WorldWideScience

Sample records for cartilage explants cultures

  1. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  2. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Directory of Open Access Journals (Sweden)

    Huh Jeong-Eun

    2012-12-01

    Full Text Available Abstract Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs, inflammatory mediators, and mitogen-activated protein kinases (MAPKs pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK, and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only

  3. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Science.gov (United States)

    2012-01-01

    Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic

  4. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kooten, van Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  5. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    DEFF Research Database (Denmark)

    Wang, Bijue; Chen, Pingping; Jensen, Anne-Christine Bay

    2009-01-01

    - and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors. FINDINGS: Bovine cartilage explants were...... cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo......-epitope specific immunoassays; (1) sandwich (342)FFGVG-G2 ELISA, (2) competition NITEGE(373)ELISA (3) sandwich G1-NITEGE(373 )ELISA (4) competition (374)ARGSV ELISA, and (5) sandwich (374)ARGSV-G2 ELISA all detecting aggrecan fragments, and (6) sandwich CTX-II ELISA, detecting C-telopeptides of type II collagen...

  6. Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants

    Directory of Open Access Journals (Sweden)

    Jan H. Spaas

    2015-09-01

    Full Text Available Background: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain unanswered concerning mesenchymal stem cell (MSC adhesion and incorporation into cartilage. Methods: To this end, peripheral blood (PB MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106. In total, 180 explants of six horses (30 per horse were divided into five groups: no lesion (i, lesion alone (ii, lesion with naïve MSCs (iii, lesion with chondrogenically-induced MSCs (iv and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v. Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14. Results: COMP expression was selectively increased by chondrogenic induction (p = 0.0488. PEMF stimulation (1mT for 10 minutes further augmented COL II expression over induced values (p = 0.0405. On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9% and lesion filling (3.7% in all the different conditions (p Conclusion: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage.

  7. Explant cultures of human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Barrett, L.A.; Jackson, F.E.

    1978-01-01

    Human colonic epithelium has been cultured as explants in a chemically defined medium for periods of 1 to 20 days. The viability of the explants was shown by the preservation of the ultrastructural features of the colonic epithelial cells and by active incorporation of radioactive precursors into...

  8. The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants.

    Science.gov (United States)

    Clark, Amy G; Rohrbaugh, Amy L; Otterness, Ivan; Kraus, Virginia B

    2002-03-01

    Ascorbic acid has been associated with the slowing of osteoarthritis progression in guinea pig and man. The goal of this study was to evaluate transcriptional and translational regulation of cartilage matrix components by ascorbic acid. Guinea pig articular cartilage explants were grown in the presence of L-ascorbic acid (L-Asc), D-isoascorbic acid (D-Asc), sodium L-ascorbate (Na L-Asc), sodium D-isoascorbate (Na D-Asc), or ascorbyl-2-phosphate (A2P) to isolate and analyze the acidic and nutrient effects of ascorbic acid. Transcription of type II collagen, prolyl 4-hydroxylase (alpha subunit), and aggrecan increased in response to the antiscorbutic forms of ascorbic acid (L-Asc, Na L-Asc, and A2P) and was stereospecific to the L-forms. Collagen and aggrecan synthesis also increased in response to the antiscorbutic forms but only in the absence of acidity. All ascorbic acid forms tended to increase oxidative damage over control. This was especially true for the non-nutrient D-forms and the high dose L-Asc. Finally, we investigated the ability of chondrocytes to express the newly described sodium-dependent vitamin C transporters (SVCTs). We identified transcripts for SVCT2 but not SVCT1 in guinea pig cartilage explants. This represents the first characterization of SVCTs in chondrocytes. This study confirms that ascorbic acid stimulates collagen synthesis and in addition modestly stimulates aggrecan synthesis. These effects are exerted at both transcriptional and post-transcriptional levels. The stereospecificity of these effects is consistent with chondrocyte expression of SVCT2, shown previously to transport L-Asc more efficiently than D-Asc. Therefore, this transporter may be the primary mechanism by which the L-forms of ascorbic acid enter the chondrocyte to control matrix gene activity.

  9. Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant.

    Science.gov (United States)

    Turunen, Siru M; Lammi, Mikko J; Saarakkala, Simo; Koistinen, Arto; Korhonen, Rami K

    2012-05-01

    The objective of this study was to evaluate the effect of sample preparation on the biomechanical behaviour of chondrocytes. We compared the volumetric and dimensional changes of chondrocytes in the superficial zone (SZ) of intact articular cartilage and cartilage explant before and after a hypotonic challenge. Calcein-AM labelled SZ chondrocytes were imaged with confocal laser scanning microscopy through intact cartilage surfaces and through cut surfaces of cartilage explants. In order to clarify the effect of tissue composition on cell volume changes, Fourier Transform Infrared microspectroscopy was used for estimating the proteoglycan and collagen contents of the samples. In the isotonic medium (300 mOsm), there was a significant difference (p integrity of the mechanical environment of chondrocytes.

  10. Controlled release of C-type natriuretic peptide by microencapsulation dampens proinflammatory effects induced by IL-1β in cartilage explants.

    Science.gov (United States)

    Peake, Nick J; Pavlov, Anton M; D'Souza, Alveena; Pingguan-Murphy, Belinda; Sukhorukov, Gleb B; Hobbs, Adrian J; Chowdhury, Tina T

    2015-02-09

    C-type natriuretic peptide (CNP) exhibits potent anti-inflammatory effects in chondrocytes that have the potential to repair cartilage damage observed in osteoarthritis (OA). However, treatments for OA have been challenging due to poor targeting and delivery of therapeutics. The present study fabricated polyelectrolyte microcapsules loaded with CNP and examined whether the layer-by-layer (LbL) approach could have protective effects in cartilage explants treated with the pro-inflammatory cytokine, interleukin-1β (IL-1β). SEM showed uniform, 2 to 3 μm spherical microcapsules with morphological characteristic similar to templates loaded with or without CNP. The protein was localized around the external surface of the microcapsules with encapsulation efficiencies >82.9%. CNP release profiles were broadly similar following 9 days of culture. The presence of CNP microcapsules did not significantly affect cell viability (80%) with DNA values that remained stable throughout the culture conditions. Confocal imaging showed clustering of microcapsules in chondrocytes to natriuretic peptide receptor (Npr) 2 and 3. Treatment of cartilage explants with CNP microcapsules led to concentration-dependent inhibition of NO release in response to IL-1β and restoration of matrix synthesis. In summary, we demonstrate controlled delivery of CNP to dampen pro-inflammatory effects induced by IL-1β in cartilage explants. The LbL approach has the potential to promote cartilage repair in vivo.

  11. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  12. Tissue Culture Responses from Different Explants of Rice

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-hong; SHI Xiang-yuan; WU Xian-jun

    2005-01-01

    Different culture explants, including anther, young panicle, young embryo, and mature embryo, from 19 rice varieties were used for callus induction and green plantlet differentiation. The culture efficiency differed significantly among the four types of explants, and varied from genotype to genotype. Callus induction frequency presented significantly positive correlation each between anther and young panicle, anther and mature embryo, and young panicle and young embryo. Green plantlet differentiation showed no relationship between different types of explants. In addition, no relationship was found between callus induction frequency and green plantlet differentiation frequency.

  13. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  14. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.

  15. The effect of protease inhibitors on the induction of osteoarthritis-related biomarkers in bovine full-depth cartilage explants

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Jiang, Mengmeng

    2015-01-01

    Objective The specific degradation of type II collagen and aggrecan by matrix metalloproteinase (MMP)-9, -13 and ADAMTS-4 and -5 (aggrecanase-1 and -2) in the cartilage matrix is a critical step in pathology of osteoarthritis (OA). The aims of this study were: i) To investigate the relative...... contribution of ADAMTS-4 and ADAMTS-5 to cartilage degradation upon catabolic stimulation; ii) To investigate the effect of regulating the activities of key enzymes by mean of broad-spectrum inhibitors. Methods Bovine full-depth cartilage explants stimulated with tumor necrosis factor alpha (TNF......I (ADAMTS-degraded aggrecan), AGNxII (MMP-degraded aggrecan), and CTX-II (MMP-derived type II collagen) were quantified in the explants-conditioned media. Results We found that: i) Active ADAMTS-4, MMP-9, -13 were released in the late stage of TNF-α/ OSM stimulation, whereas no significant active ADAMTS-5...

  16. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants

    Energy Technology Data Exchange (ETDEWEB)

    Sah, R.L.; Doong, J.Y.; Grodzinsky, A.J.; Plaas, A.H.; Sandy, J.D. (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Harvard-M.I.T., Cambridge (United States))

    1991-04-01

    The effects of mechanical compression of calf cartilage explants on the catabolism and loss into the medium of proteoglycans and proteins radiolabeled with (35S)sulfate and (3H)proline were examined. A single 2- or 12-h compression of 3-mm diameter cartilage disks from a thickness of 1.25 to 0.50 mm, or slow cyclic compression (2 h on/2 h off) from 1.25 mm to 1.00, 0.75, or 0.50 mm for 24 h led to transient alterations and/or sustained increases in loss of radiolabeled macromolecules. The effects of imposing or removing loads were consistent with several compression-induced physical mediators including fluid flow, diffusion, and matrix disruption. Cyclic compression induced convective fluid flow and enhanced the loss of 35S- and 3H-labeled macromolecules from tissue into medium. In contrast, prolonged static compression induced matrix consolidation and appeared to hinder the diffusional transport and loss of 35S- and 3H-labeled macromolecules. Since high amplitude cyclic compression led to a sustained increase in the rate of loss of 3H- and 35S-labeled macromolecules that was accompanied by an increase in the rate of loss of (3H)hydroxyproline residues and an increase in tissue hydration, such compression may have caused disruption of the collagen meshwork. The 35S-labeled proteoglycans lost during such cyclic compression were of smaller average size than those from controls, but contained a similarly low proportion (approximately 15%) that could form aggregates with excess hyaluronate and link protein. The size distribution and aggregability of the remaining tissue proteoglycans and 35S-labeled proteoglycans were not markedly affected. The loss of tissue proteoglycan paralleled the loss of 35S-labeled macromolecules.

  17. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  18. [The effect of Solcoseryl on explant cultures of the hippocampus].

    Science.gov (United States)

    Lindner, G; Grosse, G; Goworek, K; Franz, C; Liebezeit, K

    1979-01-01

    Explants of hippocampus from fetal rats were cultivated in Maximow chambers in semisynthetic medium up to 12 days in vitro. The cultures were fixed Bouin, slided 15 micron, coloured with Klüver-Barrera and some morphological parameters were tested. 1. The nerve fiber index increased by influence of 1% Solcoseryl in relation to control cultures, which growed in minimal medium. An essential stimulation was observed by application of placentar serum and embryonal extract into the culture medium. 2. Die decrease of the number of neurons and glial cells per unit of area and a small decrease of the area of neuron nuclei was discussed in relation to the effect of the pharmacon Solcoseryl on O2- consumption. 3. Solcoseryl (firm Solco AG, Base) is an extract of calf blood. It can not substitute other tissue extracts.

  19. EXPLANTATION OF MESANGIAL CELL HILLOCKS - A METHOD FOR OBTAINING HUMAN MESANGIAL CELLS IN CULTURE

    NARCIS (Netherlands)

    MULLER, EW; KIM, Y; MICHAEL, AF; VERNIER, RL; VANDERHEM, GK; VANDERWOUDE, FJ

    1992-01-01

    A simple method is presented for selective cell culture of human mesangial cells using explanatation of mesangial cell hillocks. Glomeruli which had been incubated with collagenase were explanted on plastic tissue culture flasks. Three to 6 weeks after explantation, a rapidly growing multilayer of e

  20. Explant culture of rat colon: A model system for studying metabolism of chemical carcinogens

    DEFF Research Database (Denmark)

    Autrup, Herman; Stoner, G.D.; Jackson, F.

    1978-01-01

    An explant culture system has been developed for the long-term maintenance of colonic tissue from the rat. Explants of 1 cm2 in size were placed in tissue-culture dishes to which was added 2 ml of CMRL-1066 medium supplemented with glucose, hydrocortisone, beta-retinyl acetate, and either 2.5% bo...

  1. Effect of peripheral nerve on the neurite growth from retinal explants in culture

    Institute of Scientific and Technical Information of China (English)

    LiuLi; SoKwokfai

    1990-01-01

    The effect of peripheral nerve (PN) on neurite outgrowth from retinal explants of adult hamsters was examined.Cultures of retinal explants,and co-cultures of retinal explants and PN were performed using chick retinal basement memebrane (BM) as substrate.The presence of PN increases the number and length of neurite outgrowth.In addition,a high proportion of neurites situated close to PN tend to grow towards it.Since there was no contact between retinal explants and PN,we suggest that PN might secete diffusible substances to attract the neurites to grow towards it.

  2. Electric field stimulation can increase protein synthesis in articular cartilage explants.

    Science.gov (United States)

    MacGinitie, L A; Gluzband, Y A; Grodzinsky, A J

    1994-03-01

    It has been hypothesized that the electric fields associated with the dynamic loading of cartilage may affect its growth, remodeling, and biosynthesis. While the application of exogenous fields has been shown to modulate cartilage biosynthesis, it is not known what range of field magnitudes and frequencies can alter biosynthesis and how they relate to the magnitudes and frequencies of endogenous fields. Such information is necessary to understand and identify mechanisms by which fields may act on cartilage metabolism. In this study, incorporation of 35S-methionine was used as a marker for electric field-induced changes in chondrocyte protein synthesis in disks of cartilage from the femoropatellar groove of 1 to 2-week-old calves. The cartilage was stimulated sinusoidally at 1, 10, 100, 10(3), and 10(4) Hz with current densities of 10-30 mA/cm2. Incorporation was assessed in control disks maintained in the absence of applied current at 37, 41, and 43 degrees C. The possibility that applied currents would induce synthesis of the same stress proteins that are caused by heating or other mechanisms was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examination of gel fluorographs. Total radiolabel incorporation in cartilage that had been stimulated relative to incorporation in the controls increased with current density magnitudes greater than 10 mA/cm2. The increase was greatest at 100 Hz and 1 kHz, and it depended on the position on the joint surface from which the cartilage samples were taken. Together, these results suggest that endogenous electric fields could affect cartilage biosynthesis. Stress proteins were not induced at any current density when the electrodes were electrically connected but chemically isolated from the media by agarose bridges. Stress proteins were observed for disks incubated at temperatures greater than 39 degrees C (no field) and when the stimulating platinum electrodes were in direct contact with the media

  3. In vitro morphogenic events in culture of Lotus corniculatus L. seedling root explants

    Directory of Open Access Journals (Sweden)

    Jan J. Rybczyński

    2011-01-01

    Full Text Available The experiments were carried out on Lotus corniculatus (L. seedling root explants of the cultivar varieties Skrzeszowicka, Caroll A10 and strain 175. Callus formation and shoot regeneration were the major explant response depended mainly on of the studied genotype and used plant growth regulators (PGRs. Primary cortex of proximal and distal end of explant was the most active tissue for callus proliferation. For shoot primordia differentiation deeper zones of cortex took a part. The process of meristematic centre initiation was not uniform and various level of shoot differentiation events were observed not earlier than 3 weeks of culture. Usually, the shoot primordia regeneration began on proximal rather than distal end of the explant. BAP rather than urea derivatives stimulated shoot proliferation in extended cultures. Increasing of BAP and TDZ concentrations brought about the explant polarity and expansion of the meristematic zones. The explant position in root did not have significant influence on the number of regenerated shoots. The cultures only had better bud formation by TDZ when compared to BAP. BAP stimulated bud formation and development of the shoots from them. Short term of TDZ treatment of explants stimulated meristem formation which developed into buds and shoots. CPPU stimulated callus proliferation and bud formation when explants pretreatment was prolonged from 12 to 36 hrs.

  4. A novel method for coral explant culture and micropropagation.

    Science.gov (United States)

    Vizel, Maya; Loya, Yossi; Downs, Craig A; Kramarsky-Winter, Esti

    2011-06-01

    We describe here a method for the micropropagation of coral that creates progeny from tissue explants derived from a single polyp or colonial corals. Coral tissue explants of various sizes (0.5-2.5 mm in diameter) were manually microdissected from the solitary coral Fungia granulosa. Explants could be maintained in an undeveloped state or induced to develop into polyps by manipulating environmental parameters such as light and temperature regimes, as well as substrate type. Fully developed polyps were able to be maintained for a long-term in a closed sea water system. Further, we demonstrate that mature explants are also amenable to this technique with the micropropagation of second-generation explants and their development into mature polyps. We thereby experimentally have established coral clonal lines that maintain their ability to differentiate without the need for chemical induction or genetic manipulation. The versatility of this method is also demonstrated through its application to two other coral species, the colonial corals Oculina patigonica and Favia favus.

  5. Enzymatic Cell Isolation and Explant Cultures of Rat Calvarial Osteoblast Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic characteristics of tbs osteoblast cells were studied via cell number counting,morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells are of good biologic characteristics. In comparison with the explant techniqne,the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.

  6. Comparison of human nasal epithelial cells grown as explant outgrowth cultures or dissociated tissue cultures in vitro.

    Science.gov (United States)

    Jiao, Jian; Meng, Na; Wang, Hong; Zhang, Luo

    2013-12-01

    The purpose of this study was to compare cell growth characteristics, ciliated cell differentiation, and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures. Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods. Epithelial cell growth characteristics were observed by inverted phase contrast microscopy. Ciliated cell differentiation was detected by β-tubulin IVand ZO-1 immunocytochemistry. Basal and ATP-stimulated ciliary beat frequency (CBF) was measured using a highspeed digital microscopic imaging system. Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition, with both types of cultures comprising ciliated and non-ciliated epithelial cells. Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures. In both culture systems, the highest ciliated cell density appeared at 7th-10th culture day and declined with time, with the lifespan of ciliated cells ranging from 14 to 21 days. Overall, 10% of the cells in explant cultures and 20% of the cells in the dissociated tissue cultures were ciliated. These two cultures demonstrated similar ciliary beat frequency values at baseline (7.78 ± 1.99 Hz and 7.91 ± 2.52 Hz, respectively) and reacted equivalently following stimulation with 100 μM ATP. The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells, which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.

  7. Culture of human adipose tissue explants leads to profound alteration of adipocyte gene expression.

    Science.gov (United States)

    Gesta, S; Lolmède, K; Daviaud, D; Berlan, M; Bouloumié, A; Lafontan, M; Valet, P; Saulnier-Blache, J S

    2003-03-01

    Primary culture of adipose tissue has often been used to investigate pharmacological and nutritional regulation of adipocyte gene expression. Possible alteration of adipocyte gene expression by primary culture on its own has not been explored in detail. In order to address this issue, explants were prepared from human subcutaneous adipose tissue recovered from plastic surgery and maintained for 0 to 48 h in DMEM supplemented with 10 % serum. At different time points, adipocytes were isolated from the explants by collagenase digestion, and mRNA expression and lipolysis were studied. Culture was associated with an accumulation of tumor necrosis factor-alpha (TNFalpha) in the culture medium, an increase in anaerobic glycolysis, and an increase in the basal lipolysis. In parallel, a rapid and dramatic decrease in the level of mRNA encoding for several adipocyte-specific proteins such as adipocyte lipid-binding protein, hormone-sensitive lipase, lipoprotein lipase, and peroxisome proliferation activating receptor-gamma2 was observed in isolated adipocytes. These downregulations were reminiscent of a dedifferentiation process. In parallel, primary culture was associated with an increase in adipocyte beta-actin, TNFalpha, glucose transporter-1 and hypoxia-induced factor-1alpha mRNAs. Treatment of explants with agents that increase cAMP (isobutylmethylxanthine and forskolin) prevented TNFalpha production and expression and culture-induced alterations of adipocyte gene expression. These data show that primary culture of human adipose tissue explants dramatically alters adipocyte gene expression.

  8. Ex Vivo Produced Oral Mucosa Equivalent by Using the Direct Explant Cell Culture Technique

    Directory of Open Access Journals (Sweden)

    Kamile Öztürk

    2012-09-01

    Full Text Available Objective: The aim of this study is the histological and immunohistochemical evaluation of ex vivo produced oral mucosal equivalents using keratinocytes cultured by direct explant technique.Material and Methods: Oral mucosa tissue samples were obtained from the keratinized gingival tissues of 14 healthy human subjects. Human oral mucosa keratinocytes from an oral mucosa biopsy specimen were dissociated by the explant technique. Once a sufficient population of keratinocytes was reached, they were seeded onto the type IV collagen coated “AlloDerm” and taken for histological and immunohistochemical examinations at 11 days postseeding of the keratinocytes on the cadaveric human dermal matrix.Results: Histopathologically and immunohistochemically, 12 out of 14 successful ex vivo produced oral mucosa equivalents (EVPOME that consisted of a stratified epidermis on a dermal matrix have been developed with keratinocytes cultured by the explant technique.Conclusion: The technical handling involved in the direct explant method at the beginning of the process has fewer steps than the enzymatic method and use of the direct explant technique protocol for culturing of human oral mucosa keratinocyte may be more adequate for EVPOME production.

  9. Development of a murine ocular posterior segment explant culture for the study of intravitreous vector delivery.

    Science.gov (United States)

    Denk, Nora; Misra, Vikram; Sandmeyer, Lynne S; Bauer, Bianca B; Singh, Jaswant; Forsyth, George W; Grahn, Bruce H

    2015-01-01

    The objective of this study was to develop a murine retinal/choroidal/scleral explant culture system to facilitate the intravitreous delivery of vectors. Posterior segment explants from adult mice of 2 different age groups (4 wk and 15 wk) were cultured in serum-free medium for variable time periods. Tissue viability was assessed by gross morphology, cell survival quantification, activated caspase-3 expression, and immunohistochemistry. To model ocular gene therapy, explants were exposed to varying transducing units of a lentiviral vector expressing the gene for green fluorescent protein for 48 h. Explant retinal cells remained viable for approximately 1 wk, although the ganglion cell layer developed apoptosis between 4 and 7 d. Following vector infusion into the posterior segment cups, viral transduction was noted in multiple retinal layers in both age groups. An age of donor mouse influence was noted and older mice did not transduce as well as younger mice. This explant offers an easily managed posterior segment ocular culture with minimum disturbance of the tissue, and may be useful for investigating methods of enhancing retinal gene therapy under controlled conditions.

  10. Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-09-01

    Full Text Available A high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from cotyledonary petiole explants of Jatropha curcas L. has been developed. The cotyledonary petiole explants of J. curcas cultured directly on medium supplemented with thidiazuron (TDZ induce regeneration of poor quality shoot buds that have a low regeneration frequency. However, treating the explants with high concentrations (10–60 mg/L of TDZ solution for certain time periods (5–80 min significantly increased the regeneration frequency and improved the quality of the regenerated shoot buds. The best shoot buds induction (88.42% and number of shoot buds (12.67 per explant were observed when in vitro explants were treated with 20 mg/L TDZ solution for 20 min before being transferred on hormone-free medium after 30 days. Regeneration was also influenced by the orientation (horizontal or vertical of the explants on the medium, and by the origin of the cotyledonary petioles (in vitro or in vivo used for the preparation of explants. We performed subsequent experiments for elongation and rooting of the regenerated shoot buds. Addition of L-arginine to the medium was conducive to the elongation of the shoot buds. A concentration of 7.5 mg/L L-arginine yielded the best results. The elongated shoots could initiate roots to become intact plantlets in half-strength Murashige and Skoog medium containing 0.1 mg/L indole-3-butyric acid. After acclimatization, these plantlets could be transplanted to the soil and the growth was normal. Therefore, application of the methods described here helped to increase plant regeneration efficiency.

  11. Explant culture of human peripheral lung. I. Metabolism of benzo[alpha]pyrene

    DEFF Research Database (Denmark)

    Stoner, G.D.; Harris, C.C.; Autrup, Herman

    1978-01-01

    Human lung explants have been maintained in vitro for a period of 25 days. Autoradiographic studies indicated that the broncholar epithelial cells, type 2 alveolar epithelial cells, and stromal fibroblasts incorporated 3H-thymidine during the culture. After 7 to 10 days, type 2 cells were the pre...

  12. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  13. Effect of clinorotation on in vitro cultured explants of Mentha piperita L.

    Science.gov (United States)

    Paolicchi, Fabio; Mensuali-Sodi, Anna; Tognoni, Franco

    2002-02-14

    An in vitro culture system was used to study the influence of gravity on axillary shoot formation and adventitious root regeneration in Mentha piperita L. The direction of the gravity vector was altered by displacing stem node explants in different orientations. Also, microgravity conditions were simulated by rotating the explants on a horizontal clinostat so that the main axis of nodes was either parallel (Cpa) or perpendicular to the clinostat axis (Ccp and Ccf, centripetally and centrifugally oriented, respectively). Mint nodes were cultured on solidified Linsmaier and Skoog's medium [Physiol. Plant. 18 (1965) 100] adding a filter-sterilized aqueous solution of 2 mg/l benzyladenine (BA) in half of the cultures. The proliferation of axillary shoots as well as adventitious root formation were not affected by altering upright explant orientation. On the contrary clinorotation was able to modify plantlet development. In absence of BA, leaf width was hindered by Cpa treatment and penultimate internode length was enhanced by Ccp. Furthermore, a negative effect of Cpa treatment was observed in root length parameter, while Ccp increased the root number both in absence and in presence of BA. An effect strictly connected to clinorotation in presence of BA was the occurrence of hyperhydricity. Moreover, explants under clinorotation treatments switched their gravitropic response modifying shoot curvature.

  14. Dissection and culture of mouse dopaminergic and striatal explants in three-dimensional collagen matrix assays.

    Science.gov (United States)

    Schmidt, Ewoud R E; Morello, Francesca; Pasterkamp, R Jeroen

    2012-03-23

    Midbrain dopamine (mdDA) neurons project via the medial forebrain bundle towards several areas in the telencephalon, including the striatum(1). Reciprocally, medium spiny neurons in the striatum that give rise to the striatonigral (direct) pathway innervate the substantia nigra(2). The development of these axon tracts is dependent upon the combinatorial actions of a plethora of axon growth and guidance cues including molecules that are released by neurites or by (intermediate) target regions(3,4). These soluble factors can be studied in vitro by culturing mdDA and/or striatal explants in a collagen matrix which provides a three-dimensional substrate for the axons mimicking the extracellular environment. In addition, the collagen matrix allows for the formation of relatively stable gradients of proteins released by other explants or cells placed in the vicinity (e.g. see references 5 and 6). Here we describe methods for the purification of rat tail collagen, microdissection of dopaminergic and striatal explants, their culture in collagen gels and subsequent immunohistochemical and quantitative analysis. First, the brains of E14.5 mouse embryos are isolated and dopaminergic and striatal explants are microdissected. These explants are then (co)cultured in collagen gels on coverslips for 48 to 72 hours in vitro. Subsequently, axonal projections are visualized using neuronal markers (e.g. tyrosine hydroxylase, DARPP32, or βIII tubulin) and axon growth and attractive or repulsive axon responses are quantified. This neuronal preparation is a useful tool for in vitro studies of the cellular and molecular mechanisms of mesostriatal and striatonigral axon growth and guidance during development. Using this assay, it is also possible to assess other (intermediate) targets for dopaminergic and striatal axons or to test specific molecular cues.

  15. Bordetella avium Causes Induction of Apoptosis and Nitric Oxide Synthase in Turkey Tracheal Explant Cultures

    OpenAIRE

    Miyamoto, David M.; Ruff, Kristin; Beach, Nathan M.; Dorsey-Oresto, Angella; Masters, Isaac; Temple, Louise M.

    2011-01-01

    Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embr...

  16. In situ fiber-optical monitoring of cytosolic calcium in tissue explant cultures

    CERN Document Server

    Ryser, Manuel; Geiser, Marianne; Frenz, Martin; Rička, Jaro

    2014-01-01

    We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

  17. Bordetella avium causes induction of apoptosis and nitric oxide synthase in turkey tracheal explant cultures.

    Science.gov (United States)

    Miyamoto, David M; Ruff, Kristin; Beach, Nathan M; Stockwell, Stephanie B; Dorsey-Oresto, Angella; Masters, Isaac; Temple, Louise M

    2011-09-01

    Bordetellosis is an upper respiratory disease of turkeys caused by Bordetella avium in which the bacteria attach specifically to ciliated respiratory epithelial cells. Little is known about the mechanisms of pathogenesis of this disease, which has a negative impact in the commercial turkey industry. In this study, we produced a novel explant organ culture system that was able to successfully reproduce pathogenesis of B. avium in vitro, using tracheal tissue derived from 26 day-old turkey embryos. Treatment of the explants with whole cells of B. avium virulent strain 197N and culture supernatant, but not lipopolysaccharide (LPS) or tracheal cytotoxin (TCT), specifically induced apoptosis in ciliated cells, as shown by annexin V and TUNEL staining. LPS and TCT are known virulence factors of Bordetella pertussis, the causative agent of whooping cough. Treatment with whole cells of B. avium and LPS specifically induced NO response in ciliated cells, shown by uNOS staining and diaphorase activity. The explant system is being used as a model to elucidate specific molecules responsible for the symptoms of bordetellosis.

  18. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... levels of IL-6, TNF-a and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  19. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs......We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... levels of IL-6, TNF-a and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar...

  20. Plant Regeneration from In Vitro Cultured Hypocotyl Explants of Euonymus japonicus Cu zhi

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Adventitious shoots were successfully regenerated from hypocotyl explants of in vitro cultures of Euonymus japonicus Cu zhi. Hypocotyl slices were cultured on Murashige and Skoog (MS) and B5 basal medium supplemented with varied concentration of different plant growth-regulators, e.g., α-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA) in combination with 6-benzylaminopurine (6-BA) and kinetin. The study showed that shoots could be directly regenerated from hypocotyl explants without the intervening callus phase; MS medium was more suitable for adventitious shoots regeneration. The ability of hypocotyls segments to produce shoots varied depending upon their position on the seedlings. The highest regeneration rate was obtained with hypocotyl segments near to the cotyledon cultured on MS basal medium supplemented with 1.5 mg L-1 6-BA and 0.05 mg L-1 NAA (63.64%). The regenerated shoots were readily elongated on the same medium as used for multiplication and rooted on half-strength MS basal medium supplemented with 1.0 mg L-1 IBA and 100 mg L-1 activated carbon. After being transferred to greenhouse conditions, 96% of the plantlets were successfully acclimatized. This regeneration system is applied for genetic transformation now.

  1. Effects of the mesonephros and insulin-like growth factor I on chondrogenesis of limb explants.

    Science.gov (United States)

    Geduspan, J S; Solursh, M

    1993-04-01

    The mesonephros has been shown to have a growth-promoting influence in vivo on limb outgrowth. This influence has been studied in detail using an organ culture system. The results show that in the presence of the mesonephros limb explants formed larger cartilages than cultures without mesonephros. Furthermore, with mesonephros, morphology of the cartilages is comparable to that of skeletal elements in vivo while cartilages formed in cultures lacking mesonephros were amorphous. The mesonephric influence also promoted the formation of a well-organized extracellular matrix in the cartilage while cartilage in cultures without mesonephros formed an abnormal appearing matrix. Cartilage matrices in cultures with or without mesonephros were immunoreactive to type IX and type II collagens, cartilage proteoglycan PGH, and link protein although cultures lacking mesonephros had a very restricted distribution of type IX collagen immunoreactivity. Despite the different distribution of type IX collagen, long-form-type IX collagen transcripts appeared similar in both types of culture based on in situ hybridization. The mesonephric effect on limb explants could be partially duplicated by the addition of insulin-like growth factor I (IGF-I) to cultures without mesonephros. Furthermore, the mesonephric influence on cartilage growth and morphological differentiation could be blocked by the addition of a blocking antibody to IGF-I to cultures with mesonephros. The results support the hypothesis that IGF-I is one of the growth factors produced by the mesonephros which may play a role in early limb development and chondrogenesis.

  2. Establishing axenic cultures from mature pecan embryo explants on media with low water availability.

    Science.gov (United States)

    Obeidy, A A; Smith, M A

    1990-12-01

    Endophytic fungi associated with mature pecan (Carya illinoensis (Wangenh.) C. Koch) nuts prevented successful, contaminant-free in vitro culture of embryo expiants, even after rigorous surface disinfestation of the nuts and careful aseptic shelling. Disinfestation with sodium hypochlorite after shell removal was also unsuccessful, because even dilute concentrations which were ineffective against the fungal contaminants prevented subsequent growth from the embryo. Explanting media with low water availability which would not sustain growth of fungal contaminants, but supported growth from mature pecan embryos, were developed as an alternative disinfestation method. The explanting media were supplemented with 0.9-1.5% agar, and other media components were selectively omitted to test their influence on water availability and fungal growth. Disinfestation of up to 65% of the cultures was accomplished, depending on the medium formulation, compared to 100% loss to contamination on control medium (0.5% agar). A complete medium (containing sucrose, salts, vitamins, 18 μM BAP, and 5 μM IBA) with 1.5% agar provided control of contamination, and encouraged subsequent regeneration from the embryo expiants, which remained free of contaminant growth through subsequent subcultures.

  3. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available AIMS: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression. SUBJECTS AND METHODS: VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS: 24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  4. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  5. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Science.gov (United States)

    Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Coronado-Martínez, Consuelo; Bañuelos-García, José Inocente; Viveros-Valdez, Ezequiel; Morán-Martínez, Javier; Carranza-Rosales, Pilar

    2015-01-01

    Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor. PMID:26075250

  6. In vitro cell cultures obtained from different explants of Corylus avellana produce Taxol and taxanes

    Directory of Open Access Journals (Sweden)

    Cavalli Francesca

    2006-12-01

    Full Text Available Abstract Background Taxol is an effective antineoplastic agent, originally extracted from the bark of Taxus brevifolia with a low yield. Many attempts have been made to produce Taxol by chemical synthesis, semi-synthesis and plant tissue cultures. However, to date, the availability of this compound is not sufficient to satisfy the commercial requirements. The aim of the present work was to produce suspension cell cultures from plants not belonging to Taxus genus and to verify whether they produced Taxol and taxanes. For this purpose different explants of hazel (Corylus avellana species were used to optimize the protocol for inducing in vitro callus, an undifferentiated tissue from which suspension cell cultures were established. Results Calli were successfully induced from stems, leaves and seeds grown in various hormone concentrations and combinations. The most suitable callus to establish suspension cell cultures was obtained from seeds. Media recovered from suspension cell cultures contained taxanes, and showed antiproliferative activity on human tumour cells. Taxol, 10-deacetyltaxol and 10-deacetylbaccatin III were the main taxanes identified. The level of Taxol recovered from the media of hazel cultures was similar to that found in yew cultures. Moreover, the production of taxanes in hazel cell cultures increased when elicitors were used. Conclusion Here we show that hazel cell cultures produce Taxol and taxanes under controlled conditions. This result suggests that hazel possesses the enzymes for Taxol production, which until now was considered to be a pathway particular to Taxus genus. The main benefit of producing taxanes through hazel cell cultures is that hazel is widely available, grows at a much faster rate in vivo, and is easier to cultivate in vitro than yew. In addition, the production of callus directly from hazel seeds shortens the culture time and minimizes the probability of contamination. Therefore, hazel could become a

  7. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures

    LENUS (Irish Health Repository)

    Nic An Ultaigh, Sinead

    2011-02-23

    Abstract Introduction The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells. Methods RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1\\/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg\\/ml), an anti-TLR2 antibody (OPN301, 1 μg\\/ml) or an immunoglobulin G (IgG) (1 μg\\/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology. Results Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab. Conclusions These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.

  8. Micropropagation from cultured nodal explants of rose (Rosa hybrida L. cv. ‘Perfume Delight’

    Directory of Open Access Journals (Sweden)

    Kamnoon Kanchanapoom

    2010-01-01

    Full Text Available A method for the micropropagation of rose (Rosa hybrida L. cv. ‘Perfume Delight’ was developed. First to fifth nodal explants from young healthy shoots were excised and cultured on basal medium of Murashige and Skoog (1962, MS containing several concentrations of BA and NAA. Multiple shoot formation of up to 3 shoots was obtained on MS medium supplemented with 3 mg/l BA and 0.003 mg/l NAA. Shoot readily rooted on ¼MS medium devoid of growth regulators.Rooted plantlets were hardened and established in pots at 100% survival. In vitro flowering was observed on rose plantscultured on MS medium containing 3 mg/l BA and 0.003 mg/l NAA.

  9. Organotypic explant culture of adult rat retina for in vitro investigations of neurodegeneration, neuroprotection and cell transplantation

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol details a method for isolating retinal tissue from adult rats as an organotypic culture to study neurobiological processes in mature tissue. It combines the efficiency and control common to in vitro techniques with close imitation of the in vivo environment. Eyes from adult rats are enucleated and the neural retina is isolated. Tissue is cut into quarters, yielding eight retinal explants per animal, and cultured at a fluid/air interface on organotypic culture membranes. Explanta...

  10. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Du

    Full Text Available We have developed an in vitro hepatocyte-adipose tissue explant (ATE co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2 were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64 were higher in the stromal vascular fraction (SVF isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1 were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2 was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2 in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2. Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs, particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  11. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  12. Epidermal DNA synthesis in organ culture explants. A study of hairless mouse ear epidermis.

    Science.gov (United States)

    Hansteen, I L; Iversen, O H; Refsum, S B

    1979-10-01

    Explants of split mouse ear were incubated in organ culture for up to 48 h, and the cell proliferation was studied by the addition of Thymidine-methyl-3-H (3HTdR) to the medium during different time periods, mainly for the first 14 h of incubation. Cultures were started at 0900, 2130 and 2300. In all cases the labelling index remained stable for 6-8 h, and then increased. The mean grain count, however, was falling and so was the epidermal DNA-specific uptake of 3HTdR. Based on the experimental results, calculations can be made of the flux of cells through S. It is concluded that the increasing LI is not due to inherent diurnal variation in cell proliferation, and is not a sign of real growth but caused instead by a complete block of the cell exit from S, probably combined with periods of an increased entrance rate into S. Other methodological factors, however, may also contribute to the increasing LI. Hence, this system is not suited for the measurement of factors that influence epidermal DNA synthesis.

  13. In vitro plant regeneration of two cucumber (Cucumis sativum L. genotypes: Effects of explant types and culture medium

    Directory of Open Access Journals (Sweden)

    Grozeva Stanislava

    2014-01-01

    Full Text Available The effect of different phytohormone concentrations on callusogenesis and organogenesis in two cucumber genotypes were studied. It was established that the rate of plant regeneration depends on genotype, explant type and culture medium. Hypocotyls were found to be more responsive than cotyledons in morphogenesis. In vitro planlet-regenerants have been obtained in hypocotyls explants on culture medium with 1.0 and 2.0 mgL-1 BA for cultivar Gergana and in 1.0 and 3.0 mgL-1K-line 15B. Induction of regeneration in cotyledons were established only in cultivar Gergana on culture medium supplemented with 3.0 mgL-1 BA and in combination of 0.5 mgL-1IAA.

  14. Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L.

    Institute of Scientific and Technical Information of China (English)

    Nurul Izzati Osman; Norrizah Jaafar Sidik; Asmah Awal

    2016-01-01

    Objective: To induce callus from the medicinally valuable species, Barringtonia racemosa L.(B. racemosa) whereby the formation of callus is essential for micropropagation studies and in vitro plant secondary metabolites production.Methods: The callus induction potential in B. racemosa was assessed from endosperm explant cultured on different culture media and plant hormonal treatments. Lloyd and Mc Cown’s woody plant medium and Murashige and Skoog’s medium were used in the study as culture media. On the other hand, various concentrations and combinations of2,4-dichlorophenoxyacetic acid(1.0–2.0 mg/L) and kinetin(0.5–2.5 mg/L) had been incorporated in the culture media to exert the effects of auxin and cytokinin on callus induction.Results: From the present study, it was found that the profuse [(1.681 ± 0.770) g fresh weight,(0.239 ± 0.239) g dry weight] and friable callus formation was optimally produced with desirable morphology and considerable percentage of callus induction(56.70%) in endosperm explants cultured on 1.0 mg/L 2,4-dichlorophenoxyacetic acid and 1.5 mg/L kinetin in Murashige and Skoog’s medium.Conclusions: A reliable protocol for inducing callus formation of profuse and friable morphology in endosperm explant of B. racemosa had therefore been successfully established.

  15. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    Science.gov (United States)

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP](mi2004) zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  16. Effects of donor plant age and explants on in vitro culture of Cedrela montana Moritz ex Turcz

    Directory of Open Access Journals (Sweden)

    Sofía Basto

    2012-12-01

    Full Text Available To evaluate the organogenic potential of Cedrela montana Moritz ex Turcz. Explants from mature (10-20 year-old and juvenile (7-18 month-old trees were collected. The first grouping included buds, leaves, and nodes derived from juvenile basal offshoots and rejuvenated shoots from cuttings. The second, included leaves, petioles, nodes, internodes and nodes of in vitro elongated shoots. The highest organogenic potential was observed in nodes from juvenile trees: 45.8% of explants presented axillary bud elongation, while 56.2% presented rooting in a growth regulator free culture medium. Fifty-one percent of elongated shoots produced adventitious shoots with 0.5 μM NAA and 0.5 μM BA; 30% with 0.5 μM NAA and 1 μM BA; and 30% with 1 μM BA. Twenty percent presented roots with 0.5 μM NAA. Root formation was stimulated in a medium supplemented with activated charcoal (5 gL-1. The acclimatization of eighty percent of plantlets regenerated from nodes, and of 72.5% in vitro generated shoots was successful. On the contrary, mature trees material presented low organogenic response. Axillary bud elongation was recorded just in 10.7% of explants from juvenile shoots and in 6.7% of explants from rejuvenated shoots. The age of donor plant and type of explant affect the organogenic potential of C. montana. This study contributes to the understanding of this species’ response under in vitro conditions.

  17. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  18. THE PHENOLS ACCUMULATION IN TRANSFORMED ROOT CULTURES OF DIFFERENT EXPLANTS SOURCES OF COMMON BUCKWHEAT (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    O. V. Sytar

    2013-06-01

    Full Text Available The growth parameters of transformed root cultures, total phenolic content and phenolic acids composition has been studied in root cultures, which were obtained from various explants of buckwheat by Agrobacterium rhizogenes strains A4. The methods of obtaining of the transformed root cultures, total phenol estimation, gas-liquid chromatography and polymerase chain reaction has been used. Elevated levels of total phenols in transformed roots of buckwheat from different sources of explants have been found. The high content of chlorogenic, p-hydroxybenzoic, p-anisic and caffeic acids has been discovered in the root cultures, which can be used for their industrial production. Maximal root growth was equal 21.2 g/l of dry weight in the roots as source for root culture, 17.7 g/l with leaves and 14.6 g/l with stems at 3 week after placement. Molecular analysis by polymerase chain reaction amplification was confirmed that the rol B gene (652 bp which transferred info hairy roots from Ri-plasmid in Agrobacterium rhizogenes is responsible for induction of root from plant species.

  19. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  20. Direct regeneration of Periwinkle (Catharanthus roseus via node explants culture and different combinations of plant growth regulators

    Directory of Open Access Journals (Sweden)

    M. Talebi

    2012-09-01

    Full Text Available Periwinkle (Catharanthus roseus L., Apocynaceae contains more than 130 different terpenoid indole alkaloids (TIAs, of which two dimeric alkaloids, Vinblastine and Vincristine, have antineoplastic activity and are useful in treatment of various cancers. Specific production of some alkaloids in differentiated tissues such as leaf and stem led to use direct regeneration of explants in order to increase the production of these important alkaloids in the plant. In this research, 30 combinations of plant growth regulators and activated charcoal were used in MS media for direct regeneration of node explants. Application of BAP in media containing 1 g/l activated charcoal showed the best direct regeneration of node explants and shoot proliferation. Although application of activated charcoal is necessary for periwinkle growth in media due to many phenolic compounds, but it has negative effects on adsorption of plant growth regulators and consequently reduce shoot proliferation. Therefore, it seems that 1 g/l activated charcoal is an appropriate concentration for preparing shoot proliferation media. In addition, transporting regenerated shoots to culture media containing NAA resulted in increasing shoot length. Proliferated shoots rooted in media without PGR and with 2 g/l activated charcoal and acclimated with environmental conditions after transferring to the soil.

  1. A novel method for the culture and polarized stimulation of human intestinal mucosa explants.

    Science.gov (United States)

    Tsilingiri, Katerina; Sonzogni, Angelica; Caprioli, Flavio; Rescigno, Maria

    2013-05-01

    Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina

  2. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    Science.gov (United States)

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  3. Inhibition of oncostatin M in osteoarthritic synovial fluid enhances GAG production in osteoarthritic cartilage repair

    Directory of Open Access Journals (Sweden)

    M Beekhuizen

    2013-09-01

    Full Text Available Mediators in the synovial fluid are thought to play a major role in osteoarthritic cartilage turnover. The purpose of the current study was to investigate the role of oncostatin M (OSM in osteoarthritis (OA by evaluating the presence of the cytokine and its receptors in the OA joint and interfering with its activity in synovial fluid co-cultured with cartilage explants. OSM levels were increased in the synovial fluid of osteoarthritic patients compared to healthy donors. Immunohistochemistry confirmed the presence of both the leukaemia inhibitory factor (LIF and OSM receptors for OSM throughout the whole depth of osteoarthritic cartilage and synovial tissue, whereas in healthy cartilage their presence seemed more restricted to the superficial zone. Blocking OSM activity, using an activity inhibiting antibody, in 25 % osteoarthritic synovial fluid added to OA cartilage explant cultures increased glycosaminoglycan (GAG content from 18.6 mg/g to 24.3 mg/g (P < 0.03 and total production from 7.0 mg/g to 11.9 mg/g (P < 0.003. However, OSM exogenously added to cartilage explant cultures reflecting low and high concentrations in the synovial fluid (5 and 50 pg/mL did not affect cartilage matrix turnover, suggesting that factors present in the synovial fluid act in concert with OSM to inhibit GAG production. The current study indicates the potential to enhance cartilage repair in osteoarthritis by modulating the joint environment by interfering with OSM activity.

