WorldWideScience

Sample records for cartilage explants cultures

  1. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  2. Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1β-Induced MMP-2 Expression in Equine Chondrocyte Culture

    OpenAIRE

    Tangyuenyong, Siriwan; Viriyakhasem, Nawarat; Peansukmanee, Siriporn; Kongtawelert, Prachya; Ongchai, Siriwan

    2014-01-01

    Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant cultu...

  3. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Directory of Open Access Journals (Sweden)

    Huh Jeong-Eun

    2012-12-01

    Full Text Available Abstract Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs, inflammatory mediators, and mitogen-activated protein kinases (MAPKs pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK, and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only

  4. Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes

    Science.gov (United States)

    2012-01-01

    Background WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes. Methods The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed. Results WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic

  5. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    DEFF Research Database (Denmark)

    Wang, Bijue; Chen, Pingping; Jensen, Anne-Christine Bay;

    2009-01-01

    - and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors. FINDINGS: Bovine cartilage explants were...... cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo......-epitope specific immunoassays; (1) sandwich (342)FFGVG-G2 ELISA, (2) competition NITEGE(373)ELISA (3) sandwich G1-NITEGE(373 )ELISA (4) competition (374)ARGSV ELISA, and (5) sandwich (374)ARGSV-G2 ELISA all detecting aggrecan fragments, and (6) sandwich CTX-II ELISA, detecting C-telopeptides of type II collagen...

  6. Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants

    NARCIS (Netherlands)

    De Mattei, M; Pasello, M; Pellati, A; Stabellini, G; Massari, L; Gemmati, D; Caruso, A

    2003-01-01

    Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2,3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of i

  7. Explant cultures of human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Barrett, L.A.; Jackson, F.E.;

    1978-01-01

    Human colonic epithelium has been cultured as explants in a chemically defined medium for periods of 1 to 20 days. The viability of the explants was shown by the preservation of the ultrastructural features of the colonic epithelial cells and by active incorporation of radioactive precursors...... into cellular DNA and protein. A progressive decrease in the number of goblet cells, decrease in the depth of the crypts, and a change from a columnar to a cuboidal epithelium were observed. After 20 days in culture the colonic mucosa consisted of a single layer of cuboidal epithelial cells and a few glands....... The ability to maintain colonic mucosa in culture was subject to both intra- and interindividual variation. Cultured human colonic mucosa also activated a chemical procarcinogen, benzo[a]pyrene, into metabolites which bound to cellular DNA. A 100-fold interindividual variation in this binding was observed....

  8. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  9. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  10. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  11. Citrus tissue culture employing vegetative explants.

    Science.gov (United States)

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  12. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation.

  13. Explant exenisation for tissue culture in marine macroalgae

    Science.gov (United States)

    Liu, Xuewu; Kloareg, Bernard

    1992-09-01

    Unialgal explants from Laminaria digitata, and from a variety of red algae, were obtained by hand removing the visible epiphytes, and stirring the tissue in the presence of glass beads. Two antibiotic mixtures were found to be efficient in removing the contaminating fungi and bacteria from the algae. The procedure proved suitable as a primary step in the tissue culture of the investigated species.

  14. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    Science.gov (United States)

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(Pculture method group,and (74.50±4.23)% in the explants-culture method group(Pculture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  15. Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity.

    Science.gov (United States)

    de Caralt, Sònia; Agell, Gemma; Uriz, María-J

    2003-07-01

    Sponges are an important source of secondary metabolites with pharmaceutical interest. This is the main reason for the increasing interest of sponge culture recent years. The optimal culture system depends on the species to be cultured: while some species easily produce sponge aggregates after dissociation (primmorphs), others show a great capacity to regenerate after fragmentation (explants). Corticium candelabrum is a Mediterranean bacteriosponge that can undergo asexual reproduction. We have taken advantage of this capability and cultured C. candelabrum explants under several experimental conditions. To find the best conditions for obtaining functional explants, we assayed a range of conditions, including seasons of collection, culture temperature, filtered versus filtered-sterile seawater, addition of antibiotics and proportion of ectosome. We monitored the changes in shape and ultrastructure during the formation of explants. After 24 h, TEM images showed the aquiferous system disarranged, in particular at the sponge periphery. From 2 to 4 weeks later, the aquiferous system regenerated, and fragments became functional sponges (explants). Explants were cultured under two regimes: in vitro and in a closed aquarium system. Antibiotics were only added to the in vitro culture to assess their effect on the symbiotic bacteria, which remained healthy despite the presence of antibiotics. Two food regimens (marine bacteria and green algae) were assayed for their ability to satisfy the metabolic requirements of explants. We monitored explant survival and growth. Explants showed a high long-term survival rate (close to 100%). Growth rates were higher in the closed aquarium system, without antibiotic addition, and fed with algae. Explants cultures were hardly contaminated because manipulation was reduced to a minimum and we used sterilized seawater. C. candelabrum produces bioactive molecules, which may play a defensive role in the sponge and may have pharmaceutical

  16. Effect of peripheral nerve on the neurite growth from retinal explants in culture

    Institute of Scientific and Technical Information of China (English)

    LiuLi; SoKwokfai

    1990-01-01

    The effect of peripheral nerve (PN) on neurite outgrowth from retinal explants of adult hamsters was examined.Cultures of retinal explants,and co-cultures of retinal explants and PN were performed using chick retinal basement memebrane (BM) as substrate.The presence of PN increases the number and length of neurite outgrowth.In addition,a high proportion of neurites situated close to PN tend to grow towards it.Since there was no contact between retinal explants and PN,we suggest that PN might secete diffusible substances to attract the neurites to grow towards it.

  17. The Slice Culture Method for Following Development of Tooth Germs In Explant Culture

    OpenAIRE

    Alfaqeeh, Sarah A; Tucker, Abigail S.

    2013-01-01

    Explant culture allows manipulation of developing organs at specific time points and is therefore an important method for the developmental biologist. For many organs it is difficult to access developing tissue to allow monitoring during ex vivo culture. The slice culture method allows access to tissue so that morphogenetic movements can be followed and specific cell populations can be targeted for manipulation or lineage tracing.

  18. Molecular Profiling of Multiplexed Gene Markers to Assess Viability of Ex Vivo Human Colon Explant Cultures

    OpenAIRE

    Drew, Janice E.; Andrew J Farquharson; Vase, Hollie; Carey, Frank A.; Steele, Robert J C; Ross, Ruth A; Bunton, David C.

    2015-01-01

    Abstract Human colon tissue explant culture provides a physiologically relevant model system to study human gut biology. However, the small (20–30 mg) and complex tissue samples used present challenges for monitoring tissue stability, viability, and provision of sufficient tissue for analyses. Combining molecular profiling with explant culture has potential to overcome such limitations, permitting interrogation of complex gene regulation required to maintain gut mucosa in culture, monitor res...

  19. In vitro morphogenic events in culture of Lotus corniculatus L. seedling root explants

    Directory of Open Access Journals (Sweden)

    Jan J. Rybczyński

    2011-04-01

    Full Text Available The experiments were carried out on Lotus corniculatus (L. seedling root explants of the cultivar varieties Skrzeszowicka, Caroll A10 and strain 175. Callus formation and shoot regeneration were the major explant response depended mainly on of the studied genotype and used plant growth regulators (PGRs. Primary cortex of proximal and distal end of explant was the most active tissue for callus proliferation. For shoot primordia differentiation deeper zones of cortex took a part. The process of meristematic centre initiation was not uniform and various level of shoot differentiation events were observed not earlier than 3 weeks of culture. Usually, the shoot primordia regeneration began on proximal rather than distal end of the explant. BAP rather than urea derivatives stimulated shoot proliferation in extended cultures. Increasing of BAP and TDZ concentrations brought about the explant polarity and expansion of the meristematic zones. The explant position in root did not have significant influence on the number of regenerated shoots. The cultures only had better bud formation by TDZ when compared to BAP. BAP stimulated bud formation and development of the shoots from them. Short term of TDZ treatment of explants stimulated meristem formation which developed into buds and shoots. CPPU stimulated callus proliferation and bud formation when explants pretreatment was prolonged from 12 to 36 hrs.

  20. Explant culture of rat colon: A model system for studying metabolism of chemical carcinogens

    DEFF Research Database (Denmark)

    Autrup, Herman; Stoner, G.D.; Jackson, F.;

    1978-01-01

    An explant culture system has been developed for the long-term maintenance of colonic tissue from the rat. Explants of 1 cm2 in size were placed in tissue-culture dishes to which was added 2 ml of CMRL-1066 medium supplemented with glucose, hydrocortisone, beta-retinyl acetate, and either 2.5% bo......,12-dimethylbenz[alpha]anthracene, aflatoxin B1, dimethylnitrosamine, 1,2-dimethylhydrazine, and methylazoxymethanol acetate into chemical species that bind to cellular DNA and protein....

  1. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  2. Effect of clinorotation on in vitro cultured explants of Mentha piperita L.

    Science.gov (United States)

    Paolicchi, Fabio; Mensuali-Sodi, Anna; Tognoni, Franco

    2002-02-14

    An in vitro culture system was used to study the influence of gravity on axillary shoot formation and adventitious root regeneration in Mentha piperita L. The direction of the gravity vector was altered by displacing stem node explants in different orientations. Also, microgravity conditions were simulated by rotating the explants on a horizontal clinostat so that the main axis of nodes was either parallel (Cpa) or perpendicular to the clinostat axis (Ccp and Ccf, centripetally and centrifugally oriented, respectively). Mint nodes were cultured on solidified Linsmaier and Skoog's medium [Physiol. Plant. 18 (1965) 100] adding a filter-sterilized aqueous solution of 2 mg/l benzyladenine (BA) in half of the cultures. The proliferation of axillary shoots as well as adventitious root formation were not affected by altering upright explant orientation. On the contrary clinorotation was able to modify plantlet development. In absence of BA, leaf width was hindered by Cpa treatment and penultimate internode length was enhanced by Ccp. Furthermore, a negative effect of Cpa treatment was observed in root length parameter, while Ccp increased the root number both in absence and in presence of BA. An effect strictly connected to clinorotation in presence of BA was the occurrence of hyperhydricity. Moreover, explants under clinorotation treatments switched their gravitropic response modifying shoot curvature.

  3. Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants

    OpenAIRE

    Fay, Jakob; Varoga, Deike; Wruck, Christoph J.; Kurz, Bodo; Goldring, Mary B.; Pufe, Thomas

    2006-01-01

    Vascular endothelial growth factor (VEGF) promotes cartilage-degrading pathways, and there is evidence for the involvement of reactive oxygen species (ROS) in cartilage degeneration. However, a relationship between ROS and VEGF has not been reported. Here, we investigate whether the expression of VEGF is modulated by ROS. Aspirates of synovial fluid from patients with osteoarthritis (OA) were examined for intra-articular VEGF using ELISA. Immortalized C28/I2 chondrocytes and human knee cartil...

  4. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    NARCIS (Netherlands)

    I.D.C. Jansen; A.P. Hollander; D.J. Buttle; V. Everts

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both

  5. Prolonged viability of human organotypic skin explant in culture method (hOSEC)*

    OpenAIRE

    Frade, Marco Andrey Cipriani; de Andrade, Thiago Antônio Moretti; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    BACKGROUND: Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. OBJECTIVES: This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of co...

  6. In situ fiber-optical monitoring of cytosolic calcium in tissue explant cultures

    CERN Document Server

    Ryser, Manuel; Geiser, Marianne; Frenz, Martin; Rička, Jaro

    2014-01-01

    We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

  7. Selection of valine-resistance in callus culture of Arabidopsis thaliana (L.) Heynh. derived from leaf explants

    OpenAIRE

    Małgorzata D. Gaj; Grzegorz Czaja; Małgorzata Nawrot

    2014-01-01

    The selection of valine-resistant mutants was carried out in leaf explant cultures of three Arabidopsis thaliana (L.) Heynh. ecotypes: C-24, RLD and Columbia. The valine concentration used for in vitro selection, lethal for seed-growing plants, has not affected callus formation and growth. However, strong inhibition of shoot regeneration ability of calli growing under selection pressure was noticed. In total, 1043 explants were cultured on valine medium and 18 shoots were regenerated with an ...

  8. Plant Regeneration from In Vitro Cultured Hypocotyl Explants of Euonymus japonicus Cu zhi

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Adventitious shoots were successfully regenerated from hypocotyl explants of in vitro cultures of Euonymus japonicus Cu zhi. Hypocotyl slices were cultured on Murashige and Skoog (MS) and B5 basal medium supplemented with varied concentration of different plant growth-regulators, e.g., α-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA) in combination with 6-benzylaminopurine (6-BA) and kinetin. The study showed that shoots could be directly regenerated from hypocotyl explants without the intervening callus phase; MS medium was more suitable for adventitious shoots regeneration. The ability of hypocotyls segments to produce shoots varied depending upon their position on the seedlings. The highest regeneration rate was obtained with hypocotyl segments near to the cotyledon cultured on MS basal medium supplemented with 1.5 mg L-1 6-BA and 0.05 mg L-1 NAA (63.64%). The regenerated shoots were readily elongated on the same medium as used for multiplication and rooted on half-strength MS basal medium supplemented with 1.0 mg L-1 IBA and 100 mg L-1 activated carbon. After being transferred to greenhouse conditions, 96% of the plantlets were successfully acclimatized. This regeneration system is applied for genetic transformation now.

  9. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan;

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal...... adipose tissues. Expressions of inflammation related genes (IL-6, TNF-a, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE...... in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited...

  10. Prolonged viability of human organotypic skin explant in culture method (hOSEC)*

    Science.gov (United States)

    Frade, Marco Andrey Cipriani; de Andrade, Thiago Antônio Moretti; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    BACKGROUND: Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. OBJECTIVES: This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of cosmetics and demonstrate its viability through cutaneous keratinocytes' proliferative capacity up to 75 days in culture. METHODS: The skin explants obtained from surgeries were cultured in CO2-humid incubator. After 1, 7, 30 and 75 days in culture, skin fragments were harvested for analysis with histomorphological exam (HE staining) on all days of follow-up and immunohistochemistry for Ck5/6, Ck10 and Ki-67 only on the 75th day. RESULTS: On the 7th day, the epidermis was perfect in the dermoepidermal junction, showing the viability of the model. On the 30th day, the epidermis was thicker, with fewer layers on the stratum corneum, although the cutaneous structure was unaltered. On the 75th day, the skin became thinner but the dermoepidermal junctions were preserved and epidermal proliferation was maintained. After the 75th day on culture, the skin was similar to normal skin, expressing keratinocytes with Ck5/6 on supra-basal layers; Ck10 on differentiated layers; and viability could be assessed by the positivity of basal cells by Ki-67. CONCLUSION: The hOSEC model seems a good alternative to animal testing; it can be used as a preclinical test analogous to clinical human skin test with similar effectiveness and viability proven by immunohistological analyses. PMID:26131864

  11. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available AIMS: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression. SUBJECTS AND METHODS: VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS: 24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  12. Observations on the migratory behaviour of Schwann cells from adult peripheral nerve explant cultures.

    Science.gov (United States)

    Crang, A J; Blakemore, W F

    1987-06-01

    The migration of Schwann cells from adult sciatic nerve explant cultures has been examined by time-lapse photomicrography. Analysis of Schwann cell migratory behaviour indicates that the initial outwandering by individual Schwann cells was random. Although chance cell-cell contacts resulted in temporary immobilization of pairs of cells, stable multicellular structures did not form during this initial phase. As local cell densities increased, Schwann cells assembled networks within which Schwann cell movement continued to be observed. A second form of Schwann cell outgrowth was observed from degenerating fibres in which arrays of highly oriented Schwann cells migrated away from their basal lamina tubes onto the culture dish. These observations of Schwann cell random migration, network self-assembly and coordinated extratubal migration are considered to highlight aspects of Schwann cell behaviour, independent of axonal influences, which may have relevance to their role in peripheral nerve repair following nerve section. PMID:3612187

  13. Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2009-12-01

    Full Text Available Background: Cell-based treatment approach using differentiatedmesenchymal stem cells (MSCs and mature chondrocyteshas been considered as an advanced treatment for cartilage repair.We investigated the differentiated level of these two celltypes that is crucial for their repair capacity for cartilage defectat a co-culture micro mass system.Methods: Passaged-2 MSCs isolated from the mouse bonemarrow and the primary-cultured chondrocytes obtained fromrat costal cartilage were mixed at different ratios including 1:1,1:2, and 2:1, and cultivated in the micro mass culture systems(experimental groups. Both the MSCs and chondrocytes alonein micro mass cultures were considered as the controls. After21 days, the cultures were sectioned and examined by toluidineblue staining. Furthermore, the cells at different groups wereanalyzed by semiquantitative reverse transcription-polymerasechain reaction using the specific primers designed to detect theexpression of both mouse and rat cartilage-specific genes.Results: According to the toluidine blue staining, metachromaticstain appeared to be more intense at 1:2 ratios than theother groups. Based on semiquantitative analysis, all coculturespossessed significantly more cartilage-specific geneexpression than the controls (P<0.01. While mouse aggrecanand collagen II genes had significantly more expression at 1:2ratio, rat collagen II gene was expressed in higher rate at coculturewith 2:1 ratio (P<0.01.Conclusion: Co-culture of MSCs with mature chondrocytesseemed to provide an appropriate microenvironment wherebythe two cell types exhibit higher differentiated phenotype thanwhen they were cultured alone, and sufficient to be used as thecellular material for repair of cartilage defects.

  14. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Science.gov (United States)

    Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Coronado-Martínez, Consuelo; Bañuelos-García, José Inocente; Viveros-Valdez, Ezequiel; Morán-Martínez, Javier; Carranza-Rosales, Pilar

    2015-01-01

    Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control) decreased significantly (P < 0.05); however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor. PMID:26075250

  15. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  16. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis

    OpenAIRE

    Kolf-Clauw, Martine; Castellote, Jessie; Joly, Benjamin; Bourges-Abella, Nathalie; Raymond-Letron, Isabelle; Pinton, Philippe; Oswald, Isabelle P.

    2009-01-01

    The digestive tract is a target for the mycotoxin deoxynivalenol (DON), a major cereals grain contaminant of public health concern in Europe and North America. Pig, the most sensitive species to DON toxicity, can be regarded as the most relevant animal model for studying the intestinal effects of DON. A pig jejunal explants culture was developed to assess short-term effects of DON. In a first step, jejunal explants from 9-13 week-old and from 4-5 week-old pigs were cultured in vitro for up...

  17. In vitro cell cultures obtained from different explants of Corylus avellana produce Taxol and taxanes

    Directory of Open Access Journals (Sweden)

    Cavalli Francesca

    2006-12-01

    Full Text Available Abstract Background Taxol is an effective antineoplastic agent, originally extracted from the bark of Taxus brevifolia with a low yield. Many attempts have been made to produce Taxol by chemical synthesis, semi-synthesis and plant tissue cultures. However, to date, the availability of this compound is not sufficient to satisfy the commercial requirements. The aim of the present work was to produce suspension cell cultures from plants not belonging to Taxus genus and to verify whether they produced Taxol and taxanes. For this purpose different explants of hazel (Corylus avellana species were used to optimize the protocol for inducing in vitro callus, an undifferentiated tissue from which suspension cell cultures were established. Results Calli were successfully induced from stems, leaves and seeds grown in various hormone concentrations and combinations. The most suitable callus to establish suspension cell cultures was obtained from seeds. Media recovered from suspension cell cultures contained taxanes, and showed antiproliferative activity on human tumour cells. Taxol, 10-deacetyltaxol and 10-deacetylbaccatin III were the main taxanes identified. The level of Taxol recovered from the media of hazel cultures was similar to that found in yew cultures. Moreover, the production of taxanes in hazel cell cultures increased when elicitors were used. Conclusion Here we show that hazel cell cultures produce Taxol and taxanes under controlled conditions. This result suggests that hazel possesses the enzymes for Taxol production, which until now was considered to be a pathway particular to Taxus genus. The main benefit of producing taxanes through hazel cell cultures is that hazel is widely available, grows at a much faster rate in vivo, and is easier to cultivate in vitro than yew. In addition, the production of callus directly from hazel seeds shortens the culture time and minimizes the probability of contamination. Therefore, hazel could become a

  18. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  19. Blockade of Toll-like receptor 2 prevents spontaneous cytokine release from rheumatoid arthritis ex vivo synovial explant cultures

    LENUS (Irish Health Repository)

    Nic An Ultaigh, Sinead

    2011-02-23

    Abstract Introduction The aim of this study was to examine the effect of blocking Toll-like receptor 2 (TLR2) in rheumatoid arthritis (RA) synovial cells. Methods RA synovial tissue biopsies, obtained under direct visualization at arthroscopy, were established as synovial explant cultures ex vivo or snap frozen for immunohistology. Mononuclear cell cultures were isolated from peripheral blood and synovial fluid of RA patients. Cultures were incubated with the TLR1\\/2 ligand, Pam3CSK4 (200 ng, 1 and 10 μg\\/ml), an anti-TLR2 antibody (OPN301, 1 μg\\/ml) or an immunoglobulin G (IgG) (1 μg\\/ml) matched control. The comparative effect of OPN301 and adalimumab (anti-tumour necrosis factor alpha) on spontaneous release of proinflammatory cytokines from RA synovial explants was determined using quantitative cytokine MSD multiplex assays or ELISA. OPN301 penetration into RA synovial tissue explants cultures was assessed by immunohistology. Results Pam3CSK4 significantly upregulated interleukin (IL)-6 and IL-8 in RA peripheral blood mononuclear cells (PBMCs), RA synovial fluid mononuclear cells (SFMCs) and RA synovial explant cultures (P < 0.05). OPN301 significantly decreased Pam3CSK4-induced cytokine production of tumour necrosis factor alpha (TNF-α), IL-1β, IL-6, interferon (IFN)-γ and IL-8 compared to IgG control in RA PBMCs and SFMCs cultures (all P < 0.05). OPN301 penetration of RA synovial tissue cultures was detected in the lining layer and perivascular regions. OPN301 significantly decreased spontaneous cytokine production of TNF-α, IL-1β, IFN-γ and IL-8 from RA synovial tissue explant cultures (all P < 0.05). Importantly, the inhibitory effect of OPN on spontaneous cytokine secretion was comparable to inhibition by anti-TNFα monoclonal antibody adalimumab. Conclusions These findings further support targeting TLR2 as a potential therapeutic agent for the treatment of RA.

  20. Differential response of normal and tumour oesophageal explant cultures to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Cusack, A.; MacDonnell, M.; Hennessy, T.P.; Seymour, C.B.

    1988-01-01

    An in vitro method is described which allows radiation dose response data to be obtained for samples of oesophageal mucosa obtained from patients undergoing resection for adeno or squamous cell carcinoma. Data are obtained using a growth endpoint from explant cultures and may be expressed in terms of absolute growth inhibition or reduced rate of growth. Radiation dose response curves suggest that cell survival is in the range expected for mammalian cells but that, as is found clinically, tumour cells are far more resistant to radiation than normal cells. The technique provides a means of assessing differential radiation response in normal and tumour tissues from the same patient, as it is unusual for both to be amenable to clonogenic assay.

