WorldWideScience

Sample records for cartilage oligomeric matrix

  1. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with...

  2. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  3. Cartilage Oligomeric Matrix Protein Increases in Photodamaged Skin.

    Science.gov (United States)

    Kobayashi, Masaki; Kawabata, Keigo; Kusaka-Kikushima, Ayumi; Sugiyama, Yoshinori; Mabuchi, Tomotaka; Takekoshi, Susumu; Miyasaka, Muneo; Ozawa, Akira; Sakai, Shingo

    2016-06-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage. Recent studies have described COMP as a pathogenic factor that promotes collagen deposition in fibrotic skin disorders such as scleroderma and keloid skin. Although collagen, a major dermis component, is thought to decrease in photoaged skin, recent reports have demonstrated the presence of tightly packed collagen fibrils with a structural resemblance to fibrosis in the papillary dermis of photoaged skin. Here we examined how photoaging damage relates to COMP expression and localization in photoaged skin. In situ hybridization revealed an increase in COMP-mRNA-positive cells with the progress of photoaging in preauricular skin (sun-exposed skin). The signal intensity of immunostaining for COMP increased with photoaging in not only the papillary dermis but also the reticular dermis affected by advancing solar elastosis. Immunoelectron microscopy detected the colocalization of COMP with both elastotic materials and collagen fibrils in photoaged skin. Ultraviolet light A irradiation of human dermal fibroblasts induced COMP expression at both the mRNA and protein levels. Ultraviolet light A-induced COMP expression was inhibited by an anti-transforming growth factor-β antibody or SB431542, an activin receptor-like kinase 5 inhibitor. These results suggest that the transforming growth factor-β-mediated upregulation of COMP expression may contribute to the modulation of dermal extracellular matrix in the photoaging process. PMID:26968261

  4. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis: relation to growth and disease activity

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    OBJECTIVE: Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in...

  5. Cartilage oligomeric matrix protein is a natural inhibitor of thrombin.

    Science.gov (United States)

    Liang, Ying; Fu, Yi; Qi, Ruomei; Wang, Meili; Yang, Nan; He, Li; Yu, Fang; Zhang, Jian; Yun, Cai-Hong; Wang, Xian; Liu, Junling; Kong, Wei

    2015-08-13

    Thrombin is an effector enzyme for hemostasis and thrombosis; however, endogenous regulators of thrombin remain elusive. Cartilage oligomeric matrix protein (COMP), a matricellular protein also known as thrombospondin-5, is essential for maintaining vascular homeostasis. Here, we asked whether COMP is involved in the process of blood coagulation. COMP deficiency shortened tail-bleeding and clotting time and accelerated ferric-chloride-induced thrombosis in mice. The absence of COMP had no effect on platelet count. In contrast, COMP specifically inhibited thrombin-induced platelet aggregation, activation, and retraction and the thrombin-mediated cleavage of fibrinogen. Furthermore, surface plasmon resonance analysis revealed direct thrombin-COMP binding (KD = 1.38 ± 0.24 μM). In particular, blockage of thrombin exosites with compounds specific for exosite I (hirudin and HD1 aptamer) or exosite II (heparin and HD22 aptamer) impaired the COMP-thrombin interaction, indicating a 2-site binding mechanism. Additionally, epidermal growth factor-like repeats (amino acids 84-261) were identified as a COMP binding site for thrombin. Moreover, COMP was expressed in and secreted by platelets. Using bone marrow transplantation and platelet transfusion to create chimeric mice, platelet-derived but not vessel-wall-derived COMP was demonstrated to inhibit coagulation. Taken together, COMP is an endogenous thrombin inhibitor and negative regulator of hemostasis and thrombosis. PMID:26045608

  6. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Happonen, Kaisa E; Saxne, Tore; Aspberg, Anders;

    2010-01-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthr......Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and...

  7. Serum levels of Cartilage Oligomeric Matrix Protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis

    OpenAIRE

    Roos Ewa M; Thorstensson Carina A; Andersson Maria LE; Petersson Ingemar F; Heinegård Dick; Saxne Tore

    2006-01-01

    Abstract Background COMP (Cartilage oligomeric matrix protein) is a matrix protein, which is currently studied as a potential serum marker for cartilage processes in osteoarthritis (OA). The influence of physical exercise on serum COMP is not fully elucidated. The objective of the present study was to monitor serum levels of COMP during a randomised controlled trial of physical exercise vs. standardised rest in individuals with symptomatic and radiographic knee OA. Methods Blood samples were ...

  8. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  9. Serum cartilage oligomeric matrix protein: is there a repeated bout effect?

    Directory of Open Access Journals (Sweden)

    Michael Behringer

    2014-10-01

    Full Text Available The primary aim of the present study was to investigate if there is a repeated bout effect for cartilage tissue, evident in the marker serum cartilage oligomeric matrix protein (sCOMP. Ten healthy male subjects (26.4±3.14 years performed two high impact interventions (100 drop jumps with a 30 second interval carried out at a 3 week interval. After each intervention, sCOMP and muscle soreness were assessed on 8 and 6 occasions respectively. Muscle soreness was determined via a visual analog scale with a maximum pain score of 10. sComp levels did not show a blunted response after the second bout (Bout 1: 12.2±3.3 U/L−1; Bout 2: 13.1±4.0 U/L−1; P>0.05. Remarkably, sCOMP increased from baseline levels by 16% after bout 1 and 15% after bout 2. Muscle soreness was blunted following the second intervention (Bout 1: 5.0±1.8; Bout 2: 1.6±0.8. Unlike the known repeated bout effect for muscle damage markers, sCOMP levels do not show a blunted response after two similar loading interventions. This information on biomarker behavior is essential to clinicians attempting to use this marker as an indicator of cartilage damage associated with the development or progression of osteoarthritis.

  10. Genetic analysis and serum level of cartilage oligomeric matrix protein in patients with pseudoachondroplasia

    Institute of Scientific and Technical Information of China (English)

    LIU Feng-xia; LI Zhi-ling; WEI Zhen-ji; MENG yan; REN Cui-ai; ZHANG Xu-de; YU Meng-xue; HUANG Shang-zhi

    2010-01-01

    Background Pseudoachondroplasia (PSACH) is an autosomal-dominant osteochondrodysplasia due to mutations in the gene encoding cartilage oligomeric matrix protein (COMP).Clinical diagnosis of PSACH is based primarily on family history, physical examination, and radiographic evaluation.There is evidence that decreased serum COMP concentration may serve as a diagnostic marker in PSACH.Here, we investigated the role of this gene and the serum COMP concentration in Chinese patients with PSACH.Methods A family with three patients and a sporadic case were recruited.Genomic and phenotypic data were recorded.The diagnosis of PSACH was made on the base of clinical evaluation.The genomic DNA was extracted from peripheral blood leukocytes.The 8-19 exons and flanking intron-exon boundary sequences of COMP were amplified by polymerase chain reaction (PCR) and screened for mutation by direct DNA sequencing.Serum COMP concentrations of 4 patients and age-compatible control group of 20 unrelated healthy subjects were analyzed on the basis of an ELISA Kit for human cartilage oligomeric matrix protein.Results A deletion (c.1447-1455del) was identified in exon 13 in the sporadic case.The mean serum COMP concentrations of four patients (3.12±2.28) were significantly lower than those of control group (10.86±2.21, P <0.05).There was no overlap in the distribution of serum COMP concentration between PSACH patients and controls.Conclusions Mutations in COMP gene are responsible for the PSACH.Serum COMP concentration may be suggested as an additional diagnostic marker to aid clinical findings in suspected cases of PSACH.

  11. Serum cartilage oligomeric matrix protein (COMP) decreases in rheumatoid arthritis patients treated with infliximab or etanercept

    Science.gov (United States)

    Crnkic, Meliha; Månsson, Bengt; Larsson, Lotta; Geborek, Pierre; Heinegård, Dick; Saxne, Tore

    2003-01-01

    Changes in serum cartilage oligomeric matrix protein (COMP) were studied during a 6-month period from initiation of treatment of rheumatoid arthritis patients with either infliximab or etanercept, to elucidate whether the favourable results of tissue protection reported in clinical trials are corroborated by changing levels of circulating COMP. Rheumatoid arthritis patients commencing treatment with infliximab (N = 32) or etanercept (N = 17) were monitored in accordance with a structured protocol. Only patients who were not receiving glucocorticoids or who were on a stable dose of oral prednisolone (<10 mg daily) were included. Serum COMP was measured by a sandwich immunoassay based on two monoclonal antibodies against human COMP in samples obtained at treatment initiation and at 3 and 6 months. Serum COMP decreased at 3 months in both infliximab- and etanercept-treated patients (P < 0.001 and <0.005, respectively) and remained low at 6 months. There was no significant correlation between changes in or concentrations of serum COMP and serum C-reactive protein at any time point. A decrease in serum COMP was seen both in ACR20 responders (patients meeting the American College of Rheumatology criteria for 20% improvement) and in nonresponders. The pattern of changes of serum COMP, a marker for cartilage turnover, in these patient groups supports the interpretation that infliximab and etanercept have a joint protective effect. Serum COMP has potential as a useful marker for evaluating tissue effects of novel treatment modalities in rheumatoid arthritis. PMID:12823852

  12. Ambulation speed and corresponding mechanics are associated with changes in serum cartilage oligomeric matrix protein.

    Science.gov (United States)

    Denning, W Matt; Becker Pardo, Michael; Winward, Jason G; Hunter, Iain; Ridge, Sarah; Hopkins, J Ty; Reese, C Shane; Parcell, Allen C; Seeley, Matthew K

    2016-02-01

    Because serum cartilage oligomeric matrix protein (COMP) has been used to reflect articular cartilage condition, we aimed to identify walking and running mechanics that are associated with changes in serum COMP. Eighteen subjects (9 male, 9 female; age=23 ± 2 yrs.; mass=68.3 ± 9.6 kg; height=1.70 ± 0.08 m) completed 4000 steps on an instrumented treadmill on three separate days. Each day corresponded to a different ambulation speed: slow (preferred walking speed), medium (+50% of slow), and fast (+100% of slow). Synchronized ground reaction force and video data were collected to evaluate walking mechanics. Blood samples were collected pre-, post-, 30-minute post-, and 60-minute post-ambulation to determine serum COMP concentration at these times. Serum COMP increased 29%, 18%, and 5% immediately post ambulation for the fast, medium, and slow sessions (p<0.01). When the speeds were pooled, peak ankle inversion, knee extension, knee abduction, hip flexion, hip extension, and hip abduction moment, and knee flexion angle at impact explained 61.4% of total variance in COMP concentration change (p<0.001). These results indicate that (1) certain joint mechanics are associated with acute change in serum COMP due to ambulation, and (2) increased ambulation speed increases serum COMP concentration. PMID:27004646

  13. Cartilage oligomeric matrix protein: A novel non-invasivemarker for assessing cirrhosis and risk of hepatocellularcarcinoma

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To assess serum cartilage oligomeric matrixprotein (COMP) as a marker of cirrhosis and risk ofprogression to hepatocellular carcinoma (HCC).METHODS: A COMP enzyme-linked immunosorbent assay was used to test 187 patients with chronic liverdiseases at the time point of first evaluation. Theselected patients included 72 with chronic hepatitis Binfection, 75 with chronic hepatitis C infection, 22 withprimary biliary cirrhosis, 7 with autoimmune hepatitistype 1, and 11 with alcoholic liver disease. Demographic,biochemical, histological and clinical characteristics ofthe patients were recorded at the first evaluation. Onehundred and forty-seven patients were followed for amedian [interquartile range (IQR)] duration of 96.5 (102)mo. The clinical, biochemical and histological data, aswell as the development of cirrhosis, HCC according tointernationally accepted criteria and in case of death,a liver-related cause during the follow-up period,were recorded at the electronic database of our clinic.COMP determination was also performed in 43 healthyindividuals who served as the control study group.RESULTS: COMP positivity (〉 15 U/L) was detectedin 22%-36% among chronic liver disease groups.Strikingly, almost 83% of COMP-positive patientswere cirrhotic at baseline, independently of cause ofliver disease. Among the patients who developed HCCduring follow-up, 73.7% (14/19) were COMP positiveat baseline. COMP positivity was significantly associatedwith older age (P 〈 0.001), advanced fibrosis (P =0.001) and necroinflammatory activity (P = 0.001),higher aspartate aminotransferase (P 〈 0.001), alanineaminotransferase (P 〈 0.02), γ-glutamyl transpeptidase(P = 0.003), alkaline phosphatase (P = 0.001), bilirubin(P 〈 0.05), international normalized ratio (P = 0.002)and alpha-fetoprotein levels (P 〈 0.02), and loweralbumin (P 〈 0.001), and platelet count (P = 0.008).COMP levels [median

  14. Serum levels of cartilage oligomeric matrix protein (COMP): a rapid decrease in patients with active rheumatoid arthritis undergoing intravenous steroid treatment.

    Science.gov (United States)

    Skoumal, M; Haberhauer, G; Feyertag, J; Kittl, E M; Bauer, K; Dunky, A

    2006-09-01

    To examine the influence of intravenous steroid-treatment (IST) on serum levels of Cartilage oligomeric matrix protein (COMP) in patients with active rheumatoid arthritis (RA). Serum levels of COMP and C-reactive protein (CRP) were measured in 12 patients with highly active RA (Steinbrocker stages II-IV) and in 5 patients with highly active reactive arthritis (ReA) (positive testing for HLA-B27) before starting daily IST. Patients received a total steroid dosage between 100 and 500 mg of prednisolone. COMP was measured by a commercially available sandwich-type ELISA-kit developed by AnaMar Medical AB, Sweden. Statistical evaluation was calculated by paired t test. In the RA group, COMP levels ranged from 6.3 to 19.4 U/l (mean 12.9 U/l), CRP from 5 to 195 mg/l (mean 77.8 mg/l), the COMP levels of the ReA group ranged from 5.1 to 7.4 U/l (mean 7.9 U/l), the CRP levels from 13 to 126 mg/l (mean 49 mg/l). We found a significant difference between the initial COMP levels in RA+ and ReA patients (P<0.005). In contrast to the ReA group, serum-COMP levels of RA+ patients (P<0.004) and the VAS (P<0.0001) decreased significantly within 2-10 days after the first treatment with steroids. The CRP levels remained unchanged in both groups. Our results indicate that the intravenous treatment with steroids in patients with highly active RA leads to a significant decrease of cartilage degradation. COMP seems to be a valuable parameter not even as a prognostic factor, but as a marker for monitoring the therapy response in patients with RA. PMID:16485108

  15. Moderate loading of the human osteoarthritic knee joint leads to lowering of intraarticular cartilage oligomeric matrix protein

    DEFF Research Database (Denmark)

    Helmark, Ida C; Petersen, Marie C H; Christensen, Helle E; Kjær, Michael; Langberg, Henning

    2012-01-01

    The non-pharmacological treatment of osteoarthritis (OA) includes exercise therapy; however, little is known about the specific effect of exercise on the joint per se. The purpose of the present study was to investigate the direct effects of a load-bearing exercise upon cartilage in a single, human...

  16. Electrospun Cartilage-Derived Matrix Scaffolds for Cartilage Tissue Engineering

    OpenAIRE

    Garrigues, N. William; Little, Dianne; Sanchez-Adams, Johannah; David S Ruch; Guilak, Farshid

    2014-01-01

    Macroscale scaffolds created from cartilage-derived matrix (CDM) demonstrate chondroinductive properties, but many fabrication methods do not allow for control of nanoscale architecture. In this regard, electrospun scaffolds have shown significant promise for cartilage tissue engineering. However, nanofibrous materials generally exhibit a relatively small pore size and require techniques such as multi-layering or the inclusion of sacrificial fibers to enhance cellular infiltration. The object...

  17. 软骨寡聚基质蛋白对骨关节炎软骨破坏早期诊断价值的研究%Study on the diagnostic value of cartilage oligomeric matrix protein for early cartilage destruction in osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    李桂叶; 张荣富; 马丽; 潘琳; 张鑫; 张阔; 王国春; 吴东海

    2011-01-01

    Objective To study the diagnostic value of cartilage oligomeric matrix protein for early cartilage destruction in osteoarthritis and assess its value in the prediction of the disease progression.Methods The osteoarthritis animal models were developed by immobilizing the right knees of 18 rabbits in full extension position using plaster East.Knee joint pathological changes at week 2 and 6 were examined for pathological severity evaluation of osteoarthritis.ELISA sandwich method was used to measure the levels of cartilage oligomeric matrix protein(COMP) in serum before and after modeling(at week 2 and 6 respectively) and immunohistolgy method was used to examine the levels of COMP in knee articular cartilage of osteoarthritis animal models.Correlation analysis was performed to demonstrate the relationship between the levels of COMP in the serum and the pathological severity of osteoarthritis.Pearson's test and t-test were used for correlation analysis.Results ①) Osteoarthritis animal models could be successfully developed by immobilizing the right knees of rabbits in full extension position using plaster east for 2 weeks.Early histopathological changes in the articular cartilage could be observed,At week 6,the typical histopathological characteristics could be seen.②With the extension of modeling time,serum COMP levels persistently increased.The serum COMP levels before modeling,at modeling week 2,week 6 were (3.35±0.20),(3.64±0.18),(3.96±0.44) μg/L respectively,the difference was significant (P<0.05).③ The level of COMP in the articular cartilage of non-osteoarthritis animal models,models at week 2,week 6 were (2.7±1.8 )% ,(5.7±0.7)%,(7.6±0.7)% respectively (P<0.05 for all).④ The level of COMP in the serum was linearily correlated with the pathological severity of osteoarthritis(r>0.770 for all,and P<0.05 for all).Conclusion Levels of COMP in the serum can help to make early diagnosis of osteoarthritis,and elevated COMP level can predict

  18. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  19. Oligomerization and polymerization of the filovirus matrix protein VP40

    International Nuclear Information System (INIS)

    The matrix protein VP40 from Ebola virus plays an important role in the assembly process of virus particles by interacting with cellular factors, cellular membranes, and the ribonuclearprotein particle complex. Here we show that the N-terminal domain of VP40 folds into a mixture of two different oligomeric states in vitro, namely hexameric and octameric ringlike structures, as detected by gel filtration chromatography, chemical cross-linking, and electron microscopy. Octamer formation depends largely on the interaction with nucleic acids, which in turn confers in vitro SDS resistance. Refolding experiments with a nucleic acid free N-terminal domain preparation reveal a mostly dimeric form of VP40, which is transformed into an SDS resistant octamer upon incubation with E. coli nucleic acids. In addition, we demonstrate that the N-terminal domain of Marburg virus VP40 also folds into ringlike structures, similar to Ebola virus VP40. Interestingly, Marburg virus VP40 rings reveal a high tendency to polymerize into rods composed of stacked rings. These results may suggest distinct roles for different oligomeric forms of VP40 in the filovirus life cycle

  20. Cartilage oligomeric matrix protein specific antibodies are pathogenic

    DEFF Research Database (Denmark)

    Geng, Hui; Nandakumar, Kutty Selva; Pramhed, Anna; Aspberg, Anders; Mattsson, Ragnar; Holmdahl, Rikard

    2012-01-01

    -specific monoclonal antibodies (mAbs). METHODS: B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated and the...

  1. The identification of matrix Gla protein in cartilage.

    Science.gov (United States)

    Hale, J E; Fraser, J D; Price, P A

    1988-04-25

    The vitamin K-dependent bone protein matrix gamma-carboxyglutamic acid (Gla) protein (MGP) has been identified by radioimmunoassay in the guanidine extract of rat cartilage. MGP was present in all cartilages tested at levels comparable to the MGP level in bone. Western blot analysis indicated that the molecular weight of cartilage MGP is the same as bone MGP, and Northern blot analysis revealed that MGP mRNA from cartilage is the same size as the MGP mRNA from bone. The structurally related vitamin K-dependent protein bone Gla protein could not be detected in cartilage by radioimmunoassay or by Northern blot analysis. The discovery that MGP is synthesized by growth plate cartilage could provide an explanation for the excessive growth plate mineralization disorder seen in rats treated with the vitamin K antagonist warfarin and the punctate mineralization of the growth plate seen in infants whose mothers received warfarin in the first trimester of pregnancy (the fetal warfarin syndrome). Both disorders appear to be caused by the inactivation of a vitamin K-dependent mineralization inhibitor in cartilage, an inhibitor which we suggest is MGP. PMID:3258600

  2. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    OpenAIRE

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  3. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  4. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    Science.gov (United States)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  5. Influence of Cartilage Extracellular Matrix Molecules on Cell Phenotype and Neocartilage Formation

    OpenAIRE

    Grogan, Shawn P.; Chen, Xian; Sovani, Sujata; Taniguchi, Noboru; Colwell, Clifford W.; Lotz, Martin K; D'Lima, Darryl D

    2013-01-01

    Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decor...

  6. Long-range movement and fibril association of type X collagen within embryonic cartilage matrix.

    OpenAIRE

    Chen, Q A; Gibney, E; Fitch, J M; Linsenmayer, C; Schmid, T.M.; Linsenmayer, T F

    1990-01-01

    A recent immunoelectron microscopic study of type X collagen in developing cartilage gave results that could be explained by movement of the molecule from one region of the cartilage matrix to another, there becoming associated with preexisting collagen fibrils. In the present study, to test the feasibility of this model we incubated pieces of nonhypertrophic, embryonic chicken sternal cartilage (which has no endogenous type X collagen) in medium with type X collagen and then used immunofluor...

  7. Age-related changes in the role of matrix vesicles in the mandibular condylar cartilage.

    OpenAIRE

    Livne, E; Oliver, C; Leapman, R D; Rosenberg, L C; Poole, A. R.; Silbermann, M

    1987-01-01

    A combined approach of light microscopy, immunofluorescence, transmission electron microscopy and electron energy loss spectroscopy (EELS) was used to study age-related changes in the condylar cartilage in mice. Chondrocalcin, a cartilage matrix calcium-binding protein, was demonstrated by indirect immunofluorescence microscopy using monospecific antibodies. In one week old animals the most intense staining was observed in the matrix around the hypertrophic cells in the mineralising zone, to ...

  8. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  9. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study.

    Science.gov (United States)

    Iyer, Kartik; Dearman, Bronwyn L; Wagstaff, Marcus J D; Greenwood, John E

    2016-01-01

    Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction. PMID:26284639

  10. Matrix metalloproteinase-13 downregulation and potential cartilage protective action of the Korean Red Ginseng preparation

    OpenAIRE

    Lee, Je Hyeong; Shehzad, Omer; Ko, Sung Kwon; Kim, Yeong Shik; Kim, Hyun Pyo

    2014-01-01

    Background The present study was designed to prepare and find the optimum active preparation or fraction from Korea Red Ginseng inhibiting matrix metalloproteinase-13 (MMP-13) expression, because MMP-13 is a pivotal enzyme to degrade the collagen matrix of the joint cartilage. Methods From total red ginseng ethanol extract, n-BuOH fraction (total ginsenoside-enriched fraction), ginsenoside diol-type-enriched fraction (GDF), and ginsenoside triol-type-enriched fraction (GTF) were prepared, and...

  11. IL-1ß and BMPs - Interactive players of cartilage matrix degradation and regeneration

    Directory of Open Access Journals (Sweden)

    T Aigner

    2006-10-01

    Full Text Available Intact human adult articular cartilage is central for the functioning of the articulating joints. This largely depends on the integrity of its extracellular matrix, given the high loading forces during movements in particular in the weight-bearing joints. Unlike the first impression of a more or less static tissue, articular cartilage shows - albeit in the adult organism a slow - tissue turnover. Thus, one of the most important questions in osteoarthritis research is to understand the balance of catabolic and anabolic factors in articular cartilage as this is the key to understand the biology of cartilage maintenance and degeneration. Anabolic and catabolic pathways are very much intermingled in articular cartilage. The balance between anabolism and catabolism is titrated on numerous levels, starting from the mediator-synthesizing cells which express either catabolic or anabolic factors. Also, on the level of the effector cells (i.e. chondrocytes anabolic and catabolic gene expression compete for a balance of matrix homeostasis, namely the synthesis of matrix components and the expression and activation of matrix-degrading proteases. Also, there are multiple layers of intracellular cross-talks in between the anabolic and catabolic signalling pathways. Maybe the most important lesson from this overview is the notion that the anabolic-catabolic balance as such counts and not so much sufficient net anabolism or limited catabolism alone. Thus, it might be neither the aim of osteoarthritis therapy to foster anabolism nor to knock down catabolism, but the balance of anabolic-catabolic activities as a total might need proper titration and balancing.

  12. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  13. Cartilage-derived extracellular matrix extract promotes chondrocytic phenotype in three-dimensional tissue culture.

    Science.gov (United States)

    Youngstrom, Daniel W; Cakstina, Inese; Jakobsons, Eriks

    2016-05-01

    Cell transplantation is a promising regenerative therapy for cartilage degeneration. However, obtaining sufficient numbers of cells for this purpose is a challenge, due a lack of autologous donor tissue and the difficulty of culturing chondrocytes in vitro. Tissue engineering strategies that induce or maintain chondrocytic phenotype may solve these problems by (1) broadening the range of available donor tissue, and (2) facilitating the expansion of these cells while controlling phenotypic drift. In this study, bone marrow-derived mesenchymal stem cells (MSCs) and cartilage-derived cells (CDCs) were cultured on composite hydrogels containing agarose and homogenized cartilage extracellular matrix (ECM). MSCs cultured on agarose-ECM scaffolds did not show significant signs of chondrogenic differentiation in the absence of additional cues. However, CDCs cultured on agarose-ECM scaffolds proliferated more rapidly than their ECM-free counterparts and MSCs, while retaining chondrocytic morphology. These results were corroborated via expression of cartilage marker genes: in autologous constructs, SOX 9 expression was upregulated by 12.6 ± 5.3-fold, and COL II was upregulated by 2.0 ± 0.3-fold. Agarose-ECM composite hydrogels are therefore useful for expanding partially differentiated CDCs for applications in regenerative medicine. PMID:25707441

  14. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix.

    Science.gov (United States)

    Zhu, Youjia; Wu, Hua; Sun, Shaofa; Zhou, Ting; Wu, Jingjing; Wan, Ying

    2014-08-01

    Collagen, chitosan-polycaprolactone (CH-PCL) copolymer with PCL content of around 40wt% and chondroitin sulfate (CS) were mixed together at various ratios to prepare collagen/CH-PCL/CS composites and the resulting composites were used to build stratified porous scaffolds that are potentially applicable for articular cartilage repair. The ternary composites were designed in such a way that collagen content in the scaffolds decreased from the top layer to the bottom layer while the content of CH-PCL and CS altered in a reversed trend in order to reach partial similarity to cartilage matrix in the composition of main components. Porous structures inside collagen/CH-PCL/CS scaffolds were constructed using a low-temperature deposition processing technique and graded average pore-size and porosity for the scaffolds were established. Such produced scaffolds were further crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide under optimized conditions, and the obtained scaffolds showed well-defined elastic compressive properties. Compressive modulus (E) and stress at 10% strain (σ10) of full scaffolds in wet state reached about 2.8MPa and 0.3MPa, respectively, and meanwhile, E and σ10 of layers inside hydrated scaffolds changed in a gradient-increased manner from the top layer to the bottom layer with significant differences between contiguous layers, which partially mimics compressive mechanical properties of cartilage matrix. In addition, in vitro culture of cell-scaffold constructs exhibited that scaffolds were able to well support the ingrowth and migration of seeded cells, and cells also showed relatively uniform distribution throughout the scaffolds. These results suggest that the presently developed collagen/CH-PCL/CS scaffolds have promising potential for applications in articular cartilage repair. PMID:24793172

  15. Effects of natural cartilaginous extracellular matrix on chondrogenic potential for cartilage cell transplantation.

    Science.gov (United States)

    Yang, W; Lee, S; Jo, Y H; Lee, K M; Nemeno, J G; Nam, B M; Kim, B Y; Jang, I J; Kim, H N; Takebe, T; Lee, J I

    2014-05-01

    Autologous chondrocyte transplantation (ACT) has been established to contribute cartilage regeneration over the past years; however, many obstacles need to be overcome. Recently, newer ACT technique involves cotransplantation of chondrocytes and biomaterial. Although various proposed intelligent biomaterials exist, many of them remain insufficient and controversial. In this study, we aimed to examine the effects of natural extracellular matrix (ECM) to the proliferation rate and differentiation on the chondrocytes. We first derived a natural ECM sheet from 10-μm-thick frozen sections of porcine knee cartilages. We then cultured the chondrocytes derived from a rabbit's knee on a dish precoated with the natural ECM. Then we assessed differentiation and chondrogenic potential of the cells compared with those grown in untreated culture dishes. We characterized the gene expression of chondrogenic markers, such as collagen type II, SOX-9, and aggrecan, as well as the level of ECM protein with the use of reverse-transcription polymerase chain reaction analysis. The cells cultured with the ECM sheet showed highest chondrogenic potential and differentiation. Therefore, we can induce good chondrogenesis by with the use of a natural ECM sheet on the culture dish. The readily available and easy-to-handle thin ECM sheets create an environment that promotes efficient cartilage regeneration. Our data suggest that this natural ECM scaffold improved the chondrogenic differentiation of the cells in vitro by providing a favorable microenvironment. PMID:24815172

  16. Comprehensive Profiling of Cartilage Extracellular Matrix Formation and Maturation Using Sequential Extraction and Label-free Quantitative Proteomics*

    OpenAIRE

    Wilson, Richard; Diseberg, Anders F.; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J.; Gorman, Jeffrey J.; Bateman, John F.

    2010-01-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture sy...

  17. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography

    OpenAIRE

    Palmer, Ashley W.; Guldberg, Robert E.; Levenston, Marc E.

    2006-01-01

    Small animal models of osteoarthritis are often used for evaluating the efficacy of pharmacologic treatments and cartilage repair strategies, but noninvasive techniques capable of monitoring matrix-level changes are limited by the joint size and the low radiopacity of soft tissues. Here we present a technique for the noninvasive imaging of cartilage at micrometer-level resolution based on detecting the equilibrium partitioning of an ionic contrast agent via microcomputed tomography. The appro...

  18. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV–DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering. (paper)

  19. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  20. Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics.

    Science.gov (United States)

    Wilson, Richard; Diseberg, Anders F; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J; Gorman, Jeffrey J; Bateman, John F

    2010-06-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage

  1. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    OpenAIRE

    M Pei; Li JT; Shoukry, M; Y Zhang

    2011-01-01

    Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the ...

  2. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  3. MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects.

    Directory of Open Access Journals (Sweden)

    Hossein Nejadnik

    Full Text Available OBJECTIVES: The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI in pig knee specimen. MATERIALS AND METHODS: Human mesenchymal stem cells (hMSCs were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls. Chondrogenic differentiation was induced and gene expression and histologic evaluation were performed. The proportions of spindle-shaped vs. round cells of chondrogenic pellets were compared between experimental groups using the Fisher's exact test. Labeled and unlabeled hMSCs and chondrocytes in scaffolds were implanted into cartilage defects of porcine femoral condyles and underwent MR imaging with T1- and T2-weighted SE and GE sequences. Contrast-to-noise ratios (CNR between implants and adjacent cartilage were determined and analyzed for significant differences between different experimental groups using the Kruskal-Wallis test. Significance was assigned for p0.017. However, hMSC differentiation into chondrocytes was superior for unlabeled and GadofluorineM-Cy-labeled cells compared with Ferucarbotran-labeled cells, as evidenced by a significantly higher proportion of spindle cells in chondrogenic pellets (p<0.05. GadofluorineM-Cy-labeled hMSCs and chondrocytes showed a positive signal effect on T1-weighted images and a negative signal effect on T2-weighted images while Ferucarbotran-labeled cells provided a negative signal effect on all sequences. CNR data for both GadofluorineM-Cy-labeled and Ferucarbotran-labeled hMSCs were significantly different compared to unlabeled control cells on T1-weighted SE and T2*-weighted MR images (p<0.017. CONCLUSION: hMSCs can be labeled by simple incubation with GadofluorineM-Cy. The labeled cells provide significant MR signal effects and less impaired chondrogenesis compared to Ferucarbotran-labeled h

  4. Value of Entheseal Ultrasonography and Serum Cartilage Oligomeric Matrix Protein in the Preclinical Diagnosis of Psoriatic Arthritis

    Directory of Open Access Journals (Sweden)

    Moataz Mohammed Samy Elbeblawy

    2010-03-01

    Full Text Available Objective: To evaluate the utility of entheseal ultrasonography and serum COMP in the preclinical diagnosis of psoriatic arthritis. Methods: 60 psoriatic patients were divided into: 30 patients with psoriasis (group I and 30 patients with psoriatic arthritis as control (group II. They underwent independent clinical and ultrasonographic examination of both lower limbs at the calcaneal insertions of Achilles tendons. Psoriatic arthritis disease activity and severity was assessed by modified DAS28 and Steinbrockers scores. Serum levels of COMP were measured for all patients by ELISA. Results: On clinical examination, no entheseal abnormalities were detected in group I while they were present in 23.3% of group II with statistically significant difference between them (P 0.05. Serum COMP were significantly elevated in group I and II with no statistically significant difference between them (mean ± SD 5.9 ± 3 and 6.8 ± 12 respectively, P > 0.05. Entheseal ultrasound was more specific (67% while serum COMP was more sensitive (87% in the preclinical diagnosis of psoriatic arthritis. Serum COMP levels were significantly correlated with CRP in both groups and with DAS28 and Steinbrockers scores in group II (P < 0.01. Conclusion: Entheseal ultrasonography and serum COMP levels may be used complementary to each other for preclinical diagnosis of psoriatic arthritis. Serum COMP seems to be promising prognostic marker for psoriatic arthritis patients.

  5. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla-Preliminary results

    International Nuclear Information System (INIS)

    Objectives: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. Material and Methods: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. Results: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p < 0.05). There was a decrease between the earlier and the later time point after surgery. Conclusions: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment

  6. Olefin oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Long, G.N.; Pellet, R.J.; Rabo, J.A.

    1986-09-16

    The process is described for the oligomerization of linear and/or branched chain C/sub 2/ to C/sub 12/ olefins which comprises contacting the olefins at effective process conditions for the oligomerization with an oligomerization catalyst comprising at least one molecular sieve selected from the group consisting of FAPO, TAPO and MeAPO characterized by an adsorption of triethylamine less than 5 percent by weight at a pressure of 2.6 torr and a temperature of 22/sup 0/C.

  7. Cartilage metabolism in the injured and uninjured knee of the same patient.

    OpenAIRE

    Dahlberg, L; Roos, H; Saxne, T.; Heinegård, D; Lark, M W; Hoerrner, L A; Lohmander, L.S.

    1994-01-01

    OBJECTIVE--To examine if unilateral knee injury affects the synovial fluid concentrations of aggrecan fragments, cartilage oligomeric matrix protein (COMP) fragments, stromelysin-1, and tissue inhibitor of metalloproteinases-1 (TIMP-1) in the contralateral uninjured knee. METHODS--Synovial fluids from the injured and uninjured knees were obtained at different times in a group of patients after unilateral knee trauma. Serum samples were obtained on the same occasion. Concentrations of aggrecan...

  8. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  9. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    International Nuclear Information System (INIS)

    The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (∝50 ms), T2* relaxation times (∝16 ms), and the diffusion constant for DWI (∝1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p≥0.05) compared to the control cartilage; however, a significantly higher diffusivity (∝1.5; p<0.05) was noted in the cartilage repair tissue. The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences. (orig.)

  10. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Nehrer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.nehrer@meduniwien.ac.at; Domayer, S. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Dorotka, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Schatz, K. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bindreiter, U. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kotz, R. [Department of Orthopedics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Repair of articular cartilage represents a significant clinical problem and although various new techniques - including the use of autologous chondrocytes - have been developed within the last century the clinical efficacy of these procedures is still discussed controversially. Although autologous chondrocyte transplantation (ACT) has been widely used with success, it has several inherent limitations, including its invasive nature and problems related to the use of the periosteal flap. To overcome these problems autologous chondrocytes transplantation combined with the use of biodegradable scaffolds has received wide attention. Among these, a hyaluronan-based scaffold has been found useful for inducing hyaline cartilage regeneration. In the present study, we have investigated the mid-term efficacy and safety of Hyalograft[reg] C grafts in a group of 36 patients undergoing surgery for chronic cartilage lesions of the knee. Clinical Outcome was assessed prospectively before and at 12, 24, and 36 months after surgery. No major adverse events have been reported during the 3-year follow-up. Significant improvements of the evaluated scores were observed (P < 0.02) at 1 year and a continued increase of clinical performance was evident at 2 and 3 years follow-up. Patients under 30 years of age with single lesions showed statistically significant improvements at all follow-up visits compared to those over 30 with multiple defects (P < 0.01). Hyalograft[reg] C compares favorably with classic ACT and is particularly indicated in younger patients with single lesions. The graft can be implanted through a miniarthrotomy and needs no additional fixation with sutures except optional fibrin gluing at the defect borders. These results suggest that Hyalograft[reg] C is a valid alternative to ACT.