  4. Pre-culturing of nodal explants in thidiazuron supplemented liquid medium improves in vitro shoot multiplication of Cassia angustifolia.

    Science.gov (United States)

    Siddique, I; Abdullwahab Bukhari, N; Perveen, K; Siddiqui, I; Anis, M

    2013-09-01

    An in vitro propagation system for Cassia angustifolia Vahl. has been developed. Due to the presence of sennosides, the demand of this plant has increased manyfold in global market. Multiple shoots were induced by culturing nodal explants excised from mature plants on a liquid Murashige and Skoog [8] medium supplemented with 5-100 μM of thidiazuron (TDZ) for different treatment duration (4, 8, 12 and 16 d). The optimal level of TDZ supplemented to the culture medium was 75 μM for 12 d induction period followed by subculturing in MS medium devoid of TDZ as it produced maximum regeneration frequency (87%), mean number of shoots (9.6 ± 0.33) and shoot length (4.4 ± 0.46 cm) per explant. A culture period longer than 12 d with TDZ resulted in the formation of fasciated or distorted shoots. Ex vitro rooting was achieved when the basal cut end of regenerated shoots was dipped in 200 μM indole-3-butyric acid (IBA) for half an hour followed by their transplantation in plastic pots filled with sterile soilrite where 85% plantlets grew well and all exhibited normal development. The present findings describe an efficient and rapid plant regeneration protocol that can further be used for genetic transformation studies.

  5. Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes

    Directory of Open Access Journals (Sweden)

    N Kaneshiro

    2007-05-01

    Full Text Available The extracellular matrix (ECM of articular cartilage has several functions that are unique to joints. Although a technique for transplanting cultured chondrocytes has already been introduced, it is difficult to collect intact ECM when using enzymes to harvest samples. Temperature-responsive culture dishes have already been clinically applied in the fields of myocardial and corneal transplantation. Earlier studies have shown that a sheet of cultured cells with intact ECM and adhesive factors can be harvested using such culture dishes, which allow the surface properties of the dish to be reversibly altered by changing the temperature. Human chondrocytes were subjected to enzymatic digestion and then were seeded in temperature-responsive culture dishes. A sheet of chondrocytes was harvested by only reducing the temperature after the cultured cells reached confluency. A real-time PCR analysis of the chondrocyte sheets confirmed that type II collagen, aggrecan, and fibronectin were present. These results suggested that, although chondrocytes undergo dedifferentiation in a monolayer culture, multilayer chondrocyte sheets grown in a similar environment to that of three-dimensional culture may be able to maintain a normal phenotype. A histological examination suggested that multilayer chondrocyte sheets could thus prevent the loss of proteoglycans because the area covered by the sheets was well stained by safranin-O. The present experiments suggested that temperature-responsive culture dishes are useful for obtaining cultured chondrocytes, which may then be clinically employed as a substitute for periosteal patches because such sheets can be applied without a scaffold.

  6. In vitro culture of Cucumis sativus L. VI. Histological analysis of leaf explants cultured on media with 2, 4-D or 2, 4, 5-T

    Directory of Open Access Journals (Sweden)

    Anna Nadolska-Orczyk

    2014-01-01

    Full Text Available The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of Cucumis sativus cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T and cytokinin (BAP or 2iP. During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociation of their cell walls near vessels and in the lower part of the explant adjacent to the medium. These cells were strongly plasmolysed. On the 2,4-D containing medium mostly meristematic tissue developed, proliferating around vascular bundles and forming meristematic centers or promeristem-like structures. After 35-50 days of culture, secondary callus was formed by separation of meristematic cells from the meristem surface in explants cultured on the 2,4-D containing medium. On medium supplemented with 2, 4, 5-T the detachment of parenchymatic and meristematic cells occurred, along with formation of a gel-like substance. The gel-like callus contained multi-cellular aggregates, proembryoids and embryoids. This type of callus tissue was initiated more intensively on medium with 2, 4, 5-T, but the frequency of somatic embryogenesis was much lower. The periferial cells of aggregates, proembryoids and embryoids showed the tendency to separate from the surface of the tissue. Many embryoids formed adventitious embryos.

  7. Determinants of microstructural load transfer in cartilage tissue from chondrocyte culture

    Science.gov (United States)

    Fedewa, Michelle Marie

    2000-10-01

    The goals of this research were to (i) develop a tissue model system for studying the microstructure of matrix produced by chondrocytes, (ii) characterize the biochemical and mechanical properties of the chondrocyte culture tissue, (iii) evaluate the response of the chondrocyte culture tissue to various stimulants (retinoic acid, interleukin-1beta, and xyloside), (iv) investigate the roles of proteoglycan and collagen in the tearing and tensile properties of a chondrocyte culture tissue, and (v) develop a finite element model of the chondrocyte culture tissue microstructure to study its tensile pre-failure properties. The roles of proteoglycan and collagen were explored by experimentation using a cultured cartilage tissue, and by development of a theoretical finite element model which related the cartilage tissue microstructure to its macroscopic properties. Tear and tensile testing was performed. Failure testing is valuable because it is known that cracks exist and propagate from the cartilage surface in osteoarthritic joints. It was found that collagen was important for providing the material stiffness of the cultured tissue, and that both collagen and proteoglycan were important for providing the tear toughness of the tissue. It was also found that as the collagen density or collagen material stiffness increased, the material stiffness of the cultured tissue increased, and as the proteoglycan or collagen densities increased, the tear toughness of the tissue increased. A three-dimensional finite element microstructural model of cartilage was developed, consisting of linear elastic collagen fibrils embedded in a linear viscoelastic proteoglycan solid matrix. Fluid flow in the cartilage matrix was not included in this model. Viscoelastic time dependent behavior was an appropriate model for the cartilage. The results of this model were comparable to the experimental results, as well as to past continuum models of cartilage. Collagen and proteoglycan material moduli

  8. Pancreas development ex vivo: culturing embryonic pancreas explants on permeable culture inserts, with fibronectin-coated glass microwells, or embedded in three-dimensional Matrigel™.

    Science.gov (United States)

    Shih, Hung Ping; Sander, Maike

    2014-01-01

    Pancreas development is a complex and dynamic process orchestrated by cellular and molecular events, including morphogenesis and cell differentiation. As a result of recent explorations into possible cell-therapy-based treatments for diabetes, researchers have made significant progress in deciphering the developmental program of pancreas formation. In vitro pancreas organ culture systems provide a valuable tool for exploring the mechanisms of gene regulation, cellular behaviors, and cell differentiation. In this chapter, we review three common techniques for culturing embryonic pancreas explants. Each technique is suitable for different applications. Specifically, culturing embryonic pancreas on culture inserts provides an excellent platform to test the effects of chemical compounds. Conversely, when the embryonic pancreas is cultured in fibronectin-coated glass microwells, the system provides unique culture conditions to monitor organ growth and cellular dynamic events. Lastly, when the embryonic pancreas is embedded in Matrigel, organogenesis can be studied in a three-dimensional environment instead of limiting the analysis to one plane.

  9. Explant culture: a simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate.

    Science.gov (United States)

    Priya, Nancy; Sarcar, Shilpita; Majumdar, Anish Sen; SundarRaj, Swathi

    2014-09-01

    Adipose tissue has emerged as a preferred source of mesenchymal stem/stromal cells (MSC), due to its easy accessibility and high MSC content. The conventional method of isolation of adipose tissue-derived stromal cells (ASC) involves enzymatic digestion and centrifugation, which is a costly and time-consuming process. Mechanical stress during isolation, use of bacterial-derived products and potential contamination with endotoxins and xenoantigens are other disadvantages of this method. In this study, we propose explant culture as a simple and efficient process to isolate ASC from human adipose tissue. This technique can be used to reproducibly isolate ASC from fat tissue obtained by liposuction as well as surgical resection, and yields an enriched ASC population free from contaminating haematopoietic cells. We show that explanting adipose tissue results in a substantially higher yield of ASC at P0 per gram of initial fat tissue processed, as compared to that obtained by enzymatic digestion. We demonstrate that ASC isolated by explant culture are phenotypically and functionally equivalent to those obtained by enzymatic digestion. Further, the explant-derived ASC share the immune privileged status and immunosuppressive properties implicit to MSC, suggesting that they are competent to be tested and applied in allogeneic clinical settings. As explant culture is a simple, inexpensive and gentle method, it may be preferred over the enzymatic technique for obtaining adipose tissue-derived stem/stromal cells for tissue engineering and regenerative medicine, especially in cases of limited starting material.

  10. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  11. Plant regeneration of Rhabdadenia Ragonesei (Apocynaceae by in vitro culturing of leaf explants REGENERACIÓN DE PLANTAS DE RHABDADENIA RAGONESEI (APOCYNACEAE POR CULTIVO IN VITRO DE EXPLANTES FOLIARES

    Directory of Open Access Journals (Sweden)

    Eduardo Flachsland

    2010-08-01

    Full Text Available Plants of Rhabdadenia Ragonesei Woodson (Apocynaceae were regenerated in vitro from leaves explants. The procedure employed includes: 1 Surface sterilization of leaves by immersion in 70% ethanol (10 s followed by 1,1%NaOCl (15 min and three wash with sterile distilled water. 2 Callus and buds induction by culture on Murashige and Skoog medium (MS + 3 mg/L benzyladenine (BAP. 3 Subculture of callus and buds on MS + 1 mg/L BAP, and 4 Rooting on MS + 0.5 mg/L naftalenacetic acid Se regeneraron plantas de Rhabdadenia Ragonesei Woodson (Apocynaceae mediante el cultivo in vitro de explantes foliares en condiciones ambientales controladas. El procedimiento consistió en: 1 Desinfección de las hojas por inmersión en etanol al 70% (10 s seguida de Inmersión en NaOCl al 1,1% (15 min y lavado tres veces con agua destilada estéril. 2 Inducción de callos y yemas mediante el cultivo de explantes foliares en el medio de Murashige y Skoog (MS + 3 mg/L de benciladenina (BAP. 3 Subcultivo de callos y yemas en MS + 1 mg/L de BAP y 4 Enraizamiento de los vastagos obtenidos en MS + 0,5 mg/L de ácido naftalenacético

  12. Inhibition of oncostatin M in osteoarthritic synovial fluid enhances GAG production in osteoarthritic cartilage repair

    OpenAIRE

    Beekhuizen, M.; GJVM van Osch; AGJ Bot; MCL Hoekstra; DBF Saris; WJA Dhert; LB Creemers

    2013-01-01

    Mediators in the synovial fluid are thought to play a major role in osteoarthritic cartilage turnover. The purpose of the current study was to investigate the role of oncostatin M (OSM) in osteoarthritis (OA) by evaluating the presence of the cytokine and its receptors in the OA joint and interfering with its activity in synovial fluid co-cultured with cartilage explants. OSM levels were increased in the synovial fluid of osteoarthritic patients compared to healthy donors. Immunohistochemistr...

  13. In vitro culture of Cucumis sativus L. VI. Histological analysis of leaf explants cultured on media with 2, 4-D or 2, 4, 5-T

    OpenAIRE

    Anna Nadolska-Orczyk; Stefan Malepszy

    2014-01-01

    The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of Cucumis sativus cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T) and cytokinin (BAP or 2iP). During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociati...

  14. [Influence of genotype, explant type and component of culture medium on in vitro callus induction and shoot organogenesis of tomato (Solanum lycopersicum L.)].

    Science.gov (United States)

    Khaliluev, M R; Bogoutdinova, L R; Baranova, G B; Baranova, E N; Kharchenko, P N; Dolgov, S V

    2014-01-01

    The influence of explant type as well as of the type of growth regulators and concentration on callus induction processes and somatic organogenesis of shoots was studied in vitro on four tomato genotypes of Russian breeding. Cytological study of callus tissue was conducted. It was established that tomato varieties possess a substantially greater ability to indirect shoot organogenesis compared with the F1 hybrid. The highest frequency of somatic organogenesis of shoots, as well as their number per explant, was observed for most of the genotypes studied during the cultivation of cotyledons on Murashige-Skoog culture medium containing 2 mg/l of zeatin in combination with 0.1 mg/l of 3-indoleacetic acid. An effective protocol of indirect somatic organogenesis of shoots from different explants of tomato varieties with a frequency of more than 80% was developed.

  15. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan A H; van Doeselaar, Marina; Meij, Björn P; Tryfonidou, Marianna A; Ito, K

    2016-01-01

    Objectives: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  16. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  17. in tissue culture of lilium explants may become heavily contaminated by the standard initiation procedure

    NARCIS (Netherlands)

    Askari Rabori, N.; Wang, Y.G.; Klerk, de G.J.M.

    2014-01-01

    In tissue culture of Lilium, the standard initiation procedure brought about substantial contamination in two ways. (1) When scales were detached from the mother bulb, microorganisms could enter via the wound. This source of contamination was strongly enhanced by the negative hydrostatic pressure wi

  18. Toxic Effects of Lipid-Mediated Gene Transfer in Ventral Mesencephalic Explant Cultures

    DEFF Research Database (Denmark)

    Bauer, Matthias; Kristensen, Bjarne Winther; Meyer, Morten;

    2006-01-01

    Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake...... of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas...... of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents....

  19. Response of cotyledon explants of Capsicum annuum L. cv. kujawianka to chosen plant growth regulators in in vitro culture

    Directory of Open Access Journals (Sweden)

    Alicja Fraś

    2014-02-01

    Full Text Available Shoot buds originated directly on cotyledon explants of Capsicum annuum L. cv. Kujawianka, when Linsmaier and Skoog medium was enriched with BAP (2 mg/l. Kinetin (2 mg/l or kinetin with IAA (1 mg/l + 1 mg/l induced indirect shoot buds regeneration from callus. Rooting was obtained with explants cultivated on a medium containing NAA (0,5 mg/l. Occurrence of the early stages of differentiation was proved at the histological level.

  20. Spiral Ganglion Neuron Explant Culture and Electrophysiology on Multi Electrode Arrays.

    Science.gov (United States)

    Hahnewald, Stefan; Roccio, Marta; Tscherter, Anne; Streit, Jürg; Ambett, Ranjeeta; Senn, Pascal

    2016-10-19

    Spiral ganglion neurons (SGNs) participate in the physiological process of hearing by relaying signals from sensory hair cells to the cochlear nucleus in the brain stem. Loss of hair cells is a major cause of sensory hearing loss. Prosthetic devices such as cochlear implants function by bypassing lost hair cells and directly stimulating SGNs electrically, allowing for restoration of hearing in deaf patients. The performance of these devices depends on the functionality of SGNs, the implantation procedure and on the distance between the electrodes and the auditory neurons. We hypothesized, that reducing the distance between the SGNs and the electrode array of the implant would allow for improved stimulation and frequency resolution, with the best results in a gapless position. Currently we lack in vitro culture systems to study, modify and optimize the interaction between auditory neurons and electrode arrays and characterize their electrophysiological response. To address these issues, we developed an in vitro bioassay using SGN cultures on a planar multi electrode array (MEA). With this method we were able to perform extracellular recording of the basal and electrically induced activity of a population of spiral ganglion neurons. We were also able to optimize stimulation protocols and analyze the response to electrical stimuli as a function of the electrode distance. This platform could also be used to optimize electrode features such as surface coatings.

  1. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Mizuna; Mitsui, Youji, E-mail: y-mitsui8310@hb.tp1.jp; Kumazaki, Tsutomu; Kawahara, Yuta; Matsuo, Taira; Takahashi, Tomoko, E-mail: t-takahashi@kph.bunri-u.ac.jp

    2014-10-24

    Highlights: • hiPS cell explants formed malignant tumors when SNL76/7 feeder cells were used. • Multi type tumors developed by interaction of SNL76/7 feeder cells with hiPS cells. • Tumorigenic risk occurs by co-culture of hiPS cells with SNL76/7 feeder cells. - Abstract: The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice. Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC.

  2. 核桃外植体的组织培养%Tissue Culture of Walnut Explant

    Institute of Scientific and Technical Information of China (English)

    杨海波; 王娟; 周鹏程; 孟利峰; 高涛

    2011-01-01

    [Objective] The aim was to study the method of tissue culture and rapid propagation of walnut. [ Method] The explains were col lected from stem with axillary buds, the tube propagation of Jinboxiangl was studied. [ Result] The optimum culture medium for germination of the axillary buds: DKW + BA 1.5 mg/L; for differentiation and subculture:DKW + BA 0.4 mg/L + IBA 0.01 mg/L; for rooting;l/2 DKW + IBA 1.0 mg/L, however, rooting efficiency was only 23.3% , this result was not satisfied. The method of taking tool with two steps was ide al, and taking root efficiency reached to 36.7%. [ Conclusion ] The optimal culture conditions of rapid propagation of Jinboxiang 1 walnut were selected, which laid the foundation for constructing rapid propagation and amplifying walnut planting scale.%[目的]研究核桃组织培养与快速繁殖的方法.[方法]以“金薄香”1号带腋芽的茎段为外植体进行试管繁殖.[结果]腋芽萌生最佳培养基:DKW+BA 1.5 mg/L;分化及继代最佳培养基:DKW+ BA 0.4 mg/L+ IBA 0.01 mg/L;生根最佳培养基:1/2DKW+ IBA 1.0mg/L,不过生根率只有23.3%,效果不太理想;二步生根法效果不错,生根率可达到36.7%.[结论]该研究筛选获得适宜“金薄香”1号核桃快繁的最佳培养条件,为建立核桃快繁体系、扩大核桃苗繁育规模奠定基础.

  3. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋

    2003-01-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  4. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  5. Adrenergic Activation of Melatonin Secretion in Ovine Pineal Explants in Short-Term Superfusion Culture Occurs via Protein Synthesis Independent and Dependent Phenomena

    Directory of Open Access Journals (Sweden)

    Bogdan Lewczuk

    2014-01-01

    Full Text Available The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.

  6. Optimization of the processes of sterilization and micropropagation of cup plant (Silphium perfoliatum L. from apical explants of seedlings in in vitro cultures

    Directory of Open Access Journals (Sweden)

    Magdalena Tomaszewska-Sowa

    2012-12-01

    Full Text Available Cup plant (Silphium perfoliatum L. is a tall, reaching up to 2.5 m, perennial plant that represents the Asteraceae family. Silphium perfoliatum L. can be applied in medicine, animal feeding, and as a decorative, honey-producing and energy production plant which proves its multi-functional features. Sowing material currently available in Poland is insufficient, which justifies the present attempts at propagating these plants in in vitro cultures. Therefore, Silphium perfoliatum L. seed sterilization and micropropagation processes were studied under controlled conditions in in vitro cultures. Among the tested methods, ACE proved to be the most effective for sterilization. The apical parts of seedlings were used as explants; they were placed onto MS media with growth regulators added. 4 growth regulator concentration variants were applied. The highest percentage of explants with lateral shoots (41.7% and callus (90.3% was obtained on MS medium with 5 mg x dm-3 BAP + 1 mg × dm-3 NAA added. Shoots were isolated and transferred onto MS rooting medium without growth regulators. The rooted plants were transferred to the greenhouse and acclimatised to ex vitro conditions.

  7. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs.

    Science.gov (United States)

    Zhang, Lu; He, Aijuan; Yin, Zongqi; Yu, Zheyuan; Luo, Xusong; Liu, Wei; Zhang, Wenjie; Cao, Yilin; Liu, Yu; Zhou, Guangdong

    2014-06-01

    Previously, we had addressed the issues of shape control/maintenance of in vitro engineered human-ear-shaped cartilage. Thus, lack of applicable cell source had become a major concern that blocks clinical translation of this technology. Autologous microtia chondrocytes (MCs) and bone marrow stromal cells (BMSCs) were both promising chondrogenic cells that did not involve obvious donor site morbidity. However, limited cell availability of MCs and ectopic ossification of chondrogenically induced BMSCs in subcutaneous environment greatly restricted their applications in external ear reconstruction. The current study demonstrated that MCs possessed strong proliferation ability but accompanied with rapid loss of chondrogenic ability during passage, indicating a poor feasibility to engineer the entire ear using expanded MCs. Fortunately, the co-transplantation results of MCs and BMSCs (25% MCs and 75% BMSCs) demonstrated a strong chondroinductive ability of MCs to promote stable ectopic chondrogenesis of BMSCs in subcutaneous environment. Moreover, cell labeling demonstrated that BMSCs could transform into chondrocyte-like cells under the chondrogenic niche provided by co-cultured MCs. Most importantly, a human-ear-shaped cartilaginous tissue with delicate structure and proper elasticity was successfully constructed by seeding the mixed cells (MCs and BMSCs) into the pre-shaped biodegradable ear-scaffold followed by 12 weeks of subcutaneous implantation in nude mouse. These results may provide a promising strategy to construct stable ectopic cartilage with MCs and stem cells (BMSCs) for autologous external ear reconstruction.

  8. Effect of radiation on the growth of normal and malignant human oesophageal explant cultures pre-treated with bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, C.B.; Cusack, A.; Mothersill, C.; Hennessy, T.P.

    1988-05-01

    A method has been developed for testing the response of oesophageal explants from tumour and surrounding normal tissue in the same patient to chemotherapy and ..gamma..-radiation, singly and in combination. The test allows treatment combinations, time and order of administration of agents to the tissue to be accurately controlled. Cytotoxicity, determined by measuring the area of outgrowth from an explant 2 weeks after plating, is the most useful short-term end-point, although many other are possible. Results showing differential cytotoxicity of belomycin with and without radiation in squamous and adenocarcinoma of the oesophagus and surrounding normal tissue from the same patient indicate tumour cells are relatively resistant to radiation alone, low levels of belomycin with or without radiation preferentially spare tumour cells and high levels, in combination with any radiation dose tested, but not without radiation, spare normal cells and give a significantly high amount of relative tumour cell kill. Belomycin must be added to the cells just before or just after irradiation to obtain the normal-tissue sparing effect.

  9. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  10. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation.

    Science.gov (United States)

    Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming

    2016-10-01

    Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Multiplicação in vitro do porta-enxerto de macieira cv. Marubakaido: efeito da orientação do explante no meio de cultura In vitro multiplication of the apple rootstock cv. Marubakaido: effect of the orientation of explant in the medium of culture

    Directory of Open Access Journals (Sweden)

    ALAN CRISTIANO ERIG

    2002-08-01

    Full Text Available Objetivou-se avaliar o efeito da orientação do explante, vertical ou horizontal, no meio de cultura, na multiplicação in vitro, do porta-enxerto de macieira cv. Marubakaido. O meio de cultura utilizado foi o MS com N (nitrogênio reduzido a ¾ da concentração original, 100mg.L-1 de mio-inositol, 40g.L-1 de sacarose e 6g.L-1 de ágar, suplementado com 4,44mM de BAP (6-benzilaminopurina e 0,2ml.L-1 de PPM TM ("Plant Preservative Mixture". Segmentos caulinares com duas gemas e o ápice excisado foram utilizados como explantes. Após a inoculação, os frascos com os explantes foram incubados a 16 horas de fotoperíodo, à temperatura de 25±2ºC, com radiação de 25µmoles.m-2.s-1. O número de brotações, o número de gemas por explante, a taxa de multiplicação e a altura da brotação maior foram avaliados aos quarenta dias de cultivo. O maior número de brotações, o maior número de gemas e a maior taxa de multiplicação foram obtidos com o explante na orientação horizontal no meio de cultura. Não houve diferença significativa quanto à orientação vertical e horizontal do explante no meio de cultura para a altura da brotação maior.The aim of this study was evaluate the effect of the vertical and the horizontal orientation of the explant in the culture medium, in the in vitro multiplication, for the apple rootstock cv. Marubakaido. The culture medium used was the MS with N reduced to ¾ of the original concentration, myo-inositol (100mg.L-1, sucrose (40g.L-1 and agar (6g.L-1, suplemented with BAP (4.44mM and PPM TM (0.2ml.L-1. Stem segments with two buds and the apex excised were used as explants. After the inoculation, the flasks with the explants were incubated at 16 hour of photoperiod, 25±2ºC temperature, with irradiation of 25µmoles.m-2.s-1. The number of shoots and buds, the rate of multiplication and the height of the larger shoot were evaluated after 40 days of cultivation. The highests shoot number, number of buds

  12. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture.

    Science.gov (United States)

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X Lucas

    2015-04-13

    Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

  13. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule.

    Directory of Open Access Journals (Sweden)

    Xin Wen

    Full Text Available Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA. Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1-/- mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1-/- mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.

  14. Amplification of rabbit adipose-derived stem cells using explants culture method%组织块贴壁法扩增兔脂肪干细胞

    Institute of Scientific and Technical Information of China (English)

    刘琴; 王丽平; 喻晶; 陈芳; 刁波; 张宜

    2014-01-01

    BACKGROUND:The rabbit adipose-derived stem cells are mostly isolated by type I col agenase digestion, but rarely by explants culture method. OBJECTIVE:To isolate rabbit adipose-derived stem cells for adipogenic and osteogenic differentiation. METHODS:The rabbit adipose-derived stem cells were isolated from rabbit adipose by explants culture method, and cultured in vitro fol owed by morphological observation. The grow curve and cellsurface markers CD29, CD44, CD45 of passage 3 cells were analyzed respectively by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry;cells from the third passages were induced for adipogenic and osteogenic differentiation by different revulsants, and cells were examined by oil red O staining and alizarin red staining . RESULTS AND CONCLUSION:The rabbit adipose-derived stem cells cultured in vitro exhibited a spindle-shaped appearance and could rapidly expand. Flow cytometry analysis revealed that the third passage of rabbit adipose-derived stem cells was positive for CD29, CD44, but negative for CD45. Rabbit adipose-derived stem cells were positive for oil red O staining at 14 days of adipogenic induction, and positive for alizarin red staining at 14 days of osteogenic induction. In conclusion, we could successful y isolate rabbit adipose-derived stem cells using explants culture method.%背景:研究显示兔脂肪干细胞的体外分离方法大多数为Ⅰ型胶原酶消化法,采用组织块贴壁法扩增兔脂肪干细胞尚不多见。  目的:采用组织块贴壁法从兔脂肪组织中分离培养兔脂肪干细胞,并进行成脂、成骨的诱导分化。  方法:采用组织块贴壁法分离出兔脂肪干细胞,进行体外培养,观察其形态特征。取对数生长期的第3代细胞,用MTT法绘制其生长曲线;流式细胞仪检测其表面抗原CD29、CD44、CD45的表达情况;分别用成脂和成骨诱导培养液诱导其向脂肪细胞和成骨细胞

  15. Prostaglandin E2 role in inhibition of joint cartilage collagen destruction in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    E V Chetina

    2009-01-01

    Full Text Available Prostaglandin E2 role in inhibition of articular cartilage collagen degradation in patients with osteoarthritis. Objective. To assess prostaglandin E2 (PGE2 role in inhibition of type II collagen digestion in explants of articular cartilage of pts with osteoarthritis (OA. Material and methods. Explants of articular cartilage of pts with OA were cultured with PGE2 1pg to 10 ng/ml. Type II collagen digestion was assessed with immuno-enzyme assay. Gene expression was evaluated with PCR in real time. Results. PGE2 10 pg/ml as well as transforming growth factor β2 (TGFβ2 suppressed type II collagen digestion in explants of articular cartilage of pts with OA. This concentration of PGE2 did not suppress proteoglycan (aggrecan degradation. Gene expression analysis in 5 OA pts showed that PGE2 10 pg/ml suppressed metallomonooxigenase (MMP-13, MMP-1 and marker of chondrocyte hypertrophy type X collagen (COL10A1 as well as proinflammatory cytokines interleukine (IL-1β and tumor necrosis factor (TNFα. Naproxen, nonselective cyclooxygenase(COX-2 and 1 inhibitor concentration from 5 to 30 mcg/ml blocked TGFβ2 induced collagen digestion inhibition proving that PGE2 mediate influence of this growth factor. Naproxen concentration 5 mcg/ml increased collagen degradation. Conclusion. The study showed that PGE2 is a chondroprotector because it is able to suppress selectively OA pts cartilage collagen degradation. Beside that cartilage chondrocyte hypertrophy in OA connected functionally with increased collagen digestion is also regulated by low concentrations of PGE2

  16. 锯叶班克木Banksia serrata外植体的选择及消毒方法的研究%Study on selection and sterilization of explants of Banksia serrata in tissue culture

    Institute of Scientific and Technical Information of China (English)

    马琳; 何丽娜; 姜岩; 潘会堂

    2011-01-01

    Banksia serrata is one of the perennial woody species belonging to Proteaceae family. Its surface is densely tomentose, resulting in extremely high pollution rate of explants in tissue culture. The effects of explants types, seasons, bud positions, and sterilization method on explants survival were studied. The results show that the optimal months to take explants were from October to December, with the pollution rate below 30% and the survival rate of 63.3%. The optimal explants were cut from the upper part of setni-lignified softwood steins. The best sterilization method was that the explants were washed with 1 000 times dilution of carbendazim for three times, and then dipped in 4% NaCIO + 0.01% Tween 80 for 12 min, and the explants pollution rate was reduced to 26.7%. However, both alcohol and HgCl, solutions killed the explants in a short time, and was not suitable for explants disinfection.%锯叶班克木为山龙眼科班克木属的木本花卉,全株密被绒毛是影响组培启动培养的主要原因之一.为成功建立锯叶班克木的组培体系,系统地研究了外植体类型、取材方法、灭菌方法等对启动培养外植体消毒效果的影响.结果表明,10-12月份采取的枝条最适合做外植体,污染率在30%以下,外植体存活率最高可达63.3%;半木质化枝条的中上部为最佳的外植体取材部位,顶芽虽然污染率低但存活率也低,下部茎段污染率较高,均不适宜作为外植体材料;外植体灭菌的最佳方法为:用1 000倍的多菌灵溶液清洗外植体然后用4%NaClO+0.01%吐温80处理12 min,启动培养污染率可降低至26.7%.酒精和HgCl2均可在短时间内杀死外植体,不适合用于外植体的灭菌.

  17. Application of stem-cell media to explant culture of human periosteum: An optimal approach for preparing osteogenic cell material

    Directory of Open Access Journals (Sweden)

    Kohya Uematsu

    2013-10-01

    Full Text Available As part of our clinical tests on bone regeneration using cultured periosteal sheets, here, we prepared cultured periosteal sheets in two types of stem-cell culture media, STK1 and STK3. Human periosteum was expanded either in 1% human serum–supplemented STK1 for 28 days, in 1% human serum–supplemented STK1 for 14 days followed by 1% human serum–supplemented STK3 for 14 days (1% human serum–supplemented STK1+3, or in 10% fetal bovine serum–supplemented Medium 199 for 28 days (control. Cultured periosteal sheet diameter and DNA content were significantly higher, and the multilayer structure was prominent in 1% human serum–supplemented STK1 and 1% human serum–supplemented STK1+3. The messenger RNA of osteoblastic markers was significantly upregulated in 1% human serum–supplemented STK1+3. Osteopontin-immunopositive staining and mineralization were evident across a wide area of the cultured periosteal sheet in 1% human serum–supplemented STK1+3. Subcutaneous implantation in nude mice following expansion in 1% human serum–supplemented STK1+3 produced the highest cultured periosteal sheet osteogenic activity. Expansion in 1% human serum–supplemented STK1+3 successfully induced cultured periosteal sheet growth while retaining osteogenic potential, and subsequent osteoblastic induction promoted the production of homogeneous cell material.

  18. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  19. The study of Red Raspberry explant selection and tissue culture techniques%红树莓外植体选择及组织培养技术研究

    Institute of Scientific and Technical Information of China (English)

    王小军; 刘春; 张黎

    2015-01-01

    In this study, the use of red raspberry axillary buds as explants different design culture different treatment, screening out the best explant in tissue culture, red raspberry bud induction, best bud proliferation and rooting medium, the establishment of a red raspberry tissue culture system to achieve a rapid breeding of red raspberry plantlets.%利用红树莓不同腋芽作为外植体,设计不同处理的培养基,开展红树莓组织培养最佳外植体、芽诱导、芽增殖及生根培养最佳培养基筛选实验,建立了红树莓的组培快繁体系,实现了红树莓组培苗的快速繁殖。

  20. Eye extract improves cell migration out of lymphoid organ explants of L. vannamei and viability of the primary cell cultures.

    Science.gov (United States)

    Li, Wenfeng; Van Tuan, Vo; Van Thuong, Khuong; Bossier, Peter; Nauwynck, Hans

    2015-08-01

    Since no cell line from shrimp has been established up till now, an optimization of the primary cell culture protocol is necessary. In this context, the effect of extracts (supernatant of a 1:50 (w/v) suspension) from different shrimp organs (muscle, brain, ganglia, eyestalk, ovary, and eye) on the performance of primary lymphoid cell cultures was evaluated. Ten percent of eye extract and 3% of ovary extract enhanced maximally the migration and survival of cells of the lymphoid organ of Litopenaeus vannamei significantly at 48, 96, and 144 h post seeding. Extracts from the eyestalk (10%), muscle (10%), and brain (1%) significantly promoted the migration and survival of cells at 48 and 96 h post seeding but not anymore at 144 h post seeding. In conclusion, it may be advised to add 10% of eye extract or 3% of ovary extract to cells for the maximal health of primary cell cultures from the lymphoid organ of L. vannamei.

  1. Mechanical Compression of Articular Cartilage Induces Chondrocyte Proliferation and Inhibits Proteoglycan Synthesis by Activation of the Erk Pathway: Implications for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Ryan, James A.; Eisner, Eric A.; DuRaine, Grayson; You, Zongbing; Reddi, A. Hari

    2013-01-01

    Articular cartilage is recalcitrant to endogenous repair and regeneration and thus a focus of tissue engineering and regenerative medicine strategies. A pre-requisite for articular cartilage tissue engineering is an understanding of the signal transduction pathways involved in mechanical compression during trauma or disease. We sought to explore the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) pathway in chondrocyte proliferation and proteoglycan synthesis following acute mechanical compression. Bovine articular cartilage explants were cultured with and without the ERK 1/2 pathway inhibitor PD98059. Cartilage explants were statically loaded to 40% strain at a strain rate of 1−sec for 5 seconds. Control explants were cultured under similar conditions but were not loaded. There were four experimental groups: 1) no load without inhibitor 2) no load with the inhibitor PD98059, 3) loaded without the inhibitor, and 4) loaded with the inhibitor PD98059. Explants were cultured for varying durations, from 5 minutes to 5 days. Explants were then analyzed by biochemical and immunohistochemical methods. Mechanical compression induced phosphorylation of ERK 1/2, and this was attenuated with the ERK 1/2 pathway inhibitor PD98059 in a dose-dependent manner. Chondrocyte proliferation was increased by mechanical compression. This effect was blocked by the inhibitor of the ERK 1/2 pathway. Mechanical compression also led to a decrease in proteoglycan synthesis that was reversed with inhibitor PD98059. In conclusion, the ERK 1/2 pathway is involved in the proliferative and biosynthetic response of chondrocytes following acute static mechanical compression. PMID:19177463

  2. The Effect of Explant Node Position on the Amount and Type of Bacterial Contamination in Hazelnut Shoot Cultures

    Science.gov (United States)

    New hazelnut (Corylus avellana L.) cultivars resistant to eastern filbert blight are in demand and micropropagation is used to rapidly increase plant availability. Hazelnut trees contain many endogenous microorganisms, making it difficult to initiate axenic cultures. This study was designed to dete...

  3. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells.

    Science.gov (United States)

    Franzen, A; Heinegard, D; Solursh, M

    1987-01-01

    The initiation of synthesis and the accumulation of four cartilage matrix proteins (type II collagen and three noncollagenous proteins, one of Mr 148, one of Mr 59, and an oligometric protein of Mr above 500 with 100-kDa subunits, respectively) were studied in developing mouse limbs and in cultures of limb bud mesenchyme by means of immunolocalization. On day 13 of gestation, type II collagen was observed throughout the entire humerus, whereas the 148-kDa protein was localized only in the central portion. Neither the 100-kDa-subunit protein nor the 59-kDa protein could be demonstrated in the humerus at that stage. On day 14 1/2, type II collagen and the 148-kDa protein were codistributed throughout the humerus. The 100-kDa-subunit protein was detectable in the periphery of the humerus, whereas little 59-kDa protein could yet be demonstrated. On day 18, all four proteins being studied could be detected immunologically in the developing mouse humerus. They differed in immunolocalization. Type Ii collagen, the 148-kDa protein, and the 100-kDa-subunit protein were codistributed throughout the distal and proximal parts of the cartilage. However, the 148-kDa protein could no longer be detected immunochemically in the outermost part of the cartilage in the proximal shoulder joint. The 148-kDa protein codistributed with type II collagen and the 100-kDa-subunit protein in the distal cartilaginous region, where joint development was less advanced. On the other hand, the 59-kDa protein was not demonstrated directly within the hyaline cartilaginous structures, but surrounded the entire structure. This protein was also present in the same part of the proximal joint region as that in which the 148-kDa protein was not detected. To develop an in vitro model for studies of skeletogenesis, mesenchymal cells prepared from mouse limb buds were cultured as micromass cultures at high initial cell density to favor chondrogenesis. On day 3 of culture, type II collagen was the only protein

  4. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  5. Cultura in vitro de embriões e de gemas de mudas de pau-rosa (Aniba rosaeodora Ducke Culture in vitro of rosewood (Aniba rosaeodora Ducke embryos´seeds and buds explants

    Directory of Open Access Journals (Sweden)

    Lucia Handa

    2005-01-01

    Full Text Available Este trabalho teve como objetivo o estabelecimento in vitro de embriões e de gemas de mudas de pau-rosa (Aniba rosaeodora Ducke livres de contaminações e de oxidação fenólica. As gemas foram obtidas da rebrota de mudas cultivadas em viveiro e os embriões a partir de sementes em diversos estágios de maturação. Para a assepsia dos explantes foram utilizados dois antibiótico (Ampicilina e Agrimicina, etanol (70% e hipoclorito de sódio, em concentrações e tempo de exposição variando em função do tratamento. Para o controle da oxidação foram utilizados imersão em ácido ascórbico (250 mg/l e PVP (Polivinilpirrolidona no meio Murashige & Skoog (MS. O delineamento estatístico empregado foi o inteiramente ao acaso com tratamentos e repetições em função do tipo de explante. Foi observado 71% de sobrevivência e 53% de germinação de embriões tratados com hipoclorito de sódio (50% e 2% de cloro ativo por 10 minutos e inoculados em meio MS contendo 20 mg/l de água de côco após 45 dias. As gemas das rebrotas de mudas tratadas com solução de Sulfato de Estreptomicina (Agrimicina na concentração de 500 mg/l (1h apresentaram 51% de sobrevivência. Quando submetidas ao pré-tratamento com o emprego de bomba a vácuo (180 mmHg contendo a Agrimicina (500 mg/l, apresentaram 25% de sobrevivência.This study deals with the establishment in vitro of Aniba rosaeodora Ducke explants, free from fungical and endogenous contaminations and phenolic oxidation. Bud explants and embryos' seeds from many maturation stages were used in this trial. The explants were disinfected with Ampicilin antibiotic, Streptomicine Sulphate (Agrimicina, etanol (70%, sodium hipoclorite in many concentrations and exposure time acording to the type of explant. For the phenolic oxidation control, the immersion on ascorbic acid and PVP (Polyvinilpirrolidone in culture medium were used. The explants were inoculated in MS medium. The statistical design was the

  6. Tensorial electrokinetics in articular cartilage.

    Science.gov (United States)

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  7. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates.

    Directory of Open Access Journals (Sweden)

    Saskia Schadow

    Full Text Available Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA. Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen fragments. Using biophysical techniques, like MALDI-TOF-MS, AFM, and NMR, the molecular weight distribution and aggregation behavior of collagen hydrolysates from bovine origin (CH-Alpha®, Peptan™ B 5000, Peptan™ B 2000 were determined. To investigate the metabolism of human femoral OA cartilage, explants were obtained during knee replacement surgery. Collagen synthesis of explants as modulated by 0-10 mg/ml collagen hydrolysates was determined using a novel dual radiolabeling procedure. Proteoglycans, NO, PGE(2, MMP-1, -3, -13, TIMP-1, collagen type II, and cell viability were determined in explant cultures. Groups of data were analyzed using ANOVA and the Friedman test (n = 5-12. The significance was set to p≤0.05. We found that collagen hydrolysates obtained from different sources varied with respect to the width of molecular weight distribution, average molecular weight, and aggregation behavior. None of the collagen hydrolysates tested stimulated the biosynthesis of collagen. Peptan™ B 5000 elevated NO and PGE(2 levels significantly but had no effect on collagen or proteoglycan loss. All collagen hydrolysates tested proved not to be cytotoxic. Together, our data demonstrate for the first time that various collagen hydrolysates differ with respect to their chemical composition of collagen fragments as well as by their pharmacological efficacy on human chondrocytes. Our study underscores the importance that each collagen hydrolysate

  8. Effects of leptin on gonadotropin-releasing hormone release from hypothalamic-infundibular explants and gonadotropin release from adenohypophyseal primary cell cultures: further evidence that fully nourished cattle are resistant to leptin.

    Science.gov (United States)

    Amstalden, M; Harms, P G; Welsh, T H; Randel, R D; Williams, G L

    2005-01-01

    In rodents and pigs, leptin stimulates the release of gonadotropin-releasing hormone (GnRH) from hypothalamus, gonadotropins from adenohypophyseal (AP) explants and cells, and luteinizing hormone (LH) from full-fed animals. In the current studies, we investigated whether leptin could stimulate the release of GnRH from bovine hypothalamic-infundibular (HYP) explants and gonadotropins from bovine adenohypophyseal cells. In Experiment 1A, HYP explants collected from 17 bulls and seven steers were incubated with Krebs-Ringer bicarbonate buffer (KRB) containing 0, 10, 100, or 1000 ng/ml recombinant ovine leptin (oleptin) for 30 min after a 3-h period of equilibration. None of the doses of leptin affected (P > 0.05) GnRH release into the media. In Experiment 1B, HYP explants collected from six steers were incubated with KRB containing 0 or 1000 ng/ml oleptin for two consecutive 30-min periods and challenged with 60 mM K(+) afterwards. Leptin did not affect (P > 0.05) basal or K(+)-stimulated release of GnRH. In Experiment 2, adenohypophyses from steers were collected at slaughter and cells dispersed and cultured for 4 days. On day 5, cells were treated with media alone (control) or media containing 10(-11), 10(-10), 10(-9), and 10(-8)M oleptin. Three independent replications were performed. None of the doses of leptin stimulated (P > 0.05) the release of LH. Although leptin at 10(-11), 10(-10), and 10(-9)M increased (P release of FSH compared to control-treated cells in one replicate, this effect was not confirmed in the other two replicates. Results support the hypothesis that leptin has limited effects on the release of GnRH and gonadotropins in full-fed cattle and reiterate important species differences in responsiveness to leptin.

  9. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  10. Human adipose stromal cells (ASC for the regeneration of injured cartilage display genetic stability after in vitro culture expansion.

    Directory of Open Access Journals (Sweden)

    Simona Neri

    Full Text Available Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.

  11. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available BACKGROUND: Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE: TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of

  12. Biodegradable Thermogel as Culture Matrix of Bone Marrow Mesenchymal Stem Cells for Potential Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan-bo Zhang; Jian-xun Ding; Wei-guo Xu; Jie Wu; Fei Chang; Xiu-li Zhuang; Xue-si Chen

    2014-01-01

    Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst.The amphiphilic copolymer self-assembled into micelles in aqueous solutions,and formed hydrogels as the increase of temperature at relatively high concentrations (> 15 wt%).The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments.The good cellular and tissular compatibilities of the thermogel were demonstrated.The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEG-PLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering.

  13. 改良组织块酶消化法培养人龋损牙髓干细胞的实验研究%Culture of human caries dental pulp stem cells with combined explants method and enzymatic separation method

    Institute of Scientific and Technical Information of China (English)

    麻丹丹; 高杰; 吴补领

    2011-01-01

    AIM; To compare the successfulness and the growth of human caries dental pulp stem cells(hCDPSCs) cultured with three different methods. METHODS: Twenty-five normal and caries human third molars were collected, the dental pulp tissues were cultured by the tissue explant method, tissue-explan collagenase digestion method and the combination of explant method and enzymatic separation method, respectively. The adherence of the explants, the morphology and quantity of cells were observed under a phase-contrast microscope. Culture duration was recorded. The clones were identified by expression of Stro-1 and CD90 and the growth curve of normal DPSCs and CDPSCs was drawn. RESULTS; Human normal DPSCs and CDPSCs could be cultured by all the three methods. A large number of human normal DPSCs and CDPSCs were cultured by the com hined explant method and enzymatic separation method in a shorter time, and these cells exhibited more vitality and more different morphologies. The growth rate of CDPSCs was higher than that of normal DPSCs . CONCLISION: The improved combination of explant method and enzymatic separation method is an ideal method for the primary culture of hCDPSCs in vitro, it may provide a methodological foundation for studying the mechanism of the formation of the tertiary dentine when the tooth was damaged.%目的:比较3种方法培养人龋损牙髓干细胞的成功率和细胞生长状态,以探求人龋损牙髓干细胞的最佳培养方法.方法:取18~22岁成人新鲜正常和龋损离体第三磨牙各25个,采用组织块法、酶消化法、改良组织块酶消化法培养牙髓干细胞.通过倒置显微镜观察组织块的贴壁以及细胞的形态和数量,并记录培养所需时间;有限稀释法纯化牙髓干细胞,流式细胞仪检测正常和龋损牙髓干细胞表面标记物Stro-1、CD 90的表达情况,绘制正常和龋损牙髓干细胞生长曲线.结果:组织块法、酶消化法和改良组织块酶消化法均可以培养

  14. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  15. Research on Explants Sterilization Technique in Staphylea bumalda DC.Tissue Culture Process%省沽油组培过程中外植体灭菌技术的研究

    Institute of Scientific and Technical Information of China (English)

    朱秀蕾; 毕璋友; 饶敏

    2012-01-01

    [Objective] The aim was to seek appropriate explants sterilization method in Staphyiea bumalda DC. Tissue culture process. [ Method] The comparative method was used to study the effect of alcohol , HgCl2, HgCl2 + alcohol combination in different sterilization time on explants growth. [ Result] The results showed that the appropriate explant sterilization technology was the shoot tips survival rate was 100% with 1% HgCl2+70% alcohol ,processing time was 5 min + 50 s respectively; The stem sections survival rate was 95% with 1% HgCl2,processing time was 15 min; The young leaves survival rate was 85% with 1% HgCl2, processing time was 12 min. [Conclusion] 1% HgCl2 + 70% alcohol, 1% HgCl, was effective sterilant of Staphyiea bumalda DC. Explants.%[目的]寻求省沽油组织培养中适宜的外植体灭菌方法.[方法]研究了70%乙醇、0.1% HgCl2、0.1% HgCl2+ 70%乙醇组合 在不同灭菌时间内对外植体生长的影响.[结果]适宜的外植体灭菌技术:茎尖用1% HgCl2 +70%乙醇处理时间分别为5min +50 s,成活率100%;茎段用1% HgCl2处理时间为15 m,成活率95%;幼叶用1%HgCl2处理时间为12 min,成活率85%.[结论]1% HgCl2+70%乙醇、1% HgCl2是省沽油外植体的有效灭菌剂.