  1. Micropropagation from cultured nodal explants of rose (Rosa hybrida L. cv. ‘Perfume Delight’

    Directory of Open Access Journals (Sweden)

    Kamnoon Kanchanapoom

    2010-01-01

    Full Text Available A method for the micropropagation of rose (Rosa hybrida L. cv. ‘Perfume Delight’ was developed. First to fifth nodal explants from young healthy shoots were excised and cultured on basal medium of Murashige and Skoog (1962, MS containing several concentrations of BA and NAA. Multiple shoot formation of up to 3 shoots was obtained on MS medium supplemented with 3 mg/l BA and 0.003 mg/l NAA. Shoot readily rooted on ¼MS medium devoid of growth regulators.Rooted plantlets were hardened and established in pots at 100% survival. In vitro flowering was observed on rose plantscultured on MS medium containing 3 mg/l BA and 0.003 mg/l NAA.

  2. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    Science.gov (United States)

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  3. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Du

    Full Text Available We have developed an in vitro hepatocyte-adipose tissue explant (ATE co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2 were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64 were higher in the stromal vascular fraction (SVF isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1 were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2 was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2 in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2. Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs, particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  4. Histology of Somatic Embryogenesis in Cultured Leaf Explants of Pistachio (Pistacia veraL)

    OpenAIRE

    ONAY, Ahmet

    2000-01-01

    The histology of somatic embryo initiation and development in pistachio ( Pistacia were L.) embryogenic masses (EMS) derived from leaf explants was examined using light microscopy. Explants with somatic embryos at different developmental stages were fixed for histological examination, cut into 10 µm thick sections, stained with hematoxylin-eosin and observed microscopically. The histological examination showed that the two types of cell clusters induced originated from explants and were mo...

  5. The effect of gamma radiation on in vitro cultured explants of yam (Dioscorea alata L.) cv. Kinampay

    International Nuclear Information System (INIS)

    Various explants of yam were irradiated with gamma rays at doses ranging from 5-50 Gy. Induction of callus was obtained in tuberous root and other vegetative explants: petiole, node, internode and shoot apex. Callus induction was observed in the irradiated and unirradiated fleshy or tuberous root explants grown in Murashige and Skoog's (MS) medium with benzyl adenine (BA) in combination with naphthalene acetic acid (NAA) ranging from 2-6 ppm. Stimulation of callus growth was obtained from tuberous root explants irradiated with 5 and 10 Gy and grown in MS medium supplemented with 2 ppm BA in combination with 6ppm NAA. Similar callus growth (as indicated by their weight) was observed at higher doses of 30 and 40 GY, provided that higher levels of 4 ppm BA and 6 ppm NAA were incorporated into the MS medium. Similarly, induction of callus was enhanced in tuberous root sections of putative mutant lines (for dwarfness and earliness) that were cultured in higher levels of BA and NAA in MS medium. Regeneration of plantlets was obtained from callus-derived shoot apex irradiated with 40 Gy and from calli-derived unirradiated nodal and tuberous root explants. (author). 40 refs.; 2 figs., 6 tabs

  6. The effect of protease inhibitors on the induction of osteoarthritis-related biomarkers in bovine full-depth cartilage explants

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Jiang, Mengmeng;

    2015-01-01

    Oncostatin M (OSM) were cultured for 21 days with or without a number of inhibitors targeting different types of proteases. Monoclonal antibodies were raised against the active sites of ADAMTS-4, -5, MMP-9 and -13, and 4 ELISAs were developed and technically validated. In addition, the established AGNx...

  7. Epidermal DNA synthesis in organ culture explants. A study of hairless mouse ear epidermis.

    Science.gov (United States)

    Hansteen, I L; Iversen, O H; Refsum, S B

    1979-10-01

    Explants of split mouse ear were incubated in organ culture for up to 48 h, and the cell proliferation was studied by the addition of Thymidine-methyl-3-H (3HTdR) to the medium during different time periods, mainly for the first 14 h of incubation. Cultures were started at 0900, 2130 and 2300. In all cases the labelling index remained stable for 6-8 h, and then increased. The mean grain count, however, was falling and so was the epidermal DNA-specific uptake of 3HTdR. Based on the experimental results, calculations can be made of the flux of cells through S. It is concluded that the increasing LI is not due to inherent diurnal variation in cell proliferation, and is not a sign of real growth but caused instead by a complete block of the cell exit from S, probably combined with periods of an increased entrance rate into S. Other methodological factors, however, may also contribute to the increasing LI. Hence, this system is not suited for the measurement of factors that influence epidermal DNA synthesis.

  8. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    Science.gov (United States)

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  9. In vitro plant regeneration of two cucumber (Cucumis sativum L. genotypes: Effects of explant types and culture medium

    Directory of Open Access Journals (Sweden)

    Grozeva Stanislava

    2014-01-01

    Full Text Available The effect of different phytohormone concentrations on callusogenesis and organogenesis in two cucumber genotypes were studied. It was established that the rate of plant regeneration depends on genotype, explant type and culture medium. Hypocotyls were found to be more responsive than cotyledons in morphogenesis. In vitro planlet-regenerants have been obtained in hypocotyls explants on culture medium with 1.0 and 2.0 mgL-1 BA for cultivar Gergana and in 1.0 and 3.0 mgL-1K-line 15B. Induction of regeneration in cotyledons were established only in cultivar Gergana on culture medium supplemented with 3.0 mgL-1 BA and in combination of 0.5 mgL-1IAA.

  10. Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection.

    Science.gov (United States)

    Holinka, Johannes; Bauer, Leonhard; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2011-04-01

    The purpose of this study was to improve the pathogen detection in prosthetic joint infections, particularly to evaluate the feasibility of the sonication culture method in the clinical routine. Explanted components of all patients with presumptive prosthetic or implant infection were sonicated separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The results of sonication culture were compared to the conventional tissue culture. We investigated 60 consecutive patients with loosening of the prostheses or implants Forty patients had septic and 20 aseptic loosening (24 knee prostheses, 21 hip prostheses, 6 mega-prostheses, 2 shoulder prostheses, 6 osteosynthesis, 1 spinal instrumentation). The sensitivity of sonication fluid culture was 83.3%, of single positive tissue culture was 72.2% and 61.1% when two or more cultures yielded the same microorganism. In patients receiving antibiotic therapy the sensitivity was 65.9%, 57.5%, and 42.5%, respectively. Pathogens detected in a single tissue culture as well as in sonication culture yielded a significantly higher rate of prosthetic infection than conventional tissue culture alone (p = 0.008), even in patients receiving continuous antibiotic therapy before explantation (p = 0.016). The sonication method represents an essential add-on in pathogen detection compared to conventional tissue culture. PMID:21337398

  11. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  12. The effect of radiation and cytotoxic platinum compounds on the growth of normal and tumour bladder explant cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Seymour, C.B.; Cusack, A.; O' Brien, A.; Butler, M. (Saint Luke' s Hospital, Dublin (Ireland) Meath Hospital, Dublin (Ireland). Urology Dept.)

    1990-01-01

    Using an explant tissue culture model developed by this group for use with human surgical and biopsy specimens, data are presented showing the response of normal and tumor bladder urothelium to radiation in combination with cis- and carboplatin. Cellular response is measured after two weeks in culture as a reduction in the extent of outgrowth from the explant. The outgrowth has been shown to be growing and to be epithelial. Results showed that when either drug or radiation is used singly, the tumour is resistant to treatment while the normal cells are severely affected. However, appropriate combinations of either drug with radiation reverse the unfavourable therapeutic ratio and result in higher tumour cell kill. The model may be useful for investigating mechanisms of radiation/chemotherapy action at the cellular level and, if integrated into appropriate clinical trials, may serve as an easy-to-use in vitro test for optimising single agent or combination therapy regimens. (orig.).

  13. Type II and VI collagen in nasal and articular cartilage and the effect of IL-1 alpha on the distribution of these collagens

    OpenAIRE

    Jansen, I.D.C.; Hollander, A P; Buttle, D. J.; Everts, V.

    2010-01-01

    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity o...

  14. THE PHENOLS ACCUMULATION IN TRANSFORMED ROOT CULTURES OF DIFFERENT EXPLANTS SOURCES OF COMMON BUCKWHEAT (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    O. V. Sytar

    2013-06-01

    Full Text Available The growth parameters of transformed root cultures, total phenolic content and phenolic acids composition has been studied in root cultures, which were obtained from various explants of buckwheat by Agrobacterium rhizogenes strains A4. The methods of obtaining of the transformed root cultures, total phenol estimation, gas-liquid chromatography and polymerase chain reaction has been used. Elevated levels of total phenols in transformed roots of buckwheat from different sources of explants have been found. The high content of chlorogenic, p-hydroxybenzoic, p-anisic and caffeic acids has been discovered in the root cultures, which can be used for their industrial production. Maximal root growth was equal 21.2 g/l of dry weight in the roots as source for root culture, 17.7 g/l with leaves and 14.6 g/l with stems at 3 week after placement. Molecular analysis by polymerase chain reaction amplification was confirmed that the rol B gene (652 bp which transferred info hairy roots from Ri-plasmid in Agrobacterium rhizogenes is responsible for induction of root from plant species.

  15. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  16. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-04-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail. PMID:27023602

  17. Effect of Pre-culture Irradiation and Explant Types on Efficiency of Brassica napus Genetic Transformation

    International Nuclear Information System (INIS)

    The irradiated seeds of canola cv. Drakkar ( Brassica napus l. ) were germinated under aspect conditions, cotyledonary petioles and hypocotyl of 6 days old seedlings were used for Agrobacterium-mediated transformation. Agrobacterium tumefaciens has construct with the selectable marker gene (NPT II) and the desirable gene (HPPD). Direct and indirect shoot organogenesis were obtained from the both explants. Cotyledonary petioles was higher responded than hypocotyl with respective 26% and 14% of the explants producing NPT II-positive shoots after the selection on 50mg/l kanamycin. Calli might develop on and not in the agar medium were un transformation. This explains the higher number of escapes detected in hypocotyl explants than in experiments with cotyledons. The frequency of transformation plants as a function of indirect organogenesis was more than direct shoot regeneration from explants. The pre- irradiation with 75 Gy of gamma rays enhanced the genetic transformation frequencies by about 10 % as compared to that of the un-irradiated material. The obtained shoots were rooted and regenerated mature plants

  18. Direct regeneration of Periwinkle (Catharanthus roseus via node explants culture and different combinations of plant growth regulators

    Directory of Open Access Journals (Sweden)

    M. Talebi

    2012-09-01

    Full Text Available Periwinkle (Catharanthus roseus L., Apocynaceae contains more than 130 different terpenoid indole alkaloids (TIAs, of which two dimeric alkaloids, Vinblastine and Vincristine, have antineoplastic activity and are useful in treatment of various cancers. Specific production of some alkaloids in differentiated tissues such as leaf and stem led to use direct regeneration of explants in order to increase the production of these important alkaloids in the plant. In this research, 30 combinations of plant growth regulators and activated charcoal were used in MS media for direct regeneration of node explants. Application of BAP in media containing 1 g/l activated charcoal showed the best direct regeneration of node explants and shoot proliferation. Although application of activated charcoal is necessary for periwinkle growth in media due to many phenolic compounds, but it has negative effects on adsorption of plant growth regulators and consequently reduce shoot proliferation. Therefore, it seems that 1 g/l activated charcoal is an appropriate concentration for preparing shoot proliferation media. In addition, transporting regenerated shoots to culture media containing NAA resulted in increasing shoot length. Proliferated shoots rooted in media without PGR and with 2 g/l activated charcoal and acclimated with environmental conditions after transferring to the soil.

  19. Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants.

    Science.gov (United States)

    Li, Yunfeng; Liu, Guixiang; Li, Hao; Bi, Yanwen

    2016-01-01

    Neuregulin-1β (NRG-1β) has multiple roles in the development and function in the nervous system and exhibits potent neuroprotective properties. In the present study, organotypically cultured dorsal root ganglion (DRG) explants were used to evaluate the effects of NRG-1β on migration of two major phenotypic classes of DRG neurons. The signaling pathways involved in these effects were also determined. Organotypically cultured DRG explants were exposed to NRG-1β (20 nmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (10 μmol/L) plus NRG-1β (20 nmol/L), the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), and LY294002 (10 μmol/L) plus PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), respectively, for 3 days. The DRG explants were continuously exposed to culture media as a control. After that, all above cultures were processed for detecting the mRNA levels of calcitonin gene-related peptide (CGRP) and neurofilament-200 (NF-200) by real-time PCR analysis. CGRP and NF-200 expression in situ was determined by fluorescent labeling technique. The results showed that NRG-1β elevated the mRNA and protein levels of CGRP and NF-200. NRG-1β also increased the number and the percentage of CGRP-immunoreactive (IR) migrating neurons and NF-200-IR migrating neurons. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. The contribution of NRG-1β on modulating distinct neurochemical phenotypic plasticity of DRG neurons suggested that NRG-1β signaling system might play an important role on the biological effects of primary sensory neurons. PMID:26093851

  20. A novel method for the culture and polarized stimulation of human intestinal mucosa explants.

    Science.gov (United States)

    Tsilingiri, Katerina; Sonzogni, Angelica; Caprioli, Flavio; Rescigno, Maria

    2013-05-01

    Few models currently exist to realistically simulate the complex human intestine's micro-environment, where a variety of interactions take place. Proper homeostasis directly depends on these interactions, as they shape an entire immunological response inducing tolerance against food antigens while at the same time mounting effective immune responses against pathogenic microbes accidentally ingested with food. Intestinal homeostasis is preserved also through various complex interactions between the microbiota (including food-associated beneficial bacterial strains) and the host, that regulate the attachment/degradation of mucus, the production of antimicrobial peptides by the epithelial barrier, and the "education" of epithelial cells' that controls the tolerogenic or immunogenic phenotype of unique, gut-resident lymphoid cells' populations. These interactions have been so far very difficult to reproduce with in vitro assays using either cultured cell lines or peripheral blood mononuclear cells. In addition, mouse models differ substantially in components of the intestinal mucosa (mucus layer organization, commensal bacteria community) with respect to the human gut. Thus, studies of a variety of treatments to be brought in the clinics for important stress-related or pathological conditions such as irritable bowel syndrome, inflammatory bowel disease or colorectal cancer have been difficult to carry out. To address these issues, we developed a novel system that enables us to stimulate explants of human intestinal mucosa that retain their in situ conditioning by the host microbiota and immune response, in a polarized fashion. Polarized apical stimulation is of great importance for the outcome of the elicited immune response. It has been repeatedly shown that the same stimuli can produce completely different responses when they bypass the apical face of the intestinal epithelium, stimulating epithelial cells basolaterally or coming into direct contact with lamina

  1. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  2. Pre-culturing of nodal explants in thidiazuron supplemented liquid medium improves in vitro shoot multiplication of Cassia angustifolia.

    Science.gov (United States)

    Siddique, I; Abdullwahab Bukhari, N; Perveen, K; Siddiqui, I; Anis, M

    2013-09-01

    An in vitro propagation system for Cassia angustifolia Vahl. has been developed. Due to the presence of sennosides, the demand of this plant has increased manyfold in global market. Multiple shoots were induced by culturing nodal explants excised from mature plants on a liquid Murashige and Skoog [8] medium supplemented with 5-100 μM of thidiazuron (TDZ) for different treatment duration (4, 8, 12 and 16 d). The optimal level of TDZ supplemented to the culture medium was 75 μM for 12 d induction period followed by subculturing in MS medium devoid of TDZ as it produced maximum regeneration frequency (87%), mean number of shoots (9.6 ± 0.33) and shoot length (4.4 ± 0.46 cm) per explant. A culture period longer than 12 d with TDZ resulted in the formation of fasciated or distorted shoots. Ex vitro rooting was achieved when the basal cut end of regenerated shoots was dipped in 200 μM indole-3-butyric acid (IBA) for half an hour followed by their transplantation in plastic pots filled with sterile soilrite where 85% plantlets grew well and all exhibited normal development. The present findings describe an efficient and rapid plant regeneration protocol that can further be used for genetic transformation studies.

  3. The use of dynamic culture devices in articular cartilage tissue engineering.

    OpenAIRE

    Akmal, M.

    2006-01-01

    Tissue engineered repair of articular cartilage has now become a clinical reality with techniques for cell culture having advanced from laboratory experimentation to clinical application. Despite the advances in the use of this technology in clinical applications, the basic cell culture techniques for autologous chondrocytes are still based on primitive in-vitro monolayer culture methods. Articular chondrocytes are known to undergo fibroblastic change in monolayer culture as this is not their...

  4. In vitro culture of Cucumis sativus L. VI. Histological analysis of leaf explants cultured on media with 2, 4-D or 2, 4, 5-T

    Directory of Open Access Journals (Sweden)

    Anna Nadolska-Orczyk

    2014-02-01

    Full Text Available The developmental sequence of callus initiation and somatic embryogenesis in leaf explants of Cucumis sativus cv. Borszczagowski was analysed and compared on media containing two different auxin phenoxy-derivatives (2,4-D and 2,4,5-T and cytokinin (BAP or 2iP. During the first 20 days of culture on media with 2,4,5-T proliferation of parenchymatic tissue occurred mainly and only small meristematic centers were observed. There was an intensive detachment of parenchymatic cells and dissociation of their cell walls near vessels and in the lower part of the explant adjacent to the medium. These cells were strongly plasmolysed. On the 2,4-D containing medium mostly meristematic tissue developed, proliferating around vascular bundles and forming meristematic centers or promeristem-like structures. After 35-50 days of culture, secondary callus was formed by separation of meristematic cells from the meristem surface in explants cultured on the 2,4-D containing medium. On medium supplemented with 2, 4, 5-T the detachment of parenchymatic and meristematic cells occurred, along with formation of a gel-like substance. The gel-like callus contained multi-cellular aggregates, proembryoids and embryoids. This type of callus tissue was initiated more intensively on medium with 2, 4, 5-T, but the frequency of somatic embryogenesis was much lower. The periferial cells of aggregates, proembryoids and embryoids showed the tendency to separate from the surface of the tissue. Many embryoids formed adventitious embryos.

  5. Radiation-induced outgrowth inhibition in explant cultures from surgical specimens of five human organs

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, Carmel; Cusack, Anne; Seymour, C.B.

    1988-03-01

    An explant outgrowth technique to determine the radiation response of five different human organs (bladder, oesophagus, colon, breast and thyroid) is described. In each case except thyroid, where malignancies are rare, data are presented for normal and malignant tissue. Results show that variations in response, consistent with those observed in vivo, can be measured. Tumours were in all cases highly resistant to radiation relative to their corresponding normal tissue. Possible reasons for this are discussed. The method may prove useful in the prediction of the radiobiological response for tumour and surrounding normal tissue where post-operative therapy is planned.

  6. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    OpenAIRE

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.; Knudson, Warren

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treat...

  7. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  8. Plant regeneration of Rhabdadenia Ragonesei (Apocynaceae by in vitro culturing of leaf explants REGENERACIÓN DE PLANTAS DE RHABDADENIA RAGONESEI (APOCYNACEAE POR CULTIVO IN VITRO DE EXPLANTES FOLIARES

    Directory of Open Access Journals (Sweden)

    Eduardo Flachsland

    2010-08-01

    Full Text Available Plants of Rhabdadenia Ragonesei Woodson (Apocynaceae were regenerated in vitro from leaves explants. The procedure employed includes: 1 Surface sterilization of leaves by immersion in 70% ethanol (10 s followed by 1,1%NaOCl (15 min and three wash with sterile distilled water. 2 Callus and buds induction by culture on Murashige and Skoog medium (MS + 3 mg/L benzyladenine (BAP. 3 Subculture of callus and buds on MS + 1 mg/L BAP, and 4 Rooting on MS + 0.5 mg/L naftalenacetic acid Se regeneraron plantas de Rhabdadenia Ragonesei Woodson (Apocynaceae mediante el cultivo in vitro de explantes foliares en condiciones ambientales controladas. El procedimiento consistió en: 1 Desinfección de las hojas por inmersión en etanol al 70% (10 s seguida de Inmersión en NaOCl al 1,1% (15 min y lavado tres veces con agua destilada estéril. 2 Inducción de callos y yemas mediante el cultivo de explantes foliares en el medio de Murashige y Skoog (MS + 3 mg/L de benciladenina (BAP. 3 Subcultivo de callos y yemas en MS + 1 mg/L de BAP y 4 Enraizamiento de los vastagos obtenidos en MS + 0,5 mg/L de ácido naftalenacético

  9. Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity

    NARCIS (Netherlands)

    Caralt, de S.; Agell, G.; Uriz, M.J.

    2003-01-01

    Sponges are an important source of secondary metabolites with pharmaceutical interest. This is the main reason for the increasing interest of sponge culture recent years. The optimal culture system depends on the species to be cultured: while some species easily produce sponge aggregates after disso

  10. [Influence of genotype, explant type and component of culture medium on in vitro callus induction and shoot organogenesis of tomato (Solanum lycopersicum L.)].

    Science.gov (United States)

    Khaliluev, M R; Bogoutdinova, L R; Baranova, G B; Baranova, E N; Kharchenko, P N; Dolgov, S V

    2014-01-01

    The influence of explant type as well as of the type of growth regulators and concentration on callus induction processes and somatic organogenesis of shoots was studied in vitro on four tomato genotypes of Russian breeding. Cytological study of callus tissue was conducted. It was established that tomato varieties possess a substantially greater ability to indirect shoot organogenesis compared with the F1 hybrid. The highest frequency of somatic organogenesis of shoots, as well as their number per explant, was observed for most of the genotypes studied during the cultivation of cotyledons on Murashige-Skoog culture medium containing 2 mg/l of zeatin in combination with 0.1 mg/l of 3-indoleacetic acid. An effective protocol of indirect somatic organogenesis of shoots from different explants of tomato varieties with a frequency of more than 80% was developed.

  11. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  12. Toxic Effects of Lipid-Mediated Gene Transfer in Ventral Mesencephalic Explant Cultures

    DEFF Research Database (Denmark)

    Bauer, Matthias; Kristensen, Bjarne Winther; Meyer, Morten;

    2006-01-01

    of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas...... of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents....