  11. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H;

    2006-01-01

    explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... vivo in CK null mice. CONCLUSION: Inhibition of MMP activity reduced both proteoglycan loss and type II collagen degradation. In contrast, inhibition of cysteine proteases resulted in an increase rather than a decrease in MMP derived fragments of collagen type II degradation, CTX-II, suggesting altered...

  12. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  13. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  14. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNF{alpha} inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick;

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... growth factor (VEGF)), cartilage (C-terminal crosslinking telopeptide of type II collagen (CTX-II), matrix metalloproteinase-3 (MMP-3), total aggrecan, cartilage oligomeric matrix protein) and bone (C-terminal crosslinking telopeptide of type I collagen, osteocalcin) turnover in 60 patients with axial...

  15. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFα inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick;

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... growth factor (VEGF)), cartilage (C-terminal crosslinking telopeptide of type II collagen (CTX-II), matrix metalloproteinase-3 (MMP-3), total aggrecan, cartilage oligomeric matrix protein) and bone (C-terminal crosslinking telopeptide of type I collagen, osteocalcin) turnover in 60 patients with axial...

  16. MMP Induction by Relaxin Causes Cartilage Matrix Degradation in Target Synovial Joints: Receptor Profiles Correlate with Matrix Turnover

    OpenAIRE

    Kapila, Sunil; Wang, Wei; Uston, Karen

    2009-01-01

    Our long-term goal is to understand the mechanisms by which relaxin and estrogen potentially contribute to joint diseases particularly those afflicting the fibrocartilaginous temporomandibular joint (TMJ). Previously, we showed that relaxin produces a dose-dependent induction of tissue degrading enzymes of the matrix metalloproteinase (MMP) family, specifically MMP-1 (collagenase-1), −3 (stromelysin-1), −9 (92-kDa-gelatinase) and −13 (collagenase-3) in cell isolates and tissue explants from T...

  17. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. (Osaka Univ. (Japan))

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  18. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  19. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers.

    Science.gov (United States)

    Lavrijsen, Ineke C M; Leegwater, Peter A J; Martin, Alan J; Harris, Stephen J; Tryfonidou, Marianna A; Heuven, Henri C M; Hazewinkel, Herman A W

    2014-01-01

    Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs) in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2) statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (phip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia. PMID:24498183

  20. Influence of cartilage interstitial fluid on the mRNA levels of matrix proteins, cytokines, metalloproteases and their inhibitors in synovial membrane.

    Science.gov (United States)

    Hyc, Anna; Moskalewski, Stanislaw; Osiecka-Iwan, Anna

    2016-09-01

    Articular cartilage and the synovial membrane both ensure the smooth action of synovial joints; however, the influence of chondrocytes on synovial metabolism remains unclear. The secretory activity of chondrocytes is usually studied in cell cultures and may differ from that in intact cartilage. According to McCutchen's theory of 'weeping' joint lubrication, loading of the articular cartilage during motion squeezes the fluid with lubricating properties from the cartilage. The purpose of the study was to obtain cartilage interstitial fluid (CIF) from intact cartilage and to evaluate its influence on gene expression in the synovial membrane cells. CIF was rinsed out from the cartilage of newborn rats at a pressure of three bar. The chondrocytes survived rinsing and grew in culture. Cytokines in CIF were detected using the enzyme-linked immunosorbent assay (ELISA). The influence of CIF and CIF-like cocktail (all cytokines found in CIF) on gene expression in the synovial membrane cells was studied after a 4 h-incubation, by real-time PCR. Data were analyzed using the Wilcoxon matched-pair test or by the Mann‑Whitney U test. CIF contained basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)‑1, transforming growth factor β1 (TGFβ1), bone morphogenetic protein 7 (BMP7), macrophage (M)-colony-stimulating factor (CSF), granulocyte (G)-CSF and leukemia inhibitory factor (LIF). CIF stimulated the expression of hyaluronan synthase (HAS)1 and 2, lubricin, collagen I, versican, aggrecan, matrix metalloproteinases (MMPs)2 and 3, tissue inhibitors of metalloproteinases (TIMPs) 1-3, interleukin (IL)-6 and TGFβ1, and decreased the expression of tumor necrosis factor (TNF) and IL-1β. Incubation of the synovial membrane with CIF-like cocktail partially imitated the effects of CIF. Analysis of CIF composition may help to characterize the secretory activity of chondrocytes in their natural environment under various physiological and

  1. Assessment of cartilage repair after chondrocyte transplantation with a fibrin-hyaluronan matrix – Correlation of morphological MRI, biochemical T2 mapping and clinical outcome

    International Nuclear Information System (INIS)

    Objective: To evaluate change over time of clinical scores, morphological MRI of cartilage appearance and quantitative T2 values after implantation with BioCart™II, a second generation matrix-assisted implantation system. Methods: Thirty-one patients were recruited 6–49 months post surgery for cartilage defect in the femoral condyle. Subjects underwent MRI (morphological and T2-mapping sequences) and completed the International Knee Documentation Committee (IKDC) questionnaire. MRI scans were scored using the MR Observation of Cartilage Repair Tissue (MOCART) system and cartilage T2-mapping values were registered. Analysis included correlation of IKDC scores, MOCART and T2 evaluation with each other, with implant age and with previous surgical intervention history. Results: IKDC score significantly correlated with MOCART score (r = −0.39, p = 0.031), inversely correlated with previous interventions (r = −0.39, p = 0.034) and was significantly higher in patients with longer follow-up time (p = 0.0028). MOCART score was slight, but not significantly higher in patients with longer term implants (p = 0.199). T2 values were significantly lower in patients with longer duration implants (p < 0.001). This trend was repeated in patients with previous interventions, although to a lesser extent. Conclusions: Significant improvement with time from BioCart™II implantation can be expected by IKDC scoring and MRI T2-mapping values. Patients with previous knee operations can also benefit from this procedure.

  2. Transcriptomic profiling of cartilage ageing

    OpenAIRE

    Mandy Jayne Peffers; Xuan Liu; Peter David Clegg

    2014-01-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older dono...

  3. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers.

    Directory of Open Access Journals (Sweden)

    Ineke C M Lavrijsen

    Full Text Available Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2 statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001. Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia.

  4. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: Results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus

    International Nuclear Information System (INIS)

    Aim: To assess cartilage quality using delayed gadolinium-enhanced magnetic resonance imaging after repair of osteochondral lesions of the talus using autologous matrix-induced chondrogenesis (AMIC). Materials and methods: A three-dimensional (3D) spoiled gradient-echo (SGE) sequence at 3 T was used to obtain quantitative T1 relaxation times before and after Gd-DTPA2 (Magnevist, 0.2 mM/kg bod weight) administration to assess 23 cases of AMIC-aided repair of osteochondral lesions of the talus. Delta relaxation rates (ΔR1) for reference cartilage (RC) and repair tissue (RT), and the relative delta relaxation rate (rΔR1) were calculated. The morphological appearance of the cartilage RT was graded on sagittal dual-echo steady-state (DESS) views according to the “magnetic resonance observation of cartilage repair tissue” (MOCART) protocol. The study was approved by the institutional review board and written consent from each patient was obtained. Results: The AMIC cases had a mean T1 relaxation time of 1.194 s (SD 0.207 s) in RC and 1.470 s (SD 0.384 s) in RT before contrast medium administration. The contrast-enhanced T1 relaxation time decreased to 0.480 s (SD 0.114 s) in RC and 0.411 s (SD 0.096 s) in RT. There was a significant difference (p > 0.05) between the ΔR1 in RC (1.372 × 10−3/s, range 0.526–3.201 × 10−3/s, SD 0.666 × 10−3/s) and RT (1.856 × 10−3/s, range 0.93–3.336 × 10−3/s, SD 0.609 × 10−3/s). The mean rΔR1 was 1.49, SD 0.45). The mean MOCART score at follow-up was 62.6 points (range 30–95, SD 15.3). Conclusion: The results of the present study suggest that repair cartilage resulting from AMIC-aided repair of osteochondral lesions of the talus has a significantly lower glycosaminoglycan (GAG) content than normal hyaline cartilage, but can be regarded as having hyaline-like properties

  5. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  6. Trekking poles reduce downhill walking-induced muscle and cartilage damage in obese women.

    Science.gov (United States)

    Cho, Su Youn; Roh, Hee Tae

    2016-05-01

    [Purpose] This study investigated the effect of the use of trekking poles on muscle and cartilage damage and fatigue during downhill walking in obese women. [Subjects and Methods] Subjects included eight obese women who had a body fat percentage greater than 30. Subjects performed downhill walking without a trekking pole (NP) and with a trekking pole (TP) at 50% heart rate reserve for 30 minutes on a treadmill. The treadmill was set at a 15% downhill declination. Blood samples were collected to examine muscle damage (serum creatine kinase [CK] and lactate dehydrogenase [LDH] levels), cartilage damage (serum cartilage oligomeric matrix protein [COMP] levels), and fatigue (plasma lactate levels) at the pre-walking baseline (PWB), immediately after walking (IAW), and 2 hours post-walking (2HPW). [Results] The CK, LDH, COMP, and lactate levels were significantly increased IAW when compared with those at the PWB in both trials. In addition, in the NP trial, the CK, LDH, and COMP levels were significantly increased at 2HPW when compared with those at the PWB. [Conclusion] Downhill walking can cause muscle and cartilage damage, and our results suggest that the use of a trekking pole can reduce temporary muscle and cartilage damage after downhill walking. PMID:27313374

  7. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering

    Science.gov (United States)

    Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong

    2015-12-01

    Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation

  8. Persistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR

    Science.gov (United States)

    Amano, Keiko; Pedoia, Valentina; Su, Favian; Souza, Richard B.; Li, Xiaojuan; Ma, C. Benjamin

    2016-01-01

    Background: The effectiveness of anterior cruciate ligament (ACL) reconstruction in preventing early osteoarthritis is debated. Restoring the original biomechanics may potentially prevent degeneration, but apparent pathomechanisms have yet to be described. Newer quantitative magnetic resonance (qMR) imaging techniques, specifically T1ρ and T2, offer novel, noninvasive methods of visualizing and quantifying early cartilage degeneration. Purpose: To determine the tibiofemoral biomechanical alterations before and after ACL reconstruction using magnetic resonance imaging (MRI) and to evaluate the association between biomechanics and cartilage degeneration using T1ρ and T2. Study Design: Cohort study; Level of evidence, 2. Methods: Knee MRIs of 51 individuals (mean age, 29.5 ± 8.4 years) with unilateral ACL injuries were obtained prior to surgery; 19 control subjects (mean age, 30.7 ± 5.3 years) were also scanned. Follow-up MRIs were obtained at 6 months and 1 year. Tibial position (TP), internal tibial rotation (ITR), and T1ρ and T2 were calculated using an in-house Matlab program. Student t tests, repeated measures, and regression models were used to compare differences between injured and uninjured sides, observe longitudinal changes, and evaluate correlations between TP, ITR, and T1ρ and T2. Results: TP was significantly more anterior on the injured side at all time points (P < .001). ITR was significantly increased on the injured side prior to surgery (P = .033). At 1 year, a more anterior TP was associated with elevated T1ρ (P = .002) and T2 (P = .026) in the posterolateral tibia and with decreased T2 in the central lateral femur (P = .048); ITR was associated with increased T1ρ in the posteromedial femur (P = .009). ITR at 6 months was associated with increased T1ρ at 1 year in the posteromedial tibia (P = .029). Conclusion: Persistent biomechanical alterations after ACL reconstruction are related to significant changes in cartilage T1ρ and T2 at 1 year

  9. Knee cartilage quality assessed with dGEMRIC in rheumatoid arthritis patients before and after treatment with a TNF inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Tiderius, Carl Johan; Dahlberg, Leif E. (Dept. of Orthopedics, Malmoe Univ. Hospital, Lund Univ., Malmoe (Sweden)), e-mail: carl-johan.tiderius@skane.se; Svensson, Jonas (Dept. of Radiation Physics, Malmoe Univ. Hospital, Lund Univ., Malmoe (Sweden)); Sandin, Joakim; Jacobsson, Lennart (Dept. of Rheumatology, Malmoe Univ. Hospital, Lund Univ., Malmoe (Sweden))

    2010-11-15

    Background: TNF-a inhibitors are potent anti-inflammatory drugs that have revolutionized the treatment of rheumatoid arthritis (RA). Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is a non-invasive method to study cartilage quality, in particular the glycosaminoglycan (GAG) content. Purpose: To evaluate knee cartilage quality before and after treatment with a TNF-a inhibitor (infliximab) in patients with RA using dGEMRIC and to study clinical parameters and serum cartilage oligomeric protein (COMP) after the same treatment. Material and Methods: Seven patients with chronic RA received infusions of 3 mg/kg infliximab at weeks 0, 2, 6, 14, and 22. Clinical examination, serum COMP level, and dGEMRIC scans (1.5 T) were performed at baseline and after 7 months. The dGEMRIC index (ms), reflecting cartilage GAG content, was calculated using an inversion recovery sequence in the femoral weight-bearing cartilage. Seven years after treatment, charts were reviewed regarding joint replacement surgery (T{sub k}A). Results: Clinical parameters showed an improvement for all patients after the 7-month treatment period. Serum COMP decreased from 13+-4.5 to 11+-3.4 (mug, mean +- SD) mug/ml (P<0.05). The dGEMRIC index was lower at follow-up than at baseline, 332+-85 and 382+-69 (ms, mean +- SD), respectively (P<0.05), indicating loss of GAG. The two patients with the lowest dGEMRIC index had received a T{sub k}A 7 years after treatment. Conclusion: This longitudinal study indicates a substantial GAG loss from the knee cartilage matrix in patients with chronic RA. Treatment with infliximab does not seem to protect the cartilage from further deterioration despite improvements in clinical parameters and decreased serum COMP

  10. The effects of sodium hyaluronate on mRNA expressions of matrix metalloproteinase-1,-3 and tissue inhibitor of metalloproteinase-1 in cartilage and synovium of traumatic osteoarthritis model

    Institute of Scientific and Technical Information of China (English)

    邱波; 刘世清; 彭昊; 王海斌

    2005-01-01

    Objective: To observe the influence of intra-articular injection of sodium hyaluronate (HA) on the mRNA expressions of matrix metalloproteinase-1,-3 (MMP-1,-3) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in cartilage and synovium of traumatic osteoarthritis (OA).Methods: Sixteen white rabbits underwent unilateral anterior cruciate ligament transection (ACLT) were divided into 2 groups randomly 5 weeks after transection. The experimental group rabbits received 0.3 ml of 1% HA by intra-articular injection once a week. Animals in the control group were treated under the same conditions using physiological saline. Ten weeks following surgery, cartilage and synovium were harvested. The mRNA expressions of MMP-1, MMP-3 and TIMP-1 were analyzed using reverse transcription-polymerase chain reaction (RT-PCR).Results: In synovium, the mRNA expression of MMP-3 was suppressed in the HA injection group. HA treatment had no effect on the MMP-3 expression in cartilage. No significant difference of MMP-1 and TIMP-1 expressions in cartilage and synovium was found between the HA injection group and the control group.Conclusions: One of the mechanisms of the therapeutic effect of HA may be the inhibition of expression of MMP-3 in synovium during early stage of traumatic OA.

  11. Magnetic resonance imaging of articular cartilage at 3 tesla

    International Nuclear Information System (INIS)

    Smooth motor function can be maintained by articular cartilage. When the cartilage is injured, edema occurs, and as degeneration progresses, the cartilage thins and the cartilage matrix decreases. Magnetic resonance (MR) imaging allows noninvasive evaluation of these changes. Fat suppression proton density- and T2-weighted imaging are useful in the morphologic evaluation of articular cartilage. High resolution, 3-tesla MR imaging provides more detailed evaluation. Biochemical information from T2 mapping, T1ρ mapping, and delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) is useful for early diagnosis of cartilage injury and evaluation of cartilage repair. The role of MR imaging in evaluating articular cartilage will increase in the future aging society. (author)

  12. Engineered cartilage covered ear implants for auricular cartilage reconstruction.

    Science.gov (United States)

    Lee, Sang Jin; Broda, Christopher; Atala, Anthony; Yoo, James J

    2011-02-14

    Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement. PMID:21182236

  13. Transcriptomic profiling of cartilage ageing.

    Science.gov (United States)

    Peffers, Mandy Jayne; Liu, Xuan; Clegg, Peter David

    2014-12-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386). PMID:26484061

  14. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  15. Arthrosonography and biomarkers in the evaluation of destructive knee cartilage osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Živanović Sandra

    2009-01-01

    Full Text Available Introduction. Knee osteoarthrosis (OA is a degenerative disease with progressive loss of cartilage of joints and bone destruction. During this process, the release of fragments of connective tissue matrix is detected in the biological fluids such as human cartilage glycoprotein (YKL-40, cartilage oligomeric matrix protein (COMP and collagen type I C terminal telopeptid (CTX-I. Objective. The aim of the study was to determine the degree of connection cartilage thickness measured by ultrasound with serum concentrations of biomarkers YKL-40, COMP and CTX-I in patients with primary knee OA. Methods. The analysis included 88 patients with the diagnosis of knee OA. Ultrasound examination of knees were done by two rheumatologists. The analysis of serum samples determined the concentration of COMP, YKL-40 and CTX-I by the ELISA method. Results. The average age of patients was 69.97±9.37 years and the duration of knee OA 6.46±6.73 years. The average cartilage thickness of the femoral condyle was 1.33±0.20 mm; of the medial condyle (MC (front access 1.30±0.23 mm, (rear access 1.30±0.29 mm and lateral condyli (LC (front access 1.39±0.27 mm. The average cartilage thickness of MC (front access was 1.27 mm (0.98-1.42 mm, (rear access 1.27 mm (0.84-1.46 mm and LC (front access 1.36 mm (1.01-1.57 mm (p=0.002. There was a significant connection in the negative direction between the patients' age and the cartilage thickness of MC (front and rear access and LC (front access (r=-0.253; p=0.017. There was a significant negative direction of interrelationship between the cartilage thickness of MC (front access (r=-0.259; p=0.015 and LC (front access and the disease duration (r=-0.259; p=0.015. In patients with knee OA lasting for 5 years the measured cartilage thickness was 1.27 mm (1.16-1.49 mm, and 0.99 mm (0.94-1.23 mm (p=0.007 in those lasting for 20 years. There was a significant relationship in a negative direction between the concentration of YKL-40 and

  16. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage [v1; ref status: indexed, http://f1000r.es/1cl

    Directory of Open Access Journals (Sweden)

    Abigail L Clutterbuck

    2013-07-01

    Full Text Available Objective: Curcumin (diferuloylmethane is a phytochemical with potent anti-inflammatory and anti-oxidant properties, and has therapeutic potential for the treatment of a range of inflammatory diseases, including osteoarthritis (OA. The aim of this study was to determine whether non-toxic concentrations of curcumin can reduce interleukin-1beta (IL-1β-stimulated inflammation and catabolism in an explant model of cartilage inflammation. Methods: Articular cartilage explants and primary chondrocytes were obtained from equine metacarpophalangeal joints. Curcumin was added to monolayer cultured primary chondrocytes and cartilage explants in concentrations ranging from 3μM-100μM. Prostaglandin E2 (PGE2 and matrix metalloproteinase (MMP-3 release into the secretome of IL-1β-stimulated explants was measured using a competitive ELISA and western blotting respectively. Proteoglycan (PG release in the secretome was measured using the 1,9-dimethylmethylene blue (DMMB assay. Cytotoxicity was assessed with a live/dead assay in monolayer cultures after 24 hours, 48 hours and five days, and in explants after five days. Results: Curcumin induced chondrocyte death in primary cultures (50μM p<0.001 and 100μM p<0.001 after 24 hours. After 48 hours and five days, curcumin (≥25μM significantly increased cell death (p<0.001 both time points. In explants, curcumin toxicity was not observed at concentrations up to and including 25μM after five days. Curcumin (≥3μM significantly reduced IL-1β-stimulated PG (p<0.05 and PGE2 release (p<0.001 from explants, whilst curcumin (≥12μM significantly reduced MMP-3 release (p<0.01. Conclusion: Non-cytotoxic concentrations of curcumin exert anti-catabolic and anti-inflammatory effects in cartilage explants.

  17. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage [v2; ref status: indexed, http://f1000r.es/1ks

    Directory of Open Access Journals (Sweden)

    Abigail L Clutterbuck

    2013-08-01

    Full Text Available Objective: Curcumin (diferuloylmethane is a phytochemical with potent anti-inflammatory and anti-oxidant properties, and has therapeutic potential for the treatment of a range of inflammatory diseases, including osteoarthritis (OA. The aim of this study was to determine whether non-toxic concentrations of curcumin can reduce interleukin-1beta (IL-1β-stimulated inflammation and catabolism in an explant model of cartilage inflammation. Methods: Articular cartilage explants and primary chondrocytes were obtained from equine metacarpophalangeal joints. Curcumin was added to monolayer cultured primary chondrocytes and cartilage explants in concentrations ranging from 3μM-100μM. Prostaglandin E2 (PGE2 and matrix metalloproteinase (MMP-3 release into the secretome of IL-1β-stimulated explants was measured using a competitive ELISA and western blotting respectively. Proteoglycan (PG release in the secretome was measured using the 1,9-dimethylmethylene blue (DMMB assay. Cytotoxicity was assessed with a live/dead assay in monolayer cultures after 24 hours, 48 hours and five days, and in explants after five days. Results: Curcumin induced chondrocyte death in primary cultures (50μM p<0.001 and 100μM p<0.001 after 24 hours. After 48 hours and five days, curcumin (≥25μM significantly increased cell death (p<0.001 both time points. In explants, curcumin toxicity was not observed at concentrations up to and including 25μM after five days. Curcumin (≥3μM significantly reduced IL-1β-stimulated PG (p<0.05 and PGE2 release (p<0.001 from explants, whilst curcumin (≥12μM significantly reduced MMP-3 release (p<0.01. Conclusion: Non-cytotoxic concentrations of curcumin exert anti-catabolic and anti-inflammatory effects in cartilage explants.

  18. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical propertie

  19. Controlled-Potential Electromechanical Reshaping of Cartilage.

    Science.gov (United States)

    Hunter, Bryan M; Kallick, Jeremy; Kissel, Jessica; Herzig, Maya; Manuel, Cyrus; Protsenko, Dmitri; Wong, Brian J F; Hill, Michael G

    2016-04-25

    An alternative to conventional "cut-and-sew" cartilage surgery, electromechanical reshaping (EMR) is a molecular-based modality in which an array of needle electrodes is inserted into cartilage held under mechanical deformation by a jig. Brief (ca. 2 min) application of an electrochemical potential at the water-oxidation limit results in permanent reshaping of the specimen. Highly sulfated glycosaminoglycans within the cartilage matrix provide structural rigidity to the tissue through extensive ionic-bonding networks; this matrix is highly permselective for cations. Our studies indicate that EMR results from electrochemical generation of localized, low-pH gradients within the tissue: fixed negative charges in the proteoglycan matrix are protonated, resulting in chemically induced stress relaxation of the tissue. Re-equilibration to physiological pH restores the fixed negative charges, and yields remodeled cartilage that retains a new shape approximated by the geometry of the reshaping jig. PMID:27059655

  20. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  1. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  2. Oligomerization of daptomycin on membranes.

    Science.gov (United States)

    Muraih, Jawad K; Pearson, Andre; Silverman, Jared; Palmer, Michael

    2011-04-01

    Daptomycin is a lipopeptide antibiotic that kills Gram-positive bacteria by membrane depolarization. While it has long been assumed that the mode of action of daptomycin involves the formation of membrane-associated oligomers, this has so far not been experimentally demonstrated. We here use FRET between native daptomycin and an NBD-labeled daptomycin derivative to show that such oligomerization indeed occurs. The oligomers are observed in the presence of calcium ions on membrane vesicles isolated from Bacillus subtilis, as well as on model membranes containing the negatively charged phospholipid phosphatidylglycerol. In contrast, oligomerization does not occur on membranes containing phosphatidylcholine only, nor in solution at micromolar daptomycin concentrations. The requirements for oligomerization of daptomycin resemble those previously reported for antibacterial activity, suggesting that oligomerization is necessary for the activity. PMID:21223947

  3. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    Science.gov (United States)

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  4. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  5. Lubricin reduces cartilage--cartilage integration.

    Science.gov (United States)

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  6. 松质骨基质复合生物蛋白胶构建组织工程软骨的研究%Construction Tissue-Engineered Cartilage Using Bone Matrix Gelatin and Biological Fibrin Glue

    Institute of Scientific and Technical Information of China (English)

    王正辉; 常会敏; 吴宝俊; 杨壮群; Kamal Mustafa; 卢晓云

    2012-01-01

    目的 尝试采用松质骨基质与生物蛋白胶复合材料构建组织工程软骨.方法 体外培养大鼠软骨细胞,接种于松质骨基质/生物蛋白胶材料上行体外培养、采用HE、甲苯胺蓝染色免疫学检测、扫描电镜观察等方法观察所构建的组织工程软骨的特性.结果 松质骨基质/生物蛋白胶组的组织学结构更接近于软骨样组织,其Ⅱ型胶原、蛋白多糖基因表达量及蛋白多糖含量明显高于松质骨基质组.结论 松质骨基质/生物蛋白胶复合材料可用于构建组织工程软骨, 是一种较理想的支架材料.%Objective To explore the feasibility of the construction of tissue-engineered cartilage using hybrid scaffolds of demineralized bone matrix gelatin (BMG) and fibrin glue. Methods Rattus chottdroeytes were cultured on hybrid BMG/ fibrin glue scaffolds (BMG/fibrin glue group) and BMG scaffolds (HMG group) in vitro. Engineered cartilage-like tissue grown on the scaffolds was characterized by histological observation, immunological examination, scanning electron microscopy, hinchemioiil assays and unatysis of gene expression. Results The presence of proteoglycan was confirmed by positive (oluidiiie blue in BMG/fibrin glue group, compared with BMG group. Collagen type Ⅱ exhibited intense immuno-positivity at the peri-cellular matrices in BMC/fibrin glue group, compared with BMG group. The expression of collagen type Ⅱ had no signifiranl difference between BMG/fibrin glue group and BMG group (p>0.05), while the expression of aggrecan core protein in BMG/fibrin glue group was higher than that in BMG group (P<0.05). The glyrusamlnog]yean production and hycjroxyproline content of BMG/fibrin glue group were higher than that of BMG group (P<0.05). Conclusion The fibrin/BMG hybrid scaffolds may serve as a potential celt delivery vehicle and a ^trurtural basis for cartilage tissue engineering.

  7. Cartilage Tissue Engineering: What Have We Learned in Practice?

    Science.gov (United States)

    Doran, Pauline M

    2015-01-01

    Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort. PMID:26445827

  8. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  9. Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1β-Induced MMP-2 Expression in Equine Chondrocyte Culture

    OpenAIRE

    Tangyuenyong, Siriwan; Viriyakhasem, Nawarat; Peansukmanee, Siriporn; Kongtawelert, Prachya; Ongchai, Siriwan

    2014-01-01

    Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant cultu...

  10. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  11. Cartilage conduction hearing.

    Science.gov (United States)

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Yamanaka, Toshiaki; Levitt, Harry

    2014-04-01

    Sound information is known to travel to the cochlea via either air or bone conduction. However, a vibration signal, delivered to the aural cartilage via a transducer, can also produce a clearly audible sound. This type of conduction has been termed "cartilage conduction." The aural cartilage forms the outer ear and is distributed around the exterior half of the external auditory canal. In cartilage conduction, the cartilage and transducer play the roles of a diaphragm and voice coil of a loudspeaker, respectively. There is a large gap between the impedances of cartilage and skull bone, such that cartilage vibrations are not easily transmitted through bone. Thus, these methods of conduction are distinct. In this study, force was used to apply a transducer to aural cartilage, and it was found that the sound in the auditory canal was amplified, especially for frequencies below 2 kHz. This effect was most pronounced at an application force of 1 N, which is low enough to ensure comfort in the design of hearing aids. The possibility of using force adjustments to vary amplification may also have applications for cell phone design. PMID:25234994

  12. Cartilage Engineering and Microgravity

    Science.gov (United States)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  13. MRI of the cartilage

    International Nuclear Information System (INIS)

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  14. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  15. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  16. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  17. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  18. Colonies in engineered articular cartilage express superior differentiation.

    Science.gov (United States)

    Selvaratnam, L; Abd Rahim, S; Kamarul, T; Chan, K Y; Sureshan, S; Penafort, R; Ng, C L L

    2005-07-01

    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans. PMID:16381284

  19. Matrilin-3 Role in Cartilage Development and Osteoarthritis.

    Science.gov (United States)

    Muttigi, Manjunatha S; Han, Inbo; Park, Hun-Kuk; Park, Hansoo; Lee, Soo-Hong

    2016-01-01

    The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis. PMID:27104523

  20. Computational model for the analysis of cartilage and cartilage tissue constructs.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  1. Computational model for the analysis of cartilage and cartilage tissue constructs

    Science.gov (United States)

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  2. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D.L.

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  3. Use of Environmental and Physical Stimuli in Cartilage Tissue Engineering Engineering

    OpenAIRE

    Das, Ruud

    2014-01-01

    markdownabstract__Abstract__ Articular cartilage enables friction-free, and thus painless, joint movement, while also functioning as a shock absorber. Although articular cartilage is made up of only few main components, natural healing fails to re-establish the native organization of the extracellular matrix and surgical intervention has only limited success in long term follow up. The relatively simple composition of articular cartilage, combined with a high prevalence of damage, make it an ...

  4. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies. PMID:27566509

  5. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  6. Spatially resolved elemental distributions in articular cartilage

    International Nuclear Information System (INIS)

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network

  7. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  8. Secondary Metabolites in Durian Seeds: Oligomeric Proanthocyanidins

    Directory of Open Access Journals (Sweden)

    Yuancai Liu

    2013-11-01

    Full Text Available Ethanolic extract of durian seeds was fractionated by reverse phase flash column chromatography and the fractions characterized by electrospray ionization mass spectroscopy. Among a few unknown compounds collected, oligomeric proanthocyanidins (OPCs were found to be one of the main compounds. Based on this result, the OPCs were purified the first time from the durian seeds using standard procedures and gave a yield of 1.8 mg/g dry matter after fractionation by Sephadex LH-20 column. Structural analysis by 13C{1H} NMR and ESI-MS spectra showed the presence of primarily B-type procyanidins with mainly epicatechin as the extension units, which was further verified by matrix assisted laser desorption/ionization–time of flight mass spectra (MALDI-TOF MS, which shows a distribution of dimers to decamers. In addition, hydroxylated peaks with molecular weight 16 units more than the poly-epicatechins represented significant peaks. We suggest this might be due to hydroxylation occurring under the MALDI-TOF MS conditions. Consistently, depolymerization with α-toluenethiol resulted in epicatechin thioether as the major product, but undetectable amount of gallocatechin or its α-toluenethiol derivatives. The oligomershave a mean degree of polymerization of 7.30.

  9. In Vitro Engineering of High Modulus Cartilage-Like Constructs.

    Science.gov (United States)

    Finlay, Scott; Seedhom, Bahaa B; Carey, Duane O; Bulpitt, Andy J; Treanor, Darren E; Kirkham, Jennifer

    2016-04-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  10. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    Science.gov (United States)

    Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  11. Chondroptosis in alkaptonuric cartilage.

    Science.gov (United States)

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio; Santucci, Annalisa

    2015-05-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. PMID:25336110

  12. Fracture of articular cartilage.

    Science.gov (United States)

    Chin-Purcell, M V; Lewis, J L

    1996-11-01

    Crack formation and propagation is a significant element of the degeneration process in articular cartilage. In order to understand this process, and separate the relative importance of structural overload and material failure, methods for measuring the fracture toughness of cartilage are needed. In this paper, two such methods are described and used to measure fracture properties of cartilage from the canine patella. A modified single edge notch (MSEN) specimen was used to measure J, and a trouser tear test was used to measure T, both measures of fracture toughness with units of kN/m. A pseudo-elastic modulus was also obtained from the MSEN test. Several potential error sources were examined, and results for the MSEN test compared with another method for measuring the fracture parameter for urethane rubber. Good agreement was found. The two test methods were used to measure properties of cartilage from the patellae of 12 canines: 4-9 specimens from each of 12 patellae, with 5 right-left pairs were tested. Values of J ranged from 0.14-1.2 kN/m. J values correlated with T and were an average of 1.7 times larger than T. A variety of failure responses was seen in the MSEN tests, consequently a grade of 0 to 3 was assigned to each test, where 0 represented a brittle-like crack with minimal opening and 3 represented plastic flow with no crack formation. The initial cracks in 12/82 specimens did not propagate and were assigned to grade 3. The method for reducing data in the MSEN test assumed pseudo-elastic response and could not be used for the grade 3 specimens. Stiffness did not correlate with J. Neither J nor T was statistically different between right-left pairs, but varied between animals. The test methods appear useful for providing a quantitative measure of fracture toughness for cartilage and other soft materials. PMID:8950659

  13. Cartilage restoration technique of the hip.

    Science.gov (United States)

    Mardones, Rodrigo; Larrain, Catalina

    2016-04-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  14. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    Science.gov (United States)

    Reinert, Tilo; Reibetanz, Uta; Schwertner, Michael; Vogt, Jürgen; Butz, Tilman; Sakellariou, Arthur

    2002-04-01

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures.

  15. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    International Nuclear Information System (INIS)

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures

  16. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.

    Science.gov (United States)

    Cox, Lieke G E; van Rietbergen, B; van Donkelaar, C C; Ito, K

    2011-06-01

    During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage. PMID:21546025

  17. Reversible peptide oligomerization over nanoscale gold surfaces

    Directory of Open Access Journals (Sweden)

    Kazushige Yokoyama

    2015-11-01

    Full Text Available A selective oligomeric formation of amyloid beta 1-40 (Ab1-40 monomers over a nanogold colloidal surface was investigated. An unfolded Ab1-40 monomer is considered to construct a dimer or trimer based oligomeric form with its hydrophobic segment placing outward under an acidic condition. Under a basic condition, a conformation of Ab is expected to take a folded monomeric form with its hydrophilic segment folded inward, avoiding the networking with residual colloidal particles. The most probable oligomeric form constructed over a 20 nm gold colloidal surface within a 25 ℃ to 65 ℃ temperature range is a dimer based unit and that over 30 or 40 nm gold colloidal surface below 15 ℃ is concluded to be a trimer based unit. However, selective oligomerization was not successfully reproduced under the rest of the conditions. A dipole-induced dipole interaction must cause a flexible structural change between folded and unfolded forms.

  18. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    Science.gov (United States)

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  19. Gekreuzt konjugierte Oligomere aus Benzolringen und Heterocyclen

    OpenAIRE

    Hormaza, Angelina

    2003-01-01

    Gekreuzt konjugierte Oligomere aus Benzolringen und Heterocyclen Oligomere aus Arylen- oder/und Hetarylen-Bausteinen stellenein aktuelles Arbeitsgebiet in der organischen Synthese undder Materialwissenschaft dar. Die Enoneinheit der Chalkonerepräsentiert ein bifunktionelles Elektrophil, das für denAufbau von unterschiedlichen Heterocyclen hervorragendgeeignet ist. Im Rahmen der vorliegenden Arbeit wurden dreineue Reihen von heterocyclischen Oligomeren hergestellt:1H-Pyrrole, 1...

  20. Reversible peptide oligomerization over nanoscale gold surfaces

    OpenAIRE

    Kazushige Yokoyama; Christa D. Catalfamo; Minxuan Yuan

    2015-01-01

    A selective oligomeric formation of amyloid beta 1-40 (Ab1-40) monomers over a nanogold colloidal surface was investigated. An unfolded Ab1-40 monomer is considered to construct a dimer or trimer based oligomeric form with its hydrophobic segment placing outward under an acidic condition. Under a basic condition, a conformation of Ab is expected to take a folded monomeric form with its hydrophilic segment folded inward, avoiding the networking with residual colloidal particles. The most proba...

  1. Dimerization and oligomerization of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Ryder, L Rebekka; Steinø, Anne; Højrup, Peter; Hansen, Jesper; Beyer, N Helena; Heegaard, Niels H H; Houen, Gunnar

    2003-01-01

    The chaperone calreticulin is a highly conserved eukaryotic protein mainly located in the endoplasmic reticulum. It contains a free cysteine SH group but does not form disulfide-bridged dimers under physiological conditions, indicating that the SH group may not be fully accessible in the native...... calreticulin was oligomerized. Thus, calreticulin shares the ability to self-oligomerize with other important chaperones such as GRP94 and HSP90, a property possibly associated with their chaperone activity....

  2. Cartilage analysis by reflection spectroscopy

    Science.gov (United States)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  3. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  4. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  5. Cartilage Aggrecan Can Undergo Self-Adhesion

    OpenAIRE

    Han, Lin; Dean, Delphine; Daher, Laura A.; Grodzinsky, Alan J.; Ortiz, Christine

    2008-01-01

    Here it is reported that aggrecan, the highly negatively charged macromolecule in the cartilage extracellular matrix, undergoes Ca2+-mediated self-adhesion after static compression even in the presence of strong electrostatic repulsion in physiological-like solution conditions. Aggrecan was chemically end-attached onto gold-coated planar silicon substrates and gold-coated microspherical atomic force microscope probe tips (end radius R ≈ 2.5 μm) at a density (∼40 mg/mL) that simulates physiolo...