  16. CALLUS INDUCTION FROM FLORAL EXPLANTS OF CUPUASSU

    Directory of Open Access Journals (Sweden)

    MARIA DAS GRAÇAS RODRIGUES FERREIRA

    2013-01-01

    Full Text Available There are few studies related to the in vitro cultivation of plants from theTheobroma genus and no effective micropropagation protocols for T.grandiflorum. The aim of this study was to evaluate the calli formation in cupuassu floral explants, targeting their organogenic or embryogenicdevelopment. Experiments were conducted in the Plant Tissue Culture Laboratory of EMBRAPA, Porto Velho, Rondônia, Brazil. Floral parts from unopened immature flower buds taken from seedless cupuassu trees were sterilized and employed as a source of explants. These explants were cultivated in Petri dishes in an induction medium consisting of MS salts and vitamins, supplemented with glycine(3 mg.L-1, lysine (0,4 mg.L-1, leucine (0,4 mg.L-1, arginine (0,4 mg.L-1, tryptophan (0,2 mg.L-1, 2,4-D (1 mg.L-1, kinetin (0,25 mg.L-1, coconut water (50 ml.L-1, sucrose (40 g.L-1, Gelrite (2,2 g.L-1 and pH adjusted to 5,8. Cultures were maintained in the dark for 3 weeks at 27°C and then subcultured for six weeks in medium without growth regulators supplemented with glycine (1 mg.L-1, lysine (0,2 mg.L-1, leucine (0,2 mg.L-1, arginine (0,2 mg.L-1, tryptophan (0,1 mg.L-1, coconut water (100 ml.L-1, sucrose (40 g.L-1, Gelrite (2,2 g.L-1 and pH 5,8. We used a completely randomized design with 10 replications of 5 explants per plate and four different explant sources: staminode, petal, ligule and ovary. As a result, we obtained a highercalli formation in theinduction medium when ovaries were used as source of explants. However, there was no development of somatic embryosor organogenic response in medium without growth regulators and further studies are being conducted.

  17. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    Directory of Open Access Journals (Sweden)

    MM Pleumeekers

    2014-04-01

    Full Text Available Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. This study evaluated the performance of culture-expanded human chondrocytes from ear (EC, nose (NC and articular joint (AC, as well as bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells both in vitro and in vivo. All cells (≥ 3 donors per source were culture-expanded, encapsulated in alginate and cultured for 5 weeks. Subsequently, constructs were implanted subcutaneously for 8 additional weeks. Before and after implantation, glycosaminoglycan (GAG and collagen content were measured using biochemical assays. Mechanical properties were determined using stress-strain-indentation tests. Hypertrophic differentiation was evaluated with qRT-PCR and subsequent endochondral ossification with histology. ACs had higher chondrogenic potential in vitro than the other cell sources, as assessed by gene expression and GAG content (p < 0.001. However, after implantation, ACs did not further increase their matrix. In contrast, ECs and NCs continued producing matrix in vivo leading to higher GAG content (p < 0.001 and elastic modulus. For NC-constructs, matrix-deposition was associated with the elastic modulus (R2 = 0.477, p = 0.039. Although all cells – except ACs – expressed markers for hypertrophic differentiation in vitro, there was no bone formed in vivo. Our work shows that cartilage formation and functionality depends on the cell source used. ACs possess the highest chondrogenic capacity in vitro, while ECs and NCs are most potent in vivo, making them attractive cell sources for cartilage repair.

  18. Morphogenetic responses of embryo culture of wheat related to environment culture conditions of the explant donor plant Respostas morfogenéticas de embriões de trigo em função do ambiente de cultivo da planta doadora de explantes

    Directory of Open Access Journals (Sweden)

    Dejan Dodig

    2010-01-01

    Full Text Available Availability of immature embryos as explants to establish wheat (Triticum aestivum L. by tissue culture can be limited by climatic factors and the lack of high quality embryos frequently hampers experimentation. This study evaluates the effects of rainfall, various temperature-based variables and sunshine duration on tissue culture response (TCR traits including callus formation (CF, regenerating calli (RC, and number of plants per embryo (PPE for 96 wheat genotypes of worldwide origin. The objectives of this study were to evaluate the significance of a particular climatic factor on TCR traits and to determine the period of wheat growth during which these factors were the most effective. The genotypes were grown in an experimental field during three seasons differing in meteorological conditions. The relationships between TCR traits and climatic factors within three time periods of wheat growth: 2, 6 and 10 weeks prior to embryo sampling were analysed by biplot analysis. The tissue culture traits were influenced at very different degrees by climatic factors: from 16.8% (RC to 69.8% (CF. Donor plant environment with high temperatures and low rainfalls reduced (p A disponibilidade de embriões imaturos para estabelecer plantas de trigo (Triticum aestivum L. por cultura de tecido pode ser limitada por fatores climáticos, e a falta de embriões de alta qualidade frequentemente dificulta a experimentação. Avaliou-se o efeito da chuva, de variáveis baseadas em temperatura e duração do brilho solar na resposta da cultura de tecido (RCT, incluindo a formação de calos (FC, regeneração dos calos (RC e número de plantas por embrião (NPPE, para 96 genótipos de trigo. Os objetivos foram a procura de algum fator climatico específico em alguma característica da RCT e a determinação do período do desenvolvimento do trigo no qual estes fatores são mais eficazes. Os genótipos foram obtidos num campo experimental durante três estações clim

  19. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  20. 酶预消化连续组织块法培养大鼠脂肪来源干细胞的研究%Culture of rat adipose-diverted stem cells by serial explant after enzymatic predigestion

    Institute of Scientific and Technical Information of China (English)

    李伯休; 程飚; 陈峥嵘

    2008-01-01

    Objective To isolate and culture adipose-diverted stem cells (ADSCs) in SD rats using serial explant after enzymatic predigestion, and compare, the results with that from Zuk's method. Methods Adipose tissue from groin area of one-month-old SD rats was divided into two groups. In group A, the adipose tissue was snipped into 8mm3 blocks after washed with D-Hank's solution. The tissue blocks were digested by 0.25% trypsin for 5 minutes and 0.1% collagenase type 1 for 20 minutes, and put on 1mm grid nylon net for 3 to 4 days of cultivation. The tissues were then removed to another culture flask. They were repeatedly cultured by serial explant method for three or four times. In group B, the adipose tissue was treated by Zuk's method. MTT was used to measure bioactivity of the culture and flow cytometry was used to detect surface markers of the stem cells. Results In both groups, the cells had typical morphological characteristics of stem cells and expressed adipose stem cell surface markers CD105 and CD44. Conclusion The adipose-diverted stem cells cultured by technique of enzymatic digestion and serial explant in vitro have the same characteristics of those cultured with Zuk's method. This technique can yield plenty of ADSCs samples during a short period of time and thus enables its practical use in ADSCs cultivation.%目的 采用胰蛋白酶+I型胶原酶预消化后连续组织块法进行SD大鼠脂肪来源干细胞的体外培养,并和Zuk的胶原酶消化法培养效果相比较,为脂肪来源干细胞的体外培养方法提供参考依据.方法 取1月龄SD大鼠腹股沟处脂肪组织,分A、B两组.A组使用D-Hank's液冲洗净后剪成8mm3左右组织块.0.25%胰蛋白酶消化5min后,0.1%I型胶原酶消化组织块20min,将组织块置于孔径1mm的尼龙网放至培养皿贴壁培养,3-4d后将组织块连同滤网放至下一培养皿中以连续组织块法培养3-4次.B组使用Zuk的胶原酶消化法培养.采用MTT检测方法对细胞增

  1. Effect of antibiotics on in vitro and in vivo avian cartilage degradation.

    Science.gov (United States)

    Peters, T L; Fulton, R M; Roberson, K D; Orth, M W

    2002-01-01

    Antibiotics are used in the livestock industry not only to treat disease but also to promote growth and increase feed efficiency in less than ideal sanitary conditions. However, certain antibiotic families utilized in the poultry industry have recently been found to adversely affect bone formation and cartilage metabolism in dogs, rats, and humans. Therefore, the first objective of this study was to determine if certain antibiotics used in the poultry industry would inhibit in vitro cartilage degradation. The second objective was to determine if the antibiotics found to inhibit in vitro cartilage degradation also induced tibial dyschondroplasia in growing broilers. Ten antibiotics were studied by an avian explant culture system that is designed to completely degrade tibiae over 16 days. Lincomycin, tylosin tartrate, gentamicin, erythromycin, and neomycin sulfate did not inhibit degradation at any concentration tested. Doxycycline (200 microg/ml), oxytetracycline (200 microg/ml), enrofloxacin (200 and 400 microg/ml), ceftiofur (400 microg/ml), and salinomycin (10 microg/ml) prevented complete cartilage degradation for up to 30 days in culture. Thus, some of the antibiotics did inhibit cartilage degradation in developing bone. Day-old chicks were then administered the five antibiotics at 25%, 100%, or 400% above their recommended dose levels and raised until 21 days of age. Thiram, a fungicide known to induce experimental tibial dyschondroplasia (TD), was given at 20 ppm. Birds were then killed by cervical dislocation, and each proximal tibiotarsus was visually examined for TD lesions. The results showed that none of these antibiotics significantly induced TD in growing boilers at any concentration tested, whereas birds given 20 ppm thiram had a 92% incidence rate.

  2. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  3. The influence of season collection of explants on micropropagation of peach rootstock GF-677

    Directory of Open Access Journals (Sweden)

    Elektra Spahiu

    2013-02-01

    Full Text Available The influence of season on the rate of multiplication on in vitro culture of peach rootstock GF- 677 was investigated on Murashige and Skoog (MS media, supplemented with GA3 0.1 mg/L and IAA 0.1mg/l. Benzyladenine (BAP at concentrations 1mg/l was used in the multiplication stage and 1mg/l IBA in the stage of rooting. Shoot-tip and nodal segment explants were collected from 5 years old rootstock GF-677 (Prunus persica x Prunus amygdalus in February 24th (from dormant shoots that have been sprouted in climatic room, March 22th, April 20th, May 18th and September 15th during the 2009 growing season and have been sterilized by sodium hypochlorite (NaOCl 10% for 20 min. The data on the effect of the season collection of the explants on number of shoots per explants, the mean shoot length and the percentage of rooted shoots were recorded six weeks after culture. In vitro performance of explants indicated a positive correlation between shoot proliferation and season collection The highest number of shoots per explants (3,5 was obtained on explants collected in March 22th (3,5, which was on a par with explants collected in February 24th (from shoots that have been sprouted in climatic room. Moreover, the highest shoot length was observed on explants collected on February and March (1,53cm and 1,505cm respectively. The percentage of rooted shoots from explants sampled on February was not markedly greater than those sampled on March. The number of shoots per explants, the shoot length and the percentage of rooted shoots on explants sampled in April, May and September were significantly lower than those sampled in February and March. The amount of chlorophyll a + b of the shoots coming from explants collected in March was markedly greater than those collected in February, April, May and September.

  4. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  5. Shark cartilage

    Science.gov (United States)

    ... sarcoma, that is more common in people with HIV infection. Shark cartilage is also used for arthritis, psoriasis, ... Neovastat) by mouth seems to increase survival in patients with advanced kidney cancer (renal cell carcinoma). This product has FDA “Orphan Drug ...

  6. Cartilage storage at 4 °C with regular culture medium replacement benefits chondrocyte viability of osteochondral grafts in vitro.

    Science.gov (United States)

    Qi, Jianhong; Hu, Zunjie; Song, Hongqiang; Chen, Bin; Xie, Di; Zhou, Lu; Zhang, Yanming

    2016-09-01

    Maintenance of articular cartilage allografts in culture media is a common method of tissue storage; however, the technical parameters of graft storage remain controversial. In this study, we examined the optimal temperature and culture medium exchange rate for the storage of osteochondral allografts in vitro. Cylindrical osteochondral grafts (n = 120), harvested from the talar joint surface of ten Boer goats, were randomly classified into four groups and stored under the following conditions: Group A1 was maintained at 4 °C in culture medium that was refreshed every 2 days; Group A2 was maintained at 4 °C in the same culture medium, without refreshing; Group B1, was maintained at 37 °C in culture medium that was refreshed every 2 days; Group B2, was maintained at 37 °C in the same culture medium, without refreshing. Chondrocyte viability in the grafts was determined by ethidium bromide/fluorescein diacetate staining on days 7, 21, and 35. Proteoglycan content was measured by Safranin-O staining. Group A1 exhibited the highest chondrocyte survival rates of 90.88 %, 88.31 % and 78.69 % on days 7, 21, and 35, respectively. Safranin O staining revealed no significant differences between groups on days 21 and 35. These results suggest that storage of osteochondral grafts at 4 °C with regular culture medium replacement should be highly suitable for clinical application.

  7. Osthole Inhibits Proliferation and Induces Catabolism in Rat Chondrocytes and Cartilage Tissue

    Directory of Open Access Journals (Sweden)

    Guoqing Du

    2015-08-01

    Full Text Available Background/Aims: Cartilage destruction is thought to be the major mediator of osteoarthritis. Recent studies suggest that inhibition of subchrondral bone loss by anti-osteoporosis (OP drug can protect cartilige erosion. Osthole, as a promising agent for treating osteoporosis, may show potential in treating osteoarthritis. The purpose of this study was to investigate whether Osthole affects the proliferation and catabolism of rat chondrocytes, and the degeneration of cartilage explants. Methods: Rat chondrocytes were treated with Osthole (0 μM, 6.25 μM, 12.5 μM, and 25 μM with or without IL1-β (10ng/ml for 24 hours. The expression levels of type II collagen and MMP13 were detected by western Blot. Marker genes for chondrocytes (A-can and Sox9, matrix metalloproteinases (MMPs, aggrecanases (ADAMTS5 and genes implicated in extracellular matrix catabolism were evaluated by qPCR. Cell proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA expression and fluorescence activated cell sorter. Wnt7b/β-catenin signaling was also investigated. Cartilage explants from two-week old SD rats were cultured with IL-1β, Osthole and Osthole plus IL-1β for four days and glycosaminoglycan (GAG synthesis was assessed with toluidine blue staining and Safranine O/Fast Green FCF staining, collagen type II expression was detected by immunofuorescence. Results: Osthole reduced expression of chondrocyte markers and increased expression of MMP13, ADAMTS5 and MMP9 in a dose-dependent manner. Catabolic gene expression levels were further improved by Osthole plus IL-1β. Osthole inhibited chondrocyte proliferation. GAG synthesis and type II collagen were decreased in both the IL-1β groups and the Osthole groups, and significantly reduced by Osthole plus IL-1β. Conclusions: Our data suggested that Osthole increases the catabolism of rat chondrocytes and cartilage explants, this effect might be mediated through inhibiting Wnt7b

  8. Optimization of the processes of sterilization and micropropagation of cup plant (Silphium perfoliatum L.) from apical explants of seedlings in in vitro cultures

    OpenAIRE

    2012-01-01

    Cup plant (Silphium perfoliatum L.) is a tall, reaching up to 2.5 m, perennial plant that represents the Asteraceae family. Silphium perfoliatum L. can be applied in medicine, animal feeding, and as a decorative, honey-producing and energy production plant which proves its multi-functional features. Sowing material currently available in Poland is insufficient, which justifies the present attempts at propagating these plants in in vitro cultures. Therefore, Silphium perfoliatum L. seed steril...

  9. Plant Regeneration of Sweet Potato via Somatic Embryogenesis from Different Explants

    Institute of Scientific and Technical Information of China (English)

    Ling ZHANG; Hongxuan XU; Baifu QIN; Zhihua LIA0; Min CHEN; Chunxian YANG; Yufan FU; Qitang ZHANG

    2012-01-01

    [Objective] This study aimed to regenerate plants of sweet potato (Ipomoea batatas) cultivar Xushu22 via somatic embryogenesis, using leaf and shoot apex as explants. [Method] The leaf and shoot apex of Xushu 22 were separately cultured on MSB medium and MSD medium. The induced embryogenic calluses were then cultured on MS medium. The regeneration frequency of leaf and shoot apex ex- plants were respectively calculated. [Result] The average frequency of leaf explants developing somatic callus was 95.69% compared to 30.56% in case of shoot apex explants. There were different types of morphogenic structures in the process of so- matic embryo development. Leaf explants gave a high regeneration frequency to 60.61%, while the regeneration frequency of shoot apices was 22%. In addition, no morphological variations were observed in the regeneration plants. [Conclusion] Leaf explant was better than shoot apices in plant regeneration of Xushu22 via somatic embryogenesis.

  10. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage.

    Science.gov (United States)

    Tchetina, Elena V; Markova, Galina A; Poole, A Robin; Zukor, David J; Antoniou, John; Makarov, Sergey A; Kuzin, Aleksandr N

    2016-01-01

    This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1-50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10-50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  11. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available This study reports the effects of the iron chelator deferoxamine (DFO on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM. Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA, AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  12. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    Directory of Open Access Journals (Sweden)

    A. Bakrudeen Ali Ahmed

    2012-01-01

    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  13. Production of gymnemic acid depends on medium, explants, PGRs, color lights, temperature, photoperiod, and sucrose sources in batch culture of Gymnema sylvestre.

    Science.gov (United States)

    Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V; Taha, Rosna Mat

    2012-01-01

    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  14. A Simple Method for Establishing Adherent Ex Vivo Explant Cultures from Human Eye Pathologies for Use in Subsequent Calcium Imaging and Inflammatory Studies

    Directory of Open Access Journals (Sweden)

    Sofija Andjelic

    2014-01-01

    Full Text Available A novel, simple, and reproducible method for cultivating pathological tissues obtained from human eyes during surgery was developed using viscoelastic material as a tissue adherent to facilitate cell attachment and expansion and calcium imaging of cultured cells challenged by mechanical and acetylcholine (ACh stimulation as well as inflammatory studies. Anterior lens capsule-lens epithelial cells (aLC-LECs from cataract surgery and proliferative diabetic retinopathy (PDR fibrovascular epiretinal membranes (fvERMs from human eyes were used in the study. We hereby show calcium signaling in aLC-LECs by mechanical and acetylcholine (ACh stimulation and indicate presence of ACh receptors in these cells. Furthermore, an ex vivo study model was established for measuring the inflammatory response in fvERMs and aLC-LECs upon TNFα treatment.

  15. Proliferation and differentiation of adult human dental pulp cells cultured by tissue explant method%组织块法培养成体人牙髓细胞的增殖及分化状态水

    Institute of Scientific and Technical Information of China (English)

    姜新朋; 张颖丽; 黄洋; 郭世梁

    2009-01-01

    并保持低分化状态.%BACKGROUND: Human pulp tissue has been known to be less, and exhibit poor tolerance to enzymatic digestion and less adherent cells after step-by-step digestion of trypsin and collagenase, thereby often leading to a failure of passage. Only several kinds of dental pulp cells with poor activity can be obtained by the tissue explant-collagenase digestion. OBJECTIVE: To investigate human dental pulp cells cultured in vitro by tissue explant method. DESIGN, TIME AND SETTING: A cytological observation was performed at Heping Campus and School of Stomatology, Jilin University from 2005 to 2007. MATERIALS: Healthy young human teeth extracted for orthodontic correction or impaction. METHODS: Pulp tissue from the third molar teeth was collected, cut into small blocks with a size of 1.0 mm×1.0 mm×0.5 mm under the infiltration of small amount of Dulbecco's modified eagle's medium, and then transferred into a 6-well plate containing culture medium for incubation in a 5% CO2 and saturated humidity atmosphere at 37 ℃. During the process of incubation, pulp tissue was adjusted at a density of 3-6 blocks/well, with an equal spacing of 0.5 cm and the 6-well plate was kept inverted. Three hours later, the 6-well plate was turned over to make tissue blocks adhering to the plate wall. Culture was continued after addition of 2 mL of culture medium. Culture medium was renewed every 4-6 days. After 6-15 days, cells emigrated from the edge of tissue blocks and call outgrowth appeared around each tissue block. When cells closed to confluency, a digestion procedure of 2.0-3.0 minutes (0.25% trypsin and 0.02% ethylenadiamine tetraacetic acid) was followed by passage culture at a proportion of 1: (2-3) in 25 mL of culture flasks. Purified fibroblast-like cells were gradually obtained from primarily cultured cells by repeated digestion and passage. MAIN OUTCOME MEASURES: Cellular morphology was identified by immunohistochemistry; secreted dental pulp cells were determined using alkaline phosphatase activity

  16. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  17. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells. PMID:27648449

  18. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants

    Institute of Scientific and Technical Information of China (English)

    Lian LI; Zi-qiang LUO; Fu-wen ZHOU; Dan-dan FENG; Cha-xiang GUAN; Chang-qing ZHANG; Xiu-hong SUN

    2004-01-01

    AIM: To investigate the effect of vasoactive intestinal peptide (VIP) on pulmonary surfactants (PS) phospholipid synthesis in cultured lung explants. METHODS: Lung explants were cultured with serum-free medium, [methyl-3H]choline incorporation, total phospholipid, phosphatidylcholine, activity of choline-phosphate cytidylyltransferase (CCT) and CCTα mRNA level in lung explants were determined. RESULTS: (1) VIP (10-10-10-7 mol/L) for 16 h promoted [methyl-3H]choline incorporation in dose dependence and VIP (10-8 mol/L) for 2 h-16 h promoted [methylz3H]choline incorporation in time dependence. (2) VIP (10-8 mol/L) enhanced the contents of total phospholipidsand phosphatidylcholine in lung explants. (3) VIP (10-10-10-7 mol/L) elevated microsomal CCT activity of lung explants in dose dependence. (4) VIP (10-8 mol/L) increased expression of CCTα mRNA in lung explants and alveolar type Ⅱ cells (ATII). (5) [D-P-Cl-Phe(6)-Leu(17)]-VIP (10-6 mol/L), a VIP receptors antagonist, abolished the increase of [3H]choline incorporation, microsomal CCT activity and CCTα mRNA level induced by VIP (10-8 mol/L) in lung explants. CONCLUSION: VIP could enhance synthesis of phosphatidylcholine, the major component of pulmonary surfactants by enhancing microsomal CCT activity and CCTα mRNA level via VIP receptormediated pathway.

  19. An ex vivo porcine nasal mucosa explants model to study MRSA colonization.

    Directory of Open Access Journals (Sweden)

    Pawel Tulinski

    Full Text Available Staphylococcus aureus is an opportunistic pathogen able to colonize the upper respiratory tract and skin surfaces in mammals. Methicillin-resistant S. aureus ST398 is prevalent in pigs in Europe and North America. However, the mechanism of successful pig colonization by MRSA ST398 is poorly understood. To study MRSA colonization in pigs, an ex vivo model consisting of porcine nasal mucosa explants cultured at an air-liquid interface was evaluated. In cultured mucosa explants from the surfaces of the ventral turbinates and septum of the pig nose no changes in cell morphology and viability were observed up to 72 h. MRSA colonization on the explants was evaluated followed for three MRSA ST398 isolates for 180 minutes. The explants were incubated with 3×10(8 CFU/ml in PBS for 2 h to allow bacteria to adhere to the explants surface. Next the explants were washed and in the first 30 minutes post adhering time, a decline in the number of CFU was observed for all MRSA. Subsequently, the isolates showed either: bacterial growth, no growth, or a further reduction in bacterial numbers. The MRSA were either localized as clusters between the cilia or as single bacteria on the cilia surface. No morphological changes in the epithelium layer were observed during the incubation with MRSA. We conclude that porcine nasal mucosa explants are a valuable ex vivo model to unravel the interaction of MRSA with nasal tissue.

  20. Chondrocalcin is internalized by chondrocytes and triggers cartilage destruction via an interleukin-1β-dependent pathway.

    Science.gov (United States)

    Bantsimba-Malanda, Claudie; Cottet, Justine; Netter, Patrick; Dumas, Dominique; Mainard, Didier; Magdalou, Jacques; Vincourt, Jean-Baptiste

    2013-01-01

    Chondrocalcin is among the most highly synthesized polypeptides in cartilage. This protein is released from its parent molecule, type II pro-collagen, after secretion by chondrocytes. A participation of extracellular, isolated chondrocalcin in mineralization was proposed more than 25 years ago, but never demonstrated. Here, exogenous chondrocalcin was found to trigger MMP13 secretion and cartilage destruction ex vivo in human cartilage explants and did so by modulating the expression of interleukin-1β in primary chondrocyte cultures in vitro. Chondrocalcin was found internalized by chondrocytes. Uptake was found mediated by a single 18-mer peptide of chondrocalcin, which does not exhibit homology to any known cell-penetrating peptide. The isolated peptide, when artificially linked as a tetramer, inhibited gene expression regulation by chondrocalcin, suggesting a functional link between uptake and gene expression regulation. At the same time, the tetrameric peptide potentiated chondrocalcin uptake by chondrocytes, suggesting a cooperative mechanism of entry. The corresponding peptide from type I pro-collagen supported identical cell-penetration, suggesting that this property may be conserved among C-propeptides of fibrillar pro-collagens. Structural modeling localized this peptide to the tips of procollagen C-propeptide trimers. Our findings shed light on unexpected function and mechanism of action of these highly expressed proteins from vertebrates.

  1. In vitro direct shoot regeneration from proximal, middle and distal segment of Coleus forskohlii leaf explants

    OpenAIRE

    Krishna, Gaurav; P. Sairam Reddy; Anoop Nair, N.; P. W. Ramteke; Bhattacharya, P. S.

    2010-01-01

    Coleus forskohlii is an endangered multipurpose medicinal plant that has widespread applications. In spite of this, there have been few attempts to propagate its cultivation in India. The present communication presents an in vitro rapid regeneration method using leaf explants of Coleus forskohlii through direct organogenesis. Leaf explants that were excised into three different segments i.e. proximal (P), middle (M) and distal (D) were cultured on Murashige and Skoog (MS) basal medium supplem...

  2. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    NARCIS (Netherlands)

    M.M. Pleumeekers (Mieke); L. Nimeskern (Luc); J.L.M. Koevoet (Wendy); N. Kops (Nicole); R.M.L. Poublon (René); K.S. Stok (Kathryn); G.J.V.M. van Osch (Gerjo)

    2014-01-01

    textabstractAbstract Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. T

  3. Study on Tissue Culture and Effect of Heat-shock Treatment on Explant Browing of Phalaenopsis spp.%蝴蝶兰组培快繁及热激处理抑制褐变的研究

    Institute of Scientific and Technical Information of China (English)

    酒立君; 王飞; 杨凤美; 张庆雨; 余亮

    2012-01-01

    that:(l)There were significant differences on adventitious bud induction rates among different varieties, and so were propagation/differentiation coefficients. In the experiment, it had been observed that high flower stalk bud induction rates and propagation coefficients were accompanied with high leaf in vitro shoot induction rates and differentiation coefficients. (2)The major influence factor of shoot proliferation in vitro was 6-benzylaminopurine (6-BA) , followed by coconut milk. The suitable medium for adventitious bud propagation of 'Neyshan guniang' and 'Brother Dream "L" ' was 1/2 MS+7.0mg·L-1 6-BA + 0. 2 mg · L-1 NAA+100 mL · L-1 coconut milk,and the medium 1/2MS+ 5. 0 mg · L-1 6-BA+0. 2 mg · L-1 NAA + 50 mL · L-1 coconut milk was appropriate for the adventitious bud propagation of 'Kaleidoscope'. (3)Explants browning could be significantly inhibited by heat shock at 40°C for 9 min. Browning index,total phenol content and PAL activity were significantly below against CK in leaves cultured after heat shock treatments, and they had very significantly positive correlation. These proved that short time of heat-shock could reduce PAL activity and phenol compounds accumulation,thus reduce brown injury in the process of culture.

  4. Absorção de macronutrientes por explantes de bananeira in vitro Macronutrient absorption by banana explants in vitro

    Directory of Open Access Journals (Sweden)

    Josefa Diva Nogueira Diniz

    1999-07-01

    Full Text Available Com o objetivo de estudar a absorção de macronutrientes (N, P, K, Ca, Mg e S em explantes de bananeira cv. Prata Anã, foram utilizados explantes de plantas estabelecidas in vitro, inoculados em meio básico de Murashige & Skoog (1962 contendo sacarose (30 g/L, e BAP (3,5 mg/L com sete tratamentos, representados pelos períodos de 0, 10, 20, 30, 40, 50 e 60 dias de cultivo e três repetições. As quantidades de macronutrientes totais absorvidas pelos explantes seguiram a ordem: K > N > Ca > ou = P > Mg @ S. O P foi o nutriente absorvido mais rapidamente pelos explantes, com 75% extraído do meio de cultivo nos primeiros 30 dias, cessando sua absorção aos 50 dias, restando ainda 9% no meio de cultivo. A absorção do S cessou também aos 50 dias, quando 66% deste nutriente ainda permanecia no meio de cultivo. Este resultado sugere haver uma relação, quanto à absorção, entre esses dois nutrientes. As maiores taxas de absorção de todos os nutrientes foram verificadas nos primeiros 20 dias. O rizoma, o pseudocaule e as folhas, se diferenciaram quanto à concentração e extração ou acúmulo de nutrientes.The absorption of the nutrients (N, P, K, Ca, Mg and S by banana (Musa sp. cv. Prata Anã explants on the basic medium of Murashige & Skoog (1962 supplemented with sucrose (30 g/L and BAP (3.5 mg/L were evaluated at 0, 10, 20, 30, 40, 50 and 60 days after inoculation. The seven treatments were arranged on a completely randomized design with three replicates. The sequence of nutrient absorption by the explants was K > N > Ca > or = P > Mg @ S. The P was the nutrient with the fastest absorption rate and at the 30th day the explants had already absorbed 75% of the P from the medium. The P absorption stopped by the 50th day. The S absorption stopped at the 50th day with 66% of it remaining in the medium. The results suggested a close relationship between these two nutrients. The highest rates of nutrient absorption were observed during the

  5. Organogênese direta de explantes cotiledonares e regeneração de plantas de mogango Direct organogenesis of cotyledon explants and plant regeneration of squash

    Directory of Open Access Journals (Sweden)

    André Luís Lopes da Silva

    2006-06-01

    Full Text Available Os objetivos foram induzir a organogênese direta de explantes cotiledonares de mogango e estudar a regeneração de plântulas completas a partir das brotações adventícias. Foram utilizados cotilédones como explantes, originados das plântulas de mogango com 20 dias após a semeadura. O meio basal utilizado foi o MS (MURASHIGE & SKOOG, 1962 suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Foram testadas as concentrações de 6-benzilaminopurina (BAP de 0; 0,5; 1,0 e 2,0mg L-1. Explantes de ápices caulinares e segmentos nodais de brotações adventícias foram então cultivados em meio MS suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Maiores concentrações de BAP no meio MS promoveram um aumento da percentagem de explantes cotiledonares com brotações adventícias e uma redução da percentagem de enraizamento. Explantes de segmentos nodais e ápices caulinares oriundos de brotações adventícias cresceram e enraizaram em meio MS sem reguladores de crescimento. Altas percentagens de enraizamento dependem do tamanho dos explantes utilizados.The objectives were to induce direct organogenesis of squash cotyledons and to study the regeneration of complete plantlets from adventitious shoot. Cotyledon explants of 20-day seedlings were cultured in MS (MURASHIGE & SKOOG, 1962 medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. The 6-benzilaminopurina (BAP concentrations of 0, 0.5, 1.0 and 2.0mg L-1 were tested. Apical and nodal explants from adventitious shoots were transferred to MS medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. Increasing BAP concentrations in the MS medium enhance the percentage of adventitious shoot and reduce the percentage of root organogenesis of squash cotyledon explants. Apical and nodal explants from adventitious shoot regenerated plantlets with roots in MS medium without growth regulators. High percentage of plantlet rooting depends upon the size of the explants.

  6. Particulate cartilage under bioreactor-induced compression and shear

    DEFF Research Database (Denmark)

    Wang, Ning; Grad, Sibylle; Stoddart, Martin J

    2014-01-01

    PURPOSE: Our aim was to explore the effect of varying in vitro culture conditions on general chondrogenesis of minced cartilage (MC) fragments. METHODS: Minced, fibrin-associated, bovine articular cartilage fragments were cultured in vitro within polyurethane scaffold rings. Constructs were...

  7. Role for short-range interactions in the formation of cartilage and muscle masses in transfilter micromass cultures.

    Science.gov (United States)

    Schramm, C A; Reiter, R S; Solursh, M

    1994-06-01

    In the embryonic limb bud, chondrogenic and myogenic regions arise by segregation from a mixture of chondrogenic and myogenic precursor cells (Schramm and Solursh, 1990). In in vitro micromass cultures, dissociated limb bud cells also segregate into chondrogenic and myogenic tissues. The process of segregation was studied using transfilter micromass cultures to determine the role of short-range interactions in the formation of these two tissue masses. Limb bud cells were plated on both sides of large and small Nucleopore filters. Pore size was chosen to permit cell-cell or cell-extracellular matrix contact across large pore filters but permit only interactions via diffusible molecules across small pore filters. Cultures were plated at high density on one surface to allow formation of chondrogenic nodules and at high or low density on the opposing surface to observe any segregation effect on chondrogenic and myogenic cells, respectively. Spatially organized extracellular matrix of micromass cultures was fixed by cold ethanol precipitation onto filters. The fixed micromass cultures lost the ability to affect segregation across the filter. These results suggest that chondrogenic aggregates enlarge in an autocrine manner dependent on direct cell-cell or cell-extracellular matrix contact provided by living cells. Myogenic segregation likely occurs in a paracrine manner that also requires short-range interactions.

  8. Callogenesis in stem explants of Eucalyptus grandis (Hill ex Maiden showing resilience in oxide calluses

    Directory of Open Access Journals (Sweden)

    Regina Paula Willemen Pereira

    Full Text Available Callogenesis was achieved using growth regulators at different concentrations to obtain the best characteristics regarding the calluses texture aspect with the main objective to produce friable calluses from stem explants of Eucalyptus grandis. Stem segments of approximately 1 cm were excised from 30-day seedlings. The treatments were prepared based on the MS medium added with TDZ alone or combined with AIA; 2,4-D; ANA. Each treatment consisted of five repetitions with five explants per plate. After 210 days of in vitro culture, the calluses were evaluated visually and by manipulation for texture. The explants that did not produce calluses were those exposed to treatments with 2,4-D 50.0 µM; TDZ 3.0 µM and in absence of a growth regulator (control.The best protocols for maintenance of friable calluses of stem explants of Eucalyptus grandis under the conditions performed in this work were those using only TDZ.

  9. In vitro white spot syndrome virus (WSSV) replication in explants of the heart of freshwater crab, Paratelphusa hydrodomous.

    Science.gov (United States)

    Nathiga Nambi, K S; Abdul Majeed, S; Sundar Raj, N; Taju, G; Madan, N; Vimal, S; Sahul Hameed, A S

    2012-08-01

    Explants from different organs of freshwater crab, Paratelphusa hydrodomous were prepared to establish an in vitro system for replication of white spot syndrome virus (WSSV) of shrimp. Heart explants were maintained for 53 days without any morphological changes in EX-CELL™ 405 medium with and without serum whereas the explants of eye muscle, gill, shell membrane and appendage muscle died within 15 days of culture period. The heart explants on different days of culture were exposed to WSSV for 10 days to study the viral replication. The infection of WSSV in explants of the heart was confirmed by PCR, RT-PCR, Western blot, histology, immunohistochemistry, bioassay and transmission electron microscopy. The WSSV was quantified by real-time PCR and indirect ELISA. The WSSV inoculum prepared from the heart explants of crab caused significant mortality in Penaeus monodon in challenge experiments and the results indicate that the WSSV which replicated in the heart explants of freshwater crab maintains its infectivity as in marine shrimp. The results indicate that the heart explants of P. hydrodomous would be a good alternative to whole animals for production of WSSV.

  10. Effects of tenoxicam and aspirin on the metabolism of proteoglycans and hyaluronan in normal and osteoarthritic human articular cartilage.

    Science.gov (United States)

    Manicourt, D H; Druetz-Van Egeren, A; Haazen, L; Nagant de Deuxchaisnes, C

    1994-01-01

    1. As nonsteroidal anti-inflammatory drugs may impair the ability of the chondrocyte to repair its damaged extracellular matrix, we explored the changes in the metabolism of newly synthesized proteoglycan (PG) and hyaluronan (HA) molecules produced by tenoxicam and aspirin in human normal cartilage explants and in osteoarthritic (OA) cartilage from age-matched donors. 2. Explants were sampled from the medial femoral condyle and were classified by use of Mankin's histological-histochemical grading system. Cartilage specimens were normal in 10 subjects, exhibited moderate OA (MOA) in 10 and had severe OA (SOA) in 10. 3. Cartilage explants were pulsed with [3H]-glucosamine and chased in the absence and in the presence of either aspirin (190 micrograms ml-1) or tenoxicam (4-16 micrograms ml-1). After papain digestion, the labelled chondroitin sulphate ([3H]-PGs) and HA([3H]-HA) molecules present in the tissue and media were purified by anion-exchange chromatography. 4. In normal cartilage as well as in explants with MOA and SOA aspirin reduced more strongly PG and HA synthesis than the loss of [3H]-HA and [3H]-PGs. 5. In normal cartilage, tenoxicam did not affect PG metabolism whereas it reduced HA synthesis in a dose-dependent manner and did not change or even increased the net loss of [3H]-HA. In contrast, in OA cartilage, tenoxicam produced a stronger reduction in the loss of [3H]-PGs than in PG synthesis and this decrease occurred at lower concentrations in cartilage with SOA (4-8 micrograms ml-1) than in cartilage with MOA (8-16 micrograms ml-1).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889262

  11. Effects of the re-innervation of organotypic skin explants on the epidermis.

    Science.gov (United States)

    Lebonvallet, Nicolas; Boulais, Nicholas; Le Gall, Christelle; Pereira, Ulysse; Gauché, Dominique; Gobin, Eric; Pers, Jacques-Olivier; Jeanmaire, Christine; Danoux, Louis; Pauly, Gilles; Misery, Laurent

    2012-02-01

    The nervous system takes part in skin homeostasis and interacts with skin cells. In in vitro organotypic skin models, these interactions are lost owing to the absence of nerve endings. We have developed an in vitro organotypic skin model based on a re-innervated human skin explant using primary sensory neurons from the dorsal root ganglia of rats. After 10 days of co-culture between skin explant and neurons, a dense network of nerve fibres was observed. The epidermis and dermis presented nerve fibres associated with cellular body from sensory neurons introduced in the co-culture. Epidermal thickness, cell density and quality of re-innervated skin explant were all higher when skin explants were re-innervated by sensory neurons at 10 days of culture. Proliferation of epidermal cell was not modified, but the apoptosis was significantly diminished. Hence, this innovative model of co-cultured skin explants and neurons allows better epidermal integrity and could be useful for studies concerning interactions between the skin and its peripheral nervous system.

  12. The inhibitory effect of salmon calcitonin on tri-iodothyronine induction of early hypertrophy in articular cartilage.

    Directory of Open Access Journals (Sweden)

    Pingping Chen-An

    Full Text Available OBJECTIVE: Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the explants. METHODS: Early chondrocyte hypertrophy was induced in bovine articular cartilage explants by stimulation over four days with 20 ng/mL T3. The degree of hypertrophy was investigated by molecular markers of hypertrophy (ALP, IHH, COLX and MMP13, by biochemical markers of cartilage turnover (C2M, P2NP and AGNxII and histology. The expression of the CTR was detected by qPCR and immunohistochemistry. T3-induced explants were treated with salmon or human calcitonin. Calcitonin down-stream signaling was measured by levels of cAMP, and by the molecular markers. RESULTS: Compared with untreated control explants, T3 induction increased expression of the hypertrophic markers (p<0.05, of cartilage turnover (p<0.05, and of CTR (p<0.01. Salmon, but not human, calcitonin induced cAMP release (p<0.001. Salmon calcitonin also inhibited expression of markers of hypertrophy and cartilage turnover (p<0.05. CONCLUSIONS: T3 induced early hypertrophy of chondrocytes, which showed an elevated expression of the CTR and was thus a target for salmon calcitonin. Molecular marker levels indicated salmon, but not human, calcitonin protected the cartilage from hypertrophy. These results confirm that salmon calcitonin is able to modulate the CTR and thus have chondroprotective effects.

  13. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  14. In vitro organogenesis and somatic embryogenesis from leaf explants of Leucosceptrum canum sm.

    Science.gov (United States)

    Pal, A; Banerjee, A; Dhar, K

    1985-10-01

    Plantlets were obtained from leaf explants of a Labiatae tree - Leucosceptrum canum Sm. using plant tissue culture techniques. Two types of calli proliferated from the leaf explants when grown on different media, one of which was amenable to somatic embryogenesis. Differentiation of the embryoids started from the fourth passage of culture and continued up to the seventh passage. The number of embryoids decreased with the age of the callus. The capacity of such embryoids to form entire plantlets was studied using different nutrient mileux. Embryoids formed plantlets on Murashige and Skoog's (MS) medium fortified with benzylaminopurine plus indolebutyric acid. Organogenesis was observed in shoot-buds derived from explants of in vitro regenerated plantlets on MS basal medium supplemented with benzylaminopurine. Culture regenerated plantlets were transferred to MS medium without sucrose and growth hormones; finally transferred to pots containing sterile vermiculite where they are growing.

  15. Ascorbic acid inhibits the squamous metaplasia that results from treatment of tracheal explants with asbestos or benzo[a]pyrene-coated asbestos.

    Science.gov (United States)

    Holtz, G; Bresnick, E

    1988-01-01

    Hamster tracheal explants were maintained in culture in the presence or absence of benzo[a]pyrene (BP), crocidolite asbestos, or BP-coated crocidolite. Dose-dependent squamous metaplasia was observed in the treated samples. L-Ascorbic acid and DL-alpha-tocopherol were able to partially protect the tracheal explants from the metaplastic response induced by crocidolite. Furthermore, ascorbic acid reduced the extent of metaplasia observed in hamster tracheal explants that were exposed to BP-crocidolite.

  16. The Inhibitory Effect of Salmon Calcitonin on Tri-Iodothyronine Induction of Early Hypertrophy in Articular Cartilage

    OpenAIRE

    Pingping Chen-An; Kim Vietz Andreassen; Kim Henriksen; Yadong Li; Morten Asser Karsdal; Anne-Christine Bay-Jensen

    2012-01-01

    OBJECTIVE: Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR) differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3)-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the ...

  17. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  18. A Study on the Technique System of Tissue Culture in Rhododendron Hybrind(Ⅰ)——Selection of Medium and Explant%西洋杜鹃组织培养技术体系研究(Ⅰ)——基本培养基和外植体的选择

    Institute of Scientific and Technical Information of China (English)

    钟宇; 张健; 罗承德; 陈其兵

    2001-01-01

    实验以不同季节的茎尖(含茎段)为材料,采用不同基本培养基,研究确定西洋杜鹃组织培养适合的基本培养基类型,植株再生的可能途径,以及适宜的培养条件。结果表明:①低盐分浓度及高比值NH4+/NO3-的基本培养基Read培养基适合西洋杜鹃;②最适外植体为摘花芽后萌发的顶芽茎尖;③最佳取材时间为3~5月;④培养条件:温度25±2℃,光照16h/黑暗8h,光照强度1500~2500lx。%In view of studying the suitable type of medium, probable way of explant regeneration and suitable condition of culture for tissue culture in R.hybridn, a experimentation was established in which shoot tip from different seasons and a series of different medium were employed. The results are as follows: ①Read medium with low mineral salt concentration and high ration of NH4+/NO3- is suitable for R.hybridn microculture; ②The optimal explants are shoot tips of end buds excised from R.hybridn in 3~5 months; ③All the cultures are kept under the temperature of 25±2℃, illuminated for 16 hours per day, and light intensity was 1500~2500lx.