  13. The effects of low-level ionising radiation on primary explant cultures of rainbow trout Pronephros

    International Nuclear Information System (INIS)

    It has long been known that the haematopoietic tissue of mammals is one of the most radiosensitive tissues. In vitro studies on prawn have also shown that low doses of radiation has an extremely deleterious effect on cells cultured from this animal's blood forming tissues. This raises the question on the relative effects of radiation between animals from different species. One of the most important aquatic animals, from both an economic and ecologic point of view, is the fish. With this in mind, primary cultures of the blood forming tissues of rainbow trout were exposed to radiation followed by a morphological comparison between control and irradiated cultures. The cultured cells were characterised as macrophages following incubation with non-specific fluorescent beads and human apoptotic PMN. The cells demonstrated both specific and non-specific phagocytosis, by consuming the non-indigenous bodies, and were classified as phagocytic leucocytes. These cells were found in two morphological forms, stretched and rounded. It was shown that there was a commensurate increase in the number of stretched cells following application of radiation. Radiation was also shown to cause a dose-dependent increase in the amounts of apoptosis and necrosis in cells over time. The phagocytic efficacy of the irradiated leucocytes compared to controls was also investigated. (author)

  14. in tissue culture of lilium explants may become heavily contaminated by the standard initiation procedure

    NARCIS (Netherlands)

    Askari Rabori, N.; Wang, Y.G.; Klerk, de G.J.M.

    2014-01-01

    In tissue culture of Lilium, the standard initiation procedure brought about substantial contamination in two ways. (1) When scales were detached from the mother bulb, microorganisms could enter via the wound. This source of contamination was strongly enhanced by the negative hydrostatic pressure wi

  15. Effect of explant treatment with gamma-rays, EMS and SA on somatic tissue culture in rice

    International Nuclear Information System (INIS)

    Dry seeds of two rice cultivars were treated with gamma-rays (0-40 kR), EMS (0-0.4M) and SA (0-4mM) and then inoculated in N6 medium containing 0.5mg/l 2,4-D, 4mg/l NAA and 2mg/l 6-BA to induce callus.Growth and differentiation' of the callus treated rice seeds were observed in subsequent subcultures.Decreased callus induction percentages were observed in treatments with gamma-rays, EMS and SA, but the mutagenic treatments did not reduce the mean weight of primary calli except that the seeds were irradiated with gamma-rays.Moreover, up to 3-fold increase in callus growth rate was shown after treatments of the three mu-tagenic agents.Higher proportion of calli with green spots or small shoots was also seen in one cultivar treated with the three mutagens.Signif icant increase in plant regeneration capacity was found in 60-day-old calli derived from gamma-rays or EMS-treated rice seeds in one cultivar.The results suggested that the following dose or concentration can be used for explant treatment in indica rice before culture, gamma-rays.5-10kR, EMS.<0.2M and SA:2-4mM

  16. The Influence of Explant Types and Orientation on in Vitro Culture

    Directory of Open Access Journals (Sweden)

    Kamnoon KANCHANAPOOM

    2011-08-01

    Full Text Available Inflorescence, apical and lateral buds of Musa balbisiana ‘Kluai Hin’ (BBB group were used to culture on MS medium supplemented with 22 μM BA and 15% (v/v coconut water. Comparison of bud orientation showed that the best response of in vitro shoot tip proliferation was obtained with abaxial surface of buds lying down i.e. one side touching the medium (tilt. Mass propagation of shoot tips was obtained when cultured buds on MS medium containing 44 μM BA. Rooting was achieved by transferring the isolated shoots to MS basal medium without growth regulators. Rooted plantlets were acclimatized and successfully established in soil.

  17. AUDITORY HAIR CELL EXPLANT CO-CULTURES PROMOTE THE DIFFERENTIATION OF STEM CELLS INTO BIPOLAR NEURONS

    OpenAIRE

    Coleman, B.; Fallon, J. B.; Gillespie, L.N.; Silva, M.G.; Shepherd, R.K.

    2006-01-01

    Auditory neurons, the target neurons of the cochlear implant, degenerate following a sensorineural hearing loss. The goal of this research is to direct the differentiation of embryonic stem cells (SCs) into bipolar auditory neurons that can be used to replace degenerating neurons in the deafened mammalian cochlea. Successful replacement of auditory neurons is likely to result in improved clinical outcomes for cochlear implant recipients. We examined two post-natal auditory co-culture models w...

  18. Response of cotyledon explants of Capsicum annuum L. cv. kujawianka to chosen plant growth regulators in in vitro culture

    Directory of Open Access Journals (Sweden)

    Alicja Fraś

    2014-02-01

    Full Text Available Shoot buds originated directly on cotyledon explants of Capsicum annuum L. cv. Kujawianka, when Linsmaier and Skoog medium was enriched with BAP (2 mg/l. Kinetin (2 mg/l or kinetin with IAA (1 mg/l + 1 mg/l induced indirect shoot buds regeneration from callus. Rooting was obtained with explants cultivated on a medium containing NAA (0,5 mg/l. Occurrence of the early stages of differentiation was proved at the histological level.

  19. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells

    International Nuclear Information System (INIS)

    Highlights: • hiPS cell explants formed malignant tumors when SNL76/7 feeder cells were used. • Multi type tumors developed by interaction of SNL76/7 feeder cells with hiPS cells. • Tumorigenic risk occurs by co-culture of hiPS cells with SNL76/7 feeder cells. - Abstract: The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice. Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC

  20. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Mizuna; Mitsui, Youji, E-mail: y-mitsui8310@hb.tp1.jp; Kumazaki, Tsutomu; Kawahara, Yuta; Matsuo, Taira; Takahashi, Tomoko, E-mail: t-takahashi@kph.bunri-u.ac.jp

    2014-10-24

    Highlights: • hiPS cell explants formed malignant tumors when SNL76/7 feeder cells were used. • Multi type tumors developed by interaction of SNL76/7 feeder cells with hiPS cells. • Tumorigenic risk occurs by co-culture of hiPS cells with SNL76/7 feeder cells. - Abstract: The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice. Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC.

  1. Effect of IAA on growth, organogenesis and RNA metabolism during the development of Cichorium intybus root explants cultured „in vitro"

    OpenAIRE

    E. Gwóźdź

    2015-01-01

    The effects of 3-indolylacetic acid (IAA) on growth, organogenesis, RNA content, RNase activity and MAK elution profiles during the development of chicory root explants cultured in vitro were investigated. It was found that the intensive callus growth in the presence of IAA was accompanied by an increase in the RNA content, with simultaneous decrease of RNase activity. Fractionation of RNA by MAK column chromatography showed that the high content of RNA in the callus under the influence of IA...

  2. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋

    2003-01-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  3. Experimental study on co-culture of ventral spinal cord explants and major pelvic ganglion explants%大鼠脊髓前角与盆神经节之间植块联合培养的实验研究

    Institute of Scientific and Technical Information of China (English)

    程时刚; 耿红琼; 张伊凡; 杨星海; 钟伟

    2013-01-01

    Objective;To co-culture the ventral spinal cord explants and major pelvic ganglion explants from rats and investigate the interaction between co-cultured explants. Methods:We had developed a system for long-term co-culturing of ventral spinal cord explants and major pelvic ganglia explants to observe the variance of neuron growth. Results ;Explanted tissues of both types survived well in co-culture. Spinal motor neurons (SMNs) emitted numerous outgrowing processes, some of which associated with neurons in explanted major pelvic ganglia. Conclusion: Some contacts of specific motor neuron-major pelvic ganglia neuron were observed apparently,suggesting that a functional interaction may develop between the spinal motor neurons and major pelvic ganglion neurons in vitro.%目的:联合培养大鼠脊髓前角与盆神经节(major pelvic ganglia,MPG)植块并初步探讨两者相互作用的可能性.方法:建立大鼠脊髓前角与盆神经节之间植块的联合培养体系,观察神经元的生长变化.结果:神经组织在体外联合培养时均生长良好,脊髓前角植块生长出的运动神经元(spinal motor neurons,SMNs)发出突起与盆神经节的神经元形成明显形态上的接触.结论:联合培养的不同系统的神经元能彼此形成明显接触,初步提示运动神经元与盆神经节神经元之间可能形成功能性的相互作用.

  4. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  5. Fumonisin B1 (FB1) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B1 (FB1) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB1 at any concentration on dermal or epidermal cells. However, FB1 significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB1 (2.5–10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB1 impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB1 might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB1 on the equine hoof in more detail. PMID:27023602

  6. Effects of anti-arthritic drugs on proteoglycan synthesis by equine cartilage.

    Science.gov (United States)

    Frean, S P; Cambridge, H; Lees, P

    2002-08-01

    The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease. PMID:12213118

  7. Comparison of spiculogenesis in in vitro ADCP-primmorph and explants culture of marine sponge Hymeniacidon perleve with 3-TMOSPU supplementation.

    Science.gov (United States)

    Cao, Xupeng; Yu, Xingju; Zhang, Wei

    2007-01-01

    This study aims to test the feasibility of introducing functional chemical groups into biogenic silica spicules by examining the effect of supplementing a silican coupler [3-(trimethoxysilyl)propyl]urea (3-TMOSPU) as silica source in the cultures of archaeocytes-dominant-cell-population (ADCP) primmorphs and explants of the marine sponge Hymeniacidon perleve. Analysis by Fourier Transform Infrared Spectroscopy (FT-IR) confirmed that the organic group in 3-TMOSPU was introduced into silica spicules. By comparing ADCP-primmorph cultures when supplemented with Na2SiO3, 3-TMOSPU supplementation showed no notable effect on the primmorphs development and cell locomotion behaviors. A decline in silicatein expression quantified by real-time RT-PCR was, however, observed during spiculogenesis. The decline was slower for the 3-TMOSPU group whereas significantly fewer spicules were formed. When sponge papillae explants were cultured, 3-TMOSPU supplementation had no negative effect on sponge growth but inhibited the growth biofouling of the diatom Nitzschia closterium. By monitoring the detectable Si concentration, it seemed that 3-TMOSPU was converted by the sponge and its conversion was related to spiculogenesis. Analysis of spicule dimensional changes indicated that the inhibition of spiculogenesis by 3-TMOSPU supplementation was less in ADCP-primmorphs culture due to lower 3-TMOSPU/detectable Si ratio in the media. PMID:17461548

  8. Cartilage Tissue Engineering: the effect of different biomaterials, cell types and culture methods

    NARCIS (Netherlands)

    W.J.C.M. Marijnissen (Willem)

    2006-01-01

    textabstractChapter 1 outlines the normal structure and composition of articular cartilage and the inefficient spontaneous healing response after focal damage. Current surgical treatment options are briefly discussed and tissue engineering techniques for the repair of articular cartilage defects

  9. Direct regeneration of Periwinkle (Catharanthus roseus) via node explants culture and different combinations of plant growth regulators

    OpenAIRE

    M. Talebi; F Etesam; B.E. Sayed-Tabatabaei; Gh. Khaksar

    2012-01-01

    Periwinkle (Catharanthus roseus L., Apocynaceae) contains more than 130 different terpenoid indole alkaloids (TIAs), of which two dimeric alkaloids, Vinblastine and Vincristine, have antineoplastic activity and are useful in treatment of various cancers. Specific production of some alkaloids in differentiated tissues such as leaf and stem led to use direct regeneration of explants in order to increase the production of these important alkaloids in the plant. In this research, 30 combinations ...

  10. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  11. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  12. Adrenergic Activation of Melatonin Secretion in Ovine Pineal Explants in Short-Term Superfusion Culture Occurs via Protein Synthesis Independent and Dependent Phenomena

    Directory of Open Access Journals (Sweden)

    Bogdan Lewczuk

    2014-01-01

    Full Text Available The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.

  13. Effect of Different Culture Conditions on Browning Rate of Explants in Tissue Culture of Tea Trees%降低茶树组织培养中外植体褐化程度的研究

    Institute of Scientific and Technical Information of China (English)

    黄燕芬; 周国兰; 赵华富

    2009-01-01

    为降低茶树组培过程中外植体褐化程度,从外植体表面消毒时间、切割方式、转瓶间隔时间、培养基类型、激素配比、抗褐化剂和吸附剂的使用方面进行了综合试验.结果表明:表面消毒最适时间为7~8 min;接种外植体带腋芽叶片保留2/5,3 d转瓶1次降低褐化的效果较好; 经此处理的外植体培养在1/2MS +BA 2 mg/L+NAA 0.1 mg/L+Vc 1.0 g/L+AC 1.0 g/L的培养基中,生长良好,褐化率由86 %下降为41 %.%The sterilized time and cutting pattern of explants, interval time for transferring another bottle, medium types, different hormone combination, anti-browning agents and absorption agents were studied to reduce the browning rate of explants in tissue culture of tea tree. The results showed that the browning rate could reduce from 86 % to 41 % when the explants with 2/5 leaf and a axillary bud were sterilized by 0.1 % mercury solution for 7-8 min, the explants were transferred into another bottle every 3d and the treated explants were cultured on 1/2MS +BA 2 mg/L+NAA 0.1 mg/L+Vc 1.0 g/L+AC 1.0 g/L.

  14. Characterization of Myelomonocytoid Progenitor Cells with Mesenchymal Differentiation Potential Obtained by Outgrowth from Pancreas Explants

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2012-01-01

    Full Text Available Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b+ and CD45+, and some stromal-related markers (CD44+ and CD29+, but not mesenchymal stem cell (MSC-defining markers (CD90− and CD105− nor endothelial (CD31− or stem cell-associated markers (CD133− and stem cell antigen-1; Sca-1−. Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC for more than 1 year. Cells spontaneously formed sphere clusters “pancreatospheres” which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone. Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs.

  15. Effect of radiation on the growth of normal and malignant human oesophageal explant cultures pre-treated with bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, C.B.; Cusack, A.; Mothersill, C.; Hennessy, T.P.

    1988-05-01

    A method has been developed for testing the response of oesophageal explants from tumour and surrounding normal tissue in the same patient to chemotherapy and ..gamma..-radiation, singly and in combination. The test allows treatment combinations, time and order of administration of agents to the tissue to be accurately controlled. Cytotoxicity, determined by measuring the area of outgrowth from an explant 2 weeks after plating, is the most useful short-term end-point, although many other are possible. Results showing differential cytotoxicity of belomycin with and without radiation in squamous and adenocarcinoma of the oesophagus and surrounding normal tissue from the same patient indicate tumour cells are relatively resistant to radiation alone, low levels of belomycin with or without radiation preferentially spare tumour cells and high levels, in combination with any radiation dose tested, but not without radiation, spare normal cells and give a significantly high amount of relative tumour cell kill. Belomycin must be added to the cells just before or just after irradiation to obtain the normal-tissue sparing effect.

  16. Multiplicação in vitro do porta-enxerto de macieira cv. Marubakaido: efeito da orientação do explante no meio de cultura In vitro multiplication of the apple rootstock cv. Marubakaido: effect of the orientation of explant in the medium of culture

    Directory of Open Access Journals (Sweden)

    ALAN CRISTIANO ERIG

    2002-08-01

    Full Text Available Objetivou-se avaliar o efeito da orientação do explante, vertical ou horizontal, no meio de cultura, na multiplicação in vitro, do porta-enxerto de macieira cv. Marubakaido. O meio de cultura utilizado foi o MS com N (nitrogênio reduzido a ¾ da concentração original, 100mg.L-1 de mio-inositol, 40g.L-1 de sacarose e 6g.L-1 de ágar, suplementado com 4,44mM de BAP (6-benzilaminopurina e 0,2ml.L-1 de PPM TM ("Plant Preservative Mixture". Segmentos caulinares com duas gemas e o ápice excisado foram utilizados como explantes. Após a inoculação, os frascos com os explantes foram incubados a 16 horas de fotoperíodo, à temperatura de 25±2ºC, com radiação de 25µmoles.m-2.s-1. O número de brotações, o número de gemas por explante, a taxa de multiplicação e a altura da brotação maior foram avaliados aos quarenta dias de cultivo. O maior número de brotações, o maior número de gemas e a maior taxa de multiplicação foram obtidos com o explante na orientação horizontal no meio de cultura. Não houve diferença significativa quanto à orientação vertical e horizontal do explante no meio de cultura para a altura da brotação maior.The aim of this study was evaluate the effect of the vertical and the horizontal orientation of the explant in the culture medium, in the in vitro multiplication, for the apple rootstock cv. Marubakaido. The culture medium used was the MS with N reduced to ¾ of the original concentration, myo-inositol (100mg.L-1, sucrose (40g.L-1 and agar (6g.L-1, suplemented with BAP (4.44mM and PPM TM (0.2ml.L-1. Stem segments with two buds and the apex excised were used as explants. After the inoculation, the flasks with the explants were incubated at 16 hour of photoperiod, 25±2ºC temperature, with irradiation of 25µmoles.m-2.s-1. The number of shoots and buds, the rate of multiplication and the height of the larger shoot were evaluated after 40 days of cultivation. The highests shoot number, number of buds

  17. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture.

    Science.gov (United States)

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X Lucas

    2015-04-13

    Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

  18. Effect of IAA on growth, organogenesis and RNA metabolism during the development of Cichorium intybus root explants cultured „in vitro"

    Directory of Open Access Journals (Sweden)

    E. Gwóźdź

    2015-05-01

    Full Text Available The effects of 3-indolylacetic acid (IAA on growth, organogenesis, RNA content, RNase activity and MAK elution profiles during the development of chicory root explants cultured in vitro were investigated. It was found that the intensive callus growth in the presence of IAA was accompanied by an increase in the RNA content, with simultaneous decrease of RNase activity. Fractionation of RNA by MAK column chromatography showed that the high content of RNA in the callus under the influence of IAA was due to an increased accumulation of the ribosomal fraction of RNA mainly. Experiments with actinomycin D demonstrated that this antibiotic abolished both the auxin-induced callus growth and the inhibitory effect of IAA on bud formation. No significant inhibition of spontaneous bud formation under the influence of actinomycin D was observed. The possible relationship between the IAA-affected morphogenetic processes and RNA metabolism is discussed.

  19. A new in vitro screening bioassay for the ecotoxicological evaluation of the estrogenic responses of environmental chemicals using roach (Rutilus rutilus) liver explant culture.

    Science.gov (United States)

    Gerbron, Marie; Geraudie, Perrine; Rotchell, Jeanette; Minier, Christophe

    2010-10-01

    There is growing evidence that many chemicals released in the environment are able to disturb the normal endocrinology of organisms affecting the structure and function of their reproductive system. This has prompted the scientific community to develop appropriate testing methods to identify active compounds and elucidate mechanisms of action. Of particular interest are in vitro screening methods that can document the effects of these endocrine disrupting compounds on fish. In this study, an in vitro bioassay was developed in the roach (Rutilus rutilus) for evaluating the estrogenicity or antiestrogenicity potency of environmental pollutants by measuring vitellogenin (VTG) induction in cultured liver explants. The cell viability was assessed by the measurement of nonspecific esterase activity using a fluorescein diacetate hydrolysis assay. Results showed that explants could be cultured for 72 h without any significant loss of activity. Dose-dependent responses have been measured with estrogenic model compounds such as 17-β-estradiol (E2) and 17-α-ethynylestradiol (EE2) or antiestrogenic compounds such as tamoxifen. Lowest observable effective concentrations were 1 nM for E2, 1 nM for EE2, and 100 nM for tamoxifen, showing a good sensitivity of the test system. Estrogenicity of butyl 4-hydroxybenzoate, 4-nonylphenol, and bisphenol A was tested. bisphenol A (100 μM) or butylparaben induced a twofold increase in VTG production when compared with 100 nM E2, whereas this production was only 20% with 100 μM 4-nonylphenol. Overall, this study shows that the bioassay could provide valuable information on endocrine disrupting chemicals including metabolites and mixtures of compounds. PMID:20549626

  20. Stimulation by concanavalin A of cartilage-matrix proteoglycan synthesis in chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W.Q.; Nakashima, K.; Iwamoto, M.; Kato, Y. (Osaka Univ. (Japan))

    1990-06-15

    The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of (35S)sulfate and (3H)glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on (35S)sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on (35S)sulfate incorporation into small proteoglycans and (3H)glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on (35S)sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased (3H)thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.

  1. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  2. Sonic hedgehog protein regulates fibroblast growth factor 8 expression in metanephric explant culture from BALB/c mice: Possible mechanisms associated with renal morphogenesis.

    Science.gov (United States)

    Chen, Xing; Hou, Xiao-Ming; Fan, You-Fei; Jin, Yu-Ting; Wang, Yu-Lin

    2016-10-01

    The sonic hedgehog (SHH) morphogen regulates cell differentiation and controls a number of genes during renal morphogenesis. To date, the effects of SHH on fibroblast growth factors (Fgfs) in embryonic kidney development remain unclear. In the present study, explants of BALB/c mouse embryonic kidney tissues were used to investigate the role of exogenous SHH on Fgf8 and Fgf10 expression levels ex vivo. Ureteric bud branches and epithelial metanephric derivatives were used to determine the renal morphogenesis with Dolichos biflorus agglutinin or hematoxylin‑eosin staining. mRNA expression levels were determined using reverse transcription‑quantitative polymerase chain reaction, while the protein expression levels were examined using immunohistochemistry and western blot analysis. During the initial stages of metanephric development, low levels of SHH, Fgf8, and Fgf10 expression were observed, which were found to increase significantly during more advanced stages of metanephric development. In addition, exogenous SHH protein treatment increased the number of ureteric bud branches and enhanced the formation of nephrons. Exogenous SHH reduced the Fgf8 mRNA and protein expression levels, whereas cyclopamine (an SHH‑smoothened receptor inhibitor) interfered with SHH‑mediated downregulation of Fgf8 expression. By contrast, exogenous SHH protein was not found to modulate Fgf10 mRNA and protein expression levels. In conclusion, these results indicate that the modulatory effects of SHH on BALB/c mouse metanephric explant cultures may involve the regulation of Fgf8 expression but not Fgf10 expression, which provides evidence for the functional role of Fgf proteins in renal morphogenesis. PMID:27510750

  3. Amplification of rabbit adipose-derived stem cells using explants culture method%组织块贴壁法扩增兔脂肪干细胞

    Institute of Scientific and Technical Information of China (English)

    刘琴; 王丽平; 喻晶; 陈芳; 刁波; 张宜

    2014-01-01

    BACKGROUND:The rabbit adipose-derived stem cells are mostly isolated by type I col agenase digestion, but rarely by explants culture method. OBJECTIVE:To isolate rabbit adipose-derived stem cells for adipogenic and osteogenic differentiation. METHODS:The rabbit adipose-derived stem cells were isolated from rabbit adipose by explants culture method, and cultured in vitro fol owed by morphological observation. The grow curve and cellsurface markers CD29, CD44, CD45 of passage 3 cells were analyzed respectively by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and flow cytometry;cells from the third passages were induced for adipogenic and osteogenic differentiation by different revulsants, and cells were examined by oil red O staining and alizarin red staining . RESULTS AND CONCLUSION:The rabbit adipose-derived stem cells cultured in vitro exhibited a spindle-shaped appearance and could rapidly expand. Flow cytometry analysis revealed that the third passage of rabbit adipose-derived stem cells was positive for CD29, CD44, but negative for CD45. Rabbit adipose-derived stem cells were positive for oil red O staining at 14 days of adipogenic induction, and positive for alizarin red staining at 14 days of osteogenic induction. In conclusion, we could successful y isolate rabbit adipose-derived stem cells using explants culture method.%背景:研究显示兔脂肪干细胞的体外分离方法大多数为Ⅰ型胶原酶消化法,采用组织块贴壁法扩增兔脂肪干细胞尚不多见。  目的:采用组织块贴壁法从兔脂肪组织中分离培养兔脂肪干细胞,并进行成脂、成骨的诱导分化。  方法:采用组织块贴壁法分离出兔脂肪干细胞,进行体外培养,观察其形态特征。取对数生长期的第3代细胞,用MTT法绘制其生长曲线;流式细胞仪检测其表面抗原CD29、CD44、CD45的表达情况;分别用成脂和成骨诱导培养液诱导其向脂肪细胞和成骨细胞

  4. 锯叶班克木Banksia serrata外植体的选择及消毒方法的研究%Study on selection and sterilization of explants of Banksia serrata in tissue culture

    Institute of Scientific and Technical Information of China (English)

    马琳; 何丽娜; 姜岩; 潘会堂

    2011-01-01

    Banksia serrata is one of the perennial woody species belonging to Proteaceae family. Its surface is densely tomentose, resulting in extremely high pollution rate of explants in tissue culture. The effects of explants types, seasons, bud positions, and sterilization method on explants survival were studied. The results show that the optimal months to take explants were from October to December, with the pollution rate below 30% and the survival rate of 63.3%. The optimal explants were cut from the upper part of setni-lignified softwood steins. The best sterilization method was that the explants were washed with 1 000 times dilution of carbendazim for three times, and then dipped in 4% NaCIO + 0.01% Tween 80 for 12 min, and the explants pollution rate was reduced to 26.7%. However, both alcohol and HgCl, solutions killed the explants in a short time, and was not suitable for explants disinfection.%锯叶班克木为山龙眼科班克木属的木本花卉,全株密被绒毛是影响组培启动培养的主要原因之一.为成功建立锯叶班克木的组培体系,系统地研究了外植体类型、取材方法、灭菌方法等对启动培养外植体消毒效果的影响.结果表明,10-12月份采取的枝条最适合做外植体,污染率在30%以下,外植体存活率最高可达63.3%;半木质化枝条的中上部为最佳的外植体取材部位,顶芽虽然污染率低但存活率也低,下部茎段污染率较高,均不适宜作为外植体材料;外植体灭菌的最佳方法为:用1 000倍的多菌灵溶液清洗外植体然后用4%NaClO+0.01%吐温80处理12 min,启动培养污染率可降低至26.7%.酒精和HgCl2均可在短时间内杀死外植体,不适合用于外植体的灭菌.

