilage behavior than those currently used in computer cartilage models for the study of UOA.

  8. 同种异体肋软骨细胞修复兔膝关节全层软骨缺损的研究%Allogeneic costal chondrocyte to repair the full-thickness cartilage defect on the knee of the rabbit model

    Institute of Scientific and Technical Information of China (English)

    张寿; 范忠诚; 王琮仁; 曾智谋; 易颖; 林佳

    2014-01-01

    Objective To explore the effects of allogeneic composites of costal chondrocyte/Sodium hyaluronate in repairing the full-thickness cartilage defects at knee joints of rabbit models.Methods Condrocytes were isolated and cultivated for evalutating biological activities.Full-thickness cartilage defect models from knee joints of 36 Newzealand rabbits were randomly and evenly allocated into blank,control and experimental groups.The blank group was subjected to no disposal.For control group,sodium hyaluronate was injected into the defect region,and costal chondrocytes/sodium hyaluronate composites were injected into the defect region in experimental group.Every 4 rabbits were executed randomly by the end of the first,second and third month respectively for specimens sampled from distal femur and the specimens were obsevered under direct vision,examined by histological staining and scored according to O' Driseoll,keeley and salter scales respectively.Results The 2nd generation costal chondrocytes were remarkably stained by alcian blue,sarranine O and collagen (type Ⅱ) respectively.The histological scores of experimental group (8.750 00 ± 0.500 00,14.000 00 ± 0.816 50,19.000 00 ± 0.816 50) were significantly higher than those of blank group (0.750 00 ±0.500 00,2.000 00 ±0.816 50,5.000 00 ±0.816 50) and blank group (0.500 00 ± 0.577 35,0,0) based upon statistical differences (P < 0.05).Conclusion Costal chondrocytes of the 2nd genretation is qualified as seed cells for cartilage tissue engineering research.Allogeneic costal chondrocyte/sodium hyaluronate composites contribute to restore full-thickness cartilage defect at knee joints of the rabbit models satisfactorily.%目的 观察同种异体肋软骨细胞复合透明质酸钠对兔膝关节全层软骨缺损的修复作用.方法 分离、培养肋软骨细胞,鉴定生物学活性.将36只新西兰大白兔制备膝关节全层软骨缺损模型并随机分为3组(n=12).空白组不进行特殊处理;对照

  9. 骨形态发生蛋白、碱性成纤维细胞生长因子生物材料在关节软骨缺损修复中的生物性能%Biological properties of bone morphogenetic proteins and basic fibroblast growth factor in biological materials for repair of articular cartilage defect

    Institute of Scientific and Technical Information of China (English)

    董君博

    2016-01-01

    BACKGROUND:Articular cartilage regeneration can be regulatedbyautocrineorparacrinesecretionof various cytokines. OBJECTIVE:To analyze biological properties of bone morphogenetic proteins and basic fibroblast growth factor in biological materials for repair of articular cartilage defect. METHODS:Forty New Zealand white rabbits were used and equaly randomized intofourgroups: fibrin, basic fibroblast growth factor, bone morphogenetic protein, and combined treatment (basic fibroblast growth factor combined with bone morphogenetic protein) groups, respectively.Bioactivescaffolds with fibrin, basic fibroblast growth factor,bone morphogenetic protein, and basic fibroblast growth factor combined with bone morphogenetic protein were injected to repair the articular cartilage defect. Therapeutic effect andbiological properties of biological materials were compared. RESULTS AND CONCLUSION:(1) Inthefibrin group,tworabbits appearedto havelimps. Inthebasic fibroblast growth factor group hand functionwaslimited inonerabbit. Inthebone morphogenetic protein group, one had a limpandonewasin a limitation of activity. Inthecombined treatment group,rabbitsrecovered wel andshowedno differencesintheknee joint before and aftersurgery (P  目的:分析骨形态发生蛋白、碱性成纤维细胞生长因子生物材料在关节软骨缺损修复中的生物性能。  方法:选取40只新西兰家兔,随机分为4组,纤维蛋白组、碱性成纤维细胞生长因子组、骨形态发生蛋白组、复合组(骨形态发生蛋白+碱性成纤维细胞生长因子),每组10只。建立兔关节软骨缺损模型,止血彻底后将纤维蛋白、碱性成纤维细胞生长因子、骨形态发生蛋白以及骨形态发生蛋白、碱性成纤维细胞生长因子复合等材料组成的支架分别植入缺损部位。比较不同注射材料在家兔关节软骨缺损中的效果及复合材料的生物性能。  结果与结论:①关节软骨缺损修复情

  10. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    Science.gov (United States)

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  11. Optimality in DNA repair.

    Science.gov (United States)

    Richard, Morgiane; Fryett, Matthew; Miller, Samantha; Booth, Ian; Grebogi, Celso; Moura, Alessandro

    2012-01-01

    DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge. PMID:21945337

  12. Current perspectives in stem cell therapy for spinal cord repair in humans: a review of work from the past 10 years

    Directory of Open Access Journals (Sweden)

    Eric Domingos Mariano

    2014-06-01

    Full Text Available Spinal cord injury (SCI and amyotrophic laterals sclerosis (ALS are devastating neurological conditions that affect individuals worldwide, significantly reducing quality of life, both for patients and their relatives. Objective : The present review aims to summarize the multiple restorative approaches being developed for spinal cord repair, the use of different stem cell types and the current knowledge regarding stem cell therapy. Method : Review of the literature from the past 10 years of human studies using stem cell transplantation as the main therapy, with or without adjuvant therapies. Conclusion : The current review offers an overview of the state of the art regarding spinal cord restoration, and serves as a starting point for future studies.

  13. Preserved irradiated homologous cartilage for orbital reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  14. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  15. Transcriptomic profiling of cartilage ageing.

    Science.gov (United States)

    Peffers, Mandy Jayne; Liu, Xuan; Clegg, Peter David

    2014-12-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386). PMID:26484061

  16. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  17. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium

    OpenAIRE

    Xue, Ke; Zhang, Xiaodie; Qi, Lin; Zhou, Jia; Liu, Kai

    2016-01-01

    Auricular cartilage loss or defect remains a challenge to plastic surgeons, and cartilage regenerative medicine provides a novel method to solve the problem. However, ideal seeding cells seem to be the key point in the development of cartilage regeneration. Although bone marrow-mesenchymal stem cells were considered as the ideal seeding cells in cartilage regeneration, regenerative cartilage differentiated from bone marrow-mesenchymal stem cells still faces some problems. It is reported that ...

  18. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  19. Development of large engineered cartilage constructs from a small population of cells.

    Science.gov (United States)

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. PMID:23197468

  20. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    International Nuclear Information System (INIS)

    The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (∝50 ms), T2* relaxation times (∝16 ms), and the diffusion constant for DWI (∝1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p≥0.05) compared to the control cartilage; however, a significantly higher diffusivity (∝1.5; p<0.05) was noted in the cartilage repair tissue. The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences. (orig.)

  1. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Chen, Qian

    2015-01-01

    Chondroprogenitor cells are a subpopulation of multipotent progenitors that are primed for chondrogenesis. They are believed to have the biological repertoire to be ideal for cell-based cartilage therapy. In addition to summarizing recent advances in chondroprogenitor cell characterization, this review discusses the projected pros and cons of utilizing chondroprogenitors in regenerative medicine and compares them with that of pre-existing methods, including autologous chondrocyte implantation (ACI) and the utilization of bone marrow derived mesenchymal stem cells (MSCs) for the purpose of cartilage tissue repair. PMID:26075411

  2. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Chen, Qian

    2015-01-01

    Chondroprogenitor cells are a subpopulation of multipotent progenitors that are primed for chondrogenesis. They are believed to have the biological repertoire to be ideal for cell-based cartilage therapy. In addition to summarizing recent advances in chondroprogenitor cell characterization, this review discusses the projected pros and cons of utilizing chondroprogenitors in regenerative medicine and compares them with that of pre-existing methods, including autologous chondrocyte implantation (ACI) and the utilization of bone marrow derived mesenchymal stem cells (MSCs) for the purpose of cartilage tissue repair.

  3. Hidrogéis de poliHEMA para reparo de defeitos da cartilagem articular: 1 - síntese e caracterização mecânica PolyHEMA hydrogels for repairs or articular cartilage defects: 1 – systhesis and mechanical characterization

    Directory of Open Access Journals (Sweden)

    Sonia M Malmonge

    1997-06-01

    Full Text Available Este trabalho visa a obtenção de hidrogéis de poli(2 hidróxi etil metacrilato - poliHEMA com propriedades mecânicas adequadas ao uso dos mesmos no reparo de defeitos da cartilagem articular. Para tanto, duas alternativas foram estudadas: a variação da densidade de reticulação e a obtenção de blendas do tipo redes semi interpenetrantes (sIPN de poliHEMA reticulado e diferentes polímeros como reforço. Amostras de hidrogéis foram obtidas por polimerização térmica e caracterizadas quanto à capacidade de absorção de água e de solução aquosa de NaCl 0,15 M e quanto ao comportamento mecânico, através de ensaios de fluência a indentação. Os resultados mostraram que a obtenção de blendas sIPN usando copolímero de MMA-AA como reforço é uma alternativa interessante para melhorar as propriedades mecânicas sem diminuir muito a capacidade de absorção de água dos hidrogéis.The purpose of this work was the study of poly-2-hydroxy-ethyl-metacrylate (polyHEMA as a biomaterial for the repair of articular cartilage defects. Improvement of mechanical properties were studied by two distincts routes: changes in cross-link density of the gels and the synthesis of cellulose acetate and poly-methyl metacrylate-acrylic acid copolymers semi interpenetrating blends. The hydrogels were synthesized by thermal polymerization and characterized by swelling behaviour in 0.15 Mol.L-1 NaCl and by creep indentation tests. The results showed that the blending of PolyHEMA with poly-methyl metacrylate-acrylic acid copolymers significantly improved the mechanical properties of hydrogels without changes in their swelling behavior.

  4. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect.

    Science.gov (United States)

    Caminal, M; Peris, D; Fonseca, C; Barrachina, J; Codina, D; Rabanal, R M; Moll, X; Morist, A; García, F; Cairó, J J; Gòdia, F; Pla, A; Vives, J

    2016-08-01

    Current developments in tissue engineering strategies for articular cartilage regeneration focus on the design of supportive three-dimensional scaffolds and their use in combination with cells from different sources. The challenge of translating initial successes in small laboratory animals into the clinics involves pilot studies in large animal models, where safety and efficacy should be investigated during prolonged follow-up periods. Here we present, in a single study, the long-term (up to 1 year) effect of biocompatible porous scaffolds non-seeded and seeded with fresh ex vivo expanded autologous progenitor cells that were derived from three different cell sources [cartilage, fat and bone marrow (BM)] in order to evaluate their advantages as cartilage resurfacing agents. An ovine model of critical size osteochondral focal defect was used and the test items were implanted arthroscopically into the knees. Evidence of regeneration of hyaline quality tissue was observed at 6 and 12 months post-treatment with variable success depending on the cell source. Cartilage and BM-derived mesenchymal stromal cells (MSC), but not those derived from fat, resulted in the best quality of new cartilage, as judged qualitatively by magnetic resonance imaging and macroscopic assessment, and by histological quantitative scores. Given the limitations in sourcing cartilage tissue and the risk of donor site morbidity, BM emerges as a preferential source of MSC for novel cartilage resurfacing therapies of osteochondral defects using copolymeric poly-D,L-lactide-co-glycolide scaffolds. PMID:25595211

  5. Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses.

    Science.gov (United States)

    te Moller, N C R; Brommer, H; Liukkonen, J; Virén, T; Timonen, M; Puhakka, P H; Jurvelin, J S; van Weeren, P R; Töyräs, J

    2013-09-01

    Arthroscopy enables direct inspection of the articular surface, but provides no information on deeper cartilage layers. Optical coherence tomography (OCT), based on measurement of reflection and backscattering of light, is a diagnostic technique used in cardiovascular surgery and ophthalmology. It provides cross-sectional images at resolutions comparable to that of low-power microscopy. The aim of this study was to determine if OCT is feasible for advanced clinical assessment of lesions in equine articular cartilage during diagnostic arthroscopy. Diagnostic arthroscopy of 36 metacarpophalangeal joints was carried out ex vivo. Of these, 18 joints with varying degrees of cartilage damage were selected, wherein OCT arthroscopy was conducted using an OCT catheter (diameter 0.9 mm) inserted through standard instrument portals. Five sites of interest, occasionally supplemented with other locations where defects were encountered, were arthroscopically graded according to the International Cartilage Repair Society (ICRS) classification system. The same sites were evaluated qualitatively (ICRS classification and morphological description of the lesions) and quantitatively (measurement of cartilage thickness) on OCT images. OCT provided high resolution images of cartilage enabling determination of cartilage thickness. Comparing ICRS grades determined by both arthroscopy and OCT revealed poor agreement. Furthermore, OCT visualised a spectrum of lesions, including cavitation, fibrillation, superficial and deep clefts, erosion, ulceration and fragmentation. In addition, with OCT the arthroscopically inaccessible area between the dorsal MC3 and P1 was reachable in some cases. Arthroscopically-guided OCT provided more detailed and quantitative information on the morphology of articular cartilage lesions than conventional arthroscopy. OCT could therefore improve the diagnostic value of arthroscopy in equine orthopaedic surgery. PMID:23810744

  6. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  7. [Cartilage tumors : Pathology and radiomorphology].

    Science.gov (United States)

    Uhl, M; Herget, G; Kurz, P

    2016-06-01

    Primary cartilage-forming tumors of the bone are frequent entities in the daily work of skeletal radiologists. This article describes the correlation of pathology and radiology in cartilage-forming skeletal tumors, in particular, enchondroma, osteochondroma, periosteal chondromas, chondroblastoma and various forms of chondrosarcoma. After reading, the radiologist should be able to deduce the different patterns of cartilage tumors on radiographs, CT, and MRI from the pathological aspects. Differentiation of enchondroma and chondrosarcoma is a frequent diagnostic challenge. Some imaging parameters, e. g., deep cortical scalloping (more than two thirds of the cortical thickness), cortical destruction, or a soft-tissue mass, are features of a sarcoma. Osteochondromas are bony protrusions with a continuous extension of bone marrow from the parent bone, the host cortical bone runs continuously from the osseous surface of the tumor into the shaft of the osteochondroma and the osteochondroma has a cartilage cap. Chondromyxoid fibromas are well-defined lytic and eccentric lesions of the metaphysis of the long bones, with nonspecific MRI findings. Chondroblastomas have a strong predilection for the epiphysis of long tubular bones and develop an intense perifocal bone marrow edema. Dedifferentiated chondrosarcomas are bimorphic lesions with a low-grade chondrogenic component and a high-grade noncartilaginous component. Most chondrogenic tumors have a predilection with regard to site and age at manifestation. PMID:27233920

  8. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  9. Current technology for the treatment of infection following abdominal aortic aneurysm (AAA) fixation by endovascular repair (EVAR).

    Science.gov (United States)

    Capoccia, L; Mestres, G; Riambau, V

    2014-06-01

    In recent years, in parallel with the increase of endovascular aortic repair (EVAR) procedures performances, a rise of late open surgical removal of EVAR implants has been observed, due to non-endovascularly correctable graft complications. Among them endograft infection is a rare but devastating occurrence, accounting for an incidence ranging from 0.2% to 0.7% in major series, and almost 1% of all causes of endograft explantations. However, a real estimation of the incidence of the problem respect to the number of EVAR implantations is difficult to obtain. Time to infection is usually defined as the period between EVAR and presentation of symptoms that leads to the infection diagnosis. It can be extremely variable, depending on bacterial virulence and host conditions. The diagnosis of an endograft infection is usually based on a combination of clinical symptoms, imaging studies and microbial cultures whenever possible. If computed tomography (CT) scan is employed in almost 100% of infection diagnosis, a combination of fluorodeoxyglucose-positron emission tomography (FDG-PET) and CT scan is nowadays used with increasing frequency in order to rise the likelihood of detecting a graft infection, since even cultures of blood or samples collected from the infected field can sometimes be negative. Complete graft excision seems the best approach whenever a surgical reconstruction could be attempted. In situ reconstruction can be performed by the interposition of an autologous vein, a cryopreserved allograft or a rifampin-soaked Dacron graft. The so-called conventional treatment contemplates the re-establishment of vascularization through extranatomical routes, thus preserving the new graft material from possible contamination by the surgical field just cleaned. When severe comorbid conditions did not allow graft excision, a conservative treatment should be taken into account. It is mainly based on broad-spectrum or culture-specific antibiotic therapy combined, whenever

  10. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    Mohamadreza; Baghaban; Eslaminejad; Elham; Malakooty; Poor

    2014-01-01

    Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.

  11. Long-term use and follow-up of autologous and homologous cartilage graft in rhinoplasty

    Directory of Open Access Journals (Sweden)

    Ghasemali Khorasani

    2016-05-01

    Full Text Available Background: Cartilage grafting is used in rhinoplasty and reconstructive surgeries. Autologous rib and nasal septum cartilage (auto graft is the preferred source of graft material in rhinoplasty, however, homologous cartilage (allograft has been extensively used to correct the nasal framework in nasal deformities. Autologous cartilage graft usage is restricted with complication of operation and limiting availability of tissue for extensive deformities. Alternatively, preserved costal cartilage allograft represents a readily available and easily contoured material. The current study was a formal systematic review of complications associated with autologous versus homologous cartilage grafting in rhinoplasty patients. Methods: In this cohort retrospective study, a total of 124 patients undergone primary or revision rhinoplasty using homologous or autologus grafts with postoperative follow-up ranging from 6 to 60 months were studied. The types of grafts and complications related to the grafts were evaluated. This included evaluation for warping, infection, resorption, mobility and fracture. Results: The total complications related to the cartilage grafts were 7 cases, which included 1 warped in auto graft group, three cases of graft displacement (two in allograft group and one in auto graft group and three fractures in allograft group. No infection and resorption was recorded. Complication rate (confidence interval 0.95 in autologous and homologous group were 1.25(0.4-3.88 and 2.08(0.78-5.55 in 1000 months follow up. There was no statistically significant difference between autologous and homologous group complications. Onset of complication in autologous and homologous group were 51.23(49.27-53.19 and 58.7(54.51-62.91 month respectively (P=0.81. Conclusion: The allograft cartilage has the advantage of avoiding donor-site scar. Moreover, it provides the same benefits as autologous costal cartilage with comparable complication rate. Therefore, it

  12. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  13. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  14. Proteoglycan concentrations in healthy and diseased articular cartilage by Fourier transform infrared imaging and principal component regression

    Science.gov (United States)

    Yin, Jianhua; Xia, Yang

    2014-12-01

    Fourier transform infrared imaging (FTIRI) combining with principal component regression (PCR) analysis were used to determine the reduction of proteoglycan (PG) in articular cartilage after the transection of the anterior cruciate ligament (ACL). A number of canine knee cartilage sections were harvested from the meniscus-covered and meniscus-uncovered medial tibial locations from the control joints, the ACL joints at three time points after the surgery, and their contralateral joints. The PG loss in the ACL cartilage was related positively to the durations after the surgery. The PG loss in the contralateral knees was less than that of the ACL knees. The PG loss in the meniscus-covered cartilage was less than that of the meniscus-uncovered tissue in both ACL and contralateral knees. The quantitative mapping of PG loss could monitor the disease progression and repair processes in arthritis.