  19. In vitro assessment of the soft tissue/implant interface using porcine gingival explants.

    Science.gov (United States)

    Abdulmajeed, Aous A; Willberg, Jaana; Syrjänen, Stina; Vallittu, Pekka K; Närhi, Timo O

    2015-01-01

    The biologic seal of peri-implant soft tissue is crucial for long-term prognosis of oral implants. This in vitro study describes a novel tissue culture model using porcine gingival explants to evaluate the soft tissue/implant interface. Two different types of substrates were investigated: (a) plain polymer: BisGMA-TEGDMA (50-50 %) and (b) unidirectional fiber-reinforced composite (FRC). Porcine gingival explants were obtained from a local slaughterhouse. The experimental implants (n = 4) were inserted into the middle of freshly excised porcine gingival explants and cultured at the air/liquid interface up to 14 days. Porcine gingival explants with no implants served as baseline controls. The specimens were fixed and processed for the preparation of undecalcified samples. Histological analysis of the soft tissue/implant interface was carried out using a light-microscope. Microscopic evaluation suggests that the gingival explants established epithelial and connective tissue attachment to both implant types over the incubation period. FRC surfaces seemed to have a favorable tissue response with a sign of an outward epithelial migration. However, tissue degeneration was observed at the end of the experiment. In conclusion, this in vitro model maintains mucosal viability and ability to histologically evaluate soft tissue attachment to biomaterials rendering it a time efficient and cost effective model that may reduce the need for animal experiments.

  20. Detection of basal and potassium-evoked acetylcholine release from embryonic DRG explants.

    Science.gov (United States)

    Bernardini, Nadia; Tomassy, Giulio Srubek; Tata, Ada Maria; Augusti-Tocco, Gabriella; Biagioni, Stefano

    2004-03-01

    Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.

  1. Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery: a strategy to promote cartilage repair.

    Science.gov (United States)

    Venkatesan, N; Barré, L; Benani, A; Netter, P; Magdalou, J; Fournel-Gigleux, S; Ouzzine, M

    2004-12-28

    Osteoarthritis is a degenerative joint disease characterized by a progressive loss of articular cartilage components, mainly proteoglycans (PGs), leading to destruction of the tissue. We investigate a therapeutic strategy based on stimulation of PG synthesis by gene transfer of the glycosaminoglycan (GAG)-synthesizing enzyme, beta1,3-glucuronosyltransferase-I (GlcAT-I) to promote cartilage repair. We previously reported that IL-1beta down-regulated the expression and activity of GlcAT-I in primary rat chondrocytes. Here, by using antisense oligonucleotides, we demonstrate that GlcAT-I inhibition impaired PG synthesis and deposition in articular cartilage explants, emphasizing the crucial role of this enzyme in PG anabolism. Thus, primary chondrocytes and cartilage explants were engineered by lipid-mediated gene delivery to efficiently overexpress a human GlcAT-I cDNA. Interestingly, GlcAT-I overexpression significantly enhanced GAG synthesis and deposition as evidenced by (35)S-sulfate incorporation, histology, estimation of GAG content, and fluorophore-assisted carbohydrate electrophoresis analysis. Metabolic labeling and Western blot analyses further suggested that GlcAT-I expression led to an increase in the abundance rather than in the length of GAG chains. Importantly, GlcAT-I delivery was able to overcome IL-1beta-induced PG depletion and maintain the anabolic activity of chondrocytes. Moreover, GlcAT-I also restored PG synthesis to a normal level in cartilage explants previously depleted from endogenous PGs by IL-1beta-treatment. In concert, our investigations strongly indicated that GlcAT-I was able to control and reverse articular cartilage defects in terms of PG anabolism and GAG content associated with IL-1beta. This study provides a basis for a gene therapy approach to promote cartilage repair in degenerative joint diseases.

  2. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants

    Science.gov (United States)

    Methicillin-resistant Staphylococcus aureus (MRSA) can infect wounds and produce difficult-to- treat biofilms. To determine the extent that MRSA biofilms can deplete oxygen, change pH and damage host tissue, we developed a porcine dermal explant model on which we cultured GFP-labeled MRSA biofilms. ...

  3. Investigating the Skoog-Miller Model for Organogenesis Using Sweet Potato Root Explants.

    Science.gov (United States)

    Delany, William; And Others

    1994-01-01

    Describes an experiment in which groups of students in a plant tissue culture course worked together to test application of the Skoog-Miller model (developed by Skoog and Miller in regeneration of tobacco experiments to demonstrate organogenesis) to sweet potato root explants. (ZWH)

  4. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    . The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental...

  5. The multicomponent phytopharmaceutical SKI306X inhibits in vitro cartilage degradation and the production of inflammatory mediators.

    NARCIS (Netherlands)

    Hartog, A.; Hougee, S.; Faber, J.; Sanders, A.; Zuurman, C.; Smit, H.F.; Kraan, P.M. van der; Hoijer, M.A.; Garssen, J.

    2008-01-01

    Clinical studies have demonstrated that SKI306X, a purified preparation of three medicinal plants, relieves joint pain and improves functionality in osteoarthritis patients. To study the biological action of SKI306X, bovine cartilage explants and human peripheral blood mononuclear cells (PBMC) were

  6. In Vitro Propagation of Desmodium gangeticum (L. DC. from Cotyledonary Nodal Explants

    Directory of Open Access Journals (Sweden)

    U R Vishwakarma

    2009-01-01

    Full Text Available An in vitro procedure for rapid multiplication of medicinally important plant Desmodium gangeticum (L. DC. (Fabaceae, has been developed using cotyledonary nodal explant. An average of 9.2 shoots per explant were obtained by culturing cotyledonary nodal explaint on Murashige and Skoog′s medium containing 8.8 μM BAP and 21.2 μM NAA, in combination, within 28 days. These shoots were rooted on half strength MS medium supplemented with IAA 17.1 μM. Rooted plantlets were hardened using 1:1:1 mixture of soil, river sand and vermiculite under green house conditions.

  7. Efficient Isolation of Mesenchymal Stem Cells from Human Bone Marrow by Direct Plating Method Combined with Modified Primary Explant Culture%直接铺种结合改良组织块培养法可有效分离人骨髓中的间充质干细胞

    Institute of Scientific and Technical Information of China (English)

    邢文; 庞爱明; 姚剑峰; 李园; 石慧; 盛梦瑶; 周圆; 赵迎旭; 许明江

    2013-01-01

    Human bone marrow is the major source of mesenchymal stem cells (MSC). It was reported that the standard density gradient centrifugation method was not efficient in isolating MSC and it may be caused by the existing of bone marrow particles. In previous studys, a lot of MSC were obtained by culturing bone marrow particles alone combined with standard method. However, it is time- and labor-consuming to obtain bone marrow particles by filtering and to isolate MNC by density gradient centrifugation. This study was purposed to explore the more simple and efficient method to isolate MSC from bone marrow. Seven normal bone marrow aspirates were collected and centrifugated. The bone marrow particles floated on surface layers were cultured by modified primary explant culture, whereas the bone marrow aspirates deposited were cultured by direct plating method, then the immun phenotype and differentiation capability of isolated cells were analyzed. The results showed that in 3 of 7 aspirates, bone marrow particles were floated on surface layers, whereas the other bone marrow cells and some particles were deposited after centrifugation. The MSC were reliably isolated from the floating layers or deposited aspirates by modified primary explant culture and direct plating method separately. After 3 passages the isolated MSC did not express CD45 and CD34, but expressed CD105 ,CD73, CD44,CD90,CD49e and they could differentiate into chondrocytes and adipocytes. It is concluded that normal human bone marrow MSC can be isolated simply and efficiently by direct plating method in combination with modified primary explant culture.%骨髓是间充质干细胞(MSC)的重要来源.研究显示,标准密度梯度离心法分离骨髓MSC的效率不高,骨髓小粒是造成该法低效的原因.通过组织块法分离骨髓小粒,再结合标准法,可从单份骨髓标本分离获得更多MSC,然而这种方法费时费力.本研究探求分离骨髓MSC更简单、更有效的方法.收集7

  8. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  9. CALLUS INDUCTION AND PLANT REGENERATION IN PUNICA GRANATUM L. ?NANA' FROM LEAF EXPLANTS

    Directory of Open Access Journals (Sweden)

    Alireza Bonyanpour

    2013-09-01

    Full Text Available ABSTRACT In this investigation, leaf explants of a local cultivar of dwarf pomegranate were placed on Murashige and Skoog (1962 (MS medium supplemented with various concentrations of 6-benzyl adenin (BA and naphthalene acetic acid (NAA for callus induction. After 40 days, maximum callus induction was observed on a media containing 1 mg L-1 BA and 0.2 to 0.4 mg L-1 NAA. However, the highest callus growth was obtained on a medium containing 1 mg L-1 BA and 1 mg L-1 NAA. The highest number of shoots (7 shoots per explants was obtained by transferring the calli to the media containing 5 mg L-1 BA with 0.1 mg L-1 NAA. Maximum shoot proliferation was observed when shoots were cultured on woody plant medium (WPM supplemented with 5 mg L-1 kinetin (Kin. In this treatment, after 4 subcultures, 36 shoots were produced from one original explant. Among treatments used in rooting experiments, shoots cultured on WPM medium containing 0.2 mg L-1 indol butyric acid (IBA had the maximum root percentage (100% and good root growth (2.06 cm mean length and 2 roots in each explants. Rooted plantlets were cultured in a soil mixture containing vermiculite (60%, perlite (30% and coco peat (10% v/v. After 2 months, 80% of plants survived and transferred to the greenhouse.

  10. In vitro regeneration of Centaurium erythraea Rafn from shoot tips and other seedling explants

    Directory of Open Access Journals (Sweden)

    Ewelina Piątczak

    2011-01-01

    Full Text Available Various explants from 30-day-old seedlings of Centaurium erythraea Rafn were evaluated for their morphogenetic capacity under in vitro culture conditions. Shoot formation from shoot tip explants was achieved mainly through adventitious bud differentiation. The highest number of shoots (up to 43.3 ± 2.2 from a single shoot tip was obtained on Murashige and Skoog medium (MS supplemented with indole-3-acetic acid (IAA (0.57 μM and 6-benzylaminopurine (BAP (4.4 μM. Adventitious shoot regeneration was also achieved through organogenesis from calluses obtained from hypocotyls, cotyledons, roots and leaves on MS medium containing IAA (2.85 μM and BAP (0.88 μM. Significant differences were noted between explant types in their effects on shoot regeneration. In the primary culture, the best response was obtained either from calluses derived from roots or leaves (44.4 ± 4.5 and 40.2 ± 6.0 shoots per callus, respectively. The number of subcultures of inoculated calluses affected both the multiplication rate (the number of shoots/explant and shoot morphology (the frequency of shoot hyperhydricity. Shoots rooted with the frequency of 94-100% after culture on MS medium without growth regulators. Plantlets were successfully acclimatized (97% under high relative humidity and then moved to the greenhouse.

  11. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; LI Fo-bao; SHEN Hui-liang; LIAO Wei-ming; LIU Miao; WANG Min; CAO Jun-ling

    2006-01-01

    Objective: To investigate the effect of cancellous bone matrix gelatin (BMG) engineered with allogeneic chondrocytes in repairing articular cartilage defects in rabbits.Methods: Chondrocytes were seeded onto three-dimensional cancellous BMG and cultured in vitro for 12 days to prepare BMG-chondrocyte complexes. Under anesthesia with 2.5% pentobarbital sodium (1 ml/kg body weight), articular cartilage defects were made on the right knee joints of 38 healthy New Zealand white rabbits (regardless of sex, aged 4-5 months and weighing 2.5-3 kg) and the defects were then treated with 2.5 % trypsin.Then BMG-chondrocyte complex (Group A, n=18 ),BMG ( Group B, n=10), and nothing ( Group C, n=10)were implanted into the cartilage defects, respectively. The repairing effects were assessed by macroscopic, histologic,transmission electron microscopic (TEM) observation,immunohistochemical examination and in situ hybridization detection, respectively, at 2, 4, 8, 12 and 24 weeks after operation.Results: Cancellous BMG was degraded within 8 weeks after operation. In Group A, lymphocyte infiltration was observed around the graft. At 24 weeks after operation, the cartilage defects were repaired by cartilage tissues and the articular cartilage and subchondral bone were soundly healed. Proteoglycan and type Ⅱ collagen were detected in the matrix of the repaired tissues by Safranin-O staining and immunohistochemical staining,respectively. In situ hybridization proved gene expression of type Ⅱ collagen in the cytoplasm of chondrocytes in the repaired tissues. TEM observation showed that chondrocytes and cartilage matrix in repaired tissues were almost same as those in the normal articular cartilage. In Group B, the defects were repaired by cartilage-fibrous tissues. In Group C, the defects were repaired only by fibrous tissues.Conclusions : Cancellous BMG can be regarded as the natural cell scaffolds for cartilage tissue engineering.Articular cartilage defects can be repaired by

  12. Pharmacological influence of antirheumatic drugs on proteoglycans from interleukin-1 treated articular cartilage.

    Science.gov (United States)

    Steinmeyer, J; Daufeldt, S

    1997-06-01

    The purpose of this study was to examine whether drugs used in the treatment of arthritic disorders possess any inhibitory potential on the proteoglycanolytic activities of matrix metalloproteinases (MMPs), and to determine whether drugs which inhibit these enzymes also modulate the biosynthesis and release of proteoglycans (PGs) from interleukin-1-(IL-1) treated articular cartilage explants. The cartilage-bone marrow extract and the glycosaminoglycan-peptide complex (DAK-16) dose-dependently inhibited MMP proteoglycanases in vitro when tested at concentrations ranging from 0.5 to 55 mg/mL, displaying an IC50 value of 31.78 mg/mL and 10.64 mg/mL (1.9 x 10[-4] M) respectively. (R,S)-N-[2-[2-(hydroxyamino)-2-oxoethyl]-4-methyl-1-oxopentyl++ +]-L-leucyl-L-phenylalaninamide (U-24522) proved to be a potent inhibitor of MMP proteoglycanases (IC50 value 1.8 x 10[-9] M). None of the other tested drugs, such as possible chondroprotective drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), disease modifying antirheumatic drugs (DMARDs), glucocorticoids and angiotensin-converting enzyme inhibitors tested at a concentration of 10(-4) M displayed any significant inhibition. Only U-24522, tested at a concentration ranging from 10(-4) to 10(-6) M, significantly inhibited the IL-1-induced augmentation of PG loss from cartilage explants into the nutrient media, whereas DAK-16 and the cartilage-bone marrow extract were ineffective. DAK-16 and the cartilage-bone marrow extract did not modulate the IL-1-mediated reduced biosynthesis and aggregability of PGs by the cartilage explants. The addition of 10(-5) M U-24522, however, partially maintained the aggregability of PGs ex vivo. In our experiments, both possible chondroprotective drugs as well as U-24522 demonstrated no cytotoxic effects on chondrocytes.

  13. The Immunosuppressant FTY720 (Fingolimod enhances Glycosaminoglycan depletion in articular cartilage

    Directory of Open Access Journals (Sweden)

    Stradner Martin H

    2011-12-01

    Full Text Available Abstract Background FTY720 (Fingolimod is a novel immunosuppressive drug investigated in clinical trials for organ transplantation and multiple sclerosis. It acts as a functional sphingosine-1-phosphate (S1P receptor antagonist, thereby inhibiting the egress of lymphocytes from secondary lymphoid organs. As S1P is able to prevent IL-1beta induced cartilage degradation, we examined the direct impact of FTY720 on cytokine induced cartilage destruction. Methods Bovine chondrocytes were treated with the bioactive phosphorylated form of FTY720 (FTY720-P in combination with IL-1beta or TNF-alpha. Expression of MMP-1,-3.-13, iNOS and ADAMTS-4,-5 and COX-2 was evaluated using quantitative real-time PCR and western blot. Glycosaminoglycan depletion from cartilage explants was determined using a 1,9-dimethylene blue assay and safranin O staining. Results FTY720-P significantly reduced IL-1beta and TNF-alpha induced expression of iNOS. In contrast FTY720-P increased MMP-3 and ADAMTS-5 mRNA expression. Furthermore depletion of glycosaminoglycan from cartilage explants by IL-1beta and TNF-alpha was significantly enhanced by FTY720-P in an MMP-3 dependent manner. Conclusions Our results suggest that FTY720 may enhance cartilage degradation in pro-inflammatory environment.

  14. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants

    Directory of Open Access Journals (Sweden)

    Uitterlinden EJ

    2008-09-01

    Full Text Available Abstract Background Glucosamine (GlcN used by patients with osteoarthritis was demonstrated to reduce pain, but the working mechanism is still not clear. Viscosupplementation with hyaluronic acid (HA is also described to reduce pain in osteoarthritis. The synthesis of HA requires GlcN as one of its main building blocks. We therefore hypothesized that addition of GlcN might increase HA production by synovium tissue. Methods Human osteoarthritic synovium explants were obtained at total knee surgery and pre-cultured for 1 day. The experimental conditions consisted of a 2 days continuation of the culture with addition of N-Acetyl-glucosamine (GlcN-Ac; 5 mM, glucosamine-hydrochloride (GlcN-HCl; 0.5 and 5 mM, glucose (Gluc; 0.5 and 5 mM. Hereafter HA production was measured in culture medium supernatant using an enzyme-linked binding protein assay. Real time RT-PCR was performed for hyaluronic acid synthase (HAS 1, 2 and 3 on RNA isolated from the explants. Results 0.5 mM and 5 mM GlcN-HCl significantly increased HA production compared to control (approximately 2 – 4-fold, whereas GlcN-Ac had no significant effect. Addition of 5 mM Gluc also increased HA production (approximately 2-fold, but 0.5 mM Gluc did not. Gene expression of the HA forming enzymes HAS 1, 2 and 3 was not altered by the addition of GlcN or Gluc. Conclusion Our data suggest that exogenous GlcN can increase HA production by synovium tissue and is more effective at lower concentrations than Gluc. This might indicate that GlcN exerts its potential analgesic properties through stimulation of synovial HA production.

  15. Rapid and simple method for in vivo ex utero development of mouse embryo explants.

    Science.gov (United States)

    Gonçalves, André B; Thorsteinsdóttir, Sólveig; Deries, Marianne

    2016-01-01

    The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero.

  16. Culture and identification of the chondrocytes from auricular cartilage of rhesus monkey%猕猴耳廓软骨细胞的体外培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    张金宁; 王旭东; 杨驰

    2001-01-01

    Objective:To culture the auricular chondrocytes of rhesus monkeyin vitro,and to certify the possibility of auricular cartilage as an ideal donor site for chondrocytes transplantation.Methods:The auricular cartilages of 6 rhesus monkeys were dissected and digested,the chondrocytes were isolated and cultured in F-12 medium.The changes of cellular morphology were investigated with inverted microscope.The cellular activities were studied with immunohistochemistry(IHC).Results:The homogenous,high-activity chondrocytes were harvested and cultured iv vitro successfully and IHC showed that there was no significant difference between type Ⅰ and type Ⅱ collagen stain in 3rd generation.Conclusions:Auricular cartilage of rhesus monkey is an ideal donor site for chondrocytes transplantation.%目的 掌握猕猴耳廓软骨细胞的体外分离、培养和鉴定技术,探讨耳廓软骨作为软骨细胞供区的可行性。材料与方法:对6只猕猴进行耳廓软骨取材、软骨细胞的分离,并行单层贴壁培养。通过倒置显微镜观察细胞生长情况并行细胞生长曲线的绘制;通过免疫组织化学染色对细胞分泌的基质成分进行鉴定。结果:6只猕猴的耳廓软骨经分离后,获得了高纯度、高活性的软骨细胞,并成功地进行了体外培养;软骨细胞倍增时间为98小时;免疫组织化学染色发现体外培养的软骨细胞具有分泌胶原基质的能力,但第三代细胞分泌Ⅰ、Ⅱ型胶原的能力无明显区别。结论:利用猕猴耳廓软骨细胞体外分离及培养,能成功地获得具有体内活性的软骨细胞,耳廓软骨是一种易获取的软骨细胞供区。

  17. Induction of in vitro shoots of Billbergia euphemiae E. Morren (Bromeliaceae from leaf explants

    Directory of Open Access Journals (Sweden)

    Mariela Justiniano Simão

    2016-10-01

    Full Text Available Bromeliads are an important group for the maintenance of the Atlantic Forest, with many threatened species due to exacerbated extraction and destruction of their natural habitats. Considering the need of developing protocols for the conservation of these species, the aim of this work was to evaluate the effect of different growth regulators in the in vitro induction of shoots of Billbergia euphemiae. Leaf explants were excised from seedlings derived from in vitro germination and grown on MS medium supplemented with NAA (0, 1 or 2 μM and BA (0, 2, 4 or 6 μM combinations. The evaluation of the number of shoots per explant, shoot length, number of leaves per shoot and longest leaf length average was carried out after 30 and 60 days of culture. The best in vitro responses were observed in the presence of 1 μM NAA after 60 days of culture, which induced the best production of shoots per explant (16.39, as well as the highest rates of shoot length (1.08 cm, number of leaves per shoot (5.00 and the longest leaf length (0.56 cm. This work determined the best conditions for shoot production from leaf explants of B. euphemiae, being the first report on micropropagation of this species.

  18. Efficient plant regeneration from cotyledon explants of bottle gourd (Lagenaria siceraria Standl.).

    Science.gov (United States)

    Han, J-S; Oh, D-G; Mok, I-G; Park, H-G; Kim, C K

    2004-11-01

    Using cotyledon explants excised from seedlings germinated in vitro, an efficient plant regeneration system via organogenesis was established for bottle gourd (Lagenaria siceraria Standl.). Maximum shoot regeneration was obtained when the proximal parts of cotyledons from 4-day-old seedlings were cultured on MS medium with 3 mg/l BA and 0.5 mg/l AgNO(3) under a 16-h photoperiod. After 3-4 weeks of culture, 21.9-80.7% of explants from the five cultivars regenerated shoots. Adventitious shoots were successfully rooted on a half-strength MS medium with 0.1 mg/l IAA for 2-3 weeks. Flow cytometric analysis revealed that most of the regenerated plants derived from culture on medium with AgNO(3) were diploid.

  19. ORGANOGÊNESE INDIRETA A PARTIR DE EXPLANTES FOLIARES E MULTIPLICAÇÃO IN VITRO DE BROTAÇÕES DE Eucalyptus benthamii X Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Yohana de Oliveira-Cauduro

    2014-01-01

    Full Text Available The aims of this research were to evaluate different culture media for indirect organogenesis and shoot multiplication of Eucalyptus benthamii x Eucalyptus dunnii . For organogenesis, leaf explants were used to test the following treatments: two culture media (MS N/2 and JADS supplemented with 0.1 μM 1-naphthaleneacetic acid (NAA and thidiazuron (TDZ (0.1 or 0.5 μ M, with or without PVP- 40 (250 mg L -1 . The percentage of oxidized explants, callus forming explants, explants with anthocyanin,buds, shoots and the shoot number per explant were evaluated. In the multiplication experiment, isolated shoots were cultivated in MS, JADS and WPM media, all supplemented with 1.11 μ M BAP. Four subcultures were carried out every 28 days. In every subculture the explant oxidation, partial or total leaf chlorosis, fresh mass and mean number of shoot per explant were evaluated. The MS N/2 medium supplemented with 0.1 μM NAA and 0.5 μM TDZ promoted the highest rate of organogenesis (8.3% and the culture media MS supplemented with 1.11 μ M BAP the multiplication rate was higher than in the other media, in the first and the second subcultures (9.28 and 9.24, respectively, without differences between the three media in the following subcultures.

  20. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues.

    Science.gov (United States)

    Sato, Takuya; Katagiri, Kumiko; Kojima, Kazuaki; Komeya, Mitsuru; Yao, Masahiro; Ogawa, Takehiko

    2015-01-01

    Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.

  1. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Regeneração de plantas de Eucalyptus camaldulensis a partir das explantes cotiledonares

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2005-08-01

    Full Text Available Breeding methods based on genetic transformation techniques need to be implemented for Eucalyptus camaldulensis to shorten the long breeding cycles and avoid manipulation of adult trees; that requires the development of plant regeneration protocols enabling development of plants from transformed tissues. The present work aimed to optimise the regeneration process already established for the species. Cotyledonary leaves of E. camaldulensis were cultured in MS medium supplemented with naphthaleneacetic acid (NAA and 6-benzylaminopurine (BAP combinations. The most efficient treatment for bud indirect regeneration (2.7 µmol L-1 NAA and 4.44 µmol L-1 BAP was used for further experiments. When explants were kept in the dark during the first 30 days, the percentage of explants forming calluses increased and explant necrosis was reduced in comparison with light-cultured explants. Mineral medium modifications were compared and half-strength MS mineral medium turned out to be as efficient as full-strength medium, producing 54% and 47% of explants with buds, respectively. For shoot elongation, MS medium with half-strength nitrate and ammonium salts, and 0.2% activated charcoal yielded rooted shoots 1 to 8 cm high after one month. The procedure is an efficient protocol for E. camadulensis plant regeneration, reducing the stages necessary for the obtention of complete plants.A implementação, para espécies florestais, de técnicas de melhoramento baseadas em métodos de transformação genética, permitirá reduzir os longos ciclos de melhoramento e evitar a manipulação de árvores adultas. Isto implica dispor de um protocolo de regeneração que permita o desenvolvimento de plantas a partir de tecidos transformados. Este trabalho teve como objetivo otimizar este protocolo de regeneração para Eucalyptus camaldulensis. Folhas cotiledonares foram cultivadas em meio de cultura MS suplementado com combinações de ácido naftalenoacético (ANA e 6

  2. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice.

    Science.gov (United States)

    Li, Qing; Olsen, Bjorn R

    2004-08-01

    Endostatin, a proteolytic fragment of basement membrane-associated collagen XVIII, has been shown to be a potent angiogenesis inhibitor both in vivo and in vitro when given at high concentrations. The precise molecular mechanisms by which it functions and whether or not it plays a role in physiological regulation of angiogenesis are not clear. In mice with targeted null alleles of Col18a1, there appears to be no major abnormality in vascular patterns or capillary density in most organs. Furthermore, the growth of experimental tumors is not increased. However, a detailed analysis of induced angiogenesis in these mice has not been performed. Therefore, we compared the angiogenic responses induced by in vitro culture of aortic explants from collagen XVIII/endostatin-null mice (ko) to wild-type (wt) littermates. We found a twofold increase in microvessel outgrowth in explants from ko mice, relative to wt explants. This increased angiogenesis was reduced to the wt level by the addition of low levels (0.1 microg/ml) of recombinant mouse or human endostatin during the culture period. To address cellular/molecular mechanisms underlying this difference in angiogenic response between ko and wt mice, we isolated endothelial cells from both strains and compared their biological behavior. Proliferation assays showed no difference between the two types of endothelial cells. In contrast, adhesion assays showed a striking difference in their ability to adhere to fibronectin suggesting that collagen XVIII/endostatin may regulate interactions between endothelial cells and underlying basement membrane-associated components, including fibronectin, such that in the absence of collagen XVIII/endostatin, endothelial cells are more adhesive to fibronectin. In the aortic explant assay, characterized by dynamic processes of microvessel elongation and regression, this may result in stabilization of newly formed vessels, reduced regression, and a net increase in microvessel outgrowth in

  3. Making post-mortem implantable cardioverter defibrillator explantation safe

    OpenAIRE

    Räder, Sune B.E.W.; Zeijlemaker, Volkert; Pehrson, Steen; Svendsen, Jesper H

    2009-01-01

    Aims The aim of this study is to investigate whether protection with rubber or plastic gloves during post-mortem explantation of an implantable cardioverter defibrillator (ICD) offers enough protection for the explanting operator during a worst-case scenario (i.e. ICD shock). Methods and results We investigated the insulating properties of rubber and plastic gloves (double layer) within the first 60 min exposure (mimicking the maximum time of an explantation procedure) to saline (simulating t...

  4. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  5. Effect of explant type on the rooting and acclimatization of Dianthus serotinus Waldst. & Kit.

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2014-01-01

    Full Text Available The effect of the concentration of MS salts and explant type on D. serotinus rooting and acclimatization was investigated in order to optimize a protocol for the micropropagation of this species. The obtained results showed that explant type as well as the concentration of MS salts had a significant effect on rooting, and the highest rooting rate (85-86,7% was achieved when culturing single-node cuttings and terminal buds on a half-strength MS medium supplemented with 0,5 mgL-1 NAA. Nevertheless, mean number of roots per explant was higher on the MS media (15,3-18,6 than on the half-strength MS media (11,8-13,4. The best acclimatization rate was obtained in a 4:1 mixture of peat and sand (83,3-86,7%. The explant type from which in vitro plantlets developed had no effect on the acclimatization rate. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  6. Effect of explants, hormonal combination and genotype on micropropagation of pepper

    Directory of Open Access Journals (Sweden)

    Z. Moheb Mohamadi

    2014-07-01

    Full Text Available Pepper (Capsicum annuum is generally propagated from seeds. In Iran, imported hybrid seeds are used for this purpose. Germination of the greenhouse pepper seeds and stabilization of their seedlings takes a long time. But, tissue culture technique could rapidly propagate this plant with a homogeneous genetic structure in a large scale. An attempt was made in this study to evaluate the effects of different genotypes, explants and growth regulators on callus production and regeneration and introduce the appropriate protocol for micropropagation of commercial varieties of pepper in Iran. Analysis of variance indicated that effect of different genotypes, interaction of various explants and combination of hormones and interaction between genotypes, explants and hormones were significant on the evaluated traits at 1% level. Based on the results, for micropropagation of pepper with leaves and cotyledons, combination of 1 mg/l IAA and 5 mg/l BAP was selected. It seems that using leaf explants for micropropagation of pepper in large scale in greenhouses would be suitable.

  7. A RIFAMPICINA NA DESCONTAMINAÇÃO BACTERIANA DE EXPLANTES DE MAMOEIRO PROVENIENTES DO CAMPO

    Directory of Open Access Journals (Sweden)

    GIOVANNI RODRIGUES VIANNA

    1997-01-01

    Full Text Available Observou-se alta contaminação bacteriana nos explantes de mamoeiro introduzidos in vitro, a partir de plantas matrizes desenvolvidas no campo, independentemente da época do ano em que se realizaram as coletas. O uso de desinfestantes superficiais, como álcool e hipoclorito de sódio, garantiram níveis aceitáveis de controle apenas para fungos, não para bactérias. A rifampicina, por tratamento de imersão ou introdução em meio de cultura, controlou satisfatoriamente as contaminações de caráter endofítico, obtendo-se 70% de explantes sadios, sem sinais de fitotoxicidade.High contamination by bacteria was observed in papaya tissue cuttings introduced in vitro from plants grown in the field, independent of the period of the year that samples were collected. The use of alcohol and sodium hypoclorite did not guarantee good bacteria control. Rifampicin, added as an immersion solution treatment or in the culture media, controlled the internal contamination of explants, without damaging the cuttings. Up to 70% of healthy tissue explants were obtained by the use of rifampicin.

  8. Protoplast Isolation in Lupin ( Lupinus mutabilis Sweet): Determination of Optimum Explant Sources and Isolation Conditions

    OpenAIRE

    BABAOĞLU, Mehmet

    2000-01-01

    Effects of cultural factors on the yield, viability and division of protoplasts were investigated in Lupinus mutabilis Sweet containing a high protein content as well as a reasonable oil content which may make this species an alternative crop to soybean in Turkey. Explants from different in vitro seedling parts were evaluated on the suitability of protoplast isolation and viability. Leaf mesophyll was the most suitable tissue as a protoplast source. Pectinases as well as cellulases were es...

  9. Characteristic of c-Kit+ progenitor cells in explanted human hearts

    OpenAIRE

    Matuszczak, Sybilla; Czapla, Justyna; Jarosz-Biej, Magdalena; Wiśniewska, Ewa; Cichoń, Tomasz; Smolarczyk, Ryszard; Kobusińska, Magdalena; Gajda, Karolina; Wilczek, Piotr; Śliwka, Joanna; Zembala, Michał; Zembala, Marian; Szala, Stanisław

    2014-01-01

    According to literature data, self-renewing, multipotent, and clonogenic cardiac c-Kit+ progenitor cells occur within human myocardium. The aim of this study was to isolate and characterize c-Kit+ progenitor cells from explanted human hearts. Experimental material was obtained from 19 adult and 7 pediatric patients. Successful isolation and culture was achieved for 95 samples (84.1 %) derived from five different regions of the heart: right and left ventricles, atrium, intraventricular septum,...

  10. Aescin formation in calli and embryoids from cotyledon and stem explants of Aesculus hippocastanum L.

    Science.gov (United States)

    Profumo, P; Caviglia, A M; Gastaldo, P

    1994-11-01

    Aescin in calli and embryoids obtained from both cotyledon and stem explants of Aesculus hippocastanum were investigated by HPLC. Determinations were carried out on tissues cultured in agarized medium supplemented with growth substances (2,4-dichlorophenoxyacetic acid; kinetin; 1-naphthaleneacetic acid). The results indicate that aescin was produced in all the analysed samples. The amount of active principle present in some samples was higher than that found in horse-chestnut seeds.

  11. Generating cartilage repair from pluripotent stem cells.

    Science.gov (United States)

    Cheng, Aixin; Hardingham, Timothy E; Kimber, Susan J

    2014-08-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application.

  12. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation.

    Science.gov (United States)

    Del Moral, Pierre-Marie; Warburton, David

    2010-01-01

    Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages, requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung organ culture is a very useful system to study epithelial-mesenchymal interactions. Both epithelial and mesenchymal morphogenesis proceed under specific conditions that can be readily manipulated in this system (in the absence of maternal influence and blood flow). More importantly this technique can be readily done in a serumless, chemically defined culture media. Gain and loss of function can be achieved using expressed proteins, recombinant viral vectors, and/or analysis of transgenic mouse strains, antisense RNA, as well as RNA interference gene knockdown. Additionally, to further study epithelial-mesenchymal interactions, the relative roles of epithelium versus mesenchyme signaling can also be determined using tissue recombination (e.g., epithelial and mesenchymal separation) and microbead studies.

  13. In Vitro Infection of Trypanosoma cruzi Causes Decrease in Glucose Transporter Protein-1 (GLUT1 Expression in Explants of Human Placental Villi Cultured under Normal and High Glucose Concentrations

    Directory of Open Access Journals (Sweden)

    Luciana Mezzano

    2012-01-01

    Full Text Available Trypanosoma cruzi, the etiologic Chagas' disease agent, induces changes in protein pattern of the human placenta syncytiotrophoblast. The glucose transporter protein-1 (GLUT1 is the primary isoform involved in transplacental glucose transport. We carried out in vitro assays to determine if T. cruzi infection would induce changes in placental GLUT1 protein expression under normal and high concentration of glucose. Using Western blot and immunohistological techniques, GLUT1 expression was determined in normal placental villi cultured under normal or high concentrations of glucose, with or without in vitro T. cruzi infection, for 24 and 48 hours. High glucose media or T. cruzi infection alone reduced GLUT1 expression. A yet more accentuated reduction was observed when infection and high glucose condition took place together. We inform, for the first time, that T. cruzi infection may induce reduction of GLUT1 expression under normal and high glucose concentrations, and this effect is synergic to high glucose concentrations.

  14. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  15. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var.alata

    Institute of Scientific and Technical Information of China (English)

    Anna Pick Kiong LING; Kinn Poay TAN; Sobri HUSSEIN

    2013-01-01

    Objective:Labisia pumi/a var.a/ata,commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia,is traditionally used by members of the Malay community because of its post-partum medicinal properties.Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat.Thus,this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L.pumila.Methods:The capabilities of callus,shoot,and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0,1,3,5,and 7 mg/L.Results:Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34± 19.55)% and (70.40± 14.14)% efficacy,respectively.IBA was also found to be the most efficient PGR for root induction.A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA,respectively.Shoot formation was only observed in stem explant,with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture.Conclusions:Callus,roots,and shoots can be induced from in vitro leaf and stem explants of L.pumila through the manipulation of types and concentrations of PGRs.

  16. Tribology approach to the engineering and study of articular cartilage.

    Science.gov (United States)

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail.

  17. Plant regeneration from single-nodal-stem explants of legume tree Prosopis alba Griseb.

    Science.gov (United States)

    Castillo de Meier, G; Bovo, O A

    2000-08-01

    Seeds of Prosopis alba were scarified with abrasive paper and placed to germinate on MS (Murashige and Skoog 1962) nutrient medium. After 7 days of culture, the basal part of cotyledons was removed and pieces of 4 mm" from distal parts were cultured on Murashige and Skoog (1962) mineral salts and vitamins (MS) (3% sucrose) supplemented with growth regulators. Callus proliferation took place in the majority of the media tested. A low percentage of calluses with green buds that developed on MS basal medium containing 0.1 mg.L-1 2,4-D alone or supplemented with BAP at 0.1 mg.L-1 was observed. Neither cotyledonary segments in any medium assayed regenerated the whole plants. Bud elongation (near 70%) was achieved when single-nodal-stem segments cut from 20 days old seedlings were cultured on MS salts supplemented with 3 mg.L-1 NAA or 3 mg.L-1 IBA combined with 0.05 mg.L-1 KIN after 60 days in culture. Multiple shoots per bud were also observed. Single-nodal-stem segments from five-year-old plants were also cultured on the same media used for seedling explants. Maximal frequency of explants with bud elongation (near 70%) was found on MS with 0.1 mg.L-1 NAA plus 1 mg.L-1 BAP after 60 days of culture. Single-nodal-stem explants cut from adult trees (more than 20 years) were also employed, but the number of bud elongation was lesser. For rooting, the elongated shoots were transferred to a semisolid or liquid MS culture medium employing a paper bridge, supplemented with 0.5 mg.L-1 IBA or 0.1 mg.L-1 NAA.

  18. Induction of shoot buds, multiplication and plantlet formation in seedling explants of bell pepper (Capsicum annuum L. cv. Bryza in vitro

    Directory of Open Access Journals (Sweden)

    Andrzej Gatz

    2014-01-01

    Full Text Available In vitro shoot bud induction and multiplication as well as plantlets formation from different parts of 21-d old seedlings (shoot tip, cotyledonary node, distal part of cotyledon, acropetal section of hypocotyl of Capsicum annuum L., cv. Bryza were compared. During 4 weeks of primary explant culture on initiation media, first shoot bud primordia appeared; they reminded leaf primordia and subsequently some of them underwent enlargement, some developed into leaves and leaf-like structures (mainly on cotyledon explants. The highest number of shoot bud primordia was noted on cotyledonary node explants, but they were smaller than those on the remaining types of the explants. The best response of shoot regeneration showed cotyledon explants on which most of shoot buds were formed in each from four treated passages. From shoot buds on elongation media after 4 weeks of culture rooted rosettes of leaves were achieved, and the extension of the culture time to eight weeks without subculture caused that the rosettes developed into plantlets. Throughout four successive passages plantlets were obtained from cotyledon and shoot tip explants.

  19. Simulação da soja geneticamente modificada tolerante ao glyphosate por meio do cultivo de explantes Simulation of the transgenic soybean tolerant to glyphosate through explant cultivation

    Directory of Open Access Journals (Sweden)

    Sérgio C. Siqueira

    1999-04-01

    Full Text Available O objetivo do experimento consistiu na simulação in vitro da soja transgênica tolerante ao glyphosate, através do cultivo de explantes em meios de cultura contendo aminoácidos aromáticos. As avaliações basearam-se nos efeitos do glyphosate sobre sementes oriundas de explantes de soja (Glycine max (L. Merr. cv. UFV-16. Para tanto, explantes de soja foram cultivados em meios de cultura líquidos com pH em torno de 5,0. Cada explante constou de um legume completamente expandido contendo duas sementes de aproximadamente 100 mg, conectada a um segmento de caule de 45 mm de comprimento. Os tratamentos testados foram: A = glutamina (Gln; B = Gln + fenilalanina (Phe + tirosina (Tyr + triptofano (Trp; C = Gln + glyphosate; D = Gln + Phe + Tyr + Trp + glyphosate. O experimento foi conduzido sob irradiância de 80 mmol-2s-1 a 25oC por 204 horas. Nos tratamentos que receberam aminoácidos aromáticos e glutamina, o herbicida não afetou as massas fresca e seca das sementes, como também, não afetou seus constituintes bioquímicos (proteínas, óleo, ácidos graxos, carboidratos e clorofilas. Portanto, a suplementação exógena de aminoácidos aromáticos suprime os efeitos fitotóxicos do glyphosate sobre explantes de soja, permitindo estudos sobre o seu modo de ação e metabolismo nas sementes, uma vez que os explantes se comportaram analogamente à soja transgênica não suscetível ao herbicida.The objective of this experiment consisted in simulation in vitro of the transgenic soybean tolerant to glyphosate through explant cultivation in culture medium containing aromatic amino acids. The effects of glyphosate on soybean (Glycine max (L. Merrill were evaluated in seeds harvested from explants of cv UFV-16. The soybean explants were cultivated in liquid medium culture with pH about 5.0. Each explant consisted of one fruit completely expanded, containing two seeds of 100 mg approximately, and connected to a stem segment of 45 mm length. The

  20. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  1. Lubrication of Articular Cartilage.

    Science.gov (United States)

    Jahn, Sabrina; Seror, Jasmine; Klein, Jacob

    2016-07-11

    The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

  2. Further assessment of neuropathology in retinal explants and neuroprotection by human neural progenitor cells

    Science.gov (United States)

    Mohlin, Camilla; Liljekvist-Soltic, Ingela; Johansson, Kjell

    2011-10-01

    Explanted rat retinas show progressive photoreceptor degeneration that appears to be caspase-12-dependent. Decrease in photoreceptor density eventually affects the inner retina, particularly in the bipolar cell population. Explantation and the induced photoreceptor degeneration are accompanied by activation of Müller and microglia cells. The goal of this study was to determine whether the presence of a feeder layer of human neural progenitor cells (hNPCs) could suppress the degenerative and reactive changes in the explants. Immunohistochemical analyses showed considerable sprouting of rod photoreceptor axon terminals into the inner retina and reduced densities of cone and rod bipolar cells. Both sprouting and bipolar cell degenerations were significantly lower in retinas cultured with feeder layer cells compared to cultured controls. A tendency toward reduced microglia activation in the retinal layers was also noted in the presence of feeder layer cells. These results indicate that hNPCs or factors produced by them can limit the loss of photoreceptors and secondary injuries in the inner retina. The latter may be a consequence of disrupted synaptic arrangement.

  3. Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata.

    Science.gov (United States)

    Yadav, Sushil Kumar; Katikala, Sweety; Yellisetty, Varalaxmi; Kannepalle, Annapurna; Narayana, Jyothi Lakshmi; Maddi, Vanaja; Mandapaka, Maheswari; Shanker, Arun Kumar; Bandi, Venkateswarlu; Bharadwaja, Kirti Pulugurtha

    2012-12-01

    A reproducible and highly efficient protocol for genetic transformation mediated by Agrobacterium has been established for greengram (Vigna radiata L. Wilczek). Double cotyledonary node (DCN) explants were inoculated with Agrobacterium tumefaciens strain LBA 4404 harboring a binary vector pCAMBIA 2301 containing neomycin phosphotransferase (npt II) gene as selectable marker, β-glucuronidase (GUS) as a reporter (uidA) gene and annexin 1 bj gene. Important parameters like optical density of Agrobacterium culture, culture quantity, infection medium, infection and co-cultivation time and acetosyringone concentration were standardized to optimize the transformation frequency. Kanamycin at a concentration of 100 mg/l was used to select transformed cells. Transient and stable GUS expressions were studied in transformed explants and regenerated putative plants, respectively. Transformed shoot were produced on regeneration medium containing 100 mg/l kanamycin and 250 mg/l cefotaxime and rooted on ½ MS medium. Transient and constitutive GUS expression was observed in DCN explants and different tissues of T(0) and T(1) plants. Rooted T(0) and T(1) shoots confirming Polymerase Chain Reaction (PCR) positive for npt II and annexin 1bj genes were taken to maturity to collect the seeds. Integration of annexin gene into the greengram genome was confirmed by Southern blotting.

  4. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    Science.gov (United States)

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H2O2). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H2O2. We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H2O2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H2O2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  5. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  6. Cartilage stem cells: regulation of differentiation.

    Science.gov (United States)

    Solursh, M

    1989-01-01

    The developing limb bud is a useful source of cartilage stem cells for studies on the regulation of chondrogenesis. In high density cultures these cells can progress through all stages of chondrogenesis to produce mineralized hypertrophic cartilage. If the cells are maintained in a spherical shape, single stem cells can progress through a similar sequence. The actin cytoskeleton is implicated in the regulation of chondrogenesis since conditions that favor its disruption promote chondrogenesis and conditions that favor actin assembly inhibit chondrogenesis. Since a number of extracellular matrix receptors mediate effects of the extracellular matrix on cytoskeletal organization and some of these receptors are developmentally regulated, it is proposed that matrix receptor expression plays a central role in the divergence of connective tissue cells during development.

  7. Genetics Home Reference: cartilage-hair hypoplasia

    Science.gov (United States)

    ... Home Health Conditions cartilage-hair hypoplasia cartilage-hair hypoplasia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Cartilage-hair hypoplasia is a disorder of bone growth characterized by ...

  8. Inhibition of glycosaminoglycan incorporation influences collagen network formation during cartilage matrix production

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Jansen, K.M.B.; Verhaar, J.A.N.; Groot, J. de; Vanosch, G.J.V.M.

    2009-01-01

    To understand cartilage degenerative diseases and improve repair procedures, we investigate the influence of glycosaminoglycans (GAGs) on cartilage matrix biochemistry and functionality. Bovine articular chondrocytes were cultured in alginate beads with(out) para-nitrophenyl-beta-d-xyloside (PNPX) t

  9. Scaffolding Biomaterials for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Zhen Cao

    2014-01-01

    Full Text Available Completely repairing of damaged cartilage is a difficult procedure. In recent years, the use of tissue engineering approach in which scaffolds play a vital role to regenerate cartilage has become a new research field. Investigating the advances in biological cartilage scaffolds has been regarded as the main research direction and has great significance for the construction of artificial cartilage. Native biological materials and synthetic polymeric materials have their advantages and disadvantages. The disadvantages can be overcome through either physical modification or biochemical modification. Additionally, developing composite materials, biomimetic materials, and nanomaterials can make scaffolds acquire better biocompatibility and mechanical adaptability.