  5. An exploration of the ability of tepoxalin to ameliorate the degradation of articular cartilage in a canine in vitro model

    Directory of Open Access Journals (Sweden)

    Clegg Peter D

    2009-07-01

    Full Text Available Abstract Background To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX and lipoxygenase (LOX and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA. Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. Cartilage explants were cultured in media containing the recombinant canine interleukin-1β (IL-1β at 100 ng/ml and recombinant human oncostatin-M (OSM at 50 ng/ml. The effects of tepoxalin and its metabolite were studied at three concentrations (1 × 10-5, 1 × 10-6 and 1 × 10-7 M. Total glycosaminoglycan (GAG and collagen (hydroxyproline release from cartilage explants were used as outcome measures of proteoglycan and collagen depletion respectively. PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity. Results Treatment with IL-1β and OSM significantly upregulated both collagen (p = 0.004 and proteoglycan (p = 0.001 release from the explants. Tepoxalin at 10-5 M and 10-6 M caused a decrease in collagen release from the explants (p = 0.047 and p = 0.075. Drug treatment showed no effect on GAG release. PGE2 concentration in culture media at day 7 was significantly increased by IL-1β and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production. LTB4 concentrations were too low to be quantified. Cytotoxicity assays suggested that neither tepoxalin nor its metabolite had a toxic effect on the cartilage chondrocytes at the concentrations and used in this study. Conclusion This study provides evidence that tepoxalin exerts inhibition of COX and can reduce in vitro collagen loss from canine cartilage explants at a concentration of 10-5 M. We can conclude that, in this model, tepoxalin can partially inhibit the development of cartilage degeneration when it is available locally to

  6. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    Energy Technology Data Exchange (ETDEWEB)

    Morales, T.I. (Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD (United States))

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  7. Lubricin reduces cartilage--cartilage integration.

    Science.gov (United States)

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  8. The study of Red Raspberry explant selection and tissue culture techniques%红树莓外植体选择及组织培养技术研究

    Institute of Scientific and Technical Information of China (English)

    王小军; 刘春; 张黎

    2015-01-01

    In this study, the use of red raspberry axillary buds as explants different design culture different treatment, screening out the best explant in tissue culture, red raspberry bud induction, best bud proliferation and rooting medium, the establishment of a red raspberry tissue culture system to achieve a rapid breeding of red raspberry plantlets.%利用红树莓不同腋芽作为外植体,设计不同处理的培养基,开展红树莓组织培养最佳外植体、芽诱导、芽增殖及生根培养最佳培养基筛选实验,建立了红树莓的组培快繁体系,实现了红树莓组培苗的快速繁殖。

  9. Pre-metatarsal skeletal development in tissue culture at unit- and microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1994-01-01

    Explant organ culture was used to demonstrate that isolated embryonic mouse pre-metatarsal mesenchyme is capable of undergoing a series of differentiative and morphogenetic developmental events. Mesenchyme differentiation into chondrocytes, and concurrent morphogenetic patterning of the cartilage tissue, and terminal chondrocyte differentiation with subsequent matrix mineralization show that cultured tissue closely parallels in vivo development. Whole mount alizarin red staining of the cultured tissue demonstrates that the extracellular matrix around the hypertrophied chondrocytes is competent to support mineralization. Intensely stained mineralized bands are similar to those formed in pre-metatarsals developing in vivo. We have adapted the culture strategy for experimentation in a reduced gravity environment on the Space Shuttle. Spaceflight culture of pre-metatarsals, which have already initiated chondrogenesis and morphogenetic patterning, results in an increase in cartilage rod size and maintenance of rod shape, compared to controls. Older pre-metatarsal tissue, already terminally differentiated to hypertrophied cartilage, maintained rod structure and cartilage phenotype during spaceflight culture.

  10. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    International Nuclear Information System (INIS)

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively

  11. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  12. Tensorial electrokinetics in articular cartilage.

    Science.gov (United States)

    Reynaud, Boris; Quinn, Thomas M

    2006-09-15

    Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.

  13. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  14. Culture of adult rabbit tenocytes using tissue explant method%组织块法培养成年兔肌腱细胞

    Institute of Scientific and Technical Information of China (English)

    杨光; 姜涛; 王振兴; 张巨

    2012-01-01

    BACKGROUND: Culture in vitro and understanding the biological characteristics of tenocytes are the premise and foundation to study the mechanism and improve the internal environment of tendon healing.OBJECTIVE: To culture adult rabbit tenocytes in vitro with tissue explant, investigate the morphology, growth and proliferation of tenocytes, and to test the expression of collagen I and collagen in in the cells.METHODS: After adult New Zealand rabbit flexor tendon was obtained under aseptic condition, the peritenon of tendon was removed. The tendon was divided into small fragments. The fragments were digested with 0.25% trypsin and 0.1% collagenase I for 10-15 minutes. The fragments were transferred into culture flasks after centrifugation. And 1 mL culture medium was added into the flasks after the fragments attaching to the wall. Culture medium was added when the cells showed an adhesive growth, and the medium was replaced every 3 days. When 80%-90% of the cells were in confluence, they were passaged at a ratio of 1:3.RESULTS AND CONCLUSION: The tenocytes showed an adhesive growth at 10 days, and appearance was star-shaped or irregular shaped. The number of tenocytes was increased and the cell appearance changed to fibroblast-like as went on. Passaged cells were round-shaped at the beginning of cell seeding, the cells attached to the wall after 4-6 hours showed a spindle-shape, and the cells gradually arranged in groups. The growth curve of passage cells showed that: the latent period was the first 4 days, the logarithm period was at 5-6 days, and the platform period was at 7 days. Type I collagen was positive and type III collagen was negative tested by immunofluorescence assay. The results indicated that tenocytes can be successfully isolated and cultured from adult rabbit tendon in vitro with tissue explant.%背景:体外分离培养肌腱细胞,熟悉其生物学特性是研究肌腱愈合机制、改善肌腱愈合内环境的前提和基础.目的:采用组

  15. Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion.

    Science.gov (United States)

    Neri, Simona; Bourin, Philippe; Peyrafitte, Julie-Anne; Cattini, Luca; Facchini, Andrea; Mariani, Erminia

    2013-01-01

    Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs) are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.

  16. Human adipose stromal cells (ASC for the regeneration of injured cartilage display genetic stability after in vitro culture expansion.

    Directory of Open Access Journals (Sweden)

    Simona Neri

    Full Text Available Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.

  17. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP) VAR LRG-41

    OpenAIRE

    T. Raghavendra; P. Sudhakar

    2014-01-01

    An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L.) has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS) medium augmented with different concentrations of BAP and NAA. Among the various c...

  18. Thidiazuron-induced high-frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees

    OpenAIRE

    CORREDOIRA, E.; Ballester, A.; Viéitez Martín, Ana María

    2008-01-01

    Attempts were made to study the effect of thidiazuron (TDZ) on adventitious shoot induction and plant development in Paulownia tomentosa explants derived from mature trees. Media with different concentrations of TDZ in combination with an auxin were used to induce adventitious shoot-buds in two explant types: basal leaf halves with the petiole attached (leaf explant) and intact petioles. Optimal shoot regeneration was obtained in leaf explants cultured on induction medium containing TDZ (22.7...

  19. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy.

    Directory of Open Access Journals (Sweden)

    Nahoko Shintani

    Full Text Available BACKGROUND: Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2 induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2 and transforming growth factor beta 1 (TGF-ß1 were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml for 4 (or 6 weeks. FGF-2 (10 ng/ml or TGF-ß1 (10 ng/ml was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2, but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE: TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of

  20. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  1. 改良组织块酶消化法培养人龋损牙髓干细胞的实验研究%Culture of human caries dental pulp stem cells with combined explants method and enzymatic separation method

    Institute of Scientific and Technical Information of China (English)

    麻丹丹; 高杰; 吴补领

    2011-01-01

    AIM; To compare the successfulness and the growth of human caries dental pulp stem cells(hCDPSCs) cultured with three different methods. METHODS: Twenty-five normal and caries human third molars were collected, the dental pulp tissues were cultured by the tissue explant method, tissue-explan collagenase digestion method and the combination of explant method and enzymatic separation method, respectively. The adherence of the explants, the morphology and quantity of cells were observed under a phase-contrast microscope. Culture duration was recorded. The clones were identified by expression of Stro-1 and CD90 and the growth curve of normal DPSCs and CDPSCs was drawn. RESULTS; Human normal DPSCs and CDPSCs could be cultured by all the three methods. A large number of human normal DPSCs and CDPSCs were cultured by the com hined explant method and enzymatic separation method in a shorter time, and these cells exhibited more vitality and more different morphologies. The growth rate of CDPSCs was higher than that of normal DPSCs . CONCLISION: The improved combination of explant method and enzymatic separation method is an ideal method for the primary culture of hCDPSCs in vitro, it may provide a methodological foundation for studying the mechanism of the formation of the tertiary dentine when the tooth was damaged.%目的:比较3种方法培养人龋损牙髓干细胞的成功率和细胞生长状态,以探求人龋损牙髓干细胞的最佳培养方法.方法:取18~22岁成人新鲜正常和龋损离体第三磨牙各25个,采用组织块法、酶消化法、改良组织块酶消化法培养牙髓干细胞.通过倒置显微镜观察组织块的贴壁以及细胞的形态和数量,并记录培养所需时间;有限稀释法纯化牙髓干细胞,流式细胞仪检测正常和龋损牙髓干细胞表面标记物Stro-1、CD 90的表达情况,绘制正常和龋损牙髓干细胞生长曲线.结果:组织块法、酶消化法和改良组织块酶消化法均可以培养

  2. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    Directory of Open Access Journals (Sweden)

    MM Pleumeekers

    2014-04-01

    Full Text Available Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. This study evaluated the performance of culture-expanded human chondrocytes from ear (EC, nose (NC and articular joint (AC, as well as bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells both in vitro and in vivo. All cells (≥ 3 donors per source were culture-expanded, encapsulated in alginate and cultured for 5 weeks. Subsequently, constructs were implanted subcutaneously for 8 additional weeks. Before and after implantation, glycosaminoglycan (GAG and collagen content were measured using biochemical assays. Mechanical properties were determined using stress-strain-indentation tests. Hypertrophic differentiation was evaluated with qRT-PCR and subsequent endochondral ossification with histology. ACs had higher chondrogenic potential in vitro than the other cell sources, as assessed by gene expression and GAG content (p < 0.001. However, after implantation, ACs did not further increase their matrix. In contrast, ECs and NCs continued producing matrix in vivo leading to higher GAG content (p < 0.001 and elastic modulus. For NC-constructs, matrix-deposition was associated with the elastic modulus (R2 = 0.477, p = 0.039. Although all cells – except ACs – expressed markers for hypertrophic differentiation in vitro, there was no bone formed in vivo. Our work shows that cartilage formation and functionality depends on the cell source used. ACs possess the highest chondrogenic capacity in vitro, while ECs and NCs are most potent in vivo, making them attractive cell sources for cartilage repair.

  3. Research on Explants Sterilization Technique in Staphylea bumalda DC.Tissue Culture Process%省沽油组培过程中外植体灭菌技术的研究

    Institute of Scientific and Technical Information of China (English)

    朱秀蕾; 毕璋友; 饶敏

    2012-01-01

    [Objective] The aim was to seek appropriate explants sterilization method in Staphyiea bumalda DC. Tissue culture process. [ Method] The comparative method was used to study the effect of alcohol , HgCl2, HgCl2 + alcohol combination in different sterilization time on explants growth. [ Result] The results showed that the appropriate explant sterilization technology was the shoot tips survival rate was 100% with 1% HgCl2+70% alcohol ,processing time was 5 min + 50 s respectively; The stem sections survival rate was 95% with 1% HgCl2,processing time was 15 min; The young leaves survival rate was 85% with 1% HgCl2, processing time was 12 min. [Conclusion] 1% HgCl2 + 70% alcohol, 1% HgCl, was effective sterilant of Staphyiea bumalda DC. Explants.%[目的]寻求省沽油组织培养中适宜的外植体灭菌方法.[方法]研究了70%乙醇、0.1% HgCl2、0.1% HgCl2+ 70%乙醇组合 在不同灭菌时间内对外植体生长的影响.[结果]适宜的外植体灭菌技术:茎尖用1% HgCl2 +70%乙醇处理时间分别为5min +50 s,成活率100%;茎段用1% HgCl2处理时间为15 m,成活率95%;幼叶用1%HgCl2处理时间为12 min,成活率85%.[结论]1% HgCl2+70%乙醇、1% HgCl2是省沽油外植体的有效灭菌剂.

  4. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  5. Morphogenetic responses of embryo culture of wheat related to environment culture conditions of the explant donor plant Respostas morfogenéticas de embriões de trigo em função do ambiente de cultivo da planta doadora de explantes

    Directory of Open Access Journals (Sweden)

    Dejan Dodig

    2010-01-01

    Full Text Available Availability of immature embryos as explants to establish wheat (Triticum aestivum L. by tissue culture can be limited by climatic factors and the lack of high quality embryos frequently hampers experimentation. This study evaluates the effects of rainfall, various temperature-based variables and sunshine duration on tissue culture response (TCR traits including callus formation (CF, regenerating calli (RC, and number of plants per embryo (PPE for 96 wheat genotypes of worldwide origin. The objectives of this study were to evaluate the significance of a particular climatic factor on TCR traits and to determine the period of wheat growth during which these factors were the most effective. The genotypes were grown in an experimental field during three seasons differing in meteorological conditions. The relationships between TCR traits and climatic factors within three time periods of wheat growth: 2, 6 and 10 weeks prior to embryo sampling were analysed by biplot analysis. The tissue culture traits were influenced at very different degrees by climatic factors: from 16.8% (RC to 69.8% (CF. Donor plant environment with high temperatures and low rainfalls reduced (p A disponibilidade de embriões imaturos para estabelecer plantas de trigo (Triticum aestivum L. por cultura de tecido pode ser limitada por fatores climáticos, e a falta de embriões de alta qualidade frequentemente dificulta a experimentação. Avaliou-se o efeito da chuva, de variáveis baseadas em temperatura e duração do brilho solar na resposta da cultura de tecido (RCT, incluindo a formação de calos (FC, regeneração dos calos (RC e número de plantas por embrião (NPPE, para 96 genótipos de trigo. Os objetivos foram a procura de algum fator climatico específico em alguma característica da RCT e a determinação do período do desenvolvimento do trigo no qual estes fatores são mais eficazes. Os genótipos foram obtidos num campo experimental durante três estações clim

  6. 酶预消化连续组织块法培养大鼠脂肪来源干细胞的研究%Culture of rat adipose-diverted stem cells by serial explant after enzymatic predigestion

    Institute of Scientific and Technical Information of China (English)

    李伯休; 程飚; 陈峥嵘

    2008-01-01

    Objective To isolate and culture adipose-diverted stem cells (ADSCs) in SD rats using serial explant after enzymatic predigestion, and compare, the results with that from Zuk's method. Methods Adipose tissue from groin area of one-month-old SD rats was divided into two groups. In group A, the adipose tissue was snipped into 8mm3 blocks after washed with D-Hank's solution. The tissue blocks were digested by 0.25% trypsin for 5 minutes and 0.1% collagenase type 1 for 20 minutes, and put on 1mm grid nylon net for 3 to 4 days of cultivation. The tissues were then removed to another culture flask. They were repeatedly cultured by serial explant method for three or four times. In group B, the adipose tissue was treated by Zuk's method. MTT was used to measure bioactivity of the culture and flow cytometry was used to detect surface markers of the stem cells. Results In both groups, the cells had typical morphological characteristics of stem cells and expressed adipose stem cell surface markers CD105 and CD44. Conclusion The adipose-diverted stem cells cultured by technique of enzymatic digestion and serial explant in vitro have the same characteristics of those cultured with Zuk's method. This technique can yield plenty of ADSCs samples during a short period of time and thus enables its practical use in ADSCs cultivation.%目的 采用胰蛋白酶+I型胶原酶预消化后连续组织块法进行SD大鼠脂肪来源干细胞的体外培养,并和Zuk的胶原酶消化法培养效果相比较,为脂肪来源干细胞的体外培养方法提供参考依据.方法 取1月龄SD大鼠腹股沟处脂肪组织,分A、B两组.A组使用D-Hank's液冲洗净后剪成8mm3左右组织块.0.25%胰蛋白酶消化5min后,0.1%I型胶原酶消化组织块20min,将组织块置于孔径1mm的尼龙网放至培养皿贴壁培养,3-4d后将组织块连同滤网放至下一培养皿中以连续组织块法培养3-4次.B组使用Zuk的胶原酶消化法培养.采用MTT检测方法对细胞增

  7. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.

  8. A bioreaction-diffusion model for growth of marine sponge explants in bioreactors.

    Science.gov (United States)

    Garcia Camacho, F; Chileh, T; Cerón García, M C; Sánchez Mirón, A; Belarbi, E H; Chisti, Y; Molina Grima, E

    2006-12-01

    Marine sponges are sources of high-value bioactives. Engineering aspects of in vitro culture of sponges from cuttings (explants) are poorly understood. This work develops a diffusion-controlled growth model for sponge explants. The model assumes that the explant growth is controlled by diffusive transport of at least some nutrients from the surrounding medium into the explant that generally has a poorly developed aquiferous system for internal irrigation during early stages of growth. Growth is assumed to obey Monod-type kinetics. The model is shown to satisfactorily explain the measured growth behavior of the marine sponge Crambe crambe in two different growth media. In addition, the model is generally consistent with published data for growth of explants of the sponges Disidea avara and Hemimycale columella. The model predicted that nutrient concentration profiles for nutrients, such as dissolved oxygen within the explant, are consistent with data published by independent researchers. In view of the proposed model's ability to explain available data for growth of several species of sponge explants, diffusive transport does play a controlling role in explant growth at least until a fully developed aquiferous system has become established. According to the model and experimental observations, the instantaneous growth rate depends on the size of the explant and all those factors that influence the diffusion of critical nutrients within the explant. Growth follows a hyperbolic profile that is consistent with the Monod kinetics.

  9. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  10. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  11. The influence of season collection of explants on micropropagation of peach rootstock GF-677

    Directory of Open Access Journals (Sweden)

    Elektra Spahiu

    2013-02-01

    Full Text Available The influence of season on the rate of multiplication on in vitro culture of peach rootstock GF- 677 was investigated on Murashige and Skoog (MS media, supplemented with GA3 0.1 mg/L and IAA 0.1mg/l. Benzyladenine (BAP at concentrations 1mg/l was used in the multiplication stage and 1mg/l IBA in the stage of rooting. Shoot-tip and nodal segment explants were collected from 5 years old rootstock GF-677 (Prunus persica x Prunus amygdalus in February 24th (from dormant shoots that have been sprouted in climatic room, March 22th, April 20th, May 18th and September 15th during the 2009 growing season and have been sterilized by sodium hypochlorite (NaOCl 10% for 20 min. The data on the effect of the season collection of the explants on number of shoots per explants, the mean shoot length and the percentage of rooted shoots were recorded six weeks after culture. In vitro performance of explants indicated a positive correlation between shoot proliferation and season collection The highest number of shoots per explants (3,5 was obtained on explants collected in March 22th (3,5, which was on a par with explants collected in February 24th (from shoots that have been sprouted in climatic room. Moreover, the highest shoot length was observed on explants collected on February and March (1,53cm and 1,505cm respectively. The percentage of rooted shoots from explants sampled on February was not markedly greater than those sampled on March. The number of shoots per explants, the shoot length and the percentage of rooted shoots on explants sampled in April, May and September were significantly lower than those sampled in February and March. The amount of chlorophyll a + b of the shoots coming from explants collected in March was markedly greater than those collected in February, April, May and September.