  6. 透骨消痛胶囊含药血清对软骨细胞外基质表达的影响%Effects of serum containing Tougu Xiaotong capsule on the expression of cartilage extracellular matrix

    Institute of Scientific and Technical Information of China (English)

    许惠凤; 吴追乐; 李西海; 许艳芳; 吴子瑜; 郑春松; 刘献祥; 吴明霞

    2012-01-01

    BACKGROUND: Osteoarthritis causes the abnormal metabolism of chondrocytes, which will further disorder the degradation andrestoration balance of the extracellular matrix. Tougu Xiaotong capsule has been proved to have a good efficacy on the treatmentof osteoarthritis.OBJECTIVE: To explore the effects of serum containing Tougu Xiaotong capsule on the expression of cartilage extracellularmatrix.METHODS: Chondrocytes obtained from the knee joints of SD rats were cultured in vitro, and the third passage chondrocyteswere intervened with serum containing Tougu Xiaotong capsule after synchronization. Fifty SD rats were divided into five groupsrandomly; the dose of the injection was conversed according to the drugs equivalent of human and animal. In the blank group, therats were lavaged with normal saline; in the control group, the rats were lavaged with Zhuangguguanjie aqueous solution; in theexperimental group, the rats were lavaged with 0.145, 0.290 and 0.580 mg/g per day Tougu Xiaotong capsule aqueous solution.The injection in each group lasted for 3 days, and fasting was preformed at 12 hours before blood collection. At 1 hour after thelast administration, the abdominal aortic blood was collected and the serum was prepared.RESULTS AND CONCLUSION: Immunohistochemical staining of collagen type II showed that the expression of collagen II in theexperimental group was stronger than that in the blank and control groups. In the experimental group, the mRNA and proteinexpression of collagen II, proteoglycan and Aggrecan was significantly increased (P < 0.01), while the mRNA and proteinexpression of Cathepsin K was significantly decreased (P < 0.01). Serum containing Tougu Xiaotong capsule can increase themRNA and protein expression of collagen ,, proteoglycan, and Aggrecan in chondrocytes, decrease the mRNA and proteinexpression of Cathepsin K, promote the synthesis of extracellular matrix, and regulate the dynamic equilibrium between extracellularmatrix and chondrocytes.%

  7. Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates

    OpenAIRE

    Zhang, Guangjun; Cohn, Martin J.

    2006-01-01

    The origin of vertebrates was defined by evolution of a skeleton; however, little is known about the developmental mechanisms responsible for this landmark evolutionary innovation. In jawed vertebrates, cartilage matrix consists predominantly of type II collagen (Col2α1), whereas that of jawless fishes has long been thought to be noncollagenous. We recently showed that Col2α1 is present in lamprey cartilage, indicating that type II collagen-based cartilage evolved earlier than previously reco...

  8. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression

    OpenAIRE

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A.

    2014-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strai...

  9. Extracorporeal shockwave therapy promotes chondrogenesis in cartilage tissue engineering: A hypothesis based on previous evidence.

    Science.gov (United States)

    Ji, Qiaodan; He, Chengqi

    2016-06-01

    The dearth of intrinsic regenerative capacity of articular cartilage makes it a challenge to deal with the cartilage defects. Among all the recommended clinical options, cartilage tissue engineering (CTE) which is highlighted of dominant features and less drawbacks for functional cartilage restoration, has been emphasized recently. Shock waves, a mode of therapeutic mechanical forces, utilized in extracorporeal shockwave therapy (ESWT), is hypothesized to enhance proliferation, chondrogenic differentiation, and cartilage extracellular matrix production of target cells seeded on bioactive scaffolds. The hypothesis is firstly based on cellular mechanotransduction by which cells convent the shockwave mechanical signals into biochemical responses via integrins, iron channels, cytoskeletal filaments, growth factor receptors and nuclei. Secondly, by modulating gene expression and up-regulating the release of various growth factors which are of vital importance in three-dimensional cartilage culture environment, ESWT holds a promising potential to favor the cell sources (e.g. chondrocytes and stem cells) to mimic the optimal functional cartilage. In all, on the basis of cellular mechanotransduction and previous evidence, the hypothesis is developed to support the beneficial effects of ESWT on chondrogenesis in CTE. If this hypothesis is confirmed, shockwaves may allow a better success in combination with other stimulating factors for cartilage repair. There is a paucity of studies investigating the assistant role of shockwave stimulation in CTE. Further research is required to elucidate the mechanisms, and explore effectiveness and appropriate protocols of this novel stimulative factor in cartilage tissue engineering. PMID:27142133

  10. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  11. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS

    OpenAIRE

    Bleil, Janine; Sieper, Joachim; Maier, Rene; Schlichting, Uwe; Hempfing, Axel; Syrbe, Uta; Appel, Heiner

    2015-01-01

    Introduction In ankylosing spondylitis (AS), joint remodeling leading to joint ankylosis involves cartilage fusion. Here, we analyzed whether chondrocyte hypertrophy is involved in cartilage fusion and subsequent joint remodeling in AS. Methods We assessed the expression of chondrocyte hypertrophy markers runt-related transcription factor 2 (Runx2), type X collagen (COL10), matrix metalloproteinase 13 (MMP13), osteocalcin and beta-catenin and the expression of positive bone morphogenic protei...

  12. Effects of cigarette smoke on the Meckel's cartilage of rat fetus: morphologic, morphometric and stereologic study.

    Science.gov (United States)

    Brandini, Daniela Atili; Sala, Miguel Angel; Lopes, Ruberval Armando; Semprini, Marisa; Contrera, Mary Garcia Duarte

    2005-01-01

    The purpose of this study was to investigate the effects of cigarette smoke on the development of the embryo mandible (Meckel's) cartilage in rat fetuses. When inhaled by female Wistar rats between the 9th and the 12th day of pregnancy, cigarette smoke (5 cigarettes a day) caused intrauterine growth retardation, providing smaller fetuses and placentas. In fetuses from the experimental group, the histopathologic examination revealed a poorly developed Meckel's cartilage with smaller chondroblasts showing a scanty cytoplasm with spherical and paler central nuclei, as well as more abundant cartilage matrix. Morphometric analysis revealed that Meckel's cartilage lacunae were smaller in the fetuses from the experimental group, although not showing any remarkable alteration in shape. The results suggested that inhalation of cigarette smoke by pregnant rats during the organogenic period induced growth retardation and delayed cellular differentiation in rat fetal Meckel's cartilage. PMID:16113936

  13. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    International Nuclear Information System (INIS)

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  14. Micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix scaffold to treat articular cartilage defects in the knee of pigs%微骨折与自体骨髓间充质干细胞外基质支架修复猪膝关节软骨缺损

    Institute of Scientific and Technical Information of China (English)

    李祥全; 唐成; 宋科荣; 金成哲

    2014-01-01

    BACKGROUND:Micro-fracture surgery method is simple, easy to operate, which is an effective way to treat articular cartilage defects, but there are stil some problems such as regenerated fibrocartilage and regenerated cartilage degradation. Scholars have focused on the use of various methods to improve the micro-fracture effect on repairing cartilage defects. OBJECTIVE:To explore the effects of micro-fracture enhanced by autologous bone marrow mesenchymal stem cells extracellular matrix (aBMSC-dECM) scaffold for treating cartilage defects in minipig models. METHODS:Bone marrow was extracted from the minipigs and bone marrow mesenchymal stem cells were obtained. aBMSC-dECM membranes were col ected. Cross-linking and freeze-drying technology were used to make the three-dimensional porous aBMSC-dECM scaffold. Ful thickness cartilage defects, 2 mm in depth and 6 mm in diameter, were created on the femoral condyles and trochlea grooves of the two knees of the minipigs. The right knees were treated with micro-fracture as control and the left were treated with micro-fracture enhanced by aBMSC-dECM scaffold. Six months later, histological examination and Wakitani score were used to evaluate the cartilage regeneration, and glycosaminoglycans and DNA contents in the regenerative tissue were determined. RESULTS AND CONCLUSION:After 6 months, the tissue treated by micro-fracture enhanced by aBMSC-dECM scaffold got better surface and integrated with the surrounding cartilage. Safranin O and fast green staining and Masson staining showed that the regenerated cartilage of the left knee, with abundant matrix and dense bone trabeculae, was better than that of the right. Wakitani score of the left knee was higher than that of the right. Glycosaminoglycans content of the left knee was much more than that of the right, while the DNA content was lower in the left knee than the right knee. Better results were observed in the left knee undergoing micro-fracture enhanced by a

  15. Biophysical characterization of GPCR oligomerization in viro

    DEFF Research Database (Denmark)

    Mathiasen, Signe

    The biophysical characterization of the fundamental molecular mechanisms behind G-protein coupled receptors (GPCRs) oligomerization is proposed to be paramount for understanding the pharmacological consequence of receptor self-association. Here we developed an in vitro assay that allowed a...

  16. The study on the mechanical characteristics of articular cartilage in simulated microgravity

    Institute of Scientific and Technical Information of China (English)

    Hai-Jun Niu; Qing Wang; Yue-Xiang Wang; Ang Li; Lian-Wen Sun; Yan Yan; Fan Fan; De-Yu Li; Yu-Bo Fan

    2012-01-01

    The microgravity environment of a long-term space flight may induce acute changes in an astronaut's musculo-skeletal systems.This study explores the effects of simulated microgravity on the mechanical characteristics of articular cartilage.Six rats underwent tail suspension for 14 days and six additional rats were kept under normal earth gravity as controls.Swelling strains were measured using high-frequency ultrasound in all cartilage samples subject to osmotic loading.Site-specific swelling strain data were used in a triphasic theoretical model of cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix.No severe surface irregularities were found in the cartilage samples obtained from the control or tail-suspended groups.For the tail-suspended group,the thickness of the cartilage at a specified site,as determined by ultrasound echo,showed a minor decrease.The uniaxial modulus of articular cartilage at the specified site decreased significantly,from (6.31 ± 3.37) MPa to (5.05 ± 2.98) MPa (p < 0.05).The histology-stained image of a cartilage sample also showed a reduced number of chondrocytes and decreased degree of matrix staining.These results demonstrated that the 14 d simulated microgravity induced significant effects on the mechanical characteristics of articular cartilage.This study is the first attempt to explore the effects of simulated microgravity on the mechanical characteristics of articular cartilage using an osmotic loading method and a triphasic model.The conclusions may provide reference information for manned space flights and a better understanding of the effects of microgravity on the skeletal system.

  17. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.

    Science.gov (United States)

    Quinn, T M; Morel, V

    2007-01-01

    Cartilage matrix mechanical function is largely determined by interactions between the collagen fibrillar network and the proteoglycan gel. Although the molecular physics of these matrix constituents have been characterized and modern imaging methods are capable of localized measurement of molecular densities and orientation distributions, theoretical tools for using this information for prediction of cartilage mechanical behavior are lacking. We introduce a means to model collagen network contributions to cartilage mechanics based upon accessible microstructural information (fibril density and orientation distributions) and which self-consistently follows changes in microstructural geometry with matrix deformations. The interplay between the molecular physics of the collagen network and the proteoglycan gel is scaled up to determine matrix material properties, with features such as collagen fibril pre-stress in free-swelling cartilage emerging naturally and without introduction of ad hoc parameters. Methods are developed for theoretical treatment of the collagen network as a continuum-like distribution of fibrils, such that mechanical analysis of the network may be simplified by consideration of the spherical harmonic components of functions of the fibril orientation, strain, and stress distributions. Expressions for the collagen network contributions to matrix stress and stiffness tensors are derived, illustrating that only spherical harmonic components of orders 0 and 2 contribute to the stress, while orders 0, 2, and 4 contribute to the stiffness. Depth- and compression-dependent equilibrium mechanical properties of cartilage matrix are modeled, and advantages of the approach are illustrated by exploration of orientation and strain distributions of collagen fibrils in compressed cartilage. Results highlight collagen-proteoglycan interactions, especially for very small physiological strains where experimental data are relatively sparse. These methods for

  18. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  19. Cellular responses of embryonic hyaline cartilage to experimental wounding in vitro.

    Science.gov (United States)

    Walker, E A; Verner, A; Flannery, C R; Archer, C W

    2000-01-01

    It is well established that the reparative potential of many tissues is greatest during embryonic development. Despite the extensive literature documenting repair in nonembryonic cartilage models, there is no comparable wealth of experience relating to embryonic cartilage repair. With the embryonic chick sternum as a model of hyaline cartilage, this paper accounts cellular responses and alterations in extracellular matrix composition in response to experimental wounding in vitro. Creation of an experimental lesion induced a rapid (apoptosis and the expression of alpha5 and alpha6 integrin subunits. PMID:10716275

  20. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    OpenAIRE

    Fukui, Tomoaki; Tenborg, Elizabeth; Jasper H. N. Yik; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has no...

  1. Recombinant equine interleukin-1β induces putative mediators of articular cartilage degradation in equine chondrocytes

    OpenAIRE

    Tung, J. T.; Fenton, J. I.; Arnold, C; Alexander, L.; Yuzbasiyan-Gurkan, V.; Venta, P J; Peters, T. L.; Orth, M W; Richardson, D. W.; Caron, J P

    2002-01-01

    Interleukin-1 is considered a central mediator of cartilage loss in osteoarthritis in several species, however an equine recombinant form of this cytokine is not readily available for in vitro use in equine osteoarthritis research. Equine recombinant interleukin-1β was cloned and expressed and its effects on the expression and activity of selected chondrocytic proteins implicated in cartilage matrix degradation were characterized. Reverse transcriptase polymerase chain reaction methods were u...

  2. MR imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    It is becoming increasingly important for the radiologist to evaluate the appearance and outcome of cartilage repair procedures. MR imaging is currently the best method for such evaluation but it is necessary to use cartilage-specific sequences and to modify those sequences when necessary to minimize artifacts from retained metal within the joint. This article reviews the surgical technique of the more commonly performed cartilage repair procedures, currently recommended techniques for the MR imaging evaluation of articular cartilage and cartilage repair procedures, and the MR imaging appearance of cartilage repair procedures and of the most frequently encountered complications following such procedures. (orig.)

  3. Simulations of Oligomeric Intermediates in Prion Diseases

    CERN Document Server

    Mobley, D L; Singh, R R P; Kulkarni, R V; Slepoy, A; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Kulkarni, Rahul V.; Slepoy, Alexander

    2003-01-01

    We extend our previous stochastic cellular automata based model for areal aggregation of prion proteins on neuronal surfaces. The new anisotropic model allow us to simulate both strong beta-sheet and weaker attachment bonds between proteins. Constraining binding directions allows us to generate aggregate structures with the hexagonal lattice symmetry found in recently observed in vitro experiments. We argue that these constraints on rules may correspond to underlying steric constraints on the aggregation process. We find that monomer dominated growth of the areal aggregate is too slow to account for some observed doubling time-to-incubation time ratios inferred from data, and so consider aggregation dominated by relatively stable but non-infectious oligomeric intermediates. We compare a kinetic theory analysis of oligomeric aggregation to spatially explicit simulations of the process. We find that with suitable rules for misfolding of oligomers, possibly due to water exclusion by the surrounding aggregate, th...

  4. Poroelasticity of cartilage at the nanoscale.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease. PMID:22067171

  5. Hyaluronic Acid-Binding Scaffold for Articular Cartilage Repair

    OpenAIRE

    Unterman, Shimon A.; Gibson, Matthew; Lee, Janice H.; Crist, Joshua; Chansakul, Thanissara; Yang, Elaine C.; Jennifer H. Elisseeff

    2012-01-01

    Hyaluronic acid (HA) is an extracellular matrix molecule with multiple physical and biological functions found in many tissues, including cartilage. HA has been incorporated in a number of biomaterial and scaffold systems. Howegver, HA in the material may be difficult to control if it is not chemically modified and chemical modification of HA may negatively impact biological function. In this study, we developed a poly(ethylene glycol) hydrogel with noncovalent HA-binding capabilities and eva...

  6. Tissue Engineering of Muscles and Cartilages Using Polyelectrolyte Hydrogels

    OpenAIRE

    Hyuck Joon Kwon

    2014-01-01

    The prevalent nature of osteoarthritis that causes the erosion of joint surfaces and loss of mobility and muscle dystrophy that weakens the musculoskeletal system and hampers locomotion underlies the importance of developing functional replacement or regeneration of muscle and cartilage tissues. Polyelectrolyte gels have high potential as cellular scaffolds due to characteristic properties similar to biological matrixes. A number of in vitro and in vivo studies demonstrated that polyelectroly...

  7. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis.

    Science.gov (United States)

    Goldring, Steven R

    2012-08-01

    The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. The changes in periarticular bone tend to occur very early in the development of OA. Although chondrocytes also have the capacity to modulate their functional state in response to loading, the capacity of these cells to repair and modify their surrounding extracellular matrix is relatively limited in comparison to the adjacent subchondral bone. This differential adaptive capacity likely underlies the more rapid appearance of detectable skeletal changes in OA in comparison to the articular cartilage. The OA changes in periarticular bone include increases in subchondral cortical bone thickness, gradual decreases in subchondral trabeular bone mass, formation of marginal joint osteophytes, development of bone cysts and advancement of the zone of calcified cartilage between the articular cartilage and subchondral bone. The expansion of the zone of calcified cartilage contributes to overall thinning of the articular cartilage. The mechanisms involved in this process include the release of soluble mediators from chondrocytes in the deep zones of the articular cartilage and/or the influences of microcracks that have initiated focal remodeling in the calcified cartilage and subchondral bone in an attempt to repair the microdamage. There is the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the

  8. Vascularization of engineered cartilage constructs in a mouse model.

    Science.gov (United States)

    Burghartz, Marc; Gehrke, Thomas; Storck, Katharina; Staudenmaier, Rainer; Mandlik, Veronika; Schurr, Christian; Hoang, Nguyen; Hagen, Rudolf; Kleinsasser, Norbert

    2015-02-01

    Tissue engineering of cartilage tissue offers a promising method for reconstructing ear, nose, larynx and trachea defects. However, a lack of sufficient nutrient supply to cartilage constructs limits this procedure. Only a few animal models exist to vascularize the seeded scaffolds. In this study, polycaprolactone (PCL)-based polyurethane scaffolds are seeded with 1 × 10(6) human cartilage cells and implanted in the right hind leg of a nude mouse using an arteriovenous flow-through vessel loop for angiogenesis for the first 3 weeks. Equally seeded scaffolds but without access to a vessel loop served as controls. After 3 weeks, a transposition of the vascularized scaffolds into the groin of the nude mouse was performed. Constructs (verum and controls) were explanted 1 and 6 weeks after transposition. Constructs with implanted vessels were well vascularized. The amount of cells increased in vascularized constructs compared to the controls but at the same time noticeably less extracellular matrix was produced. This mouse model provides critical answers to important questions concerning the vascularization of engineered tissue, which offers a viable option for repairing defects, especially when the desired amount of autologous cartilage or other tissues is not available and the nutritive situation at the implantation site is poor. PMID:25381568

  9. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  10. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium

    OpenAIRE

    Xue, Ke; Zhang, Xiaodie; Qi, Lin; Zhou, Jia; Liu, Kai

    2016-01-01

    Auricular cartilage loss or defect remains a challenge to plastic surgeons, and cartilage regenerative medicine provides a novel method to solve the problem. However, ideal seeding cells seem to be the key point in the development of cartilage regeneration. Although bone marrow-mesenchymal stem cells were considered as the ideal seeding cells in cartilage regeneration, regenerative cartilage differentiated from bone marrow-mesenchymal stem cells still faces some problems. It is reported that ...

  11. MRI EVALUATION OF KNEE CARTILAGE

    Science.gov (United States)

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  12. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  13. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  14. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  15. Modeling IL-1 induced degradation of articular cartilage.

    Science.gov (United States)

    Kar, Saptarshi; Smith, David W; Gardiner, Bruce S; Li, Yang; Wang, Yang; Grodzinsky, Alan J

    2016-03-15

    In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states. PMID:26874194

  16. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  17. Histological comparison of the alar nasal cartilages in unilateral cleft lip

    Directory of Open Access Journals (Sweden)

    Modolin Miguel

    2002-01-01

    Full Text Available Patients with unilateral cleft lip display characteristic nasal changes that are independent of the degree of deformity. Defenders of the intrinsic theory consider these deformities to be due to embryogenic alterations of the alar nasal cartilages. Those that propose the extrinsic theory defend the thesis that the deformity is due to disorganization of the perioral muscles deformed by the cleft. The purpose of this study is to contribute histological evidence to help clarify the issue. PATIENTS AND METHODS: Specimens of the lateral portion of both the healthy and the cleft side of the alar cartilages were obtained from 18 patients. These uniformly cut specimens were stained by hematoxylin and eosin. Samples from 2 patients were excluded due to imperfections. The same pathologist examined all the slides. He was unaware of the origins of the specimens; he counted the number of chondrocytes and quantified the cartilage matrixes. RESULTS: All data was analyzed statistically, and no significant statistical differences were apparent, either in the number of chondrocytes or the cartilage matrix between the healthy side and the cleft side. DISCUSSION: These results apparently support the group that defend the extrinsic theory; nevertheless, the doubt about the composition of the cartilage matrix remains, not only concerning the glycosaminoglycans that compose them, but also regarding elastin and collagen and its linkages that can cause different degrees of collagen consistency.

  18. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laxton Kevin

    2010-05-01

    Full Text Available Abstract Background One pathological hallmark of Alzheimer's disease (AD is amyloid plaques, composed primarily of amyloid-β peptide (Aβ. Over-production or diminished clearance of the 42 amino acid form of Aβ (Aβ42 in the brain leads to accumulation of soluble Aβ and plaque formation. Soluble oligomeric Aβ (oAβ has recently emerged to be as a likely proximal cause of AD. Results Here we demonstrate that endocytosis is critical in mediating oAβ42-induced neurotoxicity and intraneuronal accumulation of Aβ. Inhibition of clathrin function either with a pharmacological inhibitor, knock-down of clathrin heavy chain expression, or expression of the dominant-negative mutant of clathrin-assembly protein AP180 did not block oAβ42-induced neurotoxicity or intraneuronal accumulation of Aβ. However, inhibition of dynamin and RhoA by expression of dominant negative mutants reduced neurotoxicity and intraneuronal Aβ accumulation. Pharmacologic inhibition of the dynamin-mediated endocytic pathway by genistein also reduced neurotoxicity. Conclusions These data suggest that dynamin-mediated and RhoA-regulated endocytosis are integral steps for oligomeric Aβ42-induced neurotoxicity and intraneuronal Aβ accumulation.

  19. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  20. Pulsed carbon dioxide laser for cartilage vaporization and subchondral bone perforation in horses. Part II: Morphologic and histochemical reactions.

    Science.gov (United States)

    Nixon, A J; Krook, L P; Roth, J E; King, J M

    1991-01-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. After euthanasia at week 8, the treated and control joints were examined for gross changes, and samples of cartilage and subchondral bone, synovial membrane, and peripheral lymph nodes were examined histologically. Depletion of cartilage matrix glycosaminoglycan was assessed by safranin-O histochemical staining of the laser site and adjacent cartilage. Cartilage removal by laser vaporization resulted in rapid regrowth, with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. PMID:1712998

  1. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  2. Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix

    OpenAIRE

    1993-01-01

    Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assemb...

  3. Effects of tenoxicam and aspirin on the metabolism of proteoglycans and hyaluronan in normal and osteoarthritic human articular cartilage.

    OpenAIRE

    Manicourt, Daniel; Druetz-Van Egeren, A; Haazen, L.; Nagant de Deuxchaisnes, C

    1994-01-01

    1. As nonsteroidal anti-inflammatory drugs may impair the ability of the chondrocyte to repair its damaged extracellular matrix, we explored the changes in the metabolism of newly synthesized proteoglycan (PG) and hyaluronan (HA) molecules produced by tenoxicam and aspirin in human normal cartilage explants and in osteoarthritic (OA) cartilage from age-matched donors. 2. Explants were sampled from the medial femoral condyle and were classified by use of Mankin's histological-histochemical gra...

  4. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  5. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  6. Antioxidant oligomeric proanthocyanidins from Cistus salvifolius.

    Science.gov (United States)

    Qa'Dan, Fadi; Petereit, Frank; Mansoor, Kenza; Nahrstedt, Adolf

    2006-11-01

    The purified proanthocyanidin oligomers of Cistus salvifolius herb extract accounted for 78% of the total proanthocyanidins and 73% of the total antioxidant activity of this extract. To elucidate the structure of the oligomer, it was depolymerized by acid catalysis in the presence of phloroglucinol. The structures of the resulting flavan-3-ols and phloroglucinol adducts were determined on the basis of 1D- and reverse 2D-NMR (HSQC, HMBC) experiments of their peracetylated derivatives, MALDI-TOF-MS and CD spectroscopy. These observations resulting from the degradation with phloroglucinol were confirmed by 13C NMR spectroscopy of the oligomer. The mean molecular weight of the higher oligomeric fraction was estimated to be 5-6 flavan-3-ol-units. PMID:17127512

  7. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  8. Preclinical Studies for Cartilage Repair

    OpenAIRE

    Hurtig, Mark B.; Buschmann, Michael D; Fortier, Lisa A; Hoemann, Caroline D; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral...

  9. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  10. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    International Nuclear Information System (INIS)

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  11. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  12. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  13. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage.

    Science.gov (United States)

    Seol, Dongrim; Yu, Yin; Choe, Hyeonghun; Jang, Keewoong; Brouillette, Marc J; Zheng, Hongjun; Lim, Tae-Hong; Buckwalter, Joseph A; Martin, James A

    2014-07-01

    Depending on the damage extent and adjacent tissue condition in traumatic cartilage injury, it is possible to heal the tissue by resident cells. Unlike autologous chondrocyte implantation, short-term enzymatic treatment is an effective single-step procedure without extra cell expansion. Moreover, this method has been shown to significantly increase cellularity in lesion edges, resulting in enhanced integration and interfacial strength. We hypothesize that the locally digested extracellular matrix by treatment allows effortless cell migration from the adjacent tissue. Full-thickness cartilage discs and osteochondral explants were prepared from mature bovine stifle joints. These specimens were treated with collagenase in a culture medium. Two concentrations, 0.25 and 0.5 mg/mL, were used with various treating time of 10, 30, and 180 min. The cartilages were subsequently washed and cultured with fibrin hydrogel. The effect of enzymatic treatment on cell migration was apparent in both experiments of the cartilage disc and full-thickness cartilage defect model. In the disc culture, the treatment resulted in an approximately three to four times higher number of migrated cells than nontreated control. In short-term collagenase-treated groups, the proteoglycan (PG) loss was localized in the edge of tissue with minimal cell death. The treatment also accelerated cell migration in the full-thickness cartilage defects and some cells differentiated into chondrocytes with the deposit of PG. Gene expression results could support the characteristics of migrated cells, which had migratory ability and chondrogenic differentiation potential with overexpression of collagen type I and II, respectively. Based on these results, short-term enzymatic treatment, which can accelerate cell migration into traumatically injured cartilage, has great potential for clinical application. PMID:24428547

  14. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  15. Topographical mapping of biochemical properties of articular cartilage in the equine fetlock joint

    NARCIS (Netherlands)

    Brama, P.A.J.; Tekoppele, J.M.; Bank, R.A.; Karssenberg, D.; Barneveld, A.; Weeren, P.R. van

    2000-01-01

    The aim of this study was to evaluate topographical differences in the biochemical composition of the extracellular matrix of articular cartilage of the normal equine fetlock joint. Water content, DNA content, glycosaminoglycan (GAG) content and a number of characteristics of the collagen network (t

  16. Effects and side effects of radiosynovectomy with yttrium 90 on rheumatic joint cartilage

    International Nuclear Information System (INIS)

    8 and 12 weeks after Synovectomy with Yttrium 90, cartilage specimens from the femoral condyle of 8 patients with R.A. were examined. Cellular and matrix damage could be detected. Intracellular particles containing Circonium, an Yttrium decay-product could be found using microprobe X-ray analysis. This was verified in experimentally induced arthritis in the rat. (orig.)

  17. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  18. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan R.; Dam, Erik B.; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learni...

  19. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  20. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  1. "Changes in cartilage of rats after treatment with Quinolone and in Magnesium-deficient diet "

    Directory of Open Access Journals (Sweden)

    Shakibaei M

    2002-07-01

    Full Text Available Ultrastructural changes in immature articular carilage were studied after treatment of 5-weeks-old rats with ofloxacin, a fluoroquinolone, and in magnesium deficiency.We concluded that quinolone-induced arthropathy is probably due to chelation of functionally available magnesium in joint cartilage as magnesium deficiency in joint cartilage could impair chondrocyte-matrix- interaction which is mediated by cation-dependent integrin-receptors of the β1-subfamily. With immuno-histochemical methods using monoclonal and polyclonal antibodies we showed that B1 integrins were expressed in rat joint cartilage. Joint cartilage lesions were detected in ofloxacin-treated and magnesium-deficient rats. Lesions were more pronounced in the quinolone-treated group. Expression of several integrins was reduced in the vicinity of lesions after oral treatment with 2×600 mg ofloxacin/kg body wt for one day. Gross-structural lesions (e.g. cleft formation, unmasked collagen fibres in magnesium deficient rats were very similar but changes in intergrin expression were less pronounced. Alterations observed on the ultrastructural level showed striking similarities in magnesium-deficient rats and in rats treated with single doses of 600 mg ofloxacin per kg body wt.Typical observation were: bundle shaped, electron-dense aggregates on the surface and in the cytoplasm of chondrocytes, detachement of the cell membrance from the matrix and necrotic chondrocytes, reduced synthesis and/or reduced of extracellular matrix and swelling of cell organelles such as mitochondria.The results of this study confirm our previously reported finding that quinolone-induced arthropathy probably is caued by a reduction of functionally available magnesium (ionized Mg2+ in cartilage. Furthermore, they provide a basis for aimed studies with human cartilage samples from quinolone-treated patients which might be available postmortal or after hip replacement surgery

  2. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  3. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  4. Development of cartilage conduction hearing aid

    Directory of Open Access Journals (Sweden)

    H. Hosoi

    2010-04-01

    Full Text Available Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing aids require surgery (bone anchored hearing aid or great pressure to the skull. The first purpose of this study is to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage. After the best position for the cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion earphone (air conduction, a bone conduction transducer, and a cartilage conduction transducer. Then we made a new hearing aid using cartilage conduction and got subjective data from the patients.Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was comparable to those from the bone conduction hearing aid.Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction. Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such as pain and the need for surgery.Originality/value: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype ‘cartilage

  5. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.; Gumennaya, M. A.; Fomenko, A. A.; Trachevsky, V. V.; Davydenko, V. V.; Bliznyuk, V. N.; Dorokhin, Andriy

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  6. Role of Matrix Vesicles in Biomineralization

    OpenAIRE

    Golub, Ellis E.

    2009-01-01

    Matrix vesicles have been implicated in the mineralization of calcified cartilage, bone and dentin for more than 40 years. During this period, their exact role, if any in the nucleation of hydroxyapatite mineral, and its subsequent association with the collagen fibrils in the organic matrix has been debated and remains controversial. Several hypotheses have been recently introduced to explain in greater detail how matrix vesicles function in biomineralization. This review will summarize recen...

  7. The oligomerization of OxyR in Escherichia coli

    OpenAIRE

    Knapp, Gwendowlyn S; Tsai, Jerry W.; Hu, James C.

    2009-01-01

    We examine the contribution of residues at the dimer interface of the transcriptional regulator OxyR to oligomerization. Residues in contact across the dimer interface of OxyR were identified using the program Quaternary Contacts (QContacts). Site-directed mutagenesis was performed on the non-alanine or glycine residues identified in the resultant contact profile and the oligomerization ability of the mutant proteins was tested using the λcI repressor system to identify residues that are hot ...

  8. Oligomerization Inhibits Legionella pneumophila PlaB Phospholipase A Activity*

    OpenAIRE

    Kuhle, Katja; Krausze, Joern; Curth, Ute; Rössle, Manfred; Heuner, Klaus; Lang, Christina; Flieger, Antje

    2014-01-01

    The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity withi...

  9. Novel Elements of the Chondrocyte Stress Response Identified Using an in Vitro Model of Mouse Cartilage Degradation.

    Science.gov (United States)

    Wilson, Richard; Golub, Suzanne B; Rowley, Lynn; Angelucci, Constanza; Karpievitch, Yuliya V; Bateman, John F; Fosang, Amanda J

    2016-03-01

    The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis. PMID:26794603

  10. Anatomical study of nasal cartilage in buffalo (Bubalus bubulus

    Directory of Open Access Journals (Sweden)

    Mahdi Yeganehzad

    2011-07-01

    Full Text Available This study used ten heads of adult buffalo taken from slaughterhouse. After transferring the samples to the anatomy hall, a split was carefully created on skin of muzzle and the skin was slowly separated from muscles and hypodermal connective tissue. Place of connection of cartilages to bone, cartilages to each other and shape of the cartilages were specified. In buffalo, nose apex has two nostrils fixed by bone and cartilage. After identifying and separating the cartilages, it was found that nasal cartilages in buffalo consisted of: 1 septum nasal located between two nostrils and reinforces it from inside. 2 dorso-lateral nasal cartilage constituting dorsal and lateral parts of the nostril. 3 ventro-lateral nasal cartilage constituting ventral and lateral parts of the nostril. 4 lateral accessory cartilage constituting lateral and ventral parts of the nostril. 5 medial accessory nasal cartilage located at Alar fold and connected to ventro-lateral nasal cartilage.

  11. Oligomerization and toxicity of Aβ fusion proteins

    International Nuclear Information System (INIS)

    Highlights: → We expressed amyloid-β (Aβ) peptide as a soluble maltose binding protein fusion (MBP-Aβ42 and MBP-Aβ16). → The full length Aβ peptide fusion, MBP-Aβ42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. → The MBP-Aβ42, but not MBP-Aβ16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein Aβ42 fusion protein (MBP-Aβ42) forms soluble oligomers while the shorter MBP-Aβ16 fusion and control MBP did not. MBP-Aβ42, but neither MBP-Aβ16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-Aβ42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further Aβ42 characterization.

  12. Terpene product derivatives from isoprene oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, H.; Kitazume, S.

    1979-12-01

    Products of isoprene oligomerization at 65/sup 0/-95/sup 0/C with modified Ziegler-type catalysts were separated by distillation into dimer (40/sup 0/-60/sup 0/C bp), trimer (115/sup 0/-140/sup 0/C), and polymer fractions, which were analyzed by gas chromatography. The ratio of cycle to linear dimers, i.e., 2,4-dimethyl-4- vinyl-1-cyclohexene (DMVCH) and 2,6-dimethyl- 1,3-6-octatriene (DMOT), was correlated with the electronic factor (basicity) of the ligands. In pilot-plant studies, maximum yields of DMVCH, 66% at 80/sup 0/C, and DMOT, 64% at 75/sup 0/C, were obtained with Ziegler systems composed of titanium tetrachloride or tetraiodide, respectively, plus diethylaluminum chloride (DEAC) and 1,4-dioxane. The yields of cyclotrimers, mainly 1,6,9- (A) and 1,5,9- (B) trimethyl- 1,5,9-cyclodecatrienes, depended also on the steric factor (cone angle) of the ligands and the nature of the central atom and were highest, 65% at 65/sup 0/C and 63% at 95/sup 0/C, respectively, with catalysts composed of titanium trichloride, p-NO/sub 2/,o-chlorobenzaldehyde, and DEAC (A) and nickel octooate, triethylaluminum, and certain phosphines (B). Potential applications of oligomer derivatives are discussed.