  10. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  11. Making post-mortem implantable cardioverter defibrillator explantation safe

    DEFF Research Database (Denmark)

    Räder, Sune B E W; Zeijlemaker, Volkert; Pehrson, Steen;

    2009-01-01

    AIMS: The aim of this study is to investigate whether protection with rubber or plastic gloves during post-mortem explantation of an implantable cardioverter defibrillator (ICD) offers enough protection for the explanting operator during a worst-case scenario (i.e. ICD shock). METHODS AND RESULTS...... that the resting voltage over the operating person would not exceed 50 V. CONCLUSION: The use of intact medical gloves made of latex, neoprene, or plastic eliminates the potential electrical risk during explantation of an ICD. Two gloves on each hand offer sufficient protection. We will recommend the use...

  12. Metabolic Response of Human Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saskia Schadow

    2017-01-01

    Full Text Available The most frequent disease of the locomotor system is osteoarthritis (OA, which, as a chronic joint disease, might benefit more from nutrition than acute illnesses. Collagen hydrolysates (CHs are peptidic mixtures that are often used as nutraceuticals for OA. Three CHs were characterized biochemically and pharmacologically. Our biophysical (MALDI-TOF-MS, NMR, AFM and fluorescence assays revealed marked differences between CHs of fish (Peptan® F 5000, Peptan® F 2000 and porcine (Mobiforte® origin with respect to the total number of peptides and common peptides between them. Using a novel dual radiolabeling procedure, no CH modulated collagen biosynthesis in human knee cartilage explants. Peptan® F 2000 enhanced the activities of the aggrecanase ADMATS4 and ADMATS5 in vitro without loss of proteoglycan from cartilage explants; the opposite effect was observed with Mobiforte®. Interleukin (IL-6, matrix metalloproteinase (MMP-1, -3 and -13 levels were elevated in explants that were treated with Mobiforte® and Peptan® F 5000, but not with Peptan® F 2000. In conclusion, the heterogeneous peptide composition and disparate pharmacological effects between CHs suggest that the effect of a CH preparation cannot be extrapolated to other formulations. Thus, the declaration of a CH as a safe and effective nutraceutical requires a thorough examination of its pleiotropic effects.

  13. Metabolic Response of Human Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates

    Science.gov (United States)

    Schadow, Saskia; Simons, Viktor S.; Lochnit, Guenter; Kordelle, Jens; Gazova, Zuzana; Siebert, Hans-Christian; Steinmeyer, Juergen

    2017-01-01

    The most frequent disease of the locomotor system is osteoarthritis (OA), which, as a chronic joint disease, might benefit more from nutrition than acute illnesses. Collagen hydrolysates (CHs) are peptidic mixtures that are often used as nutraceuticals for OA. Three CHs were characterized biochemically and pharmacologically. Our biophysical (MALDI-TOF-MS, NMR, AFM) and fluorescence assays revealed marked differences between CHs of fish (Peptan® F 5000, Peptan® F 2000) and porcine (Mobiforte®) origin with respect to the total number of peptides and common peptides between them. Using a novel dual radiolabeling procedure, no CH modulated collagen biosynthesis in human knee cartilage explants. Peptan® F 2000 enhanced the activities of the aggrecanase ADMATS4 and ADMATS5 in vitro without loss of proteoglycan from cartilage explants; the opposite effect was observed with Mobiforte®. Interleukin (IL)-6, matrix metalloproteinase (MMP)-1, -3 and -13 levels were elevated in explants that were treated with Mobiforte® and Peptan® F 5000, but not with Peptan® F 2000. In conclusion, the heterogeneous peptide composition and disparate pharmacological effects between CHs suggest that the effect of a CH preparation cannot be extrapolated to other formulations. Thus, the declaration of a CH as a safe and effective nutraceutical requires a thorough examination of its pleiotropic effects. PMID:28117674

  14. An efficient protocol devised for rapid callus induction from leaf explants of Biophytum sensitivum (lDC.

    Directory of Open Access Journals (Sweden)

    Sirigiri Chandra Kala

    2014-03-01

    Full Text Available The Cell cultures are used extensively for in vitro secondary metabolite productions were obtained from callus tissue through cell suspension culture.  The establishment of callus cultures has considerable potential for the production of known and novel secondary metabolites. The objective of the study was to scientifically assess callus culture of Biophytum sensitivum (L DC. was established from leaf explants with different growth regulators greatly influenced the growth of callus cultures. The callus from leaf explants is induced by inoculating the young leaf bits on MS medium supplemented with various auxins (2, 4- Dichlorophenoxyacetic acid (2, 4-D, α-Naphthalene Acetic Acid (NAA and Indole Buteric Acid (IBA, cytokinins (6-Benzyladenine (BA and Kinetin (KN and cytokinin-auxin combination (BA+NAA in different concentrations were (0.5 to 5.0 mg/l used. BA 1mg/l, in combination with NAA (1.0 mg/l also produced maximum amount of callus.  So, this research is concluded that the plant leaf explants cultured on MS medium with 1 mg/ l  BA with 0.5 mg/l NAA was found most efficient for callus induction, provided calli with quite good in texture and friable in nature.

  15. Intraocular lens explantation or exchange: indications, postoperative interventions, and outcomes

    Directory of Open Access Journals (Sweden)

    Refik Oltulu

    2015-06-01

    Full Text Available ABSTRACT Purpose: To analyze the indications for explantation or exchange of intraocular lenses (IOLs, which were originally implanted for the correction of aphakia during cataract extraction. Methods: All cases that involved intraocular lens explantation or exchange in one institution between January 2008 and December 2014 were analyzed retrospectively. Results: In total, 93 eyes of 93 patients were analyzed. The median time interval between implantation and explantation of the anterior chamber intraocular lenses (AC IOL and posterior chamber intraocular lenses (PC IOL was 83.40 ± 83.14 months (range: 1-276 months and 55.14 ± 39.25 months (range: 1-168 months, respectively. Pseudophakic bullous keratopathy (17 eyes, 38.6% and persistent iritis (12 eyes, 27.8% in the AC IOL group and dislocation or decentration (30 eyes, 61.2% and incorrect IOL power (nine eyes, 18.4% in the PC IOL group were the most common indications for explantation of IOLs. The mean logMAR best corrected visual acuity (BCVA improved significantly from 1.30 preoperatively to 0.62 postoperatively in the PC IOL group (p<0.001 but did not improve significantly in the AC IOL group (p=0.186. Conclusions: The primary indication for IOL explantation or exchange was pseudophakic bullous keratopathy in the AC IOL group and was dislocation or decentration in the PC IOL group. PC IOL explantation or exchange is safe and improves visual acuity.

  16. The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Ota Naoshi

    2009-03-01

    Full Text Available Abstract Background Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage. Results The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets. Conclusion The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.

  17. 13C NMR relaxation studies on cartilage and cartilage components.

    Science.gov (United States)

    Naji, L; Kaufmann, J; Huster, D; Schiller, J; Arnold, K

    2000-08-07

    We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.

  18. Cartilage formation measured by a novel PIINP assay suggests that IGF-I does not stimulate but maintains cartilage formation ex vivo

    DEFF Research Database (Denmark)

    Madsen, S H; Sondergaard, B C; Jensen, Anne-Christine Bay;

    2009-01-01

    . Proteoglycan levels retained in the explants after 22 days of culture were extracted and measured by the sulfated glycosaminoglycan (sGAG) assay. RESULTS: In the absence of stimulation, PIINP markedly decreased as a function of time (99.4%, p collagen formation...... explants were cultured in Dulbecco's modified Eagle's medium (DMEM):F12 in the presence of 0, 0.01, 0.1, 1, 10, or 100 ng/mL of IGF-I. The viability of the chondrocytes was measured by the colorimetric Alamar blue assay. Collagen formation was assessed from the conditioned medium by the PIINP assay...

  19. DIRECT IN VITRO SHOOTS PROLIFERATION OF CHICK PEA (CICER ARIETINUM L. FROM SHOOT TIP EXPLANTS INDUCED BY THIDIAZURON

    Directory of Open Access Journals (Sweden)

    Shaheena Parveen

    2012-01-01

    Full Text Available A rapid, simple and efficient protocol for direct in vitro multiple shoot induction and plantlet regeneration was achieved from shoot tip explants of Cicer arietinum. The shoot tips were cultured on MS medium fortified with Thidiazuron (TDZ (1.0-7.0 mg/L for multiple shoot induction. Multiple shoots proliferation was best observed at 3.0 mg/L TDZ from the shoot tip explants within three weeks of culture. Shoot number per explant ranged between 2 and 10. Individual shoots were aseptically excised and sub cultured in the same media for shoot elongation. The elongated shoots were transferred to Indole Butyric Acid (IBA (1.0mg/L–5.0mg/L for root induction. Rooting was observed within two weeks of culture. Rooted plantlets were successfully hardened under culture conditions and subsequently established in the field conditions. The recorded survival rate of the plants was 86%. Plants looked healthy with no visually detectable phenotypic variations.

  20. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  1. A study of crystalline biomaterials for articular cartilage bioengineering

    Energy Technology Data Exchange (ETDEWEB)

    Gross-Aviv, Talia [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: taliag@bgu.ac.il; DiCarlo, Bryan B. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: bdicarlo@rice.edu; French, Margaret M. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: mmfrench@rice.edu; Athanasiou, Kyriacos A. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: athanasiou@rice.edu; Vago, Razi [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: rvago@bgu.ac.il

    2008-12-01

    This study examines the suitability of marine origin coral species, Porites lutea (POR) and the hydrozoan Millepora dichotoma (MIL), for use as novel three dimensional growth matrices in the field of articular cartilage tissue engineering. Therefore, mesenchymal stem cells (MSCs) and chondrocytes were grown on the skeletal material obtained from each of these two organisms to investigate their potential use as three dimensional scaffolding for cartilage tissue growth. Chondrogenic induction of MSCs was achieved by addition of transforming growth factor-{beta}1 (TGF-{beta}1) and insulin growth factor-I (IGF-I). Cell adherence, proliferation, differentiation and tissue development were investigated through six weeks of culture. Cartilage tissue growth and chondrocytic phenotype maintenance of each cell type were examined by cell morphology, histochemical analyses, expression of collagen type II and quantitative measures of glycosaminoglycan (GAG) content. The MSCs and the chondrocytes were shown good adherence to the scaffolds and maintenance of the chondrocytic phenotype in the initial stages of culture. However after two weeks of culture on MIL and three weeks on POR these cultures began to exhibit signs of further differentiation and phenotypic loss. The shown results indicated that POR was a better substrate for chondrocytes phenotype maintenance than MIL. We believe that surface modification of POR combined with mechanical stimuli will provide a suitable environment for chondrogenic phenotype maintenance. Further investigation of POR and other novel coralline biomatrices is indicated and warranted in the field of cartilage tissue engineering applications.

  2. In vitro Regeneration of Plantlets from Leaf and Nodal explants of Aristolochia indica L.- An Important Threatened Medicinal Plant

    Institute of Scientific and Technical Information of China (English)

    Pramod V. Pattar; M.Jayaraj

    2012-01-01

    Objective: An efficient reproducible protocol has been developed for in vitro regeneration of plantlets from leaf and nodal explants of Aristolochia indica L. Methods: Wild grown plants Aristolochia indica L. were collected and grown in the departmental garden. Leaf and nodal segments (0.5-1.0 cm) from young healthy plants were first washed thoroughly under running tap water for 15 - 20 minutes and then treated with liquid detergent [5% (v/v) Tween-20] for 5-10 minutes. Later these explants were washed with double-distilled water for 5 minutes. Subsequently, explants were immersed in 70% (v/v) ethanol for 2 - 3 minutes and washed with sterile glass double distilled water for 2-3 times. Eventually, the explants were treated with an aqueous solution of 0.1% (w/v) HgCl2 for 1 - 2 minutes and rinsed for two-to-three times in sterile ddH2O to remove all traces of HgCl2. The sterilized explants were inoculated aseptically onto solid basal Murashige and Skoog’s medium with different concentrations and combinations of BAP and NAA for in vitro regeneration of plants. Results: Both leaf and nodal explants cultured on MS medium supplemented with 0.8 mg/L BAP developed into mass of callus. These calli were subcultured for the induction of shoots and roots. Shoots were induced from both calli on MS medium supplemented with 0.8 mg/L BAP+0.5 mg/L NAA. Roots were induced from in vitro shoots on MS medium supplemented with 0.8 mg/L NAA for 4 weeks. Nodal explants were more regenerative with 95 % response compared to leaf explants with 85%. Finally, these in vitro regenerated plantlets were hardened, acclimatised and successfully transferred to the field. Conclusions: The present protocol for in vitro regeneration of Aristolochia indica L. can be used to make this plant available throughout the year for traditional healers, pharmaceutical usages, germplasm conservation, commercial cultivation, and also for the production of secondary metabolites.

  3. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  4. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  5. Biotribology :articular cartilage friction, wear, and lubrication

    OpenAIRE

    Schroeder, Matthew O

    1995-01-01

    This study developed, explored, and refined techniques for the in vitro study of cartilage-on-cartilage friction, deformation, and wear. Preliminary results of in vitro cartilage-on- cartilage experiments with emphasis on wear and biochemistry are presented. Cartilage-bone specimens were obtained from the stifle joints of steers from a separate controlled study. The load, sliding speed, and traverse of the lower specimens were held constant as lubricant and test length were varied. Lubric...

  6. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies.

  7. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H

    2006-01-01

    explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... in vivo in CK null mice. CONCLUSION: Inhibition of MMP activity reduced both proteoglycan loss and type II collagen degradation. In contrast, inhibition of cysteine proteases resulted in an increase rather than a decrease in MMP derived fragments of collagen type II degradation, CTX-II, suggesting altered...

  8. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response

    Directory of Open Access Journals (Sweden)

    Hira eZafar

    2016-04-01

    Full Text Available Nanoparticles (NPs have diverse properties in comparison to respective chemicals due to structure, surface area ratio, morphology, and reactivity. Toxicological effects of metallic NPs to organisms including plants have been reported. However, to the authors’ knowledge there is no report on the effect of NPs on in vitro culture of plant explants. In this study, ZnO NPs at 500-1500 mg/L badly affected Brassica nigra seed germination and seedling growth and raised antioxidative activities and antioxidants concentrations. On the other hand, culturing the stem explants of B. nigra on Murashige and Skoog (MS medium in presence of low concentration of ZnO NPs (1-20 mg/L produced white thin roots with thick root hairs. At 10 mg/L ZnO NPs shoots emergence was also observed. The developed calli/roots showed 79% DPPH (2,2-diphenyl-1-picryl hydrazyl radical scavenging activity at 10 mg/L. While total antioxidant and reducing power potential were also significantly different in presence of ZnO NPs. Non enzymatic antioxidative molecules, phenolics (up to 0.15 µg GAE/mg FW and flavonoids (up to 0.22 µg QE/mg FW, also raised and found NPs concentration dependent. We state that ZnO NPs may induce roots from explants cultured on appropriate medium and can be cultured for production of valuable secondary metabolites.

  9. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    Science.gov (United States)

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  10. Clonal propagation of guava (Psidium guajava L on nodal explants of mature elite cultivar

    Directory of Open Access Journals (Sweden)

    Guochen Yang

    2011-04-01

    Full Text Available Guava (Psidium guajava L. is a very valuable tropical and subtropical fruit. However, guava micro-propagation are genotypes dependent, there are several problems associated with in vitro cultures of guava including browning or blackening of culture medium due to leaching of phenolics, microbial contamination, and in vitro tissue recalcitrance. A micro-propagation system using Murashige and Skoog (MS medium with 6-benzylaminopurine (BA, kinetin and naphthaleneacetic acid (NAA was developed for guava (Psidium guajava L from mature cultivar. As part of this research various disinfection methods and plant growth regulators were tested in vitro. The most effective method involved treating explants in a 15% bleach solution for 20 mins followed by culturing them in MS medium with 250 mg/L polyvinylpyrrolidone (PVP. This method maximized the percentage of bud breakage (53.3%, while producing the minimum browning rate (18.3% for the explants. The best observed proliferation rate (71.2% occurred on the MS medium supplemented with 4.44 μM BA, 4.65 μM kinetin (KT and 0.54 μM NAA. It produced the highest mean number of shoots (2.2. Shoots were then rooted (65% when dipped in 4.9 mM Indole-3-butyric acid (IBA solution for 1 min and rooted plantlets survived (100% after acclimatization to the greenhouse.

  11. Conversion of neural plate explants to pre-placodal ectoderm-like tissue in vitro.

    Science.gov (United States)

    Shigetani, Yasuyo; Wakamatsu, Yoshio; Tachibana, Toshiaki; Okabe, Masataka

    2016-09-02

    Neural crest and cranial sensory placodes arise from ectodermal epithelium lying between the neural plate and non-neural ectoderm (neural border). BMP signaling is important for both an induction of the neural border and a subsequent induction of the neural crest within the neural border. In contrast, FGF signaling is important for the neural border induction and the following induction of the pre-placodal ectoderm (PPE), which later gives rise to the cranial sensory placodes. While previous studies have demonstrated that the neural plate explants could be converted to the neural crest cells by adding BMP4 in a culture medium, there is no report showing a similar conversion of the neural plate to the PPE. We therefore examined the effect of FGF2 along with BMP4 on the rostral neural plate explants and found that the explants became the simple squamous epithelia, which were characterized by the desmosomes/tonofilaments in membranes of adjacent cells. Such epithelia expressed sets of neural border markers and the PPE genes, suggesting that the neural plate explants were converted to a PPE-like tissue. This method will be useful for further studying mechanisms of PPE induction and subsequent specifications of the cranial placodes.

  12. T cells fail to develop in the human skin-cell explants system; an inconvenient truth

    Directory of Open Access Journals (Sweden)

    Vanderlocht Joris

    2011-02-01

    Full Text Available Abstract Background Haplo-identical hematopoietic stem cell (HSC transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Results Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL. In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Conclusions Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  13. Micropropagation of Origanum acutidens (HAND.-MAZZ.) IETSWAART using stem node explants.

    Science.gov (United States)

    Yildirim, Mehmet Ugur

    2013-01-01

    Origanum acutidens (HAND.-MAZZ.) IETSWAART is a promising ornamental plant that can be widely used in landscape management. It is endemic to Eastern Anatolian region of Turkey. Tissue culture has not been used to micropropagate it. The study reports stem node explants from one-week-old seedlings of the plant for successful micropropagation. The stem nodes were cultured on MS medium containing 0.6, 1.2, 1.8, and 2.4 mg/L BAP with 0.2 mg/L NAA. Visible effects of culture media on shoot proliferation were recorded. Shoot regeneration rate was maximum on MS medium containing 1.80 mg/L BAP-0.2 mg/L NAA. The micropropagated shoots were rooted on MS medium containing 0.2 mg/L NAA. All microrooted plantlets survived during acclimatisation on peat moss. It was concluded that O. acutidens can be successfully micropropagated under in vitro conditions.

  14. A protocol for sonication-assisted Agrobacterium rhizogenes-mediated transformation of haploid and diploid sugar beet (Beta vulgaris L.) explants.

    Science.gov (United States)

    Klimek-Chodacka, Magdalena; Baranski, Rafal

    2014-01-01

    Hairy root cultures obtained after Agrobacterium rhizogenes-mediated genetic transformation can serve as a model system for studying plant metabolism and physiology, or can be utilized for the production of secondary metabolites. So far no efficient protocol of hairy root development in sugar beet has been publically released. In this work, two A. rhizogenes strains (A4T and LBA1334) carrying a binary vector pBIN-m-gfp5-ER or pCAMBIA1301 possessing gfp and uidA reporter genes were used to transform petiole explants of haploid and diploid sugar beet genotypes. Five treatment combinations of sonicated-assisted Agrobacterium-mediated transformation were compared. Hairy roots appeared on 0% to 54% of explants depending on the treatment combination used. The highest frequency was achieved when explants of a diploid genotype were sonicated for 15 s in the inoculum containing A. rhizogenes of OD600=0.5 and then co-cultured for three days. Using the same treatment combinations the explants of haploid genotypes developed hairy roots with the frequency ranging from 10% to 36%. Transformation efficiency was independent on the bacterial strain used. The results indicate that haploid sugar beet explants are amenable to transformation using A. rhizogenes, and that the efficiency of that process can be increased by applying short ultrasound treatment.

  15. Correlated response of in vitro regeneration capacity from different source of explants inCucumis melo.

    Science.gov (United States)

    Molina, R V; Nuez, F

    1995-01-01

    The variation among and within different populations of the regeneration ability from leaf, cotyledon and hypocotyl explants has been studied. A control population and two lines selected by their regeneration capacity from leaf explants were used. Significant differences among the plants of the control population,for the organogenic response, were detected. The regeneration capacity varies depending on the type of explant. Selection in order to improve the regeneration frequency from leaf explants also raises the organogenic response in the other explant types. This result suggests the presence of a partial common genetic system controlling the regeneration frequency of the diverse types of explants.

  16. Efficiencies in alginate encapsulation of vegetative explants

    Science.gov (United States)

    The goal of this study was to improve a non-mechanized bulk encapsulation technique to standardize encapsulation procedures and reduce the labor time compared to encapsulating individual nodes. Four mm-long nodal segments from Stage II cultures of Hibiscus moscheutos L. ‘Lord Baltimore’ were encapsu...

  17. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering.

    Science.gov (United States)

    Spitters, Tim W G M; Leijten, Jeroen C H; Deus, Filipe D; Costa, Ines B F; van Apeldoorn, Aart A; van Blitterswijk, Clemens A; Karperien, Marcel

    2013-10-01

    In cartilage, tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor that combines mechanical stimulation with a two compartment system through which nutrients can be supplied solely by diffusion from opposite sides of a tissue-engineered construct. This design is based on the hypothesis that creating gradients of nutrients, growth factors, and growth factor antagonists can aid in the generation of zonal tissue-engineered cartilage. Computational modeling predicted that the design facilitates the creation of a biologically relevant glucose gradient. This was confirmed by quantitative glucose measurements in cartilage explants. In this system, it is not only possible to create gradients of nutrients, but also of anabolic or catabolic factors. Therefore, the bioreactor design allows control over nutrient supply and mechanical stimulation useful for in vitro generation of cartilage constructs that can be used for the resurfacing of articulated joints or as a model for studying osteoarthritis disease progression.

  18. Safranin O reduces loss of glycosaminoglycans from bovine articular cartilage during histological specimen preparation.

    Science.gov (United States)

    Király, K; Lammi, M; Arokoski, J; Lapveteläinen, T; Tammi, M; Helminen, H; Kiviranta, I

    1996-02-01

    The ability of Safranin O, added to fixation and decalcification solutions, to prevent the escape of glycosaminoglycans (GAGs) from small cartilage tissue blocks during histological processing of cartilage has been studied. GAGs in the fixatives and decalcifying solutions used and those remaining in the 1 mm3 cubes of cartilage were assayed biochemically. The quantity of GAGs remaining in the cartilage cubes were determined from Safranin O-stained sections using videomicroscopy or microspectrophotometry. A quantity (10.6%) of GAGs were lost during a conventional 4% buffered formaldehyde fixation (48 h) and a subsequent decalcification in 10% EDTA (12 days) at 4 degrees C. Roughly one-quarter of the total GAG loss occurred during the 48 h fixation, and three-quarters during the 12 days of decalcification. Inclusion of 4% formaldehyde in the decalcification fluid decreased the loss of GAGs to 6.2%. The presence of 0.5% Safranin O in the fixative reduced this loss to 3.4%. When 0.5% Safranin O was included in the fixative and 4% formaldehyde in the decalcification solution, Safranin O staining of the histological sections increased on average by 13.5%. After fixation in the presence of 0.5% Safranin O, there was no difference in the staining intensities when decalcification was carried out in the presence of either Safranin O or formaldehyde, or both. It took 24 h for Safranin O to penetrate into the deep zone of articular cartilage, warranting a fixation period of at least this long. In conclusion, the addition of Safranin O to the fixative and either Safranin O or formaldehyde in the following decalcification fluid, markedly reduces the loss of GAGs from small articular cartilage explants during histological processing. However, for immunohistochemical studies, Safranin O cannot be included in the processing solutions, because it may interfere.

  19. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  20. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    Science.gov (United States)

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  1. A comparative study of candidal invasion in rabbit tongue mucosal explants and reconstituted human oral epithelium.

    Science.gov (United States)

    Jayatilake, J A M S; Samaranayake, Y H; Samaranayake, L P

    2008-06-01

    The purpose of this study is to compare the light and scanning electron microscopic (SEM) features of tissue invasion by three Candida species (C. albicans, C. tropicalis, and C. dubliniensis) in two different tissue culture models: rabbit tongue mucosal explants (RTME) and reconstituted human oral epithelium (RHOE). Tongue mucosal biopsies of healthy New Zealand rabbits were maintained in explant culture using a transwell system. RHOE was obtained from Skinethic Laboratory (Nice, France). RTME and RHOE were inoculated with C. albicans, C. tropicalis, and C. dubliniensis separately and incubated at 37 degrees C, 5% CO(2), and 100% humidity up to 48 h. Light microscopic and SEM examinations of uninfected (controls) and infected tissues were performed at 24 and 48 h. C. albicans produced characteristic hallmarks of pathological tissue invasion in both tissue models over a period of 48 h. Hyphae penetrated through epithelial cells and intercellular gaps latter resembling thigmotropism. SEM showed cavitations on the epithelial cell surfaces particularly pronounced at sites of hyphal invasion. Some hyphae on RTME showed several clusters of blastospores attached in regular arrangements resembling "appareil sporifere". C. tropicalis and C. dubliniensis produced few hyphae mainly on RTME but they did not penetrate either model. Our findings indicate that multiple host-fungal interactions such as cavitations, thigmotropism, and morphogenesis take place during candidal tissue invasion. RTME described here appears to be useful in investigations of such pathogenic processes of Candida active at the epithelial front.

  2. An efficient regeneration and rapid micropropagation protocol for Almond using dormant axillary buds as explants.

    Science.gov (United States)

    Choudhary, Ravish; Chaudhury, Rekha; Malik, Surendra Kumar; Sharma, Kailash Chandra

    2015-07-01

    An efficient in vitro protocol was standardized for Almond (Prunus dulcis) propagation using dormant axillary buds as explants. Explants were cultured on Murashige and Skoog (MS) and woody plant medium (WPM) supplemented with different concentration/combination(s) of phytohormones. MS basal medium showed lowest shoot induction and took longest duration for shoot initiation. Multiple shoots were induced in MS medium supplemented with the combination of BAP (0.5 mgL(-1)). Cultures showed poor response for rooting in all combinations of plant growth regulators (PGRs) and took 90 days for initiation. Rooting was higher in half strength of MS than in full-strength. The highest root induction (33.33%) was recorded in half MS medium supplemented with 0.1 mgL(-1) IBA (indole-3-butyric acid) followed by full strength of MS medium (20%) supplemented with IBA (0.1 mgL(-1)). α-Naphthalene acetic acid (NAA) was less effective for rooting than IBA. The highest root induction (25%) was found in half strength of MS medium supplemented with 0.1 mgL(-1) NAA followed by full strength of MS medium (20%). The protocol developed would be of use in mass propagation of almond and also support in vitro conservation.

  3. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  4. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish

    2010-07-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  5. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering.

    Science.gov (United States)

    Yuan, Tun; Zhang, Li; Li, Kuifeng; Fan, Hongsong; Fan, Yujiang; Liang, Jie; Zhang, Xingdong

    2014-02-01

    A collagen type I hydrogel was constructed and used as the scaffold for cartilage tissue engineering. Neonatal rabbit chondrocytes were seeded into the hydrogel, and the constructs were cultured in vitro for 7, 14, and 28 days. The immunomodulatory effect of the hydrogel on seeded chondrocytes was carefully investigated. The expressions of major histocompatibility complex classes I and II of seeded chondrocytes increased with the time, which indicated that the immunogenicity also increased with the time. Meanwhile, the properly designed collagen type I hydrogel could prompt the chondrogenesis of engineered cartilage. The extracellular matrix (ECM) synthesis ability of seeded chondrocytes and the accumulated ECM in the constructs continuously increased with the culture time. Both the isolation and protection, which come from formed ECM and hydrogel scaffold, can effectively control the adverse immunogenicity of seeded chondrocytes and even help to lessen the immunogenicity of the whole engineered cartilage. As the result, the levels of mixed lymphocyte chondrocyte reactions of seed cells and the constructs decreased gradually. The stimulation on allogeneic lymphocytes of the whole constructs was obviously lower than that of the retrieved cells from the constructs. Therefore, properly designed collagen type I hydrogel can give certain immunogenicity-reducing effects on engineered cartilage based on chondrocytes, and it may be a potential immunomodulatory biomaterial in tissue engineering.

  6. IN VITRO REGENERATION CASTOR (RICINUS COMMUNIS L.) USING COTYLEDON EXPLANTS

    Science.gov (United States)

    A novel plant regeneration protocol was established for castor (Ricinus communis L.), an important oilseed crop. Mature seed-derived cotyledon explants produced adventitious shoots when placed on Murashige and Skoog (MS) medium containing thidiazuron (TDZ). The rate of shoot regeneration was maximal...

  7. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    Science.gov (United States)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  8. The Removal of Hydrogel Explants: An Analysis of 467 Consecutive Cases

    NARCIS (Netherlands)

    Crama, N.; Klevering, B.J.

    2016-01-01

    PURPOSE: To describe the complications associated with hydrogel explants and to describe the indications, surgical technique, and risks involved in the removal of a hydrogel explant. DESIGN: Single-center, retrospective interventional case series. PARTICIPANTS: Patients who underwent surgical remova

  9. Co-culture in cartilage tissue engineering

    NARCIS (Netherlands)

    Hendriks, Jeanine; Riesle, Jens; Blitterswijk, van Clemens A.

    2007-01-01

    For biotechnological research in vitro in general and tissue engineering specifically, it is essential to mimic the natural conditions of the cellular environment as much as possible. In choosing a model system for in vitro experiments, the investigator always has to balance between being able to ob

  10. Immunohistochemical localization of IAA in graft union of explanted internode grafting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dynamic changes of IAA in graft union of explanted internode autografting of Cucumber (Cucumis sativus Linn.) have been investigated using the immunohistochemical localization technique.It is shown that the efficiency of IAA fixation using lyophilization-gas fixation is higher than that using liquid chemical fixation.In contrast to few silver particles and no significant changes during the development of graft union cultured in hormone-free medium,more silver particles in graft union and significant changes of IAA related to graft union development have been found when graft union was cultured in medium supplemented with appropriate hormones.The fixation procedure of plant hormones and the roles of IAA in graft union are discussed.

  11. Effect of gamma rays on different explants of callus treatment of multiple shoots in Cucumis melo cv. Bathasa.

    Science.gov (United States)

    Venkateshwarlu, M

    2008-09-01

    A mutagenesis programme was carried out using physical mutagens (gamma rays) on Cucumis melo cv. Bathasa. In irradiated seeds the number of shoots formed in the lower doses was significantly higher than the controls. Decrease in the number of shoots and shoot bud formation was observed with higher doses in all the explants studies. There was complete lethality in the 10, 15 and 20 kR doses. In irradiated stem cultures the maximum number of shoots were observed in 2 kR. The number of shoots decreased with increasing doses of irradiation. At higher doses of 4 and 5kR, light green compact callus was formed in almost all the explants. The effect of lower doses of gamma irradiation on shoot bud formation and rooting efficiency from nodal explants cultured on MS +2.0 mgl(-1) L-glutamic acid + 0.5 mgl(-1) BAP, stimulation of shoot and root induction were studied. The number of shoots and root lengths decreased with the increasing dosage of irradiation. The irradiated callus was grown on solidified MS medium with containing 2.0 mgl(-1) BAP + 1.0 mgl(-1) IAA. There was a significant stimulation of growth in the callus at lower doses. At higher doses like 15 and 20 kRs growth was drastically reduced.

  12. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  13. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro.

    Science.gov (United States)

    Roussos, Peter A; Pontikis, Constantine A

    2007-07-01

    Jojoba (Simmondsia chinensis L.) single node explants were cultured in a basal medium supplemented with 17.8 microM 6-benzyladenine and four levels of sodium chloride concentration (0, 56.41, 112.82 and 169.23 mM). The free, the soluble conjugated and the insoluble bound forms of polyamines (PAs) (putrescine (Put), spermidine (Spd) and spermine (Spm)) were determined monthly during a 3-month proliferation stage. Free Put and Spd were found in higher levels in the control treatment, while Spm content was higher in the salt treatments. All soluble conjugated PAs were found to be in lower concentrations in explants growing on medium supplemented with salt, while the opposite was true for the insoluble bound PAs. It appeared that certain PAs and PAs forms could play a significant role in the adaptation mechanism of jojoba under saline conditions.

  14. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  15. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  16. Chondrogenic co-culture of allogenic decalcified bone matrix and bone marrow mesenchymal stem cells in the joint cavity:comparison of cartilage traits in the same joint cavity%同种异体脱钙骨与骨髓间充质干细胞关节腔内共培养:与同腔软骨性状的对比

    Institute of Scientific and Technical Information of China (English)

    徐斌; 周亮; 王英明; 钱三祥

    2014-01-01

    BACKGROUND:Loose bodies in the knee are found to survive for a long term and maintain certain histophysiological properties of cartilage tissue. Therefore, a bold hypothesis is proposed that the joint cavity may be a preferred environment for chondrocyte growth and development, supporting the concept of “intracavitary culture and intracavitary transplantation”. OBJECTIVE:To observe the trait difference of chondrogenic culture with alogenic decalcified bone matrix and bone marrow mesenchymal stem cels in the joint cavity orin vitro versus cartilage in the same cavity. METHODS:There were three groups in this experiment: inin vitro culture group, bone marrow mesenchymal stem cels from newborn rabbits undergoing chondrogenic culture were co-cultured with decalcified bone matrix from adult rabbitsin vitro; in intracavitary culture group, bone marrow mesenchymal stem cels from newborn rabbits undergoing chondrogenic culture were co-cultured with decalcified bone matrix from adult rabbits in the joint cavity; normal cartilage in the same cavity served as control group. RESULTS AND CONCLUSION: (1) After 12 weeks of culture, in the in vitro culture group, hematoxylin-eosin staining showed a smal amount of chondrocytes proliferated, with blue-stained nuclei; toluidine blue staining showed chondrocytes arranged disorderly, surrounded by a smal amount of matrix; Masson staining showed a smal positive area and irregular cellarrangement; type II colagen immunohistochemistry staining showed a few of yelow particles in the cytoplasm and extracelular matrix. (2) After 12 weeks of culture, in the intracavitary culture group, hematoxylin-eosin staining showed proliferation of chondrocytes with blue-stained nuclei; toluidine blue staining showed cluster-shaped arrangement of chondrocytes surrounded by the matrix with lacuna formation; Masson staining showed there were many positive cels with blue-stained matrix that arranged in a certain stress direction; immunohistochemical

  17. Variation in phytate accumulation in common bean (Phaseolus vulgaris L. fruit explants

    Directory of Open Access Journals (Sweden)

    Cileide Maria Medeiros Coelho

    2008-02-01

    Full Text Available The in vitro synthesis of phytate was studied in common bean fruit explants. Different concentrations of sucrose; phosphorus (P; myo-inositol; abscisic acid (ABA; glutamine and methionine, were tested. Fixed concentrations of these compounds were tested at different periods (0, 3, 6 and 9 days. Variation in phytate coincided with different concentrations of sucrose, myo-inositol, P and ABA for the duration tested. These compounds caused an accumulation of phytate and were more effective in the presence of myo-inositol and P. The accumulation of P varied less than phytate for the different treatments tested in vitro. In conclusion, P, sucrose, ABA, and myo-inositol caused an increase in the phytate of bean seed, showing that it could be possible to alter its content by culturing bean fruit explants in vitro.O fósforo é armazenado na forma de fitato nas sementes, o qual forma complexos estáveis e insolúveis com minerais e proteínas, conferindo efeito antinutriente. A síntese de fitato foi estudada em cultivo de explantes de fruto de feijão in vitro sob diferentes concentrações de sacarose, fósforo (P, mio-inositol, ácido abscísico (ABA, glutamina e metionina. Fixada a concentração destes compostos, testou-se os diferentes tempos de cultivo (0, 3, 6 e 9 dias. A variação no acúmulo de fitato ocorreu na presença de sacarose, mio-inositol, P e ABA nas diferentes concentrações e tempos testados. O acúmulo mais efetivo de fitato ocorreu na presença de mio-inositol e P. O acúmulo de P variou menos do que fitato em todos os tratamentos. Em conclusão, P, sacarose, ABA e mio-inositol causaram aumento no fitato acumulado nas sementes, mostrando que foi possível alterar a síntese de fitato em cultivo de explantes de fruto de feijão.

  18. An efficient and reproducible indirect shoot regeneration from female leaf explants of Simmondsia chinensis, a liquid-wax producing shrub.

    Science.gov (United States)

    Bala, Raman; Beniwal, Vijay Singh; Laura, Jitender Singh

    2015-04-01

    Simmondsia chinensis (Link) Schneider is a perennial, dioecious, drought resistant and multipurpose seed oil crop grown in arid and semi-arid conditions throughout the world. A reproducible and more efficient method for indirect shoot organogenesis from female leaf explants has been standardized. The leaf explants cultured on Murashige and Skoog (MS) medium with 1.0 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D) alone produced the highest frequency of callus compared with 1.5 mg l(-1) IBA. Maximum proliferation of callus was observed on MS medium containing a combination of 1.0 mg l(-1) 2,4-D with 0.5 mg l(-1) BAP. For shoot differentiation, the proliferated callus was subcultured on MS medium supplemented with 6-benzylaminopurine (BAP) (1.0-4.0 mg l(-1)) along with 40 mg l(-1) adenine sulphate as additive or in combination with α-naphthalene acetic acid (NAA) or Indole-3-butyric acid (IBA). Optimum shoots differentiated from callus was obtained on MS medium supplemented with 2.0 mg l(-1) BAP and 0.2 mg l(-1) NAA. On this medium, 100 % cultures were responded with an average number of 14.44 shoots per explant with their mean length of 4.78 cm. In vitro rooting (6.22 roots per explant) was achieved on half strength MS medium containing 2 % sucrose with 3.0 mg l(-1) IBA and 300 mg l(-1) activated charcoal (AC). Rooted plantlets were successfully hardened under control conditions and acclimatized under field conditions with 90 % success rate. The present protocol is highly efficient, reproducible and economically viable for large scale production of female plants.

  19. Macroscopical, Histological, and In Vitro Characterization of Nonosteoarthritic Versus Osteoarthritic Hip Joint Cartilage

    Science.gov (United States)

    Badendick, Jessica; Godkin, Owen; Kohl, Benjamin; Meier, Carola; Jagielski, Michal; Huang, Zhao; Arens, Stephan; Schneider, Tobias; Schulze-Tanzil, Gundula

    2016-01-01

    Osteoarthritis (OA) might affect chondrocyte culture characteristics and complement expression. Therefore, this study addressed the interrelation between macroscopical and microscopical structure, complement expression, and chondrocyte culture characteristics in non-OA and OA cartilage. Femoral head cartilage samples harvested from patients with femoral neck fractures (FNFs) and OA were analyzed for macroscopical alterations using an in-house scoring system, graded histologically (Mankin score), and immunolabeled for complement regulatory proteins (CRPs) and receptors. Morphology of monolayer cultured chondrocytes isolated from a subset of samples was assessed. The macroscopical score distinguished the FNF and OA cartilage samples and correlated significantly with the histological results. Chondrocyte phenotype from FNF or OA cartilage differed. Complement receptor C5aR, CRPs CD55 and CD59, and weakly receptor C3AR were detected in the investigated FNF and OA cartilage, except for CD46, which was detected in only two of the five investigated donors. The in-house score also allows inexperienced observers to distinguish non-OA and OA cartilage for experimental purposes. PMID:27158224

  20. In vitro direct shoot regeneration from proximal, middle and distal segment of Coleus forskohlii leaf explants.

    Science.gov (United States)

    Krishna, Gaurav; Sairam Reddy, P; Anoop Nair, N; Ramteke, P W; Bhattacharya, P S

    2010-04-01

    Coleus forskohlii is an endangered multipurpose medicinal plant that has widespread applications. In spite of this, there have been few attempts to propagate its cultivation in India. The present communication presents an in vitro rapid regeneration method using leaf explants of Coleus forskohlii through direct organogenesis. Leaf explants that were excised into three different segments i.e. proximal (P), middle (M) and distal (D) were cultured on Murashige and Skoog (MS) basal medium supplemented with cytokinins. MS Media containing 5.0 mg L(-1) BAP (6-Benzylaminopurine) promoted regeneration of multiple shoots through direct organogenesis from the leaf, which were further elongated on MS media augmented with 0.1 mg L-1 BAP and 0.1 mg L(-1) IAA (Indole-3-acetic acid), cytokinin and auxin combination. Regenerated and elongated shoots, when transferred to ose resulted in profuse rooting plants that were transferred to soil after acclimatization and maintained in a green house. The current protocol offers a direct, mass propagation method bypassing the callus phase of C. forskohlii and is suitable for conservation, large-scale commercial cultivation, and genetic transformation with agronomically desirable traits.

  1. Increased proliferation of explanted vascular smooth muscle cells: a marker presaging atherogenesis.

    Science.gov (United States)

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1997-06-01

    The JCR:LA-cp homozygous cp/cp corpulent rat is genetically predisposed to develop atherosclerosis evident after 9 and 18 months of age in males and females and to manifest metabolic derangements resembling those seen in type II diabetes in humans (hyperinsulinemia, insulin resistance, hyperglycemia and hypertriglyceridemia). The present study was undertaken to determine whether vascular smooth muscle cells (SMCs) explanted from vessels destined to become atherosclerotic later in life exhibit intrinsic properties ex vivo that presage atherogenesis to provide a means for evaluating promptly intervention designed to modify it. SMCs were cultured from aortic explants of JCR:LA-cp corpulent (cp/cp) and lean control (+/+) rats of 4, 5, 6, and 9 months of age. Compared with SMCs from controls, SMCs from cp/cp rats exhibited increased proliferation, higher saturation density, increased augmentation of proliferation in response to selected mitogens and greater adherence to extracellular matrix proteins. The increased proliferative activity ex vivo anteceded by several months the development of atherosclerotic lesions in vivo. Thus, it is a promising marker in assessments of the efficacy of interventions designed to retard or prevent atherosclerosis.

  2. Induction of Tetraploids from Petiole Explants through Colchicine Treatments in Echinacea purpurea L.

    Directory of Open Access Journals (Sweden)

    Dahanayake Nilanthi

    2009-01-01

    Full Text Available Petiole explants were obtained from in vitro grown diploid (2x=22 Echinacea purpurea plantlets. Shoots were regenerated by culturing the explants on MS basal medium containing 0.3 mg/L benzyladenine (BA, 0.01 mg/L naphthaleneacetic acid (NAA and four concentrations (30, 60, 120, and 240 mg/L of colchicine for 30 days, or 120 mg/L of colchicine for various durations (7, 14, 21, and 28 days. The regenerated shoots were induced to root on MS basal medium with 0.01 mg/L NAA, and then the root-tips of the regenerated shoots were sampled for count of chromosome number. It was found that a treatment duration of >7 days was necessary for induction of tetraploid (4x=44 shoots, and treatment with 120 mg/L colchicine for 28 days was the most efficient for induction of tetraploids, yielding 23.5% of tetraploids among all the regenerated shoots. Chimeras were observed in almost all the treatments. However, the ratio of tetraploid to diploid cells in a chimeric plant was usually low. In comparison with diploid plants, tetraploid plants in vitro had larger stomata and thicker roots with more root branches, and had prominently shorter inflorescence stalk when mature.

  3. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  4. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  5. Second harmonic generation imaging in tissue engineering and cartilage pathologies

    Science.gov (United States)

    Lilledahl, Magnus; Olderøy, Magnus; Finnøy, Andreas; Olstad, Kristin; Brinchman, Jan E.

    2015-03-01

    The second harmonic generation from collagen is highly sensitive to what extent collagen molecules are ordered into fibrils as the SHG signal is approximately proportional to the square of the fibril thickness. This can be problematic when interpreting SHG images as thick fibers are much brighter than thinner fibers such that quantification of the amount of collagen present is difficult. On the other hand SHG is therefore also a very sensitive probe to determine whether collagen have assembled into fibrils or are still dissolved as individual collagen molecules. This information is not available from standard histology or immunohistochemical techniques. The degree for fibrillation is an essential component for proper tissue function. We will present the usefulness of SHG imaging in tissue engineering of cartilage as well as cartilage related pathologies. When engineering cartilage it is essential to have the appropriate culturing conditions which cause the collagen molecules to assemble into fibrils. By employing SHG imaging we have studied how cell seeding densities affect the fibrillation of collagen molecules. Furthermore we have used SHG to study pathologies in developing cartilage in a porcine model. In both cases SHG reveals information which is not visible in conventional histology or immunohistochemistry

  6. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  7. Strategies for Stratified Cartilage Bioprinting

    NARCIS (Netherlands)

    Schuurman, W.

    2012-01-01

    Multiple materials, cells and growth factors can be combined into one construct by the use of a state–of-the-art bioprinter. This technique may in the future make the fabrication of complete tissues or organs possible. In this thesis the feasibility of the bioprinting of cartilage and the difference

  8. Jellyfish collagen scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  9. Explanted diseased livers - a possible source of metabolic competent primary human hepatocytes.