  15. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage

    Science.gov (United States)

    Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid

    2007-02-01

    Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.

  16. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage.

    Science.gov (United States)

    Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid

    2013-12-17

    The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair. PMID:24578679

  17. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  18. Induction of inflammatory cytokines by cartilage extracts.

    Science.gov (United States)

    Merly, Liza; Simjee, Shabana; Smith, Sylvia L

    2007-03-01

    Shark cartilage extracts were examined for induction of cytokines and chemokines in human peripheral blood leukocytes. Primary leukocyte cultures were exposed to a variety of aqueous and organic extracts prepared from several commercial brands of shark cartilage. From all commercial sources of shark cartilage tested the acid extracts induced higher levels of TNFalpha than other extracts. Different commercial brands of shark cartilage varied significantly in cytokine-inducing activity. TNFalpha induction was seen as early as 4 h and IFNgamma at detectable levels for up to four days. Shark cartilage extracts did not induce physiologically significant levels of IL-4. Results suggest that shark cartilage, preferentially, induces Th1 type inflammatory cytokines. When compared to bovine cartilage extract, collagen, and chondroitin sulfate, shark cartilage induced significantly higher levels of TNFalpha. Treatment with digestive proteases (trypsin and chymotrypsin) reduced the cytokine induction response by 80%, suggesting that the active component(s) in cartilage extracts is proteinaceous. The induction of Th1 type cytokine response in leukocytes is a significant finding since shark cartilage, taken as a dietary supplement for a variety of chronic degenerative diseases, would be contraindicated in cases where the underlying pathology of the chronic condition is caused by inflammation. PMID:17276897

  19. Foetal and postnatal equine articular cartilage development: magnetic resonance imaging and polarised light microscopy

    Directory of Open Access Journals (Sweden)

    C Cluzel

    2013-08-01

    Full Text Available Adult articular cartilage (AC has a well described multizonal collagen structure. Knowledge of foetal AC organisation and development may provide a prototype for cartilage repair strategies, and improve understanding of structural changes in developmental diseases such as osteochondrosis (OC. The objective of this study was to describe normal development of the spatial architecture of the collagen network of equine AC using 1.5 T magnetic resonance imaging (MRI and polarised light microscopy (PLM, at sites employed for cartilage repair studies or susceptible to OC. T2-weighted fast-spin echo (FSE sequences and PLM assessment were performed on distal femoral epiphyses of equine foetuses, foals and adults. Both MRI and PLM revealed an early progressive collagen network zonal organisation of the femoral epiphyses, beginning at 4 months of gestation. PLM revealed that the collagen network of equine foetal AC prior to birth was already organised into an evident anisotropic layered structure that included the appearance of a dense tangential zone in the superficial AC in the youngest specimens, with the progressive development of an underlying transitional zone. A third, increasingly birefringent, radial layer developed in the AC from 6 months of gestation. Four laminae were observed on the MR images in the last third of gestation. These included not only the AC but also the superficial growth plate of the epiphysis. These findings provide novel data on normal equine foetal cartilage collagen development, and may serve as a template for cartilage repair studies in this species or a model for developmental studies of OC.

  20. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  1. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus;

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... stimulation. This study demonstrated the chondrogenic potential of human cord blood-derived Multi-Lineage Progenitor Cells (MLPCs) under normoxic and hypoxic culture conditions. Second, MLPCs were seeded in a novel, structurally graded polycaprolactone (SGS-PCL) scaffold and chondrogenesis was evaluated...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  2. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    Science.gov (United States)

    Quinn, T M; Morel, V

    2007-01-01

    determining matrix mechanical properties from measurable quantities at the microscale (composition, structure, and molecular physics) may be useful for investigating cartilage structure-function relationships relevant to load-bearing, injury, and repair. PMID:16715320

  3. Bladder exstrophy repair

    Science.gov (United States)

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... Bladder exstrophy repair involves two surgeries. The first surgery is to repair the bladder and the second one is to attach ...

  4. Dielectric study of interaction of water with normal and osteoarthritis femoral condyle cartilage.

    Science.gov (United States)

    Marzec, E; Olszewski, J; Kaczmarczyk, J; Richter, M; Trzeciak, T; Nowocień, K; Malak, R; Samborski, W

    2016-08-01

    The main goal of this paper is the in vitro study of healthy and osteoarthritis (OA) human cartilage using the dielectric spectroscopy in the alpha-dispersion region of the electric field and in the temperatures from 25 to 140°C. The activation energy of conductivity needed to break the bonds formed by water in the extracellular matrix takes the average values of 61kJ/mol and 44kJ/mol for the control and OA cartilages, respectively. At 28°C, the small difference appears in the permittivity decrement between the control and OA cartilages, while the conductivity increment is about 2 times higher for the control tissue than that for the OA tissue. At 75°C, the conductivity increment for both of these samples is 8 times higher than their respective permittivity decrement. In addition, at 140°C the values of these both parameters for the OA tissue decrease by 8 times as compared to those recorded for the control sample. The relaxation frequency of about 10kHz is similar for both of these samples. The knowledge on dielectric properties of healthy and OA cartilage may prove relevant to tissue engineering focused on the repair of cartilage lesions via the layered structure designing. PMID:27015448

  5. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  6. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan R.; Dam, Erik B.; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learni...

  7. Preserved irradiated homolgous cartilage for orbital reconstruction.

    Science.gov (United States)

    Linberg, J V; Anderson, R L; Edwards, J J; Panje, W R; Bardach, J

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is concenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption. PMID:7393528

  8. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1ρ and T2 mapping

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Hiroaki, E-mail: kinuhnishiok@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Hirose, Jun, E-mail: hirojun-mk@umin.ac.jp [Department of Orthopaedic Surgery, Kumamoto University Hospital, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Nakamura, Eiichi, E-mail: h@kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Okamoto, Nobukazu, E-mail: nobuoka9999@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Karasugi, Tatsuki, E-mail: tatsukik@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Taniwaki, Takuya, E-mail: takuyataniwaki@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Okada, Tatsuya, E-mail: tatsuya-okada@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Yamashita, Yasuyuki, E-mail: yama@kumamoto-u.ac.jp [Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Mizuta, Hiroshi, E-mail: mizuta@kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2013-09-15

    Objective: The purpose of this study was to clarify the detectability of the International Cartilage Repair Society (ICRS) grade 1 cartilage lesions in anterior cruciate ligament (ACL)–injured knees using T1ρ and T2 mapping. Materials and Methods: We performed preoperative T1ρ and T2 mapping and 3D gradient–echo with water–selective excitation (WATS) sequences on 37 subjects with ACL injuries. We determined the detectability on 3D WATS based on arthroscopic findings. The T1ρ and T2 values (ms) were measured in the regions of interest that were placed on the weight–bearing cartilage of the femoral condyle. The receiver operating characteristic (ROC) curve based on these values was constructed using the arthroscopic findings as a reference standard. The evaluation of cartilage was carried out only in the weight–bearing cartilage. The cut–off values for determining the presence of a cartilage injury were determined using each ROC curve, and the detectability was calculated for the T1ρ and T2 mapping. Results: The cut–off values for the T1ρ and T2 were 41.6 and 41.2, respectively. The sensitivity and specificity of T1ρ were 91.2% and 89.5%, respectively, while those of T2 were 76.5% and 81.6%, respectively. For the 3D WATS images, the same values were 58.8% and 78.9%, respectively. Conclusions: Our study demonstrated that the T1ρ and T2 values were significantly higher for ICRS grade 1 cartilage lesions than for normal cartilage and that the two mappings were able to non–invasively detect ICRS grade 1 cartilage lesions in the ACL–injured knee with a higher detectability than were 3D WATS images.

  9. Measurement of articular cartilage volumes in the normal knee by magnetic resonance imaging. Can cartilage volumes be estimated from physical characteristics?

    International Nuclear Information System (INIS)

    In recent times several studies have been performed on magnetic resonance imaging (MRI) sequences for imaging cartilage. A fat-suppressed three-dimensional sequence is one such noteworthy example. More recent studies have reported that the total volume of cartilage in a knee joint can be elucidated using this sequence. Based on these studies, we hypothesized that the total volume of cartilage in the knee joint may reflect certain other physical characteristics. The purpose of the current study was to clarify the articular cartilage volumes of the patella and femur in the human knee joints of healthy adults using MRI and to analyze the correlation of these volumes with other physical characteristics. The material comprised 68 knees of 68 Japanese healthy volunteers, aged from their twenties to their forties (37 men and 31 women) who had no past history of joint disease or trauma in the legs. The knees were imaged by MRI with a fat-suppressed three-dimensional sequence, and the cartilage volumes were calculated by computer processing. The factors analyzed were age, body weight, height, leg length, foot size, circumferences of the thigh and lower leg, the distance between medial and lateral femoral condyles, the diameter of the tibial head, body mass index, general joint laxity, quadriceps angle, and leg-heel alignment. The mean cartilage volume was 7.6±1.6 cm3 (8.3±1.6 cm3 in men, 6.7±0.9 cm3 in women). It was significantly larger in men than in women. However, the volume positively correlated with body weight, height, leg length, and foot size, without distinction of gender or age. Based on these data, a multiple regression analysis was developed: cartilage volume 0.113 x height-11.053. We concluded that the cartilage volume depends on physical size regardless of gender, and it can be estimated from factors of physical size. (author)

  10. The use of dynamic culture devices in articular cartilage tissue engineering.

    OpenAIRE

    Akmal, M.

    2006-01-01

    Tissue engineered repair of articular cartilage has now become a clinical reality with techniques for cell culture having advanced from laboratory experimentation to clinical application. Despite the advances in the use of this technology in clinical applications, the basic cell culture techniques for autologous chondrocytes are still based on primitive in-vitro monolayer culture methods. Articular chondrocytes are known to undergo fibroblastic change in monolayer culture as this is not their...

  11. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  12. Development of cartilage conduction hearing aid

    Directory of Open Access Journals (Sweden)

    H. Hosoi

    2010-04-01

    Full Text Available Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing aids require surgery (bone anchored hearing aid or great pressure to the skull. The first purpose of this study is to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage. After the best position for the cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion earphone (air conduction, a bone conduction transducer, and a cartilage conduction transducer. Then we made a new hearing aid using cartilage conduction and got subjective data from the patients.Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was comparable to those from the bone conduction hearing aid.Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction. Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such as pain and the need for surgery.Originality/value: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype ‘cartilage

  13. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla-Preliminary results

    International Nuclear Information System (INIS)

    Objectives: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. Material and Methods: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. Results: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p < 0.05). There was a decrease between the earlier and the later time point after surgery. Conclusions: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment

  14. Preserved irradiated homologous cartilage implants in canine eyelids

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W.; Linberg, J.V.; McCormick, S. (West Virginia Univ. School of Medicine, Morgantown (USA))

    1985-01-01

    Preserved irradiated homologous costal cartilage implants were placed in six canine lower lids for a period of 7-12 weeks. The three implants placed under a covering of conjunctiva simulating current clinical technique were well tolerated and demonstrated little change. Exposed implants produced obvious clinical inflammation and two of three exposed grafts disappeared during the 4- to 5-week interval. The single exposed implant that was retained demonstrated partial epithelialization but suffered extensive absorption and remodeling.

  15. Handheld-Level Electromechanical Cartilage Reshaping Device.

    Science.gov (United States)

    Kim, Sehwan; Manuel, Cyrus T; Wong, Brian J F; Chung, Phil-Sang; Mo, Ji-Hun

    2015-06-01

    We have developed a handheld-level multichannel electromechanical reshaping (EMR) cartilage device and evaluated the feasibility of providing a means of cartilage reshaping in a clinical outpatient setting. The effect of EMR on pig costal cartilage was evaluated in terms of shape change, tissue heat generation, and cell viability. The pig costal cartilage specimens (23 mm × 6.0 mm × 0.7 mm) were mechanically deformed to 90 degrees and fixed to a plastic jig and applied 5, 6, 7, and 8 V up to 8 minutes to find the optimal dosimetry for the our developed EMR device. The results reveal that bend angle increased with increasing voltage and application time. The maximum bend angle obtained was 70.5 ± 7.3 at 8 V, 5 minutes. The temperature of flat pig costal cartilage specimens were measured, while a constant electric voltage was applied to three pairs of electrodes that were inserted into the cartilages. The nonthermal feature of EMR was validated by a thermal infrared camera; that is, the maximum temperate of the flat cartilages is 20.3°C at 8 V. Cell viability assay showed no significant difference in cell damaged area from 3 to 7 minutes exposure with 7 V. In conclusion, the multichannel EMR device that was developed showed a good feasibility of cartilage shaping with minimal temperature change. PMID:26126226

  16. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  17. Isolation, identification and differentiation of human embryonic cartilage stem cells.

    Science.gov (United States)

    Fu, Changhao; Yan, Zi; Xu, Hao; Zhang, Chen; Zhang, Qi; Wei, Anhui; Yang, Xi; Wang, Yi

    2015-07-01

    We isolated human embryonic cartilage stem cells (hECSCs), a novel stem cell population, from the articular cartilage of eight-week-old human embryos. These stem cells demonstrated a marker expression pattern and differentiation potential intermediate to those of human embryonic stem cells (hESCs) and human adult stem cells (hASCs). hECSCs expressed markers associated with both hESCs (OCT4, NANOG, SOX2, SSEA-3 and SSEA-4) and human adult stem cells (hASCs) (CD29, CD44, CD90, CD73 and CD10). These cells also differentiated into adipocytes, osteoblasts, chondrocytes, neurons and islet-like cells under specific inducing conditions. We identified N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) as an inducer of chondrogenic differentiation in hECSCs. Similar results using N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) were obtained for two other types of human embryonic tissue-derived stem cells, human embryonic hepatic stem cells (hEHSCs) and human embryonic amniotic fluid stem cells (hEASCs), both of which exhibited a marker expression pattern similar to that of hECSCs. The isolation of hECSCs and the discovery that N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) induces chondrogenic differentiation in different stem cell populations might aid the development of strategies in tissue engineering and cartilage repair.

  18. Cartilage surface characterization by frictional dissipated energy during axially loaded knee flexion--an in vitro sheep model.

    Science.gov (United States)

    Lorenz, Andrea; Rothstock, Stephan; Bobrowitsch, Evgenij; Beck, Alexander; Gruhler, Gerhard; Ipach, Ingmar; Leichtle, Ulf G; Wülker, Nikolaus; Walter, Christian

    2013-05-31

    Cartilage defects and osteoarthritis (OA) have an increasing incidence in the aging population. A wide range of treatment options are available. The introduction of each new treatment requires controlled, evidence based, histological and biomechanical studies to identify potential benefits. Especially for the biomechanical testing there is a lack of established methods which combine a physiologic testing environment of complete joints with the possibility of body-weight simulation. The current in-vitro study presents a new method for the measurement of friction properties of cartilage on cartilage in its individual joint environment including the synovial fluid. Seven sheep knee joints were cyclically flexed and extended under constant axial load with intact joint capsule using a 6° of freedom robotic system. During the cyclic motion, the flexion angle and the respective torque were recorded and the dissipated energy was calculated. Different mechanically induced cartilage defect sizes (16 mm², 50 mm², 200 mm²) were examined and compared to the intact situation at varying levels of the axial load. The introduced setup could significantly distinguish between most of the defect sizes for all load levels above 200 N. For these higher load levels, a high reproducibility was achieved (coefficient of variation between 4% and 17%). The proposed method simulates a natural environment for the analysis of cartilage on cartilage friction properties and is able to differentiate between different cartilage defect sizes. Therefore, it is considered as an innovative method for the testing of new treatment options for cartilage defects.

  19. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    Science.gov (United States)

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair.

  20. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    Science.gov (United States)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  1. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    International Nuclear Information System (INIS)

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  2. Tympanometric patterns in patients undergoing cartilage tympanoplasty of 0.6 mm thickness

    Directory of Open Access Journals (Sweden)

    Bandar Al Qahtani

    2015-01-01

    Full Text Available Background: Tympanoplasty has been reported as early as in 1640 by Marcus Banzer, since then many different techniques have been developed for this procedure. The aim of this study is to analyze the tympanometric findings in those patients who underwent cartilage tympanoplasties of 0.6 mm thickness and in order to check different tympanometric patterns obtained in these patients. Materials and Methods: A prospective study was conducted on 60 patients diagnosed clinically with chronic suppurative otitis media in outpatient clinic between 2010 and 2013, in which a cartilage tympanoplasty of 0.6 mm thickness was planned. These patients were evaluated clinically and by pure tone audiograms and tympanograms for cartilage uptake and any late complications. Results: A total of 26 patients were included in our study. The male to female ratio was 3:1 and mean age was 36.1 years. The mean external canal volume of these patients was 0.928, and all of them had a closed air-bone gap. Ten patients had Type As tympanogram which represented 41.6%, 8 of these patients were females. The mean external canal volume of the patients with Type As tympanogram was 1.61. Only one patient had Type A tympanogram with external canal volume of 1.9 and a closed air-bone gap, he was a case of left cartilage tympanoplasty. Type B tympanogram was also found in only one patient who had left cartilage tympanoplasty, with external canal volume of 1.3 and a closed air-bone gap. No patients had Type C or Type Ac. Conclusion: Use of cartilage of 0.6 mm thickness in tympanoplasty for tympanic membrane perforation repair results in excellent outcomes and most common pattern of tympanogram is non-A, B, C postoperatively.

  3. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  4. {mu}-PIXE and SAXS studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380, Kocaeli (Turkey); Laklouk, A. [Food Science Department, Al-Fateh Unversity, Tripoli (Libyan Arab Jamahiriya); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Pfeiffer, F. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-04-15

    Micro Proton Induced X-ray Emission ({mu}-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage.

  5. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  6. Craniosynostosis repair

    Science.gov (United States)

    ... will be asleep and will not feel pain. Traditional surgery is called open repair. It includes these ... helps keep the swelling down. Talking, singing, playing music, and telling stories may help soothe your child. ...