  12. Induction of inflammatory cytokines by cartilage extracts.

    Science.gov (United States)

    Merly, Liza; Simjee, Shabana; Smith, Sylvia L

    2007-03-01

    Shark cartilage extracts were examined for induction of cytokines and chemokines in human peripheral blood leukocytes. Primary leukocyte cultures were exposed to a variety of aqueous and organic extracts prepared from several commercial brands of shark cartilage. From all commercial sources of shark cartilage tested the acid extracts induced higher levels of TNFalpha than other extracts. Different commercial brands of shark cartilage varied significantly in cytokine-inducing activity. TNFalpha induction was seen as early as 4 h and IFNgamma at detectable levels for up to four days. Shark cartilage extracts did not induce physiologically significant levels of IL-4. Results suggest that shark cartilage, preferentially, induces Th1 type inflammatory cytokines. When compared to bovine cartilage extract, collagen, and chondroitin sulfate, shark cartilage induced significantly higher levels of TNFalpha. Treatment with digestive proteases (trypsin and chymotrypsin) reduced the cytokine induction response by 80%, suggesting that the active component(s) in cartilage extracts is proteinaceous. The induction of Th1 type cytokine response in leukocytes is a significant finding since shark cartilage, taken as a dietary supplement for a variety of chronic degenerative diseases, would be contraindicated in cases where the underlying pathology of the chronic condition is caused by inflammation. PMID:17276897

  13. Plant Regeneration of Sweet Potato via Somatic Embryogenesis from Different Explants

    Institute of Scientific and Technical Information of China (English)

    Ling ZHANG; Hongxuan XU; Baifu QIN; Zhihua LIA0; Min CHEN; Chunxian YANG; Yufan FU; Qitang ZHANG

    2012-01-01

    [Objective] This study aimed to regenerate plants of sweet potato (Ipomoea batatas) cultivar Xushu22 via somatic embryogenesis, using leaf and shoot apex as explants. [Method] The leaf and shoot apex of Xushu 22 were separately cultured on MSB medium and MSD medium. The induced embryogenic calluses were then cultured on MS medium. The regeneration frequency of leaf and shoot apex ex- plants were respectively calculated. [Result] The average frequency of leaf explants developing somatic callus was 95.69% compared to 30.56% in case of shoot apex explants. There were different types of morphogenic structures in the process of so- matic embryo development. Leaf explants gave a high regeneration frequency to 60.61%, while the regeneration frequency of shoot apices was 22%. In addition, no morphological variations were observed in the regeneration plants. [Conclusion] Leaf explant was better than shoot apices in plant regeneration of Xushu22 via somatic embryogenesis.

  14. Chlorophyll Fluorescence as a Tool to Assess the Regeneration Potential of African Violet Leaf Explants

    Directory of Open Access Journals (Sweden)

    Norbert KEUTGEN

    2016-06-01

    Full Text Available Micropropagation of many ornamentals has enabled their efficient commercialisation and many problems have been solved by the elaboration of adequate culture protocols. Nevertheless, a non-destructive technique for monitoring the developmental progress of explants would be desirable. The present study focussed on the applicability of chlorophyll fluorescence in leaf explants of African violet (a Saintpaulia ionantha × confusa – hybrid explanted onto Murashige and Skoog basic medium. The explants that survived on the medium without additional phytohormones had the capacity to develop further into two different kinds of explants: light green explants, characterized by a non-regular size growth and stiffer appearance, and dark green explants capable of organogenesis. Compared to the source leaves of African violet plants, explants were characterized by reduced chlorophyll (Chl and carotenoid (Car contents as well as a tendency towards a higher Car/Chl ratio. The Chl a/b ratio decreased significantly in the light green explants. A reduction of maximum quantum efficiency of photosystem II (Fv/Fm accompanied by a high percentage (> 50% of thermal energy dissipation as a consequence of an elevated light intensity (800 µmol m-2 s-1 quanta indicated photoinhibition in the light green explants, whereas in the dark green explants the largest percentage (> 50% of the light energy was dissipated into the fraction of photon energy trapped by ‘closed’ photosystem II reaction centres. These results suggest that the capacity of organogenesis of leaf explants of African violet can be monitored using chlorophyll fluorescence, because it is related to modifications of the photosynthetic system.

  15. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    Directory of Open Access Journals (Sweden)

    A. Bakrudeen Ali Ahmed

    2012-01-01

    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  16. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    Directory of Open Access Journals (Sweden)

    M.R. Baghban Eslaminezhad, Ph.D.

    2007-09-01

    Full Text Available Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isolated from the bone marrow of NMRI mice were pleted by centrifugation and cultured for 21 days in chondrogenic medium. At the end of cultivation period, occurrence of chondrogenic differentiation was confirmed by reverse transcriptase–polymerase chain reaction (RT-PCR analysis for some cartilage-specific genes. To compare the structure of differentiated tissue with that of natural cartilage, the cartilage was differentiated from MSCs and the cartilage obtained from the same murine rib was prepared for transmission electron microscopy (TEM.Results: Structural studies indicated that similar to the costal cartilage, the cartilage produced from differentiation of perichondrium-like layer was formed. According to the microscopic images, in contrast to costal chondrocytes, the differentiated cells had euchromatic nucleus and their cytoplasm contained plenty of the organelles involved in active cell secretion. Furthermore, intercellular matrix in differentiated cartilage had a fibrillar appearance. Conclusion: Our results indicated that the structure of cartilage produced in micro mass culture system is somewhat different from that of costal cartilage. The cells from differentiated tissue seemed to be more active than those from costal cartilage. .

  17. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  18. A Simple Method for Establishing Adherent Ex Vivo Explant Cultures from Human Eye Pathologies for Use in Subsequent Calcium Imaging and Inflammatory Studies

    Directory of Open Access Journals (Sweden)

    Sofija Andjelic

    2014-01-01

    Full Text Available A novel, simple, and reproducible method for cultivating pathological tissues obtained from human eyes during surgery was developed using viscoelastic material as a tissue adherent to facilitate cell attachment and expansion and calcium imaging of cultured cells challenged by mechanical and acetylcholine (ACh stimulation as well as inflammatory studies. Anterior lens capsule-lens epithelial cells (aLC-LECs from cataract surgery and proliferative diabetic retinopathy (PDR fibrovascular epiretinal membranes (fvERMs from human eyes were used in the study. We hereby show calcium signaling in aLC-LECs by mechanical and acetylcholine (ACh stimulation and indicate presence of ACh receptors in these cells. Furthermore, an ex vivo study model was established for measuring the inflammatory response in fvERMs and aLC-LECs upon TNFα treatment.

  19. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells. PMID:27648449

  20. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells.

  1. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates

    OpenAIRE

    Saskia Schadow; Hans-Christian Siebert; Günter Lochnit; Jens Kordelle; Markus Rickert; Jürgen Steinmeyer

    2013-01-01

    Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen ...

  2. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  3. Effect of vasoactive intestinal peptide on pulmonary surfactants phospholipid synthesis in lung explants

    Institute of Scientific and Technical Information of China (English)

    Lian LI; Zi-qiang LUO; Fu-wen ZHOU; Dan-dan FENG; Cha-xiang GUAN; Chang-qing ZHANG; Xiu-hong SUN

    2004-01-01

    AIM: To investigate the effect of vasoactive intestinal peptide (VIP) on pulmonary surfactants (PS) phospholipid synthesis in cultured lung explants. METHODS: Lung explants were cultured with serum-free medium, [methyl-3H]choline incorporation, total phospholipid, phosphatidylcholine, activity of choline-phosphate cytidylyltransferase (CCT) and CCTα mRNA level in lung explants were determined. RESULTS: (1) VIP (10-10-10-7 mol/L) for 16 h promoted [methyl-3H]choline incorporation in dose dependence and VIP (10-8 mol/L) for 2 h-16 h promoted [methylz3H]choline incorporation in time dependence. (2) VIP (10-8 mol/L) enhanced the contents of total phospholipidsand phosphatidylcholine in lung explants. (3) VIP (10-10-10-7 mol/L) elevated microsomal CCT activity of lung explants in dose dependence. (4) VIP (10-8 mol/L) increased expression of CCTα mRNA in lung explants and alveolar type Ⅱ cells (ATII). (5) [D-P-Cl-Phe(6)-Leu(17)]-VIP (10-6 mol/L), a VIP receptors antagonist, abolished the increase of [3H]choline incorporation, microsomal CCT activity and CCTα mRNA level induced by VIP (10-8 mol/L) in lung explants. CONCLUSION: VIP could enhance synthesis of phosphatidylcholine, the major component of pulmonary surfactants by enhancing microsomal CCT activity and CCTα mRNA level via VIP receptormediated pathway.

  4. Life Cycle of Heterodera zeae Koshy, Swarup, and Sethi on Zea mays L. Axenic Root Explants

    OpenAIRE

    Lauritis, J. A.; Rebois, R. V.; Graney, L. S.

    1983-01-01

    Monoxenic cultures of Heterodera zeae, the corn cyst nematode (CCN), were established on root explants of corn Zea mays L., cv. Kenworthy. The life cycle of H. zeae was determined from light anti scanning electron microscopic observations of the root explants grown in the dark at 29.5 ± .5 C under gnotobiotic conditions. The life cycle, from the time the explants were inoculated with second-stage larvae (L2) to the first appearance of newly hatched second-generation L2, required 22 days. The ...

  5. 新西兰兔关节软骨细胞分离培养与鉴定的实验研究%Isolation,culture and identification of New Zealand rabbit articular cartilage cells

    Institute of Scientific and Technical Information of China (English)

    刘小荣; 张笠; 高武; 卢青云; 孟研

    2012-01-01

    目的 探讨新西兰兔关节软骨细胞体外分离、培养及鉴定的实验方法.方法 单纯采用Ⅱ型胶原酶消化新西兰兔关节软骨组织以分离软骨细胞,经体外培养后,以形态学观察、甲苯胺蓝染色和Ⅱ型胶原蛋白细胞化学染色对软骨细胞进行鉴定.结果 倒置相差显微镜显示3代以内软骨细胞呈多角形或三角形,核为圆形或椭圆形;甲苯胺蓝染色可见细胞呈紫蓝色,细胞基质呈蓝色;Ⅱ型胶原蛋白细胞化学染色可见胞浆及胞膜出现棕黄色颗粒,细胞基质内也有少量棕黄色颗粒.结论 成功建立了新西兰兔关节软骨细胞分离及培养体系,3代以内软骨细胞生长良好,保持稳定的生物学特征,传代4次后出现"去分化"现象.%Objective To isolate, culture and identify rabbit articular cartilage cells in vitro. Methods Articular cartilage cells were obtained by type Ⅱ collagen enzyme digestion from the cartilage of New Zealand white rabbits. The cells were identified by phase-contrast microscope, toluidine blue staining and type Ⅱ collagen immunohistochemical staining. Results Morphology and fluorescence staining showed that cartilage cells presented with polygonal or triangle within three generations. Toluidine blue staining showed that cell plasma and membrane presented with dark blue. Type Ⅱ collagen immunohistochemical staining showed clear cytoplasm and cell membrane presented with brown. Conclusion A system for isolation, culturing and identification New Zealand rabbit cartilage cells was successfully established. Cartilage cells could grow well within three generations and maintain stable biological characters. After fourth generation, cartilage cells might turn to dedifferentiation.

  6. Absorção de macronutrientes por explantes de bananeira in vitro Macronutrient absorption by banana explants in vitro

    Directory of Open Access Journals (Sweden)

    Josefa Diva Nogueira Diniz

    1999-07-01

    Full Text Available Com o objetivo de estudar a absorção de macronutrientes (N, P, K, Ca, Mg e S em explantes de bananeira cv. Prata Anã, foram utilizados explantes de plantas estabelecidas in vitro, inoculados em meio básico de Murashige & Skoog (1962 contendo sacarose (30 g/L, e BAP (3,5 mg/L com sete tratamentos, representados pelos períodos de 0, 10, 20, 30, 40, 50 e 60 dias de cultivo e três repetições. As quantidades de macronutrientes totais absorvidas pelos explantes seguiram a ordem: K > N > Ca > ou = P > Mg @ S. O P foi o nutriente absorvido mais rapidamente pelos explantes, com 75% extraído do meio de cultivo nos primeiros 30 dias, cessando sua absorção aos 50 dias, restando ainda 9% no meio de cultivo. A absorção do S cessou também aos 50 dias, quando 66% deste nutriente ainda permanecia no meio de cultivo. Este resultado sugere haver uma relação, quanto à absorção, entre esses dois nutrientes. As maiores taxas de absorção de todos os nutrientes foram verificadas nos primeiros 20 dias. O rizoma, o pseudocaule e as folhas, se diferenciaram quanto à concentração e extração ou acúmulo de nutrientes.The absorption of the nutrients (N, P, K, Ca, Mg and S by banana (Musa sp. cv. Prata Anã explants on the basic medium of Murashige & Skoog (1962 supplemented with sucrose (30 g/L and BAP (3.5 mg/L were evaluated at 0, 10, 20, 30, 40, 50 and 60 days after inoculation. The seven treatments were arranged on a completely randomized design with three replicates. The sequence of nutrient absorption by the explants was K > N > Ca > or = P > Mg @ S. The P was the nutrient with the fastest absorption rate and at the 30th day the explants had already absorbed 75% of the P from the medium. The P absorption stopped by the 50th day. The S absorption stopped at the 50th day with 66% of it remaining in the medium. The results suggested a close relationship between these two nutrients. The highest rates of nutrient absorption were observed during the

  7. Organogênese direta de explantes cotiledonares e regeneração de plantas de mogango Direct organogenesis of cotyledon explants and plant regeneration of squash

    Directory of Open Access Journals (Sweden)

    André Luís Lopes da Silva

    2006-06-01

    Full Text Available Os objetivos foram induzir a organogênese direta de explantes cotiledonares de mogango e estudar a regeneração de plântulas completas a partir das brotações adventícias. Foram utilizados cotilédones como explantes, originados das plântulas de mogango com 20 dias após a semeadura. O meio basal utilizado foi o MS (MURASHIGE & SKOOG, 1962 suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Foram testadas as concentrações de 6-benzilaminopurina (BAP de 0; 0,5; 1,0 e 2,0mg L-1. Explantes de ápices caulinares e segmentos nodais de brotações adventícias foram então cultivados em meio MS suplementado com 30g L-1 de sacarose e 7g L-1 de agar. Maiores concentrações de BAP no meio MS promoveram um aumento da percentagem de explantes cotiledonares com brotações adventícias e uma redução da percentagem de enraizamento. Explantes de segmentos nodais e ápices caulinares oriundos de brotações adventícias cresceram e enraizaram em meio MS sem reguladores de crescimento. Altas percentagens de enraizamento dependem do tamanho dos explantes utilizados.The objectives were to induce direct organogenesis of squash cotyledons and to study the regeneration of complete plantlets from adventitious shoot. Cotyledon explants of 20-day seedlings were cultured in MS (MURASHIGE & SKOOG, 1962 medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. The 6-benzilaminopurina (BAP concentrations of 0, 0.5, 1.0 and 2.0mg L-1 were tested. Apical and nodal explants from adventitious shoots were transferred to MS medium supplemented with 30g L-1 of sucrose and 7g L-1 of agar. Increasing BAP concentrations in the MS medium enhance the percentage of adventitious shoot and reduce the percentage of root organogenesis of squash cotyledon explants. Apical and nodal explants from adventitious shoot regenerated plantlets with roots in MS medium without growth regulators. High percentage of plantlet rooting depends upon the size of the explants.

  8. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  9. 微载体培养技术在骨与软骨组织工程研究中的应用%Application of microcarrier culture techniques in bone and cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    宁斌; 田周斌; 贾堂宏

    2012-01-01

    BACKGROUND: Proliferation and specific phenotype maintaining of seed cells are the difficulties in bone and cartilage tissueengineering. The microcarrier bioreactor culture system provides a good method to solve this problem.OBJECTIVE: To analyze the domestic and international development of microcarrier culture of bone and cartilage cells, and toprovide the theoretical basis for microcarrier culture of bone and cartilage cells and researches in tissue engineering.METHODS: A computer-based online search of articles published from 1967 to 2011 was performed at November 2010 inPubMed database (http://www.ncbi.nlm.gov/PubMed) and Wanfang database (http://www.wanfangdata.com.cn) using the keywords of "microcarrier, cartilage, tissue engineering" in English and in Chinese, respectively. Articles irrelative to this paper,antiquated or repeated literatures were excluded. Totally 32 articles were chosen for further analysis.RESULTS AND CONCLUSION: Culture conditions of bone and cartilage cells in microcarrier bioreactor culture system can bewell regulated to achieve a large number of proliferation and phenotype maintaining of the cells, or even achieve an enhancementof phenotype. This technology has a good potential application in bone and cartilage tissue engineering and clinical work.%背景 骨与软骨组织工程学中增殖种子细胞和保持细胞特定表型是其难点,微载体生物反应器培养系统提供了很好的条件来解决这个问题.目的 分析近年来国内外骨、软骨细胞微载体培养的研究进展,为骨与软骨细胞微载体培养技术和组织工程研究提供理论基础.方法 由第一作者在2010-11 进行检索.检索数据库:PubMed 数据库(网址http://www.ncbi.nlm.gov/PubMed);万方数据库(网址http://www.wanfangdata.com.cn),资料的检索时间范围为1967/2011.英文检索词为"microcarrier,cartilage,tissue engineering",中文检索词为"微载体,软骨,组织工程学".排除与本文无关及陈

  10. Effect of Hormones on Direct Shoot Regeneration in Hypocotyl Explants of Tomato

    Directory of Open Access Journals (Sweden)

    Rizwan RASHID

    2010-03-01

    Full Text Available This study was conducted for developing a high frequency regeneration system in two genotypes of tomato (Lycopersicon esculentum Mill., �Punjab Upma� and �IPA-3� for direct shoot regeneration from hypocotyl explants. The explants were excised from in vitro tomato seedlings and cultured on MS medium supplemented with different concentrations and combinations of hormones. Direct regeneration was significantly influenced by the genotype hormones combination and concentrations. The MS medium supplemented with (Kinetin 0.5 mg/l and (BAP 0.5 mg/l was found optimum for inducing direct shoot regeneration and number of shoots per explant from hypocotyl explants on this medium. Shoot regeneration per cent in �Punjab Upma� and �IPA-3� per cent was recorded to be highest i.e (86.02 and (82.57 respectively. Besides this, average number shoots per explant was also highest i.e (3.16 in case of �Punjab Upma� and (2.93 in case of �IPA-3�. A significant decline was observed in percent shoot regeneration and average number of shoots per explant with increase in the hormonal concentration. Shoots were obtained and transferred to the elongation medium (MS + BAP 0.3 mg/l. Hundred per cent rooting was induced in separated shoots upon culturing on MS and � MS basal media. Hardening on moist cotton showed maximum plantlet survival rate in case of both genotypes. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established in tomato for obtaining direct regeneration using hypocotyl as explants.

  11. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  12. Cartilage Engineering and Microgravity

    Science.gov (United States)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  13. Proliferation of Female Inflorescences explants of Date Palm

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of Abscisic acid (ABA) and Ancymidol on proliferation of female inflorescences explants of date palm. In the first experiment two lengths of spath at (5-7 cm) or at (7-10 cm) were cultured on nutrient media which consists of half macro and full micro salts of MS medium supplemented with gradual decreasing in concentration of Abscisic acid (ABA) and Ancymidol from 4.5, 3.0, 1.5 to 0.5 mg-1. In the second experiment two phases of nutrient medium (solid and liquid) and two source of carbon were investigated. Gradual decreasing of ABA concentrations from 4.5 mg-1 to 1.5 mg-1 in culture medium, stimulated the production of direct somatic embryos and accelerated callus initiation, but at last decrement (0.5 mg-1) of Ancymidol concentration few embryos were produced. Callus initiation from inflorescences explants gave high production and well development of somatic embryos when cultured on liquid medium supplemented with 40 g-1 sucrose. All direct or indirect somatic embryos obtained in these experiments were converted successfully to healthy normal plantlets which could be transferred to acclimatization stage.

  14. A Study on the Technique System of Tissue Culture in Rhododendron Hybrind(Ⅰ)——Selection of Medium and Explant%西洋杜鹃组织培养技术体系研究(Ⅰ)——基本培养基和外植体的选择

    Institute of Scientific and Technical Information of China (English)

    钟宇; 张健; 罗承德; 陈其兵

    2001-01-01

    实验以不同季节的茎尖(含茎段)为材料,采用不同基本培养基,研究确定西洋杜鹃组织培养适合的基本培养基类型,植株再生的可能途径,以及适宜的培养条件。结果表明:①低盐分浓度及高比值NH4+/NO3-的基本培养基Read培养基适合西洋杜鹃;②最适外植体为摘花芽后萌发的顶芽茎尖;③最佳取材时间为3~5月;④培养条件:温度25±2℃,光照16h/黑暗8h,光照强度1500~2500lx。%In view of studying the suitable type of medium, probable way of explant regeneration and suitable condition of culture for tissue culture in R.hybridn, a experimentation was established in which shoot tip from different seasons and a series of different medium were employed. The results are as follows: ①Read medium with low mineral salt concentration and high ration of NH4+/NO3- is suitable for R.hybridn microculture; ②The optimal explants are shoot tips of end buds excised from R.hybridn in 3~5 months; ③All the cultures are kept under the temperature of 25±2℃, illuminated for 16 hours per day, and light intensity was 1500~2500lx.

  15. Influence of Cartilage Extracellular Matrix Molecules on Cell Phenotype and Neocartilage Formation

    OpenAIRE

    Grogan, Shawn P.; Chen, Xian; Sovani, Sujata; Taniguchi, Noboru; Colwell, Clifford W.; Lotz, Martin K; D'Lima, Darryl D

    2013-01-01

    Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decor...

  16. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions. PMID:26414455

  17. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-xing; LI Fo-bao; SHEN Hui-liang; LIAO Wei-ming; LIU Miao; WANG Min; CAO Jun-ling

    2006-01-01

    Objective: To investigate the effect of cancellous bone matrix gelatin (BMG) engineered with allogeneic chondrocytes in repairing articular cartilage defects in rabbits.Methods: Chondrocytes were seeded onto three-dimensional cancellous BMG and cultured in vitro for 12 days to prepare BMG-chondrocyte complexes. Under anesthesia with 2.5% pentobarbital sodium (1 ml/kg body weight), articular cartilage defects were made on the right knee joints of 38 healthy New Zealand white rabbits (regardless of sex, aged 4-5 months and weighing 2.5-3 kg) and the defects were then treated with 2.5 % trypsin.Then BMG-chondrocyte complex (Group A, n=18 ),BMG ( Group B, n=10), and nothing ( Group C, n=10)were implanted into the cartilage defects, respectively. The repairing effects were assessed by macroscopic, histologic,transmission electron microscopic (TEM) observation,immunohistochemical examination and in situ hybridization detection, respectively, at 2, 4, 8, 12 and 24 weeks after operation.Results: Cancellous BMG was degraded within 8 weeks after operation. In Group A, lymphocyte infiltration was observed around the graft. At 24 weeks after operation, the cartilage defects were repaired by cartilage tissues and the articular cartilage and subchondral bone were soundly healed. Proteoglycan and type Ⅱ collagen were detected in the matrix of the repaired tissues by Safranin-O staining and immunohistochemical staining,respectively. In situ hybridization proved gene expression of type Ⅱ collagen in the cytoplasm of chondrocytes in the repaired tissues. TEM observation showed that chondrocytes and cartilage matrix in repaired tissues were almost same as those in the normal articular cartilage. In Group B, the defects were repaired by cartilage-fibrous tissues. In Group C, the defects were repaired only by fibrous tissues.Conclusions : Cancellous BMG can be regarded as the natural cell scaffolds for cartilage tissue engineering.Articular cartilage defects can be repaired by

  18. Effect of Macrophage Migration Inhibitory Factor (MIF) in Human Placental Explants Infected with Toxoplasma gondii Depends on Gestational Age

    OpenAIRE

    de Oliveira Gomes, Angelica; de Oliveira Silva, Deise Aparecida; Silva, Neide Maria; de Freitas Barbosa, Bellisa; Franco, Priscila Silva; Angeloni, Mariana Bodini; Fermino, Marise Lopes; Roque-Barreira, Maria Cristina; Bechi, Nicoletta; Paulesu, Luana Ricci; dos Santos, Maria Célia; Mineo, José Roberto; Ferro, Eloisa Amália Vieira

    2011-01-01

    Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-β1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured...