  13. Aquaporin-1 and aquaporin-3 expressions in the temporomandibular joint condylar cartilage after an experimentally induced osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    MENG Juan-hong; MA Xu-chen; LI Zhi-min; WU Deng-cheng

    2007-01-01

    Background Over 70% of the total tissue weight in the cartilage matrix consists of water,and the early-stage osteoarthritic cartilage is characterized by swelling.Water transport in the cartilage matrix and across the membranes of chondrocytes may be important in normal and pathological conditions of cartilage.The purpose of this study was to identify aquaporin-1 (AQP1) and aquaporin-3 (AQP3) expressions in the mandibular condylar cartilage after experimentally induced osteoarthritis(OA)in rats.Methods An experimental temporomandibular joint OA was induced by partial discectomy in rats.The pathological characteristics of the normal,early-stage,and late-stage osteoarthritic TMJ cartilages were verified by histological techniques.The AQP1 and AQP3 gene expressions in the normal and osteoarthritic cartilages were measured using quantitative real-time reverse-transcription PCR analysis.The cartilage sections were incubated in primary polyclonal antibodies to AQP3;immunofluorescent microscopy was used to examine the AQP3 expression shown by its protein level.Results The mRNA expression levels of AQP1 and AQP3,analyzed using quantitative PCR,revealed that AQP3 mRNA was highly up-regulated in the OA cartilage,which was considered significant.There was no notable difference in the expression of AQP1 mRNA between OA and normal controls.With the progressing of the OA,the localization of the AQP3 protein was quite different from that of the normal cartilage.Cormpared to the normal cartilage,the expressions of AQP3 protein were observed mainly in the proliferative zone and the upper mid-zone chondrocytes at the early-stage of OA,and were observed to appear frequently throughout the mid-and deep zone during the late-stage of OA.Conclusions The high expression of AQP3 mRNA in the OA cartilage and the different localization of the AQP3 protein suggest that it may play a particular role in OA pathogenesis.Further study of AQP3 function may provide new insight into the

  14. Synthesis and Luminescent Property of Polycarbazole/Polyhedral Oligomeric Silsesquioxane Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu-fang; ZHAO Jun-feng; WANG Xi; LI Qi-fang

    2008-01-01

    Polyvinylcarbazole(PVK) composites containing organic-inorganic hybrid polyhedral oligomeric silsesquioxane(POSS) PVK-POSS were prepared by free radical polymerization.POSS monomers reacted with vinylcarbazole and were completely dispersed at molecular level in PVK matrix and PVK-POSS nanocomposites display higher glass transition temperature(Tg) in comparison with neat PVK.Optical properties of PVK/POSS nanocomposites were investigated by UV-spectrum and PL-spectrum and the results show that the PVK-POSS nanoparticles have a good interface effect and improve color purity effectively.The maximum absorption wavelength bathochromically shifts gradually with the increasing of the content of POSS.The luminescent intensity becomes higher and higher with the increase of POSS content,and reaches its maximum luminescent intensity when the POSS content is 3% (mass fraction),while some POSS-rich nanoparticles are present in matrix when contents of POSS are beyond 5%.

  15. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces

    Directory of Open Access Journals (Sweden)

    Stoddart Robert W

    2006-06-01

    Full Text Available Abstract Background The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone and the subchondral bone. A detailed knowledge of the structure, function and pathophysiology of the normal chondro-osseous junction is essential for an understanding of the pathogenesis of osteoarthrosis. Methods Full thickness samples from human knee joints were processed and embedded in paraffin wax. One hundred serial sections (10 μm thick were taken from the chondro-osseous junctional region of a block from the medial tibial plateau of a normal joint. They were stained with haematoxylin and eosin and photographed. For a simple physical reconstruction images of each 10th sequential tissue section were printed and the areas of the photomicrographs containing the chondro-osseous junctional region were cut out and then overlaid so as to create a three-dimensional (3D model of this region. A 3D reconstruction was also made using computer modelling. Results Histochemical staining revealed some instances where prolongations of uncalcified cartilage, delineated by the tidemark, dipped into the calcified cartilage and, in places, abutted onto subchondral bone and marrow spaces. Small areas of uncalcified cartilage containing chondrocytes (virtual islands were seen, in two-dimensional (2D sections, to be apparently entombed in calcified matrix. The simple physical 3D reconstruction confirmed that these prolongations of uncalcified cartilage were continuous with the cartilage of zone IV and demonstrated that the virtual islands of uncalcified cartilage were cross-sections of these prolongations. The computer-generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and

  16. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J.; Treadwell, B.V.; Mankin, H.J.

    1984-01-01

    Incorporation of radioactive precursors into macromolecules was studied with human normal and osteoarthritic articular cartilage organ culture. Analysis of the salt extracted matrix components separated by cesium chloride buoyant density gradient centrifugation showed an increase in the specific activities of all gradient fractions prepared from the osteoarthritic cartilage. Further analysis of these fractions showed the osteoarthritic cartilage contained 5 times as much sulfate incorporated into proteoglycans, and an even greater amount of 3H-glucosamine incorporated into material sedimenting to the middle of the gradient. Greater than half of this radioactive middle fraction appears to be hyaluronate, as judged by the position it elutes from a DEAE column and its susceptibility to hyaluronidase digestion. This study supports earlier findings showing increased rates of macromolecular synthesis in osteoarthritis, and in addition, an even greater synthetic rate for hyaluronic acid is demonstrated.

  17. Targeting Bone Alleviates Osteoarthritis in Osteopenic Mice and Modulates Cartilage Catabolism

    Science.gov (United States)

    Funck-Brentano, Thomas; Lin, Hilène; Hay, Eric; Ah Kioon, Marie-Dominique; Schiltz, Corinne; Hannouche, Didier; Nizard, Rémy; Lioté, Frédéric; Orcel, Philippe; de Vernejoul, Marie-Christine; Cohen-Solal, Martine Esther

    2012-01-01

    Objective Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism. Methods OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody. Results Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2–3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade. Conclusion The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA. PMID:22432033

  18. Cysts of the semilunar cartilage

    International Nuclear Information System (INIS)

    On the basis of the studies listed in the bibliography, this dissertation reports on the pathology, clinical symptoms and radiology of cysts of the semilunar cartilage. The author analyses 118 cases of his own, with special regard to the results of pneumo-arthrographic investigations carried through according to a special technique by Schaefer. In the course of this work, measurements of the meniscal base are for the first time used as radiological criteria indicating the presence of a cyst of the semilunar cartilage. Furthermore the well-known radiological signs of cysts, such as bone defects according to Albert and Keller, light central spot in the meniscal body, as well as Rauber's sign and horizontal rupture, are investigated as to the frequency of their incidence. For that purpose all the X-ray pictures were subjected to a further dose scrutiny. A list of all the 118 cases with their clinical and radiological data is found in the annex, together with the results of the operations and patho-anatomical investigations. (orig.)

  19. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    Science.gov (United States)

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, prefrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures. PMID:20887036

  20. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering

    Science.gov (United States)

    Recha-Sancho, Lourdes; Semino, Carlos E.

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  1. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T1WI, T2WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  2. Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity

    Institute of Scientific and Technical Information of China (English)

    YIN Jing; YANG Zheng; CAO Yong-ping; GE Zi-gang

    2011-01-01

    Background There is a difficulty in evaluating the in vivo functionality of individual chondrocytes,and there is much heterogeneity among cartilage affected by osteoarthritis (OA).In this study,in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.Methods Cartilage of varying degeneration of end-stage OA was harvested,while cell yield and matrix glycosaminoglycan (GAG) content were measured.Cell morphology,proliferation,and gene expression of collagen type Ⅰ,Ⅱ,and Ⅹ,aggrecan,matrix metalloproteinase 13 (MMP-13),and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.Results Both the number of cells and the GAG content increased with increasing severity of OA.Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture.Gene expression of collagen type Ⅱ,collagen type X as well as GAG decreased with severity of cartilage degeneration,while expression of collagen type Ⅰ increased.Expression of MMP-13 increased with severity of cartilage degeneration,while expression of ADAMTS-5 remained stable.Expression of collagen type Ⅱ,X,GAG,and MMP-13 substantially decreased with in vitro culture.Expression of collagen type Ⅰ increased with in vitro cultures,while expression of ADAMTS 5 remained stable.Conclusions Expression of functional genes such as collagen type Ⅱ and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation.Gene expression of collagen Ⅰ and MMP-13 increased with severity of cartilage degeneration.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    Science.gov (United States)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  4. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides.

    Science.gov (United States)

    Abbadessa, Anna; Mouser, Vivian H M; Blokzijl, Maarten M; Gawlitta, Debby; Dhert, Wouter J A; Hennink, Wim E; Malda, Jos; Vermonden, Tina

    2016-06-13

    Hydrogels based on triblock copolymers of polyethylene glycol and partially methacrylated poly[N-(2-hydroxypropyl) methacrylamide mono/dilactate] make up an attractive class of biomaterials because of their biodegradability, cytocompatibility, and tunable thermoresponsive and mechanical properties. If these properties are fine-tuned, the hydrogels can be three-dimensionally bioprinted, to generate, for instance, constructs for cartilage repair. This study investigated whether hydrogels based on the polymer mentioned above with a 10% degree of methacrylation (M10P10) support cartilage formation by chondrocytes and whether the incorporation of methacrylated chondroitin sulfate (CSMA) or methacrylated hyaluronic acid (HAMA) can improve the mechanical properties, long-term stability, and printability. Chondrocyte-laden M10P10 hydrogels were cultured for 42 days to evaluate chondrogenesis. M10P10 hydrogels with or without polysaccharides were evaluated for their mechanical properties (before and after UV photo-cross-linking), degradation kinetics, and printability. Extensive cartilage matrix production occurred in M10P10 hydrogels, highlighting their potential for cartilage repair strategies. The incorporation of polysaccharides increased the storage modulus of polymer mixtures and decreased the degradation kinetics in cross-linked hydrogels. Addition of HAMA to M10P10 hydrogels improved printability and resulted in three-dimensional constructs with excellent cell viability. Hence, this novel combination of M10P10 with HAMA forms an interesting class of hydrogels for cartilage bioprinting. PMID:27171342

  5. MR-based three-dimensional presentation of cartilage thickness in the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Katsuyuki [Dept. of Radiology, Osaka Seamen' s Insurance Hospital (Japan); Tanaka, Hisashi; Nakamura, Hironobu [Osaka Univ. (Japan). Dept. of Radiology; Sugano, Nobuhiko [Dept. of Orthopedic Surgery, Osaka University Medical School (Japan); Sato, Yoshinobu; Kubota, Tetsuya; Tamura, Shinichi [Div. of Functional Imaging, Osaka University Medical School (Japan); Ueguchi, Takashi [Dept. of Radiology, Osaka University Medical Hospital (Japan)

    2001-11-01

    The purpose of our study was to visualize the hyaline cartilage of the femoral head and to evaluate the distribution of the thickness by three-dimensional reconstruction of MRI data. The MRI was performed in 10 normal volunteers, 1 patient with osteonecrosis and 4 with advanced osteoarthritis. A fast 3D spoiled gradient-recalled acquisition in the steady state pulse sequence (TR 22 ms/TE 5.6 ms/no. of excitations 2) with fat suppression was used for data collection. Coronal and sagittal images were obtained with 3-mm effective slice thickness, 16-cm field of view (FOV) and 256 x 192 matrix. The MR images were reconstructed in three dimensions for evaluating the distribution of the cartilage thickness. In all normal volunteers, 1 patient with osteonecrosis and three advanced osteoarthritis, 3D reconstruction was successful, but in 1 case of osteoarthritis, 3D reconstruction failed because of the narrow joint space. In normal volunteers, the cartilage thickness is thickest in the central portion around the ligamentum teres (mean 2.8 mm). The medial portion and the lateral portion are almost of the same thickness (medial 1.3 mm, lateral 1.1 mm). In 3 cases of osteoarthritis, the cartilage became thinner in the lateral portions (<0.6 mm), but was unchanged in the central and medial portions. Three-dimensional reconstruction of MRI data is useful for evaluating the distribution of the cartilage thickness of the femoral head objectively. (orig.)

  6. Holmium laser ablation of cartilage: effects of delivery fiber angle of incidence

    Science.gov (United States)

    Asshauer, Thomas; Oberthur, Thorsten; Jansen, Thomas; Gerber, Bruno E.; Delacretaz, Guy P.

    1996-01-01

    The effects of 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered in isotonic saline solution via an optical fiber system on fresh porcine femur patellar groove cartilage were studied in vitro. Various irradiation geometry, corresponding to angles of 0 - 90 degree(s) of the delivering fiber with respect to the cartilage surface, have been investigated. A laser pulse energies of 1.0 J with a pulse duration of 250 microsecond(s) (FWHM) was used. The dynamics of the induced transient vapor bubbles and the ablation process were monitored by time resolved flash videography techniques. Acoustic transients of up to 200 bars induced by bubble collapses were measured by a calibrated piezoelectric needle probe hydrophone. Histological assessment of the irradiated cartilage samples was performed using azan and Safranin-O stains. The extent of the area of altered cartilage cells is larger than the zone of tissue matrix damage. The predominant mechanism of tissue damage is thermal rather than acousto-mechanical. Cartilage treatment at an angle of incidence of 30 degree(s) reduces significantly the overall damage as compared to 60 degree(s) or 90 degree(s) irradiation.

  7. Dielectric study of interaction of water with normal and osteoarthritis femoral condyle cartilage.

    Science.gov (United States)

    Marzec, E; Olszewski, J; Kaczmarczyk, J; Richter, M; Trzeciak, T; Nowocień, K; Malak, R; Samborski, W

    2016-08-01

    The main goal of this paper is the in vitro study of healthy and osteoarthritis (OA) human cartilage using the dielectric spectroscopy in the alpha-dispersion region of the electric field and in the temperatures from 25 to 140°C. The activation energy of conductivity needed to break the bonds formed by water in the extracellular matrix takes the average values of 61kJ/mol and 44kJ/mol for the control and OA cartilages, respectively. At 28°C, the small difference appears in the permittivity decrement between the control and OA cartilages, while the conductivity increment is about 2 times higher for the control tissue than that for the OA tissue. At 75°C, the conductivity increment for both of these samples is 8 times higher than their respective permittivity decrement. In addition, at 140°C the values of these both parameters for the OA tissue decrease by 8 times as compared to those recorded for the control sample. The relaxation frequency of about 10kHz is similar for both of these samples. The knowledge on dielectric properties of healthy and OA cartilage may prove relevant to tissue engineering focused on the repair of cartilage lesions via the layered structure designing. PMID:27015448

  8. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  9. Novel aspects to the structure of rabbit articular cartilage

    Directory of Open Access Journals (Sweden)

    ap Gwynn I.

    2002-12-01

    Full Text Available Applying cryo and modified chemical preparation techniques, mainly for scanning electron microscopy, revealed entirely new aspects to the structure of the radial zone of rabbit tibial plateau articular cartilage. The aggrecan component of the extracellular matrix was contained radially in columns, each with a diameter of 1-3mm, by a tightly packed matrix of collagen fibrils. The collagen fibrils were arranged radially, some straight and others in an opposed spiral arrangement, with regularly repeating patterns. This organization existed in the regions surrounding the columns of chondrocytes, known as chondrons. The load bearing property of the tissue was explained by the directed flow and containment of the interstitial fluid, modulated by the protein-carbohydrate complexes, along these collagen bounded tubular structures. The reason why such a structure has not been described previously may be that it is not retained by aldehyde fixation followed by dehydration, the method commonly used for tissue preparation for electron microscopy.

  10. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible. PMID:26069647

  11. The bone-cartilage unit in osteoarthritis.

    Science.gov (United States)

    Lories, Rik J; Luyten, Frank P

    2011-01-01

    Osteoarthritis (OA) refers to a group of mechanically-induced joint disorders to which both genetic and acquired factors contribute. Current pathophysiological concepts focus on OA as a disease of the whole joint. Within these models, the functional unit formed by the articular cartilage and the subchondral bone seems to be of particular interest. Cartilage and bone receive and dissipate the stress associated with movement and loading, and are therefore continuously challenged biomechanically. Recent data support the view that cartilage and bone can communicate over the calcified tissue barrier; vessels reach out from bone into the cartilage zone, patches of uncalcified cartilage are in contact with bone, and microcracks and fissures further facilitate transfer of molecules. Several molecular signaling pathways such as bone morphogenetic proteins and Wnts are hypothesized to have a role in OA and can activate cellular and molecular processes in both cartilage and bone cells. In addition, intracellular activation of different kinase cascades seems to be involved in the molecular crosstalk between cartilage and bone cells. Further research is required to integrate these different elements into a comprehensive approach that will increase our understanding of the disease processes in OA, and that could lead to the development of specific therapeutics or treatment strategies. PMID:21135881

  12. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients. PMID:11572120

  13. Inter-subject comparison of MRI knee cartilage thickness

    OpenAIRE

    Carballido-Gamio, Julio; Jan S. Bauer; Stahl, Robert; Lee, Keh-Yang; Krause, Stefanie; Link, Thomas M.; Majumdar, Sharmila

    2007-01-01

    In this paper, we present the development and application of current image processing techniques to perform MRI inter-subject comparison of knee cartilage thickness based on the registration of bone structures. Each point in the bone surface which is part of the bone–cartilage interface is assigned a cartilage thickness value. Cartilage and corresponding bone structures are segmented and their shapes interpolated to create isotropic voxels. Cartilage thicknesses are computed for each point in...

  14. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  15. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  16. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  17. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  18. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  19. Fibrin for tissue engineering of cartilage

    OpenAIRE

    Eyrich, Daniela

    2006-01-01

    Since the beginning of the 1990s a plethora of research approaches towards cartilage engineering for plastic and reconstructive surgery have been undertaken. However, a general standard method for generation of cartilage tissue equivalent is still lacking. The goal of this thesis is based on the project �Bavarian Research Cooperation for Tissue Engineering and Rapid Prototyping� (ForTEPro) for development of individually customized implants for facial and reconstructive surgery. The main o...

  20. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  1. The oligomerization of CynR in Escherichia coli

    OpenAIRE

    Knapp, Gwendowlyn S; Hu, James C.

    2009-01-01

    Deletion analysis and alanine-scanning based on a homology-based interaction model were used to identify determinants of oligomerization in the transcriptional regulator CynR, a member of the LysR-type transcriptional regulator (LTTR) family. Deletion analysis confirmed that the putative regulatory domain of CynR was essential for driving the oligomerization of λ repressor-CynR fusion proteins. The interaction surface of a different LTTR and OxyR was mapped onto a multiple sequence alignment ...

  2. A Comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes

    OpenAIRE

    Jeong, Claire G.; Hollister, Scott J.

    2010-01-01

    The goal of this study was to determine material effects on cartilage regeneration for scaffolds with the same controlled architecture. The 3D polycaprolactone (PCL), poly (glycerol sebacate) (PGS), and poly (1,8 octanediol-co-citrate) (POC) scaffolds of the same design were physically characterized and tissue regeneration in terms of cell phenotype, cellular proliferation and differentiation, and matrix production were compared to find which material would be most optimal for cartilage regen...

  3. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    OpenAIRE

    Jansen, I.D.C.; Hollander, A P; Buttle, D. J.; Everts, V.

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity o...

  4. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    Science.gov (United States)

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  5. Influence of osteoarthritis grade on molecular signature of human cartilage.

    Science.gov (United States)

    Zhou, Shuanhu; Thornhill, Thomas S; Meng, Fangang; Xie, Li; Wright, John; Glowacki, Julie

    2016-03-01

    Articular chondrocytes maintain cartilage matrix turnover and have the capacity for anabolic and catabolic activities that can be influenced by injury and disease. This study tested the hypothesis that catabolic genes are upregulated with regional osteoarthritis (OA) disease severity within a joint. With IRB approval, specimens of knee cartilage obtained as discarded tissues from subjects undergoing arthroplasty were partitioned for each subject by OA disease severity and evaluated for gene expression by RT-PCR. There was regional OA grade-associated upregulation of expected inflammatory mediators TNF-α, TNF receptors, IFN-γ, and interleukins as well as genes encoding proteolytic enzymes, including Adamts-5 and MMPs. Osteoclast-related genes, cathepsin K, tartrate-resistant acid phosphatase (TRAP), RANKL, RANK, M-CSF, and c-fms, but not osteoprotegerin, were induced in advanced grades. In vitro treatment of normal human chondrocytes with interleukin-1β upregulated similar genes; this provides evidence that chondrocytes per se can be the source of osteoclast-related factors. Immunohistochemical staining showed that RANK- and RANKL-positive cells were abundant in advanced grades, especially in chondrocyte clusters. This suggests a possible autocrine mechanism by which an osteoclast phenotype is induced in articular chondrocytes. In sum, these studies identified gene expression signatures in human OA cartilage based upon regional disease severity within a joint. There was an effect of OA Grade on expression of osteoclastic lytic enzymes and regulatory factors in human articular chondrocytes. Induction of an osteoclast-like phenotype in chondrocytes may be part of OA progression and suggests specific therapeutic approaches. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:454-462, 2016. PMID:26336057

  6. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  7. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    International Nuclear Information System (INIS)

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  8. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.

    Science.gov (United States)

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A

    2015-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strain-dependent material properties. Two loading conditions were simulated, one where the superficial zone was loaded with a porous platen (normal test) and the other where the deep zone was loaded with the porous platen (upside down test). Compressing the intact articular cartilage with 0.2 MPa stress reduced the surface permeability by 88%. Removing the superficial zone increased the rate of change for all mechanical parameters and decreased the fluid support ratio of the tissue, resulting in increased tissue deformation. Apparent permeability linearly increased after superficial removal in the normal test, yet it did not change in the upside down test. Orientation of the specimen affected the time-dependent biomechanical behavior of the articular cartilage, but not equilibrium behavior. The two tests with different specimen orientations resulted in very different apparent permeabilities, suggesting that in an experimental study which quantifies material properties of an inhomogeneous material, the specimen orientation should be stated along with the permeability result. The current study provides new insights into the role of the superficial zone on mechanical behavior of the articular cartilage. PMID:25465194

  9. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    Science.gov (United States)

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular

  10. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  11. Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse.

    Science.gov (United States)

    Azadi, Mojtaba; Nia, Hadi Tavakoli; Gauci, Stephanie J; Ortiz, Christine; Fosang, Amanda J; Grodzinsky, Alan J

    2016-06-14

    Aggrecan loss in human and animal cartilage precedes clinical symptoms of osteoarthritis, suggesting that aggrecan loss is an initiating step in cartilage pathology. Characterizing early stages of cartilage degeneration caused by aging and overuse is important in the search for therapeutics. In this study, atomic force microscopy (AFM)-based force-displacement micromechanics, AFM-based wide bandwidth nanomechanics (nanodynamic), and histologic assessments were used to study changes in distal femur cartilage of wildtype mice and mice in which the aggrecan interglobular domain was mutated to make the cartilage aggrecanase-resistant. Half the animals were subjected to voluntary running-wheel exercise of varying durations. Wildtype mice at three selected age groups were compared. While histological assessment was not sensitive enough to capture any statistically significant changes in these relatively young populations of mice, micromechanical assessment captured changes in the quasi-equilibrium structural-elastic behavior of the cartilage matrix. Additionally, nanodynamic assessment captured changes in the fluid-solid poroelastic behavior and the high frequency stiffness of the tissue, which proved to be the most sensitive assessment of changes in cartilage associated with aging and joint-overuse. In wildtype mice, aging caused softening of the cartilage tissue at the microscale and at the nanoscale. Softening with increased animal age was found at high loading rates (frequencies), suggesting an increase in hydraulic permeability, with implications for loss of function pertinent to running and impact-injury. Running caused substantial changes in fluid-solid interactions in aggrecanase-resistant mice, suggestive of tissue degradation. However, higher nanodynamic stiffness magnitude and lower hydraulic permeability was observed in running aggrecanase-resistant mice compared to running wildtype controls at the same age, thereby suggesting protection from joint

  12. The determination of apoptosis rates on articular cartilages of ovariectomized rats with and without alendronate treatment.

    Science.gov (United States)

    Acar, Nuray; Balkarli, Huseyin; Soyuncu, Yetkin; Ozbey, Ozlem; Celik-Ozenci, Ciler; Korkusuz, Petek; Ustunel, Ismail

    2016-06-01

    Osteoporosis (OP) is a major health problem characterized by compromised bone strength. Osteoarthritis (OA) is a joint disease that progresses slowly and is characterized by breakdown of the cartilage matrix. Alendronate (ALN), a nitrogen-containing bisphosphonate (BIS), inhibits bone loss and increases bone mineralization, and has been used clinically for the treatment of OP. It is still controversial whether BIS is effective in inhibiting the progression of OA. Chondrocyte apoptosis has been described in both human and experimentally induced OA models. In our study we aimed to detect whether ALN could protect articular cartilage from degeneration and reduce apoptosis rates in experimentally OA induced rats. For this rats were ovariectomized (ovex), nine weeks after operation rats were injected 30 µg/kg/week ALN subcutaneously for six weeks. After six weeks articular cartilages were obtained. We did Safranin O staining and Mankin and Pritzker scorings to evaluate degeneration and investigated the expressions of p53, cleaved caspase 3, Poly ADP-ribose (PAR), Poly ADP-ribose polymerase 1 (PARP 1), and applied TUNEL technique to determine apoptotis rates. We found a significant decrease in glycosaminoglycan (GAG) amount and increased apoptosis which indicates damage on articular cartilages of ovex rats. GAG amount was higher and apoptosis rate was lower on articular cartilages of ALN treated ovex rats compared to the ovex group. In contrary to studies showing that early ALN treatment has a protective effect, our study shows late ALN treatment has a chondroprotective effect on articular cartilage since we treated rats nine weeks after ovariectomy. PMID:26631351

  13. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    International Nuclear Information System (INIS)

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively

  14. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    Energy Technology Data Exchange (ETDEWEB)

    Ohyabu, Yohimi, E-mail: ooyabu.yoshimi@aist.go.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Adegawa, Takuro; Yoshioka, Tomohiko [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Ikoma, Toshiyuki [Biomaterials Center, National Institute for Materials Science, 1-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Uemura, Toshimasa [Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Tanaka, Junzo [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2010-10-15

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  15. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    International Nuclear Information System (INIS)

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  16. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  17. Correction of Asian Short Nose with Lower Lateral Cartilage Repositioning and Ear Cartilage Grafting

    Directory of Open Access Journals (Sweden)

    Jin Suk Byun, MD, PhD

    2013-09-01

    Conclusions: LLC repositioning and ear cartilage grafting aid in the correction of short nose in Asians. With LLC repositioning and ear cartilage grafting, the nasal tip can be positioned in accordance with the patient’s anatomic limits. The entire nasal tip and columella can be lengthened, while the tip maintains its mobility.

  18. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x1070 s-1 and Ea=4.5x105 J mole-1, were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  19. Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials

    KAUST Repository

    Yang, Xiaohui

    2010-08-24

    The synthesis, photophysical, and electrochemical characterization of macromolecules, consisting of an emissive platinum complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core, is reported. Organic light-emitting devices based on these POSS materials exhibit a peak external quantum efficiency of ca. 8%, which is significantly higher than that of the analogous devices with a physical blend of the platinum complexes and a polymer matrix, and they represent noticeable improvement in the device efficiency of solution-processable phosphorescent excimer devices. Furthermore, the ratio of monomer and excimer/aggregate electroluminescent emission intensity, as well as the device efficiency, increases as the platinum complex moiety presence on the POSS macromolecules decreases. © 2010 American Chemical Society.

  20. Receptor Oligomerization as a Process Modulating Cellular Semiotics

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio; Maggio, Roberto

    2010-01-01

    The majority of G protein-coupled receptors (GPCRs) self-assemble in the form dimeric/oligomeric complexes along the plasma membrane. Due to the molecular interactions they participate, GPCRs can potentially provide the framework for discriminating a wide variety of intercellular signals, as base...

  1. Clarifying the role of sodium in the silica oligomerization reaction

    NARCIS (Netherlands)

    A. Pavlova; T.T. Trinh; R.A. Santen; E.J. Meijer

    2013-01-01

    Silica oligomerization is the key reaction in zeolite synthesis. NaOH is a common additive in the zeolite synthesis that decreases the reaction rate of smaller silica oligomers and also affects the final structure of the zeolite. Here we report a study of the role of sodium in the initial stages of

  2. Mechanical Stress and ATP Synthesis are coupled by Mitochondrial Oxidants in Articular Cartilage

    OpenAIRE

    Wolff, Katherine J; Ramakrishnan, Prem S.; Brouillette, Marc J.; Journot, Brice; Mckinley, Todd O; Buckwalter, JA; Martin, James A.

    2012-01-01

    Metabolic adaptation of articular cartilage under joint loading is evident and matrix synthesis seems to be critically tied to ATP. Chondrocytes utilize the glycolytic pathway for energy requirements but seem to require mitochondrial reactive oxygen species (ROS) to sustain ATP synthesis. The role of ROS in regulating ATP reserves under a mechanically active environment is not clear. It is believed that physiological strains cause deformation of the mitochondria, potentially releasing ROS for...

  3. Aggrecan structure in amphibian cartilage

    Directory of Open Access Journals (Sweden)

    Covizi D.Z.

    2000-01-01

    Full Text Available The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.

  4. Use of micro-computed tomography to evaluate the effects of exercise on preventing the degeneration of articular cartilage in tail-suspended rats

    Science.gov (United States)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wu, Xin-tong; Niu, Haijun; Liu, Hong; Fan, Yu-Bo

    2015-07-01

    Space flight has been shown to induce bone loss and muscle atrophy, which could initiate the degeneration of articular cartilage. Countermeasures to prevent bone loss and muscle atrophy have been explored, but few spaceflight or ground-based studies have focused on the effects on cartilage degeneration. In this study, we investigated the effects of exercise on articular cartilage deterioration in tail-suspended rats. Thirty-two female Sprague-Dawley rats were randomly divided into four groups (n = 8 in each): tail suspension (TS), tail suspension plus passive motion (TSP), tail suspension plus active exercise (TSA), and control (CON) groups. In the TS, TSP, and TSA groups, the rat hindlimbs were unloaded for 21 days by tail suspension. Next, the cartilage thickness and volume, and the attenuation coefficient of the distal femur were evaluated by micro-computed tomography (μCT). Histological analysis was used to assess the surface integrity of the cartilage, cartilage thickness, and chondrocytes. The results showed that: (1) the cartilage thickness on the distal femur was significantly lower in the TS and TSP groups compared with the CON and TSA groups; (2) the cartilage volume in the TS group was significantly lower compared with the CON, TSA, and TSP groups; and (3) histomorphology showed that the chondrocytes formed clusters where the degree of matrix staining was lower in the TS and TSP groups. There were no significant differences between any of these parameters in the CON and TSA groups. The cartilage thickness measurements obtained by μCT and histomorphology correlated well. In general, tail suspension could induce articular cartilage degeneration, but active exercise was effective in preventing this degeneration in tail-suspended rats.

  5. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism.

    Science.gov (United States)

    Wang, Zhenzhong; Guo, Ai; Ma, Lifeng; Yu, Haomiao; Zhang, Liang; Meng, Hai; Cui, Yinpeng; Yu, Fei; Yang, Bo

    2016-06-01

    Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti‑inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin‑1β (IL‑1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant‑induced arthritis (AIA). The safe concentration range (0‑50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP‑13 mRNA and protein expression were confirmed by RT‑qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP‑13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP‑13 expression was partially attributed to the inactivation of the p38 mitogen‑activated protein kinases pathway by suppressing p‑p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA. PMID:27082436

  6. CD147 overexpression on synoviocytes in rheumatoid arthritis enhances matrix metalloproteinase production and invasiveness of synoviocytes

    OpenAIRE

    Zhu, Ping; Lu, Ning; Shi, Zhan-guo; Zhou, Jun; Wu, Zhen-biao; Yang, Yong; Ding, Jin; Chen, Zhi-Nan

    2006-01-01

    Macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) are known as the most active cells of rheumatoid arthritis (RA) and are close to the articular cartilage in a position enabling them to invade the cartilage. Macrophage-like synoviocytes and FLS expression of matrix metalloproteinases (MMPs) and their interaction has aroused great interest. The present article studied the expression of CD147, also called extracellular matrix metalloproteinase inducer, on monocytes/macrophages...

  7. Coating of Carbon Fiber with Polyhedral Oligomeric Silsesquioxane (POSS) to Enhance Mechanical Properties and Durability of Carbon/Vinyl Ester Composites

    OpenAIRE

    Mujib Khan; Mahesh Hosur; Hassan Mahfuz; Richard Granata; Felicia Powell

    2011-01-01

    Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesqui...

  8. Mineralization of Annexin-5-containing Lipid-Calcium-Phosphate Complexes: MODULATION BY VARYING LIPID COMPOSITION AND INCUBATION WITH CARTILAGE COLLAGENS*

    OpenAIRE

    Genge, Brian R.; Wu, Licia N. Y.; Wuthier, Roy E.

    2008-01-01

    Matrix vesicles (MVs) in the growth plate bind to cartilage collagens and initiate mineralization of the extracellular matrix. Native MVs have been shown to contain a nucleational core responsible for mineral formation that is comprised of Mg2+-containing amorphous calcium phosphate and lipid-calcium-phosphate complexes (CPLXs) and the lipid-dependent Ca2+-binding proteins, especially annexin-5 (Anx-5), which greatly enhances mineral formation. Incorporation of non-Ca2...

  9. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue. PMID:26923076

  10. In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo. - Highlights: • We developed a chitosan–gelatin scaffold crosslinked with carbodiimide. • Neocartilage formation was more evident in crosslinked vs. non-crosslinked scaffolds. • Histological features of tide line and lacunae were observed in vivo at 6.5 months. • Compressive modulus of regenerated

  11. Characterization of engineered cartilage constructs using multiexponential T₂ relaxation analysis and support vector regression.

    Science.gov (United States)

    Irrechukwu, Onyi N; Reiter, David A; Lin, Ping-Chang; Roque, Remigio A; Fishbein, Kenneth W; Spencer, Richard G

    2012-06-01

    Increased sensitivity in the characterization of cartilage matrix status by magnetic resonance (MR) imaging, through the identification of surrogate markers for tissue quality, would be of great use in the noninvasive evaluation of engineered cartilage. Recent advances in MR evaluation of cartilage include multiexponential and multiparametric analysis, which we now extend to engineered cartilage. We studied constructs which developed from chondrocytes seeded in collagen hydrogels. MR measurements of transverse relaxation times were performed on samples after 1, 2, 3, and 4 weeks of development. Corresponding biochemical measurements of sulfated glycosaminoglycan (sGAG) were also performed. sGAG per wet weight increased from 7.74±1.34 μg/mg in week 1 to 21.06±4.14 μg/mg in week 4. Using multiexponential T₂ analysis, we detected at least three distinct water compartments, with T₂ values and weight fractions of (45 ms, 3%), (200 ms, 4%), and (500 ms, 97%), respectively. These values are consistent with known properties of engineered cartilage and previous studies of native cartilage. Correlations between sGAG and MR measurements were examined using conventional univariate analysis with T₂ data from monoexponential fits with individual multiexponential compartment fractions and sums of these fractions, through multiple linear regression based on linear combinations of fractions, and, finally, with multivariate analysis using the support vector regression (SVR) formalism. The phenomenological relationship between T₂ from monoexponential fitting and sGAG exhibited a correlation coefficient of r²=0.56, comparable to the more physically motivated correlations between individual fractions or sums of fractions and sGAG; the correlation based on the sum of the two proteoglycan-associated fractions was r²=0.58. Correlations between measured sGAG and those calculated using standard linear regression were more modest, with r² in the range 0

  12. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy

    Science.gov (United States)

    Vinatier, Claire; Bouffi, Carine; Merceron, Christophe; Gordeladze, Jan; Brondello, Jean-Marc; Jorgensen, Christian; Weiss, Pierre; Guicheux, Jérôme; Noël, Danièle

    2009-01-01

    Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, the lack of efficient modalities of treatment for large chondral defects has prompted research on tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potentials of cell therapy for cartilage engineering. These include: 1) defining the best cell candidates between chondrocytes or multipotent progenitor cells, such as multipotent mesenchymal stromal cells (MSC), in terms of readily available sources for isolation, expansion and repair potential; 2) engineering biocompatible and biodegradable natural or artificial matrix scaffolds as cell carriers, chondrogenic factors releasing factories and supports for defect filling, 3) identifying more specific growth factors and the appropriate scheme of application that will promote both chondrogenic differentiation and then maintain the differentiated phenotype overtime and 4) evaluating the optimal combinations that will answer to the functional demand placed upon cartilage tissue replacement in animal models and in clinics. Finally, some of the major obstacles generally encountered in cartilage engineering are discussed as well as future trends to overcome these limiting issues for clinical applications. PMID:19804369

  13. Collagene order of articular cartilage by clinical magnetic resonance images and its age dependency

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Gruender, W. [Inst. of Medical Physics and Biophysics, Univ. of Leipzig (Germany)

    2005-07-01

    The present papers describes a novel method to obtain information on the degree of order of the collagen network of the knee meniscal cartilage by means of a single clinical MRI. Images were obtained from 34 healthy volunteers aged between 6 and 76 years as well as from one patient with clinically-diagnosed arthrosis at the age of 32 and 37 years. A siemens vision (1.5 T) MRT with TR = 750 ms, TE = 50 ms, FoV = 160 mm, and Matrix 512 x 512 was used for this purpose. The MR signal intensities of the cartilage were read out along slices with constant height above the subchondral bone and plotted versus the actual angle to the external magnetic field. The obtained intensity curves were fitted by a model distribution, and the degree of order of the collagen fibers was calculated. For the knee meniscal cartilage, there was an age-dependency of the degree of order and a significant deviation of the volunteer with arthrosis from the normal curve. The results are discussed in view of the arcade model and of a possible use of non-invasive clinical MRT for the detection of early arthrotic changes of cartilage. (orig.)