  7. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  8. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients. PMID:11572120

  9. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  10. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated. PMID:26119536

  11. Glenohumeral relationships: subchondral mineralization patterns, thickness of cartilage, and radii of curvature.

    Science.gov (United States)

    Zumstein, Valentin; Kraljević, Marko; Müller-Gerbl, Magdalena

    2013-11-01

    Subchondral mineralization represents the loading history of a joint and can be measured in vivo using computed tomography osteoabsorptiometry. Different mineralization patterns in the glenohumeral joint have been explained by the principle of physiologic incongruence. We sought to support this explanation by measurement of mineralization, radii, and cartilage thickness in 18 fresh shoulder specimens. We found three mineralization patterns: bicentric, monocentric anterior, and monocentric central. Mean radii of the glenoids were 27.4 mm for bicentric glenoids, 27.3 mm for monocentric anterior, and 24.8 mm for monocentric central glenoids. Cartilage thickness measurement revealed the highest values in anterior parts; the thinnest cartilage was found centrally. Our findings support the principle of a physiologic incongruence in the glenohumeral joint. Bicentric mineralization patterns exist in joints consisting of more flat glenoids compared to the corresponding humeral head. Monocentric distribution with a central maximum was found in specimens with glenoids being more curved, indicating higher degrees of congruence, which might represent an early stage of degenerative disease. The obtained information might also be important for implant fixation in resurfacing procedures or to achieve the best possible fit of an osteochondral allograft in the repair of cartilage defects.

  12. He-Ne Laser Irradiation Encourages reparative Processes After cartilage loss in New Zealand rabbits

    International Nuclear Information System (INIS)

    Many therapeutic methods used to encourage reparative processes of cartilage and accelerate their healing such as drugs, magneto-laser and so on.Twenty four adult New Zealand rabbits used in this study.They were divided in to two groups; control and treaded with He-Ne laser.A square skin flap done on the medial aspect of both auricles followed by pealing a square piece of cartilage from the auricle then the flaps sutured.The site of the operation in the rabbits of the treatedgroup were irradiated with He-Ne laser 5mw power for seven days began after the operation directly.3 rabbits from each group used for collection of specimens for histopathological examination at the 1, 2, 4 & 6 weeks post the operation.Significantly well developed cartilage growth, chondroblasts and chondrocytes invade the area of the operation.High increase in the thickness of connective tissue in the same area contain mainly collagen fibers and lesser amount of elastic fibers.He-Ne laser irradiation raised the mitotic activity of the cartilage cells, activated the reproduction processes in addition to the intra and extra regenerative repair

  13. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  14. Pectus excavatum repair

    Science.gov (United States)

    Funnel chest repair; Chest deformity repair; Sunken chest repair; Cobbler's chest repair; Nuss repair; Ravitch repair ... There are two types of surgery to repair this condition -- open surgery ... surgery is done while the child is in a deep sleep and pain- ...

  15. Sustained Release of Bone Morphogenetic Protein 2 via Coacervate improves Muscle Derived Stem Cell Mediated Cartilage Regeneration in MIA-induced Osteoarthritis

    Science.gov (United States)

    Hicks, Justin James; Rocha, Jorge Luis; Li, Hongshuai; Huard, Johnny; Wang, Yadong; Hogan, MaCalus Vinson

    2016-01-01

    Objectives: Individuals who participate in sports have an increased risk of osteoarthritis (OA), characterized by articular cartilage degeneration. Currently, there is no cure for OA with treatment aimed at symptom relief and improved function. Muscle-derived stem cells (MDSCs) have been shown to exhibit long-term proliferation, high self-renewal, and multipotent differentiation capabilities in vitro. Previously, we have demonstrated that murine MDSCs retrovirally transduced to express chondrogenic proteins (BMPs) differentiate into chondrocytes and enhance cartilage repair in vivo. Direct injection of therapeutic proteins can promote cartilage healing; however, they have relatively short half-lives requiring muitiple injections of high dosages. This presents a challenge in terms of maintaining adequate local BMP levels and could negatively affect both injured and normal structures and lead to side effects such as osteophyte formation. Gene therapy is a promising approach that addresses this problem; however, its utilization in clinical applications is much further down the road. In order to circumvent viral transduction of cells for cartilage regeneration, we developed a unique growth factor delivery platform comprised of native heparin and a synthetic polycation, poly(ethylene argininylaspartate diglyceride) (PEAD) incorporated with BMP2 (BMP2 coacervate). In this study, we show that sustained delivery of BMP2 via a BMP2 coacervate can induce the differentiation of MDSCs to a chondrocyte lineage for in vivo cartilage regeneration and healing in a Monoiodoacetate (MIA)-induced osteoarthritis model. Methods: mMDSCs were isolated from muscle biopsies via a modified pre-plated technique. The BMP2 coacervates were prepared as previously described. The release profiles of BMP2 coacervate were tested by ELISA. The chondrogenic effects that delivery of BMP2 had on MDSCs were evaluated by RT-PCR. The efficacy of MDSC with BMP2 coacervate were evaluated in vivo in a MIA

  16. Femoral hernia repair

    Science.gov (United States)

    Femorocele repair; Herniorrhaphy; Hernioplasty - femoral ... During surgery to repair the hernia, the bulging tissue is pushed back in. The weakened area is sewn closed or strengthened. This repair ...

  17. Undescended testicle repair

    Science.gov (United States)

    Orchidopexy; Inguinal orchidopexy; Orchiopexy; Repair of undescended testicle; Cryptorchidism repair ... first year of life without treatment. Undescended testicle repair surgery is recommended for patients whose testicles do ...

  18. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  19. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  20. Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics.

    Science.gov (United States)

    Wilson, Richard; Diseberg, Anders F; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J; Gorman, Jeffrey J; Bateman, John F

    2010-06-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage

  1. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  2. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  3. Reliable concrete repair: A critical review

    OpenAIRE

    Lukovic, M.; Ye, G.; Breugel, K. van

    2012-01-01

    This paper highlights the importance of achieving durable and long-term predictable repair of reinforced concrete structures. The performance of concrete repair in past and current engineering practice, including all types of repair and application of different materials, is often unsatisfactory. One of the reasons for this lays in the fact that knowledge regarding bonding mechanism and bond properties at the interface of repair material and concrete substrate is still lacking. This paper int...

  4. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  5. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical propertie

  6. 不同材料构建组织工程软骨及支架的应用%Applications of tissue-engineered cartilage and scaffold constructed using different materials

    Institute of Scientific and Technical Information of China (English)

    张新

    2012-01-01

    背景 组织工程技术的发展为软骨的再生和修复提供了新的途径,根据软骨自身的结构和特点,作为人工软骨的替代材料和支架材料应具有良好的生物力学性能.目的 总结运动性关节软骨损伤修复材料及其支架材料的应用进展及其生物替代材料的生物力学特征,评价目前组织工程软骨材料应用的性能及发展前景.方法 以"组织工程;软骨组织;支架材料;生物相容性"为关键词,应用计算机检索维普数据库和PubMed 数据库中1990-01/2011-04 关于组织工程软骨应用研究的文章,纳入与有关生物材料与组织工程软骨相关的文章;排除重复研究或Meta 分析类文章.以24 篇文献为主重点进行了讨论组织工程软骨材料的种类、性能及其应用效果和前景.结果 与结论 目前关节软骨修复领域以自体软骨移植效果为最佳,骨髓基质干细胞在离体试验及动物实验中研究较多,在临床应用中较少,尚在探索阶段.支架材料的应用比较繁复,天然材料、人工合成材料以及复合材料都存在一定的不足,虽然复合材料成为研究的热点,但是某些性能并不能很好地符合支架要求,并且在机体内这些材料所带来的长期影响还不能预见,这就迫切需要新材料的出现,来更好地满足组织软骨织支架的要求,达到修复和重建的目的.%BACKGROUND: The development of tissue engineering technology provides a new way for cartilage regeneration and repair;according to the structure and characteristics of cartilage, the substitute materials and scaffold materials, as artificial cartilage,should have good biomechanical properties.OBJECTIVE: To summarize the application progress of repair materials and scaffold materials for exercise-induced articularcartilage injury; to summarize the biomechanical properties of biological substitute materials; to evaluate the performance andprospects of the current application of tissue

  7. Intestinal obstruction repair

    Science.gov (United States)

    Repair of volvulus; Intestinal volvulus - repair; Bowel obstruction - repair ... Intestinal obstruction repair is done while you are under general anesthesia . This means you are asleep and DO NOT feel pain. ...

  8. Aortic aneurysm repair - endovascular

    Science.gov (United States)

    EVAR; Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... Endovascular aortic repair is done because your aneurysm is very large, growing quickly, or is leaking or bleeding. You may have ...

  9. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  10. Hydrocele repair

    Science.gov (United States)

    ... small surgical cut in the fold of the groin, and then drains the fluid. The sac (hydrocele) holding the fluid may be removed. The surgeon strengthens the muscle wall with stitches. This is called a hernia repair. Sometimes the surgeon uses a laparoscope to do ...

  11. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts

    Directory of Open Access Journals (Sweden)

    Endres Michaela

    2012-11-01

    Full Text Available Abstract Background Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA/fibrin biomaterials for scaffold-assisted cartilage repair. Methods Ovine chondrocytes harvested from adult articular cartilage were expanded in monolayer and re-assembled three-dimensionally in PGA-fibrin scaffolds. De- and re-differentiation of ovine chondrocytes in PGA-fibrin scaffolds was assessed by histological and immuno-histochemical staining as well as by real-time gene expression analysis of typical cartilage marker molecules and the matrix-remodelling enzymes matrix metalloproteinases (MMP -1, -2 and −13 as well as their inhibitors. PGA scaffolds characteristics including degradation and stiffness were analysed by electron microscopy and biomechanical testing. Results Histological, immuno-histochemical and gene expression analysis showed that dedifferentiated chondrocytes re-differentiate in PGA-fibrin scaffolds and form a cartilaginous matrix. Re-differentiation was accompanied by the induction of type II collagen and aggrecan, while MMP expression decreased in prolonged tissue culture. Electron microscopy and biomechanical tests revealed that the non-woven PGA scaffold shows a textile structure with high tensile strength of 3.6 N/mm2 and a stiffness of up to 0.44 N/mm2, when combined with gel-like fibrin. Conclusion These data suggest that PGA-fibrin is suited as a mechanically stable support structure for scaffold-assisted chondrocyte grafts, initiating chondrogenic re-differentiation of expanded chondrocytes.

  12. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  13. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  14. Treatment of full thickness cartilage defects in human knees with Autologous Chondrocyte Transplantation

    Directory of Open Access Journals (Sweden)

    Khalilallah Nazem

    2011-01-01

    Full Text Available Background: Although a variety of strategies have been employed for managing articular cartilage defects in the knee, overall outcomes have not been satisfactory. An alternative option may be autologous chondrocyte transplantation (ACT. However, as this method is still under investigation, here we assessed the efficacy of ACT for human knee defect cartilage repair. Methods: In a randomized clinical trial study, eleven patients (mean age 31.09 years were enrolled in the study with full thickness cartilage defects in the knee. Arthroscopically, healthy cartilage was obtained, chondrocytes expanded for 2-3 weeks and ACT performed. Clinical status was evaluated before ACT, 6 and 12 months after ACT using the Brittberg-Peterson functional assessment and modified Cincinnati rating score. Magnetic resonance imaging (MRI findings were evaluated based on the scoring systems used by Sally Roberts and by Henderson. Results: Modified Cincinnati rating indicated significant improvement of clinical score before ACT compared to 6 (p = 0.000 and 12 (p = 0.000 months after ACT (from 2.73 before ACT to 7.27, 8.36 and 9.5 at 6, 12, and 48 months after ACT, respectively. Brittberg-Peterson functional assessment indicated a decline from 79.27 to 25.82 and 19.27 at 6 and 12 months post ACT. Further, statistical test demonstrated significant differences 6, 12 and 48 months post ACT (p = 0.007. Evaluation of MRI revealed a score of 6.5 for Henderson criteria and a score of 2.5 for Robert criteria. Conclusions: Our study demonstrated that ACT of the knee provides an excellent treatment for full thickness cartilage defects with outstanding clinical and radiological outcomes.

  15. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  16. Polarized IR microscopic imaging of articular cartilage

    Science.gov (United States)

    Ramakrishnan, Nagarajan; Xia, Yang; Bidthanapally, Aruna

    2007-08-01

    The objective of this spectroscopic imaging study is to understand the anisotropic behavior of articular cartilage under polarized infrared radiation at 6.25 µm pixel resolution. Paraffin embedded canine humeral cartilage-bone blocks were used to obtain 6 µm thick tissue sections. Two wire grid polarizers were used to manipulate the polarization states of IR radiation by setting them for various polarizer/analyzer angles. The characteristics of the major chemical components (amide I, amide II, amide III and sugar) of articular cartilage were investigated using (a) a polarizer and (b) a combination of a polarizer and an analyzer. These results were compared to those obtained using only an analyzer. The infrared anisotropy (variation in infrared absorption as a function of polarization angles) of amide I, amide II and amide III bands correlates with the orientation of collagen fibrils along the tissue depth in different histological zones. An 'anisotropic flipping' region of amide profiles indicates the possibility of using Fourier transform infrared imaging (FTIRI) to determine the histological zones in cartilage. Cross-polarization experiment indicates the resolution of overlapping peaks of collagen triple helix and/or proteoglycan in articular cartilage.

  17. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  18. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation?

    Science.gov (United States)

    Ziskoven, Christoph; Jäger, Marcus; Zilkens, Christoph; Bloch, Wilhelm; Brixius, Klara; Krauspe, Rüdiger

    2010-09-23

    Due to an increasing life expectance, osteoarthritis (OA) is one of the most common chronic diseases. Although strong efforts have been made to regenerate degenerated joint cartilage, OA is a progressive and irreversible disease up to date. Among other factors the dysbalance between free radical burden and cellular scavenging mechanisms defined as oxidative stress is a relevant part of OA pathogenesis. Here, only little data are available about the mediation and interaction between different joint compartments. The article provides a review of the current literature regarding the influence of oxidative stress on cellular aging, senescence and apoptosis in different joint compartments (cartilage, synovial tissue and subchondral bone). Free radical exposure is known to promote cellular senescence and apoptosis. Radical oxygen species (ROS) involvement in inflammation, fibrosis control and pain nociception has been proven. The data from literature indicates a link between free radical burden and OA pathogenesis mediating local tissue reactions between the joint compartments. Hence, oxidative stress is likely not only to promote cartilage destruction but also to be involved in inflammative transformation, promoting the transition from clinically silent cartilage destruction to apparent OA. ROS induced by exogenous factors such as overload, trauma, local intraarticular lesion and consecutive synovial inflammation cause cartilage degradation. In the affected joint, free radicals mediate disease progression. The interrelationship between oxidative stress and OA etiology might provide a novel approach to the comprehension and therefore modification of disease progression and symptom control.

  19. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation?

    Directory of Open Access Journals (Sweden)

    Christoph Ziskoven

    2010-12-01

    Full Text Available Due to an increasing life expectance, osteoarthritis (OA is one of the most common chronic diseases. Although strong efforts have been made to regenerate degenerated joint cartilage, OA is a progressive and irreversible disease up to date. Among other factors the dysbalance between free radical burden and cellular scavenging mechanisms defined as oxidative stress is a relevant part of OA pathogenesis. Here, only little data are available about the mediation and interaction between different joint compartments. The article provides a review of the current literature regarding the influence of oxidative stress on cellular aging, senescence and apoptosis in different joint compartments (cartilage, synovial tissue and subchondral bone. Free radical exposure is known to promote cellular senescence and apoptosis. Radical oxygen species (ROS involvement in inflammation, fibrosis control and pain nociception has been proven. The data from literature indicates a link between free radical burden and OA pathogenesis mediating local tissue reactions between the joint compartments. Hence, oxidative stress is likely not only to promote cartilage destruction but also to be involved in inflammative transformation, promoting the transition from clinically silent cartilage destruction to apparent OA. ROS induced by exogenous factors such as overload, trauma, local intraarticular lesion and consecutive synovial inflammation cause cartilage degradation. In the affected joint, free radicals mediate disease progression. The interrelationship between oxidative stress and OA etiology might provide a novel approach to the comprehension and therefore modification of disease progression and symptom control.

  20. Effect of osteoporosis and intervertebral disc degeneration on endplate cartilage injury in rats

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Wei Cui; Jean Pierre Kalala; Tom Van Hoof; Bao-Ge Liu

    2014-01-01

    Objective:To investigate the effect of osteoporosis and intervertebral disc degeneration on the endplate cartilage injury in rats.Methods:A total of48 femaleSpragueDawley rats(3 months) were randomly divided intoGroupsA,B,C andD with12 rats in each group.Osteoporosis and intervertebral disc degeneration composite model, simple degeneration model and simple osteoporosis model were prepared inGroupsA,B andC respectively.After modeling, four rats of each group at12th,18th and24th week were sacrificed.Intervertebral height of cervical vertebra C6/C7 was measured.Micro-CT was used to image the endplate of cephalic and caudal cartilage atC6/C7 intervertebral disc.Abraded area rate ofC6 caudal andC7 cephalic cartilage endplate was calculated, and thenC6/C7 intervertebral disc was routinely embedded and sectioned, stained with safraninO to observe histological changes microscopically.Results:At12,18 and 24 weeks, intervertebral disc height ofC6/C7 were(0.58±0.09) mm,(0.53±0.04) mm and(0.04±0.06) mm inGroupA rats,(0.55±0.05) mm,(0.52±0.07) mm and(0.07±0.05) mm inGroupB rats.At24th week, intervertebral disc height ofGroupA rats was significantly lower than that ofGroupB rats (P0.05).At12 and18 weeks, the abraded rate ofC6 caudal andC7 cephalic cartilage endplate inGroupA rats were significantly higher than that inGroupsB,C andD rats(P0.05).Microscopic observation ofCT showed that ventral defects inC6 caudal orC7 cephalic cartilage endplate inGroupsA andB appeared after12 weeks of modeling;obvious cracks were found in front of theC6 andC7 vertebral body, and cartilage defect shown the trend of "repairing" at18 and24 weeks after modeling.Conclusions:Intervertebral disc degeneration and osteoporosis can cause damage to the cartilage endplate.Co-existence of these two factors can induce more serious damage to the endplate, which has possitive correlation with intervertebral disc degeneration.Osteoporosis plays a certain role in intervertebral disc degeneration process, and

  1. Age-Independent Cartilage Generation for Synovium-Based Autologous Chondrocyte Implantation.

    Science.gov (United States)

    Hunziker, Ernst B; Lippuner, Kurt; Keel, Marius J B; Shintani, Nahoko

    2015-07-01

    The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of

  2. Additive manufacturing for in situ repair of osteochondral defects

    International Nuclear Information System (INIS)

    Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that mimic naturally occurring pathologies. A calf femur was mounted in a custom jig and held within a robocasting-based additive manufacturing (AM) system. Two defects were induced: one a cartilage-only representation of a grade IV chondral lesion and the other a two-material bone and cartilage fracture of the femoral condyle. Alginate hydrogel was used for the repair of cartilage; a novel formulation of demineralized bone matrix was used for bone repair. Repair prints for both defects had mean surface errors less than 0.1 mm. For the chondral defect, 42.8 ± 2.6% of the surface points had errors that were within a clinically acceptable error range; however, with 1 mm path planning shift, an estimated ∼75% of surface points could likely fall within the benchmark envelope. For the osteochondral defect, 83.6 ± 2.7% of surface points had errors that were within clinically acceptable limits. In addition to implications for minimally invasive AM-based clinical treatments, these proof-of-concept prints are some of the only in situ demonstrations to-date, wherein the substrate geometry was unknown a priori. The work presented herein demonstrates in situ AM, suggests potential biomedical applications and also explores in situ-specific issues, including geometric feedback, material selection and novel path planning techniques.