  19. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    Science.gov (United States)

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.

  20. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants

    Science.gov (United States)

    Methicillin-resistant Staphylococcus aureus (MRSA) can infect wounds and produce difficult-to- treat biofilms. To determine the extent that MRSA biofilms can deplete oxygen, change pH and damage host tissue, we developed a porcine dermal explant model on which we cultured GFP-labeled MRSA biofilms. ...

  1. Pharmacological influence of antirheumatic drugs on proteoglycans from interleukin-1 treated articular cartilage.

    Science.gov (United States)

    Steinmeyer, J; Daufeldt, S

    1997-06-01

    The purpose of this study was to examine whether drugs used in the treatment of arthritic disorders possess any inhibitory potential on the proteoglycanolytic activities of matrix metalloproteinases (MMPs), and to determine whether drugs which inhibit these enzymes also modulate the biosynthesis and release of proteoglycans (PGs) from interleukin-1-(IL-1) treated articular cartilage explants. The cartilage-bone marrow extract and the glycosaminoglycan-peptide complex (DAK-16) dose-dependently inhibited MMP proteoglycanases in vitro when tested at concentrations ranging from 0.5 to 55 mg/mL, displaying an IC50 value of 31.78 mg/mL and 10.64 mg/mL (1.9 x 10[-4] M) respectively. (R,S)-N-[2-[2-(hydroxyamino)-2-oxoethyl]-4-methyl-1-oxopentyl++ +]-L-leucyl-L-phenylalaninamide (U-24522) proved to be a potent inhibitor of MMP proteoglycanases (IC50 value 1.8 x 10[-9] M). None of the other tested drugs, such as possible chondroprotective drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), disease modifying antirheumatic drugs (DMARDs), glucocorticoids and angiotensin-converting enzyme inhibitors tested at a concentration of 10(-4) M displayed any significant inhibition. Only U-24522, tested at a concentration ranging from 10(-4) to 10(-6) M, significantly inhibited the IL-1-induced augmentation of PG loss from cartilage explants into the nutrient media, whereas DAK-16 and the cartilage-bone marrow extract were ineffective. DAK-16 and the cartilage-bone marrow extract did not modulate the IL-1-mediated reduced biosynthesis and aggregability of PGs by the cartilage explants. The addition of 10(-5) M U-24522, however, partially maintained the aggregability of PGs ex vivo. In our experiments, both possible chondroprotective drugs as well as U-24522 demonstrated no cytotoxic effects on chondrocytes.

  2. Oxygen dynamics in choanosomal sponge explants

    NARCIS (Netherlands)

    Hoffmann, F.; Larsen, O.; Rapp, H.T.; Osinga, R.

    2005-01-01

    Oxygen microprofiles were measured over the boundary layer and into the tissue of 10-day-old cultivated tissue fragments (explants of 2-4 cm 3) from the choanosome of the cold-water sponge Geodia barretti with oxygen-sensitive Clark-type microelectrodes. At this time of cultivation, the surface tiss

  3. In Vitro Propagation of Desmodium gangeticum (L. DC. from Cotyledonary Nodal Explants

    Directory of Open Access Journals (Sweden)

    U R Vishwakarma

    2009-01-01

    Full Text Available An in vitro procedure for rapid multiplication of medicinally important plant Desmodium gangeticum (L. DC. (Fabaceae, has been developed using cotyledonary nodal explant. An average of 9.2 shoots per explant were obtained by culturing cotyledonary nodal explaint on Murashige and Skoog′s medium containing 8.8 μM BAP and 21.2 μM NAA, in combination, within 28 days. These shoots were rooted on half strength MS medium supplemented with IAA 17.1 μM. Rooted plantlets were hardened using 1:1:1 mixture of soil, river sand and vermiculite under green house conditions.

  4. In Vitro Propagation of Desmodium gangeticum (L.) DC. from Cotyledonary Nodal Explants

    OpenAIRE

    U R Vishwakarma; Gurav, A M; Sharma, P.C

    2009-01-01

    An in vitro procedure for rapid multiplication of medicinally important plant Desmodium gangeticum (L.) DC. (Fabaceae), has been developed using cotyledonary nodal explant. An average of 9.2 shoots per explant were obtained by culturing cotyledonary nodal explaint on Murashige and Skoog′s medium containing 8.8 μM BAP and 21.2 μM NAA, in combination, within 28 days. These shoots were rooted on half strength MS medium supplemented with IAA 17.1 μM. Rooted plantlets were hardened using 1:1:1 mix...

  5. The Immunosuppressant FTY720 (Fingolimod enhances Glycosaminoglycan depletion in articular cartilage

    Directory of Open Access Journals (Sweden)

    Stradner Martin H

    2011-12-01

    Full Text Available Abstract Background FTY720 (Fingolimod is a novel immunosuppressive drug investigated in clinical trials for organ transplantation and multiple sclerosis. It acts as a functional sphingosine-1-phosphate (S1P receptor antagonist, thereby inhibiting the egress of lymphocytes from secondary lymphoid organs. As S1P is able to prevent IL-1beta induced cartilage degradation, we examined the direct impact of FTY720 on cytokine induced cartilage destruction. Methods Bovine chondrocytes were treated with the bioactive phosphorylated form of FTY720 (FTY720-P in combination with IL-1beta or TNF-alpha. Expression of MMP-1,-3.-13, iNOS and ADAMTS-4,-5 and COX-2 was evaluated using quantitative real-time PCR and western blot. Glycosaminoglycan depletion from cartilage explants was determined using a 1,9-dimethylene blue assay and safranin O staining. Results FTY720-P significantly reduced IL-1beta and TNF-alpha induced expression of iNOS. In contrast FTY720-P increased MMP-3 and ADAMTS-5 mRNA expression. Furthermore depletion of glycosaminoglycan from cartilage explants by IL-1beta and TNF-alpha was significantly enhanced by FTY720-P in an MMP-3 dependent manner. Conclusions Our results suggest that FTY720 may enhance cartilage degradation in pro-inflammatory environment.

  6. Culture and identification of the chondrocytes from auricular cartilage of rhesus monkey%猕猴耳廓软骨细胞的体外培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    张金宁; 王旭东; 杨驰

    2001-01-01

    Objective:To culture the auricular chondrocytes of rhesus monkeyin vitro,and to certify the possibility of auricular cartilage as an ideal donor site for chondrocytes transplantation.Methods:The auricular cartilages of 6 rhesus monkeys were dissected and digested,the chondrocytes were isolated and cultured in F-12 medium.The changes of cellular morphology were investigated with inverted microscope.The cellular activities were studied with immunohistochemistry(IHC).Results:The homogenous,high-activity chondrocytes were harvested and cultured iv vitro successfully and IHC showed that there was no significant difference between type Ⅰ and type Ⅱ collagen stain in 3rd generation.Conclusions:Auricular cartilage of rhesus monkey is an ideal donor site for chondrocytes transplantation.%目的 掌握猕猴耳廓软骨细胞的体外分离、培养和鉴定技术,探讨耳廓软骨作为软骨细胞供区的可行性。材料与方法:对6只猕猴进行耳廓软骨取材、软骨细胞的分离,并行单层贴壁培养。通过倒置显微镜观察细胞生长情况并行细胞生长曲线的绘制;通过免疫组织化学染色对细胞分泌的基质成分进行鉴定。结果:6只猕猴的耳廓软骨经分离后,获得了高纯度、高活性的软骨细胞,并成功地进行了体外培养;软骨细胞倍增时间为98小时;免疫组织化学染色发现体外培养的软骨细胞具有分泌胶原基质的能力,但第三代细胞分泌Ⅰ、Ⅱ型胶原的能力无明显区别。结论:利用猕猴耳廓软骨细胞体外分离及培养,能成功地获得具有体内活性的软骨细胞,耳廓软骨是一种易获取的软骨细胞供区。

  7. Effects of Ureaplasma diversum on bovine oviductal explants: quantitative measurement using a calmodulin assay.

    Science.gov (United States)

    Smits, B; Rosendal, S; Ruhnke, H L; Plante, C; O'Brien, P J; Miller, R B

    1994-01-01

    Calmodulin (CAM) acts as an intracellular regulator of calcium, an important mediator of many cell processes. We used the CAM assay and electron microscopy to investigate the effects of Ureaplasma diversum on bovine oviductal explants obtained aseptically from slaughtered cows. A stock suspension of U. diversum (treated specimens) and sterile broth (controls) was added to replicates of cultured explants and incubated at 38 degrees C in an atmosphere of 5.5% CO2 for 48 hours. Explants were examined for ciliary activity, extracellular CAM loss, and for histological and ultrastructural changes. Explants and their culture media were examined for changes in CAM concentration. All experiments were replicated three times. In addition, U. diversum, medium and broth were assayed for CAM content. The concentrations of CAM in explants and media changed significantly (p diversum when compared to controls. The controls and infected specimens did not differ histologically or ultrastructurally, but U. diversum was seen to be closely associated with infected explant tissue. In view of this close affinity it is assumed the loss of CAM from the oviductal cells was causally related, but this was not proven. The failure to show cell membrane injury on light and electron microscopic examination was probably related to the short duration of the experiment and may only point out the sensitivity of the CAM assay in detecting early cell membrane injury. Compromise in characteristics of the medium to support both, the viability of oviductal cells and U. diversum limited the experimental time to 48 hours.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:8004536

  8. CALLUS INDUCTION AND PLANT REGENERATION IN PUNICA GRANATUM L. ?NANA' FROM LEAF EXPLANTS

    Directory of Open Access Journals (Sweden)

    Alireza Bonyanpour

    2013-09-01

    Full Text Available ABSTRACT In this investigation, leaf explants of a local cultivar of dwarf pomegranate were placed on Murashige and Skoog (1962 (MS medium supplemented with various concentrations of 6-benzyl adenin (BA and naphthalene acetic acid (NAA for callus induction. After 40 days, maximum callus induction was observed on a media containing 1 mg L-1 BA and 0.2 to 0.4 mg L-1 NAA. However, the highest callus growth was obtained on a medium containing 1 mg L-1 BA and 1 mg L-1 NAA. The highest number of shoots (7 shoots per explants was obtained by transferring the calli to the media containing 5 mg L-1 BA with 0.1 mg L-1 NAA. Maximum shoot proliferation was observed when shoots were cultured on woody plant medium (WPM supplemented with 5 mg L-1 kinetin (Kin. In this treatment, after 4 subcultures, 36 shoots were produced from one original explant. Among treatments used in rooting experiments, shoots cultured on WPM medium containing 0.2 mg L-1 indol butyric acid (IBA had the maximum root percentage (100% and good root growth (2.06 cm mean length and 2 roots in each explants. Rooted plantlets were cultured in a soil mixture containing vermiculite (60%, perlite (30% and coco peat (10% v/v. After 2 months, 80% of plants survived and transferred to the greenhouse.

  9. Characterisation of coral explants: a model organism for cnidarian-dinoflagellate studies

    Science.gov (United States)

    Gardner, S. G.; Nielsen, D. A.; Petrou, K.; Larkum, A. W. D.; Ralph, P. J.

    2015-03-01

    Coral cell cultures made from reef-building scleractinian corals have the potential to aid in the pursuit of understanding of the cnidarian-dinoflagellate symbiosis. Various methods have previously been described for the production of cell cultures in vitro with a range of success and longevity. In this study, viable tissue spheroids containing host tissue and symbionts (coral explants) were grown from the tissues of Fungia granulosa. The cultured explants remained viable for over 2 months and showed morphological similarities in tissue structure and internal microenvironment to reef-building scleractinian corals. The photophysiology of the explants (1 week old) closely matched that of the parent coral F. granulosa. This study provides the first empirical basis for supporting the use of coral explants as laboratory models for studying coral symbioses. In particular, it highlights how these small, self-sustaining, skeleton-free models can be useful for a number of molecular, genetic and physiological analyses necessary for investigating host-symbiont interactions at the microscale.

  10. Involvement of ADAMTS5 and hyaluronidase in aggrecan degradation and release from OSM-stimulated cartilage

    Directory of Open Access Journals (Sweden)

    M Durigova

    2011-01-01

    Full Text Available The relative contribution of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS4 and ADAMTS5 to aggrecan degradation under oncostatin M (OSM stimulation, the role of the ancillary domains of the aggrecanases on their ability to cleave within the chondroitin sulfate (CS-2 region, the role of hyaluronidases (HYAL in stimulating aggrecan release in the absence of proteolysis, and the identity of the hyaluronidase involved in OSM-mediated cartilage breakdown were investigated. Bovine articular cartilage explants were cultured in the presence of interleukin-1beta (IL-1beta, tumor necrosis factor alpha (TNFalpha and/or OSM, or treated with trypsin and/or hyaluronidase. Aggrecan was digested with various domain-truncated isoforms of ADAMTS4 and ADAMTS5. Aggrecan and link protein degradation and release were analyzed by immunoblotting. Aggrecanase and HYAL gene expression were determined. ADAMTS4 was the most inducible aggrecanase upon cytokine stimulation, whereas ADAMTS5 was the most abundant aggrecanase. ADAMTS5 was the most active aggrecanase and was responsible for the generation of an OSM-specific degradation pattern in the CS-2 region. Its ability to cleave at the OSM-specific site adjacent to the aggrecan G3 region was enhanced by truncation of the C-terminal thrombospondin domain, but reduced by further truncation of both the spacer and cysteine-rich domains of the enzyme. OSM has the ability to mediate proteoglycan release through hyaluronan degradation, under conditions where HYAL-2 is the predominant hyaluronidase being expressed. Compared to other catabolic cytokines, OSM exhibits a unique potential at degrading the proteoglycan aggregate, by promoting early robust aggrecanolysis, primarily through the action of ADAMTS5, and hyaluronan degradation.

  11. Bovine explant model of degeneration of the intervertebral disc

    Directory of Open Access Journals (Sweden)

    Sivan Sarit

    2008-02-01

    Full Text Available Abstract Background Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc degeneration in an explant bovine model via enzymatic digestion. Methods Bovine coccygeal discs were incubated with different concentrations of the proteolytic enzymes, trypsin and papain, and maintained in culture for up to 3 weeks. A radio-opaque solution was injected to visualise cavities generated. Degenerative features were monitored histologically and biochemically (water and glycosaminoglycan content, via dimethylmethylene blue. Results and Conclusion The central region of both papain and trypsin treated discs was macro- and microscopically fragmented, with severe loss of metachromasia. The integrity of the surrounding tissue was mostly in tact with cells in the outer annulus appearing viable. Biochemical analysis demonstrated greatly reduced glycosaminoglycan content in these compared to untreated discs. We have shown that bovine coccygeal discs, treated with proteolytic enzymes can provide a useful in vitro model system for developing and testing potential new treatments of disc degeneration, such as injectable implants or biological therapies.

  12. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants

    Directory of Open Access Journals (Sweden)

    Uitterlinden EJ

    2008-09-01

    Full Text Available Abstract Background Glucosamine (GlcN used by patients with osteoarthritis was demonstrated to reduce pain, but the working mechanism is still not clear. Viscosupplementation with hyaluronic acid (HA is also described to reduce pain in osteoarthritis. The synthesis of HA requires GlcN as one of its main building blocks. We therefore hypothesized that addition of GlcN might increase HA production by synovium tissue. Methods Human osteoarthritic synovium explants were obtained at total knee surgery and pre-cultured for 1 day. The experimental conditions consisted of a 2 days continuation of the culture with addition of N-Acetyl-glucosamine (GlcN-Ac; 5 mM, glucosamine-hydrochloride (GlcN-HCl; 0.5 and 5 mM, glucose (Gluc; 0.5 and 5 mM. Hereafter HA production was measured in culture medium supernatant using an enzyme-linked binding protein assay. Real time RT-PCR was performed for hyaluronic acid synthase (HAS 1, 2 and 3 on RNA isolated from the explants. Results 0.5 mM and 5 mM GlcN-HCl significantly increased HA production compared to control (approximately 2 – 4-fold, whereas GlcN-Ac had no significant effect. Addition of 5 mM Gluc also increased HA production (approximately 2-fold, but 0.5 mM Gluc did not. Gene expression of the HA forming enzymes HAS 1, 2 and 3 was not altered by the addition of GlcN or Gluc. Conclusion Our data suggest that exogenous GlcN can increase HA production by synovium tissue and is more effective at lower concentrations than Gluc. This might indicate that GlcN exerts its potential analgesic properties through stimulation of synovial HA production.

  13. Rapid and simple method for in vivo ex utero development of mouse embryo explants.

    Science.gov (United States)

    Gonçalves, André B; Thorsteinsdóttir, Sólveig; Deries, Marianne

    2016-01-01

    The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero.

  14. Anti-cartilage antibody.

    Science.gov (United States)

    Greenbury, C L; Skingle, J

    1979-08-01

    Antibody to cartilage has been demonstrated by indirect immunofluorescence on rat trachea in the serum of about 3% of 1126 patients with rheumatoid arthritis. Titres ranged from 1:20 to 1:640. The antibody was not found in 284 patients with primary or secondary osteoarthritis or in 1825 blood donors, nor, with the exception of two weak reactors, in 1314 paraplegic patients. In most cases the antibody appears to be specific for native type II collagen. Using this as an antigen in a haemagglutination test 94% of anti-cartilage sera were positive, whereas among 100 rheumatoid control sera there were only three weak positives. More than 80% of patients with antibody had some erosion of articular cartilage, but there was no correlation with age, sex, duration of disease, nor any recognisable clinical event or change.

  15. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    Osteoarthritis (OA) is a widespread, chronic joint disease for which there are currently no effective treatments beyond symptom relief. The lack of any approved disease modifying osteoarthritic drugs may partly be explained by insufficient disease understanding, but may also be tied to the absence...... spatial cartilage changes that were observed in our study and in recent literature. The cartilage “Activity” marker is shown to have a state-of-the-art performance in separating healthy knees from OA knees and is also shown to predict knee replacement which is a clinically relevant endpoint for OA....

  16. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties.

    Science.gov (United States)

    Mori, Yuka; Ohshimo, Jun; Shimazu, Takahisa; He, Haiping; Takahashi, Atsuko; Yamamoto, Yuki; Tsunoda, Hajime; Tojo, Arinobu; Nagamura-Inoue, Tokiko

    2015-04-01

    The umbilical cord (UC) has become one of the major sources of mesenchymal stem cells (MSCs). The common explant method of isolating UC-derived MSCs (UC-MSCs) involves mincing the UCs into small fragments, which are then attached to a culture dish bottom from which the MSCs migrate. However, the fragments frequently float up from the bottom of the dish, thereby reducing the cell recovery rate. To overcome this problem, we demonstrate an improved explant method for UC-MSC isolation, which involves the use of a stainless steel mesh (Cellamigo(®); Tsubakimoto Chain Co.), to protect the tissue from floating after the minced fragments are aligned at regular intervals in culture dishes. The culture medium was refreshed every 3 days and the adherent cells and tissue fragments were harvested using trypsin. The number of UC-MSCs isolated from 1 g of UC using the explant method with Cellamigo was 2.9 ± 1.4 × 10(6)/g, which was significantly higher than that obtained without Cellamigo (0.66 ± 0.53 × 10(6)/g) (n = 6, p < 0.01) when cells reached 80-90% confluence. In addition, the processing and incubation time required to reach 80-90% confluence was reduced in the improved explant method compared with the conventional method. The UC-MSCs isolated using the improved method were positive for CD105, CD73, CD90, and HLA class I expression and negative for CD45 and HLA class II expression. The isolated UC-MSCs efficiently inhibited the responder T cells induced by allogeneic dendritic cells in a mixed lymphocyte reaction. Conclusively, we demonstrated that the use of Cellamigo improves the explant method for isolating UC-MSCs. PMID:25220032

  17. ORGANOGÊNESE INDIRETA A PARTIR DE EXPLANTES FOLIARES E MULTIPLICAÇÃO IN VITRO DE BROTAÇÕES DE Eucalyptus benthamii X Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Yohana de Oliveira-Cauduro

    2014-01-01

    Full Text Available The aims of this research were to evaluate different culture media for indirect organogenesis and shoot multiplication of Eucalyptus benthamii x Eucalyptus dunnii . For organogenesis, leaf explants were used to test the following treatments: two culture media (MS N/2 and JADS supplemented with 0.1 μM 1-naphthaleneacetic acid (NAA and thidiazuron (TDZ (0.1 or 0.5 μ M, with or without PVP- 40 (250 mg L -1 . The percentage of oxidized explants, callus forming explants, explants with anthocyanin,buds, shoots and the shoot number per explant were evaluated. In the multiplication experiment, isolated shoots were cultivated in MS, JADS and WPM media, all supplemented with 1.11 μ M BAP. Four subcultures were carried out every 28 days. In every subculture the explant oxidation, partial or total leaf chlorosis, fresh mass and mean number of shoot per explant were evaluated. The MS N/2 medium supplemented with 0.1 μM NAA and 0.5 μM TDZ promoted the highest rate of organogenesis (8.3% and the culture media MS supplemented with 1.11 μ M BAP the multiplication rate was higher than in the other media, in the first and the second subcultures (9.28 and 9.24, respectively, without differences between the three media in the following subcultures.

  18. Costal Cartilage Grafts in Rhinoplasty.

    Science.gov (United States)

    Fedok, Fred G

    2016-01-01

    Cartilage grafts are regularly used in rhinoplasty. Septal and auricular donor sites are commonly used. Many situations compel the surgeon to use other alternative donor sites, including revision rhinoplasty and trauma. Many patients have a small amount of native septal cartilage and are unable to provide adequate septal cartilage to be used for frequently performed rhinoplasty maneuvers. The rib cage provides an enormous reserve of costal cartilage that can be carved into a variety of necessary grafts. A description of the technique of harvesting costal cartilage, a review of complications and management, and illustrative cases examples are included. PMID:26616708

  19. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP VAR LRG-41

    Directory of Open Access Journals (Sweden)

    T. Raghavendra

    2014-02-01

    Full Text Available An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L. has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS medium augmented with different concentrations of BAP and NAA. Among the various concentrations tested, 2.0mg/l BAP (Benzyl amino purine and 0.1 mg/l Napthalene acetic acid (NAA were found to be the best for maximum shoot bud differentiation. Percentage, as well as the number of shoots per explant showing differentiation of shoot buds was higher on MS media supplement with BAP and optimal BAP concentration for shoot regeneration was 2mg/l. The elongated shoots were successfully rooted on MS medium containing different concentrations of auxins. Among them indole buteric acid (IBA at 1.0mg/l induced maximum frequency of rooting. Regenerated plants were successfully established in soil where 91% of them have been developed into morphologically normal and fertile plants. This method can thus be advantageously applied in the production of transgenic pigeon pea plants.