    Science.gov (United States)

    Kleine, Moritz; Riemer, Marc; Krech, Till; DeTemple, Daphne; Jäger, Mark D; Lehner, Frank; Manns, Michael P; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W R

    2014-01-01

    Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5'-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent

  10. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  11. Composite articular cartilage engineered on a chondrocyte-seeded aliphatic polyurethane sponge.

    Science.gov (United States)

    Liu, Yanchun; Webb, Ken; Kirker, Kelly R; Bernshaw, Nicole J; Tresco, Patrick A; Gray, Steven D; Prestwich, Glenn D

    2004-01-01

    To circumvent the reconstructive disadvantages inherent in resorbable polyglycolic acid (PGA)/polylactic acid (PLA) used in cartilage engineering, a nonresorbable, and nonreactive polyurethane sponge (Tecoflex sponge, TS) was studied as both a cell delivery device and as an internal support scaffolding. The in vitro viability and proliferation of porcine articular chondrocytes (PACs) in TS, and the in vivo generation of new articular cartilage and long-term resorption, were examined. The initial cell attachment rate was 40%, and cell density increased more than 5-fold after 12 days of culture in vitro. PAC-loaded TS blocks were implanted into nude mice, became opalescent, and resembled native cartilage at weeks 12 and 24 postimplantation. The mass and volume of newly formed cartilage were not significantly different at week 24 from samples harvested at week 6 or week 12. Safranin O-fast green staining revealed that the specimens from cell-loaded TS groups at week 12 and week 24 consisted of mature cartilage. Collagen typing revealed that type II collagen was present in all groups of tissue-engineered cartilage. In conclusion, the implantation of PAC-TS resulted in composite tissue-engineered articular cartilage with TS as an internal support. Long-term observation (24 weeks) of mass and volume showed no evidence of resorption.

  12. Shoot Regeneration from Leaf Explants of Withania somnifera (L. Dunal

    Directory of Open Access Journals (Sweden)

    Aruna Girish JOSHI

    2010-03-01

    Full Text Available Regeneration from leaf explants of Withania somnifera (L. for mass propagation was studied on Murashige and Skoog�s medium supplemented with Kinetin (Kn and 6-benzylaminopurine (BAP alone or in combination. Shoot buds were induced from the midrib on the abaxial side in presence of Kn and BAP (4 �M. These shoot buds developed into shoots on the same medium. Rooting of these shoots was achieved in 0.5 �M of IBA.

  13. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  14. Foldable Lens Explantation and Exchange:The Reason and Solution

    Institute of Scientific and Technical Information of China (English)

    Danying Zheng; Zhenpin Zhang; Wenhui Yang; Weirong Chen

    2001-01-01

    Objective: To report the explantation and exchange of Hydrophilic Acrylic foldable intraocular lens (IOL) on 14 patients who had visual disturbances caused by the change of transparence on optic. Methods: Sixteen Hydrophilic Acrylic foldable intraocular lenses from 14 patients who presented with decreased visual acuity from 6 months to 1 year after normal phacoemulsification and IOL implantation associated with extensive transparent change on optic of the lens. The lenses were explanted with the bisection technique. All the eyes were reinserted with Acrysof foldable lenses. Results: Sixteen lenses were removed successfully and exchanged with the new lens in the capsule. The posterior capsular rupture and vitreous loss were found in the first two cases. One of them had the zonulysis due to the radial tear of the anterior capsule during the enlargement of the capsular opening. The anterior vitrectomy was performed with IOL fixed on the ciliary sulcus. The visual acuity of all the patients improved obviously without posterior complication. Conclusion: Foldable lens explantation with the bisection technique and exchange had a successful outcome with improvement of ocular condition. Eye science 2001; 17:54 ~56.

  15. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  16. Plantlet regeneration from mature zygotic embryos and embryonic explants of masson pine (Pinus massoniana Lamb.)

    Institute of Scientific and Technical Information of China (English)

    HUANGJIANQIU; ZHIMINGWEI; 等

    1994-01-01

    Excised zygotic embryos,cotyledons and hypocotyls of juvenile seedlings of masson pine were grown on DCR medium supplemented with several concentrations of various plant phytohormones.BA(1.0mg/L) in combination with NAA(0.05mg/L) in DCR medium was found to increase the formation of adventitious buds from mature zygotic embryos,but most of them were formed at the tips of embryonic cotyledons.Adventitious buds were obtained from cotyledons and hypocotyls from juvenile seedlings when they were cultured on DCR medium containing BA 3-5 mg/L and NAA 0.1-0.2 mg/L.Elongation of buds were observed on hormone-free DCR medium with or without activated charcoal(0.5%).Root initiation was achieved with full or half strength DCR medium supplemented with IBA 1.0 mg/L and NAA 0.25-0.5 mg/L.Approximately 11-20 axillary buds formed on each explant when juvenile seedling explants were treated(3-20h) with BA 50-100 mg/L,followed by transfer to hormone-free DCR medium.The maximum number of shoots obtained per explant within six months was 33.

  17. THE EFFECT IN-VITRO OF IRRIGATING SOLUTIONS ON INTACT RAT ARTICULAR-CARTILAGE

    NARCIS (Netherlands)

    Bulstra, Sjoerd K; KUIJER, R; EERDMANS, P; VANDERLINDEN, AJ

    1994-01-01

    Rat patellae were preincubated with culture medium M199 for one hour and then with either fresh culture medium or Ringer's solution, Ringer lactate, Ringer glucose, normal saline or Betadine for another hour. The rate of proteoglycan synthesis in the articular cartilage was then measured by uptake o

  18. Response of root explants to in vitro cultivation of marketable garlic cultivars Resposta dos explantes radiculares ao cultivo in vitro de cultivares comerciais de alho

    Directory of Open Access Journals (Sweden)

    Danielle C Scotton

    2013-03-01

    Full Text Available Garlic cultivars are sexually sterile under standard growth conditions, with direct implications for commercial production costs as well as breeding programs. Garlic is propagated commercially via bulblets, which facilitates disease transmission and virus load accumulation over vegetative generations. Tissue culture produces virus-free clones that are more productive, while keeping the desired traits of the cultivar. Consequently, this technique allows studies of garlic genetics as well as guarantees genetic conservation of varieties. We aimed at analyzing the in vitro regeneration of eight marketable cultivars of garlic using root segments as explants. For each genotype, bulblet-derived explants were isolated and introduced into MS medium supplemented with 2,4-D and 2-iP. Calli were transferred to MS medium supplemented with 8.8 mM BAP and 0.1 mM NAA (regeneration medium A, or with 4.6 mM kinetin alone (regeneration medium B. The calli were then evaluated for regeneration frequency after sixty days of in vitro cultivation. The noble cultivar 'Jonas' presented the highest rates of plant regeneration among the cultivars tested. The medium A, which contained auxin and cytokinin, induced the highest regeneration rates of all cultivars. The process described herein is simple, reproducible and can potentially be used as a tool in molecular breeding strategies for other marketable cultivars and genotypes of garlic.Cultivares de alho são sexualmente estéreis sob condições padrão de cultivo, com implicações diretas nos custos de produção comercial, bem como em programas de melhoramento. O alho é comercialmente propagado por meio de bulbilhos, o que facilita a transmissão de doenças e leva ao acúmulo de cargas virais ao longo das gerações. A cultura de tecidos produz clones livres de vírus que são mais produtivos, mantendo as características desejadas da cultivar. Consequentemente, esta técnica permite estudar a genética do alho, bem

  19. ORGANOGÊNESE IN VITRO DE Citrus EM FUNÇÃO DE CONCENTRAÇÕES DE BAP E SECCIONAMENTO DO EXPLANTE CITRUS IN VITRO ORGANOGENESIS RELATED TO BAP CONCENTRATIONS AND EXPLANT SECTION

    Directory of Open Access Journals (Sweden)

    THAÍS LACAVA DE MOURA

    2001-08-01

    'Valencia' sweet orange (Citrus sinensis (L. Osbeck. For Rangpur lime, internodal explants were cultured in MT medium, with 25g.L-1 sucrose and supplemented with different concentrations of BAP (0; 2.5; 5; 7.5; 10 mg.L-1. Epicotyl explants were used for 'Pera' and 'Valencia' sweet oranges. For 'Pera' sweet orange, the explants were cultured in MT medium, with 25g.L-1 sucrose and supplemented with different concentrations of BAP (0; 1; 2; 3; 4 mg.L-1. For 'Valencia' sweet orange, the epicotyl explants were cut in half and cultured on MT medium, with 25 g.L-1 of sucrose and 1 mg.L-1 of BAP. Shoot elongation was accomplished on MT + 25 g.L-1 sucrose + 1 mg.L-1 gibberelic acid (GA3 and rooted on MT + 25 g.L-1 of sucrose + 0,5 g.L-1 of activated charcoal + 1 mg.L-1 NAA. The best results for number of buds was 2.5 mg.L-1 of BAP in Rangpur lime and 1 and 2 mg.L-1 in 'Pera' sweet orange. The cut of the explant in half was favorable to the in vitro organogenesis in 'Valencia' sweet orange, but it was not for rooting.

  20. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  1. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.

    Science.gov (United States)

    Ching, Kuan Y; Andriotis, Orestis G; Li, Siwei; Basnett, Pooja; Su, Bo; Roy, Ipsita; Tare, Rahul S; Sengers, Bram G; Stolz, Martin

    2016-07-01

    Articular cartilage defects, when repaired ineffectively, often lead to further deterioration of the tissue, secondary osteoarthritis and, ultimately, joint replacement. Unfortunately, current surgical procedures are unable to restore normal cartilage function. Tissue engineering of cartilage provides promising strategies for the regeneration of damaged articular cartilage. As yet, there are still significant challenges that need to be overcome to match the long-term mechanical stability and durability of native cartilage. Using electrospinning of different blends of biodegradable poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate), we produced polymer scaffolds and optimised their structure, stiffness, degradation rates and biocompatibility. Scaffolds with a poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) ratio of 1:0.25 exhibit randomly oriented fibres that closely mimic the collagen fibrillar meshwork of native cartilage and match the stiffness of native articular cartilage. Degradation of the scaffolds into products that could be easily removed from the body was indicated by changes in fibre structure, loss of molecular weight and a decrease in scaffold stiffness after one and four months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes revealed a hyaline-like cartilage matrix. The ability to fine tune the ultrastructure and mechanical properties using different blends of poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) allows to produce a cartilage repair kit for clinical use to reduce the risk of developing secondary osteoarthritis. We further suggest the development of a toolbox with tailor-made scaffolds for the repair of other tissues that require a 'guiding' structure to support the body's self-healing process.

  2. Repair of articular cartilage defects in minipigs by microfracture surgery and BMSCs transplantation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee. the left defect received microfracture surgery and was injected with 2. 5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results:Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibro-cartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion:Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.

  3. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  4. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.S.; Lang, A. (Michigan State Univ., East Lansing (United States))

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  5. 人真皮成纤维细胞体外构建组织工程化软骨的初步探索%Preliminary study on tissue-engineered cartilage with human dermal fibroblasts co-cultured with porcine chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    刘霞; 周广东; 刘伟; 曹谊林

    2009-01-01

    Objective To explore the feasibility of constructing tissue-engineered cartilage with human dermal fibroblasts(HDFs)in vitro. Methods Porcine articular chondrocytes and HDFs were isolated and in vitro expanded respectively. Then they were mixed at the ratio of 1:1 (chondrocytes: fibroblasts). The mixed cells were seeded onto polyglycolic acid(PGA)scaffold at the ultimate concentration of 5.0×10~7/ml as co-culture group.Chondrocytes and HDFs at the same ultimate concentration were seeded respectively onto the scaffold as chondrocyte group (positive control group)and fibroblast group(negative control group). The specimens were collected after in vitro culture for 8 weeks. Gross observation, histology and immunohistochemistry were used to evaluate the results. Results In chondrocyte group, the cell-scaffold constructs could maintain the original size and shape during in vitro culture. The new formed cartilage-like tissue had typical histological structure and extracellular matrix staining similar to normal cartilage. In co-culture group the constructs shrunk slightly at 8 weeks, cartilage-like tissue formed and GAG could be detected for strong expression by Safranin O staining.Furthermore, using the specific identification, a few HDFs derived cells were found to form lacuna structure at the peripheral area of cartilage-like tissue. In fibroblast group, the constructs deformed and shrunk gradually without mature cartilage lacuna in histology. Conclusion The 3D-co-culture system can effectively induce the differenciation of HDFs to chondrocytes. The tissue-engineered cartilage can be constructed in vitro with the 3D-co-culture system.%目的 利用软骨细胞提供的体外软骨诱导微环境,探讨人真皮成纤维细胞在体外构建软骨的可行性.方法 分别培养猪的软骨细胞与人真皮成纤维细胞,将2种细胞按1:1(软骨细胞:成纤维细胞)比例混匀,以5.0×10~7/ml的终浓度接种于聚羟基乙酸支架(PGA,直径9 mm,高2mm)作为

  6. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-02

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.

  7. Callus induction and biomass accumulation in vitro in explants from chokeberry (Aronia melanocarpa (Michx. Elliot fruit

    Directory of Open Access Journals (Sweden)

    Tatiana I. Calalb

    2014-09-01

    Full Text Available In this study, the following features were determined: biological (the optimal histogen as explant and the optimal age of donor fruit, biotechnological (type, dosage and combination of growth regulators supplements in culture medium Murashige and Skoog as well as sucrose dosage, and physical (light regime, to induce callusing and biomass accumulation in vitro from the succulent chokeberry (Aronia melanocarpa (Michx. Elliot fruit. It turned out that it was much easier to induce callus from explants composed of the epicarp and hypoderm cut from fruits at 50–60 days after flowering. The role of light regime and varied supplementation of the basic MS medium with different doses of growth regulators was established; they resulted in four pigmented carpomass: violet, cream-pink, cream-white and green. The best combinations for the proliferation of fruit callus were culture media with 0.2–2.5 mg × dm-3 2,4-D+0.5 mg × dm-3 KIN +60 g × dm-3sucrose, while for fruit biomass accumulation enriched with phenolic substances – 2.5–3.5 mg × dm-3 NAA+0.5 mg × dm-3 KIN+60 g × dm-3sucrose. The chemical study of phenolic compounds by HPLC coupled with the mass spectrometry method identified chlorogenic acid, hiperozide, quercetrin, isoquercitrin and rutozide quantitatively and qualitatively in all pigmented carpomass and fruits; an exception is p-coumaric present only qualitatively in green carpomass and absent in fruit and quercetol absent in green carpomass.

  8. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  9. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  10. Propagation of jarrah (Eucalyptus marginata) by organ and tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M.J.; McComb, J.A.

    1982-01-01

    Micropropagation methods are described for the production of clonal lines from Eucalyptus marginata (jarrah) seedlings. Nodal explants from mature trees can also yield shoot cultures, but a high frequency of contamination occurs among such explants. Uncontaminated callus cultures can be produced from mature trees by culturing stamen filaments and shoots can subsequently be regenerated from this callus. The rooting percentage of shoot cultures from either nodes or stamen callus of mature trees is low compared with that from seedling explants. Considerable variation was observed between trees in the ability of stamen callus to regenerate shoots and in the frequency of rooting. (Refs. 27)

  11. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  12. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  13. Harnessing Biomechanics to Develop Cartilage Regeneration Strategies

    OpenAIRE

    Athanasiou, KA; Responte, DJ; Brown, WE; Hu, JC

    2015-01-01

    Copyright © 2015 by ASME. As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. Thi...

  14. 体外共培养软骨细胞与脂肪基质细胞用于软骨构建的实验研究%Experimental study of in vitro co-culture of chondrocytes and adipose-de-rived stromal cells for cartilage construction

    Institute of Scientific and Technical Information of China (English)

    贾黎; 崔军

    2014-01-01

    Objective To investigate the feasibility of in vitro co-culture of chondrocytes and adipose-derived stromal cells (ADSCs) for cartilage construction. Methods ADSCs and porcine auricular chomdrocytes were collected and cul-tured in v itro,and then three groups were set as the experimental group,the positive control group and the negative con-trol group,which were inoculated ADSCs and chondrocytes(7:3 mixing ratio),simple chondrocytes,simply ADSCs respec-tively.And the contrast morphological changes,the wet weight,the proteoglycan content changes and type II collagen in the expression of histological feature of the three groups was observed and analyzed respectively. Results After eight weeks in v itro culture,the tissue of experimental group had a regular shape,which looked like the structure of cartilage tissue and was certain flexibility.For detection of the average wet weight and proteoglycan quantitative,the average wet weight and proteoglycan could reach 73.1%,81.9% of that in the positive experimental group respectively,which were significantly higher than that in the negative control group(P<0.01).HE staining showed that the experimental group oc-curred consecutive cartilage-like tissue,mature cartilage and fibrous tissue,and new cartilage thickness was more obvi-ous.Type II collagen immunohistochemical staining found that brownish yellow occurred near lacunas of cartilage in the experimental group. Conclusion Chondrocytes and ADSCs co-culture in vitro can be used to build cartilage,but further research is need to determine the direct evidence of ADSCs converted to mature chondrocytes.%目的:探讨体外共培养软骨细胞与脂肪基质细胞(ADSCs)用于软骨构建的可行性。方法分别收集并培养人ADSCs与猪耳软骨细胞,设置实验组、阳性对照组、阴性对照组,分别接种ADSCs和软骨细胞(以7:3比例混合)、单纯软骨细胞、单纯ADSCs,观察并对比三组的形态学变化、湿重、蛋白多糖含量

  15. Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?

    Science.gov (United States)

    ... Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have ... build cartilage. The most common type of arthritis, osteoarthritis wears away the slick cartilage that covers the ...

  16. Cartilage repair: A review of stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques

    Directory of Open Access Journals (Sweden)

    Vijayan S

    2010-01-01

    Full Text Available Articular cartilage damage in the young adult knee, if left untreated, it may proceed to degenerative osteoarthritis and is a serious cause of disability and loss of function. Surgical cartilage repair of an osteochondral defect can give the patient significant relief from symptoms and preserve the functional life of the joint. Several techniques including bone marrow stimulation, cartilage tissue based therapy, cartilage cell seeded therapies and osteotomies have been described in the literature with varying results. Established techniques rely mainly on the formation of fibro-cartilage, which has been shown to degenerate over time due to shear forces. The implantation of autologous cultured chondrocytes into an osteochondral defect, may replace damaged cartilage with hyaline or hyaline-like cartilage. This clinical review assesses current surgical techniques and makes recommendations on the most appropriate method of cartilage repair when managing symptomatic osteochondral defects of the knee. We also discuss the experience with the technique of autologous chondrocyte implantation at our institution over the past 11 years.

  17. In vitro plant regeneration of Albizia lebbeck (L. from seed explants

    Directory of Open Access Journals (Sweden)

    S. Perveen

    2013-07-01

    Full Text Available Objectives: An efficient and reproducible regeneration protocol for rapid multiplication of Albizia lebbeck (L. was developed by using intact seed explants.Methods: Murashige and Skoog's (MS medium supplemented with different hormones (BA, Kn, GA3 and TDZ was used for the induction of multiple shoots from the seed explants. Ex-vitro rooting was performed by using pulse treatment method in auxins (IBA and NAA and the complete plantlets were transferred to the field.Results: High frequency direct shoot induction was found in aseptic seed cultures of A. lebbeck on Murashige and Skoog medium supplemented with 5.0 µM TDZ (Thiadiazuron. Seeds were germinated after 7 days of culture and induced maximum 8 shoots from the region adjacent to the apex of the primary shoot of the seedling upto 25 days of incubation. Proliferating shoot cultures with increased shoot length was established by sub-culture of excised sprouting epicotyls on MS medium supplied with reduced concentrations of TDZ. Maximum shoot regeneration frequency (76 % with  highest number of shoots (21 and shoot length (5.1 cm per sprouting epicotyl was observed in the MS medium supplemented with 0.5 µM TDZ after 8 weeks of culture. Different concentrations of Indole-3-butyric acid (IBA and α-naphthalene acetic acid (NAA were tested to determine the optimal conditions for ex-vitro rooting of the microshoots. The best treatment for maximum ex-vitro root induction frequency (81 % was accomplished with IBA (250 µM pulse treatment given to the basal end of the microshoots for 30 min followed by their transfer in plastic cups containing soilrite and eventually established in normal garden soil + soilrite (1:1 with 78 % survival rate. In addition, histological study was undertaken to gain a better understanding of the regenerated shoots from the epicotyl region.Conclusion: The findings will be fruitful in getting a time saving and cost effective protocol for the in vitro propagation of Albizia

  18. Usual interstitial pneumonia end-stage features from explants with radiologic and pathological correlations.

    Science.gov (United States)

    Rabeyrin, Maud; Thivolet, Françoise; Ferretti, Gilbert R; Chalabreysse, Lara; Jankowski, Adrien; Cottin, Vincent; Pison, Christophe; Cordier, Jean-François; Lantuejoul, Sylvie

    2015-08-01

    Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe idiopathic interstitial pneumonia, with typical high-resolution computed tomography (HRCT) features and histologic pattern of usual interstitial pneumonia (UIP); its main differential diagnosis is fibrotic nonspecific interstitial pneumonia (F-NSIP). Usual interstitial pneumonia was mainly described from lung biopsies, and little is known on explants. Twenty-two UIP/IPF explants were analyzed histologically and compared with previous open lung biopsies (OLBs; n = 11) and HRCT (n = 19), when available. Temporospatial heterogeneity and subpleural and paraseptal fibrosis were similarly found in UIP/IPF explants and OLB (91%-95%). Fibroblastic foci were found in 82% of OLBs and 100% of explants, with a higher mean score in explants (P = .023). Honeycombing was present in 64% of OLBs and 95% of explants, with a higher mean score in explants (P = .005). Almost 60% of UIP/IPF explants showed NSIP areas and 41% peribronchiolar fibrosis; inflammation, bronchiolar metaplasia, and vascular changes were more frequent in UIP/IPF explants; and Desquamative Interstitial Pneumonia (DIP)-like areas were not common (18%-27%). Numerous large airspace enlargements with fibrosis were frequent in UIP/IPF explants (59%). On HRCT, honeycombing was observed in 95% of the cases and ground-glass opacities in 53%, correlating with NSIP areas or acute exacerbation at histology. Six patients had combined IPF and emphysema. Lesions were more severe in UIP/IPF explants, reflecting the worsening of the disease. Usual interstitial pneumonia/IPF explants more frequently presented with confounding lesions such as NSIP areas, peribronchiolar fibrosis, and airspace enlargements with fibrosis sometimes associated with emphysema.

  19. Morphologic differences observed by scanning electron microscopy according to the reason for pseudophakic IOL explantation

    DEFF Research Database (Denmark)

    Fernandez-Buenaga, Roberto; Alio, Jorge L.; Ramirez, Jose M.

    2015-01-01

    Purpose To compare variations in surface morphology, as studied by scanning electron microscopy (SEM), of explanted intraocular lenses (IOLs) concerning the cause leading to the explantation surgery. Methods In this prospective multicenter study, explanted IOLs were analyzed by SEM and energy...... opacification, the findings were calcifications in 2 of the 3 lenses (66.6%) and proteins in 2 lenses (66.6%). Conclusions A marked variation in surface changes was observed by SEM. Findings did not correlate with cause for explantation. Scanning electron microscopy is a useful tool that provides exclusive...

  20. TRANSFORMING GROWTH FACTOR-β AND FIBROBLAST GROWTH FACTOR INDUCE LENS EPITHELIAL EXPLANT METAPLASIA: IMPLICATIONS FOR THE FORMATION OF SUBCAPSULAR OPACIFICATION

    Institute of Scientific and Technical Information of China (English)

    刘颉; 叶俊杰

    1998-01-01

    Objective. This study was to investigate the effects of transforming growth factor-β(TGFβ) and fibroblast growth factor (FGF) in the subcapsular opaeification formation of the lens. Methods. Lens epithelial explants from 10-day-old rats were cultured with TGFβ1 or TGFβ2 in the presence of FGF for 5 days, then were examined by light and electron microscopy, and by immunolocalization of α-smooth muscle(α-sm) actin and type Ⅰ collagen. Resets. In TGFβ/FGF-treated explants,extensive proliferation oeeured, with formation of spindle and star-shaped cells. These cells showed ultrastructure and biochemical features of fibroblast or myofibroblast.Prominent Golgi apparatus and rough endoplaie reticulum were observed in scene cells, Intracellular microfilaments with cytoplasmic dense bodies and membrane associated dense bodies, features of smooth muscle cells, were also observed. Some cells showed reactivity to α-sin actin antibody. TGFβ/FGF-treated explants were strongly stained with type I collagen antibody. Conclusion. In the presence of FGF, TGFβ1 and TGFβ2 induced lens epithelial cell(LEC)proliferation and transformation into fibroblast or myofibroblast like ceils, with producing of abundant collagen matrix in the explants. The changes are similar to the metaplasia that oeeurrs in subeapsular opacification of the lens. The findings suggest that TGFβ and FGF plays a role in the pathogenesis of subcapsular opacification of the lens.

  1. Establishment of high frequency shoot regeneration system in Himalayan poplar (Populus ciliata Wall. ex Royle) from petiole explants using Thidiazuron cytokinin as plant growth regulator

    Institute of Scientific and Technical Information of China (English)

    G Aggarwal; A Gaur; D K Srivastava

    2015-01-01

    Populus species are important resources for industry and in scientific study on biological and agricul-tural systems. Our objective was to enhance the frequency of plant regeneration in Himalayan poplar (Populus ciliata wall. ex Royle). The effect of TDZ alone and in combi-nation with adenine and NAA was studied on the regen-eration potential of petiole explants. The explants were excised from Himalayan poplar plants grown in glass-houses. After surface sterilization the explants were cul-tured on shoot induction medium. High percentage shoot regeneration (86%) was recorded on MS medium sup-plemented with 0.004 mg L-1 TDZ and 79.7 mg L-1 adenine. The regenerated shoots for elongation and multi-plication were transferred to MS ? 0.5 mg L-1 BAP ? 0.2 mg L-1 IAA ? 0.3 mg L-1 GA3. Root re-generation from shoots developed in vitro was observed on MS medium supplemented with 0.10 mg L-1 IBA. Hi-malayan poplar plantlets could be produced within 2 months after acclimatization in a sterile mixture of sand and soil. We developed a high efficiency plant regeneration protocol from petiole explants of P. ciliata.

  2. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  3. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  4. Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity

    Institute of Scientific and Technical Information of China (English)

    YIN Jing; YANG Zheng; CAO Yong-ping; GE Zi-gang

    2011-01-01

    Background There is a difficulty in evaluating the in vivo functionality of individual chondrocytes,and there is much heterogeneity among cartilage affected by osteoarthritis (OA).In this study,in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.Methods Cartilage of varying degeneration of end-stage OA was harvested,while cell yield and matrix glycosaminoglycan (GAG) content were measured.Cell morphology,proliferation,and gene expression of collagen type Ⅰ,Ⅱ,and Ⅹ,aggrecan,matrix metalloproteinase 13 (MMP-13),and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.Results Both the number of cells and the GAG content increased with increasing severity of OA.Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture.Gene expression of collagen type Ⅱ,collagen type X as well as GAG decreased with severity of cartilage degeneration,while expression of collagen type Ⅰ increased.Expression of MMP-13 increased with severity of cartilage degeneration,while expression of ADAMTS-5 remained stable.Expression of collagen type Ⅱ,X,GAG,and MMP-13 substantially decreased with in vitro culture.Expression of collagen type Ⅰ increased with in vitro cultures,while expression of ADAMTS 5 remained stable.Conclusions Expression of functional genes such as collagen type Ⅱ and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation.Gene expression of collagen Ⅰ and MMP-13 increased with severity of cartilage degeneration.

  5. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  6. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Weiming; Chen, Shuai; Morsi, Yosry; El-Hamshary, Hany; El-Newhy, Mohamed; Fan, Cunyi; Mo, Xiumei

    2016-09-21

    Electrospun nanofibers have been used for various biomedical applications. However, electrospinning commonly produces two-dimensional (2D) membranes, which limits the application of nanofibers for the 3D tissue engineering scaffold. In the present study, a porous 3D scaffold (3DS-1) based on electrospun gelatin/PLA nanofibers has been prepared for cartilage tissue regeneration. To further improve the repairing effect of cartilage, a modified scaffold (3DS-2) cross-linked with hyaluronic acid (HA) was also successfully fabricated. The nanofibrous structure, water absorption, and compressive mechanical properties of 3D scaffold were studied. Chondrocytes were cultured on 3D scaffold, and their viability and morphology were examined. 3D scaffolds were also subjected to an in vivo cartilage regeneration study on rabbits using an articular cartilage injury model. The results indicated that 3DS-1 and 3DS-2 exhibited superabsorbent property and excellent cytocompatibility. Both these scaffolds present elastic property in the wet state. An in vivo study showed that 3DS-2 could enhance the repair of cartilage. The present 3D nanofibrous scaffold (3DS-2) would be promising for cartilage tissue engineering application.

  7. Human Adipose-Derived Mesenchymal Progenitor Cells Engraft into Rabbit Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2015-05-01

    Full Text Available Mesenchymal stem cells (MSCs are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA. Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals.

  8. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Radu, T.; Vulpoi, A. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Rosca, C. [Optilens Clinic of Ophthalmology, 400604 Cluj-Napoca (Romania); Eniu, D. [Iuliu Haţieganu University of Medicine and Pharmacy, Department of Molecular Sciences, 400349 Cluj-Napoca (Romania)

    2015-01-15

    Highlights: • Changes on intraocular lens (IOL) surface after implantation. • Partial opacification of IOL central area. • Elemental composition on IOL surface prior to and after implantation. • First XPS depth profiling examination of the opacifying deposits. • Cell-mediated hydroxyapatite structuring. - Abstract: The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  9. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Science.gov (United States)

    Simon, V.; Radu, T.; Vulpoi, A.; Rosca, C.; Eniu, D.

    2015-01-01

    The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  10. Visible effects of rapamycin (sirolimus) on human skin explants in vitro.

    Science.gov (United States)

    Peramo, Antonio; Marcelo, Cynthia L

    2013-03-01

    In this manuscript, we report observations of the effects of rapamycin in an organotypic culture of human skin explants. The tissues were cultured for 5 days at the air-liquid interface or in submersed conditions with media with and without rapamycin at 2 nM concentration. Histological analysis of tissue sections indicated that rapamycin-treated samples maintained a better epidermal structure in the upper layers of the tissue than untreated samples, mostly evident when skin was cultured in submersed conditions. A significant decrease in the number of positive proliferative cells using the Ki67 antigen was observed when specimens were treated with rapamycin, in both air-liquid and submersed conditions but apoptosis differences between treated and untreated specimens, as seen by cleaved caspase-3 positive cells, were only observed in submersed specimens. Finally, a decrease and variability in the location in the expression of the differentiation marker involucrin and in E-cadherin were also evident in submersed samples. These results suggest that the development of topical applications containing rapamycin, instead of systemic delivery, may be a useful tool in the treatment of skin diseases that require reduction of proliferation and modulation or control of keratinocyte differentiation.

  11. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system.

    Science.gov (United States)

    Yanai, Anat; Laver, Christopher R J; Gregory-Evans, Cheryl Y; Liu, Ran R; Gregory-Evans, Kevin

    2015-06-01

    Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.

  12. 旋转微重力细胞培养系统下Indianhedgehog转染兔BMSCs促进成软骨分化并抑制老化的实验研究%EFFECT OF Indianhedgehog GENE TRANSFECTION INTO RABBIT BONE MARROW MESENCHYMAL STEM CELLS IN PROMOTING CHONDROGENIC DIFFERENTIATION AND INHIBITING CARTILAGE AGING IN ROTARY CELL CULTURE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    刘鹏程; 刘宽; 刘俊峰; 夏阔; 陈礼阳; 吴兴

    2016-01-01

    间无明显差异.结论 在模拟微重力环境下,IHH基因转染BMSCs可有效促进软骨生成,并抑制软骨老化或向成骨发展,适合软骨组织工程的需要.%Objective To investigate the effect of overexpressing the Indianhedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) in a simulated microgravity environment.Methods The 2nd generation BMSCs from rabbit were divided into 2 groups:the rotary cell culture system (RCCS) group and conventional group.Each group was further divided into the IHH gene transfection group (RCCS 1 group and conventional 1 group),green fluorescent protein transfection group (RCCS 2 group and conventional 2 group),and blank control group (RCCS 3 group and conventional 3 group).RCCS group cells were induced to differentiate into chondrocytes under simulated microgravity environment;the conventional group cells were given routine culture and chondrogenic induction in 6 well plates.During differentiation induction,the ELISA method was used to detect IHH protein expression and alkaline phosphatase (ALP) activity,and quantitative real-time PCR to detect cartilage and cartilage hypertrophy related gene expressions,and Western blot to detect collagen type Ⅱ,agreecan (ANCN) protein expression;and methylene blue staining and Annexin V-cy3 immunofluorescence staining were used to observe cell slide.Results After transfection,obvious green fluorescence was observed in BMSCs under fluorescence microscopy in RCCS groups 1 and 2,the transfection efficiency was about 95%.The IHH protein levels of RCCS 1 group and conventional 1 group were significantly higher than those of RCCS 2,3 groups and conventional 2,3 groups (P<0.05);at each time point,ALP activity of conventional 1 group was significantly higher than that of conventional 2,3 groups (P<0.05);ALP activity of RCCS 1 group was significantly higher than that of RCCS 2 and 3 groups only at 3 and 7 days (P<0.05).Conventional 1 group expressed

  13. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  14. Study Progress on Tissue Culture of Maize Mature Embryo

    Science.gov (United States)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  15. Tissue Culture and Shoot Regeneration from in Vitro Leaf Explants of Apple Dwarifng Rootstock Cultivar‘JM7’%苹果矮化砧木‘JM7’的组织培养及其离体叶片不定梢再生

    Institute of Scientific and Technical Information of China (English)

    孙洪雁; 孙清荣; 李国田; 张琼; 李芹

    2014-01-01

    以苹果优良矮化砧木‘JM7’(Malus prunifolia×M. pumila‘Malling 9’)为试材,研究了基本培养基对试管苗增殖生长的影响、蔗糖浓度对试管苗生根的影响及基本培养基、细胞分裂素种类和浓度对离体叶片不定梢再生的影响。结果表明:基本培养基MS比QL显著提高增殖梢数,但QL比MS更有利于获得健壮生长的绿苗。3%蔗糖浓度比2%的不定根发生速度快。叶片不定梢再生最适宜的基本培养基是QL。在QL培养基上,6-BA和TDZ对离体叶片不定梢再生率的影响无显著差异,但6-BA诱导产生的不定芽在不定梢诱导培养基上可直接伸长生长形成不定梢,而TDZ诱导产生的不定芽需转移到不加TDZ而加低浓度6-BA的培养基上形成伸长生长的不定梢。%A good apple dwarifng rootstock cultivar‘JM7’ (Malus prunifolia×M. pumila‘Malling 9’) was se-lected as material. Effects of basal medium on shoot proliferation and sucrose concentration on in vitro rooting were examined. Effects of basal medium, the kinds and the concentration of cytokinin on shoot regeneration from in vitro leaf explants were investigated. Results showed that basal medium MS signiifcantly improved shoot proliferation than that QL, but stronger shoots were obtained on QL than on MS. The concentration of 3%sucrose improved the process of root initiation than that of 2%. The optimal basal medium for shoot regenera-tion from leaf explants was QL. When using QL as basal medium, the effects of TDZ and 6-BA on the percent-age of shoot regeneration didn’t show signiifcant difference. However, adventitious buds from 6-BA were able to directly elongate and develop into shoots on shoot regeneration induction medium (SIM), whereas adventi-tious buds from TDZ was unable to elongate and develop into shoots on SIM, it was necessary to transfer the buds to the medium lacking TDZ but containing low concentration of 6-BA to form shoots.

  16. Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model

    Directory of Open Access Journals (Sweden)

    A Marmotti

    2013-08-01

    Full Text Available We propose a culture-free approach to osteochondral repair with minced autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA-derived membrane, platelet-rich fibrin matrix (PRFM and fibrin glue. The aim of the study was to demonstrate in vitro the outgrowth of chondrocytes from cartilage fragments onto this scaffold and, in vivo, the formation of functional repair tissue in goat osteochondral defects. Two sections were considered: 1 in vitro: minced articular cartilage from goat stifle joints was loaded onto scaffolds, cultured for 1 or 2 months, and then evaluated histologically and immunohistochemically; 2 in vivo: 2 unilateral critically-sized trochlear osteochondral defects were created in 15 adult goats; defects were treated with cartilage fragments embedded in the scaffold (Group 1, with the scaffold alone (Group 2, or untreated (Group 3. Repair processes were evaluated morphologically, histologically, immunohistochemically and biomechanically at 1, 3, 6 and 12 months. We found that in vitro, chondrocytes from cartilage fragments migrated to the scaffold and, at 2 months, matrix positive for collagen type II was observed in the constructs. In vivo, morphological and histological assessment demonstrated that cartilage fragment-loaded scaffolds led to the formation of functional hyaline-like repair tissue. Repair in Group 1 was superior to that of control groups, both histologically and mechanically. Autologous cartilage fragments loaded onto an HA/PRFM/fibrin glue scaffold provided a viable cell source and allowed for an improvement of the repair process of osteochondral defects in a goat model, representing an effective alternative for one-stage repair of osteochondral lesions.

  17. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  18. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    Science.gov (United States)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  19. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  20. Correlation of collagen Ⅱ with proteoglycan of fetal cartilage endplate cells in the culturing process in vitro%体外培养胎儿软骨终板细胞Ⅱ型胶原与蛋白多糖表达相关性

    Institute of Scientific and Technical Information of China (English)

    李全修; 蔡月艳; 陈伯华; 刘勇

    2013-01-01

    Objective To observe the correlation of collagen Ⅱ with proteoglycan of fetal cartilage endplate cells in the culturing process in vitro.Methods Fetal cartilage endplate cells were cultured by using L-DMEM medium containing volume percentage of 10% fetal bovine serum.The fetal cartilage endplate cells collagen Ⅱ,proteoglycan and theirs mRNA from the 1st to the 8th generation were detected by Western blot and RT-PCR technique.The correlation of collagen Ⅱ and proteoglycan with their mRNA expression was analyzed by linear regression.Results There were significant differences between collagen Ⅱ and its mRNA expression,as well as between proteoglycan and its mRNA expression of fetal cartilage endplate cells from the 1st to the 8th generation (P < 0.05).Collagen Ⅱ and its mRNA expression were positively correlated with proteoglycan and its mRNA expression (r=0.994 7,P=0.014 ; r=0.945 3,P=0.017).Conclusion To restrain the decline of one of collagen Ⅱ and proteoglycan can prevent the other from decreasing in order to delay the degeneration of intervertebral disc.%目的 观察体外培养过程中胎儿软骨终板细胞Ⅱ型胶原和蛋白多糖变化的相关性.方法 采用含体积分数10%胎牛血清的低糖DMEM培养基培养胎儿软骨终板细胞,应用Western blot和RT PCR法检测第1代到第8代胎儿软骨终板细胞Ⅱ型胶原和蛋白多糖及其mRNA的表达情况,直线回归分析Ⅱ型胶原和蛋白多糖及其mRNA表达的相关性.结果 第1~8代培养细胞的Ⅱ型胶原及蛋白多糖mRNA及蛋白表达水平两两比较差异均有统计学意义(P<0.05);Ⅱ型胶原及其mRNA表达与蛋白多糖及其mRNA的表达呈明显正相关(r=0.994 7,P=0.014;r=0.945 3,P=0.017).结论 抑制Ⅱ型胶原或蛋白多糖中一种物质下降可同时阻止另一种物质下降,从而延缓椎间盘退变发生.

  1. Effect of Hypoxia on the Calcium and Magnesium Content, Lipid Peroxidation Level, and Ca2+-ATPase Activity of Syncytiotrophoblast Plasma Membranes from Placental Explants

    Directory of Open Access Journals (Sweden)

    Delia I. Chiarello

    2014-01-01

    Full Text Available In the current study the possible relationship between the Ca2+/Mg2+ ratio of human syncytiotrophoblast plasma membranes and their lipid peroxidation and Ca2+-ATPase activity was determined. Syncytiotrophoblast plasma membranes of placental explants cultured under hypoxia increased their lipid peroxidation and Ca2+ content, diminished their Ca2+-ATPase activity, and kept their Mg2+ content unchanged. Membranes preincubated with different concentrations of Ca2+ increased their Ca2+ content without changes in their Mg2+ content. There is a direct relationship between Ca2+ content and lipid peroxidation of the membranes, as well as an inverse relationship between their Ca2+ content and Ca2+-ATPase activity. On the contrary, preincubation of membranes with different concentrations of Mg2+ showed a higher Mg2+ content without changing their lipid peroxidation and Ca2+-ATPase activity. Explants cultured under hypoxia in the presence of 4 mM MgSO4 showed similar values of lipid peroxidation and Ca2+-ATPase activity of their membranes compared to those of explants cultured under normoxia. Increased Ca2+ content of the membranes by interacting with negatively charged phospholipids could result in destabilizing effects of the membrane structure, exposing hydrocarbon chains of fatty acids to the action of free radicals. Mg2+ might exert a stabilizing effect of the membranes, avoiding their exposure to free radicals.

  2. Effect of plant growth regulators and explant types on regeneration and micropropagation of a commercial strawberry cultivar (Fragaria ×ananassa cv. Selva

    Directory of Open Access Journals (Sweden)

    G. Madani

    2013-10-01

    Full Text Available Strawberry (Fragaria× ananassa L. is an important horticultural product that is highly acceptable because of its desirable taste, flavor, mineral elements, vitamins and secondary metabolites. Conventionally, strawberries are vegetatively propagated by runners arising from axillary buds on the plant crown. Plant propagation through runner produces a limited number of propagules. In the view of mass propagation and transformation, it is highly desirable to optimize methods of rapid, efficient and large scale multiplication of Fragaria X ananassa Duch. through tissue culture. In present study, developing an effective protocol for regeneration of strawberry cv. Selva, different explants (leaf disk, shoot tips and hypocotyls and media modifications were examined. The best response towards shoot induction was observed on shoot tip explants cultured on MS medium supplemented with 2 mg/l of BAP and IAA. Direct shoots emerged from hypocotyls grown on MS medium supplemented by 2,4-D, BAP and TDZ at 0.01, 0.1 and 1 mg/l respectively. Indirect shoot regeneration was produced from hypocotyls on MS medium containing 2 mg/l of BAP. Using activated charcoal enhanced explants proliferation on culture media due to decreasing the toxic metabolites, phenolic exudation and adsorption of inhibitory compounds.

  3. Influência do número de gemas, presença ou ausência de folhas e posição do explante na multiplicação in vitro da batata Influence of bud numbers, presence or absence of leaves and explant position on the in vitro multiplication of potato

    Directory of Open Access Journals (Sweden)

    Jonny Everson S. Pereira

    2005-03-01

    Full Text Available Avaliou-se a posição, presença ou ausência de folhas e número de gemas iniciais do explante na multiplicação in vitro da batata. O meio de cultura foi formado pelos sais e vitaminas de MS, acrescido de 100 mg L-1 de mio-inositol, 30 g L-1 de sacarose e 6 g L-1 de ágar. Utilizaram-se diferentes tipos de segmentos nodais (basais e apicais, com e sem folhas, contendo uma, duas e três gemas axilares. Após a inoculação o material foi mantido em sala de crescimento com temperatura de 25±2ºC, fotoperíodo de 16 horas e 19 µE m-2 s-1 de irradiância por 32 dias. Para altura e número médio de brotações regeneradas, os melhores resultados foram obtidos com explantes oriundos da posição basal e com três gemas axilares. A taxa de multiplicação do material em cultivo foi maior nos explantes inoculados inicialmente com uma única gema, independentemente da posição do explante ser basal ou apical e, somente nos explantes basais a presença de folhas proporcionou taxa de multiplicação significativamente superior ao apical. Conclui-se que quando se trabalha com material vegetal heterogêneo, sob condições in vitro, as características iniciais dos explantes podem provocar variações na resposta final, causando erros na estimativa da multiplicação.The position, presence or absence of leaves and bud numbers of the explant were evaluated on the in vitro multiplication of potatoes. The culture medium was constituted by salts and vitamins of MS, added with 100 mg L-1 myo-inositol, 30 g L-1 sucrose and 6 g L-1 agar. Different types of nodal segments were used (basal and apical, with and without leaves, having, one, two and three axillary buds. The material was maintained in growth room at 25±2ºC, 16 hours photoperiod and 19 µE m-2 s-1 irradiance during 32 days. For height and number of regenerate sprouts, the best results were obtained with explants originating from the basal position and with three axillary buds. The multiplication

  4. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  5. UV-independent induction of beta defensin 3 in neonatal human skin explants [v2; ref status: indexed, http://f1000r.es/53b

    Directory of Open Access Journals (Sweden)

    Erin Wolf Horrell

    2015-02-01

    Full Text Available In order to determine the effect of UV radiation on β-defensin 3 (BD3 expression in human skin, freshly-isolated UV-naïve skin was obtained from newborn male infants undergoing planned circumcision.  Skin explants sustained ex vivo dermis side down on RPMI media were exposed to 0.5 kJ/m2 UVB, and biopsies were taken from the explant through 72 hours after radiation.  mRNA expression was measured by qRTPCR and normalized to TATA-binding protein.  BD3 expression at each time point was compared with an untreated control taken at time 0 within each skin sample.  Extensive variability in both the timing and magnitude of BD3 induction across individuals was noted and was not predicted by skin pigment phenotype, suggesting that BD3 induction was not influenced by epidermal melanization.  However, a mock-irradiated time course demonstrated UV-independent BD3 mRNA increases across multiple donors which was not further augmented by treatment with UV radiation, suggesting that factors other than UV damage promoted increased BD3 expression in the skin explants.  We conclude that BD3 expression is induced in a UV-independent manner in human skin explants processed and maintained in standard culture conditions, and that neonatal skin explants are an inappropriate model with which to study the effects of UV on BD3 induction in whole human skin.