  14. Collagene order of articular cartilage by clinical magnetic resonance images and its age dependency

    International Nuclear Information System (INIS)

    The present papers describes a novel method to obtain information on the degree of order of the collagen network of the knee meniscal cartilage by means of a single clinical MRI. Images were obtained from 34 healthy volunteers aged between 6 and 76 years as well as from one patient with clinically-diagnosed arthrosis at the age of 32 and 37 years. A siemens vision (1.5 T) MRT with TR = 750 ms, TE = 50 ms, FoV = 160 mm, and Matrix 512 x 512 was used for this purpose. The MR signal intensities of the cartilage were read out along slices with constant height above the subchondral bone and plotted versus the actual angle to the external magnetic field. The obtained intensity curves were fitted by a model distribution, and the degree of order of the collagen fibers was calculated. For the knee meniscal cartilage, there was an age-dependency of the degree of order and a significant deviation of the volunteer with arthrosis from the normal curve. The results are discussed in view of the arcade model and of a possible use of non-invasive clinical MRT for the detection of early arthrotic changes of cartilage. (orig.)

  15. Naringin Protects Against Cartilage Destruction in Osteoarthritis Through Repression of NF-κB Signaling Pathway.

    Science.gov (United States)

    Zhao, Yunpeng; Li, Zhong; Wang, Wenhan; Zhang, Hui; Chen, Jianying; Su, Peng; Liu, Long; Li, Weiwei

    2016-02-01

    Naringin was previously reported as a multifunctional agent. Recently, naringin was found to play a protective role in various inflammatory conditions. However, the role of naringin in cartilage degeneration and osteoarthritis (OA) progression is still unknown. TNF-α is reported to play a detrimental role in OA. Herein, primary murine chondrocytes were isolated and cultured with stimulation of TNF-α, in the presence or absence of naringin treatment. As a result, naringin attenuated TNF-α-mediated inflammation and catabolism in chondrocyte. Besides, surgically induced OA mice models were established. Cartilage degradation and OA severity were evaluated using Safranin-O staining, immunohistochemistry, and ELISA. Moreover, levels of inflammatory cytokines and catabolic markers in OA were analyzed. Oral administration of naringin alleviated degradation of cartilage matrix and protected against OA development in the surgically induced OA models. Furthermore, the protective function of naringin in cartilage and chondrocyte was possibly due to suppression of NF-κB signaling pathway. Collectively, this study presents naringin as a potential target for the treatment of joint degenerative diseases, including OA. PMID:26438631

  16. Development of large engineered cartilage constructs from a small population of cells.

    Science.gov (United States)

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. PMID:23197468

  17. Effect of estrogen and dietary loading on rat condylar cartilage

    OpenAIRE

    Orajärvi, M. (Marko)

    2015-01-01

    Abstract The temporomandibular joint (TMJ) is a synovial joint which attaches the mandible to the skull. The head of the mandibular condyle is covered by condylar cartilage, which functions as both growth and articular cartilage. Masticatory forces are transmitted to the condylar cartilage, and the consistency of a person’s diet partly defines the loading force. Condylar cartilage acts as a load-absorbing structure together with the articular disc. Temporomandibular disorders (TMDs) are...

  18. Engineering articular cartilage using newly developed carrageenan basedhydrogels

    OpenAIRE

    Popa, Elena Geta

    2014-01-01

    Articular cartilage holds specific functionality in the human body creating smooth gliding areas and allowing the joints to move easily without pain. However, due to its avascular nature and to the low metabolic activity of the constituent cells-the chondrocytes, cartilage has a low regenerative potential. The current surgical options to treat damaged cartilage are not long lasting and involve frequent revisions. Tissue engineering may provide an alternative approach for cartilage...

  19. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  20. Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS filled PS nanocomposites

    Directory of Open Access Journals (Sweden)

    J. J. Schwab

    2012-07-01

    Full Text Available The polyhedral oligomeric silsesquioxane (POSS additivated polystyrene (PS based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage.

  1. Irradiated homologous costal cartilage for augmentation rhinoplasty

    International Nuclear Information System (INIS)

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed

  2. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  3. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  4. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts

    Directory of Open Access Journals (Sweden)

    Endres Michaela

    2012-11-01

    Full Text Available Abstract Background Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA/fibrin biomaterials for scaffold-assisted cartilage repair. Methods Ovine chondrocytes harvested from adult articular cartilage were expanded in monolayer and re-assembled three-dimensionally in PGA-fibrin scaffolds. De- and re-differentiation of ovine chondrocytes in PGA-fibrin scaffolds was assessed by histological and immuno-histochemical staining as well as by real-time gene expression analysis of typical cartilage marker molecules and the matrix-remodelling enzymes matrix metalloproteinases (MMP -1, -2 and −13 as well as their inhibitors. PGA scaffolds characteristics including degradation and stiffness were analysed by electron microscopy and biomechanical testing. Results Histological, immuno-histochemical and gene expression analysis showed that dedifferentiated chondrocytes re-differentiate in PGA-fibrin scaffolds and form a cartilaginous matrix. Re-differentiation was accompanied by the induction of type II collagen and aggrecan, while MMP expression decreased in prolonged tissue culture. Electron microscopy and biomechanical tests revealed that the non-woven PGA scaffold shows a textile structure with high tensile strength of 3.6 N/mm2 and a stiffness of up to 0.44 N/mm2, when combined with gel-like fibrin. Conclusion These data suggest that PGA-fibrin is suited as a mechanically stable support structure for scaffold-assisted chondrocyte grafts, initiating chondrogenic re-differentiation of expanded chondrocytes.

  5. Tissue engineering of cartilage in space

    OpenAIRE

    Freed, Lisa E.; Langer, Robert; Martin, Ivan; Pellis, Neal R.; Vunjak-Novakovic, Gordana

    1997-01-01

    Tissue engineering of cartilage, i.e., the in vitro cultivation of cartilage cells on synthetic polymer scaffolds, was studied on the Mir Space Station and on Earth. Specifically, three-dimensional cell-polymer constructs consisting of bovine articular chondrocytes and polyglycolic acid scaffolds were grown in rotating bioreactors, first for 3 months on Earth and then for an additional 4 months on either Mir (10−4–10−6 g) or Earth (1 g). This mission provided a unique opportunity to study the...

  6. Regulation of peroxisomal matrix protein import by ubiquitination

    DEFF Research Database (Denmark)

    Platta, Harald W; Brinkmeier, Rebecca; Reidick, Christina; Galiani, Silvia; Clausen, Mathias P; Eggeling, Christian

    2015-01-01

    Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisom...... the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann....

  7. Oligomeric forms of G protein-coupled receptors (GPCRs)

    OpenAIRE

    Palczewski, Krzysztof

    2010-01-01

    Oligomerization is a general characteristic of cell membrane receptors that is shared by G protein-coupled receptors (GPCRs) together with their G protein partners. Recent studies of these complexes, both in vivo and in purified reconstituted forms, unequivocally support this contention for GPCRs, perhaps with only rare exceptions. As evidence has evolved from experimental cell lines to more relevant in vivo studies and from indirect biophysical approaches to well defined isolated complexes o...

  8. Galactan synthesis in a single step via oligomerization of monosaccharides

    Directory of Open Access Journals (Sweden)

    Marius Dräger

    2014-11-01

    Full Text Available Galactans ranging in length from one to five residues were prepared in a single step by treatment of the glycosyl donor 2,3,4-tri-O-benzoyl-β-D-galactopyranosyl fluoride with lanthanum perchlorate in the presence of an initiator alcohol. The product oligosaccharides were readily chromatographically separable. This oligomerization was used to synthesize a pentagalactan in a single step from monosaccharide building blocks in reasonable overall yields.

  9. Galactan synthesis in a single step via oligomerization of monosaccharides

    OpenAIRE

    Marius Dräger; Amit Basu

    2014-01-01

    Galactans ranging in length from one to five residues were prepared in a single step by treatment of the glycosyl donor 2,3,4-tri-O-benzoyl-β-D-galactopyranosyl fluoride with lanthanum perchlorate in the presence of an initiator alcohol. The product oligosaccharides were readily chromatographically separable. This oligomerization was used to synthesize a pentagalactan in a single step from monosaccharide building blocks in reasonable overall yields.

  10. Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States

    OpenAIRE

    Monteiro, Karina M.; Cardoso, Mateus B.; Follmer, Cristian; da Silveira, Nádya P.; Vargas, Daiani M.; Kitajima, Elliot W.; Zaha, Arnaldo; Ferreira, Henrique B.

    2012-01-01

    Background Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectromet...

  11. DNA display of glycoconjugates to emulate oligomeric interactions of glycans.

    Science.gov (United States)

    Novoa, Alexandre; Winssinger, Nicolas

    2015-01-01

    Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed. PMID:26113879

  12. Chelating polyhedral oligomeric silsesquioxane nanofillers in chitosan dialysis membranes

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kebrlová, Natálie; Brus, Jiří; Dybal, Jiří; Rosova, E.; Dmitriev, I.; Elyashevich, G. K.; Bastl, Zdeněk

    Praha : Ústav makromolekulární chemie AS CR, v. v. i, 2007 - (Kahovec, J.). s. 101 ISBN 978-80-85009-55-2. [Microsymposium on Nanostructured Polymers and Polymer Nanocomposites /46./. 08.07.2007-12.07.2007, Praha] R&D Projects: GA ČR GA525/05/2584 Institutional research plan: CEZ:AV0Z40500505 Keywords : chitosan composite dialysis membranes * polyhedral oligomeric silsesquioxanes * metal ions * elastic properties Subject RIV: CD - Macromolecular Chemistry

  13. Analysis of Protein Oligomeric Species by Sucrose Gradients.

    Science.gov (United States)

    Tenreiro, Sandra; Macedo, Diana; Marijanovic, Zrinka; Outeiro, Tiago Fleming

    2016-01-01

    Protein misfolding, aggregation, and accumulation are a common hallmark in various neurodegenerative diseases. Invariably, the process of protein aggregation is associated with both a loss of the normal biological function of the protein and a gain of toxic function that ultimately leads to cell death. The precise origin of protein cytotoxicity is presently unclear but the predominant theory posits that smaller oligomeric species are more toxic than larger aggregated forms. While there is still no consensus on this subject, this is a central question that needs to be addressed in order to enable the design of novel and more effective therapeutic strategies. Accordingly, the development and utilization of approaches that allow the biochemical characterization of the formed oligomeric species in a given cellular or animal model will enable the correlation with cytotoxicity and other parameters of interest.Here, we provide a detailed description of a low-cost protocol for the analysis of protein oligomeric species from both yeast and mammalian cell lines models, based on their separation according to sedimentation velocity using high-speed centrifugation in sucrose gradients. This approach is an adaptation of existing protocols that enabled us to overcome existing technical issues and obtain reliable results that are instrumental for the characterization of the types of protein aggregates formed by different proteins of interest in the context of neurodegenerative disorders. PMID:27613047

  14. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice

    Science.gov (United States)

    Chen, Yupeng; Cossman, Jack; Jayasuriya, Chathuraka T.; Li, Xin; Guan, Yingjie; Fonseca, Vera; Yang, Kun; Charbonneau, Cherie; Yu, Hongchuan; Kanbe, Katsuaki; Ma, Peter; Darling, Eric; Chen, Qian

    2016-01-01

    Matrilin-1 (Matn1), a cartilage-specific peri-cellular and extracellular matrix (ECM) protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/-) mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+) mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment. PMID:27270603

  15. Impact induced failure of cartilage-on-bone following creep loading: a microstructural and fracture mechanics study.

    Science.gov (United States)

    Thambyah, Ashvin; Zhang, Geran; Kim, Woong; Broom, Neil D

    2012-10-01

    Cartilage-on-bone samples obtained from healthy bovine patellae, with or without prior static compression (i.e. creep) at 2MPa for 3h, were delivered a single impact via an instrumented pendulum indenter at a velocity of 1.13m/s and an energy of 2.2J. Mechanical data was obtained and microstructural assessment of the region of failure was carried out using differential interference contrast (DIC) optical imaging. In addition, a fibrillar-level structural analysis using scanning electron microscopy (SEM) was conducted on a control batch of non-impacted samples that were subjected to either creep or non-creep loading protocols. Arising from the impact event the deepest levels of crack penetration into the articular cartilage occurred in those samples subjected to prior creep loading. Further the crack depth was inversely proportional to the rebound velocity of the indenter. By contrast, those impacted samples not subjected to prior creep loading had only short obliquely patterned microcracks confined to the upper one-third of the full cartilage depth. Ultrastructurally the creep-loaded cartilage matrix exhibited a substantial radial collapse or compaction of the fibrillar network in its primary radial zone. The increase in crack length in the prior creep-loaded cartilage is consistent with a reduction in its dissipative properties as indicated by a reduction in rebound velocity. An interpretation is offered in terms of classical fracture mechanics theory. PMID:22784816

  16. Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An In Vivo Study in a Rabbit Model.

    Science.gov (United States)

    Wang, Chen-Chie; Yang, Kai-Chiang; Lin, Keng-Hui; Liu, Yen-Liang; Yang, Ya-Ting; Kuo, Tzong-Fu; Chen, Ing-Ho

    2016-06-01

    One of the major limitations of tissue-engineered cartilage is poor integration of chondrocytes and scaffold structures with recipient tissue. To overcome this limitation, an expandable scaffold with a honeycomb-like structure has been developed using microfluidic technology. In this study, we evaluated the performance of this expandable gelatin scaffold seeded with rabbit chondrocytes in vivo. The chondrocyte/scaffold constructs were implanted into regions of surgically introduced cylindrical osteochondral defects in rabbit femoral condyles. At 2, 4, and 6 months postsurgery, the implanted constructs were evaluated by gross and histological examinations. As expected, the osteochondral defects, which were untreated or transplanted with blank scaffolds, showed no signs of repair, whereas the defects transplanted with chondrocyte/scaffold constructs showed significant cartilage regeneration. Furthermore, the expandable scaffolds seeded with chondrocytes had more regenerated cartilage tissue and better integration with the recipient tissue than autologous chondrocyte implantation. Biomechanical tests revealed that the chondrocyte/scaffold group had the highest compressive strength among all groups at all three time points and endured a similar compressive force to normal cartilage after 6 months of implantation. Histological examinations revealed that the chondrocytes were distributed uniformly within the scaffolds, maintained a normal phenotype, and secreted functional components of the extracellular matrix. Histomorphometric assessment showed a remarkable total interface of up to 87% integration of the expandable scaffolds with the host tissue at 6 months postoperation. In conclusion, the expandable scaffolds improved chondrocyte/scaffold construct integration with the host tissue and were beneficial for cartilage repair. PMID:27193498

  17. Cartilage grafting in facial reconstruction with special consideration of irradiated grafts

    Energy Technology Data Exchange (ETDEWEB)

    Donald, P.J.

    1986-07-01

    The search for the perfect facial implant for reconstruction of the face continues. Cartilage, once thought to be an undesirable graft material because of its propensity for absorption, has regained popularity in the past decade. Various preparation techniques have been employed to ensure graft sterility and diminished absorption. An improved understanding of cartilage structure and physiology has shed considerable light on the host-graft relationship. Gamma irradiation is a time-honored method of preservation. An experiment was undertaken to investigate the physiology of irradiated cartilage grafts following prolonged implantation on the facial skeleton of sheep and dog. Merthiolate preserved grafts were used as controls. Direct observation, histochemical techniques, autoradiography, and transmission electron micrography were used to determine chondrocyte viability and matrix composition. It was surprising to note that following implantation of 16 to 72 months, complete resorption was seen in 87.7% of the irradiated grafts and in 43.8% of the Merthiolate stored controls. Many of the grafts acquired chondrocytes from the host and produced new proteoglycan matrix as well as undergoing some degree of ossification. A comparison to the clinical situation in humans is made. 98 references.

  18. Cartilage grafting in facial reconstruction with special consideration of irradiated grafts

    International Nuclear Information System (INIS)

    The search for the perfect facial implant for reconstruction of the face continues. Cartilage, once thought to be an undesirable graft material because of its propensity for absorption, has regained popularity in the past decade. Various preparation techniques have been employed to ensure graft sterility and diminished absorption. An improved understanding of cartilage structure and physiology has shed considerable light on the host-graft relationship. Gamma irradiation is a time-honored method of preservation. An experiment was undertaken to investigate the physiology of irradiated cartilage grafts following prolonged implantation on the facial skeleton of sheep and dog. Merthiolate preserved grafts were used as controls. Direct observation, histochemical techniques, autoradiography, and transmission electron micrography were used to determine chondrocyte viability and matrix composition. It was surprising to note that following implantation of 16 to 72 months, complete resorption was seen in 87.7% of the irradiated grafts and in 43.8% of the Merthiolate stored controls. Many of the grafts acquired chondrocytes from the host and produced new proteoglycan matrix as well as undergoing some degree of ossification. A comparison to the clinical situation in humans is made. 98 references

  19. Of mice, men and elephants: the relation between articular cartilage thickness and body mass.

    Directory of Open Access Journals (Sweden)

    Jos Malda

    Full Text Available Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue's thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse to 4000 kg (African elephant. Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications.

  20. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  1. Interactive segmentation of Hip Joint Cartilage

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Juráš, V.; Vogl, W.; Chytil, J.

    Cambridge: The Electromagnetics Academy, 2014, s. 2369-2372. ISBN 978-1-934142-28-8. [PIERS 2014. Progress In Electromagnetics Research Symposium /35./. Guangzhou (CN), 25.08.2014-28.08.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : hip joint * MRI * segmentation of cartilage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  3. Zn deposition at the bone cartilage interface in equine articular cartilage

    Science.gov (United States)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  4. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  5. Zn deposition at the bone-cartilage interface in equine articular cartilage

    International Nuclear Information System (INIS)

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage

  6. Echinococcus granulosus antigen B structure: subunit composition and oligomeric states.

    Directory of Open Access Journals (Sweden)

    Karina M Monteiro

    Full Text Available BACKGROUND: Antigen B (AgB is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. METHODOLOGY/PRINCIPAL FINDINGS: The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8 was found in one bovine sample. The exponentially modified protein abundance index (emPAI was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. CONCLUSIONS/SIGNIFICANCE: For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly

  7. Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model

    OpenAIRE

    Salminen, H; Saamanen, A.; Vankemmelbeke, M; Auho, P; Perala, M.; Vuorio, E

    2002-01-01

    Objective: To characterise the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) during degeneration of articular cartilage in a transgenic Del1 mouse model for osteoarthritis.

  8. Differential expression of extracellular matrix genes in glenohumeral capsule of shoulder instability patients.

    Science.gov (United States)

    Belangero, Paulo Santoro; Leal, Mariana Ferreira; Figueiredo, Eduardo Antônio; Cohen, Carina; Andreoli, Carlos Vicente; Smith, Marília Cardoso; Pochini, Alberto de Castro; Ejnisman, Benno; Cohen, Moises

    2016-07-01

    Anterior shoulder instability is a common orthopedic problem. After a traumatic shoulder dislocation, patients present a plastic deformation of the capsule. The shoulder instability biology remains poorly understood. We evaluated the expression of genes that encode the cartilage oligomeric matrix protein (COMP), fibronectin 1 (FN1), tenascin C (TNC) and tenascin XB (TNXB) in the glenohumeral capsule of anterior shoulder instability patients and controls. Moreover, we investigated the associations between gene expression and clinical parameters. The gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction in the antero-inferior (macroscopically injured region), antero-superior and posterior regions of the capsule of 29 patients with shoulder instability and 8 controls. COMP expression was reduced and FN1 and TNC expression was increased in the antero-inferior capsule region of cases compared to controls (p shoulder instability patients (p = 0.022). COMP expression was reduced in the antero-inferior region compared to the posterior region of shoulder instability patients (p = 0.007). In the antero-inferior region, FN1 expression was increased in the capsule of patients with more than one year of symptoms (p = 0.003) and with recurrent dislocations (p = 0.004) compared with controls. FN1 and TNXB expression was correlated with the duration of symptoms in the posterior region (p shoulder instability patients. Dislocation episodes modify FN1, TNC and TNXB expression in the injured tissue. COMP altered expression may be associated with capsule integrity after shoulder dislocation, particularly in the macroscopically injured portion. PMID:27093129

  9. The structure of Human Mesenchymal Stem Cells Differentiated into Cartilage in Micromass Culture System

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2006-01-01

    Full Text Available Introduction: The aim of this study was to differentiate humanmesenchymal stem cells (hMSCs into cartilage in a micromass culturesystem and study of their structure by light and electron microscopy.Material and Methods: Human bone marrow cells obtained from volunteerpatients were plated in 75-cm2 flasks and their MSCs were expandedthrough several sub-cultures. The passage 4 cells were used to establishmicromass culture system for chondrogenic differentiation. For this purpose,200,000 fibroblastic cells were placed in centrifuge tubes and pelleted at 250g for 5 minutes. About 0.5 ml chondrogenic induction medium was thenadded to the pellet and the culture incubated in 5% CO2 at 37°C for 21 days.Then, some pellets were utilized to evaluate chondrogenic differentiation byeither RT-PCR analysis of some cartilage marker molecules or specificstaining for detecting cartilage matrix, and other pellets were used for lightand electron microscopic study of differentiated tissue.Results: Primary culture of the bone marrow cells were initially composed ofthe spindle- and round shaped cells, from which the spindle cells remainedand expanded through several passages. At the end of differentiation period,RT-PCR analysis showed high production of collagen II and X and aggrecanmRNA inside the differentiated cells, and toluidine blue staining indicatedintermediate accumulation of the metachromatic matrix among the inducedcells. In general, light micrograph indicated a rather cellular state of thedifferentiated tissue in which the peripheral part had more metachromaticmatrix than central zone. More detailed study of the sections revealed thatinduced aggregates of the cells were composed externally of very thin layerof elongated cells reminiscent of perichondrium and internally a mass of ovalcells comprising the main part of the pellet. Ultra-thin sections showed thatthe cells in perichondrium-like layer were very similar to fibroblastic cells andthose located

  10. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly, E-mail: pan@anvil.nrl.navy.mi [Multifunctional Materials Branch, Code 6350 U.S. Naval Research Laboratory 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2011-10-29

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  11. Synthesis and properties of hydroxyl-terminated polybutadiene-based polyurethanes reinforced with polyhedral oligomeric silsesquioxanes.

    Science.gov (United States)

    Kim, Ho-Joong; Kwon, Younghwan; Kim, Chang Kee

    2014-11-01

    Polyurethane/polyhedral oligomeric silsesquioxane (PU/POSS) hybrid composites are prepared by a one-step PU reaction using hydroxyl-terminated polybutadiene (HTPB) prepolymer, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS molecule. The effect of incorporation of functionalized POSS molecules covalently bonded or physically blended into PU matrix is investigated in terms of mechanical reinforcement and thermal stability of these resulting PU/POSS hybrid composites. PU/POSS hybrid composites prepared with reactive POSS molecules exhibit the mechanical reinforcement while maintaining low glass transition temperataure (T(g)), probably due to the fact that reactive POSS molecules chemically incorporated in PU are aggregated to crystallize, effectively working as a physical crosslinking in PU/POSS hybrid composites. This can be advantageous in that mechanical reinforcement of PU/POSS hybrid composites can be achived without sacrificing the low temperature properties of these composites. However, the contribution of POSS molecules incorporated covalently into PU matrix is virtually absent on the thermal decomposition temperature (T(d,max)) measured using TGA/DTG. Thermal degradation behavior of these hybrid composites in the early stage rather appears to depend preferably on characteristics of POSS molecules incorporated. PMID:25958582

  12. Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties.

    Science.gov (United States)

    Feng, Ye; Zhang, Jinming; He, Jiasong; Zhang, Jun

    2016-08-20

    The solubility of eight types of polyhedral oligomeric silsesquioxane (POSS) derivatives in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) and the dispersion of POSS in cellulose matrix were examined. Only a special POSS containing both aminophenyl and nitrophenyl groups (POSS-AN, NH2:NO2=2:6) was selected to prepare nanocomposites, because of its good solubility in AmimCl and high stability during the preparation process. POSS-AN nanoparticles were uniformly dispersed in a cellulose matrix with a size of 30-40nm, and so the resultant cellulose/POSS-AN nanocomposite films were transparent. The mechanical properties of the films achieved a maximum tensile strength of 190MPa after addition of 2wt% POSS-AN. Interestingly, all of the cellulose/POSS-AN films exhibited high UV-absorbing capability. For the 15wt% cellulose/POSS-AN film, the transmittance of UVA (315-400nm) and UVB (280-315nm) was only 9.1% and nearly 0, respectively. The UV aging and shielding experiments showed that the transparent cellulose/POSS-AN nanocomposite films possessed anti-UV aging and UV shielding properties. PMID:27178922

  13. A microstructural investigation of the depth-dependent response of cartilage during stress relaxation

    Science.gov (United States)

    Zhang, Geran; Thambyah, Ashvin; Broom, Neil

    2009-08-01

    The poro-visco-hyperelastic nature of articular cartilage has been studied extensively, yet little has been done to correlate its unique mechanical properties with its microstructural response to load. Making such a correlation would help determine how the microstructure of cartilage, with its zonally-differentiated fibrillar microarchitecture and water-content, influences the overall macro-level mechanical response. A total of eight cartilage-on-bone samples were subjected to stress relaxation tests, conducted via stepwise indentation, and using a 2mm diameter cylindrical indenter. Each step indentation consisted of a 10% compressive strain, up to 80%. At each strain increment the specimen was allowed to fully relax to an equilibrium stress before compressing it further. From the stress relaxation curve at each strain level, peak and equilibrium stresses were recorded. For the microstructural investigation, specimens stress-equilibrated at 20%, 40%, 60% and 80% strain, were chemically fixed to capture the deformed state and then cryo-sectioned and imaged using differential interference contrast (DIC) microscopy. It was found that stress relaxation, i.e. the time from peak stress to equilibrium, occurred at a slower rate at the larger levels of compressive strain. Peak stresses increased exponentially with increasing levels of strain. The equilibrium stress relationship with compressive strain level was largely linear but between 60% and 80% strain, the change in equilibrium stress increased dramatically. The microstructural data showed how at lower strain levels, much of the load was distributed laterally within the upper zones of the cartilage matrix. At higher strain levels (>60%) the deep zone fibrillar alignment was sheared and this may explain the abrupt rise in equilibrium stress levels. Finally, the increase in peak stress at higher strain-levels is likely due to a decreased interstitial fluid permeability associated with an increasingly consolidated matrix.

  14. A microstructural investigation of the depth-dependent response of cartilage during stress relaxation

    International Nuclear Information System (INIS)

    The poro-visco-hyperelastic nature of articular cartilage has been studied extensively, yet little has been done to correlate its unique mechanical properties with its microstructural response to load. Making such a correlation would help determine how the microstructure of cartilage, with its zonally-differentiated fibrillar microarchitecture and water-content, influences the overall macro-level mechanical response. A total of eight cartilage-on-bone samples were subjected to stress relaxation tests, conducted via stepwise indentation, and using a 2mm diameter cylindrical indenter. Each step indentation consisted of a 10% compressive strain, up to 80%. At each strain increment the specimen was allowed to fully relax to an equilibrium stress before compressing it further. From the stress relaxation curve at each strain level, peak and equilibrium stresses were recorded. For the microstructural investigation, specimens stress-equilibrated at 20%, 40%, 60% and 80% strain, were chemically fixed to capture the deformed state and then cryo-sectioned and imaged using differential interference contrast (DIC) microscopy. It was found that stress relaxation, i.e. the time from peak stress to equilibrium, occurred at a slower rate at the larger levels of compressive strain. Peak stresses increased exponentially with increasing levels of strain. The equilibrium stress relationship with compressive strain level was largely linear but between 60% and 80% strain, the change in equilibrium stress increased dramatically. The microstructural data showed how at lower strain levels, much of the load was distributed laterally within the upper zones of the cartilage matrix. At higher strain levels (>60%) the deep zone fibrillar alignment was sheared and this may explain the abrupt rise in equilibrium stress levels. Finally, the increase in peak stress at higher strain-levels is likely due to a decreased interstitial fluid permeability associated with an increasingly consolidated matrix.

  15. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  16. Self-Assembled Infrapatellar Fat-Pad Progenitor Cells on a Poly-ε-Caprolactone Film For Cartilage Regeneration.

    Science.gov (United States)

    Prabhakar, Alisha; Lynch, Amy P; Ahearne, Mark

    2016-04-01

    Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat-pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly-ε-caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat-pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self-assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self-assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform-cast films appeared to contain more collagen type II and less collagen type I than acetone-cast films. These self-assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration. PMID:26516689

  17. The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension.

    Science.gov (United States)

    Grodzinsky, A J; Roth, V; Myers, E; Grossman, W D; Mow, V C

    1981-11-01

    Studies were conducted of some of the nonequilibrium, electrolyte-activated, electromechanical and osmotic processes that can affect the tensile properties of articular cartilage. We measured changes in tensile force that were induced by altering the ionic environment of strips of cartilage held at fixed length. We compared the kinetics of changes in these macroscopically measured isometric tensile forces to theoretical estimates of the time constants that characterize the underlying physical and chemical mechanisms occurring within the cartilage specimens during the experiment. Changes in the tensile force induced by changing the bath neutral salt concentration surrounding the specimen appear to be rate-limited by the diffusion of the salt into the specimen. That is, the mechanical stress relaxation process resulting from changes in salt concentration seems to be occurring at least as rapidly as the diffusion of salt into the matrix. When the bath concentration of CaCl2 or HCl is varied, the rate of change in the resulting isometric stresses indicates that Ca++ and H+ ions are binding to the cartilage matrix macromolecules. PMID:7311487

  18. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Julia Lorenz

    Full Text Available Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR. MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1 in joint physiology and pathogenesis of osteoarthritis (OA using MC1-signaling deficient mice (Mc1re/e. OA was surgically induced in Mc1re/e and wild-type (WT mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more

  19. Structure and composition of arytenoid cartilage of the bullfrog (Lithobates catesbeianus) during maturation and aging.

    Science.gov (United States)

    Laureano, Priscila Eliane dos Santos; Oliveira, Kris Daiana Silva; de Aro, Andrea Aparecida; Gomes, Laurecir; Pimentel, Edson Rosa; Esquisatto, Marcelo Augusto Marretto

    2015-10-01

    The aging process induces progressive and irreversible changes in the structural and functional organization of animals. The objective of this study was to evaluate the effects of aging on the structure and composition of the extracellular matrix of the arytenoid cartilage found in the larynx of male bullfrogs (Lithobates catesbeianus) kept in captivity for commercial purposes. Animals at 7, 180 and 1080 days post-metamorphosis (n=10/age) were euthanized and the cartilage was removed and processed for structural and biochemical analysis. For the structural analyses, cartilage sections were stained with picrosirius, toluidine blue, Weigert's resorcin-fuchsin and Von Kossa stain. The sections were also submitted to immunohistochemistry for detection of collagen types I and II. Other samples were processed for the ultrastructural and cytochemical analysis of proteoglycans. Histological sections were used to chondrocyte count. The number of positive stainings for proteoglycans was quantified by ultrastructural analysis. For quantification and analysis of glycosaminoglycans were used the dimethyl methylene blue and agarose gel electrophoresis methods. The chloramine T method was used for hydroxyproline quantification. At 7 days, basophilia was observed in the pericellular and territorial matrix, which decreased in the latter over the period studied. Collagen fibers were arranged perpendicular to the major axis of the cartilaginous plate and were thicker in older animals. Few calcification areas were observed at the periphery of the cartilage specimens in 1080-day-old animals. Type II collagen was present throughout the stroma at the different ages. Elastic fibers were found in the stroma and perichondrium and increased with age in the two regions. Proteoglycan staining significantly increased from 7 to 180 days and reduced at 1080 days. The amount of total glycosaminoglycans was higher in 180-day-old animals compared to the other ages, with marked presence of

  20. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  1. Early efficacy study of matrix-induced autologous chondrocyte implantation repairing knee joint cartilage injury%基质诱导自体软骨细胞移植修复膝关节软骨损伤的早期疗效

    Institute of Scientific and Technical Information of China (English)

    王庆; 黄华扬; 张涛; 郑小飞; 李凭跃; 沈洪园; 陈加荣

    2016-01-01

    目的:探讨基质诱导自体软骨细胞移植修复膝关节软骨损伤的可行性及早期疗效。方法回顾性分析2012年4月至2013年3月13例单侧膝关节局灶性软骨缺损患者资料,男11例,女2例;年龄19~37岁,平均27.5岁;膝关节软骨缺损面积2.3~7.5 cm2,平均4.2 cm2;国际软骨损伤修复协会(ICRS )分级为Ⅲ级3例,Ⅳ级10例,均出现膝关节疼痛症状[视觉模拟评分(visual analogue scale, VAS)>3分]。13例患者均使用基质诱导软骨细胞移植技术进行软骨细胞移植。术后进行规范化功能康复锻炼。结果术后随访1年,1例患者因术后6.5个月下楼梯时扭伤膝关节致半月板损伤行关节镜下半月板修补术而剔除该患者术后12个月的评分,以避免结果偏倚。膝关节活动度,术后3个月(123.1°±8.0°)较术前(135.4°±5.7°)减少,膝关节损伤和骨关节炎评分(knee injury and use osteoarthritis outcome score, KOOS)的5个子集均较术前降低,Lysholm评分[(65.7±9.4)分]较术前[(71.2±12.3)分]无明显变化,国际膝关节评分委员会评分(International Knee Documentation Committee, IKDC)[(26.1±3.9)分]较术前[(43.5±6.5)分]减少;术后6、12个月的膝关节活动度(136.1°±6.1°、135.1°±3.6°)、Lysholm评分[(80.6±9.6)分、(86.6±9.2)分]、IKDC评分[(53.3±5.8)分、(62.8±7.2)分]、KOOS评分均较术前明显提高。术后12个月软骨修复组织磁共振评分[(73.3±17.9)分]较术前[(51.5±12.6)分]明显提高。结论基质诱导自体软骨细胞移植技术可有效修复膝关节软骨损伤,改善膝关节功能,具有良好的近期疗效。%Objective To study the feasibility and early efficacy of matrix⁃induced autologous chondrocyte implantation repairing knee joint cartilage injury. Methods The Matrix⁃induced autologous chondrocyte implantation was used to repair knee joint

  2. Quaternary Structure Analyses of an Essential Oligomeric Enzyme.

    Science.gov (United States)

    Soares da Costa, Tatiana P; Christensen, Janni B; Desbois, Sebastien; Gordon, Shane E; Gupta, Ruchi; Hogan, Campbell J; Nelson, Tao G; Downton, Matthew T; Gardhi, Chamodi K; Abbott, Belinda M; Wagner, John; Panjikar, Santosh; Perugini, Matthew A

    2015-01-01

    Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure. PMID:26412653

  3. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  4. Time-Dependent Nanomechanics of Cartilage

    OpenAIRE

    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    2011-01-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...

  5. Cartilage restoration technique of the hip

    OpenAIRE

    Mardones, Rodrigo; Larrain, Catalina

    2015-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear conc...

  6. Oxygen, nitric oxide and articular cartilage

    OpenAIRE

    Fermor, B.; Christensen, S. E.; I Youn; J M Cernanec; C M Davies; Weinberg, J. B.

    2007-01-01

    Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O...

  7. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  8. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  9. Time-dependent nanomechanics of cartilage.

    Science.gov (United States)

    Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine

    2011-04-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599

  10. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  11. Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Puzio, I

    2013-08-01

    The study examined articular and growth plate cartilages as well as bone tissues in the offspring of sows treated with glucocorticoid during the last 45 days of pregnancy (dexamethasone at the dose of 0.03 mg/kg body weight intramuscularly, every second day). The offspring were tested at the birth and basal morphology for both articular and growth plate cartilages, and the histomorphometry of trabeculae of the epiphysis and metaphysis of femur and tibia were established. The concentration of selected cytokines and the activity of bone alkaline phosphatase were determined in blood serum. Maternal dexamethasone (DEX) administration reduced the thickness of proliferative, resting and hypertrophic zones of growth plate of femur and tibia of male piglets when compared with the control. DEX significantly reduced the thickness of the resting zone in both bones. It also elongated proliferative and hypertrophic zones of the growth plate in the femur as well as the hypertrophic zone in the tibia of female piglets when compared with the control group. Moreover, DEX decreased the articular cartilage thickness of the tibia in female piglets and enhanced the articular cartilage thickness of the femur in male piglets. Articular cartilage was highly cellular, and chondrocytes were separated by thin septa of matrix. An analysis of the trabecular bone architecture in male piglets showed a loss of the trabecular bone by thinning and DEX-related increase in trabecular porosity. Moreover, the cortical bone looked similar to the trabeculae because of trabecularization of the cortex. There was a DEX that reduced serum osteocalcin and BAP concentrations in both female and male newborn piglets, whereas the serum IL-1 and Il-6 was reduced only in male piglets. The obtained results demonstrated that DEX administration to sows during the last 45 days of pregnancy might cause the growth to slow and eventually to stop, especially in male piglets. It might lead to an alteration within the

  12. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application.

    Science.gov (United States)

    Yahyaei, Hossein; Mohseni, Mohsen; Ghanbari, Hossein; Messori, Massimo

    2016-04-01

    Organic-inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV-visible spectroscopy as well as (29)Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920cm(-1) in FTIR and 491cm(-1) and 1083cm(-1) in Raman spectra confirmed Si-O-Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. PMID:26838853

  13. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging.