  20. PATTERN OF PLANT REGENERATION FROM SHOOT TIP EXPLANTS OF PIGEONPEA (CAJANUS CAJAN L MILLLSP VAR LRG-41

    Directory of Open Access Journals (Sweden)

    T. Raghavendra

    2014-03-01

    Full Text Available An efficient direct shoot bud differentiation and multiple shoot induction from shoot tip explants of pigeon pea (Cajanus cajan L. has been achieved. The frequency of shoot bud regeneration was influenced by the type of explants, genotype and concentrations of cytokinin. Explants viz. shoot tip isolated from 10 day old seedlings showed better explants response Explants were cultured on Murashige and skoog (MS medium augmented with different concentrations of BAP and NAA. Among the various concentrations tested, 2.0mg/l BAP (Benzyl amino purine and 0.1 mg/l Napthalene acetic acid (NAA were found to be the best for maximum shoot bud differentiation. Percentage, as well as the number of shoots per explant showing differentiation of shoot buds was higher on MS media supplement with BAP and optimal BAP concentration for shoot regeneration was 2mg/l. The elongated shoots were successfully rooted on MS medium containing different concentrations of auxins. Among them indole buteric acid (IBA at 1.0mg/l induced maximum frequency of rooting. Regenerated plants were successfully established in soil where 91% of them have been developed into morphologically normal and fertile plants. This method can thus be advantageously applied in the production of transgenic pigeon pea plants.

  1. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  2. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Regeneração de plantas de Eucalyptus camaldulensis a partir das explantes cotiledonares

    Directory of Open Access Journals (Sweden)

    Roberson Dibax

    2005-08-01

    Full Text Available Breeding methods based on genetic transformation techniques need to be implemented for Eucalyptus camaldulensis to shorten the long breeding cycles and avoid manipulation of adult trees; that requires the development of plant regeneration protocols enabling development of plants from transformed tissues. The present work aimed to optimise the regeneration process already established for the species. Cotyledonary leaves of E. camaldulensis were cultured in MS medium supplemented with naphthaleneacetic acid (NAA and 6-benzylaminopurine (BAP combinations. The most efficient treatment for bud indirect regeneration (2.7 µmol L-1 NAA and 4.44 µmol L-1 BAP was used for further experiments. When explants were kept in the dark during the first 30 days, the percentage of explants forming calluses increased and explant necrosis was reduced in comparison with light-cultured explants. Mineral medium modifications were compared and half-strength MS mineral medium turned out to be as efficient as full-strength medium, producing 54% and 47% of explants with buds, respectively. For shoot elongation, MS medium with half-strength nitrate and ammonium salts, and 0.2% activated charcoal yielded rooted shoots 1 to 8 cm high after one month. The procedure is an efficient protocol for E. camadulensis plant regeneration, reducing the stages necessary for the obtention of complete plants.A implementação, para espécies florestais, de técnicas de melhoramento baseadas em métodos de transformação genética, permitirá reduzir os longos ciclos de melhoramento e evitar a manipulação de árvores adultas. Isto implica dispor de um protocolo de regeneração que permita o desenvolvimento de plantas a partir de tecidos transformados. Este trabalho teve como objetivo otimizar este protocolo de regeneração para Eucalyptus camaldulensis. Folhas cotiledonares foram cultivadas em meio de cultura MS suplementado com combinações de ácido naftalenoacético (ANA e 6

  3. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  4. Primary human bronchial epithelial cells grown from explants.

    Science.gov (United States)

    Yaghi, Asma; Zaman, Aisha; Dolovich, Myrna

    2010-01-01

    Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and open and minced into 2-3mm(3) pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 microg/ml), fibronectin (10 microg/ml), and BSA (10 microg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37 degrees C in 5% CO(2) humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly isolated tissues and allow for studying these cells as models of disease and for pharmacology and toxicology

  5. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  6. Effect of explant type on the rooting and acclimatization of Dianthus serotinus Waldst. & Kit.

    Directory of Open Access Journals (Sweden)

    Marković Marija

    2014-01-01

    Full Text Available The effect of the concentration of MS salts and explant type on D. serotinus rooting and acclimatization was investigated in order to optimize a protocol for the micropropagation of this species. The obtained results showed that explant type as well as the concentration of MS salts had a significant effect on rooting, and the highest rooting rate (85-86,7% was achieved when culturing single-node cuttings and terminal buds on a half-strength MS medium supplemented with 0,5 mgL-1 NAA. Nevertheless, mean number of roots per explant was higher on the MS media (15,3-18,6 than on the half-strength MS media (11,8-13,4. The best acclimatization rate was obtained in a 4:1 mixture of peat and sand (83,3-86,7%. The explant type from which in vitro plantlets developed had no effect on the acclimatization rate. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  7. Effect of explants, hormonal combination and genotype on micropropagation of pepper

    Directory of Open Access Journals (Sweden)

    Z. Moheb Mohamadi

    2014-07-01

    Full Text Available Pepper (Capsicum annuum is generally propagated from seeds. In Iran, imported hybrid seeds are used for this purpose. Germination of the greenhouse pepper seeds and stabilization of their seedlings takes a long time. But, tissue culture technique could rapidly propagate this plant with a homogeneous genetic structure in a large scale. An attempt was made in this study to evaluate the effects of different genotypes, explants and growth regulators on callus production and regeneration and introduce the appropriate protocol for micropropagation of commercial varieties of pepper in Iran. Analysis of variance indicated that effect of different genotypes, interaction of various explants and combination of hormones and interaction between genotypes, explants and hormones were significant on the evaluated traits at 1% level. Based on the results, for micropropagation of pepper with leaves and cotyledons, combination of 1 mg/l IAA and 5 mg/l BAP was selected. It seems that using leaf explants for micropropagation of pepper in large scale in greenhouses would be suitable.

  8. A RIFAMPICINA NA DESCONTAMINAÇÃO BACTERIANA DE EXPLANTES DE MAMOEIRO PROVENIENTES DO CAMPO

    Directory of Open Access Journals (Sweden)

    GIOVANNI RODRIGUES VIANNA

    1997-01-01

    Full Text Available Observou-se alta contaminação bacteriana nos explantes de mamoeiro introduzidos in vitro, a partir de plantas matrizes desenvolvidas no campo, independentemente da época do ano em que se realizaram as coletas. O uso de desinfestantes superficiais, como álcool e hipoclorito de sódio, garantiram níveis aceitáveis de controle apenas para fungos, não para bactérias. A rifampicina, por tratamento de imersão ou introdução em meio de cultura, controlou satisfatoriamente as contaminações de caráter endofítico, obtendo-se 70% de explantes sadios, sem sinais de fitotoxicidade.High contamination by bacteria was observed in papaya tissue cuttings introduced in vitro from plants grown in the field, independent of the period of the year that samples were collected. The use of alcohol and sodium hypoclorite did not guarantee good bacteria control. Rifampicin, added as an immersion solution treatment or in the culture media, controlled the internal contamination of explants, without damaging the cuttings. Up to 70% of healthy tissue explants were obtained by the use of rifampicin.

  9. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    Different explants of Miscanthus x ogiformis Honda 'Giganteus' were tested in order to develop an efficient tissue culture system. Shoot apices, leaf and root sections from in vitro-propagated plants, and leaf and immature inflorescence sections from 6-month-old greenhouse-grown plants were used....... The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental......-propagated shoots and older leaves of greenhouse-grown plants. Immature inflorescences smaller than 2.5 cm produced a higher percentage of embryogenic callus than larger more mature inflorescences. Embryogenic callus derived from immature inflorescences had the highest regeneration capacity. Differences in 2...

  10. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  11. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  12. Transcriptomic profiling of cartilage ageing

    OpenAIRE

    Mandy Jayne Peffers; Xuan Liu; Peter David Clegg

    2014-01-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older dono...

  13. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var.alata

    Institute of Scientific and Technical Information of China (English)

    Anna Pick Kiong LING; Kinn Poay TAN; Sobri HUSSEIN

    2013-01-01

    Objective:Labisia pumi/a var.a/ata,commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia,is traditionally used by members of the Malay community because of its post-partum medicinal properties.Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat.Thus,this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L.pumila.Methods:The capabilities of callus,shoot,and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0,1,3,5,and 7 mg/L.Results:Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34± 19.55)% and (70.40± 14.14)% efficacy,respectively.IBA was also found to be the most efficient PGR for root induction.A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA,respectively.Shoot formation was only observed in stem explant,with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture.Conclusions:Callus,roots,and shoots can be induced from in vitro leaf and stem explants of L.pumila through the manipulation of types and concentrations of PGRs.

  14. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  15. Direct organogenesis of seaside heliotrope (Heliotropium crassavicum) using stem explants.

    Science.gov (United States)

    Satyavani, K; Dheepak, V; Gurudeeban, S; Ramanathan, T

    2013-10-15

    Heliotropium crassavicum L. is a sand binder salt marsh herb with enormous traditional value and widely found in South Asia America and Europe. In the direct method of regeneration from stem explants, we observed the maximum number of shoot regeneration after four weeks culture of MS elongation medium with 2.0 mg L(-1) of 2, 4-D (17.27 +/- 0.51). It was clear that MS medium with 2.0 mg mL(-1) 2, 4-D alone suitable for shoot multiplication as well as shoot elongation then compared to other combination of auxin and cytokinin. In vitro shoots were excised from shoot clumps and transferred to rooting medium containing 2, 4-dichlorophenoxy acetic acid (0.5-3.0 mg L(-1)). The maximum number of root regeneration (6.4 +/- 0.416) and root length (6.08 +/- 0.07) were observed in MS rooting medium fortified with 2.5 mg L(-1) of 2, 4-D after 2 weeks of culture. 85% of in vitro raised plantlets with well-developed shoots and roots were transferred to ex vivo conditions into polythene bag containing sterile compost with ratio (v/v/v) of organic fertilizer: sand: peat (1:2:2; 3:1:0 or 2:2:1). Sixty five percent of acclimated plants were transferred to the pots under full sun where they grew well without any detectable phenotypic variations. PMID:24506027

  16. Induction of shoot buds, multiplication and plantlet formation in seedling explants of bell pepper (Capsicum annuum L. cv. Bryza in vitro

    Directory of Open Access Journals (Sweden)

    Andrzej Gatz

    2014-02-01

    Full Text Available In vitro shoot bud induction and multiplication as well as plantlets formation from different parts of 21-d old seedlings (shoot tip, cotyledonary node, distal part of cotyledon, acropetal section of hypocotyl of Capsicum annuum L., cv. Bryza were compared. During 4 weeks of primary explant culture on initiation media, first shoot bud primordia appeared; they reminded leaf primordia and subsequently some of them underwent enlargement, some developed into leaves and leaf-like structures (mainly on cotyledon explants. The highest number of shoot bud primordia was noted on cotyledonary node explants, but they were smaller than those on the remaining types of the explants. The best response of shoot regeneration showed cotyledon explants on which most of shoot buds were formed in each from four treated passages. From shoot buds on elongation media after 4 weeks of culture rooted rosettes of leaves were achieved, and the extension of the culture time to eight weeks without subculture caused that the rosettes developed into plantlets. Throughout four successive passages plantlets were obtained from cotyledon and shoot tip explants.

  17. Plant regeneration from single-nodal-stem explants of legume tree Prosopis alba Griseb.

    Science.gov (United States)

    Castillo de Meier, G; Bovo, O A

    2000-08-01

    Seeds of Prosopis alba were scarified with abrasive paper and placed to germinate on MS (Murashige and Skoog 1962) nutrient medium. After 7 days of culture, the basal part of cotyledons was removed and pieces of 4 mm" from distal parts were cultured on Murashige and Skoog (1962) mineral salts and vitamins (MS) (3% sucrose) supplemented with growth regulators. Callus proliferation took place in the majority of the media tested. A low percentage of calluses with green buds that developed on MS basal medium containing 0.1 mg.L-1 2,4-D alone or supplemented with BAP at 0.1 mg.L-1 was observed. Neither cotyledonary segments in any medium assayed regenerated the whole plants. Bud elongation (near 70%) was achieved when single-nodal-stem segments cut from 20 days old seedlings were cultured on MS salts supplemented with 3 mg.L-1 NAA or 3 mg.L-1 IBA combined with 0.05 mg.L-1 KIN after 60 days in culture. Multiple shoots per bud were also observed. Single-nodal-stem segments from five-year-old plants were also cultured on the same media used for seedling explants. Maximal frequency of explants with bud elongation (near 70%) was found on MS with 0.1 mg.L-1 NAA plus 1 mg.L-1 BAP after 60 days of culture. Single-nodal-stem explants cut from adult trees (more than 20 years) were also employed, but the number of bud elongation was lesser. For rooting, the elongated shoots were transferred to a semisolid or liquid MS culture medium employing a paper bridge, supplemented with 0.5 mg.L-1 IBA or 0.1 mg.L-1 NAA.

  18. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells

    Science.gov (United States)

    Di Lauro, Salvatore; Rodriguez-Crespo, David; Gayoso, Manuel J.; Garcia-Gutierrez, Maria T.; Pastor, J. Carlos; Srivastava, Girish K.

    2016-01-01

    Purpose To develop and standardize a novel organ culture model using porcine central neuroretina explants and RPE cells separated by a cell culture membrane. Methods RPE cells were isolated from porcine eyes, expanded, and seeded on the bottom of cell culture inserts. Neuroretina explants were obtained from the area centralis and cultured alone (controls) on cell culture membranes or supplemented with RPE cells in the same wells but physically separated by the culture membrane. Finally, cellular and tissue specimens were processed for phase contrast, cyto-/histological, and immunochemical evaluation. Neuroretina thickness was also determined. Results Compared to the neuroretinas cultured alone, the neuroretinas cocultured with RPE cells maintained better tissue structure and cellular organization, displayed better preservation of photoreceptors containing rhodopsin, lower levels of glial fibrillary acidic protein immunoexpression, and preservation of cellular retinaldehyde binding protein both markers of reactive gliosis. Neuroretina thickness was significantly greater in the cocultures. Conclusions A coculture model of central porcine neuroretina and RPE cells was successfully developed and standardized. This model mimics a subretinal space and will be useful in studying interactions between the RPE and the neuroretina and to preclinically test potential therapies. PMID:27081295

  19. Further assessment of neuropathology in retinal explants and neuroprotection by human neural progenitor cells

    Science.gov (United States)

    Mohlin, Camilla; Liljekvist-Soltic, Ingela; Johansson, Kjell

    2011-10-01

    Explanted rat retinas show progressive photoreceptor degeneration that appears to be caspase-12-dependent. Decrease in photoreceptor density eventually affects the inner retina, particularly in the bipolar cell population. Explantation and the induced photoreceptor degeneration are accompanied by activation of Müller and microglia cells. The goal of this study was to determine whether the presence of a feeder layer of human neural progenitor cells (hNPCs) could suppress the degenerative and reactive changes in the explants. Immunohistochemical analyses showed considerable sprouting of rod photoreceptor axon terminals into the inner retina and reduced densities of cone and rod bipolar cells. Both sprouting and bipolar cell degenerations were significantly lower in retinas cultured with feeder layer cells compared to cultured controls. A tendency toward reduced microglia activation in the retinal layers was also noted in the presence of feeder layer cells. These results indicate that hNPCs or factors produced by them can limit the loss of photoreceptors and secondary injuries in the inner retina. The latter may be a consequence of disrupted synaptic arrangement.

  20. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  1. Making post-mortem implantable cardioverter defibrillator explantation safe

    DEFF Research Database (Denmark)

    Räder, Sune B E W; Zeijlemaker, Volkert; Pehrson, Steen;

    2009-01-01

    that the resting voltage over the operating person would not exceed 50 V. CONCLUSION: The use of intact medical gloves made of latex, neoprene, or plastic eliminates the potential electrical risk during explantation of an ICD. Two gloves on each hand offer sufficient protection. We will recommend the use......AIMS: The aim of this study is to investigate whether protection with rubber or plastic gloves during post-mortem explantation of an implantable cardioverter defibrillator (ICD) offers enough protection for the explanting operator during a worst-case scenario (i.e. ICD shock). METHODS AND RESULTS......: We investigated the insulating properties of rubber and plastic gloves (double layer) within the first 60 min exposure (mimicking the maximum time of an explantation procedure) to saline (simulating the effects of body fluids on the gloves). For latex gloves, we measured an increase in voltage up...

  2. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  3. A novel corneal explant model system to evaluate antiviral drugs against feline herpesvirus type 1 (FHV-1).

    Science.gov (United States)

    Pennington, Matthew R; Fort, Michael W; Ledbetter, Eric C; Van de Walle, Gerlinde R

    2016-06-01

    Feline herpesvirus type-1 (FHV-1) is the most common viral cause of ocular surface disease in cats. Many antiviral drugs are used to treat FHV-1, but require frequent topical application and most lack well-controlled in vivo studies to justify their clinical use. Therefore, better validation of current and novel treatment options are urgently needed. Here, we report on the development of a feline whole corneal explant model that supports FHV-1 replication and thus can be used as a novel model system to evaluate the efficacy of antiviral drugs. The anti-herpes nucleoside analogues cidofovir and acyclovir, which are used clinically to treat ocular herpesvirus infection in cats and have previously been evaluated in traditional two-dimensional feline cell cultures in vitro, were evaluated in this explant model. Both drugs suppressed FHV-1 replication when given every 12 h, with cidofovir showing greater efficacy. In addition, the potential efficacy of the retroviral integrase inhibitor raltegravir against FHV-1 was evaluated in cell culture as well as in the explant model. Raltegravir was not toxic to feline cells or corneas, and most significantly, inhibited FHV-1 replication at 500 µM in both systems. Importantly, this drug was effective when given only once every 24 h. Taken together, our data indicate that the feline whole corneal explant model is a useful tool for the evaluation of antiviral drugs and, furthermore, that raltegravir appears a promising novel antiviral drug to treat ocular herpesvirus infection in cats. PMID:26959283

  4. „IN VITRO” EFFECT OF SOME INDUSTRIAL BY-PRODUCTS ON LAVANDULA ANGUSTIFOLIA MILL. EXPLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Corneliu Tanase

    2013-12-01

    Full Text Available After many studies, it was observed that lavender has many therapeutic effects, such as sedation, activities spasmolytic, antiviral, antibacterial. Thus, given the importance of lavender in different areas of human life, in the present study, we studied the influence of natural products bioregulatoars separated from industrial by-products on some lavender stems explants. These explants were inoculated in vitro on MS nutrient media. In these culture media were added polyphenolic extracts obtained from spruce bark and hemp shives, and evaluated their influence on lavender stems explants. The results obtained were compared with those obtained for the control variant, where MS culture medium was used as standard. It was found that the addition of aqueous extract from spruce bark of concentration of 130 mg GAE / L, in the growth of explants of Lavandula angustifolia Mill, an increase in the elongation of the main stem, number of leaves formed, the amount of photoassimilating pigments synthesized and causes the phenomenon of shoots formation. At a higher concentration of the extract (26 mgGAE/100g values are lower.

  5. Engineered cartilage covered ear implants for auricular cartilage reconstruction.

    Science.gov (United States)

    Lee, Sang Jin; Broda, Christopher; Atala, Anthony; Yoo, James J

    2011-02-14

    Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement. PMID:21182236

  6. Pine somatic embryogenesis using zygotic embryos as explants.

    Science.gov (United States)

    Pullman, Gerald S; Bucalo, Kylie

    2011-01-01

    Somatic embryogenesis (SE) has the potential to be the lowest-cost method to rapidly produce large numbers of high-value somatic seedlings with desired characteristics for plantation forestry. At least 24 of the 115-120 known Pinus species can undergo SE. Initiation for most species works best with immature megagametophytes as starting material, although a few pines can initiate SE cultures from isolated mature seed embryos. Successful initiation depends heavily on explant type, embryo developmental stage, and medium salt base. Most first reports of initiation used 2,4-D and BAP or a combination of cytokinins. More recent reports have optimized initiation for many Pinus spp., but still use mostly the combinations of auxin and cytokinins. Initiation can be stimulated with medium supplements including abscisic acid (ABA), brassinosteroids, ethylene inhibitors, gibberellin inhibitors, organic acids, putrescine, specific sugar types (maltose, galactose, D-chiro-inositol, and D-xylose), triacontanol, vitamins (B12, biotin, vitamin E, and folic acid), or manipulation of environmental factors including pH, water potential, cone cold storage, gelling agent concentration, and liquid medium. Embryo development and maturation usually occur best on medium containing ABA along with water potential reduction (with sugars and polyethylene glycol) or water availability reduction (with raised gelling agent increasing gel-strength). Activated carbon and maltose may also improve embryo maturation. The main issues holding SE technology back are related to the high cost of producing a somatic seedling, incurred from low initiation percentages for recalcitrant species, culture loss, and decline after initiation and poor embryo maturation resulting in no or poor germination. Although vast progress has been made in pine SE technology over the past 24 years, fundamental studies on seed and embryo physiology, biochemistry, and gene expression are still needed to help improve the technology

  7. The friction of explanted hip prostheses.

    Science.gov (United States)

    Hall, R M; Unsworth, A; Wroblewski, B M; Siney, P; Powell, N J

    1997-01-01

    Charnley prostheses, retrieved at revision surgery, were studied to assess the effects of friction on the total hip replacement procedure. Frictional resistance was measured using the Durham hip function simulator under both dry and lubricated conditions. The friction factor values (f) for the explanted prostheses were found to have a non-Gaussian distribution with medians of 0.13 [inter-quartile range (IQR) 0.10-0.16] and 0.06 (IQR 0.005-0.08) for dry and lubricated (n = 0.01 Pa s) regimes, respectively. New Charnley prostheses had values of f equal to 0.11 +/- 0.025 and 0.04 +/- 0.01 under the same conditions, and showed no large deviation from a Gaussian distribution. There was found to be a statistically significant difference in the medians of the friction factors for new and retrieved prostheses in the lubricated regime. Ingression of cement into the worn region of the cup was found to increase the friction factor significantly under dry conditions. There was no evidence of an increase in the friction factor or torque for those joints that had a loose socket with respect to those that were fixed at revision. A decrease in the frictional torque against number of cycles undergone by the joint in vivo may indicate that a fatigue-type process may have a role in the loosening of the socket. However, this relationship was found not to be significant for friction measured under lubricated conditions and it seems unlikely that the frictional torque generated in this type of prosthesis will contribute significantly to the long-term loosening of the socket.