  3. Additive manufacturing for in situ repair of osteochondral defects

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Daniel L; Lipton, Jeffrey I; Bonassar, Lawrence J; Lipson, Hod, E-mail: dlc44@cornell.ed, E-mail: jil26@cornell.ed, E-mail: lb244@cornell.ed, E-mail: hod.lipson@cornell.ed [Cornell University, Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    2010-09-15

    Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that mimic naturally occurring pathologies. A calf femur was mounted in a custom jig and held within a robocasting-based additive manufacturing (AM) system. Two defects were induced: one a cartilage-only representation of a grade IV chondral lesion and the other a two-material bone and cartilage fracture of the femoral condyle. Alginate hydrogel was used for the repair of cartilage; a novel formulation of demineralized bone matrix was used for bone repair. Repair prints for both defects had mean surface errors less than 0.1 mm. For the chondral defect, 42.8 {+-} 2.6% of the surface points had errors that were within a clinically acceptable error range; however, with 1 mm path planning shift, an estimated {approx}75% of surface points could likely fall within the benchmark envelope. For the osteochondral defect, 83.6 {+-} 2.7% of surface points had errors that were within clinically acceptable limits. In addition to implications for minimally invasive AM-based clinical treatments, these proof-of-concept prints are some of the only in situ demonstrations to-date, wherein the substrate geometry was unknown a priori. The work presented herein demonstrates in situ AM, suggests potential biomedical applications and also explores in situ-specific issues, including geometric feedback, material selection and novel path planning techniques.

  4. Combining rhinoplasty with septal perforation repair.

    Science.gov (United States)

    Foda, Hossam M T; Magdy, Emad A

    2006-11-01

    A combined septal perforation repair and rhinoplasty was performed in 80 patients presenting with septal perforations (size 1 to 5 cm) and external nasal deformities. The external rhinoplasty approach was used for all cases and the perforation was repaired using bilateral intranasal mucosal advancement flaps with a connective tissue interposition graft in between. Complete closure of the perforation was achieved in 90% of perforations of size up to 3.5 cm and in only 70% of perforations that were larger than 3.5 cm. Cosmetically, 95% were very satisfied with their aesthetic result. The external rhinoplasty approach proved to be very helpful in the process of septal perforation repair especially in large and posteriorly located perforations and in cases where the caudal septal cartilage was previously resected. Our results show that septal perforation repair can be safely combined with rhinoplasty and that some of the routine rhinoplasty maneuvers, such as medial osteotomies and dorsal lowering, could even facilitate the process of septal perforation repair. PMID:17131270

  5. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    Science.gov (United States)

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  6. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    Directory of Open Access Journals (Sweden)

    M.R. Baghban Eslaminezhad, Ph.D.

    2007-09-01

    Full Text Available Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isolated from the bone marrow of NMRI mice were pleted by centrifugation and cultured for 21 days in chondrogenic medium. At the end of cultivation period, occurrence of chondrogenic differentiation was confirmed by reverse transcriptase–polymerase chain reaction (RT-PCR analysis for some cartilage-specific genes. To compare the structure of differentiated tissue with that of natural cartilage, the cartilage was differentiated from MSCs and the cartilage obtained from the same murine rib was prepared for transmission electron microscopy (TEM.Results: Structural studies indicated that similar to the costal cartilage, the cartilage produced from differentiation of perichondrium-like layer was formed. According to the microscopic images, in contrast to costal chondrocytes, the differentiated cells had euchromatic nucleus and their cytoplasm contained plenty of the organelles involved in active cell secretion. Furthermore, intercellular matrix in differentiated cartilage had a fibrillar appearance. Conclusion: Our results indicated that the structure of cartilage produced in micro mass culture system is somewhat different from that of costal cartilage. The cells from differentiated tissue seemed to be more active than those from costal cartilage. .

  7. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  8. 羟基磷灰石/聚乳酸人工骨修复材料的研究进展%Current approaches of artificial bone repair material-hydroxyapatide/polylactide composite

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Hydroxyapatide/polylactide (HA/PLA) is a kind of artificial bone repair material with promising expectation. In this paper, current researches of advantages, preparation, interface structures and relative experiments for HA/PLA composite were reviewed.%  羟基磷灰石/聚乳酸(HA/PLA)是一种极具发展前景的人工骨修复材料,该文简要介绍HA/PLA复合材料的优点、制备、界面组织结构以及相关实验研究等最新进展。

  9. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  10. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  11. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  12. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  13. Chronic anterior cruciate ligament tears and associated meniscal and traumatic cartilage lesions: evaluation with morphological sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Vlychou, Marianna; Fezoulidis, Ioannis V. [University Hospital of Larissa, Department of Radiology, Medical School of Thessaly, Larissa (Greece); Hantes, Michalis; Michalitsis, Sotirios; Malizos, Konstantinos [University Hospital of Larissa, Department of Orthopaedic Surgery, Medical School of Thessaly, Larissa (Greece); Tsezou, Aspasia [University Hospital of Larissa, Department of Molecular Genetics and Cytogenetics, Medical School of Thessaly, Larissa (Greece)

    2011-06-15

    To investigate the diagnostic efficacy of morphological sequences at 3.0 T MR imaging in detecting anterior cruciate ligament (ACL), meniscal pathology and traumatic cartilage legions in young patients with chronic deficient anterior cruciate ligament knees. This prospective study included 43 patients (39 male) between the age of 15 and 37 years (mean age 22.6 years) with a history of knee injury sustained at least 3 months prior to the decision to repair a torn ACL. All patients underwent a 3.0 T MR scan with the same standard protocol, including intermediate-weighted and three-dimensional spoiled gradient-recalled T1-weighted sequences with fat saturation and subsequently surgical reconstruction of the ACL, along with meniscal and cartilage repair, when necessary. All ACL tears were correctly interpreted by 3.0 T MR images. The sensitivity of the MR scans regarding tears of the medial meniscus was 93.7%, the specificity 92.6%, the positive predictive value 88.2% and the negative predictive value 95.8%. The sensitivity of the MR scans regarding tears of lateral meniscus was 85.7%, the specificity was 93.1%, the positive predictive value 85.7% and the negative predictive value 93.1%. With regard to the grading of the cartilage lesions, Cohen's kappa coefficient indicated moderate agreement for grade I and II cartilage lesions (0.5), substantial agreement for grade III and IV cartilage lesions (0.70 and 0.66) and substantial agreement for normal regions (0.75). Regarding location of the cartilage lesions, Cohen's kappa coefficient varied between almost perfect agreement in the lateral femoral condyle and no agreement in the trochlea. In the setting of chronic ACL deficiency, MR imaging at 3.0 T achieves satisfactory diagnostic performance regarding meniscal and ligamentous pathology. In the detection of cartilage lesions MRI is less successful. (orig.)

  14. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  15. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  16. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    Science.gov (United States)

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies. PMID:27591865

  17. uv photobiology: excision repair

    International Nuclear Information System (INIS)

    The following topics are discussed: steps in nucleotide excision; damage to DNA by uv-endonuclease; use of complementation to study DNA repair in Escherichia coli and mammalian cells; role of BUDR photolysis in excision repair, relation between DNA repair defect and human disease; base excision repair; and excision repair by removal of damaged region of a base in DNA without excision

  18. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  19. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold.

    Science.gov (United States)

    Yang, Bo; Yin, Zhanhai; Cao, Junling; Shi, Zhongli; Zhang, Zengtie; Song, Hongxing; Liu, Fuqiang; Caterson, Bruce

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 microm) than in cortical BMG (5-15 microm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  20. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  1. Kartogenin induces cartilage-like tissue formation in tendon–bone junction

    Science.gov (United States)

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon–bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  2. Kartogenin induces cartilage-like tissue formation in tendon-bone junction

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhang; James H-C Wang

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.

  3. Kartogenin induces cartilage-like tissue formation in tendon-bone junction.

    Science.gov (United States)

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  4. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  5. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  6. Nonspecific otalgia: Indication for cartilage tympanoplasty

    Directory of Open Access Journals (Sweden)

    Rauf Ahmad

    2015-01-01

    Full Text Available Introduction: Myringoplasty and tympanoplasty are commonly performed otologic surgical procedures. The aim of this study was to analyze the influence of nonspecific otalgia on the successful autologous conchal cartilage and temporalis fascia graft take up in type-1 tympanoplasty. Materials and Methods: A total of 250 adult patients who met the inclusion criteria were enrolled for this study. Patients were placed in two groups (otalgia and nonotalgia group depending upon the history of otalgia. Patients in both groups were operated (type-1 tympanoplasty using randomly either temporalis fascia or conchal cartilage as the graft material. Follow-up of patients was done after 3 weeks, 6 weeks, and 3 months of surgery to check the status of graft take up. Result: Our study shows that patients in otalgia group in which autologous temporalis fascia was used as the graft material, the majority of patients had graft necrosis by 3 months after surgery (9.6% success only. Whereas patients of the same group in which autologous conchal cartilage was used as the graft material, successful graft take up was in 93.5% patients after 3 months of surgery. Our study shows that there was not much difference in using autologous temporalis fascia or autologous conchal cartilage on successful graft take up in nonotolgia group of patients, with success rate of 97.89% and 97.84%, respectively.

  7. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  8. Chondrocyte Generation of Cartilage-Like Tissue Following Photoencapsulation in Methacrylated Polysaccharide Solution Blends.

    Science.gov (United States)

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2016-07-01

    Chondrocyte-seeded, photo-cross-linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load-bearing soft tissue repair. The photo-cross-linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co-cross-linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications. PMID:27061241

  9. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.

    Science.gov (United States)

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A

    2015-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strain-dependent material properties. Two loading conditions were simulated, one where the superficial zone was loaded with a porous platen (normal test) and the other where the deep zone was loaded with the porous platen (upside down test). Compressing the intact articular cartilage with 0.2 MPa stress reduced the surface permeability by 88%. Removing the superficial zone increased the rate of change for all mechanical parameters and decreased the fluid support ratio of the tissue, resulting in increased tissue deformation. Apparent permeability linearly increased after superficial removal in the normal test, yet it did not change in the upside down test. Orientation of the specimen affected the time-dependent biomechanical behavior of the articular cartilage, but not equilibrium behavior. The two tests with different specimen orientations resulted in very different apparent permeabilities, suggesting that in an experimental study which quantifies material properties of an inhomogeneous material, the specimen orientation should be stated along with the permeability result. The current study provides new insights into the role of the superficial zone on mechanical behavior of the articular cartilage. PMID:25465194

  10. MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB

    Directory of Open Access Journals (Sweden)

    Raghavendra D.R.

    2014-12-01

    Full Text Available Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures.

  11. Facilitating cartilage volume measurement using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Maataoui, Adel, E-mail: adel.maataoui@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Gurung, Jessen, E-mail: jessen.gurung@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Ackermann, Hanns, E-mail: h.ackermann@add.uni-frankfurt.d [Institute for Epidemiology and Medical Statistics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Abolmaali, Nasreddin [Biological and Molecular Imaging, ZIK OncoRay - Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Kafchitsas, Konstantinos [Department of Orthopedics and Orthopedic Surgery, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Khan, M. Fawad, E-mail: fawad@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2010-08-15

    Purpose: To compare quantitative cartilage volume measurement (CVM) using different slice thicknesses. Materials and methods: Ten knees were scanned with a 1.5 T MRI (Sonata, Siemens, Erlangen, Germany) using a 3D gradient echo sequence (FLASH, fast low-angle shot). Cartilage volume of the medial and lateral tibial plateau was measured by two independent readers in 1.5 mm, 3.0 mm and 5.0 mm slices using the Argus software application. Accuracy and time effectiveness served as control parameters. Results: Determining cartilage volume, time for calculation diminished for the lateral tibial plateau from 384.6 {+-} 127.7 s and 379.1 {+-} 117.6 s to 214.9 {+-} 109.9 s and 213.9 {+-} 102.2 s to 122.1 {+-} 60.1 s and 126.8 {+-} 56.2 s and for the medial tibial plateau from 465.0 {+-} 147.7 s and 461.8 {+-} 142.7 s to 214.0 {+-} 67.9 s and 208.9 {+-} 66.2 s to 132.6 {+-} 41.5 s and 130.6 {+-} 42.0 s measuring 1.5 mm, 3 mm and 5 mm slices, respectively. No statistically significant difference between cartilage volume measurements was observed (p > 0.05) while very good inter-reader correlation was evaluated. Conclusion: CVM using 1.5 mm slices provides no higher accuracy than cartilage volume measurement in 5 mm slices while an overall time saving up to 70% is possible.

  12. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  13. Advancement of the Subchondral Bone Plate in Translational Models of Osteochondral Repair: Implications for Tissue Engineering Approaches.

    Science.gov (United States)

    Orth, Patrick; Madry, Henning

    2015-12-01

    Subchondral bone plate advancement is of increasing relevance for translational models of osteochondral repair in tissue engineering (TE). Especially for therapeutic TE approaches, a basic scientific knowledge of its chronological sequence, possible etiopathogenesis, and clinical implications are indispensable. This review summarizes the knowledge on this topic gained from a total of 31 translational investigations, including 1009 small and large animals. Experimental data indicate that the advancement of the subchondral bone plate frequently occurs during the spontaneous repair of osteochondral defects and following established articular cartilage repair approaches for chondral lesions such as marrow stimulation and TE-based strategies such as autologous chondrocyte implantation. Importantly, this subchondral bone reaction proceeds in a defined chronological and spatial pattern, reflecting both endochondral ossification and intramembranous bone formation. Subchondral bone plate advancement arises earlier in small animals and defects, but is more pronounced at the long term in large animals. Possible etiopathologies comprise a disturbed subchondral bone/articular cartilage crosstalk and altered biomechanical conditions or neovascularization. Of note, no significant correlation was found so far between subchondral bone plate advancement and articular cartilage repair. This evidence from translational animal models adverts to an increasing awareness of this previously underestimated pathology. Future research will shed more light on the advancement of the subchondral bone plate in TE models of cartilage repair. PMID:26066580

  14. Arthroscopic laser in intra-articular knee cartilage disorders

    Science.gov (United States)

    Nosir, Hany R.; Siebert, Werner E.

    1996-12-01

    Different assemblies have endeavored to develop arthroscopic laser surgery. Various lasers have been tried in the treatment of orthopaedic problems, and the most useful has turned out to be the Hol-YAG laser 2.1 nm which is a near- contact laser. By using the laser as a powerful tool, and cutting back on the power level, one is able to better achieve the desired treatment effect. Clinical studies to evaluating the role of the laser in different arthroscopic knee procedures, comparing to conventional techniques, showed that the overall outcome attains a momentous confidence level which is shifted to the side of the laser versus the conventional for all maneuvers, barring meniscectomy where there is not perceiving disparity between laser versus the conventional. Meniscectomy continues to be one of the most commonly performed orthopaedic procedures. Laser provides a single tool which can ablate and debride meniscal rims with efficiency and safety. Chondroplasty can also be accomplished with ease using defocused laser energy. Both lateral release and soft tissue cermilization benefit from the cutting effect of laser along with its hemostatic effect. Synovial reduction with a defocused laser is also easily accomplished. By one gadget, one can cut, ablate, smooth, coagulate, congeal and with authentic tissue depth control The future of laser arthroscopic surgery lies in its ability to weld or repair tissues. Our research study has shown that laser activated photoactive dyes can produce a molecular bonding of collagen fibers, and therefore a repair 'weld' can be achieved with both meniscal tissues and with articular cartilage lesions.

  15. Treatment and Controversies in Paraesophageal Hernia Repair

    Directory of Open Access Journals (Sweden)

    P. Marco eFisichella

    2015-04-01

    Full Text Available Background: Historically all paraesophageal hernias were repaired surgically, today intervention is reserved for symptomatic paraesophageal hernias. In this review, we describe the indications for repair and explore the controversies in paraesophageal hernia repair, which include a comparison of open to laparoscopic paraesophageal hernia repair, the necessity of complete sac excision, the routine performance of fundoplication, and the use of mesh for hernia repair.Methods: We searched Pubmed for papers published between 1980 and 2015 using the following keywords: hiatal hernias, paraesophageal hernias, regurgitation, dysphagia, gastroesophageal reflux disease, aspiration, GERD, endoscopy, manometry, pH monitoring, proton pump inhibitors, anemia, iron deficiency anemia, Nissen fundoplication, sac excision, mesh, mesh repair. Results: Indications for paraesophageal hernia repair have changed, and currently symptomatic paraesophageal hernias are recommended for repair. In addition, it is important not to overlook iron-deficiency anemia and pulmonary complaints, which tend to improve with repair. Current practice favors a laparoscopic approach, complete sac excision, primary crural repair with or without use of mesh, and a routine fundoplication.

  16. Patch repair: compatibility issues

    OpenAIRE

    Garbacz, Andrzej; Courard, Luc; Bissonnette, Benoît; Głodkowska, W.

    2014-01-01

    Repair of any concrete structure results in formation of complex, at least two-component repair systems. Compatibility approach is treated as a basic requirement during selection of repair material. Recently, the understanding for compatibility requirements in repair systems approach is demonstrated in many papers. The aim of this paper is analyzing the compatibility between repair materials and concrete substrate in the case of patch repair. The compatibility issues were discussed in light o...