  6. UV-independent induction of beta defensin 3 in neonatal human skin explants [v1; ref status: indexed, http://f1000r.es/4s2

    Directory of Open Access Journals (Sweden)

    Erin Wolf Horrell

    2014-11-01

    Full Text Available In order to determine the effect of UV radiation on β-defensin 3 (BD3 expression in human skin, freshly-isolated UV-naïve skin was obtained from newborn male infants undergoing planned circumcision.  Skin explants sustained ex vivo dermis side down on RPMI media were exposed to 0.5 kJ/m2 UVB, and biopsies were taken from the explant through 72 hours after radiation.  mRNA expression was measured by qRTPCR and normalized to TATA-binding protein.  BD3 expression at each time point was compared with an untreated control taken at time 0 within each skin sample.  Extensive variability in both the timing and magnitude of BD3 induction across individuals was noted and was not predicted by skin pigment phenotype, suggesting that BD3 induction was not influenced by epidermal melanization.  However, a mock-irradiated time course demonstrated UV-independent BD3 mRNA increases across multiple donors which was not further augmented by treatment with UV radiation, suggesting that factors other than UV damage promoted increased BD3 expression in the skin explants.  We conclude that BD3 expression is induced in a UV-independent manner in human skin explants processed and maintained in standard culture conditions, and that neonatal skin explants are an inappropriate model with which to study the effects of UV on BD3 induction in whole human skin.

  7. Effect of explant density and volume of cultivation medium on in-vitro multiplication of blueberry (Vaccinium corymbosum L. varieties "Brigitta" and "Legacy"

    Directory of Open Access Journals (Sweden)

    Mario Rodríguez Beraud

    2015-03-01

    Full Text Available The objective of the investigation was to evaluate the in-vitro multiplication of two varieties of blueberry (Vaccinium corymbosum L., “Brigitta” and “Legacy” in response to five explants densities (5, 10, 15, 20 and 25 and four flask volumes (10, 20, 30 and 40 mL for cultivation. For both varieties the cultivation medium WPM (Woody Plant Medium was used. The experiment was completely randomized with 20 treatments and 12 repetitions per treatment. After 45 days of cultivation we evaluated the height of shoots, number of shoots/explant, number of nodes/shoot and number of shoots/flask. Variety “Brigitta” had highest shoots at higher densities and flask volumes, while variety “Legacy” had the highest average shoot height with intermediate densities and high volumes. Regarding the number of shoots/explant, the volume of the medium had no influence on “Brigitta”, however, higher plant densities affected this parameter. With variety “Legacy” the maximum number of shoots was achieved with lower plant densities and intermediate culture volumes per flask. In relation to the number of nodes per explant "Brigitta had lower numbers as compared to “Legacy”, but with both varieties the number of nodes decresed with smaller volumes of medium in the flasks. For the number of shoots per flask, “Brigitta” responsed best at higher densities exceeding 40 shoots per flask. In contrast, “Legacy” produced maximum results at density of 25 explants in 30 mL of medium. It is concluded that for the optimum multiplication of both varieties the correct selection of both, the planting density and the volume of multiplication medium are important.

  8. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  9. CCN family member 2/connective tissue growth factor (CCN2/CTGF has anti-aging effects that protect articular cartilage from age-related degenerative changes.

    Directory of Open Access Journals (Sweden)

    Shinsuke Itoh

    Full Text Available To examine the role of connective tissue growth factor CCN2/CTGF (CCN2 in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS was measured by using primary cultures of chondrocytes obtained from wild-type (WT rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage.

  10. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    Science.gov (United States)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  11. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    Science.gov (United States)

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters

  12. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  13. A cartilage-inspired lubrication system.

    Science.gov (United States)

    Greene, George W; Olszewska, Anna; Osterberg, Monika; Zhu, Haijin; Horn, Roger

    2014-01-14

    Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

  14. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    Science.gov (United States)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  15. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  16. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  17. Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials.

    Science.gov (United States)

    Galois, L; Freyria, A M; Grossin, L; Hubert, P; Mainard, D; Herbage, D; Stoltz, J F; Netter, P; Dellacherie, E; Payan, E

    2004-01-01

    Lesions of articular cartilage have a large variety of causes among which traumatic damage, osteoarthritis and osteochondritis dissecans are the most frequent. Replacement of articular defects in joints has assumed greater importance in recent years. This interest results in large part because cartilage defects cannot adequately heal themselves. Many techniques have been suggested over the last 30 years, but none allows the regeneration of the damaged cartilage, i.e. its replacement by a strictly identical tissue. In the first generation of techniques, relief of pain was the main concern, which could be provided by techniques in which cartilage was replaced by fibrocartilage. Disappointing results led investigators to focus on more appropriate bioregenerative approaches using transplantation of autologous cells into the lesion. Unfortunately, none of these approaches has provided a perfect final solution to the problem. The latest generation of techniques, currently in the developmental or preclinical stages, involve biomaterials for the repair of chondral or osteochondral lesions. Many of these scaffolds are designed to be seeded with chondrocytes or progenitor cells. Among natural and synthetic polymers, collagen- and polysaccharide-based biomaterials have been extensively used. For both these supports, studies have shown that chondrocytes maintain their phenotype when cultured in three dimensions. In both types of culture, a glycosaminoglycan-rich deposit is formed on the surface and in the inner region of the cultured cartilage, and type II collagen synthesis is also observed. Dynamic conditions can also improve the composition of such three-dimensional constructs. Many improvements are still required, however, in a number of key aspects that so far have received only scant attention. These aspects include: adhesion/integration of the graft with the adjacent native cartilage, cell-seeding with genetically-modified cell populations, biomaterials that can be

  18. High-frequency in vitro plantlet regeneration from apical bud as a novel explant of Carum copticum L.

    Institute of Scientific and Technical Information of China (English)

    Mansoureh Salehi; Bahman Hosseini; Zohreh Jabbarzadeh

    2014-01-01

    Objective: To develop an in vitro regeneration system to increase the recovery of Carum copticum L. plantlets as a part of developing a metabolic engineering program.Methods:3-acetic acid and indole butyric acid on direct shoot regeneration and rooting of ajowan from apical bud explants were assessed. All explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of 6-benzyl amino purine (BAP) (0, 2.2, 4.4, 8.8µ The efficacy of different concentrations and combinations of 6-benzyladenine, indole-Results: The maximum shoot regeneration frequency (97.5%) and the highest number of shoots produced from apical buds (34 shoots per explant) were obtained on MS medium fortified with BAP (4.4 µmol/L) and IAA (0.5 µmol/L). Low shoot regeneration frequency was observed in BAP free treatments. The effects of different strengths of MS medium and various concentrations of IAA and indole-3- butyric acid on rooting rate, length and average number of roots were also investigated. Application of indole-3- butyric acid (6 µmol/L) in full-strength MS medium, was more effective than IAA and resulted in highest shoot regeneration frequency with the rooting rate of 100% and highest mean number of roots per shoot (41.8). The rooted plantlets were acclimatized successfully in greenhouse conditions with a survival rate of 90%. mol/L) and indole-3-acetic acid (IAA) (0, 0.5, 1.1, 2.2 µmol/L). Conclusion: In this study, a simple and reliable regeneration and acclimatization protocol for Carum copticum has been presented. This protocol can be found very advantageous for a variety of purposes, including mass multiplication of Carum species, medicinal plant breeding studies and transgenic plant production.

  19. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  20. Evaluation for Plant Regeneration Potential of Root Explants in Echinacea purpurea%松果菊根外植体植株再生能力的评价

    Institute of Scientific and Technical Information of China (English)

    Dahanayake NILANTHI; 赵福成; 杨跃生; 吴鸿

    2009-01-01

    为了评价松果菊Echinacea purpurea L.根外植体的再生能力,将从松果菊无菌小苗得到的根外植体和叶片以及叶柄外植体接种到含有不同种类和浓度的细胞分裂素和生长素的培养基上,诱导不定芽的再生.结果表明,在多数情况下,根外植体的再生能力显著高于叶片,和叶柄类似.0.3 mg/L的苄基腺嘌呤和0.01 mg/L的萘乙酸是诱导根外植体不定芽再生最合适的激素种类和质量浓度组合.根外植体培养的不定芽再生频率为100%,每个根外植体得到再生芽1.75个.当把这些由根再生的不定芽从母体组织切开并转移培养到含有0.01 mg/L萘乙酸的培养基后,很容易生根并成为完整的植株.可见根是组培快繁松果菊理想的外植体材料.%For evaluation of the plant regeneration potential of root explants, explants of root, leaf and petiole were taken from in vitro grown purple coneflower, Echinacea purpurea L. Plantlets and cultured on adventitious bud inducing media with different cytokinins and auxins at various concentrations. In most of the cases, the regeneration potential of root explants was much higher than that of leaf ones and similar to that of petiole explants, and a combination of 0.3 mg/L benzyladeine with 0.01 mg/L naphthaleneacetic acid was the most effective combination and concentrations for inducing adventitious bud regen-eration. Although the best result of bud regeneration was obtained from culture of petiole explants, a good result in regenera-tion rate of 100% and a high number of 1.75 buds per exphnt were obtained from culture of root explants. Buds regenerated from root explants initiated roots and became intact plants readily upon transfer to a medium containing 0.01 mg/L naphthale-neacetic acid. Results of the experiments indicated that root was an ideal explant source for rapid propagation by means of tis-sue culture in this plant species.

  1. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  2. ANATOMICAL STUDIES OF IN VITRO ORGANOGENESIS INDUCED IN LEAF-DERIVED EXPLANTS OF PASSIONFRUIT ESTUDOS ANATÔMICOS DA ORGANOGÊNESE IN VITRO INDUZIDA EM EXPLANTES DE FOLHA DE MARACUJÁ

    Directory of Open Access Journals (Sweden)

    BEATRIZ APPEZZATO DA GLORIA

    1999-11-01

    Full Text Available With the aim of studying the organogenesis in vitro in Passiflora edulis Sims f. flavicarpa Deg., the passionfruit, leaf-derived explants were cultured on media containing NAA or BAP and incubated either in continuous darkness or in light. The histological events leading to de novo organ formation were evaluated. Darkness induces rhizogenesis in the presence of NAA, whereas direct shoot regeneration is stimulated by light and BAP. This latter condition is recommended for passionfruit micropropagation as several adventitious shoot buds were formed from meristemoids of parenchymal origin.Com o objetivo de estudar a organogênese in vitro em Passiflora edulis Sims f. flavicarpa Deg., o maracujá-amarelo, explantes derivados de folha foram cultivados em meio contendo NAA ou BAP, no escuro e na presença de luz. Foram descritos os eventos histológicos que levam à formação de novo de órgãos. Concluiu-se que o escuro induz a rizogênese, na presença de NAA, enquanto a regeneração de brotos é estimulada pela luz e BAP. Esta condição é recomendada para micropropagar o maracujá uma vez que vários brotos adventícios são formados a partir de meristemóides de origem parenquimática.

  3. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  4. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.

    Science.gov (United States)

    Skaalure, Stacey C; Chu, Stanley; Bryant, Stephanie J

    2015-02-18

    A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.

  5. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering.

  6. A synthetic thermo-sensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides

    Science.gov (United States)

    Blokzijl, Maarten M.; Gawlitta, Debby; Dhert, Wouter J. A.; Hennink, Wim E.; Malda, Jos; Vermonden, Tina

    2016-01-01

    Hydrogels based on triblock copolymers of polyethylene glycol and partially methacrylated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) are an attractive class of biomaterials due to their biodegradability, cytocompatibility, and tunable thermo-responsive and mechanical properties. By fine-tuning these properties, the hydrogels can be 3D bioprinted, to generate e.g. constructs for cartilage repair. This study investigated whether hydrogels based on the above mentioned polymer with a 10% degree of methacrylation (M10P10), support cartilage formation by chondrocytes, and whether the incorporation of methacrylated chondroitin sulfate (CSMA) or methacrylated hyaluronic acid (HAMA) can improve the mechanical properties, long-term stability, and printability. Chondrocyte-laden M10P10 hydrogels were cultured for 42 days to evaluate chondrogenesis. M10P10 hydrogels with or without polysaccharides were evaluated for their mechanical properties (before and after UV photo-cross-linking), degradation kinetics, and printability. Extensive cartilage matrix production occurred in M10P10 hydrogels, highlighting their potential for cartilage repair strategies. The incorporation of polysaccharides increased the storage modulus of polymer mixtures and decreased the degradation kinetics in cross-linked hydrogels. Addition of HAMA to M10P10 hydrogels improved printability and resulted in 3D constructs with excellent cell viability. Hence, this novel combination of M10P10 with HAMA forms an interesting class of hydrogels for cartilage bioprinting. PMID:27171342

  7. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  8. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  9. Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration.

    Science.gov (United States)

    Choi, Woo Hee; Kim, Hwal Ran; Lee, Su Jeong; Jeong, Nayoung; Park, So Ra; Choi, Byung Hyune; Min, Byoung-Hyun

    2016-01-01

    Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes or mesenchymal stem cells (MSCs). However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. However, the characteristics and the potential of progenitor cells from fetal tissue remain poorly defined. In this study, we examined cells from human fetal cartilage at 12 weeks after gestation in comparison with bone marrow-derived MSCs or cartilage chondrocytes from young donors (8-25 years old). The fetal cartilage-derived progenitor cells (FCPCs) showed higher yields by approximately 24 times than that of chondrocytes from young cartilage. The morphology of the FCPCs was polygonal at passage 0, being similar to that of the young chondrocytes, but it changed later at passage 5, assuming a fibroblastic shape more akin to that of MSCs. As the passages advanced, the FCPCs showed a much greater proliferation ability than the young chondrocytes and MSCs, with the doubling times ranging from 2∼4 days until passage 15. The surface marker profile of the FCPCs at passage 2 was quite similar to that of the MSCs, showing high expressions of CD29, CD90, CD105, and Stro-1. When compared to the young chondrocytes, the FCPCs showed much less staining of SA-β-gal, a senescence indicator, at passage 10 and no decrease in SOX9 expression until passage 5. They also showed a much greater chondrogenic potential than the young chondrocytes and the MSCs in a three-dimensional pellet culture in vitro and in polyglycolic acid (PGA) scaffolds in vivo. In addition, they could differentiate into adipogenic and osteogenic lineages as efficiently as MSCs in vitro. These results suggest that FCPCs have stem cell properties to some extent and that they are more active in terms of

  10. 外源性转化生长因子-β1作用下胎儿软骨终板细胞II型胶原与蛋白多糖的相关性%The correlation between collagen II and proteoglycan of the fetal endplate cartilage cells cultured by the transforming growth factor-β1 in vitro

    Institute of Scientific and Technical Information of China (English)

    李全修; 蔡月艳; 刘欣; 樊培新; 刘勇

    2012-01-01

    Objective To observe the correlation and the change of collagen II and proteoglycan of the fetal endplate cartilage cells cultured by the transforming growth factor-p, ( TGF-β1 ) in vitro. Methods The second generation fetal endplate cartilage cells for 0, 1, 2, 3, 4, 5 or 6 days with TGF-β11( 10μg/L ) in vitro. The proteoglycan, collagen II gene and protein expression were detected by Western blot or RT-PCR. Results There was not significant difference of the expression of collagen Hand proteoglycan mRNA before 1d and after 4d( P >0. 05 ), however, the expression of collagen II and proteoglycan mRNA increased gradually with a significant difference from 1d to 4d( P<0.05), and collagen II change with proteoglycan mRNA and expression of protein were positively correlated ( R = 0. 9991, R = 0. 9931 respectively ). Conclusion The production of collagen II and proteoglycan of the cultured fetal endplate cartilage cells were promoted by TGF-β1 in vitro, and there were significant correlation between collagen II and proteoglycan.%目的 观察外源性转化生长因子-β1(TGF-β1)作用下胎儿软骨终板细胞II型胶原和蛋白多糖的变化及相关性.方法 用含10 μg/L外源性TGF-β1培养基培养第2代胎儿软骨终板细胞,分别培养0d、1d、2d、3d、4d、5d、6d.Western blot和RT-PCR检测培养细胞II型胶原和蛋白多糖及其mRNA的表达.结果 0天与第1天之间相比较,第4天、第5天与第6天之间相互比较,II型胶原和蛋白多糖及其基因表达的差异皆无统计学意义(P>0.05);第1天、第2天、第3天和第4天之间相互比较,II型胶原和蛋白多糖及其基因表达的差异有统计学意义(P<0.05).II型胶原和蛋白多糖的mRNA表达及蛋白表达均呈正相关(分别为R=0.9991和R=0.9931).结论 TGF-β1能促进体外培养的胎儿软骨终板细胞合成II型胶原和蛋白多糖,且二者在变化过程中具有显著的相关性.

  11. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    Science.gov (United States)

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  12. Cells that emerge from embryonic explants produce fibers of type IV collagen.

    Science.gov (United States)

    Chen, J M; Little, C D

    1985-10-01

    Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.

  13. Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model

    NARCIS (Netherlands)

    J. van de Breevaart Bravenboer; C.D. in der Maur; L. Feenstra (Louw); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie); G.J.V.M. van Osch (Gerjo); P.K. Bos (Koen)

    2004-01-01

    textabstractThe objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bo

  14. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  15. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  16. An early look at the Organ Procurement and Transplantation Network explant pathology form data.

    Science.gov (United States)

    Harper, Ann M; Edwards, Erick; Washburn, W Kenneth; Heimbach, Julie

    2016-06-01

    In April 2012, the Organ Procurement and Transplantation Network (OPTN) implemented an online explant pathology form for recipients of liver transplantation who received additional wait-list priority for their diagnosis of hepatocellular carcinoma (HCC). The purpose of the form was to standardize the data being reported to the OPTN, which had been required since 2002 but were submitted to the OPTN in a variety of formats via facsimile. From April 2012 to December 2014, over 4500 explant forms were submitted, allowing for detailed analysis of the characteristics of the explanted livers. Data from the explant pathology forms were used to assess agreement with pretransplant imaging. Explant data were also used to assess the risk of recurrence. Of those with T2 priority, 55.7% were found to be stage T2 on explant. Extrahepatic spread (odds ratio [OR] = 6.8; P < 0.01), poor tumor differentiation (OR = 2.8; P < 0.01), microvascular invasion (OR = 2.6; P < 0.01), macrovascular invasion (OR = 3.2; P < 0.01), and whether the Milan stage based on the number and size of tumors on the explant form was T4 (OR = 2.4; P < 0.01) were the strongest predictors of recurrence. In conclusion, this analysis confirms earlier findings that showed an incomplete agreement between pretransplant imaging and posttransplant pathology in terms of HCC staging, though the number of patients with both no pretransplant treatment and no tumor in the explant was reduced from 20% to <1%. In addition, several factors were identified (eg, tumor burden, age, sex, region, ablative therapy, alpha-fetoprotein, Milan stage, vascular invasion, satellite lesions, etc.) that were predictive of HCC recurrence, allowing for more targeted surveillance of high-risk recipients. Continued evaluation of these data will help shape future guidelines or policy recommendations. Liver Transplantation 22 757-764 2016 AASLD.

  17. In vitro culture of embryos of the guppy, Poecilia reticulata.

    Science.gov (United States)

    Martyn, Ulrike; Weigel, Detlef; Dreyer, Christine

    2006-03-01

    The rich variation in adult color patterns of male guppies (Poecilia reticulata) has attracted the attention of geneticists and ecologists for almost a century. Studies on their embryogenesis, however, have been limited by the fact that guppies are live bearers. We have observed normal development after explantation of guppy embryos from the ovary of pregnant females at various times after last parturition, and found that development of each batch of eggs is slightly asynchronous, most likely due to asynchronous fertilization. We have cultured explanted embryos in vitro and continuously observed their development. Although embryos explanted a few days after fertilization survived up to 4 weeks in culture, they did not complete their development. In contrast, embryos explanted at late stages of gestation could hatch and develop to fertile adults. Our embryo culture techniques overcome some of the limitations of using livebearers as study objects, and they allow continuous observation of and accessibility to live embryos at all stages.

  18. POSSIBILITIES OF CURRENT CELLULAR TECHNOLOGIES FOR ARTICULAR CARTILAGE REPAIR (ANALYTICAL REVIEW

    Directory of Open Access Journals (Sweden)

    M. S. Bozhokin

    2016-01-01

    Full Text Available Despite a wide variety of surgical procedures utilized in clinical practice for treatment of articular cartilage lesions, the search for other options of articular reconstruction remains a relevant and open issue at the current stage of medicine and biotechnologies development. The recent years demonstrated a strong belief in cellular methods of hyaline cartilage repair such as implantation of autologous chondrocytes (ACI or cultures of mesenchymal stem cells (MSC including techniques for genetic modification of cells.The purpose of presented review is to summarize the published scientific data on up to date results of perspective cellular technologies for articular cartilage repair that are being developed. Autologous chondrocyte transplantation originally performed by Swedish researchers in 1987 is considered the first clinically applied technique for restoration of hyaline cartilage using cellular technologies. However, the transplanted cell culture featured low proliferative capacity and inability to form a regenerate resistant to high physical activity. Another generation of methods originated at the turn of the century utilized mesenchymal stem cells instead of autologous chondrocytes. Preparation of MSCs is a less invasive procedure compared to chondrocytes harvesting and the culture is featured by a higher proliferative ability. Researchers use various biodegradable carriers (matrices to secure cell fixation. Despite good clinical mid-term outcomes the transplanted tissue-engineering structures deteriorate with time due to cellular de-differentiation. Next generation of techniques being currently under pre-clinical studies is featured by the preliminary chondrogenic modification of transplanted cell culture. Usage of various growth factors, modified cell product and gene-activated matrices allow to gain a stable regulatory and key proteins synthesis and achieve a focused influence on regenerate's chondrogenic proliferation and in result

  19. Effect of Age of Explant on Transgenic Cotton (Gossypium Plant Due to Expression of Mannose-Binding Lectin Gene from Allium sativum

    Directory of Open Access Journals (Sweden)

    Lynelle van Emmenes

    2011-09-01

    Full Text Available Cotton is the most important textile plant in the world and is one of the most important crops for the production of oilseed. Because of its worldwide economic importance, new cultivars are constantly being released in the world. Although great improvements have been achieved through traditional breeding methods, cotton breeders are facing many problems, i.e., narrow genetic base, inability to use alien genes and difficulty in breaking gene linkages. Genetic transformations analyses are main tools used by breeders to overcome these problems. The aim of the study reported in this paper is to determine the effect of age of explant on regeneration response of apical shoot for tissue culture and gene transfer systems of cotton. This enabled us evaluate it effects on cotton transformation. The age of explants was observed to have significant effect on shoot tip elongation. The elongation rates of the three varieties studied were not significantly different from each other (p = 0.1573 and was observed to be affected by the size of isolated tips. It was observed that if the starting size of the apex was less than 1 mm, the tips would not grow at all. Insecticidal lectin gene from Allium sativum was transferred into the transgenic cotton plants via Agrobacterium-mediated transformation using shoot apices as explants. Putative transgenic plants were confirmed by leaf GUS assay, kanamycin leaf test and molecular analysis of plantlet.

  20. Harms and responsibilities associated with battery-operated implants (BOI): who controls postmortem explantation?

    Science.gov (United States)

    Bramstedt, Katrina A

    2013-01-01

    The postmortem issues raised by battery-operated implants (BOI) are complex and issues of consent, setting (clinical vs research), and environmental risks have received little attention in bioethics literature. Analyzing the issues, the following are argued: (1) Patients receiving BOIs should sign a consent form that includes a requirement for postmortem explant of the device; (2) BOI consent forms should require the explanted devices be returned to their manufacturers for Returned Product Analysis; (3) Failure to explant and analyze devices from the research setting fails the research goal of generation of knowledge for the benefit of future patients; (4) Failure to explant and analyze devices from the clinical setting allows product defects to be potentially hidden from patients, families, clinicians, manufacturers, and regulatory agencies; (5) Bodies buried with BOIs potentially harm the environment; (6) Religious or philosophical objections to autopsy should not supersede the duty to explant and analyze BOIs; (7) The concepts herein for BOIs could potentially extend to non-BOI if the device has failure modes that can lead to a potentially life-threatening event or can cause permanent debilitating health issues, and the burial or cremation of the device poses environmental harm. In these situations, neither the patient (premortem) nor family (postmortem) should have the right to refuse explant.

  1. Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair.

    Science.gov (United States)

    Fitzgerald, Jamie

    2017-02-01

    Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.

  2. Numerical Simulation of Mass Transfer and Three-Dimensional Fabrication of Tissue-Engineered Cartilages Based on Chitosan/Gelatin Hybrid Hydrogel Scaffold in a Rotating Bioreactor.

    Science.gov (United States)

    Zhu, Yanxia; Song, Kedong; Jiang, Siyu; Chen, Jinglian; Tang, Lingzhi; Li, Siyuan; Fan, Jiangli; Wang, Yiwei; Zhao, Jiaquan; Liu, Tianqing

    2017-01-01

    Cartilage tissue engineering is believed to provide effective cartilage repair post-injuries or diseases. Biomedical materials play a key role in achieving successful culture and fabrication of cartilage. The physical properties of a chitosan/gelatin hybrid hydrogel scaffold make it an ideal cartilage biomimetic material. In this study, a chitosan/gelatin hybrid hydrogel was chosen to fabricate a tissue-engineered cartilage in vitro by inoculating human adipose-derived stem cells (ADSCs) at both dynamic and traditional static culture conditions. A bioreactor that provides a dynamic culture condition has received greater applications in tissue engineering due to its optimal mass transfer efficiency and its ability to simulate an equivalent physical environment compared to human body. In this study, prior to cell-scaffold fabrication experiment, mathematical simulations were confirmed with a mass transfer of glucose and TGF-β2 both in rotating wall vessel bioreactor (RWVB) and static culture conditions in early stage of culture via computational fluid dynamic (CFD) method. To further investigate the feasibility of the mass transfer efficiency of the bioreactor, this RWVB was adopted to fabricate three-dimensional cell-hydrogel cartilage constructs in a dynamic environment. The results showed that the mass transfer efficiency of RWVB was faster in achieving a final equilibrium compared to culture in static culture conditions. ADSCs culturing in RWVB expanded three times more compared to that in static condition over 10 days. Induced cell cultivation in a dynamic RWVB showed extensive expression of extracellular matrix, while the cell distribution was found much more uniformly distributing with full infiltration of extracellular matrix inside the porous scaffold. The increased mass transfer efficiency of glucose and TGF-β2 from RWVB promoted cellular proliferation and chondrogenic differentiation of ADSCs inside chitosan/gelatin hybrid hydrogel scaffolds. The

  3. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  4. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation.

  5. In vitro establishment of a highly effective method of castor bean (Ricinus communisL.) regeneration using shoot explants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-xing; CHI Yue; CHEN Yong-sheng; WANG Xiao-yu; FENG Zi-zhou; GENG Xue-jun; MU Sha-moli; HUO Hong-yan; TONG Huan; LI Meng-zhu; LI Yi

    2016-01-01

    An efifcient plant regeneration protocol was established for castor bean (Ricinus communisL.), in which 0.3 mg L–1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hypocotyl tissue. Our results showed that treatment under dark conditions signiifcantly promoted the average number of shoots per explant to 37.36±4.54 (with a 6-d treatment). Modiifed 1/2 Murashige and Skoog (MS) basal medium supplemented with 440 mg L–1 Ca2+, 0.2 mg L–1 gibberelic acid and 0.1 mg L–1 TDZ signiifcantly increased shoot elongation rates and lowered vitriifcation rates. Further-more, 1/2 MS media supplemented with 0.2 mg L–1 1-naphthaleneacetic acid induced a higher rooting rate compared with other culture conditions.

  6. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  7. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  8. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  9. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  10. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  11. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    Energy Technology Data Exchange (ETDEWEB)

    Ohyabu, Yohimi, E-mail: ooyabu.yoshimi@aist.go.jp [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Adegawa, Takuro; Yoshioka, Tomohiko [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan); Ikoma, Toshiyuki [Biomaterials Center, National Institute for Materials Science, 1-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Uemura, Toshimasa [Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Central-4, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 (Japan); Tanaka, Junzo [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, S7-5 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2010-10-15

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  12. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes.

    Science.gov (United States)

    Beck, Emily C; Barragan, Marilyn; Libeer, Tony B; Kieweg, Sarah L; Converse, Gabriel L; Hopkins, Richard A; Berkland, Cory J; Detamore, Michael S

    2016-04-01

    Hydrogel precursors are liquid solutions that are prone to leaking after surgical placement. This problem was overcome by incorporating either decellularized cartilage (DCC) or devitalized cartilage (DVC) microparticles into traditional photocrosslinkable hydrogel precursors in an effort to achieve a paste-like hydrogel precursor. DCC and DVC were selected specifically for their potential to induce chondrogenesis of stem cells, given that materials that are chondroinductive on their own without growth factors are a revolutionary goal in orthopedic medicine. We hypothesized that DVC, lacking the additional chemical processing steps in DCC to remove cell content, would lead to a more chondroinductive hydrogel with rat bone marrow-derived mesenchymal stem cells. Hydrogels composed of methacrylated hyaluronic acid (MeHA) and either DCC or DVC microparticles were tested with and without exposure to transforming growth factor (TGF)-β3 over a 6 week culture period, where swelling, mechanical analysis, and gene expression were observed. For collagen II, Sox-9, and aggrecan expression, MeHA precursors containing DVC consistently outperformed the DCC-containing groups, even when the DCC groups were exposed to TGF-β3. DVC consistently outperformed all TGF-β3-exposed groups in aggrecan and collagen II gene expression as well. In addition, when the same concentrations of MeHA with DCC or DVC microparticles were evaluated for yield stress, the yield stress with the DVC microparticles was 2.7 times greater. Furthermore, the only MeHA-containing group that exhibited shape retention was the group containing DVC microparticles. DVC appeared to be superior to DCC in both chondroinductivity and rheological performance of hydrogel precursors, and therefore DVC microparticles may hold translational potential for cartilage regeneration.

  13. An Uncommon Plant Growth Regulator, Diethyl Aminoethyl Hexanoate, Is Highly Effective in Tissue Cultures of the Important Medicinal Plant Purple Coneflower (Echinacea purpurea L.

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Chen

    2013-01-01

    Full Text Available We investigated the effects of various concentrations of diethyl aminoethyl hexanoate (DA-6 on the regeneration and growth of adventitious buds in in vitro purple coneflower cultures. Among the 3 types of explants tested, leaf explants required higher concentrations of DA-6 than petiole and root explants in order to obtain high regeneration rates, while root explants required the lowest concentration of DA-6. Additionally, explants with higher ploidy levels were more sensitive to the addition of DA-6, while explants with lower ploidy levels required higher concentrations of DA-6 to achieve its maximal regeneration rate. Interestingly, the application of a concentration that was conducive to the regeneration of explants with lower ploidy levels was inhibitory to the regeneration of explants with higher ploidy levels. Moreover, during the growth of regenerated buds, DA-6 application significantly improved plant height and weight, root weight, root thickness, root number, primary root length, total root length, and root/top ratio. Differences in the responses of explants to supplementation with DA-6 were also observed among explants with different ploidy levels, with buds having lower ploidy levels responding to lower concentrations of DA-6. Taken together, the results of the present experiments showed that proper application of DA-6 could increase in vitro culture efficiency in purple coneflower.

  14. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  15. RESEARCH ON BEHAVIOUR OF GINKGO BILOBA IN THE INITIATION STAGE OF IN VITRO CULTURE

    Directory of Open Access Journals (Sweden)

    Ana-Maria Radomir

    2012-04-01

    Full Text Available This article presents the realizations of the tehnology of producing biological material with rapidly clonal multiplication with reference at the phase of in vitro initiation. The growth of Ginkgo biloba explants was influenced by the period of explants sampling and by the composition of culture medium. The explants sampled from the herbaceous shoots a year old cropping at the end of the summer have the best behavior. They have registered 80% explants growth on culture medium MS with 20 mg/l benzyladenine. As one goes along the concentration of benzyladenine decreased, has been found a diminution of the number of explants growth until 25% and a progresive growth of the length of the shoots obtained.

  16. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  17. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    Science.gov (United States)

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies.

  18. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  19. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  20. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  1. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-06-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P < 0.0001). Thus, the difference in DO level was attributable to biofilm-induced oxygen demand rather than changes in oxygen diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing.

  2. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy

    Institute of Scientific and Technical Information of China (English)

    Huang Yuelong; Zhang Yujun; Ding Xiaoquan; Liu Songyang; Sun Tiezheng

    2014-01-01

    Background The thermal injury during bipolar radiofrequercy results in chondrocyte death that limits cartilage repair.The purpose was to determine the effects of various factors of bipolar radiofrequency on human articular cartilage after thermal injury,offering suitable working conditions for bipolar radiofrequency during arthroscopy.Methods Osteochondral explants from 28 patients undergoing total knee arthroplasty (TKA) in Department of Orthopaedic,Peking University Reople's Hospital from October 2013 to May 2014,were harvested and treated using bipolar radiofrequency in a light contact mode under the following conditions:various power setting of levels 2,4 and 6; different durations of 2 seconds,5 seconds and 10 seconds; irrigation with fluids of different temperatures of 4℃,22℃,and 37℃; two different bipolar radiofrequency probes ArthroCare TriStar 50 and Paragon T2.The percentage of cell death and depth of cell death were quantified with laser confocal microscopy.The content of proteoglycan elution at different temperatures was determined by spectrophotometer at 530 nm.Results Chondrocyte mortality during the treatment time of 2 seconds and power setting of level 2 was significantly lower than that with long duration or in higher level groups (time:P=0.001; power:P=0.001).The percentage of cell death after thermal injury was gradually reduced by increasing the temperature of the irrigation solutions (P=0.003),the depth of dead chondrocytes in the 37℃ solution group was significantly less than those in the 4℃ and 22℃ groups (P=0.001).The proteoglycan elution was also gradually reduced by increasing the temperature (P=0.004).Compared with the ArthroCare TriStar 50 group,the percentage of cell death in the Paragon T2 group was significantly decreased (P=0.046).Conclusions Thermal chondroplasty with bipolar radiofrequency resulted in defined margins of chondrocyte death under controlled conditions.The least cartilage damage during thermal chondroplasty

  3. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    Science.gov (United States)

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  4. Body weight independently affects articular cartilage catabolism.

    Science.gov (United States)

    Denning, W Matt; Winward, Jason G; Pardo, Michael Becker; Hopkins, J Ty; Seeley, Matthew K

    2015-06-01

    Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW) independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity). The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW), +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP) was measured immediately before (baseline) and after, and 15 and 30 minutes after the walk. Heart rate (HR) and rate of perceived exertion (RPE) were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response. Key pointsWalking for 30 minutes with adjustments in body weight (normal body weight, +40% and -40% body weight) significantly influences articular cartilage catabolism, measured via serum COMP concentration.Compared to baseline levels, walking with +40% body weight and normal body weight both elicited significant increases in

  5. Reactivation of HSV-1 following explant of tree shrew brain.

    Science.gov (United States)

    Li, Lihong; Li, Zhuoran; Li, Xin; Wang, Erlin; Lang, Fengchao; Xia, Yujie; Fraser, Nigel W; Gao, Feng; Zhou, Jumin

    2016-06-01

    Herpes Simplex Virus type I (HSV-1) latently infects peripheral nervous system (PNS) sensory neurons, and its reactivation leads to recurring cold sores. The reactivated HSV-1 can travel retrograde from the PNS into the central nervous system (CNS) and is known to be causative of Herpes Simplex viral encephalitis. HSV-1 infection in the PNS is well documented, but little is known on the fate of HSV-1 once it enters the CNS. In the murine model, HSV-1 genome persists in the CNS once infected through an ocular route. To gain more details of HSV-1 infection in the CNS, we characterized HSV-1 infection of the tree shrew (Tupaia belangeri chinensis) brain following ocular inoculation. Here, we report that HSV-1 enters the tree shrew brain following ocular inoculation and HSV-1 transcripts, ICP0, ICP4, and LAT can be detected at 5 days post-infection (p.i.), peaking at 10 days p.i. After 2 weeks, ICP4 and ICP0 transcripts are reduced to a basal level, but the LAT intron region continues to be expressed. Live virus could be recovered from the olfactory bulb and brain stem tissue. Viral proteins could be detected using anti-HSV-1 antibodies and anti-ICP4 antibody, during the acute stage but not beyond. In situ hybridization could detect LAT during acute infection in most brain regions and in olfactory bulb and brain stem tissue well beyond the acute stage. Using a homogenate from these tissues' post-acute infection, we did not recover live HSV-1 virus, supporting a latent infection, but using a modified explant cocultivation technique, we were able to recover reactivated virus from these tissues, suggesting that the HSV-1 virus latently infects the tree shrew CNS. Compared to mouse, the CNS acute infection of the tree shrew is delayed and the olfactory bulb contains most latent virus. During the acute stage, a portion of the infected tree shrews exhibit symptoms similar to human viral encephalitis. These findings, together with the fact that tree shrews are closely

  6. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  7. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  8. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds.

    Science.gov (United States)

    Mayazur Rahman, S; Reichenbach, Andreas; Zink, Mareike; Mayr, Stefan G

    2016-04-14

    Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level.

  9. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    Science.gov (United States)

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.

  10. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  11. Establishment and content of sugars and phenols in Physalis callus obtained from different explants and concentrations of bap and naa - doi: 10.4025/actascibiolsci.v36i1.18074

    Directory of Open Access Journals (Sweden)

    Douglas Junior Bertoncelli

    2013-09-01

    Full Text Available Obtaining cells of Physalis pubescens is of interest for studies of primary and secondary metabolic pathways, in the search for new active molecules. Our objectives were to evaluate the regeneration potential of explants from different parts of the plant, growth regulators to be used, and the determination of the growth curve of the callus. We used explants of leaf, root, stem and petiole, cultured on Murashige and Skoog medium with different concentrations of 6-benzylaminopurine and a-naphthaleneacetic acid. The explants from stem and petiole had a higher regeneration potential of the shoot to the treatment with 0.5 mg L-1 6-benzylaminopurine, and the explants of leave and root emitted more roots, with lower production of callus. The tests showed that the regeneration of the whole plant should be done in two steps: cultivation for shoot regeneration and transplantation to a new rooting medium. The growth of callus showed five distinct phases, with accumulation of phenols in the final stages of growth. The levels of soluble sugars increased with age, while reducing sugars showed variations, with higher concentrations in the initial stages of cultivation, with fall and rise again at the final evaluation (28th day.

  12. Organogênese de explante foliar de clones de Eucalyptus grandis x E. urophylla Organogenesis of the leaf explant of Eucalyptus grandis x E. urophylla clones

    Directory of Open Access Journals (Sweden)

    Elisa Cristina Soares de Carvalho Alves

    2004-05-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos dos reguladores de crescimento TDZ [1-fenil-3-(1,2,3-tia-diazol-5-iluréia], BAP (6-benzilaminopurina e ANA (ácido naftalenoacético no desempenho da propagação in vitro por organogênese de explante foliar de três clones híbridos de Eucalyptus grandis x Eucalyptus urophylla. Houve resposta diferenciada dos clones quanto a intensidade, textura e coloração dos calos, em razão dos tratamentos com os reguladores de crescimento. Os melhores resultados de calejamento dos três genótipos foram observados nos tratamentos com a combinação dos reguladores de crescimento TDZ (0,5 mg L-1 e ANA (0,1 mg L-1, obtendo-se 100% de calejamento no explante foliar. Os piores resultados de calejamento foram observados nos tratamentos com a combinação dos reguladores de crescimento BAP (0,1 mg L-1 e ANA (0,1 mg L-1. Em relação à regeneração, a melhor resposta foi obtida com 1,0 mg L-1 BAP em que 8% dos calos formados a partir de explantes foliares regeneraram gemas, com número médio destas formadas por calo igual a 4,2.The aim of this work was to evaluate the effects of growth regulators TDZ [1-phenil-3-(1,2,3-thiadiazol-5-yl urea], BAP (6-benzilaminopurine e NAA (Naphthalene acetic acid on the in vitro propagation by organogenesis from foliar explants of Eucalyptus grandis x E. urophylla. Depending on the clone used, there were singular responses to growth regulators treatment regarding callusing intensity, texture and color. The best results of the three genotypes used were observed with the TDZ (0.5 mg L-1 and NAA (0.1 mg L-1 treatment, where 100% of the foliar explants presented callus. The worst results were observed with the BAP (0.1 mg L-1 and NAA (0.1 mg L-1 treatment. Subsequently, considering the regeneration process, the best response was achieved with 1.0 mg L-1 BAP, in which 8% of the calli regenerated buds, with an average of 4.2 buds per explant.

  13. Differences in Cartilage-Forming Capacity of Expanded Human Chondrocytes From Ear and Nose and Their Gene Expression Profiles

    NARCIS (Netherlands)

    Hellingman, C.A.; Verwiel, E.T.P.; Slagt, I.; Koevoet, W.; Poublon, R.M.L.; Nolst-Trenite, G.J.; de Jong, R.J.B.; Jahr, H.; van Osch, G.J.V.M.

    2011-01-01

    The aim of this study was to evaluate the potential of culture-expanded human auricular and nasoseptal chondrocytes as cell source for regeneration of stable cartilage and to analyze the differences in gene expression profile of expanded chondrocytes from these specific locations. Auricular chondroc

  14. Transforming Growth Factors β Coordinate Cartilage and Tendon Differentiation in the Developing Limb Mesenchyme*

    OpenAIRE

    2009-01-01

    Transforming growth factor β (TGFβ) signaling has an increasing interest in regenerative medicine as a potential tool to repair cartilages, however the chondrogenic effect of this pathway in developing systems is controversial. Here we have analyzed the function of TGFβ signaling in the differentiation of the developing limb mesoderm in vivo and in high density micromass cultures. In these systems highest signaling activity corresponded with cells at stages preceding overt chondrocyte differe...

  15. Nonspecific otalgia: Indication for cartilage tympanoplasty

    Directory of Open Access Journals (Sweden)

    Rauf Ahmad

    2015-01-01

    Full Text Available Introduction: Myringoplasty and tympanoplasty are commonly performed otologic surgical procedures. The aim of this study was to analyze the influence of nonspecific otalgia on the successful autologous conchal cartilage and temporalis fascia graft take up in type-1 tympanoplasty. Materials and Methods: A total of 250 adult patients who met the inclusion criteria were enrolled for this study. Patients were placed in two groups (otalgia and nonotalgia group depending upon the history of otalgia. Patients in both groups were operated (type-1 tympanoplasty using randomly either temporalis fascia or conchal cartilage as the graft material. Follow-up of patients was done after 3 weeks, 6 weeks, and 3 months of surgery to check the status of graft take up. Result: Our study shows that patients in otalgia group in which autologous temporalis fascia was used as the graft material, the majority of patients had graft necrosis by 3 months after surgery (9.6% success only. Whereas patients of the same group in which autologous conchal cartilage was used as the graft material, successful graft take up was in 93.5% patients after 3 months of surgery. Our study shows that there was not much difference in using autologous temporalis fascia or autologous conchal cartilage on successful graft take up in nonotolgia group of patients, with success rate of 97.89% and 97.84%, respectively.

  16. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  17. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  18. Fetal jaw movement affects condylar cartilage development.

    Science.gov (United States)

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  19. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  20. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  1. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  2. Indução de calos em sempre-viva (Syngonanthus mucugensis Giulietti, utilizando diferentes tipos de explantes e concentrações de BAP = Callus induction in sempre-viva (Syngonanthus mucugensis Giulietti using different types of explants and BAP concentrations

    Directory of Open Access Journals (Sweden)

    Janilza da Paixão Santos

    2008-04-01

    Full Text Available A sempre-viva-de-mucugê [Syngonanthus mucugensis – Eriocaulaceae] é uma planta com grande valor ornamental e caracteriza-se pela durabilidade de suas inflorescências que se mantém mesmo depois de coletadas e secas. A propagação sexuada dessa espécie resulta em plantas desuniformes por ser geneticamente segregante e, aliada aeste fato, existe a ameaça de extinção da espécie, sendo por isso restrita a coleta na sua região de origem. Desta forma, a cultura de tecidos torna-se uma alternativa viável para a formação de novas mudas e, por isso, objetivou-se, neste trabalho, avaliar a indução de calos in vitro de Syngonanthus mucugensis, utilizando diferentes concentrações de BAP (6-benzilaminapurina. O delineamento experimental foi inteiramente casualizado (DIC, sendo que cadatratamento continha quatro repetições e cada repetição era formada por quatro explantes. Os explantes utilizados foram plantas cultivadas in vitro e segmentos nodais delas. O meio de cultivo utilizado foi o MS (metade dos sais, suplementado com (0,0; 0,89; 1,78; 3,55; 7,10; 14,21 e 28,42 μM de BAP. Aos 60 dias, avaliaram-se a sobrevivência dos explantes e a porcentagem de formação de calos. Verificou-se que plantas inteiras e segmentos nodais deSyngonanthus mucugensis são explantes responsíveis à formação de calos friáveis, sendo que a produção significativa é obtida utilizando-se as concentrações de 1,78 e 3,55 μM de BAP.Sempre-viva-de-mucugê [Syngonanthus mucugensis – Eriocaulaceae] is a plant with great ornamental value characterized by the durability of its inflorescences, which remains even after collected and dried. Thesexual propagation of this species results in disuniform plants, as it is genetically segregating; in addition, this species is currently endangered, with collection therefore restricted to its region of origin. Thus, tissue culture becomes a viable alternative for theformation of new plants. This study aimed to

  3. MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB

    Directory of Open Access Journals (Sweden)

    Raghavendra D.R.