    Science.gov (United States)

    Hyun, Hoon; Owens, Eric A; Wada, Hideyuki; Levitz, Andrew; Park, GwangLi; Park, Min Ho; Frangioni, John V; Henary, Maged; Choi, Hak Soo

    2015-07-20

    A novel class of near-infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low-dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage-specific drug development. PMID:26095685

  14. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  15. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  16. Matrix metalloproteinase protein expression profiles cannot distinguish between normal and early osteoarthritic synovial fluid

    OpenAIRE

    Heard Bryan J; Martin Liam; Rattner Jerome B; Frank Cyril B; Hart David A; Krawetz Roman

    2012-01-01

    Abstract Background Osteoarthritis (OA) and Rheumatoid arthritis (RA) are diseases which result in the degeneration of the joint surface articular cartilage. Matrix Metalloproteinases (MMPs) are enzymes that aid in the natural remodelling of tissues throughout the body including cartilage. However, some MMPs have been implicated in the progression of OA and RA as their expression levels and activation states can change dramatically with the onset of disease. Yet, it remains unknown if normal ...

  17. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus;

    2012-01-01

    , GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor-receptor interactions within the GPCR superfamily is a well-established phenomenon. Evidence of the impact of GPCR oligomerization on, e.g., ligand binding, receptor...

  18. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.

    Science.gov (United States)

    Taffetani, M; Gottardi, R; Gastaldi, D; Raiteri, R; Vena, P

    2014-07-01

    Nanoindentation is an experimental technique which is attracting increasing interests for the mechanical characterization of articular cartilage. In particular, time dependent mechanical responses due to fluid flow through the porous matrix can be quantitatively investigated by nanoindentation experiments at different penetration depths and/or by using different probe sizes. The aim of this paper is to provide a framework for the quantitative interpretation of the poroelastic response of articular cartilage subjected to creep nanoindentation tests. To this purpose, multiload creep tests using spherical indenters have been carried out on saturated samples of mature bovine articular cartilage achieving two main quantitative results. First, the dependence of indentation modulus in the drained state (at equilibrium) on the tip radius: a value of 500 kPa has been found using the large tip (400 μm radius) and of 1.7 MPa using the smaller one (25 μm). Secon, the permeability at microscopic scale was estimated at values ranging from 4.5×10(-16) m(4)/N s to 0.1×10(-16) m(4)/N s, from low to high equivalent deformation. Consistently with a poroelastic behavior, the size-dependent response of the indenter displacement disappears when characteristic size and permeability are accounted for. For comparison purposes, the same protocol was applied to intrinsically viscoelastic homogeneous samples of polydimethylsiloxane (PDMS): both indentation modulus and time response have been found size-independent. PMID:24814573

  19. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine

    2015-03-24

    Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue. PMID:25758717

  20. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  1. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering.

    Science.gov (United States)

    Yao, Yi; He, Yu; Guan, Qian; Wu, Qiong

    2014-02-01

    Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering. PMID:24321708

  2. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  3. Experimental pharmacological investigation of the antiarthrotic effects of the cartilage and bone marrow extract Rumalon

    Energy Technology Data Exchange (ETDEWEB)

    Kalbhen, D.A.

    1981-08-05

    On the basis of animal experiments, the authors have developed a model of arthrosis which is compatible in its radiological, macroscopic, biochemical, and histological aspects with the pathophysiology of human arthrosis and has been tried in the testing of the antiarthrotic properties of pharmaceuticals. Biochemically induced gonarthroses of experimental animals were used for studies of the effects of a cartilage and bone marrow extract (Rumalon) and a cartilage extract and its high-molecular component DAK-16 on the frequency and progression of degenerative joint diseases. As test parameters, measurements of the articular space, X-ray findings, and macroscopic findings were quantitatively evaluated. The animal experiments show that the inhibitive effects of steroidal and nonsteroidal antirheumatics on the synthesis of the cartilage matrix can be prevented or reduced by simultaneous administration of chondroprotective pharmaceuticals; this may be important on the clinical sector. This antagonism between antiphlogistic agents and Rumalon, which has been observed also in fibroblast cultures and wound healing experiments, is of interest especially for the treatment of activated arthroses.

  4. Experimental pharmacological investigation of the antiarthrotic effects of the cartilage and bone marrow extract Rumalon

    International Nuclear Information System (INIS)

    On the basis of animal experiments, the authors have developed a model of arthrosis which is compatible in its radiological, macroscopic, biochemical, and histological aspects with the pathophysiology of human arthrosis and has been tried in the testing of the antiarthrotic properties of pharmaceuticals. Biochemically induced gonarthroses of experimental animals were used for studies of the effects of a cartilage and bone marrow extract (Rumalon) and a cartilage extract and its high-molecular component DAK-16 on the frequency and progression of degenerative joint diseases. As test parameters, measurements of the articular space, X-ray findings, and macroscopic findings were quantitatively evaluated. The animal experiments show that the inhibitive effects of steroidal and nonsteroidal antirheumatics on the synthesis of the cartilage matrix can be prevented or reduced by simultaneous administration of chondroprotective pharmaceuticals; this may be important on the clinical sector. This antagonism between antiphlogistic agents and Rumalon, which has been observed also in fibroblast cultures and wound healing experiments, is of interest especially for the treatment of activated arthroses. (orig./MG)

  5. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage.

    Science.gov (United States)

    Wolff, Katherine J; Ramakrishnan, Prem S; Brouillette, Marc J; Journot, Brice J; McKinley, Todd O; Buckwalter, Joseph A; Martin, James A

    2013-02-01

    Metabolic adaptation of articular cartilage under joint loading is evident and matrix synthesis seems to be critically tied to ATP. Chondrocytes utilize the glycolytic pathway for energy requirements but seem to require mitochondrial reactive oxygen species (ROS) to sustain ATP synthesis. The role of ROS in regulating ATP reserves under a mechanically active environment is not clear. It is believed that physiological strains cause deformation of the mitochondria, potentially releasing ROS for energy production. We hypothesized that mechanical loading stimulates ATP synthesis via mitochondrial release of ROS. Bovine osteochondral explants were dynamically loaded at 0.5 Hz with amplitude of 0.25 MPa for 1 h. Cartilage response to mechanical loading was assessed by imaging with dihydroethidium (ROS indicator) and a Luciferase-based ATP assay. Electron transport inhibitor rotenone and mitochondrial ROS scavenger MitoQ significantly suppressed mechanically induced ROS production and ATP synthesis. Our findings indicate that mitochondrial ROS are produced as a result of physiological mechanical strains. Taken together with our previous findings of ROS involvement in blunt impact injuries, mitochondrial ROS are important contributors to cartilage metabolic adaptation and their precise role in the pathogenesis of osteoarthritis warrants further investigation. PMID:22930474

  6. Modeling the Insulin-Like Growth Factor System in Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Lihai Zhang

    Full Text Available IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i what are the key factors influencing IGF-IR complex formation, and (ii how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.

  7. Modeling the Insulin-Like Growth Factor System in Articular Cartilage

    Science.gov (United States)

    Zhang, Lihai; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2013-01-01

    IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling. PMID:23840540

  8. CARS hyperspectral imaging of cartilage aiming for state discrimination of cell

    Science.gov (United States)

    Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koichi

    2016-03-01

    Non-invasive cell analyses are increasingly important for medical field. A CARS microscope is one of the non-invasive imaging equipments and enables to obtain images indicating molecular distribution. Some studies on discrimination of cell state by using CARS images of lipid are reported. However, due to low signal intensity, it is still challenging to obtain images of the fingerprint region (800~1800 cm-1), in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source, which consists of a microchip laser, a single-mode fiber, and a photonic crystal fiber to generate supercontinuum light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen in general. The spectrum quality was improved by optical adjustments about power branching ratio and divergence of broadband Stokes light. Hyperspectral images were successfully obtained by the improvement. Periphery of a cartilage cell was highlighted in CARS image of proline, and this result suggests correspondence with collagen generated as extracellular matrix. A possibility of cell analyses by using CARS hyperspectral imaging was indicated.

  9. Biological Therapies for Cartilage Lesions in the Hip: A New Horizon.

    Science.gov (United States)

    Chahla, Jorge; LaPrade, Robert F; Mardones, Rodrigo; Huard, Johnny; Philippon, Marc J; Nho, Shane; Mei-Dan, Omer; Pascual-Garrido, Cecilia

    2016-07-01

    Treatment of hip cartilage disease is challenging, and there is no clear algorithm to address this entity. Biomarkers are arising as promising diagnostic tools because they could play a role in the early assessment of the prearthritic joint and as a prognostic factor before and after treatment. The potential effect of biomarkers may be used to categorize individuals at risk of evolving to severe osteoarthritis, to develop new measures for clinical progression of the disease, and to develop new treatment options for the prevention of osteoarthritis progression. A trend toward a less invasive biological treatment will usher in a new treatment era. With the growth of surgical skills in hip arthroscopy, cartilage restoration techniques are evolving in a fast and exponential manner. Biological and surgical treatments have been proposed to treat these pathologies. Biological treatments include platelet-rich plasma, stem cells or bone marrow aspirate concentration, hyaluronic acid, losartan, and fish oil. Surgical treatments include microfracture alone or augmented, direct repair, autologous chondrocyte implantation, matrix-induced chondrocyte implantation, autologous matrix-induced chondrogenesis, mosaicplasty, osteochondral allograft transplantation, and stem cells implanted in matrix (stem cells in membranes/expanded stem cells). This article reviews new evidence available on treatment options for chondral lesions and early osteoarthritis of the hip. [Orthopedics. 2016; 39(4):e715-e723.]. PMID:27359284

  10. Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model.

    Science.gov (United States)

    Cornaglia, Antonia Icaro; Casasco, Andrea; Casasco, Marco; Riva, Federica; Necchi, Vittorio

    2009-01-01

    Mutations in the diastrophic dysplasia sulphate transporter (dtdst) gene causes different forms of chondrodysplasia in the human. The generation of a knock-in mouse strain with a mutation in dtdst gene provides the basis to study developmental dynamics in the epiphyseal growth plate and long bone growth after impairment of the sulphate pathway. Our microscopical and histochemical data demonstrate that dtdst gene impairment deeply affects tissue organization, matrix structure, and cell differentiation in the epiphyseal growth plate. In mutant animals, the height of the growth plate was significantly reduced, according to a concomitant decrease in cell density and proliferation. Although the pathway of chondrocyte differentiation seemed complete, alteration in cell morphology compared to normal counterparts was detected. In the extracellular matrix, it we observed a dramatic decrease in sulphated proteoglycans, alterations in the organization of type II and type X collagen fibers, and premature onset of mineralization. These data confirm the crucial role of sulphate pathway in proteoglycan biochemistry and suggest that a disarrangement of the extracellular matrix may be responsible for the development of dtdts cartilage dysplasia. Moreover, we corroborated the concept that proteoglycans not only are structural components of the cartilage architecture, but also play a dynamic role in the regulation of chondrocyte growth and differentiation. PMID:19637059

  11. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Science.gov (United States)

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  12. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  13. Effect of leaving group on the oligomerization of 5'-AMP on montmorillonite. [Abstract only

    Science.gov (United States)

    Prabahar, K. Joseph; Ferris, James P.

    1994-01-01

    The oligomerization of imidazole derivative of 5'-AMP (ImpA) in the presence of montmorillonite clay yields oligomers containing up to 10 monomer units. In these reactions, the heterocyclic base, imidazole is the leaving group. In our present study, we synthesized a series of activated nucleotides of 5'AMP using other leaving groups such as pyrazole, 1,2,4-triazole, piperidine, morpholine, 4-aminopyridine, 4-methylaminopyridine, 4-dimethylaminopyridine, 2-aminobenzimidazole etc. to determine the effect of amine leaving group on the products of the oligomerization reaction. Earlier results from our laboratory showed that the presence AppA in the clay reaction of ImpA enhances the oligomerization reaction to yield higher oligomers. We also studied the effect of AppA in the clay mediated oligomerization reaction of the activated nucleotides. Oligomerization of 2-amino-benzimidazole derivative of 5'-AMP gave higher oligomers containing up to nine monomer units in the presence of AppA.

  14. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.

    OpenAIRE

    Billinghurst, R.C.; Dahlberg, L; Ionescu, M.; Reiner, A; Bourne, R; Rorabeck, C; Mitchell, P; Hambor, J; Diekmann, O.; Tschesche, H; Chen, J; Van Wart, H; Poole, A. R.

    1997-01-01

    We demonstrate the direct involvement of increased collagenase activity in the cleavage of type II collagen in osteoarthritic human femoral condylar cartilage by developing and using antibodies reactive to carboxy-terminal (COL2-3/4C(short)) and amino-terminal (COL2-1/4N1) neoepitopes generated by cleavage of native human type II collagen by collagenase matrix metalloproteinase (MMP)-1 (collagenase-1), MMP-8 (collagenase-2), and MMP-13 (collagenase-3). A secondary cleavage followed the initia...

  15. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    Science.gov (United States)

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  16. In vitro and In vivo Evaluation of the Developed PLGA/HAp/Zein Scaffolds for Bone-Cartilage Interface Regeneration

    Institute of Scientific and Technical Information of China (English)

    LIN Yong Xin; DING Zhi Yong; ZHOU Xiao Bin; LI Si Tao; XIE De Ming; LI Zhi Zhong; SUN Guo Dong

    2015-01-01

    Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution. hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P>0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.

  17. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane.

    Science.gov (United States)

    Han, Zhongyou; Xi, Yukun; Kwon, Younghwan

    2016-02-01

    Series of polydimethylsiloxane (PDMS)-based polyurethane (PU)/polyhedral oligomeric silsesquioxane (POSS) composites are prepared using ether or polyether modified diol/polyol PDMS prepolymers, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS. The effect of POSS incorporated chemically or physically, number of ethylene oxide units and crosslinking on PDMS based PU is investigated in terms of thermal stability and ablation properties. The ablation property is measured using an oxyacetylene torch test, and the ablation rate is evaluated. The results show that POSS molecules make a considerable influence on the ablative resistance, because they act as protective silica forming precursors under oxyacetylene condition. POSS molecules, especially methyl POSS, in PU matrix leads to the formation of densely accumulated spherical silica layers on the top of the ablated surface, resulting in improved ablation resistance. PMID:27433703

  18. Crystallization and mechanical properties of biodegradable poly(p-dioxanone)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites via simple solution casting method

    Indian Academy of Sciences (India)

    Zhecun Wang; Chengdong Xiong; Qing Li

    2015-10-01

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the PPDO matrix. Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the nanocomposites were studied in detail. It shows that the overall crystallization rates are faster in the nanocomposites than in neat PPDO and increase with the increase in ome-POSS loadings; however, X-ray diffraction patterns, POM and the Avrami exponent suggest that the crystal structure and the crystallization mechanism do not change despite the presence of ome-POSS. The mechanical property of PPDO/ome-POSS nanocomposites was enhanced with respect to neat PPDO.

  19. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration

    International Nuclear Information System (INIS)

    Recently, scaffolds for tissue regeneration purposes have been observed to utilize nanoscale features in an effort to reap the cellular benefits of scaffold features resembling extracellular matrix (ECM) components. However, one complication surrounding electrospun nanofibers is limited cellular infiltration. One method to ameliorate this negative effect is by incorporating nanofibers into microfibrous scaffolds. This study shows that it is feasible to fabricate electrospun scaffolds containing two differently scaled fibers interspersed evenly throughout the entire construct as well as scaffolds containing fibers composed of two discrete materials, specifically fibrin and poly(ε-caprolactone). In order to accomplish this, multiscale fibrous scaffolds of different compositions were generated using a dual extrusion electrospinning setup with a rotating mandrel. These scaffolds were then characterized for fiber diameter, porosity and pore size and seeded with human mesenchymal stem cells to assess the influence of scaffold architecture and composition on cellular responses as determined by cellularity, histology and glycosaminoglycan (GAG) content. Analysis revealed that nanofibers within a microfiber mesh function to maintain scaffold cellularity under serum-free conditions as well as aid the deposition of GAGs. This supports the hypothesis that scaffolds with constituents more closely resembling native ECM components may be beneficial for cartilage regeneration. (paper)

  20. Phosphorylation of proteoglycans from human articular cartilage

    International Nuclear Information System (INIS)

    Previous studies have shown that sulfated proteoglycans from human articular and epiphyseal cartilage were phosphorylated. These macromolecules contribute to the stiffness and resiliency of this tissue. We demonstrate here that the phosphate moieties are an integral part of proteoglycan subunits. Specifically, evidence is presented which indicates that proteoglycan monomers contain 3 to 4 phosphate moieties per core protein and that these appear to exist as phosphoserine residues. Furthermore, the data illustrate that human articular cartilage also contains more than 20 different phosphoproteins, some of which are closely associated with proteoglycan aggregates. Proteoglycan subunits were purified from extracts of articular cartilage or from media fractions which had been used to label tissue specimens with 32P-orthophosphate. Chemical and radiographic analyses revealed that the phosphate concentration with respect to sulfate and uronic acid content remained constant when purified proteoglycan monomers were subjected to equilibrium ultracentrifugation and size-exclusion chromatography. That the phosphate moieties were bound to proteoglycan monomers via monoester linkages was indicated by the release of 32P-orthophosphate from proteoglycan subunits incubated under mild alkaline conditions or reacted with acid or alkaline phosphatases. Identification of serine residues in the core protein as the sites of phosphorylation was made by autoradiography of thin layer plates on which hydrolyzed samples of purified 32P-proteoglycan subunits had been subjected to 2-dimensional electrophoresis/chromatography. Quantification of 3 to 4 phosphate moieties per core protein of 200,000 daltons was made by chemical analysis of inorganic phosphate released from proteoglycans by acid hydrolysis

  1. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  2. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  3. Crosstalk between cartilage and bone: when bone cytokines matter.

    Science.gov (United States)

    Funck-Brentano, Thomas; Cohen-Solal, Martine

    2011-04-01

    The cartilage damage which characterizes osteoarthritis is often accompanied by bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate the physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation, which suggests their role in the dialogue between both cells. Accumulative in vivo evidence shows that increased bone resorption occurs at an early stage in the development of osteoarthritis and that blocking bone-resorbing cytokines prevents cartilage damage, confirming the role of bone factors in the crosstalk of both tissues. Recently, molecules of the Wnt pathway have emerged as key regulators of bone and cartilage. Activation of Wnt/βcatenin induces an imbalance in cartilage homeostasis, and agonists/antagonists of Wnt are potential candidates for this interaction. This review will summarize what is known about the contribution of bone cytokines to the physiological remodeling of cartilage and in the pathophysiology of osteoarthritis. PMID:21596615

  4. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair. PMID:26559963

  5. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne Maria)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  6. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  7. Infection in the Nasal Tip Caused by Acellular Dermal Matrix.

    Science.gov (United States)

    Lee, Kun Hee

    2015-12-01

    A 19-year-old female patient visited our clinic for rhinoplasty. She complained about her low take-off point, which was apparent in profile view, and wanted slight tip projection. She refused additional cartilage harvesting from ears or ribs but consented to the use of homologous tissue, including acellular dermal matrix, for her dorsum and tip. Septoturbinoplasty was performed, and only a very small amount of septal cartilage could be harvested. It was used as both the columellar strut and the alar rim graft. Nasal dorsum and tip were augmented with acellular dermal matrix. Three months postoperatively, she experienced a few episodes of edema and redness on her nasal tip, followed by pus exudation from the nasal skin. Six months postoperatively, she underwent revision rhinoplasty for removal of inflamed grafts, and onlay tip graft with homologous rib cartilage was performed. Nasal dorsum or tip grafts are an integral part of Asian rhinoplasty. Autogenous tissue is the gold standard for grafting materials. However, the limited availability of autogenous tissue and the preference of patients and surgeons for artificial surgical implants make Asian rhinoplasty challenging. Unavailability of autogenous cartilage and patient refusal of artificial implants led to the use of acellular dermal matrix (ADM) in the nasal dorsum and tip for this case. This is the first report of postoperative complication because of infection rather than absorption after ADM use. PMID:26894006

  8. Poroelasticity of Cartilage at the Nanoscale

    OpenAIRE

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-01-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ∼15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ∼ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E∗|, and phase angle, ϕ, between the force and tip displacement sinusoids, were me...

  9. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    cartilage engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes......Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...

  10. New developments in osteoarthritis and cartilage biology.

    Science.gov (United States)

    Poulet, Blandine; Staines, Katherine A

    2016-06-01

    Osteoarthritis (OA) is a degenerative joint disease and the most common form of arthritis. Characterised by articular cartilage loss, subchondral bone thickening and osteophyte formation, the OA joint afflicts much pain and disability. Whilst OA has been associated with many contributing factors, its underpinning molecular mechanisms are, nevertheless, not fully understood. Clinical management of OA is largely palliative and there is an ever growing need for an effective disease modifying treatment. This review discusses some of the recent progress in OA therapies in the different joint tissues affected by OA pathology. PMID:26921602

  11. Oligomerization of C4 Fraction from FCCU on ZSM-5

    Institute of Scientific and Technical Information of China (English)

    Wu Zhiguo; Zhang Jiushun

    2004-01-01

    In order to make more liquid products like gasoline, the oligomerition of a C4 feedstock taking place on catalyst containing ZSM-5 was studied in a pressurized reactor. The products were C5- gas, liquid hydrocarbons and coke. During the reaction on the catalyst BO-l, when the WHSV was 0.71h-1 and total pressure was 4.0MPa, the C5+ product yield reached a maximum at a temperature around 320℃. As oligomerization reaction was the dominating one, there were minor C9 hydrocarbons in liquid products and the main products were C7 and C8 olefins and n- C10 paraffins. When the temperature was higher than 286C, a small amount of C9hydrocarbons was formed and more normal and isomeric paraffins other than olefins were formed in products.Gasoline yield increased linearly with a rising total pressure under the same operating conditions.

  12. Does oligomerization in fused thiophene affect reactivity and aromaticity?

    Indian Academy of Sciences (India)

    Siddhartha Kr Purkayastha; Pradip Kr Bhattacharyya

    2016-02-01

    Reactivity and aromaticity of a few fused thiophene oligomers and their conformers are discussed in the light of density functional theory (DFT) and conceptual density functional theory. Reactivity parameters, such as hardness () and electrophilicity (), chemical potential () and energy of the HOMO (highest occupied molecular orbital) have been studied. Oligomerization raises the HOMO of the species, which in turn increases the reactivity of the oligomers. The absorption spectra of the species are analysed using TDDFT (time dependent density functional theory). The absorption peaks show red shift with increasing size of the oligomers. Aromaticity of the species is gauged by nucleus independent chemical shift (NICS). The out-of-plane component, (NICSzz) values advocate higher aromatic character at longer distance whereas, NICS supports the reverse.

  13. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    Science.gov (United States)

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  14. Synthesis and mode of action of oligomeric sesquiterpene lactones.

    Science.gov (United States)

    Li, Chao; Jones, Alexander X; Lei, Xiaoguang

    2016-05-01

    Covering: up to 2015In this highlight we describe two case studies from our laboratory, involving the biomimetic syntheses and the biological mechanism elucidation of the bioactive oligomeric sesquiterpenoids, (+)-ainsliadimer A () and (-)-ainsliatrimer A (). Ainsliadimer A possesses potent anti-inflammatory activity by inhibition of the NF-κB signalling pathway via binding at a previously untargeted allosteric site. (-)-Ainsliatrimer A induces apoptosis in cancer cells by activation of PPARγ. Furthermore, we highlight a new bioorthogonal ligation (TQ-ligation) developed in our laboratory which facilitates the target identification of complex natural products via pre-target fluorescence imaging and affinity chromatography. Generally, this paper will discuss the complete process from total synthesis to biological studies of complex natural products, and from the establishment of new bio-orthogonal chemistry to successful target identification. Our approach provides a systematic and efficient methodology for addressing the challenge of natural product target identification. PMID:26510522

  15. IL-1 beta and TGF-beta 1 modulate the sulphation grade of chondro-disaccharides in porcine articular cartilage: a capillary electrophoresis study.

    Science.gov (United States)

    Zanni, M; Tamburro, A; Rotilio, D

    1995-07-01

    This report describes the effect of interleukin-1 beta (IL-1 beta) and transforming growth factor-beta 1 (TGF-beta 1) on proteoglycan release from cartilage explants and modification at the sulphation level. Matrix proteoglycans purified by ion-exchange chromatography were composed of two distinct peaks (1 and 2) each showing a different Kav value when they were subjected to size-exclusion chromatography on a Sepharose CL-2B column. Glycosaminoglycans (GAGs) of conditioned medium and extracellular matrix proteoglycans were digested by chondroitin ABC and AC lyase, suggesting that chondroitin sulphate (CS) is the major GAG present (80-90%). Structural analysis of disaccharides, by capillary zone electrophoresis, revealed a different pattern of sulphated glycosaminoglycans when cartilage was treated with either IL-1 beta or TGF-beta 1. Analysis of GAGs released into the medium from TGF-beta 1 treated cartilage showed a reduction in the level of 4-S-disaccharide (delta Di4S) and an increase in non-sulphated disaccharides (delta Di0S), while no significant changes were found in IL-1 beta treated cartilage. In the extracellular matrix, IL-1 beta and TGF-beta 1 induced a more complex rearrangement of the GAGs. The level of non-sulphated disaccharides was increased whereas that of total sulphated disaccharides was reduced. Taken together, these results suggest that both cytokines modify the structure of GAGs, probably by interfering with the activity or the synthesis of sulphotransferases involved in GAG turnover. PMID:7551687

  16. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS

    Directory of Open Access Journals (Sweden)

    Luciano Ribeiro CORREA NETTO

    2015-10-01

    Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.

  17. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Science.gov (United States)

    Yamada, Jun; Abula, Kahaer; Inoue, Makiko; Sekiya, Ichiro; Muneta, Takeshi

    2014-01-01

    Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration. PMID:25574420

  18. Simultaneous Magnetic Resonance Imaging and Consolidation Measurement of Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Robert Mark Wellard

    2014-05-01

    Full Text Available Magnetic resonance imaging (MRI offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP. MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.

  19. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    Science.gov (United States)

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys. PMID:26154881

  20. The interdomain linker of AAV-2 Rep68 is an integral part of its oligomerization domain: role of a conserved SF3 helicase residue in oligomerization.

    Directory of Open Access Journals (Sweden)

    Francisco Zarate-Perez

    Full Text Available The four Rep proteins of adeno-associated virus (AAV orchestrate all aspects of its viral life cycle, including transcription regulation, DNA replication, virus assembly, and site-specific integration of the viral genome into the human chromosome 19. All Rep proteins share a central SF3 superfamily helicase domain. In other SF3 members this domain is sufficient to induce oligomerization. However, the helicase domain in AAV Rep proteins (i.e. Rep40/Rep52 as shown by its monomeric characteristic, is not able to mediate stable oligomerization. This observation led us to hypothesize the existence of an as yet undefined structural determinant that regulates Rep oligomerization. In this document, we described a detailed structural comparison between the helicase domains of AAV-2 Rep proteins and those of the other SF3 members. This analysis shows a major structural difference residing in the small oligomerization sub-domain (OD of Rep helicase domain. In addition, secondary structure prediction of the linker connecting the helicase domain to the origin-binding domain (OBD indicates the potential to form α-helices. We demonstrate that mutant Rep40 constructs containing different lengths of the linker are able to form dimers, and in the presence of ATP/ADP, larger oligomers. We further identified an aromatic linker residue (Y224 that is critical for oligomerization, establishing it as a conserved signature motif in SF3 helicases. Mutation of this residue critically affects oligomerization as well as completely abolishes the ability to produce infectious virus. Taken together, our data support a model where the linker residues preceding the helicase domain fold into an α-helix that becomes an integral part of the helicase domain and is critical for the oligomerization and function of Rep68/78 proteins through cooperative interaction with the OBD and helicase domains.

  1. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  2. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  3. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  4. Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury

    Energy Technology Data Exchange (ETDEWEB)

    Rolauffs, R.; Muehleman, C; Li, J; Kurz, B; Kuettner, K; Frank, E; Grodzinsky, A

    2010-01-01

    The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying a final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 {+-} 4.3% (mean {+-} SEM), and immediate biomechanical impairment that was revealed by a mean {+-} SEM decrease in dynamic stiffness to 7.1 {+-} 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 {+-} 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 {+-} 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which results

  5. Demonstration of the therapeutic effect of /sup 35/S labelled L-cystine in articular and intervertebral cartilage as well as in skeletal musculature

    Energy Technology Data Exchange (ETDEWEB)

    Schmiegelow, P.; Puschmann, M.; Giese, U.

    1984-01-16

    Clinical experience has obviously shown a positive effect of application of sulfated amino acids on degenerative cartilage diseases. L-Cystin, presumed to be of therapeutic effect, was autoradiographically localized in articular, columnar and intervertebral cartilage as well as in skeletal musculature. In 10 days old NMRI-mice, we had shown a dose-dependent incorporation of the radioactively labelled /sup 35/S-Cystin in hair follicle. These statistically significant differences had been measured by quantitative autoradiographical microscope photometry. The sulfated amino acids are also proven in nail matrix, nail hyponychium as well as in cartilage and skeletal musculature. Besides a localization of radioactively labelled L-Cystin in tissues, presumed as target organs of a therapeutic effect, there is still lacking an experimental proof of efficacy on cell proliferation and functional metabolism e.g. in arthrosis by suitable animal models.

  6. Demonstration of the therapeutic effect of 35S labelled L-cystine in articular and intervertebral cartilage as well as in skeletal musculature

    International Nuclear Information System (INIS)

    Clinical experience has obviously shown a positive effect of application of sulfated amino acids on degenerative cartilage diseases. L-Cystin, presumed to be of therapeutic effect, was autoradiographically localized in articular, columnar and intervertebral cartilage as well as in skeletal musculature. In 10 days old NMRI-mice, we had shown a dose-dependent incorporation of the radioactively labelled 35S-Cystin in hair follicle. These statistically significant differences had been measured by quantitative autoradiographical microscope photometry. The sulfated amino acids are also proven in nail matrix, nail hyponychium as well as in cartilage and skeletal musculature. Besides a localization of radioactively labelled L-Cystin in tissues, presumed as target organs of a therapeutic effect, there is still lacking an experimental proof of efficacy on cell proliferation and functional metabolism e.g. in arthrosis by suitable animal models. (orig.)

  7. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jing; GU Zhi-yuan; WU Li-qun; ZHANG Yin-kai; HU Ji-an

    2005-01-01

    Background The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Methods Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. Results The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. Conclusions The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  8. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3 T: A prospective controlled study

    International Nuclear Information System (INIS)

    Purpose: To assess acetabular and femoral hip joint cartilage with three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in patients with degeneration of hip joint cartilage and asymptomatic controls with morphologically normal appearing cartilage. Methods and materials: A total of 40 symptomatic patients (18 males, 22 females; mean age: 32.8 ± 10.2 years, range: 18–57 years) with different hip joint deformities including femoroacetabular impingement (n = 35), residual hip dysplasia (n = 3) and coxa magna due to Legg–Calve–Perthes disease in childhood (n = 2) underwent high-resolution 3D dGEMRIC for the evaluation of acetabular and femoral hip joint cartilage. Thirty-one asymptomatic healthy volunteers (12 males, 19 females; mean age: 24.5 ± 1.8 years, range: 21–29 years) without underlying hip deformities were included as control. MRI was performed at 3 T using a body matrix phased array coil. Region of interest (ROI) analyses for T1Gd assessment was performed in seven regions in the hip joint, including anterior to superior and posterior regions. Results: T1Gd mapping demonstrated the typical pattern of acetabular cartilage consistent with a higher glycosaminoglycan (GAG) content in the main weight-bearing area. T1Gd values were significantly higher in the control group than in the patient group whereas significant differences in T1Gd values corresponding to the amount of cartilage damage were noted both in the patient group and in the control group. Conclusions: Our study demonstrates the potential of high-resolution 3D dGEMRIC at 3 T for separate acetabular and femoral hip joint cartilage assessment in various forms of hip joint deformities.

  9. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3 T: A prospective controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Kim, Young-Jo, E-mail: young-jo.kim@childrens.harvard.edu [Department of Orthopaedic Surgery, The Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Hosalkar, Harish, E-mail: hhosalkar@rchsd.org [Department of Orthopaedic Surgery, Rady Children' s Hospital San Diego, 3030 Childrens Way Ste 410, San Diego, CA 92123 (United States); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Krauspe, Ruediger, E-mail: krauspe@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bbittersohl@partners.org [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany)

    2012-11-15

    Purpose: To assess acetabular and femoral hip joint cartilage with three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in patients with degeneration of hip joint cartilage and asymptomatic controls with morphologically normal appearing cartilage. Methods and materials: A total of 40 symptomatic patients (18 males, 22 females; mean age: 32.8 {+-} 10.2 years, range: 18-57 years) with different hip joint deformities including femoroacetabular impingement (n = 35), residual hip dysplasia (n = 3) and coxa magna due to Legg-Calve-Perthes disease in childhood (n = 2) underwent high-resolution 3D dGEMRIC for the evaluation of acetabular and femoral hip joint cartilage. Thirty-one asymptomatic healthy volunteers (12 males, 19 females; mean age: 24.5 {+-} 1.8 years, range: 21-29 years) without underlying hip deformities were included as control. MRI was performed at 3 T using a body matrix phased array coil. Region of interest (ROI) analyses for T1{sub Gd} assessment was performed in seven regions in the hip joint, including anterior to superior and posterior regions. Results: T1{sub Gd} mapping demonstrated the typical pattern of acetabular cartilage consistent with a higher glycosaminoglycan (GAG) content in the main weight-bearing area. T1{sub Gd} values were significantly higher in the control group than in the patient group whereas significant differences in T1{sub Gd} values corresponding to the amount of cartilage damage were noted both in the patient group and in the control group. Conclusions: Our study demonstrates the potential of high-resolution 3D dGEMRIC at 3 T for separate acetabular and femoral hip joint cartilage assessment in various forms of hip joint deformities.

  10. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Objective: To evaluate the use of diffusion-weighted imaging (DWI) for the assessment of cartilage maturation in patients after matrix-associated autologous chondrocyte transplantation (MACT). Materials and methods: Fifteen patients after MACT were examined by 3.0-T magnetic-resonance-tomography; the examination was up to 13 month after surgery in group 1, and later than 13 month after surgery in group 2. Both groups had a follow-up one-year later. DWI was acquired using a steady-state gradient-echo sequence. Mean values of the diffusion quotients of regions of interest within cartilage repair tissue and of reference regions were assessed. Each region-of-interest was subdivided into a deep, and a superficial area. Results: Mean diffusion quotients of cartilage repair tissues were 1.44 (baseline), and 1.44 (follow-up). Mean diffusion quotients of reference tissues were 1.29 (baseline) and 1.28 (follow-up). At the follow-up diffusion quotients of cartilage repair tissue were significantly higher than those of reference cartilage. In group 1 the diffusion quotients were significantly lower at the follow-up (1.45 versus 1.65); in group 2 no statistically significant differences between follow-up (1.39) and baseline (1.41) were found. Reference cartilages and cartilage repair tissues of group 2 showed a decrease of diffusion quotients from the deep to the superficial area being stable at the follow-up. In group 1 initially a significant increase (1.49 versus 1.78) of the diffusion quotients from deep to superficial area of the cartilage repair tissue was found changing into a decrease (1.65 versus 1.52) at the follow-up. Conclusions: DWI detected changes of diffusion within cartilage repair tissue that may reflect cartilage maturation. Changes in diffusity occurred up to two years after surgery and were stable later. Zonal variations within cartilage could be measured.

  11. Abnormal cartilage from the mandibular condyle of stumpy (stm) mutant mice.

    OpenAIRE

    Johnson, D.R.

    1983-01-01

    The mammalian mandibular condyle is composed of secondary cartilage and may thus be susceptible to genes causing achondroplasia and which result in abnormal++ primary cartilage formation. This paper describes the secondary cartilage in the mandible of the stumpy achondroplastic mutation in the mouse: both primary and secondary cartilage are affected by the gene.

  12. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  13. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  14. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, T.I. (Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD (United States))

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  15. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  16. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  17. Characteristic Formation of Hyaluronan-Cartilage Link Protein-Proteoglycan Complex in Salivary Gland Tumors.