  17. Delivering Agents Locally into Articular Cartilage by Intense MHz Ultrasound

    Science.gov (United States)

    Nieminen, Heikki J.; Ylitalo, Tuomo; Suuronen, Jussi-Petteri; Rahunen, Krista; Salmi, Ari; Saarakkala, Simo; Serimaa, Ritva; Hæggström, Edward

    2015-01-01

    There is no cure for osteoarthritis. Current drug delivery relies on systemic delivery or injections into the joint. Because articular cartilage (AC) degeneration can be local and drug exposure outside the lesion can cause adverse effects, localized drug delivery could permit new drug treatment strategies. We investigated whether intense megahertz ultrasound (frequency: 1.138 MHz, peak positive pressure: 2.7 MPa, Ispta: 5 W/cm2, beam width: 5.7 mm at −6 dB, duty cycle: 5%, pulse repetition frequency: 285 Hz, mechanical index: 1.1) can deliver agents into AC without damaging it. Using ultrasound, we delivered a drug surrogate down to a depth corresponding to 53% depth of the AC thickness without causing histologically detectable damage to the AC. This may be important because early osteoarthritis typically exhibits histopathologic changes in the superficial AC. In conclusion, we identify intense megahertz ultrasound as a technique that potentially enables localized non-destructive delivery of osteoarthritis drugs or drug carriers into articular cartilage. PMID:25922135

  18. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  19. In vitro and In vivo Evaluation of the Developed PLGA/HAp/Zein Scaffolds for Bone-Cartilage Interface Regeneration

    Institute of Scientific and Technical Information of China (English)

    LIN Yong Xin; DING Zhi Yong; ZHOU Xiao Bin; LI Si Tao; XIE De Ming; LI Zhi Zhong; SUN Guo Dong

    2015-01-01

    Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution. hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P>0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.

  20. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    Science.gov (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  1. Optical methods for diagnostics and feedback control in laser-induced regeneration of spine disc and joint cartilages

    Science.gov (United States)

    Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir

    2011-03-01

    In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.

  2. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    Science.gov (United States)

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  3. Rabbit bone marrow mesenchymal stem cells seeding on electrospinning polycaprolactone/gelatin scaffold for cartilage repair%电纺聚己内酯-明胶纳米纤维膜复合兔骨髓间充质干细胞构建软骨组织工程支架

    Institute of Scientific and Technical Information of China (English)

    徐正良; 刘骥; 张长青

    2013-01-01

    Objective To construct an electrospinning polycaprolactone (PCD/gelatin scaffold seeded with rabbit bone marrow mesenchymal stem cells (BMSCs), and investigate its feasibility for cartilage tissue engineering. Methods PCL/gelatin (50 : 50) nanofiber membrane as scaffold was produced by electrospinning technique. And the third generation of rabbit BMSCs was harvested and seeded on the scaffolds to develop a stem cells/scaffolds complex, subsequently cultured for chondrogenesis. Meanwhile, the material was measured for the fiber diameter, pore size and porosity by scanning electron microscopy, tested for the mechanical properties, and examined for the proliferation, differentiation and biocompatibility of the cells with the scaffolds by in vivo implantation tests and in vitro cell experiments. Results The PCL/gelatin nanofiber membrane was of uniform diameter, high porosity and specific surface area, and appropriate mechanical properties. When cutured for 24 h, 48 h and 72 h on the scaffold, the number of the cells multiplied notablely, and the chondrogenetic process was highly enhanced The BMSCs growed and prolifered well, and was able to promote the stem cells differentiate into cartilage. In vivo tests showed that the material was non-toxic and little irritant to the tissue, hence great biocompatibility. Conclusions The electrospinning PCL/gelatin nanofibrous membrane has good mechanical properties, cell adherence and biocompatibility, thus, can be applied as the vehicle in the cartilaginous tissue engineering.%目的 探索构建电纺聚己内酯(PCL)-明胶纳米纤维膜复合体作为软骨组织工程支架的可行性.方法 采用静电纺丝技术制作PCL-明胶(50∶50)纳米纤维膜作为支架.取第三代兔骨髓间充质干细胞(BMSC),接种于上述支架,构建细胞-支架复合体并进行成软骨诱导培养.通过电镜分析、力学测试、体内植入试验和细胞实验等检测材料纤维直径、孔径和孔隙率、力学性能,

  4. Chondrocyte outgrowth into a gelatin scaffold in a single impact load model of damage/repair – effect of BMP-2

    Directory of Open Access Journals (Sweden)

    Vincent Thea

    2007-12-01

    Full Text Available Abstract Background Articular cartilage has little capacity for repair in vivo, however, a small number of studies have shown that, in vitro, a damage/repair response can be induced. Recent work by our group has shown that cartilage can respond to single impact load and culture by producing repair cells on the articular surface. The purpose of this study was to identify whether chondrocyte outgrowth into a 3D scaffold could be observed following single impact load and culture. The effect of bone morphogenic-2 (BMP-2 on this process was investigated. Methods Cartilage explants were single impact loaded, placed within a scaffold and cultured for up to 20 days +/- BMP-2. Cell numbers in the scaffold, on and extruding from the articular surface were quantified and the immunohistochemistry used to identify the cellular phenotype. Results Following single impact load and culture, chondrocytes were observed in a 3D gelatin scaffold under all culture conditions. Chondrocytes were also observed on the articular surface of the cartilage and extruding out of the parent cartilage and on to the cartilage surface. BMP-2 was demonstrated to quantitatively inhibit these events. Conclusion These studies demonstrate that articular chondrocytes can be stimulated to migrate out of parent cartilage following single impact load and culture. The addition of BMP-2 to the culture medium quantitatively reduced the repair response. It may be that the inhibitory effect of BMP-2 in this experimental model provides a clue to the apparent inability of articular cartilage to heal itself following damage in vivo.

  5. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, Paolo; Leyder, Pierre-Philippe; Malchair, Francoise; Marechal, Carole; Alvarez Miezentseva, Victoria [CHU de Liege, Diagnostic Imaging Department, MSK Imaging, Liege (Belgium); Albert, Adelin [CHU de Liege, Biostatistics Department, Liege (Belgium); Scarciolla, Laura; Beomonte Zobel, Bruno [Campus Bio-Medico University, Diagnostic Imaging Department, Rome (Italy); Gillet, Philippe [CHU de Liege, Orthopaedic Surgery Department, Liege (Belgium)

    2014-02-15

    We sought to optimize the kilovoltage, tube current, and the radiation dose of computed tomographic arthrography of the hip joint using in vitro methods. A phantom was prepared using a left femoral head harvested from a patient undergoing total hip arthroplasty and packed in a condom filled with iodinated contrast. The right hip joint of a cadaver was also injected with iodinated contrast. The phantom and the cadaver were scanned using different values of peak kilovoltage (kVp) and tube current (milliamp seconds, mAs). Three different regions of interest (ROI) were drawn in the cartilage, subchondral bone plate, and intraarticular contrast. The attenuation values, contrast/noise ratio (CNR), and effective dose were calculated. Two independent observers classified the quality of the contrast-cartilage interface and the cartilage-subchondral bone plate interface as (1) diagnostic quality or (2) nondiagnostic quality. Contrast, cartilage, and subchondral bone plate attenuation values decreased at higher kVp. CNR increased with both kVp and mAs. The qualitative analysis showed that in both phantom and cadaver, at 120 kVp and 50 mAs, the contrast-cartilage and cartilage-subchondral bone plate interfaces were of diagnostic quality, with an effective dose decreased to 0.5 MSv. The absolute effective dose is not directly related to the quality of images but to the specific combination of kVp and mAs used for image acquisition. The combination of 120 kVp and 50 mAs can be suggested to decrease the dose without adversely affect the visibility of cartilage and subchondral bone plate. (orig.)

  6. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... So he doesn't have much arthritis. He has a little fraying here. The cartilage is a ... So, here's the problem. The problem is he has this biceps tear and the biceps is not ...

  7. Cartilage restoration technique of the hip.

    Science.gov (United States)

    Mardones, Rodrigo; Larrain, Catalina

    2016-04-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  8. Time-Dependent Nanomechanics of Cartilage

    OpenAIRE

    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    2011-01-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...

  9. Cartilage restoration technique of the hip

    OpenAIRE

    Mardones, Rodrigo; Larrain, Catalina

    2015-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear conc...

  10. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  11. Oxygen, nitric oxide and articular cartilage

    OpenAIRE

    Fermor, B.; Christensen, S. E.; I Youn; J M Cernanec; C M Davies; Weinberg, J. B.

    2007-01-01

    Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O...

  12. Biomimetic aggrecan reduces cartilage extracellular matrix from degradation and lowers catabolic activity in ex vivo and in vivo models.

    Science.gov (United States)

    Sharma, Shaili; Lee, Aeju; Choi, Kuiwon; Kim, Kwangmeyung; Youn, Inchan; Trippel, Stephen B; Panitch, Alyssa

    2013-09-01

    Aggrecan, a major macromolecule in cartilage, protects the extracellular matrix (ECM) from degradation during the progression of osteoarthritis (OA). However, aggrecan itself is also susceptible to proteolytic cleavage. Here, the use of a biomimetic proteoglycan (mAGC) is presented, which functionally mimics aggrecan but lacks the known cleavage sites, protecting the molecule from proteolytic degradation. The objective of this study is to test the efficacy of this molecule in ex vivo (human OA synovial fluid) and in vivo (Sprague-Dawley rats) osteoarthritic models. These results indicate that mAGC's may protect articular cartilage against the loss of key ECM components, and lower catabolic protein and gene expression in both models. This suppression of matrix degradation has the potential to provide a healthy environment for tissue repair.

  13. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  14. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  15. Time-dependent nanomechanics of cartilage.

    Science.gov (United States)

    Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine

    2011-04-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599

  16. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  17. Magnetic Resonance Imaging of Cartilage Contact and Bound Water in ACL-Deficient and ACL Reconstructed Knees

    Science.gov (United States)

    Baer, Geoffrey Scott; Kaiser, Jarred; Vignos, Michael; Liu, Fang; Smith, Colin Robert; Kijowski, Richard; Thelen, Darryl

    2016-01-01

    Objectives: Osteoarthritis (OA) is common following ACL-reconstructive (ACLR) surgery (6). The cause of early OA is not understood, but theories have focused on osteochondral damage at the time of injury (2) and abnormal joint mechanics following surgical repair (7). In this study, we investigate the inter-relationship of cartilage mechanics and biomarkers of OA in both ACL-deficient (ACLD) and ACLR knees. Our approach employs a novel dynamic MR sequence to measure joint mechanics (3) and the recently developed mcDESPOT to assess regional variations in water bound to proteoglycan (PG) (5). We hypothesize that bound water will be diminished in the cartilage of ACLD knees and, after surgery, will continue to adapt in a manner that reflects altered cartilage loading. This abstract presents initial observations on a cross-section of healthy, ACLD and ACLR knees. Methods: The dominant knees of 8 healthy controls, ACLD knees of 5 patients and ACLR knees of 8 patients were imaged in a 3 T MRI scanner (Table). Controls had no history of pain, injury, or surgery to their knee. Patients had no additional ligament injury and no meniscal damage. ACLD subjects were imaged prior to reconstructive surgery. Femoral and tibial cartilage were segmented from MR images and cartilage thickness was calculated. The mcDESPOT sequence provided a fraction map of water bound to PG (Fpg). Subjects flexed their knee against an inertial load at 0.5 Hz, while a SPGR-VIPR sequence continuously acquired volumetric data. Kinematics were obtained using model tracking of the dynamic images (3). Cartilage was registered to the bone segments for all frames, and contact patterns were characterized by the proximity between surfaces. Spatial representations of tibial cartilage contact, thickness and Fpg were co-registered for each subject. Results: Our initial images suggest lower Fpg values in ACLD knees, primarily on the posterior-lateral tibia. This is also observed in ACLR knees, with additional

  18. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  19. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  20. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  1. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering

    Directory of Open Access Journals (Sweden)

    He X

    2015-03-01

    Full Text Available Xiaomin He,1,* Bei Feng,1,2,* Chuanpei Huang,1 Hao Wang,1 Yang Ge,1 Renjie Hu,1 Meng Yin,1 Zhiwei Xu,1 Wei Wang,1 Wei Fu,1,2 Jinghao Zheng1 1Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC/chondrocyte cocultures (75% BMSCs and 25% chondrocytes in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young’s modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs. Keywords: electrospinning, nanocomposite, cartilage tissue engineering, nanomaterials, stem cells

  2. Treatment of flaring of the costal arch after the minimally invasive pectus excavatum repair (Nuss procedure) in children.

    NARCIS (Netherlands)

    Bosgraaf, R.P.; Aronson, D.C.

    2010-01-01

    Flaring of the costal arch may be part of the pectus excavatum deformity. This aspect will in rare cases be even worsen after the Nuss repair. This remaining deformity can be treated with a minimal subperichondral partial resection of the costal arch cartilage. In 5 patients, this additional techniq

  3. Treatment of flaring of the costal arch after the minimally invasive pectus excavatum repair (Nuss procedure) in children

    NARCIS (Netherlands)

    R.P. Bosgraaf; D.C. Aronson

    2010-01-01

    Flaring of the costal arch may be part of the pectus excavatum deformity. This aspect will in rare cases be even worsen after the Nuss repair. This remaining deformity can be treated with a minimal subperichondral partial resection of the costal arch cartilage. In 5 patients, this additional techniq

  4. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage

    Directory of Open Access Journals (Sweden)

    Muldrew Ken

    2010-10-01

    Full Text Available Abstract Background As a relatively non-regenerative tissue, articular cartilage has been targeted for cryopreservation as a method of mitigating a lack of donor tissue availability for transplant surgeries. In addition, subzero storage of articular cartilage has long been used in biomedical studies using various storage temperatures. The current investigation studies the potential for freeze-thaw to affect the mechanical properties of articular cartilage through direct comparison of various subzero storage temperatures. Methods Both subzero storage temperature as well as freezing rate were compared using control samples (4°C and samples stored at either -20°C or -80°C as well as samples first snap frozen in liquid nitrogen (-196°C prior to storage at -80°C. All samples were thawed at 37.5°C to testing temperature (22°C. Complex stiffness and hysteresis characterized load resistance and damping properties using a non-destructive, low force magnitude, dynamic indentation protocol spanning a broad loading rate range to identify the dynamic viscoelastic properties of cartilage. Results Stiffness levels remained unchanged with exposure to the various subzero temperatures. Hysteresis increased in samples snap frozen at -196°C and stored at -80°C, though remained unchanged with exposure to the other storage temperatures. Conclusions Mechanical changes shown are likely due to ice lens creation, where frost heave effects may have caused collagen damage. That storage to -20°C and -80°C did not alter the mechanical properties of articular cartilage shows that when combined with a rapid thawing protocol to 37.5°C, the tissue may successfully be stored at subzero temperatures.

  5. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.

    Science.gov (United States)

    Borthakur, Arijitt; Mellon, Eric; Niyogi, Sampreet; Witschey, Walter; Kneeland, J Bruce; Reddy, Ravinder

    2006-11-01

    , healthy human subjects and as well from osteoarthritic patients are provided. The current status of T1rho relaxation mapping of cartilage and future directions is also discussed.

  6. Proximal Rectus Femoris Avulsion Repair.

    Science.gov (United States)

    Dean, Chase S; Arbeloa-Gutierrez, Lucas; Chahla, Jorge; Pascual-Garrido, Cecilia

    2016-06-01

    Proximal rectus femoris tendon avulsions are rare and occur mostly in male athletes. Currently, the standard of care for complete tendinous avulsions of the direct arm of the rectus femoris is nonoperative treatment. However, surgical repair may be considered in high-level athletes who have a high demand for repetitive hip flexion performed in an explosive manner or in patients in whom nonoperative treatment has failed. The purpose of this technical note is to describe the method for surgical repair of the proximal direct arm of the rectus femoris to its origin at the anterior inferior iliac spine using suture anchors. PMID:27656376

  7. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Texas Health Science Center at San Antonio, Department of Radiology, San Antonio, TX (United States); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Hayashi, Daichi [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Yale University School of Medicine, Department of Radiology, Bridgeport Hospital, Bridgeport, CT (United States); Crema, Michel D. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Hospital do Coracao and Teleimagem, Department of Radiology, Sao Paulo (Brazil); Felson, David T. [Boston University School of Medicine, Clinical Epidemiology Research and Training Unit, Boston, MA (United States); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Boston Medical Center, Boston, MA (United States)

    2014-11-07

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  8. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    International Nuclear Information System (INIS)

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  9. Phase contrast imaging X-ray computed tomography: quantitative characterization of human patellar cartilage matrix with topological and geometrical features

    Science.gov (United States)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2014-03-01

    Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  10. Computational model for the analysis of cartilage and cartilage tissue constructs

    Science.gov (United States)

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  11. Computational model for the analysis of cartilage and cartilage tissue constructs.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  12. Transforming growth factor beta 1 effects on cartilage tissue metabolism%转化生长因子β1对软骨组织代谢影响的研究进展*★

    Institute of Scientific and Technical Information of China (English)

    郭铁峰; 周明旺; 李盛华; 孙凤岐; 穆欢喜

    2013-01-01

      背景:转化生长因子β1可以介导软骨合成、抑制胶原和蛋白多糖分解,在诱导软骨分化和维持软骨表型上起着重要作用,实现软骨缺损的功能性修复。  目的:从生物学特性、在生物工程中的应用、基因多态性、信号通路及微小 RNA等方面综述转化生长因子β1对软骨组织代谢影响的研究进展。  方法:以“transforming growth factor-β1,Cartilage Differentiation,cartilage matrix”为英文检索词,以“转化生长因子β1,软骨分化,软骨基质”为中文检索词。经第一作者检索2007/2012CNKI数据库及SPRINGERLINK数据库有关转化生长因子β1对软骨组织代谢影响的研究进展方面的文献130篇,根据纳入排除标准保留54篇进行总结。  结果与结论:转化生长因子β1可诱导间充质细胞向软骨细胞分化,促进软骨特异性基质的合成,保护软骨基质不被各种蛋白酶水解破坏,能够增强软骨组织自身再生能力,实现使软骨的损伤逆转,在软骨修复领域展现了巨大的潜在应用价值。%BACKGROUND:Transforming growth factor beta 1 can mediate cartilage synthesis and inhibit decomposition of col agen and protein polysaccharide, which has a most important effect on induction of cartilage differentiation in vitro and maintenance of cartilage phenotype, realizing the functional repair of cartilage defects. OBJECTIVE:Based on the biological characteristics, applications in biotechnology, gene polymorphism, signaling pathways and microRNA, to introduce research progress of transforming growth factor beta 1 influence on cartilage tissue metabolism. METHODS:The first author searched CNKI and SPRINGERLINK databases (2007/2012) to retrieve articles related to transforming growth factor beta 1 influence on cartilage tissue metabolism using the key words of“transforming growth factor beta 1, cartilage differentiation, cartilage matrix

  13. Scaffold-based Drug Delivery for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Shalumon, K T; Chen, Jyh-Ping

    2015-01-01

    Regenerative engineering is an advanced field comprising the collective benefit of biodegradable polymers with cells and tissue inducing factors. Current method of replacing the defective organ is through transplantation, but is limited due to immune rejection and availability. As a solution, new polymeric biomaterial-based three-dimensional (3D) scaffolds in combination with cells and inducing factors were aroused to fulfil the existing demands. These scaffolds apply material science, biomedical technology and translational medicine to develop functional tissue engineering constructs. Presence of small molecules and growth factors guides the cell phenotypes to specific organ development. The 3D scaffold thus could also be favorably used as carriers for various types of drugs and genes, with the release profile fine-tuned by modulation of the scaffold's morphology, porosity, and composition. An increasing trend was observed in recent years toward the combination of scaffolds and growth factors to fabricate a bioactive system, which not only provide a biomimetic biodegradable physical support for tissue growth but also explores biological signals to modulate tissue regeneration. In this review, along with general aspects of tissue engineering, we also discuss the importance of various scaffold architectures like nanofibers, hydrogels, beads, meshes, microspheres etc. in combination with specific drugs, growth factors and small molecules for cartilage regeneration. Growth factors may be incorporated into scaffolds by direct blending, physical adsorption, drop casting, surface grafting, covalent bonding, chemical immobilization, coaxial electrospinning, microparticle incorporation etc. This offers new possibilities for the development of biomimetic scaffolds that are endowed with a hierarchical architecture and sophisticated release kinetics of the growth factors. This review portrait the fundamentals of tissue engineering with emphasis on the role of inducing factors

  14. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  15. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  16. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  17. Poroelasticity of Cartilage at the Nanoscale

    OpenAIRE

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-01-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ∼15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ∼ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E∗|, and phase angle, ϕ, between the force and tip displacement sinusoids, were me...