    2014-12-01

    Full Text Available Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures.

  4. Advances and Prospects in Stem Cells for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mingjie Wang

    2017-01-01

    Full Text Available The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.

  5. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  6. The Effect of Spaceflight on Cartilage Cell Cycle and Differentiation

    Science.gov (United States)

    Doty, Stephen B.; Stiner, Dalina; Telford, William G.

    2000-01-01

    In vivo studies have shown that spaceflight results in loss of bone and muscle. In an effort to understand the mechanisms of these changes, cell cultures of cartilage, bone and muscle have been subjected to spaceflight to study the microgravity effects on differentiated cells. However it now seems possible that the cell differentiation process itself may be the event(s) most affected by spaceflight. For example, osteoblast-like cells have been shown to have reduced cellular activity in microgravity due to an underdifferentiated state (Carmeliet, et al, 1997). And reduced human lymphocyte growth in spaceflight was related to increased apoptosis (Lewis, et al, 1998). Which brings us to the question of whether reduced cellular activity in space is due to an effect on the differentiated cell, an effect on the cell cycle and cell proliferation, or an effect on cell death. This question has not been specifically addressed on previous flights and was the question behind die present study.

  7. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes.

    Science.gov (United States)

    Taylor, Drew W; Ahmed, Nazish; Parreno, Justin; Lunstrum, Gregory P; Gross, Allan E; Diamandis, Eleftherios P; Kandel, Rita A

    2015-02-01

    Current approaches to cartilage tissue engineering require a large number of chondrocytes. Although chondrocyte numbers can be expanded in monolayer culture, the cells dedifferentiate and unless they can be redifferentiated are not optimal to use for cartilage repair. We took advantage of the differential effect of culture conditions on the ability of passaged and primary chondrocytes to form cartilage tissue to dissect out the extracellular matrix (ECM) molecules produced and accumulated in the early stages of passaged cell cartilage tissue formation as we hypothesized that passaged bovine cells that form cartilage accumulate a pericellular matrix that differs from cells that do not form cartilage. Twice passaged bovine chondrocytes (P2) (cartilage forming), or as a control primary chondrocytes (P0) (which do not generate cartilage), were cultured on three-dimensional membrane inserts in serum-free media. P2 redifferentiation was occurring during the first 8 days as indicated by increased expression of the chondrogenic genes Sox9, collagen type II, aggrecan, and COMP, suggesting that this is an appropriate time period to examine the ECM. Mass spectrometry showed that the P2 secretome (molecules released into the media) at 1 week had higher levels of collagen types I, III, and XII, and versican while type II collagen and COMP were found at higher levels in the P0 secretome. There was increased collagen synthesis and retention by P2 cells compared to P0 cells as early as 3 days of culture. Confocal microscopy showed that types XII, III, and II collagen, aggrecan, versican, and decorin were present in the ECM of P2 cells. In contrast, collagen types I, II, and III, aggrecan, and decorin were present in the ECM of P0 cells. As primary chondrocytes grown in serum-containing media, a condition that allows for the generation of cartilage tissue in vitro, also accumulate versican and collagen XII, this study suggests that these molecules may be necessary to provide a

  8. Recent developments in scaffold-guided cartilage tissue regeneration.

    Science.gov (United States)

    Liao, Jinfeng; Shi, Kun; Ding, Qiuxia; Qu, Ying; Luo, Feng; Qian, Zhiyong

    2014-10-01

    Articular cartilage repair is one of the most challenging problems in biomedical engineering because the regenerative capacity of cartilage is intrinsically poor. The lack of efficient treatment modalities motivates researches into cartilage tissue engineering such as combing cells, scaffolds and growth factors. In this review we summarize the current developments on scaffold systems available for cartilage tissue engineering. The factors that are critical to successfully design an ideal scaffold for cartilage regeneration were discussed. Then we present examples of selected material types (natural polymers and synthetic polymers) and fabricated forms of the scaffolds (three-dimensional scaffolds, micro- or nanoparticles, and their composites). In the end of review, we conclude with an overview of the ways in which biomedical nanotechnology is widely applied in cartilage tissue engineering, especially in the design of composite scaffolds. This review attempts to provide recommendations on the combination of qualities that would produce the ideal scaffold system for cartilage tissue engineering.

  9. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  10. Development and evaluation of a porcine in vitro colon organ culture technique.

    Science.gov (United States)

    Costa, Matheus O; Harding, John C S; Hill, Janet E

    2016-10-01

    The intestinal mucosa comprises a complex assemblage of specialized tissues that interact in numerous ways. In vitro cell culture models are generally focused on recreating a specific characteristic of this organ and do not account for the many interactions between the different tissues. In vitro organ culture (IVOC) methods offer a way to overcome these limitations, but prolonging cell viability is essential. This study aimed to determine the feasibility and optimal conditions for in vitro culture of swine colonic mucosa for use as an enteric pathogen infection model. Explants (n = 168) from commercial pigs (n = 12), aged 5 to 10 wk, were used to assess the impact of various culture protocols on explant viability. Explants were cultured for up to 5 d and formalin fixed at 24-h intervals. Following establishment of the culture protocol, explants (n = 208) from 13 pigs were evaluated at Day 0 and 5 of culture. Assessment of viability was based on histological changes (tissue architecture evaluated by H&E, immunostaining of cell proliferation marker Ki-67) and expression of genes encoding IL-1α, IL-8, TNF-α, IFN-γ, and e-cadherin. After 5 d in culture, 20% of explants displayed over 80% of epithelial coverage, whereas 31% of explants had more than 50% of their surface covered by columnar epithelium, and 81% had crypts but with a decreased number of Ki-67-positive cells when compared to Day 0. Notably, large variability in explant quality was observed between donor pigs. Best possible explants were obtained from the distal colon of pigs, processed immediately after euthanasia, cultured at the liquid-tissue-gas interface in media supplemented with a mixture of antibiotics and antifungals and an oxygen-rich gas mix.

  11. Facilitating cartilage volume measurement using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Maataoui, Adel, E-mail: adel.maataoui@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Gurung, Jessen, E-mail: jessen.gurung@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Ackermann, Hanns, E-mail: h.ackermann@add.uni-frankfurt.d [Institute for Epidemiology and Medical Statistics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Abolmaali, Nasreddin [Biological and Molecular Imaging, ZIK OncoRay - Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Kafchitsas, Konstantinos [Department of Orthopedics and Orthopedic Surgery, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Khan, M. Fawad, E-mail: fawad@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2010-08-15

    Purpose: To compare quantitative cartilage volume measurement (CVM) using different slice thicknesses. Materials and methods: Ten knees were scanned with a 1.5 T MRI (Sonata, Siemens, Erlangen, Germany) using a 3D gradient echo sequence (FLASH, fast low-angle shot). Cartilage volume of the medial and lateral tibial plateau was measured by two independent readers in 1.5 mm, 3.0 mm and 5.0 mm slices using the Argus software application. Accuracy and time effectiveness served as control parameters. Results: Determining cartilage volume, time for calculation diminished for the lateral tibial plateau from 384.6 {+-} 127.7 s and 379.1 {+-} 117.6 s to 214.9 {+-} 109.9 s and 213.9 {+-} 102.2 s to 122.1 {+-} 60.1 s and 126.8 {+-} 56.2 s and for the medial tibial plateau from 465.0 {+-} 147.7 s and 461.8 {+-} 142.7 s to 214.0 {+-} 67.9 s and 208.9 {+-} 66.2 s to 132.6 {+-} 41.5 s and 130.6 {+-} 42.0 s measuring 1.5 mm, 3 mm and 5 mm slices, respectively. No statistically significant difference between cartilage volume measurements was observed (p > 0.05) while very good inter-reader correlation was evaluated. Conclusion: CVM using 1.5 mm slices provides no higher accuracy than cartilage volume measurement in 5 mm slices while an overall time saving up to 70% is possible.

  12. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage.

    Science.gov (United States)

    Koo, Seungbum; Giori, Nicholas J; Gold, Garry E; Dyrby, Chris O; Andriacchi, Thomas P

    2009-12-01

    Cartilage morphology change is an important biomarker for the progression of osteoarthritis. The purpose of this study was to assess the accuracy of in vivo cartilage thickness measurements from MR image-based 3D cartilage models using a laser scanning method and to test if the accuracy changes with cartilage thickness. Three-dimensional tibial cartilage models were created from MR images (in-plane resolution of 0.55 mm and thickness of 1.5 mm) of osteoarthritic knees of ten patients prior to total knee replacement surgery using a semi-automated B-spline segmentation algorithm. Following surgery, the resected tibial plateaus were laser scanned and made into 3D models. The MR image and laser-scan based models were registered to each other using a shape matching technique. The thicknesses were compared point wise for the overall surface. The linear mixed-effects model was used for statistical test. On average, taking account of individual variations, the thickness measurements in MRI were overestimated in thinner (<2.5 mm) regions. The cartilage thicker than 2.5 mm was accurately predicted in MRI, though the thick cartilage in the central regions was underestimated. The accuracy of thickness measurements in the MRI-derived cartilage models systemically varied according to native cartilage thickness.

  13. Cartilage tissue engineering using pre-aggregated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-12-01

    Full Text Available In this study, we first aimed at determining whether human articular chondrocytes (HAC proliferate in aggregates in the presence of strong chondrocyte mitogens. We then investigated if the aggregated cells have an enhanced chondrogenic capacity as compared to cells cultured in monolayer. HAC from four donors were cultured in tissue culture dishes either untreated or coated with 1% agarose in the presence of TGFb-1, FGF-2 and PDGF-BB. Proliferation and stage of differentiation were assessed by measuring respectively DNA contents and type II collagen mRNA. Expanded cells were induced to differentiate in pellets or in Hyaff®-11 meshes and the formed tissues were analysed biochemically for glycosaminoglycans (GAG and DNA, and histologically by Safranin O staining. The amount of DNA in aggregate cultures increased significantly from day 2 to day 6 (by 3.2-fold, but did not further increase with additional culture time. Expression of type II collagen mRNA was about two orders of magnitude higher in aggregated HAC as compared to monolayer expanded cells. Pellets generated by aggregated HAC were generally more intensely stained for GAG than those generated by monolayer-expanded cells. Scaffolds seeded with aggregates accumulated more GAG (1.3-fold than scaffolds seeded with monolayer expanded HAC. In conclusion, this study showed that HAC culture in aggregates does not support a relevant degree of expansion. However, aggregation of expanded HAC prior to loading into a porous scaffold enhances the quality of the resulting tissues and could thus be introduced as an intermediate culture phase in the manufacture of engineered cartilage grafts.

  14. Factors affecting proliferation and elongation of shoots of Phak Liang (Gnetum gnemon Linn. through tissue culture technique

    Directory of Open Access Journals (Sweden)

    Te-chato, S.

    2003-09-01

    Full Text Available The tissue culture of Phak Liang (Gnetum gnemon Linn. was investigated for micropropagation. The types of explant, culture media, types and concentrations of plant growth regulators, orientation of explant and section of explant were tested for their efficacy in inducing and proliferating shoot buds. The elongation of shoots and root induction was also studied. Young leaves gave the highest number of shoot buds when they were cultured in Murashige and Skoog (MS medium supplemented with 0.25 mg/l IBA and 1.53 mg/l BA. The medium supplemented with 0.25 mg/l thidiazuron (TDZ alone provided the best result on multiple shoot bud induction both in percentage of explant forming shoots and number of shoot buds per explant. The percentage of explant forming shoot buds and number of shoot buds obtained from leaves were 90% and 26.50 shoot buds, while those from stems were 96.25% and 23.00 shoot buds, respectively. One hundred percent friable callus was induced from stem explant in the same medium supplemented with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D after 2 months of culture. Culturing whole leaf in the position of dorsal contact with medium gave the best multiple shoot bud formation of 92% and 23.00 shoot buds/explant. Cutting stem into half and culturing in horizontal position gave the best multiple shoot bud formation of 96% and 23.00 shoot buds/explant after culture for 2 months. The best elongation of shoot buds (2.54 shoots derived from cultured leaves was induced in the liquid medium. While stem-derived shoot buds (3.45 shoots was induced in the solid medium of the same medium components. However, root could not be induced from elongated shoots.

  15. Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2012-07-01

    The objectives of the present work were in vitro propagation of Araucaria excelsa R. Br. var. glauca Carrière (Norfolk Island pine) with focus on the evaluation of the mean number of shoots per explant (MNS/E) and mean length of shoots per explants (MLS/E) produced by different parts of the orthotropic stem of A. excelsa R. Br. var. glauca in response to plant growth regulators. Norfolk Island pine axillary meristems responded very well to the 2-iso-pentenyl adenine (2iP) and thidiazuron (TDZ) levels. Explants taken from stem upper segments in the media containing 2iP had a higher MNS/E (3.47) and MLS/E (6.27 mm) in comparison to those taken from stem lower segments, which were 0.71 and 0.51 mm, respectively. Using 0.045 μM TDZ in the MS medium not only resulted in 4.60 MNS/E with 7.08 mm MLS/E but proliferated shoots showed a good performance as well. Investigating the best position of stem explant on mother plant as well as the best concentrations of growth regulators were performed which were useful for efficient micropropagation of this plant. Thirty three percent of explants were rooted in the MS medium containing 3 % sucrose, supplemented with 7.5 μM of both NAA and IBA for 2 weeks before transferring to a half strength MS medium without any growth regulator. Plantlets obtained were acclimatized and transferred to the greenhouse with less than 20 % mortality. This procedure considered the first successful report for regeneration and acclimatization of A. excelsa R. Br. var. glauca plantlet through main stem explants.

  16. Early somatic embryogenesis in Heliconia chartacea Lane ex Barreiros cv. Sexy Pink ovary section explants

    Directory of Open Access Journals (Sweden)

    Cláudia Ulisses

    2010-02-01

    Full Text Available The present work evaluated the development of embryogenic callus from transversal ovary sections. The experiments were carried out under two experimental regimes using combinations of IAA (0; 5.71; 8.56; 11.42; 14.27μM and 2,4-D (0; 13.57; 18.10; 22.62μM or combinations of 2,4-D with BA (0; 4.43; 6.65; 8.87; 11.09μM. Assessments were made of anatomical aspects of the callus and for the presence of embryogenic structures using cytochemical and histological analyses and stereomicroscopic and scanning electronic microscopic observations. Treatments with 2,4-D and IAA produced friable calluses demonstrating cellular acquisition of morphogenetic competence as well as the formation of pro-embryogenic sectors. The expression of embryogenic program could be observed, with proembryogenic cell clusters developing into globular embryos. These results offer the possibility of using new types of explants for culturing helicons that avoid the growth of endophytic bacteria.Este trabalho teve como objetivo avaliar a resposta de secções transversais de ovários e o desenvolvimento de calos embriogênicos. O experimento constou de dois ensaios. No primeiro avaliou-se combinações entre AIA (0; 5.71; 8.56; 11.42; 14.27μM e 2,4-D (0; 13.57; 18.10; 22.62μM e no segundo avaliou-se as concentrações de 2,4-D supracitadas, combinadas com concentrações de BA (0; 4.43; 6.65; 8.87; 11.09μM. Os calos formados foram avaliados quanto à presença de estruturas embriogênicas utilizando-se estereomicroscópio, microscópio eletrônico de varredura, além de análises citoquímicas e histológicas. Combinações entre 2,4-D e AIA induziram a formação de calos friáveis com setores pró-embriogênicos, refletindo a aquisição de competência morfogenética. Posteriormente foi observada a expressão do programa embriogênico quando massas pró-embriogências desenvolveram-se formando embriões somáticos. Esses resultados apresentam uma alternativa para a utiliza

  17. Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production

    OpenAIRE

    Behbahani, Mandana; Shanehsazzadeh, Mehrnaz; Hessami,Mohamad Javad

    2011-01-01

    Lycopene is present in a range of fresh fruits and vegetables, especially in the leaves of Barringtonia racemosa. The traditional lycopene extraction from the plant is being employed instead of an easy propagation technique like cell culture process from the leaf explants. We intend to assess how lycopene could be extracted via tissue culture under light (illuminance: 8,200 lux under white fluorescent lamps, photoperiod 16 h per day at 25ºC) and dark. Leaf explants of Barringtonia racemosa we...

  18. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis dehn and histological study of organogenesis in vitro

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2010-04-01

    Full Text Available The present work aimed at regenerating plants of Eucalyptus camaldulensis from the cotyledonary explants and describing the anatomy of the tissues during callogenesis and organogenesis processes, in order to determine the origin of the buds. The cotyledonary leaves of E. camaldulensis were cultured in Murashige and Skoog (MS, WPM and JADS media supplemented with 2.7 µM NAA and 4.44 µM BAP. The best results for bud regeneration were obtained on MS and WPM media (57.5 and 55% of calluses formed buds, respectively. Shoot elongation and rooting (80% were obtained on MS/2 medium (with half-strength salt concentration with 0.2% activated charcoal. Acclimatization was performed in the growth chamber for 48 h and then the plants were transferred to a soil:vermiculite mixture and cultured in a greenhouse. Histological studies revealed that the callogenesis initiated in palisade parenchyma cells and that the adventitious buds were formed from the calluses, indicating indirect organogenesis.Este trabalho teve como objetivo a obtenção de plantas de Eucalyptus camaldulensis a partir de folhas cotiledonares e o estudo da anatomia dos tecidos durante a calogênese e organogênese para determinar a origem das gemas. Folhas cotiledonares foram cultivadas em meios de cultura MS, WPM e JADS suplementados com 2,7 µM de ANA e 4,44 µM de BAP. Os melhores resultados para a regeneração de gemas foram obtidos com os meios MS e WPM. Para o alongamento e enraizamento, o meio de cultura MS/2 contendo 0,2% de carvão ativado apresentou-se eficiente para ambas as etapas. A aclimatização foi realizada mediante a abertura dos frascos na sala de crescimento por 48 horas, seguido da transferência para casa-de-vegetação com nebulização intermitente. Estudos histológicos foram conduzidos e revelaram que a calogênese teve início nas células do parênquima paliçádico e que as gemas adventícias formaram-se a partir dos calos, indicando a organogênese indireta.

  19. Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material.

    Science.gov (United States)

    Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping

    2017-02-01

    Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.

  20. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.

    Science.gov (United States)

    Moroni, L; Hendriks, J A A; Schotel, R; de Wijn, J R; van Blitterswijk, C A

    2007-02-01

    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Poly[(ethylene oxide) terephthalate-co-poly(butylene) terephthalate] (PEOT/PBT) 3D fiber deposited (3DF) scaffolds were fabricated and examined for articular cartilage tissue regeneration. The shell polymer contained a higher molecular weight of the initial poly(ethylene glycol) (PEG) segments used in the copolymerization and a higher weight percentage of the PEOT domains compared with the core polymer. The 3DF scaffolds entirely produced with the shell or with the core polymers were also considered. After 3 weeks of culture, scaffolds were homogeneously filled with cartilage tissue, as assessed by scanning electron microscopy. Although comparable amounts of entrapped chondrocytes and of extracellular matrix formation were found for all analyzed scaffolds, chondrocytes maintained their rounded shape and aggregated during the culture period on shell-core 3DF scaffolds, suggesting a proper cell differentiation into articular cartilage. This finding was also observed in the 3DF scaffolds fabricated with the shell composition only. In contrast, cells spread and attached on scaffolds made simply with the core polymer, implying a lower degree of differentiation into articular cartilaginous tissue. Furthermore, the shell-core scaffolds displayed an improved dynamic stiffness as a result of a "prestress" action of the shell polymer on the core one. In addition, the dynamic stiffness of the constructs increased compared with the stiffness of the bare scaffolds before culture. These findings suggest that shell-core 3DF PEOT/PBT scaffolds with desired mechanical and surface properties are a promising solution for improved cartilage tissue engineering.

  1. TGF-beta1 immobilized tri-co-polymer for articular cartilage tissue engineering.

    Science.gov (United States)

    Chou, Cheng-Hung; Cheng, Winston T K; Lin, Chien-Cheng; Chang, Chih-Hung; Tsai, Chien-Chen; Lin, Feng-Huei

    2006-05-01

    Tri-co-polymer with composition of gelatin, hyaluronic acid and chondroitin-6-sulfate has been used to mimic the cartilage extracellular matrix as scaffold for cartilage tissue engineering. In this study, we try to immobilize TGF-beta1 onto the surface of the tri-co-polymer sponge to suppress the undesired differentiation during the cartilage growth in vitro. The scaffold was synthesized with a pore size in a range of 300-500 microm. TGF-beta1 was immobilized on the surface of the tri-co-polymer scaffold with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Tri-co-polymer scaffolds with and without TGF-beta1 were seeded with porcine chondrocytes and cultured in a spinner flask for 2, 4, and 6 weeks. The chondrocytes were characterized by the methods of immunohistochemical staining with anti-type II collagen and anti-S-100 protein monoclonal antibody, and RT-PCR. After culturing for 4 weeks, chondrocytes showed positive in S-100 protein, Alcian blue, and type II collagen for the scaffold with TGF-beta1 immobilization. There is no observed type I and type X collagen expression in the scaffolds from the observation of RT-PCR. In addition, the scaffold without TGF-beta1 immobilization, type X collagen, can be detected after cultured for 2 weeks. Type I collagen was progressively expressed after 4 weeks. These results can conclude that TGF-beta1 immobilized scaffold can suppress chondrocytes toward prehypertrophic chondrocytes and osteolineage cells. The tri-co-polymer sponge with TGF-beta1 immobilization should have a great potential in cartilage tissue engineering in the future.

  2. The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile

    Directory of Open Access Journals (Sweden)

    QG Wang

    2010-02-01

    Full Text Available The injectable and hydrophilic nature of hydrogels makes them suitable candidates for cartilage tissue engineering. To date, a wide range of hydrogels have been proposed for articular cartilage regeneration but few studies have quantitatively compared chondrocyte behaviour and extracellular matrix (ECM synthesis within the hydrogels. Herein we have examined the nature of ECM synthesis by chondrocytes seeded into four hydrogels formed by either temperature change, self-assembly or chemical cross-linking. Bovine articular cartilage chondrocytes were cultured for 14 days in Extracel®, Pluronic F127 blended with Type II collagen, Puramatrix® and Matrixhyal®. The discriminatory and sensitive technique of fluorophore-assisted carbohydrate electrophoresis (FACE was used to determine the fine detail of the glycosaminoglycans (GAG; hyaluronan and chondroitin sulphate. FACE analysis for chondroitin sulphate and hyaluronan profiles in Puramatrix® closely matched that of native cartilage. For each hydrogel, DNA content, viability and morphology were assessed. Total collagen and total sulphated GAG production were measured and normalised to DNA content. Significant differences were found in total collagen synthesis. By day 14, Extracel® and Puramatrix® had significantly more total collagen than Matrixhyal® (1.77±0.26 µg and 1.97±0.26 µg vs. 0.60±0.26 µg; p<0.05. sGAG synthesis occurred in all hydrogels but a significantly higher amount of sGAG was retained within Extracel® at days 7 and 14 (p<0.05. In summary, we have shown that the biochemical and biophysical characteristics of each hydrogel directly or indirectly influenced ECM formation. A detailed understanding of the ECM in the development of engineered constructs is an important step in monitoring the success of cartilage regeneration strategies.

  3. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  4. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  5. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  6. Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis.

    Science.gov (United States)

    McCulloch, R S; Ashwell, M S; Maltecca, C; O'Nan, A T; Mente, P L

    2014-01-01

    An impact injury model of early stage osteoarthritis (OA) progression was developed using a mechanical insult to an articular cartilage surface to evaluate differential gene expression changes over time and treatment. Porcine patellae with intact cartilage surfaces were randomized to one of three treatments: nonimpacted control, axial impaction (2000 N), or a shear impaction (500 N axial, with tangential displacement to induce shear forces). After impact, the patellae were returned to culture for 0, 3, 7, or 14 days. At the appropriate time point, RNA was extracted from full-thickness cartilage slices at the impact site. Quantitative real-time PCR was used to evaluate differential gene expression for 18 OA related genes from four categories: cartilage matrix, degradative enzymes and inhibitors, inflammatory response and signaling, and cell apoptosis. The shear impacted specimens were compared to the axial impacted specimens and showed that shear specimens more highly expressed type I collagen (Col1a1) at the early time points. In addition, there was generally elevated expression of degradative enzymes, inflammatory response genes, and apoptosis markers at the early time points. These changes suggest that the more physiologically relevant shear loading may initially be more damaging to the cartilage and induces more repair efforts after loading.

  7. An amidated carboxymethylcellulose hydrogel for cartilage regeneration.

    Science.gov (United States)

    Leone, Gemma; Fini, Milena; Torricelli, Paola; Giardino, Roberto; Barbucci, Rolando

    2008-08-01

    An amidic derivative of carboxymethylcellulose was synthesized (CMCA). The new polysaccharide was obtained by converting a large percentage of carboxylic groups ( approximately 50%) of carboxymethylcellulose into amidic groups rendering the macromolecule quite similar to hyaluronan. Then, the polysaccharide (CMCA) was crosslinked. The behavior of CMCA hydrogel towards normal human articular chondrocytes (NHAC) was in vitro studied monitoring the cell proliferation and synthesis of extra cellular matrix (ECM) components and compared with a hyaluronan based hydrogel (Hyal). An extracellular matrix rich in cartilage-specific collagen and proteoglycans was secreted in the presence of hydrogels. The injectability of the new hydrogels was also analysed. An experimental in vivo model was realized to study the effect of CMCA and Hyal hydrogels in the treatment of surgically created partial thickness chondral defects in the rabbit knee. The preliminary results pointed out that CMCA hydrogel could be considered as a potential compound for cartilage regeneration.

  8. Novel nano-rough polymers for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2014-04-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,31Surfatek, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU and polycaprolactone (PCL. Nanoembossed polyurethane (NPU and nanoembossed polycaprolactone (NPCL were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes. All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary

  9. Micropropagation ofTigridia pavonia (L.f) DC-a potential floricultural plant from twin scale explants

    Institute of Scientific and Technical Information of China (English)

    Lekha Kumar; Sincy Joseph; Narmatha Bai

    2012-01-01

    Objective:The present study was performed to standardize an effective protocol for micropropagation ofTigridia pavonia using tissue culture.Methods: The explants were cultured on Murashige and Skoog (MS) medium supplemented with cytokinins like thidiazuron (TDZ), zeatin, kinetin and auxins such as indole-3-acetic acid (IAA), 1-naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA), individually at different concentrations.Results:Multiple shoots were obtained on MS medium containing either 2.0 mg/L TDZ or 2.0 mg/L IAA or 0.5 mg/L IBA and in the same medium for a long period (120 d) produced tiny bulbs at the base of the senescent leaves. TDZ favored only multiple shoots without roots, whereas IAA or IBA individually or in combination with TDZ produced rooted shoots. Shoots developed on MS medium supplemented with TDZ were rooted on MS medium containing either IBA or NAA at 0.5 mg/L. The plantlets were acclimatized in pots containing garden soil. Regenerated plantlets developed into normal plants. The plants showed 99% survival.Conclusions:The highest number of bulblets obtained in the present study represents an effective alternative to the conventional method.

  10. Characterisation of a bystander effect induced in human tissue explant cultures by low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Motersill, C.; O' Malley, K.; Seymour, C.B

    2002-07-01

    The existence of a bystander effect following both alpha and gamma irradiation of many cell lines is not now in dispute. The significance of this effect for cancer risk assessment and radiotherapy treatment planning requires demonstration of its relevance in vivo. The problem in demonstrating the existence of the effect in vivo is that other systemic effects may mask or confound the effect being investigated and it is practically impossible to attribute an effect in a particular cell to a signal produced in another irradiated cell. To approach this problem, an assay has been developed where fragments of human tissue can be irradiated ex vivo and the media harvested and added to unirradiated, clonogenic cells which have a well characterised and stable response to the bystander signal. The variation in the production of a signal from patient to patient can thus be assessed. The results of a study using tissue from over 100 patients attending Beaumont and St Vincent's Hospitals in Dublin for investigation of urological disorders including follow-up after treatment for transitional cell carcinoma (TCC) and resection of suspect prostatic lesions, are now available. Blood samples from the prostate group were also obtained. The results show that there is variation in the effect of the signal produced by irradiated tissue from different patients. This holds for bladder, prostate and blood. Gender, smoking status and the existence of a malignancy influence the expression of the signal by normal tissue. Male gender, smoking and a pre-existing malignancy all reduce the amount or effect of the signal produced into medium when the tissue is exposed. The effects of exposure to medium containing the signal are transmitted to distant progeny of the exposed cell population. The results may be important not only for understanding radiation risk mechanisms for protection but also for radiotherapy treatment planning where they may open new avenues for development of drugs for combined therapy. (author)

  11. Re-use of explanted DDD pacemakers as VDD- clinical utility and cost effectiveness.

    Science.gov (United States)

    Namboodiri, K K N; Sharma, Y P; Bali, H K; Grover, A

    2004-01-01

    Re-use of DDD pulse generators explanted from patients died of unrelated causes is associated with an additional cost of two transvenous leads if implanted as DDD itself, and high rate of infection according to some studies. We studied the clinical and economical aspects of reutilization of explanted DDD pacemakers programmed to VDD mode. Out of 28 patients who received VDD pacemaker during the period, October 2000- September 2001 in the Department of Cardiology, PGIMER, Chandigarh, 5 poor patients were implanted with explanted DDD pulse generators programmed to VDD mode. Each implantation was planned and carried out according to a standard protocol. The age ranged from 45 to 75 (mean-61) years. The indications for pacing were complete heart block (4) and second degree AV block (1). The clinical profile, costs and complications, if any were noted and followed up at regular intervals. The results were compared with patients who received new DDD pulse generators during this period. The additional cost for the atrial lead was not required in these patients. None of these patients had any local site infection. Compared to the two-lead system, the single lead system provided more rapid implantation and minimized complications associated with placement of an atrial lead. The explanted DDD pacemaker can be safely reused as VDD mode with same efficacy in selected patient population. This is associated with lower cost and complications compared to reimplantation as DDD itself.

  12. Inflammatory pseudotumoural endotracheal mucormycosis with cartilage damage

    Directory of Open Access Journals (Sweden)

    L-C. Luo

    2009-09-01

    Full Text Available Mucormycosis is a rare opportunistic infection usually associated with immunosuppression, diabetes mellitus or haematological malignancy. Herein, we report an unusual case of mucormycosis in a 46-yr-old male patient with diabetes presenting with an endotracheal mass obstructing the trachea and cartilage damage. Histological examination of the bronchoscopy biopsy specimens revealed invasive mucormycosis. The patient was treated with intravenous amphotericin B followed by removal of the lesion via bronchoscopy.

  13. Repairing cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor

    Institute of Scientific and Technical Information of China (English)

    SUN Shui; REN Qiang; WANG Dong; ZHANG Lei; WU Shuai; SUN Xi-tao

    2011-01-01

    Background Articular cartilage injury is a common disease, and the incidence of articular wear, degeneration, trauma and sports injury is increasing, which often lead to disability and reduced quality of life. Unfortunately repair of articular cartilage defects do not always provide satisfactory outcomes.Methods Chondrocyte and osteoblast composites were co-cultured using a bioreactor. The cartilage defects were treated with cell-β-tricalcium phosphate (β-TCP) composites implanted into osteochondral defects in dogs, in vivo, using mosaicplasty, by placing chondrocyte-β-TCP scaffold composites on top of the defect and osteoblast-β-TCP scaffold composites below the defect.Results Electron microscopy revealed that the induced chondrocytes and osteoblast showed fine adhesive progression and proliferation in the β-TCP scaffold. The repaired tissues in the experimental group maintained their thickness to the full depth of the original defects, as compared with the negative control group (q=12.3370, P <0.01; q=31.5393, P <0.01).Conclusions Perfusion culture provided sustained nutrient supply and gas exchange into the center of the large scaffold. This perfusion bioreactor enables the chondrocytes and osteoblasts to survive and proliferate in a three-dimensional scaffold.

  14. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  15. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  16. Cartilage Engineering from Mesenchymal Stem Cells

    Science.gov (United States)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  17. Gellan gum: a new biomaterial for cartilage tissue engineering applications.

    Science.gov (United States)

    Oliveira, J T; Martins, L; Picciochi, R; Malafaya, P B; Sousa, R A; Neves, N M; Mano, J F; Reis, R L

    2010-06-01

    Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. It can be dissolved in water, and when heated and mixed with mono or divalent cations, forms a gel upon lowering the temperature under mild conditions. In this work, gellan gum hydrogels were analyzed as cells supports in the context of cartilage regeneration. Gellan gum hydrogel discs were characterized in terms of mechanical and structural properties. Transmissionelectron microscopy revealed a quite homogeneous chain arrangement within the hydrogels matrix, and dynamic mechanical analysis allowed to characterize the hydrogels discs viscoelastic properties upon compression solicitation, being the compressive storage and loss modulus of approximately 40 kPa and 3 kPa, respectively, at a frequency of 1 Hz. Rheological measurements determined the sol-gel transition started to occur at approximately 36 degrees C, exhibiting a gelation time of approximately 11 s. Evaluation of the gellan gum hydrogels biological performance was performed using a standard MTS cytotoxicity test, which showed that the leachables released are not deleterious to the cells and hence were noncytotoxic. Gellan gum hydrogels were afterwards used to encapsulate human nasal chondrocytes (1 x 10(6) cells/mL) and culture them for total periods of 2 weeks. Cells viability was confirmed using confocal calcein AM staining. Histological observations revealed normal chondrocytes morphology and the obtained data supports the claim that this new biomaterial has the potential to serve as a cell support in the field of cartilage regeneration.

  18. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    OpenAIRE

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When d...

  19. Shock Wave-Stimulated Periosteum for Cartilage Repair

    Science.gov (United States)

    2015-03-01

    AD_________________ Award Number: W81XWH-10-1-0914 TITLE: Shock Wave-Stimulated Periosteum for Cartilage Repair PRINCIPAL INVESTIGATOR...30Sep2010 – 1Dec2014 4. TITLE AND SUBTITLE Shock Wave-Stimulated Periosteum for Cartilage Repair 5a. CONTRACT NUMBER W81XWH-10-1-0914 5b. GRANT NUMBER... shock wave (ESW)-stimulated periosteum improves cartilage repair when it is used as an autograft to fill a defect in the articular surface of goats. A

  20. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  1. The Experimental Studies of the Tissue Engineering Cartilage by Co-Culturing Microtia Chondrocytes and Adipose Tissue-Derived Stem Cells in Vivo%残耳软骨细胞与脂肪干细胞共培养体内构建软骨的实验研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 蒋海越; 何乐仁; 赵延勇; 杨庆华; 韩娟; 宋宇鹏

    2011-01-01

    Objective To explore the feasibility of the chondrogenesis by co-culturing microtia chondrocytes and human adipose tissue-derived stem cells in vivo. Methods hADSCs and microtia chondrocytes were isolated in vitro. 24 nude mice were randomly divided into 4 groups: ①Exp group, injected with microtia chondrocytes and hADSCs by a mixing ratio of 1:1 and the cell concentration was 5.0×l07 cells/mL; ②Ctrl 1 group, injected with only microtia chondrocytes and the cell concentration was 5.0×107 cellshnL; ③Ctrl 2 group, injected with only hADSCs and the cell concentration was 5.0×l07 cells/mL;④Ctrl 3 group, injected with only microtia chondrocytes and the cell concentration was 2.5×107 cells/mL. 6 nude mice were injected each group at a dose of 0.2 mL. All samples were harvested 10 weeks after culturingin vivo. Gross observation, average wet weights, glycosaminoglycan (GAG) quantification, histology and immunohistochemisty were used to evaluate the chondrogenesis of all groups. Results In Exp, Ctrl 1, and Ctrl 3 group, all the specimens formed homogeneous cartilagelike tissue with typical histological structure at different extent. In Ctrl 2 group, the specimens formed fiber-like tissue.Average wet weight and GAG content of specimens in Exp group were more than 88% of Ctrl 1 group while they were less than 40% in Ctrl 3 group. Cartilage lacuna was detected by HE staining in Exp, Ctrl 1 and Ctrl 3 group at different extent,but not in Ctrl 2 group. Collagen type Ⅱ was detected by immunohistochemistry in Exp, Ctrl 1 and Ctrl 3 group at different extent, but not in Ctrl 2 group. Conclusion Microtia chondrocytes could promote chondrogenesis of ADSCs in vivo under the co-culturing system. Tissue engineering cartilage by co-culturing microtia chondrocytes and ADSCs in vivo is feasible.%目的 验证残耳软骨细胞与脂肪来源的间充质干细胞(Adipose derived stem cells,ADSCs)共培养,体内构建软骨的可行性.方法 分离培养同一先天性

  2. Evaluation of early changes of cartilage biomarkers following arthroscopic meniscectomy in young Egyptian adults

    Directory of Open Access Journals (Sweden)

    Hamdy Khamis Koryem

    2015-09-01

    Conclusion: Cartilage volume loss by MRI combined with changes in cartilage matrix turnover detected by molecular biomarkers may reflect the initial changes associated with cartilage degeneration that account for early OA.

  3. [Cartilage reshaping by laser in stomatology and maxillofacial surgery].

    Science.gov (United States)

    Mordon, S

    2004-02-01

    The restoration of congenital and traumatic malformations of the head and neck, together with the defects resulting from the trauma of ablative surgery, continue to pose significant problems to surgeons. The post-operative results are not always satisfactory because of the difficulty of shaping the cartilage and because of the tendency of cartilage to return to its original shape. Better understanding of laser-cartilage interaction and the development of a specific instrumentation Lasers (CO2, Nd: YAG, Ho: YAG) has enabled ex situ and in situ cartilage reshaping. A recent clinical study has demonstrated that nondestructive laser irradiation can reshape septal deviations

  4. Sonographic evaluation of femoral articular cartilage in the knee

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan [College of Medicine, Hallym University, Seoul (Korea, Republic of); Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik [College of Medicine and the Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  5. Fascia versus cartilage graft in type I tympanoplasty: audiological outcome.

    Science.gov (United States)

    Kim, Joo Yeon; Oh, Jung Ho; Lee, Hwan Ho

    2012-11-01

    Various materials such as fascia, perichondrium, and cartilage have been used for reconstruction of the tympanic membrane in middle ear surgery. Because of its stiffness, cartilage is resistant to resorption and retraction. However, cartilage grafts result in increased acoustic impedance, the main limitation to their use. The aim of this study was to compare the hearing results after cartilage tympanoplasty versus fascia tympanoplasty. This study included 114 patients without postoperative tympanic membrane perforation who underwent tympanoplasty type I between 2007 and 2010, 31 with fascia and 83 with cartilage. Preoperative and 1 year postoperative air-bone gap (ABG) and postoperative gain in ABG at frequencies of 0.5, 1, 2, and 3 kHz were assessed. Both groups were statically similar in terms of the severity of middle ear pathology and the preoperative hearing levels. Overall, postoperative successful hearing results showed 77.4% of the fascia group and 77.1% of the cartilage group. Mean postoperative gains in ABG were 9.70 dB for the fascia group and 9.78 dB for the cartilage group. These results demonstrate that hearing after cartilage tympanoplasty is comparable to that after fascia tympanoplasty. Although cartilage is the ideal grafting material in problematic cases, it may be used in less severe cases, such as in type I tympanoplasty, without fear of impairing hearing.

  6. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    Science.gov (United States)

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  7. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  8. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  9. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  10. A HYBRID SCAFFOLD OF POLY(LACTIDE-CO-GLYCOLIDE) SPONGE FILLED WITH FIBRIN GEL FOR CARTILAGE TISSUE ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Dan Li; Mei-cong Wang; Yang-lin Li; Chang-you Gao

    2011-01-01

    The poly(lactide-co-glycolide) (PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro. The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying. In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage. Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds, they were remarkably elongated, forming a fibroblast-like morphology. Moreover, a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks. The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.

  11. Influencing micropropagation in Clitoria ternatea L. through the manipulation of TDZ levels and use of different explant types.

    Science.gov (United States)

    Mukhtar, Seemab; Ahmad, Naseem; Khan, Md Imran; Anis, Mohammad; Aref, Ibrahim M

    2012-10-01

    A comparative performance of two explants types (CN and Nodal) for their efficiency to induce multiple shoot regeneration in Clitoria ternatea has been carried out. Thidiazuron (TDZ) in different concentrations (0.05-2.5 μM) was used as a supplement to the Murashige and Skoog's (MS) basal media. Explant type apart, two factors viz. concentration and exposure duration to TDZ played an important role in affecting multiple shoot regeneration. Cotyledonary node explants produced the best results at 0.1 μM TDZ, while in nodal explants the highest rate of shoot formation was achieved on MS medium supplemented with 1.0 μM TDZ. In both the explants, shoot multiplication increased when the regenerated shoots were subcultured on hormone free MS medium after 4 weeks of exposure to TDZ. Among the two, cotyledonary node explants produced considerably higher number of shoots at a comparatively lower concentration of TDZ than nodal explants. The regenerated shoots rooted best on MS medium containing 1.0 μM indole-3-butyric acid (IBA) and were successfully established in pots containing garden soil with 88 % survival rate. All the regenerated plants showed normal morphology and growth characteristics.

  12. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  13. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  14. Binding of chemical carcinogens to macromolecules in cultured human colon

    DEFF Research Database (Denmark)

    1977-01-01

    Metabolic activation of different chemical classes of carcinogens was studied in cultured human colon epithelia. Human colon epithelia were maintained in explant culture up to 4 days. Binding of benzo(a)pyrene, dimethylnitrosamine, and 1,2- dimethylhydrazine was found in both cell DNA and protein...

  15. Prevention of Cartilage Degeneration and Restoration of Chondroprotection by Lubricin Tribosupplementation in the Rat Following ACL Transection

    Science.gov (United States)

    Jay, Gregory D.; Fleming, Braden C.; Watkins, Bryn A.; McHugh, Karen A.; Anderson, Scott C.; Zhang, Ling X.; Teeple, Erin; Waller, Kimberly A.; Elsaid, Khaled A.

    2010-01-01

    Objective To investigate whether cartilage degeneration is prevented or minimized in an anterior cruciate ligament (ACL) injury rat model following intra-articular injections of lubricin derived from human synoviocytes in culture (HSL), recombinant protein (rhPRG4), or from human synovial fluids (HSFL). Methods Unilateral ACL transection (ACLT) was performed in Lewis rats (n=45). Intra-articular injections (50μl/injection) of PBS (n=9), HSL (n=9; 200μg/ml), rhPRG4 (n=9; 200μg/ml) and HSFL (n=9; 200μg/ml) started on day 7 post-injury and continued twice weekly. Animals were harvested on day 32 post-injury. Histological analysis was performed using Safranin O/Fast green stain and blinded investigators graded articular cartilage degeneration using OARSI modified Mankin criteria. Histological specimens were immunoprobed for lubricin and sulphated glycosaminoglycans. 24 hour urine collection was performed on days 17 and 29 post-injury and urinary CTXII (uCTXII) levels were measured. Results Treatment with HSL resulted in significantly (p<0.05) lower OARSI scores for cartilage degeneration compared to no treatment or PBS treatment. Increased immunostaining for lubricin in the superficial zone chondrocytes and on the surface of cartilage was observed in lubricins-treated but not untreated or PBS-treated joints. On day 17, uCTXII levels of HSL and HSFL-treated animals were significantly lower than untreated (p=0.005; p=0.002) and PBS-treated (p=0.002; p<0.001) animals, respectively. Conclusion Across all types of lubricin evaluated in this study, a reduction in cartilage damage following ACLT was evident, combined with a reduction in collagen type II degradation. Intraarticular lubricin injection following an ACL injury may be beneficial in retarding cartilage degeneration and development of post-traumatic OA. PMID:20506144

  16. Regeneração in vitro de urucum (Bixa orellana L. a partir de diferentes tipos de explantes In vitro regeneration of annatto (Bixa orellana L. from various explants

    Directory of Open Access Journals (Sweden)

    Jane Fiuza Rodrigues Portela de Carvalho

    2005-12-01

    Full Text Available Este trabalho teve como objetivo avaliar a regeneração in vitro de plantas de urucum (Bixa orellana L. a partir de diferentes tipos de explantes. Para definir o meio de cultura adequado para indução de brotações, diferentes concentrações e, ou, combinações da auxina AIA e das citocininas BAP e ZEA foram testadas. As melhores respostas de regeneração para segmentos de hipocótilo, nós cotiledonares e hipocótilos invertidos foram observadas em meios suplementados de ZEA (2,28 µM e AIA (0,30 µM, ZEA (4,56 µM e ZEA (4,56 µM, respectivamente. O meio de enraizamento mais eficaz foi o MS, com a metade de sua concentração salina e 5 µM de AIB. Análises citológicas, realizadas antes da aclimatação, confirmaram a estabilidade cromossômica das plantas cultivadas in vitro, não sendo detectado variação com relação ao número de cromossomos metafásicos (2n = 14.The present work aimed the establishment of a regeneration protocol for annatto (Bixa orellana L. from different juvenile explants. In order to promote shoot induction, different concentrations and/or combinations of IAA and the cytokinins BAP and ZEA were assessed. Better regeneration responses were achieved when segmented hypocotyl, cotiledonary nodes and inverted hypocotyl were cultured onto MS-based medium supplemented with ZEA (2.28 µM and IAA (0.30 µM, ZEA (4.56 µM or ZEA (4.56 µM, respectively. Rooting of elongated shoots displayed higher frequencies when half-strength MS medium with IBA (5 µM was used. No genetic variation was detected among regenerants as revealed by cytological