    Science.gov (United States)

    Kuwabara, Hiroko; Nishikado, Akira; Hayasaki, Hana; Isogai, Zenzo; Yoneda, Masahiko; Kawata, Ryo; Hirose, Yoshinobu

    2016-01-01

    Hyaluronan (HA) and its binding molecules, cartilage link protein (LP) and proteoglycan (PG), are structural components of the hydrated extracellular matrix. Because these molecules play important roles in the tumor microenvironment, we examined the distribution of HA, LP, versican, and aggrecan in salivary gland tumors using histochemical and immunohistochemical methods, including double staining. LP was present in pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) tissues, and aggrecan was absent in the malignant tumors that we investigated. LP colocalized with both HA and aggrecan in the chondromyxoid matrix of PA, suggesting the presence of a HA-LP-aggrecan complex. Furthermore, the HA-LP-versican complex could be observed in the pseudocystic space of the cribriform structures in ACC. The characteristic HA-LP-PG complex in PA and ACC might play a role in the behavior of tumors, and immunohistochemical analysis of these molecules could represent a diagnostic adjunct for salivary gland tumors. PMID:26067139

  18. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  19. A novel computational modelling to describe the anisotropic, remodelling and reorientation behaviour of collagen fibrres in articular cartilage

    CERN Document Server

    Cortez, S; Alves, J L

    2016-01-01

    In articular cartilage the orientation of collagen fibres is not uniform, varying mostly with the depth on the tissue. Besides, the biomechanical response of each layer of the articular cartilage differs from the neighbouring ones, evolving through thickness as a function of the distribution, density and orientation of the collagen fibres. Based on a finite element implementation, a new continuum formulation is proposed to describe the remodelling and reorientation of the collagen fibres under arbitrary mechanical loads: the cartilaginous tissue is modelled based on a hyperelastic formulation, being the ground isotropic matrix described by a neo-Hookean law and the fibrillar anisotropic part modelled by a new anisotropic formulation introduced for the first time in the present work, in which both reorientation and remodelling are taken into account. To characterize the orientation of fibres, a structure tensor is defined to represent the expected distribution and orientation of fibres around a reference direc...

  20. The development and characterization of a competitive ELISA for measuring active ADAMTS-4 in a bovine cartilage ex vivo model

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Simonsen, Ole; Petersen, Kristian Kjær; Christiansen, Thorbjørn G.; Karsdal, Morten A.; Bay-Jensen, Anne C.

    ADAMTS-4 (aggrecanase1) is believed to play an important role in the degradation of aggrecan during the progression of joint diseases. ADAMTS-4 is synthesized as a latent pro-enzyme that requires the removal of the pro-domain, exposing the N-terminal neoepitope, to achieve activity. We developed a...... monoclonal antibody against this neoepitope of active ADAMTS-4. Furthermore, we established and characterized a competitive ELISA for measuring active ADAMTS-4 form applying the specific antibody. We used this assay to profile the presence of active ADAMTS-4 and its aggrecan degradation product (NITEGE(373...... supernatant and retained in the cartilage matrix increased continuously throughout the 21days of the study. The activity of ADAMTS-4 on the last day of catabolic stimulation was verified in vitro by adding deglycosylated or native aggrecan to the conditioned medium. Samples of human cartilage affected by...

  1. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen......-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...

  2. Growing Three-Dimensional Cartilage-Cell Cultures

    Science.gov (United States)

    Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.

    1995-01-01

    Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.

  3. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke;

    2015-01-01

    BACKGROUND: A gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies. Ideally, the animal model should allow for testing of clinically relevant...... treatments and the biological response should be reproducible and comparable to humans. This allows for a reliable translation of results to clinical studies.This study aimed at verifying the Göttingen minipig as a pre-clinical model for articular cartilage repair by testing existing clinical cartilage...

  4. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  5. Reactive bay functionalized perylene monoimide-polyhedral oligomeric silsesquioxane organic electronic dye

    OpenAIRE

    Wangatia Lodrick Makokha; Sun Bin; Zeng Ting; Zhu Meifang

    2015-01-01

    Aggregation-induced quenching is particularly detrimental in perylene diimides, which are characterized by a near-unity fluorescence quantum yield in solution but are far less emissive in the solid state. Previously, perylene diimide has been improved by linking it to the inorganic cage of polyhedral oligomeric silsesquioxanes. As a further study on perylene diimidepolyhedral oligomeric silsesquioxanes, we report on a double functionalized molecular structure, which can be used for substituti...

  6. Influence of oligomeric resins on traction and rolling resistance of silica tire treads

    OpenAIRE

    Vleugels, N.; Pille-Wolf, W.; Dierkes, W.K.; Noordermeer, J.W.M.

    2013-01-01

    This study concerns the silica-reinforcement of synthetic rubber compounds for passenger tire treads with the objective to gain insight into the beneficial effects of oligomeric resins, derived from natural and synthetic monomers, on the major tire performance factors: Rolling Resistance and (Wet) Skid Resistance. This manuscript highlights the relationship between the performances of various oligomeric resins in different concentrations: 2, 4 and 6 phr, on the dynamic mechanical behavior of ...

  7. The Free Energy of Dissociation of Oligomeric Structure in Phycocyanin is not Linear with Denaturant†

    OpenAIRE

    Thoren, Katie L.; Connell, Katelyn B.; Robinson, Taylor E.; Shellhamer, David D.; Tammaro, Margaret S.; Gindt, Yvonne M.

    2006-01-01

    Using SEC HPLC and fluorescence anisotropy, absorption spectra were assigned to the specific oligomeric structures found with phycocyanin. The absorption spectra were used to quantify the population of each oligomeric form of the protein as a function of both urea concentration and temperature. Phycocyanin hexamer dissociate to trimers with equilibrium constants of 10−6 to 10−5. Phycocyanin trimers dissociate to monomers with equilibrium constants of 10−15 to 10−12. Both dissociation constant...

  8. Cytoplasmic Amino Acids within the Membrane Interface Region Influence Connexin Oligomerization

    OpenAIRE

    Smith, Tekla D.; Mohankumar, Aditi; Minogue, Peter J.; Beyer, Eric C.; Berthoud, Viviana M.; Koval, Michael

    2012-01-01

    Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain hav...

  9. Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization

    DEFF Research Database (Denmark)

    Teilum, Kaare; Smith, Melanie H; Schulz, Eike;

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease linked to the misfolding of Cu/Zn superoxide dismutase (SOD1). ALS-related defects in SOD1 result in a gain of toxic function that coincides with aberrant oligomerization. The structural events triggering oligomerization have rema...... different SOD1 variants that may explain why diverse mutations cause the same disease, and (ii) a structural basis that may aid in understanding how different mutations affect disease propensity and progression....

  10. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm3, using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.)

  11. Butterfly cartilage graft versus fat graft myringoplasty

    Directory of Open Access Journals (Sweden)

    Sonika Kanotra

    2016-01-01

    Full Text Available Aim: The aim of the study was to compare the graft take up rates of two minimally invasive techniques of butterfly cartilage graft (BCG and fat graft myringoplasty (FGM. Materials and Methods: Two groups of 30 patients each with small dry central perforations of the tympanic membrane (T.M. were randomly subjected to either of the two techniques of myringoplasty. Statistical Analysis Used: The results were compared using the Chi-square test. A value of <0.05 was taken as statistically significant. Results: The graft take up rate was 93.3% with BCG and 83.3% with fat graft. Conclusions: The BCG scores over FGM in small perforations of the T.M.

  12. Polylactide fibrous scaffolds for cartilage implant engineering

    Czech Academy of Sciences Publication Activity Database

    Mulinková, Katarína; Machová, Luďka; Lesný, P.; Kubies, Dana; Rypáček, František

    Prague: Czech Society for New Materials and Technologies, 2005. Poster Session II. [European Congress on Advanced Materials and Processes. 5.9.2005-8.9.2005, Prague] R&D Projects: GA MZd ND7448 Keywords : biodegradable polymers * polylactide fibres * cartilage engineering Subject RIV: FJ - Surgery incl. Transplants http://webdb.dgm.de/dgm_lit/prg/FMPro?-db=w%5fprogram&- format =prog%5fpaper%5fresults.htm&-lay=standard&TB=%3d%3d688&tgb%5fsymposium%5fund%5fnr=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-max=20&-skip=20&-token.0=688&-token.1=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-find=

  13. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  14. Protein kinase C regulates the phosphorylation and oligomerization of ERM binding phosphoprotein 50

    International Nuclear Information System (INIS)

    Ezrin-Radixin-Moesin (ERM) binding phosphoprotein 50 (EBP50, a.k.a. NHERF-1) is a scaffold protein essential for the localization and coordinated activity of apical transporters, enzymes and receptors in epithelial cells. EBP50 acts via multiple protein binding interactions, including oligomerization through interactions of its PSD95-Dlg-ZO1 (PDZ) domains. EBP50 can be phosphorylated on multiple sites and phosphorylation of specific sites modulates the extent of oligomerization. The aim of the present study was to test the capacity of protein kinase C (PKC) to phosphorylate EBP50 and to regulate its oligomerization. In vitro experiments showed that the catalytic subunit of PKC directly phosphorylates EBP50. In HEK-293 cells transfected with rat EBP50 cDNA, a treatment with 12 myristate 13-acetate (PMA) induced a translocation of PKCα and β isoforms to the membrane and increased 32P incorporation into EBP50. In co-transfection/co-precipitation studies, PMA treatment stimulated EBP50 oligomerization. Mass spectrometry analysis of full-length EBP50 and phosphorylation analyses of specific domains, and of mutated or truncated forms of EBP50, indicated that PKC-induced phosphorylation of EBP50 occurred on the Ser337/Ser338 residue within the carboxyl-tail domain of the protein. Truncation of Ser337/Ser338 also diminished PKC-induced oligomerization of EBP50. These results suggest the PKC signaling pathway can impact EBP50-dependent cellular functions by regulating EBP50 oligomerization

  15. Oligomerization and toxicity of A{beta} fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caine, Joanne M., E-mail: Jo.Caine@csiro.au [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Bharadwaj, Prashant R. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Centre for Excellence for Alzheimer' s Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Western Australia (Australia); Sankovich, Sonia E. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Ciccotosto, Giuseppe D. [The Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010 (Australia); Streltsov, Victor A.; Varghese, Jose [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia)

    2011-06-10

    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  16. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS).

    Science.gov (United States)

    Ghanbari, Hossein; Cousins, Brian G; Seifalian, Alexander M

    2011-07-15

    Ground-breaking advances in nanomedicine (defined as the application of nanotechnology in medicine) have proposed novel therapeutics and diagnostics, which can potentially revolutionize current medical practice. Polyhedral oligomeric silsesquioxane (POSS) with a distinctive nanocage structure consisting of an inner inorganic framework of silicon and oxygen atoms, and an outer shell of organic functional groups is one of the most promising nanomaterials for medical applications. Enhanced biocompatibility and physicochemical (material bulk and surface) properties have resulted in the development of a wide range of nanocomposite POSS copolymers for biomedical applications, such as the development of biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications, and biological sensors. The application of POSS nanocomposites in combination with other nanostructures has also been investigated including silver nanoparticles and quantum dot nanocrystals. Chemical functionalization confers antimicrobial efficacy to POSS, and the use of polymer nanocomposites provides a biocompatible surface coating for quantum dot nanocrystals to enhance the efficacy of the materials for different biomedical and biotechnological applications. Interestingly, a family of POSS-containing nanocomposite materials can be engineered either as completely non-biodegradable materials or as biodegradable materials with tuneable degradation rates required for tissue engineering applications. These highly versatile POSS derivatives have created new horizons for the field of biomaterials research and beyond. Currently, the application of POSS-containing polymers in various fields of nanomedicine is under intensive investigation with expectedly encouraging outcomes. PMID:21598339

  17. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  18. Now approaches to the treatment of articular cartilage lesions

    Directory of Open Access Journals (Sweden)

    M. Coviello

    2011-01-01

    Full Text Available Various approaches to the treatment of cartilage defects have been proposed in the literature; reparative and regenerative methods and, more recently, the Maioregen technique are currently available.

  19. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    Science.gov (United States)

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  20. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  1. The sulphation of chondroitin sulphate in embryonic chicken cartilage

    Science.gov (United States)

    Robinson, H. C.

    1969-01-01

    1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [35S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1·5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3′-phosphate 5′-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed. PMID:5807213

  2. Starch-modified magnetite nanoparticles for impregnation into cartilage

    International Nuclear Information System (INIS)

    The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases

  3. Articular cartilage repair and the evolving role of regenerative medicine

    Directory of Open Access Journals (Sweden)

    Pieter K Bos

    2010-10-01

    Full Text Available Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI and use of mesenchymal stem cells (MSCs, are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity

  4. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. Results The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. Conclusion The great majority of glenohumeral cartilage

  5. Improved Visualization of Cartilage Canals Using Quantitative Susceptibility Mapping.

    Directory of Open Access Journals (Sweden)

    Mikko J Nissi

    Full Text Available Cartilage canal vessels are critical to the normal function of epiphyseal (growth cartilage and damage to these vessels is demonstrated or suspected in several important developmental orthopaedic diseases. High-resolution, three-dimensional (3-D visualization of cartilage canals has recently been demonstrated using susceptibility weighted imaging (SWI. In the present study, a quantitative susceptibility mapping (QSM approach is evaluated for 3-D visualization of the cartilage canals. It is hypothesized that QSM post-processing improves visualization of the cartilage canals by resolving artifacts present in the standard SWI post-processing while retaining sensitivity to the cartilage canals.Ex vivo distal femoral specimens from 3- and 8-week-old piglets and a 1-month-old human cadaver were scanned at 9.4 T with a 3-D gradient recalled echo sequence suitable for SWI and QSM post-processing. The human specimen and the stifle joint of a live, 3-week-old piglet also were scanned at 7.0 T. Datasets were processed using the standard SWI method and truncated k-space division QSM approach. To compare the post-processing methods, minimum/maximum intensity projections and 3-D reconstructions of the processed datasets were generated and evaluated.Cartilage canals were successfully visualized using both SWI and QSM approaches. The artifactual splitting of the cartilage canals that occurs due to the dipolar phase, which was present in the SWI post-processed data, was eliminated by the QSM approach. Thus, orientation-independent visualization and better localization of the cartilage canals was achieved with the QSM approach. Combination of GRE with a mask based on QSM data further improved visualization.Improved and artifact-free 3-D visualization of the cartilage canals was demonstrated by QSM processing of the data, especially by utilizing susceptibility data as an enhancing mask. Utilizing tissue-inherent contrast, this method allows noninvasive assessment

  6. Channel matrix, measurement matrix and collapsed matrix in teleportation

    OpenAIRE

    Zha, Xin-Wei; Qi, Jian-Xia; Song, Hai-Yang

    2014-01-01

    In this paper, two kinds of coefficient matrixes (channel matrix, measurement matrix)associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for teleportation that the number of coefficient of an unknown state is determined by the rank of the collapsed matrix is given.

  7. Comparative digital cartilage histology for human and common osteoarthritis models

    OpenAIRE

    Pedersen DR; Goetz JE; Kurriger GL; Martin JA

    2013-01-01

    Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA) animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage healt...

  8. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.

    Science.gov (United States)

    Batista, Michael A; Nia, Hadi T; Önnerfjord, Patrik; Cox, Karen A; Ortiz, Christine; Grodzinsky, Alan J; Heinegård, Dick; Han, Lin

    2014-09-01

    Chondroadherin (CHAD), a class IV small leucine rich proteoglycan/protein (SLRP), was hypothesized to play important roles in regulating chondrocyte signaling and cartilage homeostasis. However, its roles in cartilage development and function are not well understood, and no major osteoarthritis-like phenotype was found in the murine model with CHAD genetically deleted (CHAD(-/-)). In this study, we used atomic force microscopy (AFM)-based nanoindentation to quantify the effects of CHAD deletion on changes in the biomechanical function of murine cartilage. In comparison to wild-type (WT) mice, CHAD-deletion resulted in a significant ≈70-80% reduction in the indentation modulus, Eind, of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old animals. This mechanical phenotype correlates well with observed increases in the heterogeneity collagen fibril diameters in the surface zone. The results suggest that CHAD mainly plays a major role in regulating the formation of the collagen fibrillar network during the early skeletal development. In contrast, CHAD-deletion had no appreciable effects on the indentation mechanics of middle/deep zone cartilage, likely due to the dominating role of aggrecan in the middle/deep zone. The presence of significant rate dependence of the indentation stiffness in both WT and CHAD(-/-) knee cartilage suggested the importance of both fluid flow induced poroelasticity and intrinsic viscoelasticity in murine cartilage biomechanical properties. Furthermore, the marked differences in the nanomechanical behavior of WT versus CHAD(-/-) cartilage contrasted sharply with the relative absence of overt differences in histological appearance. These observations highlight the sensitivity of nanomechanical tools in evaluating structural and mechanical phenotypes in transgenic mice. PMID:24892719

  9. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage.

    Science.gov (United States)

    Macpherson, J V; O'Hare, D; Unwin, P R; Winlove, C P

    1997-11-01

    The scanning electrochemical microscope (SECM) is a scanned probe microscope that uses the response of a mobile ultramicroelectrode (UME) tip to determine the reactivity, topography, and mass transport characteristics of interfaces with high spatial resolution. SECM strategies for measuring the rates of solute diffusion and convection through samples of cartilage, using amperometric UMEs, are outlined. The methods are used to determine the diffusion coefficients of oxygen and ruthenium(III) hexamine [Ru(NH3)6(3+)] in laryngeal cartilage. The diffusion coefficient of oxygen in cartilage is found to be approximately 50% of that in aqueous electrolyte solution, assuming a partition coefficient of unity for oxygen between cartilage and aqueous solution. In contrast, diffusion of Ru(NH3)6(3+) within the cartilage sample cannot be detected on the SECM timescale, suggesting a diffusion coefficient at least two orders of magnitude lower than that in solution, given a measured partition coefficient for Ru(NH3)6(3+) between cartilage and aqueous solution, Kp = [Ru(NH3)6(3+)]cartilage/[RU(NH3)6(3+)]solution = 3.4 +/- 0.1. Rates of Ru(NH3)6(3+) osmotically driven convective transport across cartilage samples are imaged at high spatial resolution by monitoring the current response of a scanning UME, with an osmotic pressure of approximately 0.75 atm across the slice. A model is outlined that enables the current response to be related to the local flux. By determining the topography of the sample from the current response with no applied osmotic pressure, local transport rates can be correlated with topographical features of the sample surface, at much higher spatial resolution than has previously been achieved. PMID:9370471

  10. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    OpenAIRE

    Finlay, Scott; Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene ter...

  11. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    OpenAIRE

    Grenier, Stephanie; Donnelly, Patrick E; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crossl...

  12. Reducing the morbidity involved in harvesting autogenous rib cartilage.

    Science.gov (United States)

    Siegert, Ralf; Magritz, Ralph

    2009-08-01

    Although the use of autogenous cartilage is the gold standard in auricular reconstruction, its main disadvantage is the morbidity due to harvesting the cartilage. This includes postoperative pain, visible scar, and possibly asymmetry and reduced stability of the thorax. To reduce all of these drawbacks, we describe some modifications that reduce pain to a low tolerable level, hide the scar invisibly in the submammary fold in females, and induce regeneration as well reestablish stability of the rib defect. PMID:19809948

  13. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  14. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    OpenAIRE

    Bastiaansen-Jenniskens, Yvonne Maria

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repairing or maintaining the ECM homeostasis. We therefore investigated the ability to modulate the formation of a functional collagen type II network that can ultimately contribute to innovation of car...

  15. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis.

    Science.gov (United States)

    Dvir-Ginzberg, Mona; Mobasheri, Ali; Kumar, Ashok

    2016-07-01

    The past decade has witnessed many advances in the understanding of sirtuin biology and related regulatory circuits supporting the capacity of these proteins to serve as energy-sensing molecules that contribute to healthspan in various tissues, including articular cartilage. Hence, there has been a significant increase in new investigations that aim to elucidate the mechanisms of sirtuin function and their roles in cartilage biology, skeletal development, and pathologies such as osteoarthritis (OA), rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD). The majority of the work carried out to date has focused on SIRT1, although SIRT6 has more recently become a focus of some investigations. In vivo work with transgenic mice has shown that Sirt1 and Sirt6 are essential for maintaining cartilage homeostasis and that the use of sirtuin-activating molecules such as resveratrol may have beneficial effects on cartilage anabolism. Current thinking is that SIRT1 exerts positive effects on cartilage by encouraging chondrocyte survival, especially under stress conditions, which may provide a mechanism supporting the use of sirtuin small-molecule activators (STACS) for future therapeutic interventions in OA and other degenerative pathologies of joints, especially those that involve articular cartilage. PMID:27289467

  16. Validity of echographic evaluation of cartilage in gonarthrosis. Preliminary report.

    Science.gov (United States)

    Martino, F; Ettorre, G C; Angelelli, G; Macarini, L; Patella, V; Moretti, B; D'Amore, M; Cantatore, F P

    1993-06-01

    We studied an echographic technique by which precise reproducible measurements of articular cartilage thickness of the knee is possible. Two groups of individuals were studied: a group of 18 patients with gonarthrosis and a control group of 10 normal individuals. The group of 18 patients with gonarthrosis was studied by ultrasound (US) before knee prosthesis surgery. The cartilage thickness was measured within the weight-bearing area. US re-evaluation and histological measurements were made on the pathological specimen following the operation. Results of pre- and post-operative US data were compared with histological data. A good correlation between these measurements was found [P(t) > 10%]. In order to have comparative reference values of the articular cartilage within the weight-bearing area of the femoral trochlea a group of 10 control subjects was also studied with US as above. We found that the articular cartilage thickness of the femoral trochlea in the weight-bearing area has a mean of 2.2 +/- 0.3 mm for the lateral condyle and 2.3 +/- 0.2 mm for the medial condyle. The intra-observer and inter-observer difference in measurements was evaluated with Student's t-test. Our data demonstrate that US measurements of articular cartilage thickness of femoral condyles is a sensitive and reproducible technique which permits early diagnosis and management of knee arthropathy as well as quantification of cartilage damage. PMID:8358975

  17. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    Science.gov (United States)

    Zhang, Yongchun; Sheu, Tzong-Jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. © 2015 American Society for Bone and Mineral Research. PMID:26363286

  18. The matrix theory S matrix

    OpenAIRE

    Plefka, J. C.; Serone, M.; Waldron, A.K.

    1998-01-01

    The technology required for eikonal scattering amplitude calculations in Matrix theory is developed. Using the entire supersymmetric completion of the v^4/r^7 Matrix theory potential we compute the graviton-graviton scattering amplitude and find agreement with eleven dimensional supergravity at tree level.

  19. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration.

    Science.gov (United States)

    Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J; Elisseeff, Jennifer H

    2016-04-01

    Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis. PMID:27019285

  20. Preparation and characterization of crosslinked poly(butylene adipate-co-terephthalate)/polyhedral oligomeric silsesquioxane nanocomposite by electron beam irradiation

    International Nuclear Information System (INIS)

    The electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate) (PBAT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites was investigated in this study. PBAT/POSS nanocomposites prepared by a solution blending with various compositions were crosslinked by electron beam irradiation at various absorbed doses ranging from 20 to 200 kGy and their properties were characterized in terms of their degree of crosslinking, morphology, thermal and mechanical properties, and biodegradability. The results of the degree of crosslinking measurements revealed that PBAT/POSS nanocomposites were more effectively crosslinked than the pure PBAT and that the degree of crosslinking was dependent on the absorbed dose and POSS content. From the results of the FE-SEM and EDX analyses, the POSS was found to be uniformly dispersed in the PBAT matrix. Based on the results of the UTM, DMA, and TMA, the crosslinked PBAT/POSS nanocomposites exhibited much higher thermal and mechanical properties compared to those of the pure PBAT. - Highlights: ► Crosslinked PBAT/POSS nanocomposites were prepared by electron beam irradiation. ► The POSS as a nanofillers was homogeneously dispersed in the PBAT matrix. ► The crosslinked nanocomposites exhibited improved thermal and mechanical properties.

  1. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  2. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    International Nuclear Information System (INIS)

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured. (author)

  3. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    L He

    2009-10-01

    Full Text Available Nano-fibrous scaffolds which could potentially mimic the architecture of extracellular matrix (ECM have been considered a good candidate matrix for cell delivery in tissue engineering applications. In the present study, a semicrystalline diblock copolymer, poly(e-caprolactone-block-poly(L-lactide (PCL-b-PLLA, was synthesized and utilized to fabricate nano-fibrous scaffolds via a thermally induced phase separation process. Uniform nano-fibrous networks were created by quenching a PCL-b-PLLA/THF homogenous solution to -20ºC or below, followed by further gelation for 2 hours due to the presence of PLLA and PCL microcrystals. However, knot-like structures as well as continuously smooth pellicles appeared among the nano-fibrous network with increasing gelation temperature. DSC analysis indicated that the crystallization of PCL segments was interrupted by rigid PLLA segments, resulting in an amorphous phase at high gelation temperatures. Combining TIPS (thermally induced phase separation with salt-leaching methods, nano-fibrous architecture and interconnected pore structures (144±36 mm in diameter with a high porosity were created for in vitro culture of chondrocytes. Specific surface area and protein adsorption on the surface of the nano-fibrous scaffold were three times higher than on the surface of the solid-walled scaffold. Chondrocytes cultured on the nano-fibrous scaffold exhibited a spherical condrocyte-like phenotype and secreted more cartilage-like extracellular matrix (ECM than those cultured on the solid-walled scaffold. Moreover, the protein and DNA contents of cells cultured on the nano-fibrous scaffold were 1.2-1.4 times higher than those on the solid-walled scaffold. Higher expression levels of collagen II and aggrecan mRNA were induced on the nano-fibrous scaffold compared to on the solid-walled scaffold. These findings demonstrated that scaffolds with a nano-fibrous architecture could serve as superior scaffolds for cartilage tissue

  4. Oligomerization of optically active N-(4-hydroxyphenylmandelamide in the presence of β-cyclodextrin and the minor role of chirality

    Directory of Open Access Journals (Sweden)

    Helmut Ritter

    2014-10-01

    Full Text Available The oxidative oligomerization of a chiral mandelamide derivative (N-(4-hydroxyphenylmandelamide, 1 was performed in the presence of horseradish peroxidase, laccase and N,N'-bis(salicylideneethylenediamine-iron(II to obtain chiral oligophenols 2. The low enantioselectivity of the enzymatic catalyzed asymmetric enantiomer-differentiating oligomerizations was investigated. In addition, the poor influence of cyclodextrin on the enantioselectivity of enzymatic catalyzed asymmetric enantiomer-differentiating oligomerizations was studied.

  5. Does cartilage volume measurement or radiographic osteoarthritis at baseline independently predict ten-year cartilage volume loss?

    OpenAIRE

    McBride, Andrew; Khan, Hussain Ijaz; Aitken, Dawn; Chou, Louisa; Ding, Changhai; Blizzard, Leigh; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Cicuttini, Flavia; Jones, Graeme

    2016-01-01

    Background The aim of this study was to examine whether cartilage volume as measured by MRI and radiographic osteoarthritis (OA) at baseline predict cartilage volume loss over ten years independent of each other and other structural co-pathologies. Methods 219 participants [mean-age 45(26–61); 57 % female] were studied at baseline and ten years. Approximately half were the adult offspring of subjects who underwent knee replacement for OA and the remainder were randomly selected controls. Join...

  6. Revisiting the oligomerization mechanism of Vibrio cholerae cytolysin, a beta-barrel pore-forming toxin.

    Science.gov (United States)

    Rai, Anand Kumar; Chattopadhyay, Kausik

    2016-06-01

    Vibrio cholerae cytolysin (VCC) is a membrane-damaging beta-barrel pore-forming toxin (beta-PFT). VCC causes permeabilization of the target membranes by forming transmembrane oligomeric beta-barrel pores. Oligomerization is a key step in the mode of action of any beta-PFT, including that of VCC. Earlier studies have identified some of the key residues in VCC that are directly involved in the generation of the inter-protomer contacts, thus playing critical roles in the oligomerization of the membrane-bound toxin. Analysis of the VCC oligomeric pore structure reveals a potential hydrogen-bond network that appears to connect the sidechain of an asparagine residue (Asn582; located within an inter-domain linker sequence) from one protomer to the backbone CO- and NH-groups of the neighbouring protomer, indirectly through water molecules at most of the inter-protomer interfaces. In the present study, we show that the mutation of Asn582Ala affects the oligomerization and the pore-forming activity of VCC in the membrane lipid bilayer of the synthetic lipid vesicles, while the replacement of Asn582Gln results into the restoration of the oligomeric pore-forming ability of the toxin. Using a number of truncated variants of VCC, having deletion in the C-terminal region of the toxin starting from the Asn582 residue or beyond, we also show that the presence of Asn582 is critically required for the oligomerization of the truncated form of the protein. PMID:27150630

  7. Akt Switches TopBP1 Function from Checkpoint Activation to Transcriptional Regulation through Phosphoserine Binding-Mediated Oligomerization

    OpenAIRE

    Liu, Kang; Graves, Joshua D.; Scott, Jessica D.; Li, Rongbao; Lin, Weei-Chin

    2013-01-01

    Our previous study showed that Akt phosphorylates TopBP1 at the Ser-1159 residue and induces its oligomerization. Oligomerization is required for TopBP1 to bind and repress E2F1 activity. However, the mechanism through which phosphorylation of TopBP1 by Akt leads to its oligomerization remains to be determined. Here, we demonstrate that binding between the phosphorylated Ser-1159 (pS1159) residue and the 7th and 8th BRCT domains of TopBP1 mediates TopBP1 oligomerization. Mutations within the ...

  8. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage.

    Science.gov (United States)

    Miralles, G; Baudoin, R; Dumas, D; Baptiste, D; Hubert, P; Stoltz, J F; Dellacherie, E; Mainard, D; Netter, P; Payan, E

    2001-11-01

    Studies are underway to design biosystems containing embedded chondrocytes to fill osteochondral defects and to produce a tissue close to native cartilage. In the present report, a new alginate three-dimensional support for chondrocyte culture is described. A sodium alginate solution, with or without hyaluronic acid (HA), was freeze-dried to obtain large-porosity sponges. This formulation was compared with a hydrogel of the same composition. In the sponge formulation, macroscopic and microscopic studies demonstrated the formation of a macroporous network (average pore size, 174 microm) associated with a microporous one (average pore size, 250 nm). Histological and biochemical studies showed that, when loaded with HA, the sponge provides an adapted environment for proteoglycan and collagen synthesis by chondrocytes. Cytoskeleton organization was studied by three-dimensional fluorescence microscopy (CellScan EPR). Chondrocytes exhibit a marked spherical shape with a nonoriented and sparse actin microfilament network. Type II collagen was detected in both types of sponges (with or without HA) using immunohistochemistry. In conclusion, the sponge formulation affords new perspectives with respect to the in vitro production of "artificial" cartilage. Furthermore, the presence of hyaluronate within the alginate sponge mimics a functional environment, suitable for the production by embedded chondrocytes of an extracellular matrix. PMID:11484190

  9. Cartilage collagen type II seromarker patterns in axial spondyloarthritis and psoriatic arthritis

    DEFF Research Database (Denmark)

    Munk, Heidi Lausten; Gudmann, Natasja Staehr; Christensen, Anne Friesgaard;

    2016-01-01

    disease activity measures and HLA-B27 typing. The procollagen IIA N-terminal peptide (PIIANP) and a matrix metalloproteinase-generated type II collagen fragment (C2M) were quantified in serum by ELISA. C2M was higher in SpA than in controls, 0.41 versus 0.36 ng/ml (p = 0.004), while PIIANP did not differ......-smokers, 0.43 ng/ml (p = 0.02), while PIIANP was higher in HLA-B27 positive, 2312 ng/ml versus negative patients, 2021 ng/ml (p = 0.03). In PsA, PIIANP and C2M did not differ between patients and controls, but PIIANP was elevated in patients not receiving DMARDs, 2726 ng/ml. In PsA, PIIANP and C2M did not...... differ according to smoking and HLA-B27. Cartilage degradation assessed by C2M is increased in SpA irrespective of treatment but not in PsA. Cartilage synthesis reflected by PIIANP is increased in untreated SpA and PsA. PIIANP correlates with CRP in SpA while not in PsA. In DMARD-naïve SpA but not in Ps...

  10. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a rabbit osteoarthritis model

    Science.gov (United States)

    Cheng, N-T.; Cui, Y-P.

    2016-01-01

    Objectives Recent studies have shown that systemic injection of rapamycin can prevent the development of osteoarthritis (OA)-like changes in human chondrocytes and reduce the severity of experimental OA. However, the systemic injection of rapamycin leads to many side effects. The purpose of this study was to determine the effects of intra-articular injection of Torin 1, which as a specific inhibitor of mTOR which can cause induction of autophagy, is similar to rapamycin, on articular cartilage degeneration in a rabbit osteoarthritis model and to investigate the mechanism of Torin 1’s effects on experimental OA. Methods Collagenase (type II) was injected twice into both knees of three-month-old rabbits to induce OA, combined with two intra–articular injections of Torin 1 (400 nM). Degeneration of articular cartilage was evaluated by histology using the Mankin scoring system at eight weeks after injection. Chondrocyte degeneration and autophagosomes were observed by transmission electron microscopy. Matrix metallopeptidase-13 (MMP-13) and vascular endothelial growth factor (VEGF) expression were analysed by quantitative RT-PCR (qPCR).Beclin-1 and light chain 3 (LC3) expression were examined by Western blotting. Results Intra-articular injection of Torin 1 significantly reduced degeneration of the articular cartilage after induction of OA. Autophagosomes andBeclin-1 and LC3 expression were increased in the chondrocytes from Torin 1-treated rabbits. Torin 1 treatment also reduced MMP-13 and VEGF expression at eight weeks after collagenase injection. Conclusion Our results demonstrate that intra-articular injection of Torin 1 reduces degeneration of articular cartilage in collagenase-induced OA, at least partially by autophagy activation, suggesting a novel therapeutic approach for preventing cartilage degeneration and treating OA. Cite this article: N-T. Cheng, A. Guo, Y-P. Cui. Intra-articular injection of Torin 1 reduces degeneration of articular cartilage in a

  11. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    Directory of Open Access Journals (Sweden)

    MM Pleumeekers

    2014-04-01

    Full Text Available Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. This study evaluated the performance of culture-expanded human chondrocytes from ear (EC, nose (NC and articular joint (AC, as well as bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells both in vitro and in vivo. All cells (≥ 3 donors per source were culture-expanded, encapsulated in alginate and cultured for 5 weeks. Subsequently, constructs were implanted subcutaneously for 8 additional weeks. Before and after implantation, glycosaminoglycan (GAG and collagen content were measured using biochemical assays. Mechanical properties were determined using stress-strain-indentation tests. Hypertrophic differentiation was evaluated with qRT-PCR and subsequent endochondral ossification with histology. ACs had higher chondrogenic potential in vitro than the other cell sources, as assessed by gene expression and GAG content (p < 0.001. However, after implantation, ACs did not further increase their matrix. In contrast, ECs and NCs continued producing matrix in vivo leading to higher GAG content (p < 0.001 and elastic modulus. For NC-constructs, matrix-deposition was associated with the elastic modulus (R2 = 0.477, p = 0.039. Although all cells – except ACs – expressed markers for hypertrophic differentiation in vitro, there was no bone formed in vivo. Our work shows that cartilage formation and functionality depends on the cell source used. ACs possess the highest chondrogenic capacity in vitro, while ECs and NCs are most potent in vivo, making them attractive cell sources for cartilage repair.

  12. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Science.gov (United States)

    Ng, Wuey Min

    2016-01-01

    Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  13. Abnormal mandibular growth and the condylar cartilage.

    Science.gov (United States)

    Pirttiniemi, Pertti; Peltomäki, Timo; Müller, Lukas; Luder, Hans U

    2009-02-01

    Deviations in the growth of the mandibular condyle can affect both the functional occlusion and the aesthetic appearance of the face. The reasons for these growth deviations are numerous and often entail complex sequences of malfunction at the cellular level. The aim of this review is to summarize recent progress in the understanding of pathological alterations occurring during childhood and adolescence that affect the temporomandibular joint (TMJ) and, hence, result in disorders of mandibular growth. Pathological conditions taken into account are subdivided into (1) congenital malformations with associated growth disorders, (2) primary growth disorders, and (3) acquired diseases or trauma with associated growth disorders. Among the congenital malformations, hemifacial microsomia (HFM) appears to be the principal syndrome entailing severe growth disturbances, whereas growth abnormalities occurring in conjunction with other craniofacial dysplasias seem far less prominent than could be anticipated based on their often disfiguring nature. Hemimandibular hyperplasia and elongation undoubtedly constitute the most obscure conditions that are associated with prominent, often unilateral, abnormalities of condylar, and mandibular growth. Finally, disturbances of mandibular growth as a result of juvenile idiopathic arthritis (JIA) and condylar fractures seem to be direct consequences of inflammatory and/or mechanical damage to the condylar cartilage. PMID:19164410

  14. Nasal reconstruction with articulated irradiated rib cartilage

    International Nuclear Information System (INIS)

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed

  15. Nasal reconstruction with articulated irradiated rib cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, C.S.; Cook, T.A.; Guida, R.A. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-03-01

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed.

  16. The Oligomeric States of the Purified Sigma-1 Receptor Are Stabilized by Ligands*

    Science.gov (United States)

    Gromek, Katarzyna A.; Suchy, Fabian P.; Meddaugh, Hannah R.; Wrobel, Russell L.; LaPointe, Loren M.; Chu, Uyen B.; Primm, John G.; Ruoho, Arnold E.; Senes, Alessandro; Fox, Brian G.