  18. Cartilage Aggrecan Can Undergo Self-Adhesion

    OpenAIRE

    Han, Lin; Dean, Delphine; Daher, Laura A.; Grodzinsky, Alan J.; Ortiz, Christine

    2008-01-01

    Here it is reported that aggrecan, the highly negatively charged macromolecule in the cartilage extracellular matrix, undergoes Ca2+-mediated self-adhesion after static compression even in the presence of strong electrostatic repulsion in physiological-like solution conditions. Aggrecan was chemically end-attached onto gold-coated planar silicon substrates and gold-coated microspherical atomic force microscope probe tips (end radius R ≈ 2.5 μm) at a density (∼40 mg/mL) that simulates physiolo...

  19. Epiphyseal and Physeal Cartilage: Normal Gadolinium-enhanced MR Imaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To evaluate the normal appearance of epiphyseal and physeal cartilage on Gadolinium (Gd)-enhanced MR imaging. The appearance and enhancement ratios of 20 proximal and distal femoral epiphyses in 10 normal piglets were analyzed on Gd-enhanced MR images. The correlation of the MR imaging appearance with corresponding histological findings of immature epiphyses was examined. Our results showed that Gd-enhanced MRI could differentiate the differences in enhancement between physeal and epiphyseal cartilage and show vascular canals within the epiphyseal cartilage. Enhanced ratios in the physeal were greater than those in the epiphyseal cartilage (P<0.005). It is concluded that Gd-enhanced MR imaging reveals epiphyseal vascular canals and shows difference in enhancement of physeal and epiphyseal cartilage.

  20. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  1. Laparoscopic Inguinal Hernia Repair

    Science.gov (United States)

    ... wall to weaken or separate. What are the Advantages of Laparoscopic Inguinal Hernia Repair? Laparoscopic Hernia Repair ... underlying medical conditions. What Preparation is Required? Keep reading... Page 1 of 2 1 2 » Brought to ...

  2. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... wouldn't recommend a repair and are there treatments that you would do prior to repairing?" So, ... and certain people that you would recommend other treatments?" 00:08:59 JOHN URIBE, M.D.: That's ...

  3. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... qualified therapist, which is also key that they stress the repair enough that it strengthens the repair ... that they're involved in one of our studies and there's a question of, he's involved in ...

  4. Aortic Aneurysm Repair

    Medline Plus

    Full Text Available ... to become you to our live webcast. Today we’re going to repair an abdominal aortic aneurysm ... and together as a team of multidisciplinary physicians, we’re going to repair an abdominal aortic aneurysm ...

  5. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... qualified therapist, which is also key that they stress the repair enough that it strengthens the repair ... D.: Fiddle factor to it, a little skill level. I was going to use the term skill ...

  6. Applications of repaired endonucleases

    International Nuclear Information System (INIS)

    The possibilities of using antimutagenously various endonucleases are discussed. Since mutageniety of excision repair is considerably lower than the repair in the replication moment or after thereof the intensification of the excision repair of premutation disorders can suppress mutagenesis. Experimental aproaches of using repair endonucleases for sounding premutation changes are described. The optimal object has been chosen for endonuclear sounding of premutation DNA disorders following an ionizing radiation action

  7. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  8. Radiological observation of determination of sex by costal cartilage calcification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin Hwa; Won, Jong Jin; Rhee, Song Joo; Moon, Moo Chang; Oh, Jong Hyun; Choi, Ki Chul [Jeonbug National University College of Medicine, Jeonjju (Korea, Republic of)

    1979-12-15

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  9. Poroelasticity of cartilage at the nanoscale.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease. PMID:22067171

  10. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. PMID:27316294

  11. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    Science.gov (United States)

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin.

  12. Ongoing studies of cell-based therapies for articular cartilage defects in Japan

    Directory of Open Access Journals (Sweden)

    Ogura T

    2014-12-01

    Full Text Available Takahiro Ogura,1 Akihiro Tsuchiya,2 Shuichi Mizuno1 1Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 2Funabashi Orthopaedic Hospital Sports Medicine Center, Funabashi, Chiba, Japan Abstract: Recently, cell-based therapies have generated great interest in the repair of articular cartilage defects and degeneration. Surgical treatments for these indications have multiple options, including marrow stimulation, osteochondral autograft transplant, and autologous chondrocyte implantation. The autologous chondrocyte implantation technique has been improved using a cell scaffold and other devices. Meanwhile, advanced cell-based therapies, including cultured stem cell treatment, have been studied in clinical trials. Most studies have been designed and authorized by institutional review boards and/or the regulatory agencies of the investigators’ countries. For cellular products in regenerative medicine, regulations of many countries are amenable to expedited approval. This paper aims to provide an update on ongoing and prospective cell-based therapies, focusing on articular cartilage injury at designated institutions authorized by the Japanese Pharmaceutical and Medical Device Agency. Keywords: autologous chondrocyte implantation, mesenchymal stem cell, knee joint

  13. Biological Therapies for Cartilage Lesions in the Hip: A New Horizon.

    Science.gov (United States)

    Chahla, Jorge; LaPrade, Robert F; Mardones, Rodrigo; Huard, Johnny; Philippon, Marc J; Nho, Shane; Mei-Dan, Omer; Pascual-Garrido, Cecilia

    2016-07-01

    Treatment of hip cartilage disease is challenging, and there is no clear algorithm to address this entity. Biomarkers are arising as promising diagnostic tools because they could play a role in the early assessment of the prearthritic joint and as a prognostic factor before and after treatment. The potential effect of biomarkers may be used to categorize individuals at risk of evolving to severe osteoarthritis, to develop new measures for clinical progression of the disease, and to develop new treatment options for the prevention of osteoarthritis progression. A trend toward a less invasive biological treatment will usher in a new treatment era. With the growth of surgical skills in hip arthroscopy, cartilage restoration techniques are evolving in a fast and exponential manner. Biological and surgical treatments have been proposed to treat these pathologies. Biological treatments include platelet-rich plasma, stem cells or bone marrow aspirate concentration, hyaluronic acid, losartan, and fish oil. Surgical treatments include microfracture alone or augmented, direct repair, autologous chondrocyte implantation, matrix-induced chondrocyte implantation, autologous matrix-induced chondrogenesis, mosaicplasty, osteochondral allograft transplantation, and stem cells implanted in matrix (stem cells in membranes/expanded stem cells). This article reviews new evidence available on treatment options for chondral lesions and early osteoarthritis of the hip. [Orthopedics. 2016; 39(4):e715-e723.]. PMID:27359284

  14. Nanomechanics of Engineered Articular Cartilage: Synergistic Influences of Transforming Growth Factor-β3 and Oscillating Pressure.

    Science.gov (United States)

    Nazempour, Arshan; Quisenberry, Chrystal R; Van Wie, Bernard J; Abu-Lail, Nehal I

    2016-03-01

    Articular cartilage (AC), tissue with the lowest volumetric cellular density, is not supplied with blood and nerve tissue resulting in limited ability for self-repair upon injury. Because there is no treatment capable of fully restoring damaged AC, tissue engineering is being investigated. The emphasis of this field is to engineer functional tissues in vitro in bioreactors capable of mimicking in vivo envi- ronments required for appropriate cellular growth and differentiation. In a step towards engineering AC, human adipose-derived stem cells were differentiated in a unique centrifugal bioreactor under oscillating hydrostatic pressure (OHP) and supply of transforming growth factor beta 3 (TGF-β3) that mimic in vivo environments. Static micromass and pellet cultures were used as controls. Since withstanding and absorbing loads are among the main functions of an AC, mechanical properties of the engineered AC tissues were assayed using atomic force microscopy (AFM) under a controlled indentation depth of 100 nm. Young's moduli of elasticity were quantified by modeling AFM force-indentation data using the Hertz model of contact mechanics. We found exposure to OHP causes cartilage constructs to have 45-fold higher Young's moduli compared to static cultures. Addition of TGF-β3 further increases Young's moduli in bioreactor samples by 1.9-fold bringing it within 70.6% of the values estimated for native cartilage. Our results imply that OHP and TGF-β3 act synergistically to improve the mechanics of engineered tissues. PMID:27455774

  15. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  16. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation....... If US measurements are compared to measurements with other techniques, they should be corrected for the higher sound speed in cartilage....

  17. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  18. Dental materials for cleft palate repair.

    Science.gov (United States)

    Sharif, Faiza; Ur Rehman, Ihtesham; Muhammad, Nawshad; MacNeil, Sheila

    2016-04-01

    Numerous bone and soft tissue grafting techniques are followed to repair cleft of lip and palate (CLP) defects. In addition to the gold standard surgical interventions involving the use of autogenous grafts, various allogenic and xenogenic graft materials are available for bone regeneration. In an attempt to discover minimally invasive and cost effective treatments for cleft repair, an exceptional growth in synthetic biomedical graft materials have occurred. This study gives an overview of the use of dental materials to repair cleft of lip and palate (CLP). The eligibility criteria for this review were case studies, clinical trials and retrospective studies on the use of various types of dental materials in surgical repair of cleft palate defects. Any data available on the surgical interventions to repair alveolar or palatal cleft, with natural or synthetic graft materials was included in this review. Those datasets with long term clinical follow-up results were referred to as particularly relevant. The results provide encouraging evidence in favor of dental and other related biomedical materials to fill the gaps in clefts of lip and palate. The review presents the various bones and soft tissue replacement strategies currently used, tested or explored for the repair of cleft defects. There was little available data on the use of synthetic materials in cleft repair which was a limitation of this study. In conclusion although clinical trials on the use of synthetic materials are currently underway the uses of autologous implants are the preferred treatment methods to date.

  19. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  20. Techniques for diced cartilage with deep temporalis fascia graft.

    Science.gov (United States)

    Calvert, Jay; Kwon, Edwin

    2015-02-01

    Diced cartilage with deep temporalis fascia (DC-F) graft has become a popular technique for reconstruction of the nasal dorsum. Cartilage can be obtained from the septum, ear, or costal cartilage when employing the DC-F technique. The complications seen with DC-F grafts tend to occur early in the surgeon's implementation of this technique. Management of the complications varies depending on the severity of the problem. This article gives an overview of both the technique and the complications commonly encountered.

  1. Transosseous Medial Meniscal Root Repair Using a Modified Mason-Allen Suture Configuration.

    Science.gov (United States)

    Lavender, Chad D; Hanzlik, Shane R; Caldwell, Paul E; Pearson, Sara E

    2015-12-01

    Medial meniscal tears are among the most common injuries to the knee joint. Loss of the meniscus has been linked to increased contact pressures on the adjacent articular cartilage and progression of degenerative changes in the knee. A subset of tears known as "root tears" involves the insertion of the posterior horn of the meniscus to the bone. Arthroscopic partial meniscectomy for root tears led to undesirable outcomes, which prompted surgeons to explore restorative procedures. Multiple repair techniques have been presented with an emphasis placed on initial secure fixation and stimulation of potential healing. We present an arthroscopic-assisted technique for medial meniscal root repair with these goals in mind. PMID:27284511

  2. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2016-01-01

    Full Text Available Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n=76 was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p<0.03 excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC and C-reactive protein concentrations (p<0.05 but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  3. Butterfly cartilage graft versus fat graft myringoplasty

    Directory of Open Access Journals (Sweden)

    Sonika Kanotra

    2016-01-01

    Full Text Available Aim: The aim of the study was to compare the graft take up rates of two minimally invasive techniques of butterfly cartilage graft (BCG and fat graft myringoplasty (FGM. Materials and Methods: Two groups of 30 patients each with small dry central perforations of the tympanic membrane (T.M. were randomly subjected to either of the two techniques of myringoplasty. Statistical Analysis Used: The results were compared using the Chi-square test. A value of <0.05 was taken as statistically significant. Results: The graft take up rate was 93.3% with BCG and 83.3% with fat graft. Conclusions: The BCG scores over FGM in small perforations of the T.M.

  4. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  5. [Clinical relevance of unloading in cartilage therapy of the knee--shoe insoles, knee braces or additional operative procedure?].

    Science.gov (United States)

    Kraus, T M; Imhoff, A B; Ateschrang, A; Stöckle, U; Schröter, S

    2015-02-01

    Restoration of a neutral biomechanical environment and reduction of overload is an important factor contributing to the success of any cartilage repair procedure. Reduction of overload can by achieved by so called unloading procedures in order to reduce intraarticular pressure from the repair zone. Unloading can be achieved via loss of weight, wedged shoe insoles, knee braces or via operations such as osteotomies around the knee joint. The cartilage therapy and the concomitant unloading procedure should be adapted to the individual pathology and realistic aims of the patient. Wedged insoles and braces are the least invasive treatment methods. In comparison, however, beneficial effects of braces outline those of laterally wedged heels. Nevertheless long-term compliance with insoles and braces is poor. Concerning braces either because the positive effects of the braces are too small or because the adverse effects are too large. Unloading in the long run may only be achieved through operative procedures. When an osteotomy seems to be too invasive the arthroscopic release of the posterior oblique ligament might be an option. Patients with an intact contralateral chondral status, medium to slight malalignment who want to remain at high activity levels, remain good candidates for unloading osteotomies.

  6. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage.

    Science.gov (United States)

    Raisin, Sophie; Belamie, Emmanuel; Morille, Marie

    2016-10-01

    Recent regenerative medicine and tissue engineering strategies for bone and cartilage repair have led to fascinating progress of translation from basic research to clinical applications. In this context, the use of gene therapy is increasingly being considered as an important therapeutic modality and regenerative technique. Indeed, in the last 20 years, nucleic acids (plasmid DNA, interferent RNA) have emerged as credible alternative or complement to proteins, which exhibited major issues including short half-life, loss of bioactivity in pathologic environment leading to high dose requirement and therefore high production costs. The relevance of gene therapy strategies in combination with a scaffold, following a so-called "Gene-Activated Matrix (GAM)" approach, is to achieve a direct, local and sustained delivery of nucleic acids from a scaffold to ensure efficient and durable cell transfection. Among interesting cells sources, Mesenchymal Stem Cells (MSC) are promising for a rational use in gene/cell therapy with more than 1700 clinical trials approved during the last decade. The aim of the present review article is to provide a comprehensive overview of recent and ongoing work in non-viral genetic engineering of MSC combined with scaffolds. More specifically, we will show how this inductive strategy can be applied to orient stem cells fate for bone and cartilage repair. PMID:27467418

  7. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  8. Stem cell-based bone repair

    OpenAIRE

    Fei, Yurong; Xu, Ren-He; Hurley, Marja M.

    2012-01-01

    To accelerate bone repair, one strategy is to deliver the cells that make bone. The current review focuses on stem cell-based bone repair. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can self-renew unlimitedly and differentiate into the bone forming cells – osteoblasts. Scientists have been actively investigating culture conditions to stably and efficiently induce differentiation of these stem cells into osteoblasts. However, ESCs have the issues of ethnics, immune ...

  9. Systems Maintenance Automated Repair Tasks (SMART)

    Science.gov (United States)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  10. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    Science.gov (United States)

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  11. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with...

  12. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    Science.gov (United States)

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  13. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    Science.gov (United States)

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  14. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  15. Cartilage reshaping: an overview of the state of the art

    Science.gov (United States)

    Karamzadeh, Amir M.; Sobol, Emil N.; Rasouli, Alexandre; Nelson, J. Stuart; Milner, Thomas E.; Wong, Brian J.

    2001-05-01

    The laser irradiation of cartilage results in a plastic deformation of the tissue allowing for the creation of new stable shapes. During photothermal stimulation, mechanically deformed cartilage undergoes a temperature dependent phase transition, which results in accelerated stress relaxation of the tissue matrix. Cartilage specimens thus reshaped can be used to recreate the underlying framework of structures in the head and neck. Optimization of this process has required an understanding of the biophysical processes accompanying reshaping and also determination of the laser dosimetry parameters, which maintain graft viability. Extensive in vitro, ex-vivo, and in vivo animal investigations, as well as human trials, have been conducted. This technology is now in use to correct septal deviations in an office-based setting. While the emphasis of clinical investigation has focused on septoplasty procedures, laser mediated cartilage reshaping may have application in surgical procedures involving the trachea, laryngeal framework, external ear, and nasal tip. Future directions for research and device design are discussed.

  16. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  17. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. Results The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. Conclusion The great majority of glenohumeral cartilage

  18. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.

    Science.gov (United States)

    Batista, Michael A; Nia, Hadi T; Önnerfjord, Patrik; Cox, Karen A; Ortiz, Christine; Grodzinsky, Alan J; Heinegård, Dick; Han, Lin

    2014-09-01

    Chondroadherin (CHAD), a class IV small leucine rich proteoglycan/protein (SLRP), was hypothesized to play important roles in regulating chondrocyte signaling and cartilage homeostasis. However, its roles in cartilage development and function are not well understood, and no major osteoarthritis-like phenotype was found in the murine model with CHAD genetically deleted (CHAD(-/-)). In this study, we used atomic force microscopy (AFM)-based nanoindentation to quantify the effects of CHAD deletion on changes in the biomechanical function of murine cartilage. In comparison to wild-type (WT) mice, CHAD-deletion resulted in a significant ≈70-80% reduction in the indentation modulus, Eind, of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old animals. This mechanical phenotype correlates well with observed increases in the heterogeneity collagen fibril diameters in the surface zone. The results suggest that CHAD mainly plays a major role in regulating the formation of the collagen fibrillar network during the early skeletal development. In contrast, CHAD-deletion had no appreciable effects on the indentation mechanics of middle/deep zone cartilage, likely due to the dominating role of aggrecan in the middle/deep zone. The presence of significant rate dependence of the indentation stiffness in both WT and CHAD(-/-) knee cartilage suggested the importance of both fluid flow induced poroelasticity and intrinsic viscoelasticity in murine cartilage biomechanical properties. Furthermore, the marked differences in the nanomechanical behavior of WT versus CHAD(-/-) cartilage contrasted sharply with the relative absence of overt differences in histological appearance. These observations highlight the sensitivity of nanomechanical tools in evaluating structural and mechanical phenotypes in transgenic mice. PMID:24892719

  19. The Frictional Coefficient of Bovine Knee Articular Cartilage

    Institute of Scientific and Technical Information of China (English)

    Qian Shan-hua; Ge Shi-rong; Wang Qing-liang

    2006-01-01

    The normal displacement of articular cartilage was measured under load and in sliding, and the coefficient of friction during sliding was measured using a UMT-2 Multi-Specimen Test System. The maximum normal displacement under load and the start-up frictional coefficient have similar tendency of variation with loading time. The sliding speed does not significantly influence the frictional coefficient of articular cartilage.

  20. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  1. Tissue Engineering Cartilage with a Composite Electrospun and Hydrogel Scaffold

    OpenAIRE

    Wright, Lee David

    2011-01-01

    Osteoarthritis is the most prevalent musculoskeletal disease in humans, severely reducing the standard of living of millions of people. Osteoarthritis is characterized by degeneration and loss of articular cartilage which leads to pain, and loss of joint motility and function. Individuals suffering from severe osteoarthritis are commonly treated with full knee replacements. The procedure does eliminate the problem of degrading cartilage tissue; however, it does not fully restore function a...

  2. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    Science.gov (United States)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  3. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles

    Directory of Open Access Journals (Sweden)

    Crawford Ross W

    2007-08-01

    Full Text Available Abstract Background Evidence has strongly indicated that surface-active phospholipid (SAPL, or surfactant, lines the surface of cartilage and serves as a lubricating agent. Previous clinical study showed that a saturated phosphatidylcholine (SPC, dipalmitoyl-phosphatidylcholine (DPPC, was effective in the treatment of osteoarthritis, however recent studies suggested that the dominant SAPL species at some sites outside the lung are not SPC, rather, are unsaturated phosphatidylcholine (USPC. Some of these USPC have been proven to be good boundary lubricants by our previous study, implicating their possible important physiological roles in joint if their existence can be confirmed. So far, no study has been conducted to identify the whole molecule species of different phosphatidylcholine (PC classes on the surface of cartilage. In this study we identified the dominant PC molecule species on the surface of cartilage. We also confirmed that some of these PC species possess a property of semipermeability. Methods HPLC was used to analyse the PC profile of bovine cartilage samples and comparisons of DPPC and USPC were carried out through semipermeability tests. Results It was confirmed that USPC are the dominant SAPL species on the surface of cartilage. In particular, they are Dilinoleoyl-phosphatidylcholine (DLPC, Palmitoyl-linoleoyl-phosphatidylcholine, (PLPC, Palmitoyl-oleoyl-phosphatidylcholine (POPC and Stearoyl-linoleoyl-phosphatidylcholine (SLPC. The relative content of DPPC (a SPC was only 8%. Two USPC, PLPC and POPC, were capable of generating osmotic pressure that is equivalent to that by DPPC. Conclusion The results from the current study confirm vigorously that USPC is the endogenous species inside the joint as against DPPC thereby confirming once again that USPC, and not SPC, characterizes the PC species distribution at non-lung sites of the body. USPC not only has better anti-friction and lubrication properties than DPPC, they also

  4. Depth Dependence of Shear Properties in Articular Cartilage

    Science.gov (United States)

    Buckley, Mark; Gleghorn, Jason; Bonassar, Lawrence; Cohen, Itai

    2007-03-01

    Articular cartilage is a highly complex and heterogeneous material in its structure, composition and mechanical behavior. Understanding these spatial variations is a critical step in designing replacement tissue and developing methods to diagnose and treat tissue affected by damage or disease. Existing techniques in particle image velocimetry (PIV) have been used to map the shear properties of complex materials; however, these methods have yet to be applied to understanding shear behavior in cartilage. In this talk, we will show that confocal microscopy in conjunction with PIV techniques can be used to determine the depth dependence of the shear properties of articular cartilage. We will show that the shear modulus of this tissue varies by over an order of magnitude over its depth, with the least stiff region located about 200 microns from the surface. Furthermore, our data indicate that the shear strain profile of articular cartilage is sensitive to both the degree of compression and the total applied shear strain. In particular, we find that cartilage strain stiffens most dramatically in a region 200-500 microns below the surface. Finally, we will describe a physical model that accounts for this behavior by taking into account the local buckling of collagen fibers just below the cartilage surface and present second harmonic generation (SHG) imaging data addressing the collagen orientation before and after shear.

  5. Specific premature epigenetic aging of cartilage in osteoarthritis

    Science.gov (United States)

    Vidal-Bralo, Laura; Lopez-Golan, Yolanda; Mera-Varela, Antonio; Rego-Perez, Ignacio; Horvath, Steve; Zhang, Yuhua; del Real, Álvaro; Zhai, Guangju; Blanco, Francisco J; Riancho, Jose A.; Gomez-Reino, Juan J; Gonzalez, Antonio

    2016-01-01

    Osteoarthritis (OA) is a disease affecting multiple tissues of the joints in the elderly, but most notably articular cartilage. Premature biological aging has been described in this tissue and in blood cells, suggesting a systemic component of premature aging in the pathogenesis of OA. Here, we have explored epigenetic aging in OA at the local (cartilage and bone) and systemic (blood) levels. Two DNA methylation age-measures (DmAM) were used: the multi-tissue age estimator for cartilage and bone; and a blood-specific biomarker for blood. Differences in DmAM between OA patients and controls showed an accelerated aging of 3.7 years in articular cartilage (95 % CI = 1.1 to 6.3, P = 0.008) of OA patients. By contrast, no difference in epigenetic aging was observed in bone (0.04 years; 95 % CI = −1.8 to 1.9, P = 0.3) and in blood (−0.6 years; 95 % CI = −1.5 to 0.3, P = 0.2) between OA patients and controls. Therefore, premature epigenetic aging according to DNA methylation changes was specific of OA cartilage, adding further evidence and insight on premature aging of cartilage as a component of OA pathogenesis that reflects damage and vulnerability. PMID:27689435

  6. Site-1 protease is required for cartilage development in zebrafish.

    Science.gov (United States)

    Schlombs, Kornelia; Wagner, Thomas; Scheel, Jochen

    2003-11-25

    gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects. PMID:14612568

  7. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    Science.gov (United States)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  8. Immunobiology of Facial Nerve Repair and Regeneration

    Institute of Scientific and Technical Information of China (English)

    QUAN Shi-ming; GAO Zhi-qiang

    2006-01-01

    Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of "immune microenvironment for facial nerve repair and regeneration", mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair.Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.

  9. Laparoscopic transabdominal extraperitoneal repair of lumbar hernia

    Directory of Open Access Journals (Sweden)

    Sharma A

    2005-01-01

    Full Text Available Lumbar hernias need to be repaired due to the risk of incarceration and strangulation. A laparoscopic intraperitoneal approach in the modified flank position causes the intraperitoneal viscera to be displaced medially away from the hernia. The creation of a wide peritoneal flap around the hernial defect helps in mobilization of the colon, increased length of margin is available for coverage of mesh and more importantly for secure fixation of the mesh under vision to the underlying fascia. Laparoscopic lumbar hernia repair by this technique is a tensionless repair that diffuses total intra-abdominal pressure on each square inch of implanted mesh. The technique follows current principles of hernia repair and appears to confer all benefits of a minimal access approach.

  10. Effect of nanostructure scaffolds on articular cartilage reconstruction%纳米支架与关节软骨重建

    Institute of Scientific and Technical Information of China (English)

    程越; 田京

    2012-01-01

    the same field, those published recently or in authorized journals were selected. RESULTS AND CONCLUSION: Cartilage tissue engineering provided the possible regeneration of damaged cartilage which has limited self-repair abilities. Nanostructure scaffolds are superior to others for their excellent functions and play an important role in repairing the cartilage tissue. At present, the biomimetic multilayered designing of nano-scaffolds, developing in its functions, and the great need of clinical studies have become the most significant factors of tissue engineering.

  11. Laparoscopic lumbar hernia repair.

    Science.gov (United States)

    Madan, Atul K; Ternovits, Craig A; Speck, Karen E; Pritchard, F Elizabeth; Tichansky, David S

    2006-04-01

    Lumbar hernias are rare clinical entities that often pose a challenge for repair. Because of the surrounding anatomy, adequate surgical herniorraphy is often difficult. Minimally invasive surgery has become an option for these hernias. Herein, we describe two patients with lumbar hernias (one with a recurrent traumatic hernia and one with an incisional hernia). Both of these hernias were successfully repaired laparoscopically.

  12. Workshop on DNA repair.

    NARCIS (Netherlands)

    A.R. Lehmann (Alan); J.H.J. Hoeijmakers (Jan); A.A. van Zeeland (Albert); C.M.P. Backendorf (Claude); B.A. Bridges; A. Collins; R.P.D. Fuchs; G.P. Margison; R. Montesano; E. Moustacchi; A.T. Natarajan; M. Radman; A. Sarasin; E. Seeberg; C.A. Smith; M. Stefanini (Miria); L.H. Thompson; G.P. van der Schans; C.A. Weber (Christine); M.Z. Zdzienika

    1992-01-01

    textabstractA workshop on DNA repair with emphasis on eukaryotic systems was held, under the auspices of the EC Concerted Action on DNA Repair and Cancer, at Noordwijkerhout (The Netherlands) 14-19 April 1991. The local organization of the meeting was done under the auspices of the Medical Genetic C

  13. Platelet-rich plasma with sodium hyaluronate in repair of rabbit knee osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    Ji Heng-dong; Huo Xiao-yan; Zhang Hou-qing; Wang Yu-shan; Shi Xuan; Huo Lei

    2015-01-01

    BACKGROUND: Studies have shown that sodium hyaluronate inhibits cartilage damage in osteoarthritis and accelerates regeneration of cartilage cels, to stabilize and repair the articular cartilage. OBJECTIVE:To investigate the therapeutic effect of sodium-rich plasma combined with platelet-rich plasma (PRP) on rabbit knee osteoarthritis. METHODS:Forty New Zealand white rabbits were randomly divided into five groups, control group, combined group, sodium hyaluronate group, PRP group and model group, and then an osteoarthritis model of the right knee was made in each rabbit. After modeling, sodium hyaluronate+PRP, sodium hyaluronate, autologous PRP and normal saline were givenviathe knee joint cavity in the latter four groups, respectively, once a week for 5 weeks. The control group received no treatment, as normal controls. At 1 week after treatment, ELISA assay was used to detect serum interleukin-1, interleukin-6, tumor necrosis factor-α levels, and changes of the articular cartilage were observed under a light microscope. RESULTS AND CONCLUSION:Compared with the control group, the levels of interleukin-1, interleukin-6 and tumor necrosis factor-α were al increased in the other four groups (P < 0.01). Compared with the model group, the levels of interleukin-1, interleukin-6 and tumor necrosis factor-α were lowered significantly in the combined, sodium hyaluronate and PRP groups (P< 0.01 orP< 0.05), and the most significant decline was in the combined group. Articular cartilage damage was severest in the model group and mildest in the combined group. Experimental findings indicate that intra-articular injection of sodium hyaluronate+PRP can reduce inflammation and protect the articular cartilage in knee osteoarthritis, which is better than a single drug injection.

  14. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  15. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. PMID:26944689

  16. Abnormal mandibular growth and the condylar cartilage.

    Science.gov (United States)

    Pirttiniemi, Pertti; Peltomäki, Timo; Müller, Lukas; Luder, Hans U

    2009-02-01

    Deviations in the growth of the mandibular condyle can affect both the functional occlusion and the aesthetic appearance of the face. The reasons for these growth deviations are numerous and often entail complex sequences of malfunction at the cellular level. The aim of this review is to summarize recent progress in the understanding of pathological alterations occurring during childhood and adolescence that affect the temporomandibular joint (TMJ) and, hence, result in disorders of mandibular growth. Pathological conditions taken into account are subdivided into (1) congenital malformations with associated growth disorders, (2) primary growth disorders, and (3) acquired diseases or trauma with associated growth disorders. Among the congenital malformations, hemifacial microsomia (HFM) appears to be the principal syndrome entailing severe growth disturbances, whereas growth abnormalities occurring in conjunction with other craniofacial dysplasias seem far less prominent than could be anticipated based on their often disfiguring nature. Hemimandibular hyperplasia and elongation undoubtedly constitute the most obscure conditions that are associated with prominent, often unilateral, abnormalities of condylar, and mandibular growth. Finally, disturbances of mandibular growth as a result of juvenile idiopathic arthritis (JIA) and condylar fractures seem to be direct consequences of inflammatory and/or mechanical damage to the condylar cartilage. PMID:19164410

  17. Rehabilitation after cell transplantation for cartilage defects.

    Science.gov (United States)

    Deszczynski, J; Slynarski, K

    2006-01-01

    Rehabilitation is a key element of successful treatment of cartilage defects with cell transplantation. The process of graft maturation takes approximately 18 months and cannot be accelerated, but requires carefully introduced steps leading to early recovery of joint function. Rehabilitation starts at 8 hours after surgery with the continuous passive motion (CPM) exercises and physiotherapy. For the first 6 weeks, patients continue with CPM in the range of 0 degrees to 45 degrees for femoral and tibial defects and 0 degrees to 30 degrees for patellofemoral joint reconstruction. Isometric muscle training and scar manual therapy are introduced. Patients are allowed to weight-bear as tolerated from the second week after surgery. After this initial phase, from 6 to 8 weeks after surgery, rehabilitation is accelerated with increased load-bearing and progressive range of motion to full flexion. Usually patients are able to walk without crutches in this time. Proprioceptive training is introduced with the advance of pain-free full range of motion and no discomfort with full weight-bearing. At 6 months after surgery, most patients recover joint function, making it possible for them to return to daily living activities. However, they need to continue with muscle, proprioceptive, and sports-specific rehabilitation exercises. The rehabilitation process is complicated, requiring close cooperation between the patient and surgeon-physiotherapist team to understand the symptoms and address them in a timely fashion. PMID:16504734

  18. Optimal Locally Repairable Codes and Connections to Matroid Theory

    OpenAIRE

    Tamo, Itzhak; Papailiopoulos, Dimitris S.; Dimakis, Alexandros G.

    2013-01-01

    Petabyte-scale distributed storage systems are currently transitioning to erasure codes to achieve higher storage efficiency. Classical codes like Reed-Solomon are highly sub-optimal for distributed environments due to their high overhead in single-failure events. Locally Repairable Codes (LRCs) form a new family of codes that are repair efficient. In particular, LRCs minimize the number of nodes participating in single node repairs during which they generate small network traffic. Two large-...

  19. Noninvasive determination of knee cartilage deformation during jumping.

    Science.gov (United States)

    Filipovic, Nenad; Vulovic, Radun; Peulic, Aleksandar; Radakovic, Radivoje; Kosanic, Djordje; Ristic, Branko

    2009-01-01

    The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping. Key pointsEven there are many existing mathematical models of force distribution during running or jumping (Liu et al, 1998), to our knowledge there is no interdisciplinary approach where imaging processing, finite element modeling and experimental force plate system are employed.The aim is to explore noninvasive deformation in the knee cartilage during athlete's jumping on the force plate.An original image algorithms and software were developed as well as complex mathematical models using high-performance computational power of finite element modeling together with one-dimensional dynamics model.The initial results showed cartilage deformation in the knee and future research will be focused on the methodology and more precisely determination of the stress and strain distribution in the knee cartilage during training phase of sportsman. PMID:24149600

  20. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  1. Morphometric study of cricoid cartilages in Western India

    Directory of Open Access Journals (Sweden)

    Mohini Joshi

    2011-10-01

    Full Text Available BackgroundIt is important to determine the size and proportion of thelarynx as such information is useful in procedures such asintubation, endoscopy and surgical manipulations. Recentinterest in the cases of subglottic stenosis and postintubationalstenosis of the lower respiratory tract has ledto renewed interest in ascertaining the measurements ofthe various laryngeal cartilages. The aim of the presentstudy was to collect morphometric data of cricoid cartilagefrom a regional population.MethodFifty laryngeal preparations from adult cadavers of WesternIndia were assessed. Sections were prepared via dissectionand the removed cricoid cartilages then measured andweighed.ResultsThe mean antero-posterior diameter (19.29±2.47 of thecricoid cartilage was greater than the average transversediameter (18.33±2.26. The height of arch of cricoidcartilage was 6.54±1.23mm and height of lamina was21.45±1.97mm. Mean weight of cricoid cartilage was4.53±1.27grams. The shape of the cricoid cartilage wasovoid in 46% of cases, oval in 38%, pear shaped in 12% andnarrow-oblong in 4% of cases.ConclusionInter-subject variability in the dimensions of cricoidcartilages was observed. The large difference in almost allsizes and shapes of the cricoid cartilage makes it difficult tostandardise the rigid stents used in these organs.Endotracheal tubes of the appropriate size should thereforebe based on the measurements of individual patients.Clinicians should therefore be aware of morphologicalvariations as they are of fundamental clinical importance.Key WordsCricoid cartilage, larynx, morphometry

  2. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair

    OpenAIRE

    Scarfì, Sonia

    2016-01-01

    The extracellular matrix-associated bone morphogenetic proteins (BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed i...

  3. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  4. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  5. Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy.