    2014-01-01

    Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[3H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed. PMID:24847081

  17. The oligomeric states of the purified sigma-1 receptor are stabilized by ligands.

    Science.gov (United States)

    Gromek, Katarzyna A; Suchy, Fabian P; Meddaugh, Hannah R; Wrobel, Russell L; LaPointe, Loren M; Chu, Uyen B; Primm, John G; Ruoho, Arnold E; Senes, Alessandro; Fox, Brian G

    2014-07-18

    Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[(3)H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed. PMID:24847081

  18. Noninvasive determination of knee cartilage deformation during jumping.

    Science.gov (United States)

    Filipovic, Nenad; Vulovic, Radun; Peulic, Aleksandar; Radakovic, Radivoje; Kosanic, Djordje; Ristic, Branko

    2009-01-01

    The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping. Key pointsEven there are many existing mathematical models of force distribution during running or jumping (Liu et al, 1998), to our knowledge there is no interdisciplinary approach where imaging processing, finite element modeling and experimental force plate system are employed.The aim is to explore noninvasive deformation in the knee cartilage during athlete's jumping on the force plate.An original image algorithms and software were developed as well as complex mathematical models using high-performance computational power of finite element modeling together with one-dimensional dynamics model.The initial results showed cartilage deformation in the knee and future research will be focused on the methodology and more precisely determination of the stress and strain distribution in the knee cartilage during training phase of sportsman. PMID:24149600

  19. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  20. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    Science.gov (United States)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  1. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    Science.gov (United States)

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. PMID:27195911

  2. Transforming growth factor beta 1 effects on cartilage tissue metabolism%转化生长因子β1对软骨组织代谢影响的研究进展*★

    Institute of Scientific and Technical Information of China (English)

    郭铁峰; 周明旺; 李盛华; 孙凤岐; 穆欢喜

    2013-01-01

    in Chinese and English, respectively. A total of 130 articles were retrieved, and final y 54 were included. RESULTS AND CONCLUSION:Transforming growth factor beta 1 can induce chondrogenic differentiation of mesenchymal stem cel s, promote cartilage-specific matrix synthesis, protect the cartilage matrix against proteolysis, enhance self-renew ability of cartilage tissues, and realize repair of cartilage injury. In the field of cartilage repair, transforming growth factor beta 1 demonstrates a great potential value.

  3. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  4. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinholt, E.M.; Solheim, E. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by {sup 85}Sr uptake. The composite implant was technically easier to use than DBM alone. (author).

  5. Reactive bay functionalized perylene monoimide-polyhedral oligomeric silsesquioxane organic electronic dye

    Directory of Open Access Journals (Sweden)

    Wangatia Lodrick Makokha

    2015-03-01

    Full Text Available Aggregation-induced quenching is particularly detrimental in perylene diimides, which are characterized by a near-unity fluorescence quantum yield in solution but are far less emissive in the solid state. Previously, perylene diimide has been improved by linking it to the inorganic cage of polyhedral oligomeric silsesquioxanes. As a further study on perylene diimidepolyhedral oligomeric silsesquioxanes, we report on a double functionalized molecular structure, which can be used for substitution at the bay area and as a side group in other materials. Typical solution absorption and emission features of the perylene diimide fragment have been observed in this new reactive perylene diimide-polyhedral oligomeric silsesquioxane. Moreover, reduced stacking during aggregation and spherical particles exhibiting solid fluorescence have been obtained. Organic semiconducting material with enhanced solid state photophysical properties, like solid fluorescence is a subject of great interest owing to its possible high-tech applications in optoelectronic devices.

  6. The evolution of articular cartilage imaging and its impact on clinical practice

    International Nuclear Information System (INIS)

    Over the past four decades, articular cartilage imaging has developed rapidly. Imaging now plays a critical role not only in clinical practice and therapeutic decisions but also in the basic research probing our understanding of cartilage physiology and biomechanics. (orig.)

  7. Cartilage Tissue Engineering: the effect of different biomaterials, cell types and culture methods

    NARCIS (Netherlands)

    W.J.C.M. Marijnissen (Willem)

    2006-01-01

    textabstractChapter 1 outlines the normal structure and composition of articular cartilage and the inefficient spontaneous healing response after focal damage. Current surgical treatment options are briefly discussed and tissue engineering techniques for the repair of articular cartilage defects

  8. Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers

    Science.gov (United States)

    ... Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers Made of patients' stem cells and ... eliminate the need for hip replacement surgery in younger arthritis patients. The cartilage hasn't been tested ...

  9. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  10. Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3.

    Science.gov (United States)

    Liang, Wenguang G; Triandafillou, Catherine G; Huang, Teng-Yi; Zulueta, Medel Manuel L; Banerjee, Shiladitya; Dinner, Aaron R; Hung, Shang-Cheng; Tang, Wei-Jen

    2016-05-01

    CC chemokine ligand 5 (CCL5) and CCL3 are critical for immune surveillance and inflammation. Consequently, they are linked to the pathogenesis of many inflammatory conditions and are therapeutic targets. Oligomerization and glycosaminoglycan (GAG) binding of CCL5 and CCL3 are vital for the functions of these chemokines. Our structural and biophysical analyses of human CCL5 reveal that CCL5 oligomerization is a polymerization process in which CCL5 forms rod-shaped, double-helical oligomers. This CCL5 structure explains mutational data and offers a unified mechanism for CCL3, CCL4, and CCL5 assembly into high-molecular-weight, polydisperse oligomers. A conserved, positively charged BBXB motif is key for the binding of CC chemokines to GAG. However, this motif is partially buried when CCL3, CCL4, and CCL5 are oligomerized; thus, the mechanism by which GAG binds these chemokine oligomers has been elusive. Our structures of GAG-bound CCL5 and CCL3 oligomers reveal that these chemokine oligomers have distinct GAG-binding mechanisms. The CCL5 oligomer uses another positively charged and fully exposed motif, KKWVR, in GAG binding. However, residues from two partially buried BBXB motifs along with other residues combine to form a GAG-binding groove in the CCL3 oligomer. The N termini of CC chemokines are shown to be involved in receptor binding and oligomerization. We also report an alternative CCL3 oligomer structure that reveals how conformational changes in CCL3 N termini profoundly alter its surface properties and dimer-dimer interactions to affect GAG binding and oligomerization. Such complexity in oligomerization and GAG binding enables intricate, physiologically relevant regulation of CC chemokine functions. PMID:27091995

  11. Therapeutic effect of the saponin fraction from Clematis chinensis Osbeck roots on osteoarthritis induced by monosodium iodoacetate through protecting articular cartilage.

    Science.gov (United States)

    Wu, Wenjun; Xu, Xianxiang; Dai, Yue; Xia, Lunzhu

    2010-04-01

    The objective of the present study was to investigate the effect of the saponin fraction from Clematis chinensis Osbeck roots (SFC) on an osteoarthritis model in rats and to explore its underlying mechanisms. Osteoarthritis was induced by intraarticular injection of monosodium iodoacetate (MIA) into knee joints of rats, and SFC and diclofenac were orally administered once a day for 28 consecutive days. Joint swelling, macroscopic observation, histological assessment and proteoglycan (PG) degradation were examined. In vitro, cultured rabbit chondrocytes were stimulated with MIA and sodium nitroprusside (SNP), respectively. The effects of SFC on MIA- and SNP-induced chondrocyte injury were examined by MTT assay. It was shown that SFC (50, 100, 200 mg/kg) dose-dependently reduced cartilage injury and PG degradation induced by MIA. Diclofenac (4 mg/kg) only slightly alleviated cartilage injury and PG degradation. SFC also prevented SNP- or MIA-induced rabbit chondrocyte impairment. These results indicate that SFC is effective in ameliorating joint destruction and cartilage erosion in MIA-induced osteoarthritic in rats, and the mechanisms of action for protecting articular cartilage are through preventing extracellular matrix degradation and chondrocyte injury. PMID:19655297

  12. Detection and identification of stable oligomeric protein complexes in Escherichi coli inner membranes: a proteomics approach.

    Science.gov (United States)

    Spelbrink, Robin E J; Kolkman, Annemieke; Slijper, Monique; Killian, J Antoinette; de Kruijff, Ben

    2005-08-01

    In this study we present a new technology to detect stable oligomeric protein complexes in membranes. The technology is based on the ability of small membrane-active alcohols to dissociate the highly stable homotetrameric potassium channel KcsA. It is shown via a proteomics approach, using diagonal electrophoresis and nano-flow liquid chromatography coupled to tandem mass spectrometry, that a large number of both integral and peripheral Escherichia coli inner membrane proteins are part of stable oligomeric complexes that can be dissociated by small alcohols. This study gives insight into the composition and stability of these complexes. PMID:15919657

  13. Hydrogen ions directly regulating the oligomerization state of Photosystem I in intact Spirulina platensis cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    H+ concentration induced-monomerization or trimerization of photosystem I (PSI) in cyanobacteria has never been directly observed. In this work, taking characteristic spectra for the trimers and monomers as the indicators, it was experimentally demonstrated that H+ could induce the oligomeric changes of PSI reaction centers in the intact Spirulina ,platensis cells and also in the isolated thylakoid membrane complexes. Especially, the higher concentration of H+ would induce the monomerization while the lower the trimerization, suggesting the electrostatic interaction should be mainly responsible forchanges in the oligomeric state of PSI in Spirulina platensis.

  14. Oligomerization state and pigment binding strength of the peridinin-Chl a-protein.

    Science.gov (United States)

    Jiang, Jing; Zhang, Hao; Lu, Xun; Lu, Yue; Cuneo, Matthew J; O'Neill, Hugh M; Urban, Volker; Lo, Cynthia S; Blankenship, Robert E

    2015-09-14

    The peridinin-chlorophyll a-protein (PCP) is one of the major light harvesting complexes (LHCs) in photosynthetic dinoflagellates. We analyzed the oligomeric state of PCP isolated from the dinoflagellate Symbiodinium, which has received increasing attention in recent years because of its role in coral bleaching. Size-exclusion chromatography (SEC) and small angle neutron scattering (SANS) analysis indicated PCP exists as monomers. Native mass spectrometry (native MS) demonstrated two oligomeric states of PCP, with the monomeric PCP being dominant. The trimerization may not be necessary for PCP to function as a light-harvesting complex. PMID:26241331

  15. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  16. Viscoelastic properties of bovine knee joint articular cartilage: dependency on thickness and loading frequency

    OpenAIRE

    Espino, Daniel M; Shepherd, Duncan ET; Hukins, David WL

    2014-01-01

    Background The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints. At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the ...

  17. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    Science.gov (United States)

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embedded osteochondral samples (7 OC, 8 normal) and cDNA from whole cartilage (7 OC, 10 normal) and chondrocytes surrounding cartilage canals and osteochondral junctions captured with laser capture microdissection (4 OC, 6 normal) were obtained from femoropatellar joints of 17 immature horses. Equine-specific Wnt signaling molecule mRNA expression levels were evaluated by two-step real-time qPCR. Spatial tissue protein expression of β-catenin, Wnt-11, Wnt-4, and Dkk-1 was determined by immunohistochemistry. There was significantly decreased Wnt-11 and increased β-catenin, Wnt-5b, Dkk-1, Lrp6, Wif-1, Axin1, and SC-PEP gene expression in early OC cartilage canal chondrocytes compared to controls. There was also significantly increased β-catenin gene expression in early OC osteochondral junction chondrocytes compared to controls. Based on this study, abundant gene expression differences in OC chondrocytes surrounding cartilage canals suggest pathways associated with catabolism and inhibition of chondrocyte maturation are targeted in early OC pathogenesis. PMID:25676127

  18. Does Radio Frequency Ablation (RFA) Epiphysiodesis Affect Joint Cartilage?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Abood, Ahmed Abdul-Hussein; Rahbek, Ole;

    Background: Epiphysiodesis made with RFA has resulted, in animal models, an effective procedure that disrupts the growth plate and induces LLD. This procedure involves an increase of temperature (>92°C) of the targeted region causing thermal damage. To our knowledge, no study that investigates...... the effect of this procedure in the adjacent joint articular cartilage has been reported Purpose / Aim of Study: Proof of concept that epiphysiodesis made with RFA is a safe procedure that disrupts the growth plate without damaging the adjacent joint articular cartilage Materials and Methods: RFA...... Epiphysiodesis RFA was done for 8 minutes in vivo in 40 growing pig tibia physis. In addition, three tibiae were ablated for 16 minutes, and three more for 24 minutes. As a damage reference, 6 tibiae were ablated on the joint articular cartilage for 8 minutes. MRI was done ex vivo after the procedure to evaluate...

  19. Evaluation of Automated Volumetric Cartilage Quantification for Hip Preservation Surgery.

    Science.gov (United States)

    Ramme, Austin J; Guss, Michael S; Vira, Shaleen; Vigdorchik, Jonathan M; Newe, Axel; Raithel, Esther; Chang, Gregory

    2016-01-01

    Automating the process of femoroacetabular cartilage identification from magnetic resonance imaging (MRI) images has important implications to guiding clinical care by providing a temporal metric that allows for optimizing the timing for joint preservation surgery. In this paper, we evaluate a new automated cartilage segmentation method using a time trial, segmented volume comparison, overlap metrics, and Euclidean distance mapping. We report interrater overlap metrics using the true fast imaging with steady-state precession MRI sequence of 0.874, 0.546, and 0.704 for the total overlap, union overlap, and mean overlap, respectively. This method was 3.28× faster than manual segmentation. This technique provides clinicians with volumetric cartilage information that is useful for optimizing the timing for joint preservation procedures. PMID:26377376

  20. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  1. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    Science.gov (United States)

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels+SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface

  2. Articular Cartilage Thickness Measured with US is Not as Easy as It Appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Bartels, E. M.; Wilhjelm, Jens E.;

    2011-01-01

    Background: Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage ismeasured under orthogonal in...

  3. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation. I...

  4. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    Science.gov (United States)

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  5. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.

    Science.gov (United States)

    Hosseini, Ali; Van de Velde, Samuel; Gill, Thomas J; Li, Guoan

    2012-11-01

    We investigated the in vivo cartilage contact biomechanics of the tibiofemoral joint in patients after reconstruction of a ruptured anterior cruciate ligament (ACL). A dual fluoroscopic and MR imaging technique was used to investigate the cartilage contact biomechanics of the tibiofemoral joint during in vivo weight-bearing flexion of the knee in eight patients 6 months following clinically successful reconstruction of an acute isolated ACL rupture. The location of tibiofemoral cartilage contact, size of the contact area, cartilage thickness at the contact area, and magnitude of the cartilage contact deformation of the ACL-reconstructed knees were compared with those previously measured in intact (contralateral) knees and ACL-deficient knees of the same subjects. Contact biomechanics of the tibiofemoral cartilage after ACL reconstruction were similar to those measured in intact knees. However, at lower flexion, the abnormal posterior and lateral shift of cartilage contact location to smaller regions of thinner tibial cartilage that has been described in ACL-deficient knees persisted in ACL-reconstructed knees, resulting in an increase of the magnitude of cartilage contact deformation at those flexion angles. Reconstruction of the ACL restored some of the in vivo cartilage contact biomechanics of the tibiofemoral joint to normal. Clinically, recovering anterior knee stability might be insufficient to prevent post-operative cartilage degeneration due to lack of restoration of in vivo cartilage contact biomechanics. PMID:22528687

  6. Analysis of cartilage-polydioxanone foil composite grafts.

    Science.gov (United States)

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  7. Magnetic resonance imaging of hip joint cartilage and labrum

    Directory of Open Access Journals (Sweden)

    Christoph Zilkens

    2011-09-01

    Full Text Available Hip joint instability and impingement are the most common biomechanical risk factors that put the hip joint at risk to develop premature osteoarthritis. Several surgical procedures like periacetabular osteotomy for hip dysplasia or hip arthroscopy or safe surgical hip dislocation for femoroacetabular impingement aim at restoring the hip anatomy. However, the success of joint preserving surgical procedures is limited by the amount of pre-existing cartilage damage. Biochemically sensitive MRI techniques like delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC might help to monitor the effect of surgical or non-surgical procedures in the effort to halt or even reverse joint damage.

  8. Experimental model to evaluate in vivo and in vitro cartilage MR imaging by means of histological analyses

    International Nuclear Information System (INIS)

    Objectives: Implementation of an experimental model to compare cartilage MR imaging by means of histological analyses. Material and methods: MRI was obtained from 4 patients expecting total knee replacement at 1.5 and/or 3 T prior surgery. The timeframe between pre-op MRI and knee replacement was within two days. Resected cartilage-bone samples were tagged with Ethi-pins to reproduce the histological cutting course. Pre-operative scanning at 1.5 T included following parameters for fast low angle shot (FLASH: TR/TE/FA = 33 ms/6 ms/30 deg., BW = 110 kHz, 120 mm x 120 mm FOV, 256 x 256 matrix, 0.65 mm slice-thickness) and double echo steady state (DESS: TR/TE/FA = 23.7 ms/6.9 ms/40 deg., BW = 130 kHz, 120 x 120 mm FOV, 256 x 256 matrix, 0.65 mm slice-thickness). At 3 T, scan parameters were: FLASH (TR/TE/FA = 12.2 ms/5.1 ms/10 deg., BW = 130 kHz, 170 x 170 mm FOV, 320 x 320, 0.5 mm slice-thickness) and DESS (TR/TE/FA = 15.6 ms/4.5 ms/25 deg., BW = 200 kHz, 135 mm x 150 mm FOV, 288 x 320 matrix, 0.5 mm slice-thickness). Imaging of the specimens was done the same day at 1.5 T. MRI (Noyes) and histological (Mankin) score scales were correlated using the paired t-test. Sensitivity and specificity for the detection of different grades of cartilage degeneration were assessed. Inter-reader and intra-reader reliability was determined using Kappa analysis. Results: Low correlation (sensitivity, specificity) was found for both sequences in normal to mild Mankin grades. Only moderate to severe changes were diagnosed with higher significance and specificity. The use of higher field-strengths was advantageous for both protocols with sensitivity values ranging from 13.6% to 93.3% (FLASH) and 20.5% to 96.2% (DESS). Kappa values ranged from 0.488 to 0.944. Conclusions: Correlating MR images with continuous histological slices was feasible by using three-dimensional imaging, multi-planar-reformat and marker pins. The capability of diagnosing early cartilage changes with high accuracy

  9. The Reciprocal Pascal Matrix

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    The reciprocal Pascal matrix is the Hadamard inverse of the symmetric Pascal matrix. We show that the ordinary matrix inverse of the reciprocal Pascal matrix has integer elements. The proof uses two factorizations of the matrix of super Catalan numbers.

  10. Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation

    International Nuclear Information System (INIS)

    Highlights: ► The homogenously-mixed PCL/POSS nanocomposites were prepared by solution blending. ► The crosslinking of the nanocomposites was conducted by electron beam irradiation. ► The crosslinked nanocomposites showed the improved mechanical and thermal properties. ► This technique is useful to fabricate high-performance polymer nanocomposites. - Abstract: Crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane (PCL/POSS) nanocomposite films prepared by a solution casting were crosslinked by electron beam irradiation under various conditions. The results of the crosslinking degree measurement revealed that the crosslinking degree of the PCL/POSS nanocomposites reached to 74%, which depended on the POSS content and the absorbed dose. The results of the FE–SEM and EDX analyses revealed that the POSS was homogeneously dispersed in the PCL matrix. In comparison to the virgin PCL with a tensile strength of 20 MPa, the tensile strength of the crosslinked PCL/POSS nanocomposites increased to 25.8 MPa with an increasing POSS content and absorbed dose to 100 kGy, whereas their elongation-at-break was considerably reduced. The results of the dynamic mechanical analysis revealed that the crosslinked PCL/POSS nanocomposites had a higher heat resistance than the virgin PCL. Based on the results of the enzymatic degradation test, the biodegradability of the crosslinked PCL/POSS nanocomposites was significantly reduced in comparison to that of the virgin PCL.

  11. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Maria Cattell

    Full Text Available The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs. While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of

  12. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads;

    2007-01-01

    Rationale and Objectives Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... those with OA. The purpose of this study was twofold. First, we wished to evaluate whether the results on cartilage homogeneity from the previous study can be reproduced using an independent population. Second, based on the homogeneity framework, we present an automatic technique that partitions the...... the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. Results The P values for separating the different groups based on cartilage homogeneity were 2 × 10-5 (KL 0 versus KL 1) and 1 × 10-7 (KL 0 versus KL >0...

  13. Preparation of Polyhedral Oligomeric Silsesquioxane Modified Polyurethane%多面体低聚倍半硅氧烷改性PU的制备

    Institute of Scientific and Technical Information of China (English)

    田春蓉; 王建华; 孙杰; 梁书恩; 程克梅

    2011-01-01

    采用多面体低聚倍半硅氧烷(POSS)对聚氨酯(PU)进行改性,并对改性PU的性能进行研究.结果表明:采用超声波分散法可将POSS均匀分散在PU基体中;八乙烯基POSS对PU具有较好的补强和增韧作用,而八苯基POSS对PU的补强作用不明显.%Polyurethane(PU) was modified by polyhedral oligomeric silsesquioxane(POSS) , and the properties of modified PU were investigated. The results showed that,POSS was uniformly dispersed in PU matrix by using ultrasonic dispersion method; octavinylsilsesquioxane(OVS) possessed preferable reinforcing and toughening effects, but octaphenylsilsesquioxane (OPS) had no significant reinforcing effect.

  14. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations

    DEFF Research Database (Denmark)

    Frederiksen, Tine Maja; Sønderby, Pernille; Ryberg, Line A.;

    2015-01-01

    The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1...

  15. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours

    Science.gov (United States)

    Batoulis, Helena; Schmidt, Thomas H.; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-01-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca2+ and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca2+ ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca2+ ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems. PMID:27052788

  16. Characterization of Oligomeric and Kinetic Properties of Tomato Thymidine Kinase 1

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Larsen, Nicolai Balle; Andersson, Karl-Magnus;

    2011-01-01

    AZT can easily penetrate the blood–brain barrier and toTK1 can efficiently phosphorylate AZT and also AZT-monophosphate. In a pursuit to further understand the properties of toTK1, we examined the oligomerization properties of recombinant toTK1 and its effect on enzyme kinetics. Previously, it has...

  17. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4

    OpenAIRE

    Kim, Youn-Jung; Park, Hae-Jeong; Yoon, Seo-Hyun; Kim, Mi-Ja; Leem, Kang-hyun; Chung, Joo-Ho; Kim, Hye-Kyung

    2005-01-01

    AIM: Oligomeric proanthocyanidins (OPC), natural polyphenolic compounds found in plants, are known to have antioxidant and anti-cancer effects. We investigated whether the anti-cancer effects of the OPC are induced by apoptosis on human colorectal cancer cell line, SNU-C4.

  18. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours.

    Science.gov (United States)

    Batoulis, Helena; Schmidt, Thomas H; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-01-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca(2+) and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca(2+) ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca(2+) ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems. PMID:27052788

  19. The thermodynamics of the self-assembly of covalently linked oligomeric naphthalenediimides into helical organic nanotubes.

    Science.gov (United States)

    Tambara, Koujiro; Olsen, John-Carl; Hansen, David E; Pantoş, G Dan

    2014-01-28

    The mechanism and thermodynamic functions of the self-assembly of a family of covalently linked oligomeric naphthalenediimides (NDIs) were investigated through variable-temperature NMR and CD studies. The NDIs were shown to self-assemble into helical supramolecular nanotubes via an isodesmic polymerisation mechanism, and regardless of the oligomer length a surprising entropy-enthalpy compensation was observed. PMID:24287562

  20. Membrane protein assembly: two cytoplasmic phosphorylated serine sites of Vpu from HIV-1 affect oligomerization

    Science.gov (United States)

    Chen, Chin-Pei; Lin, Meng-Han; Chan, Ya-Ting; Chen, Li-Chyong; Ma, Che; Fischer, Wolfgang B.

    2016-01-01

    Viral protein U (Vpu) encoded by human immunodeficiency virus type 1 (HIV-1) is a short integral membrane protein which is known to self-assemble within the lipid membrane and associate with host factors during the HIV-1 infectivity cycle. In this study, full-length Vpu (M group) from clone NL4-3 was over-expressed in human cells and purified in an oligomeric state. Various single and double mutations were constructed on its phosphorylation sites to mimic different degrees of phosphorylation. Size exclusion chromatography of wild-type Vpu and mutants indicated that the smallest assembly unit of Vpu was a dimer and over time Vpu formed higher oligomers. The rate of oligomerization increased when (i) the degree of phosphorylation at serines 52 and 56 was decreased and (ii) when the ionic strength was increased indicating that the cytoplasmic domain of Vpu affects oligomerization. Coarse-grained molecular dynamic simulations with models of wild-type and mutant Vpu in a hydrated lipid bilayer supported the experimental data in demonstrating that, in addition to a previously known role in downregulation of host factors, the phosphorylation sites of Vpu also modulate oligomerization. PMID:27353136

  1. A new family of ATP-dependent oligomerization-macrocyclization biocatalysts.

    Science.gov (United States)

    Kadi, Nadia; Oves-Costales, Daniel; Barona-Gomez, Francisco; Challis, Gregory L

    2007-10-01

    Oligomerization and macrocyclization reactions are key steps in the biosynthesis of many bioactive natural products. Important macrocycles include the antibiotic daptomycin (1; ref. 1), the immunosuppressant FK-506 (2; ref. 2), the anthelmintic avermectin B1a (3; ref. 3) and the insecticide spinosyn A (4; ref. 4); important oligomeric macrocycles include the siderophores enterobactin (5; ref. 5) and desferrioxamine E (6; ref. 6). Biosynthetic oligomerization and macrocyclization reactions typically involve covalently tethered intermediates and are catalyzed by thioesterase domains of polyketide synthase and nonribosomal peptide synthetase multienzymes. Here we report that the purified recombinant desferrioxamine siderophore synthetase DesD from Streptomyces coelicolor M145 catalyzes ATP-dependent trimerization-macrocyclization of a chemically synthesized 10-aminocarboxylic acid substrate via noncovalently bound intermediates. DesD is dissimilar to other known synthetase families but is similar to other enzymes known or proposed to be required for the biosynthesis of omega-aminocarboxylic acid-derived cyclodimeric siderophores. This suggests that DesD is the first biochemically characterized member of a new family of oligomerizing and macrocyclizing synthetases. PMID:17704771

  2. Understanding the Influence of oligomeric resins on traction and rolling resistance of silica tire treads

    NARCIS (Netherlands)

    Vleugels, N.; Pille-Wolf, W.; Dierkes, W.K.; Noordermeer, J.W.M.

    2015-01-01

    This study concerns the silica reinforcement of styrene–butadiene rubber compounds for passenger car tire treads, with the objective of gaining greater insight into the beneficial effects of oligomeric resins. The major tire performance factors predicted are rolling resistance and (wet) skid resista

  3. Influence of oligomeric resins on traction and rolling resistance of silica tire treads

    NARCIS (Netherlands)

    Vleugels, N.; Pille-Wolf, W.; Dierkes, W.K.; Noordermeer, J.W.M.

    2013-01-01

    This study concerns the silica-reinforcement of synthetic rubber compounds for passenger tire treads with the objective to gain insight into the beneficial effects of oligomeric resins, derived from natural and synthetic monomers, on the major tire performance factors: Rolling Resistance and (Wet) S

  4. 制备软骨组织工程支架的方法%Fabrication technologies of tissue-engineered cartilage scaffolds

    Institute of Scientific and Technical Information of China (English)

    倪硕; 李澎; 张卫国; 李鹏声; 贵浩然

    2014-01-01

    背景:软骨组织工程支架作为软骨细胞外基质的替代物,其外形和孔结构对实现其作用和功能具有非常重要的意义。  目的:回顾目前若干种常用软骨组织工程中三维多孔支架的制备方法。  方法:由第一作者检索2000至2013年PubMed数据库,ELSEVIER SCIENCEDIRECT、万方数据库、中国知网数据库。英文检索词为“Cartilage tissue engineering;scaffolds;fabrication”,中文检索词为“软骨组织工程;制备方法;支架材料;多孔支架”。  结果与结论:制备软骨组织工程支架的方法有相分离/冷冻干燥法、水凝胶技术、快速成型技术、静电纺丝法、溶剂浇铸/粒子沥滤法及气体发泡法等。目前研究发现,支架中孔径的大小对组织的重建有着直接的影响,孔径为100-250μm的孔有益于骨及软骨组织的再生。通过溶液浇铸/粒子沥滤法、气体发泡法所制备的支架孔径大小在这一范围内,因此比较适合用于骨、软骨组织工程支架的构建。研究人员通常将多种方法结合起来,以期能制备出生物和力学性能方面更加仿生的组织工程多孔支架。%BACKGROUND:Cartilage tissue engineering scaffold is a substitution for extracellular matrix, and there is a great significance on the shape and pore structure of the scaffold. OBJECTIVE:To retrospectively focus on the fabrication technology of three-dimensional porous cartilage tissue engineering scaffolds. METHODS:The first author searched PubMed, ELSEVIER SCIENCEDIRECT, Wanfang and CNKI databases (2000/2013) to retrieve relevant articles about the fabrication technology tissue-engineered cartilage scaffolds. The key words were“cartilage tissue engineering;scaffolds;fabrication”in English and Chinese, respectively. RESULTS AND CONCLUSION:The fabrication technologies of three-dimensional porous cartilage tissue engineering scaffolds are as fol ows:Phase separation

  5. Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering.

    Science.gov (United States)

    Olubamiji, Adeola D; Izadifar, Zohreh; Zhu, Ning; Chang, Tuanjie; Chen, Xiongbiao; Eames, B Frank

    2016-05-01

    Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell-laden hybrid constructs over time. Second, optimization of inline PCI-CT was performed by investigating three sample-to-detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42-day culture period. The results showed that there was progressive secretion of cartilage-specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge-enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR-inline-PCI-CT images. Summarily, SR-inline-PCI-CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42-day culture period. PMID:27140161

  6. Key residues for the oligomerization of Aβ42 protein in Alzheimer’s disease

    International Nuclear Information System (INIS)

    Highlights: ► Aβ oligomers are neurotoxins and likely the causing agents for Alzheimer’s disease. ► Aβ42 fusion protein form globular oligomers. ► Aβ42 fusion protein oligomers contain SDS-resistant tetramers and hexamers. ► Cysteine substitutions at residues 31, 32, 34, 39–41 disrupt Aβ42 oligomerization. -- Abstract: Deposition of amyloid fibrils consisting of amyloid β (Aβ) protein as senile plaques in the brain is a pathological hallmark of Alzheimer’s disease. However, a growing body of evidence shows that soluble Aβ oligomers correlate better with dementia than fibrils, suggesting that Aβ oligomers may be the primary toxic species. The structure and oligomerization mechanism of these Aβ oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of Aβ42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of Aβ sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for Aβ42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that Aβ42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS–PAGE shows that Aβ42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, Aβ40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of Aβ42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for Aβ42 oligomerization.

  7. Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair

    NARCIS (Netherlands)

    Neves, Sara C.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Alves, Natália M.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT

  8. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  9. Holmium laser ablation of cartilage: effects of cavitation bubbles

    Science.gov (United States)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  10. Healing Osteoarthritis: Engineered Proteins Created for Therapeutic Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin M. Cherry

    2012-01-01

    Full Text Available Millions of people worldwide are afflicted with painfulosteoarthritis, which is characterized by degradationof articular cartilage found in major joints such as thehip or knee. Symptoms include inflammation, pain,and decreased mobility. Because cartilage has a limitedability to self-heal, researchers have focused efforts onmethods that trigger cartilage regeneration. Our approachis to develop an injectable, protein-based hydrogel withmechanical properties analogous to healthy articularcartilage. The hydrogel provides an environment for cellgrowth and stimulates new tissue formation. We utilizedrecombinant DNA technology to create multifunctional,elastomeric proteins. The recombinant proteins weredesigned with biologically active domains to influence cellbehavior and resilin structural domains that mimic thestiffness of native cartilage. Resilin, a protein found in thewing and leg joints of mosquitoes, provided inspiration forthe mechanical domain in the recombinant protein. Thenew resilin-based protein was expressed in E. coli bacteria.Forming hydrogels requires a large quantity of engineeredprotein, so parameters such as bacterial host, incubationtemperature, expression time, and induction method wereoptimized to increase the protein yield. Using salt toprecipitate the protein and exploiting resilin’s heat stability,27 mg/L of recombinant protein was recovered at 95%purity. The protein expression and purification protocolswere established by analyzing experimental samples onSDS-PAGE gels and by Western blotting. The mechanicalproperties and interactions with stem cells are currentlybeing evaluated to assess the potential of the resilin-basedhydrogel as a treatment for osteoarthritis.

  11. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  12. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    International Nuclear Information System (INIS)

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium

  13. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  14. Focal changes of the anticular cartilage in the femorotibial joint

    International Nuclear Information System (INIS)

    This paper reports on the value of routine MR sequences in detecting focal changes in the femorotibial hyaline cartilage. T1-, proton density-, and T2-weighted spin-echo and gradient-echo images were acquired in 20 cadaveric knees (cadavers aged 56-88 years; mean, 73.8 years). Three hundred eight coronal and sagittal (3-mm) anatomic sections were prepared, allowing identification of 85 areas of cartilage fissuring, fibrillation, or ulceration. Initially, MR images and anatomic sections were correlated in an unblinded fashion. Subsequently, images of a subset of 35 pathologic and 35 normal cartilage surfaces were blindly evaluated. In the unblinded study, 61 lesions were detectable on T1-weighted images, 59 with meniscal windows, 51 on proton density images, 58 on T2-weighted images, and 57 on gradient-echo images. A fissure usually manifested as a focus of abnormal signal. Ulcers and fibrillation presented as more extensive irregular signal, often accompanied by subchondral sclerosis. In the blinded study, the sensitivity was 71.4% for the detection of focal cartilage changes, the specificity was 68.6%, and the accuracy was 70%. Single fissures and superficial ulcers accounted for the majority of false-negative results

  15. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  16. Evaluation of nasal cartilage using three-dimensional soft tissue images in patients with unilateral cleft lip

    International Nuclear Information System (INIS)

    In the treatment of nasal deformities associated with cleft lip and palate, deformities of the alar cartilage and upper lateral cartilage are usually repaired. It is very useful if deformities of the nasal cartilage are evaluated preoperatively. We created three-dimensional CT images of soft tissues by the volume rendering method, the nasal cartilage. In 26 patients with unilateral cleft lip and palate, the alar cartilage, upper lateral cartilage, and septal cartilage were evaluated morphologically. As a result, in each case, these cartilages were deviated and deformed. However, the size of both the alar cartilage and the upper lateral cartilage on the cleft side were approximately similar to those on the healthy side. It is suggested that using this method formulated for the imaging of cartilaginous morphology, preoperative planning and follow-up can be performed easily. (author)

  17. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame

    International Nuclear Information System (INIS)

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1 × 107 cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25 ± 19.51 μm, 82.60 ± 2.34%, 361.28 ± 0.47% and 61.2 ± 0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell–hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. - Highlights: • ADSCs/hybrid scaffold constructs are dynamically fabricated in a spinner flask with a special framework. • Inside convection in spinner flask made enough supplement of oxygen and nutrients far beyond the depth of passive diffusion. • 3D culture environment accelerated mass

  18. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Liying; Li, Wenfang [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, Yanxia [Anti-Ageing and Regenerative Medicine Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060 Guangdong (China); Jiao, Zeren [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Lim, Mayasari [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Fang, Meiyun [Department of Hematology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Shi, Fangxin [Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Wang, Ling, E-mail: whwl@hotmail.com [Department of Obstetrics and Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian 116011 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian R& D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1 × 10{sup 7} cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25 ± 19.51 μm, 82.60 ± 2.34%, 361.28 ± 0.47% and 61.2 ± 0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell–hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. - Highlights: • ADSCs/hybrid scaffold constructs are dynamically fabricated in a spinner flask with a special framework. • Inside convection in spinner flask made enough supplement of oxygen and nutrients far beyond the depth of passive diffusion. • 3D culture environment accelerated mass

  19. Variable angle-of-incidence polarization-sensitive optical coherence tomography: its use to study the 3D collagen structure of equine articular cartilage

    Science.gov (United States)

    Ugryumova, Nadya; Gangnus, Sergei V.; Matcher, Stephen J.

    2006-02-01

    Polarization-sensitive optical coherence tomography has been used to spatially map the birefringence of equine articular cartilage. The polar orientation of the collagen fibers relative to the plane of the joint surface must be taken into account if a quantitative measurement of true birefringence is required. Using a series of images taken at different angles of illumination, we determine the fiber polar angle and true birefringence at one site on a sample of equine cartilage, on the assumption that the fibers lie within the plane of imaging. We propose a more general method based on the extended Jones matrix formalism to determine both the polar and azimuthal orientation of the collagen fibers as well as the true birefringence as functions of depth.

  20. A Validated Model of the Pro- and Anti-Inflammatory Cytokine Balancing Act in Articular Cartilage Lesion Formation

    OpenAIRE

    Wang, Xiayi; Brouillette, Marc J.; Ayati, Bruce P; Martin, James A.

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et ...