    Science.gov (United States)

    Chen, Wei-Hong; Lo, Wen-Cheng; Hsu, Wei-Che; Wei, Hong-Jian; Liu, Hen-Yu; Lee, Chian-Her; Tina Chen, Szu-Yu; Shieh, Ying-Hua; Williams, David F; Deng, Win-Ping

    2014-12-01

    Osteoarthritis (OA) is a common disease associated with tissue inflammation, physical disability and imbalanced homeostasis in cartilage. For advanced treatments, biological approaches are currently focused on tissue regeneration and anti-inflammation. This study was undertaken to evaluate the therapeutic efficacies of hyaluronic acid (HA) and platelet-rich plasma (PRP) (HA+PRP) on OA. Articular chondrocytes were obtained from five OA patients. The optimal HA and PRP concentrations were evaluated by MTT assay. The expressions of chondrogenic and inflammatory genes were analyzed by RT-PCR. Signaling pathway was examined by immunoblotting and the expressions of OA pathology-related chemokines and cytokines was demonstrated by real-time PCR-based SuperArray. The therapeutic efficacies of HA+PRP were then demonstrated in 3D arthritic neo-cartilage and ACLT-OA model. Here we showed that HA+PRP could greatly retrieve pro-inflammatory cytokines-reduced articular chondrocytes proliferation and chondrogenic phenotypes, the mechanism of which involve the sequential activation of specific receptors CD44 and TGF-βRII, downstream mediators Smad2/3 and Erk1/2, and the chondrogenic transcription factor SOX9. The real-time PCR-based SuperArray results also indicated that OA pathology-related chemokines and cytokines could be efficiently suppressed by HA+PRP. Moreover, the cartilaginous ECM could be retrieved from inflammation-induced degradation by HA+PRP in both 2D monolayer and 3D neo-cartilage model. Finally, the intra-articular injection of HA+PRP could strongly rescue the meniscus tear and cartilage breakdown and then decrease OA-related immune cells. The combination of HA+PRP can synergistically promote cartilage regeneration and inhibit OA inflammation. This study might offer an advanced and alternative OA treatment based on detailed regenerative mechanisms.

  6. Characterization of healthy and osteoarthritic chondrocyte cell patterns on phase contrast CT images of the knee cartilage matrix

    Science.gov (United States)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Yang, Chien-Chun; Glaser, Christian; Reiser, Maximilian F.; Wismüller, Axel

    2012-03-01

    The current approach to evaluating cartilage degeneration at the knee joint requires visualization of the joint space on radiographic images where indirect cues such as joint space narrowing serve as markers for osteoarthritis. A recent novel approach to visualizing the knee cartilage matrix using phase contrast CT imaging (PCI-CT) was shown to allow direct examination of chondrocyte cell patterns and their subsequent correlation to osteoarthritis. This study aims to characterize chondrocyte cell patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage through both gray-level co-occurrence matrix (GLCM) derived texture features as well as Minkowski Functionals (MF). Thirteen GLCM and three MF texture features were extracted from 404 regions of interest (ROI) annotated on PCI images of healthy and osteoarthritic specimens of knee cartilage. These texture features were then used in a machine learning task to classify ROIs as healthy or osteoarthritic. A fuzzy k-nearest neighbor classifier was used and its performance was evaluated using the area under the ROC curve (AUC). The best classification performance was observed with the MF features 'perimeter' and 'Euler characteristic' and with GLCM correlation features (f3 and f13). With the experimental conditions used in this study, both Minkowski Functionals and GLCM achieved a high classification performance (AUC value of 0.97) in the task of distinguishing between health and osteoarthritic ROIs. These results show that such quantitative analysis of chondrocyte patterns in the knee cartilage matrix can distinguish between healthy and osteoarthritic tissue with high accuracy.

  7. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    Science.gov (United States)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  8. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    Science.gov (United States)

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. PMID:27195911

  9. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  10. 自体软骨移植与气管重建%Laryngotracheal reconstruction using autologous cartilage transplantation

    Institute of Scientific and Technical Information of China (English)

    王晋平; 赵大庆; 刘晖

    2015-01-01

    背景:临床上经常遇到长距离、大范围的气管狭窄或缺损需气道重建.目的:观察动物自体软骨移植在喉气管重建中的应用效果.方法:切除新西兰兔环状软骨及部分气管前壁,制造喉气管损伤,取自体肋软骨膜移植修复,移植后8-24周处死存活动物,观察修复情况.结果与结论:大体观察:动物呼吸通畅,饮食正常,植入软骨膜与周边组织结合紧密,创口愈合良好,无肉芽组织及瘢痕形成,管腔内表面光滑且有黏膜覆盖.光镜结果显示:创口处有黏膜生成,外层有纤维细胞及横纹肌细胞,少量新生软骨形成,软骨细胞与肌细胞链接紧密.结果提示,自体软骨移植可以应用于动物喉气管重建,且具有很好的效果.%BACKGROUND:Long-distance, large-range tracheal stenosis or defects are often seen in clinic, and laryngotracheal reconstruction is stil a difficult problem. OBJECTIVE:To investigate the effects of animal autologous cartilage transplantation in laryngotracheal reconstruction. METHODS:The cricoid cartilage and partial anterior tracheal wal from New Zealand rabbits were resected to prepare laryngotracheal defect models. Then, autologous costal perichondrium was taken for transplantation. After 8-24 weeks, surviving animals were sacrificed to observe the repair effects. RESULTS AND CONCLUSION:General observation showed that animals breathed and ate normaly, the implanted cartilage bonded tightly with the surrounding tissue, the wound healed wel without granulation tissue and scar formation, and there was a smooth inner surface covered by mucosa in the lumen. Under the light microscope, there was some mucosa generating at the wound site, and some fibroblasts and striated muscle cels existed in the outer layer, with a smal amount of new cartilage formation. There was also a linking between chondrocytes and muscle cels. These findings indicate that autologous cartilage transplantation can be applied for laryngotracheal

  11. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    , thus allowing repair proteins to efficiently access DNA. On the other hand, after completion of the repair, the chromatin must be returned to its previous undamaged state. Chromatin remodeling can refer to three separate but interconnected processes, histone post-translational modifications, insertion...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER. © 2012 by the authors; licensee MDPI, Basel...

  12. Experimental study on tissue engineering resurfacing of articular cartilage defect%组织工程修复关节软骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    胡怀建; 雍宜民; 沈惠良

    2001-01-01

    目的用组织工程的方法,将新生关节软骨细胞先在高分子聚乳酸材料上进行体外培养,然后移植于关节软骨缺损处,以达到修复关节软骨缺损的目的。方法取新生新西兰兔关节软骨细胞培养于高分子聚乳酸材料支架上。将16只兔的32个膝关节股骨髁处人工造成一4mm×6mm大小缺损,并随机分为二组。Ⅰ组10只兔,20个关节缺损,用软骨细胞-高分子聚乳酸移植修复。Ⅱ组6只兔,左膝用软骨细胞-高分子聚乳酸移植体修复,表面覆盖单层软骨细胞;右膝仅用高分子聚乳酸材料修复。术后分别于4、8、12、24周取标本进行大体、光镜、组织化学的方法进行结果评估。结果用软骨细胞-高分子聚乳酸移植体能修复关节软骨缺损,且为透明软骨。新生软骨组织胶原定型为Ⅱ型胶原。结论用软骨细胞-高分子聚乳酸移植体移植,关节软骨缺损能获得透明软骨修复。%Objective Tissue engineering by chondrocyte transplantation with biodegradable polylactic acid scaffolds and new cartilage formation after in vitro culture is developed as a new attempt to repair articular cartilage defects.Methods Chondrocytes from newborn New Zealand rabbits were cultured on polylactic acid implants in vitro.4mm×6mm defects were created artificially at 32 knee joints of 16 rabbits and were randomized into 2 groups.20 joint defects of 10 rabbits in Group 1 were repaired by chondrocyte-seeded polylactic acid implants.In group 2,the left knee joint defects were repaired by chondrocyte-seeded polylactic acid implants while the right knee defects were repaired by polylactic acid implants only.Specimens were collected and assessed grossly,by light microscopy and histochemically at the 4,8,12 and 24th week after operation.Results Joint defects were repaired by chondrocyte-seeded polylactic acid implants and the new cartilages were hyalinic.The collagen component in the new

  13. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  14. Salvage hypospadias repairs

    Directory of Open Access Journals (Sweden)

    Sripathi V

    2008-01-01

    Full Text Available Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5-15 years (mean 4.5. Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50% with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  15. ENDOSCOPIC TYMPANO PLASTY TEMPORALIS FASCIA VERSUS CARTILAGE : COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2015-08-01

    Full Text Available OBJECTIVE: To compare the graft acceptance rates and auditory outcomes of endoscopic cartilage tympanoplasty operations with those of endoscopic primary tympanoplasty using temporalis fascia in a homogenous group of patients . MATERIAL AND METHODS : This prospective study was conducted on 64 patients between the ages of 15 to 50 years. All patients had a central tympanic membrane perforation without infection in middle ear or upper respiratory tract. RESULTS : Anatomical results in terms of graft uptake and intact tympanic membrane over a period of 2 years showed good results both in 26(92.85% cases in cartilage group and in 33(91.66% cases in temporalis fascia group. The average post - operative Air bone gap in endoscopic fascia tympanoplasty group was 14.61db and 15.65db in endoscopic cartilage tympanoplasty group . CONCLUSION: Endoscopic tympanoplasty is a minimally invasive, sutureless procedure with better patient compliance. Tympanoplasty with cartilage graft has a high degree of graft take up. Tympanoplasty with cartilage provides better results in terms of integrity and intactness of the graft and less percentage of postoperative discharge from the operated ear.

  16. Evidence for a negative Pasteur effect in articular cartilage.

    Science.gov (United States)

    Lee, R B; Urban, J P

    1997-01-01

    Uptake of external glucose and production of lactate were measured in freshly-excised bovine articular cartilage under O2 concentrations ranging from 21% (air) to zero (N2-bubbled). Anoxia (O2 concentration Pasteur effect in bovine articular cartilage. Anoxia also suppressed glycolysis in articular cartilage from horse, pig and sheep. Inhibitors acting on the glycolytic pathway (2-deoxy-D-glucose, iodoacetamide or fluoride) strongly decreased aerobic lactate production and ATP concentration, consistent with the belief that articular cartilage obtains its principal supply of ATP from substrate-level phosphorylation in glycolysis. Azide or cyanide lowered the ATP concentration in aerobic cartilage to approximately the same extent as did anoxia but, because glycolysis (lactate production) was also inhibited by these treatments, the importance of any mitochondrial ATP production could not be assessed. A negative Pasteur effect would make chondrocytes particularly liable to suffer a shortage of energy under anoxic conditions. Incorporation of [35S]sulphate into proteoglycan was severely curtailed by treatments, such as anoxia, which decreased the intracellular concentration of ATP.

  17. Comparison of Modified Cartilage Shield Tympanoplasty with Tympanoplasty Using Temporalis Fascia Only: Retrospective Analysis of 142 Cases

    Directory of Open Access Journals (Sweden)

    Sohil Vadiya

    2016-01-01

    Full Text Available The current study compares outcomes of modified cartilage shield tympanoplasty (CST with temporalis fascia tympanoplasty in type I procedures in Indian patients. Graft uptake rates are better with the CST technique and hearing results are almost equivalent with both techniques except at 8000 Hz where improvement in hearing was found better with the use of temporalis fascia alone. The CST technique used in the study is unique.

  18. COMPARATIVE STUDY OF RESULTS OF CARTILAGE-PERICHONDRIUM VS TEMPORALIS FASCIA GRAFTING IN ACTIVE TUBOTYMPANIC TYPE OF CHRONIC SUPPURATIVE OTITIS MEDIA

    Directory of Open Access Journals (Sweden)

    Rajeev

    2014-06-01

    Full Text Available Temporalis fascia has long been regarded as the ideal graft material for tympanic membrane repair. However it often does not seem to withstand negative middle ear pressure in the post-operative period. Tragal cartilage with perichondrium would appear to be a better graft material with good hearing outcome. It can be obtained easily with cosmetically acceptable incision. In the present study, we have compared the graft properties of Temporalis fascia versus Tragal cartilage perichondrium with respect to healing, hearing and rate of postoperative retraction or re-perforation. 132 patients of chronic otitis media with pure conductive hearing loss were posted for tympanoplasty. Temporalis fascia graft was used in 71 patients and cartilage perichondrium (composite graft was used in 61 patients. Post-operative healing, hearing and rate of retraction or re-perforation were compared for both the graft materials. All the patients were followed up for 2 years. Patients where temporalis fascia graft was used, 60 (84.5% showed a good neotympanum, 7(9.85% had re-perforation and 5(7.04% had retraction pockets. Patients where tragal cartilage perichondrium was used, 60(98.36% showed a healed tympanic membrane and only 1(1.63% had re-perforation. None of the patients showed retraction pocket or cholestetoma. Postoperative hearing was accessed 6 months after surgery. Patients with temporalis fascia graft showed an air bone gap of less than 10 dB in 49 (82% patients and more than 10 dB in 11(18% patients. Air bone gap closure with tragal cartilage perichondrium was less than 10 dB in 45(78% patients and more than 10 dB in 13 patients (122%. Tragal cartilage perichondrium (<0.5 mm seems to be an ideal graft material for tympanic membrane in terms of postoperative healing and acoustic properties. It can easily withstand negative middle ear pressure which may have contributed to the development of otitis media and significantly affect healing outcomes in

  19. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  20. Ventral hernia: retrospective cost analysis of primary repair, repair with synthetic mesh, and repair with acellular xenograft implant

    Directory of Open Access Journals (Sweden)

    DeNoto G III

    2013-05-01

    Full Text Available George DeNoto III,1 Nancy Reaven,2 Susan Funk2 1Division of General Surgery, St Francis Hospital, Roslyn, and Hofstra North Shore-LIJ School of Medicine, Manhasset, NY, USA; 2Strategic Health Resources, La Cañada, CA, USA Background: The purpose of this study was to evaluate resource utilization and costs of repair of potentially contaminated/infected complex ventral hernias using primary repair, synthetic mesh, or acellular xenograft. Methods: We used 2008–2009 insurance claims (Truven Health Analytics MarketScan® to identify patients who underwent grade 3 or 4 ventral hernia repair between January 1 and June 30, 2008. Patients were categorized into synthetic mesh or xenograft groups based on Current Procedural Terminology and Healthcare Common Procedure Coding System codes, with primary repair identified by the absence of mesh or xenograft codes. Claims were reviewed for an 18-month post-procedure period to identify the incidence of medical complications, number of post-index events, and hospital costs. Results: A total of 740 patients were included. Complication rates in grade 3 patients were significantly lower with xenograft (18% and primary repair (24% versus synthetic mesh (37%, P = 0.001. There were minimal differences between grade 4 patients. In grade 3 patients, synthetic mesh was associated with hospital returns for complications about three times as often as those with xenograft repairs and significantly more often than those with primary repairs (P < 0.0001. The average treatment cost for a xenograft repair in grade 3 patients was $33,266 versus a primary repair at $34,948 and synthetic mesh at $35,891 (difference not statistically significant. In grade 4 patients, there was no statistically significant difference between the study arms in the rate of returns for treatment of complications or costs. Conclusion: In this analysis of grade 3 and 4 hernia repair, total 18-month costs were similar across the three study arms despite

  1. Expression of Sulf1 and Sulf2 in cartilage, bone and endochondral fracture healing.

    Science.gov (United States)

    Zaman, G; Staines, K A; Farquharson, C; Newton, P T; Dudhia, J; Chenu, C; Pitsillides, A A; Dhoot, G K

    2016-01-01

    SULF1/SULF2 enzymes regulate cell signalling that impacts the growth and differentiation of many tissues. To determine their possible role in cartilage and bone growth or repair, their expression was examined during development and bone fracture healing using RT-PCR and immunochemical analyses. Examination of epiphyseal growth plates revealed differential, inverse patterns of SULF1 and SULF2 expressions, with the former enriched in quiescent and the latter in hypertrophic chondrocyte zones. Markedly higher levels of both SULFs, however, were expressed in osteoblasts actively forming bone when compared with proliferating pre-osteoblasts in the periosteum or the entombed osteocytes which express the lowest levels. The increased expression of Sulf1 and Sulf2 in differentiating osteoblasts was further confirmed by RT-PCR analysis of mRNA levels in rat calvarial osteoblast cultures. SULF1 and SULF2 were expressed in most foetal articular chondrocytes but down-regulated in a larger subset of cells in the post-natal articular cartilage. Unlike adult articular chondrocytes, SULF1/SULF2 expression varied markedly in post-natal hypertrophic chondrocytes in the growth plate, with very high SULF2 expression compared with SULF1 apparent during neonatal growth in both primary and secondary centres of ossification. Similarly, hypertrophic chondrocytes expressed greatly higher levels of SULF2 but not SULF1 during bone fracture healing. SULF2 expression unlike SULF1 also spread to the calcifying matrix around the hypertrophic chondrocytes indicating its possible ligand inhibiting role through HSPG desulphation. Higher levels of SULF2 in both developing and healing bone closely correlated with parallel increases in hedgehog signalling analysed by ptc1 receptor expression. PMID:26464246

  2. The effect of calcification on the structural mechanics of the costal cartilage.

    Science.gov (United States)

    Forman, Jason L; Kent, Richard W

    2014-01-01

    The costal cartilage often undergoes progressive calcification with age. This study sought to investigate the effects of calcification on the structural mechanics of whole costal cartilage segments. Models were developed for five costal cartilage specimens, including representations of the cartilage, the perichondrium, calcification, and segments of the rib and sternum. The material properties of the cartilage were determined through indentation testing; the properties of the perichondrium were determined through optimisation against structural experiments. The calcified regions were then expanded or shrunk to develop five different sensitivity analysis models for each. Increasing the relative volume of calcification from 0% to 24% of the cartilage volume increased the stiffness of the costal cartilage segments by a factor of 2.3-3.8. These results suggest that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.

  3. Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers

    Science.gov (United States)

    ... Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers Made of patients' stem cells and ... eliminate the need for hip replacement surgery in younger arthritis patients. The cartilage hasn't been tested ...

  4. Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant

    NARCIS (Netherlands)

    Hannink, G.J.; Tienen, T.G. van; Schouten, A.J.; Buma, P.

    2011-01-01

    PURPOSE: To evaluate the long-term effects of implantation of a biodegradable polymer meniscus implant on articular cartilage degeneration and compare this to articular cartilage degeneration after meniscectomy. METHODS: Porous polymer polycaprolacton-based polyurethane meniscus implants were implan

  5. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    Science.gov (United States)

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    functionalization may promote ECM expression in this culture system. The results of this study indicate that SWNTs exhibit a unique potential for cartilage tissue engineering, where functionalization with bioactive molecules may provide an improved substrate for stimulation of cellular growth and repair. PMID:24593020

  6. Nerve repair and cable grafting for facial paralysis.

    Science.gov (United States)

    Humphrey, Clinton D; Kriet, J David

    2008-05-01

    Facial nerve injury and facial paralysis are devastating for patients. Although imperfect, primary repair is currently the best option to restore facial nerve function. Cable, or interposition, nerve grafting is an acceptable alternative when primary repair is not possible. Several donor nerves are at the surgeon's disposal. Great auricular, sural, or medial and lateral antebrachial cutaneous nerves are all easily obtained. Both primary repair and interposition grafting typically result in better facial function than do other dynamic and static rehabilitation strategies. Proficient anastomotic technique and, when necessary, selection of an appropriate interposition graft will optimize patient outcomes. Promising research is under way that will enhance future nerve repair and grafting efforts.

  7. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks

    NARCIS (Netherlands)

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-01-01

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element mo

  8. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    Science.gov (United States)

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embed