  8. In Vitro Shoot Regeneration of NAA-Pulse Treated Plumular Leaf Explants of Cowpea

    Directory of Open Access Journals (Sweden)

    Muhammad AASIM

    2010-06-01

    Full Text Available Cowpea (Vigna unguiculata L. is an economically important grain legume crop and is an important source of dietary protein in many of the developing countries. The present study reports the effect of pulse treatment duration, concentration of NAA and presence of NAA in the culture medium on shoot regeneration from plumular leaf explant of Turkish cowpea cv. �Akkiz� and �Karagoz�. Pulse treatment of mature embryos with 20 mg l-1 NAA for 1 and 3 weeks followed by culturing of plumular leaf explant on MS medium containing 0.25, 0.50 and 1.0 BAP with 1.0, 2.0 and 4.0 mg l-1 NAA promoted somatic embryogenesis in both cultivars. Longer duration of pulse treatment was deleterious resulting in browning and consequently death of the embryos on explants. Pulse treatment with 20 mg l-1 NAA for one week was less deleterious and developed two plantlets after the explants were transferred to MS0 medium after 6 weeks through somatic embryogenesis in cv. �Akkiz�. Pulse treatment with 10 mg l-1 NAA for 1 week showed 33.33-50.00 % and 25.00-50.00% shoot regeneration frequency in cv. �Akkiz� and �Karagoz� respectively on MS medium containing 0.25-1.00 mg l-1 BAP. Maximum number of 2.50 shoots each per explant were recorded in cv. �Akkiz� and �Karagoz� on MS medium containing 1.00 and 0.50 mg l-1 BAP respectively. Contrarily, maximum shoot length of 8.98 cm of cv. �Akkiz� and 9.42 cm of cv. �Karagoz� was recorded on MS medium containing 0.50 mg l-1 BAP and 1.00 mg l-1 BAP respectively. Regenerated shoots were rooted on MS medium containing 0.5 mg l-1 IBA and and acclimatized in growth room at room temprature where they produced viable seeds.

  9. DIRECT IN VITRO SHOOTS PROLIFERATION OF CHICK PEA (CICER ARIETINUM L. FROM SHOOT TIP EXPLANTS INDUCED BY THIDIAZURON

    Directory of Open Access Journals (Sweden)

    Shaheena Parveen

    2012-01-01

    Full Text Available A rapid, simple and efficient protocol for direct in vitro multiple shoot induction and plantlet regeneration was achieved from shoot tip explants of Cicer arietinum. The shoot tips were cultured on MS medium fortified with Thidiazuron (TDZ (1.0-7.0 mg/L for multiple shoot induction. Multiple shoots proliferation was best observed at 3.0 mg/L TDZ from the shoot tip explants within three weeks of culture. Shoot number per explant ranged between 2 and 10. Individual shoots were aseptically excised and sub cultured in the same media for shoot elongation. The elongated shoots were transferred to Indole Butyric Acid (IBA (1.0mg/L–5.0mg/L for root induction. Rooting was observed within two weeks of culture. Rooted plantlets were successfully hardened under culture conditions and subsequently established in the field conditions. The recorded survival rate of the plants was 86%. Plants looked healthy with no visually detectable phenotypic variations.

  10. In vitro Regeneration of Plantlets from Leaf and Nodal explants of Aristolochia indica L.- An Important Threatened Medicinal Plant

    Institute of Scientific and Technical Information of China (English)

    Pramod V. Pattar; M.Jayaraj

    2012-01-01

    Objective: An efficient reproducible protocol has been developed for in vitro regeneration of plantlets from leaf and nodal explants of Aristolochia indica L. Methods: Wild grown plants Aristolochia indica L. were collected and grown in the departmental garden. Leaf and nodal segments (0.5-1.0 cm) from young healthy plants were first washed thoroughly under running tap water for 15 - 20 minutes and then treated with liquid detergent [5% (v/v) Tween-20] for 5-10 minutes. Later these explants were washed with double-distilled water for 5 minutes. Subsequently, explants were immersed in 70% (v/v) ethanol for 2 - 3 minutes and washed with sterile glass double distilled water for 2-3 times. Eventually, the explants were treated with an aqueous solution of 0.1% (w/v) HgCl2 for 1 - 2 minutes and rinsed for two-to-three times in sterile ddH2O to remove all traces of HgCl2. The sterilized explants were inoculated aseptically onto solid basal Murashige and Skoog’s medium with different concentrations and combinations of BAP and NAA for in vitro regeneration of plants. Results: Both leaf and nodal explants cultured on MS medium supplemented with 0.8 mg/L BAP developed into mass of callus. These calli were subcultured for the induction of shoots and roots. Shoots were induced from both calli on MS medium supplemented with 0.8 mg/L BAP+0.5 mg/L NAA. Roots were induced from in vitro shoots on MS medium supplemented with 0.8 mg/L NAA for 4 weeks. Nodal explants were more regenerative with 95 % response compared to leaf explants with 85%. Finally, these in vitro regenerated plantlets were hardened, acclimatised and successfully transferred to the field. Conclusions: The present protocol for in vitro regeneration of Aristolochia indica L. can be used to make this plant available throughout the year for traditional healers, pharmaceutical usages, germplasm conservation, commercial cultivation, and also for the production of secondary metabolites.

  11. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering.

    Science.gov (United States)

    Spitters, Tim W G M; Leijten, Jeroen C H; Deus, Filipe D; Costa, Ines B F; van Apeldoorn, Aart A; van Blitterswijk, Clemens A; Karperien, Marcel

    2013-10-01

    In cartilage, tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor that combines mechanical stimulation with a two compartment system through which nutrients can be supplied solely by diffusion from opposite sides of a tissue-engineered construct. This design is based on the hypothesis that creating gradients of nutrients, growth factors, and growth factor antagonists can aid in the generation of zonal tissue-engineered cartilage. Computational modeling predicted that the design facilitates the creation of a biologically relevant glucose gradient. This was confirmed by quantitative glucose measurements in cartilage explants. In this system, it is not only possible to create gradients of nutrients, but also of anabolic or catabolic factors. Therefore, the bioreactor design allows control over nutrient supply and mechanical stimulation useful for in vitro generation of cartilage constructs that can be used for the resurfacing of articulated joints or as a model for studying osteoarthritis disease progression.

  12. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response

    Directory of Open Access Journals (Sweden)

    Hira eZafar

    2016-04-01

    Full Text Available Nanoparticles (NPs have diverse properties in comparison to respective chemicals due to structure, surface area ratio, morphology, and reactivity. Toxicological effects of metallic NPs to organisms including plants have been reported. However, to the authors’ knowledge there is no report on the effect of NPs on in vitro culture of plant explants. In this study, ZnO NPs at 500-1500 mg/L badly affected Brassica nigra seed germination and seedling growth and raised antioxidative activities and antioxidants concentrations. On the other hand, culturing the stem explants of B. nigra on Murashige and Skoog (MS medium in presence of low concentration of ZnO NPs (1-20 mg/L produced white thin roots with thick root hairs. At 10 mg/L ZnO NPs shoots emergence was also observed. The developed calli/roots showed 79% DPPH (2,2-diphenyl-1-picryl hydrazyl radical scavenging activity at 10 mg/L. While total antioxidant and reducing power potential were also significantly different in presence of ZnO NPs. Non enzymatic antioxidative molecules, phenolics (up to 0.15 µg GAE/mg FW and flavonoids (up to 0.22 µg QE/mg FW, also raised and found NPs concentration dependent. We state that ZnO NPs may induce roots from explants cultured on appropriate medium and can be cultured for production of valuable secondary metabolites.

  13. Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Haqqi Tariq M

    2011-08-01

    Full Text Available Abstract Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA, and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1β-induced production of nitric oxide (NO, glycosaminoglycan (GAG, matrix metalloproteinases (MMPs, aggrecan (ACAN and type II collagen (COL2A1 in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 μg/ml and then stimulated with IL-1β (5 ng/ml. Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p Leucine mixture (HLM up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.

  14. Human serum provided additional values in growth factors supplemented medium for human chondrocytes monolayer expansion and engineered cartilage construction.

    Science.gov (United States)

    Chua, K H; Aminuddin, B S; Fuzina, N H; Ruszymah, B H I

    2004-05-01

    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.

  15. Clonal propagation of guava (Psidium guajava L on nodal explants of mature elite cultivar

    Directory of Open Access Journals (Sweden)

    Guochen Yang

    2011-04-01

    Full Text Available Guava (Psidium guajava L. is a very valuable tropical and subtropical fruit. However, guava micro-propagation are genotypes dependent, there are several problems associated with in vitro cultures of guava including browning or blackening of culture medium due to leaching of phenolics, microbial contamination, and in vitro tissue recalcitrance. A micro-propagation system using Murashige and Skoog (MS medium with 6-benzylaminopurine (BA, kinetin and naphthaleneacetic acid (NAA was developed for guava (Psidium guajava L from mature cultivar. As part of this research various disinfection methods and plant growth regulators were tested in vitro. The most effective method involved treating explants in a 15% bleach solution for 20 mins followed by culturing them in MS medium with 250 mg/L polyvinylpyrrolidone (PVP. This method maximized the percentage of bud breakage (53.3%, while producing the minimum browning rate (18.3% for the explants. The best observed proliferation rate (71.2% occurred on the MS medium supplemented with 4.44 μM BA, 4.65 μM kinetin (KT and 0.54 μM NAA. It produced the highest mean number of shoots (2.2. Shoots were then rooted (65% when dipped in 4.9 mM Indole-3-butyric acid (IBA solution for 1 min and rooted plantlets survived (100% after acclimatization to the greenhouse.

  16. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    1978-01-01

    Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants....... The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial...

  17. ANATOMICAL STUDIES OF IN VITRO ORGANOGENESIS INDUCED IN LEAF-DERIVED EXPLANTS OF PASSIONFRUIT ESTUDOS ANATÔMICOS DA ORGANOGÊNESE IN VITRO INDUZIDA EM EXPLANTES DE FOLHA DE MARACUJÁ

    OpenAIRE

    BEATRIZ APPEZZATO DA GLORIA; MARIA LUCIA CARNEIRO VIEIRA; MARCELO CARNIER DORNELAS

    1999-01-01

    With the aim of studying the organogenesis in vitro in Passiflora edulis Sims f. flavicarpa Deg., the passionfruit, leaf-derived explants were cultured on media containing NAA or BAP and incubated either in continuous darkness or in light. The histological events leading to de novo organ formation were evaluated. Darkness induces rhizogenesis in the presence of NAA, whereas direct shoot regeneration is stimulated by light and BAP. This latter condition is recommended for passionfruit micropro...

  18. T cells fail to develop in the human skin-cell explants system; an inconvenient truth

    Directory of Open Access Journals (Sweden)

    Vanderlocht Joris

    2011-02-01

    Full Text Available Abstract Background Haplo-identical hematopoietic stem cell (HSC transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Results Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL. In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Conclusions Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  19. Biosynthesis of intestinal microvillar proteins. Rapid expression of cytoskeletal components in microvilli of pig small intestinal mucosal explants

    DEFF Research Database (Denmark)

    Cowell, G M; Danielsen, E M

    1984-01-01

    Using alkaline extraction to separate cytoskeletal and membrane proteins of intestinal microvilli, the kinetics of assembly of these two microvillar protein compartments was studied by pulse-chase labelling of pig small intestinal mucosal explants, kept in organ culture. Following a 10 min pulse of...... pulse. These different kinetics of appearance indicate that the two microvillar protein compartments have separate mechanisms of biosynthesis and microvillar expression....

  20. Preserved irradiated homologous cartilage for orbital reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  1. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  2. Transcriptomic profiling of cartilage ageing.

    Science.gov (United States)

    Peffers, Mandy Jayne; Liu, Xuan; Clegg, Peter David

    2014-12-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386). PMID:26484061

  3. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  4. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  5. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium

    OpenAIRE

    Xue, Ke; Zhang, Xiaodie; Qi, Lin; Zhou, Jia; Liu, Kai

    2016-01-01

    Auricular cartilage loss or defect remains a challenge to plastic surgeons, and cartilage regenerative medicine provides a novel method to solve the problem. However, ideal seeding cells seem to be the key point in the development of cartilage regeneration. Although bone marrow-mesenchymal stem cells were considered as the ideal seeding cells in cartilage regeneration, regenerative cartilage differentiated from bone marrow-mesenchymal stem cells still faces some problems. It is reported that ...

  6. Utilization of Aseptic Seedling Explants for In vitro Propagation of Indian Red Wood

    Directory of Open Access Journals (Sweden)

    Kishore Kumar CHIRUVELLA

    2013-12-01

    Full Text Available Micropropagation has been advocated as one of the most viable biotechnological tool for ex situ conservation of rare, endangered endemic medicinal plants germplasm. Rapid clonal micropropagation protocol for large-scale multiplication of an endemic medicinal plant Soymida febrifuga (Meliaceae was established from 15-day aseptic seedling cotyledonary node and shoot tip explants. High frequency of sprouting and shoot differentiation was observed from cotyledonary node explants compared to shoot tip, on Murashige and Skoog (MS medium fortified with BA, KN, 2-iP and CM. Of the cytokinins used, BA (3.0 mgl-1 supported highest average number and maximum multiple shoot differentiation (16.6. In vitro proliferated shoots were multiplied rapidly by culturing nodal segments as microcuttings, further subcultured on the same media for elongation. Elongated shoots upon transfer to MS medium fortified with IBA showed rooting within two weeks of culture. Rooted plantlets were successfully hardened and 75% of rooted shoots successfully survived on establishment to the soil. Plants looked healthy with no visually detectable phenotypic variations. This protocol provides a successful and rapid technique that can be used for ex situ conservation minimizing the pressure on wild populations and contributes to the conservation of this endemic medicinally potent flora.

  7. Macrophage Migration Inhibitory Factor Is Up-Regulated in Human First-Trimester Placenta Stimulated by Soluble Antigen of Toxoplasma gondii, Resulting in Increased Monocyte Adhesion on Villous Explants

    OpenAIRE

    Ferro, Eloisa Amália Vieira; Mineo, José Roberto; Ietta, Francesca; Bechi, Nicoletta; Romagnoli, Roberta; Silva, Deise Aparecida Oliveira; Sorda, Giuseppina; Bevilacqua, Estela; Paulesu, Luana Ricci

    2008-01-01

    Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAg, interferon-γ (IFN-γ), or STAg plus IFN-γ. To assess the role of placental MIF on monoc...

  8. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish

    2010-07-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  9. SOMATIC EMBRYOGENESIS FROM MERISTEM EXPLANTS OF GINGER

    Directory of Open Access Journals (Sweden)

    OTIH ROSTIANA

    2008-01-01

    Full Text Available The use of planting materials from in vitro culture, especially derived from somatic em -bryos has some advantages such as genetically stable and pathogen-free. Meristem culture of ginger through somatic embryogenesis could be a potential method for producing pathogen-free planting materials. Somatic embryogenesis on ginger was performed to obtain vigorous plantlets having the same rhizome size as the mother plant. Callus was induced from meristem tissue of inner bud of Indonesian ginger rhizome Var. Cimanggu-1 and consecutively subcultured into certain media at each steps of experiments. The vigorous embryogenic calli were observed on MS medium containing 100 mgl-1 glutamine and 2% sucrose with addition of 1.0 mgl-1 2,4-D + 3.0 mgl-1 BA. The highest number of somatic embryos (about 82.0.g-1 friable calli was achieved on that medium, 4 weeks after culturing. Furthermore, the optimum growth of embryogenic calli containing somatic embryo was obtained on MS medium enriched with 6% sucrose. The high-est number of mature somatic embryos (57.2 embryos was achieved on MS medium, 18 days after incubation. The regeneration potency of somatic embryos obtained from ginger meristem was 51.20%.g-1 friable callus. The valuable result of this study was the achievement of normal rhizome size of regenerated plantlets, instead of micro rhizome.

  10. Macroscopical, Histological, and In Vitro Characterization of Nonosteoarthritic Versus Osteoarthritic Hip Joint Cartilage

    Science.gov (United States)

    Badendick, Jessica; Godkin, Owen; Kohl, Benjamin; Meier, Carola; Jagielski, Michal; Huang, Zhao; Arens, Stephan; Schneider, Tobias; Schulze-Tanzil, Gundula

    2016-01-01

    Osteoarthritis (OA) might affect chondrocyte culture characteristics and complement expression. Therefore, this study addressed the interrelation between macroscopical and microscopical structure, complement expression, and chondrocyte culture characteristics in non-OA and OA cartilage. Femoral head cartilage samples harvested from patients with femoral neck fractures (FNFs) and OA were analyzed for macroscopical alterations using an in-house scoring system, graded histologically (Mankin score), and immunolabeled for complement regulatory proteins (CRPs) and receptors. Morphology of monolayer cultured chondrocytes isolated from a subset of samples was assessed. The macroscopical score distinguished the FNF and OA cartilage samples and correlated significantly with the histological results. Chondrocyte phenotype from FNF or OA cartilage differed. Complement receptor C5aR, CRPs CD55 and CD59, and weakly receptor C3AR were detected in the investigated FNF and OA cartilage, except for CD46, which was detected in only two of the five investigated donors. The in-house score also allows inexperienced observers to distinguish non-OA and OA cartilage for experimental purposes. PMID:27158224

  11. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  12. [Cartilage tumors : Pathology and radiomorphology].

    Science.gov (United States)

    Uhl, M; Herget, G; Kurz, P

    2016-06-01

    Primary cartilage-forming tumors of the bone are frequent entities in the daily work of skeletal radiologists. This article describes the correlation of pathology and radiology in cartilage-forming skeletal tumors, in particular, enchondroma, osteochondroma, periosteal chondromas, chondroblastoma and various forms of chondrosarcoma. After reading, the radiologist should be able to deduce the different patterns of cartilage tumors on radiographs, CT, and MRI from the pathological aspects. Differentiation of enchondroma and chondrosarcoma is a frequent diagnostic challenge. Some imaging parameters, e. g., deep cortical scalloping (more than two thirds of the cortical thickness), cortical destruction, or a soft-tissue mass, are features of a sarcoma. Osteochondromas are bony protrusions with a continuous extension of bone marrow from the parent bone, the host cortical bone runs continuously from the osseous surface of the tumor into the shaft of the osteochondroma and the osteochondroma has a cartilage cap. Chondromyxoid fibromas are well-defined lytic and eccentric lesions of the metaphysis of the long bones, with nonspecific MRI findings. Chondroblastomas have a strong predilection for the epiphysis of long tubular bones and develop an intense perifocal bone marrow edema. Dedifferentiated chondrosarcomas are bimorphic lesions with a low-grade chondrogenic component and a high-grade noncartilaginous component. Most chondrogenic tumors have a predilection with regard to site and age at manifestation. PMID:27233920

  13. Cartilage Wound Healing and Integration

    NARCIS (Netherlands)

    P.K. Bos (Koen)

    2006-01-01

    textabstractThe intrinsic regeneration capacity of articular cartilage following injury is limited. Partialthickness defects are not repaired and full-thickness defects are repaired with fi brocartilage. Untreated, these defects may progress to early osteoarthritis. The goal of surgical treatment

  14. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  15. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  16. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  17. Rapid in vitro multiplication of the ethnomedicinal shrub, Acacia caesia (L.) Willd. (Mimosaceae) from leaf explants

    Institute of Scientific and Technical Information of China (English)

    Thambiraj J; Paulsamy S

    2012-01-01

    Objective: To develop an efficient protocol for in vitro multiplication of the ethnomedicinal shrub Acacia caesia (A. caesia) L. Willd., Methods: Leaf explants were inoculated on MS medium supplemented with TDZ and NAA for callus induction. Subculturing experiments were conducted by using leaf derived calli for shoot proliferation on MS medium fortified with various growth regulators like IBA, TDZ, BAP and GA3. The regenerated shoots were rooted in half strength MS medium supplemented with various concentrations of IBA, IAA and Kn. After roots were developed, the plantlets were transplanted to pots filled with garden soil, sand and vermicompost and kept in growth chamber with 70%-80%humidity under16h photoperiod. After acclimatization, the plantlets were transferred to the garden and survival percentage was calculated. Data were statistically analyzed and means were compared using Duncan’s Multiple Range Test (P<0.05). Results: An in vitro multiplication protocol was developed for the locally demanded medicinal plant species, A. caesia by using leaf explant. The study revealed that the callus formation was effective in MS medium containing TDZ and NAA at 1.5 and 0.3 mg/L respectively. Shoot induction was most successful in MS medium supplemented with combination of the auxin, IBA and cytokinin, TDZ at 2.0 and 0.5 mg/L respectively. A single leaf explant was capable of producing 12 shoots/callus after 30 days of culture. The other supplementation in MS medium with IBA and Kn at 2.0 and 0.4 mg/L respectively produced higher rooting frequency, roots/shoot and root length. The survivability rate of leaf callus derived plantlets was significantly higher (84%) in the hardening medium composed by garden soil, sand and vermicompost (1:1:1) by volume. Conclusions: A significant progress has been made in the in vitro regeneration system of this medicinally important plant species, A.caesia.

  18. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  19. Immunohistochemical localization of IAA in graft union of explanted internode grafting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dynamic changes of IAA in graft union of explanted internode autografting of Cucumber (Cucumis sativus Linn.) have been investigated using the immunohistochemical localization technique.It is shown that the efficiency of IAA fixation using lyophilization-gas fixation is higher than that using liquid chemical fixation.In contrast to few silver particles and no significant changes during the development of graft union cultured in hormone-free medium,more silver particles in graft union and significant changes of IAA related to graft union development have been found when graft union was cultured in medium supplemented with appropriate hormones.The fixation procedure of plant hormones and the roles of IAA in graft union are discussed.

  20. Morphologic differences observed by scanning electron microscopy according to the reason for pseudophakic IOL explantation

    DEFF Research Database (Denmark)

    Fernandez-Buenaga, Roberto; Alio, Jorge L.; Ramirez, Jose M.;

    2015-01-01

    Purpose To compare variations in surface morphology, as studied by scanning electron microscopy (SEM), of explanted intraocular lenses (IOLs) concerning the cause leading to the explantation surgery. Methods In this prospective multicenter study, explanted IOLs were analyzed by SEM and energy-dis...

  1. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro.

    Science.gov (United States)

    Roussos, Peter A; Pontikis, Constantine A

    2007-07-01

    Jojoba (Simmondsia chinensis L.) single node explants were cultured in a basal medium supplemented with 17.8 microM 6-benzyladenine and four levels of sodium chloride concentration (0, 56.41, 112.82 and 169.23 mM). The free, the soluble conjugated and the insoluble bound forms of polyamines (PAs) (putrescine (Put), spermidine (Spd) and spermine (Spm)) were determined monthly during a 3-month proliferation stage. Free Put and Spd were found in higher levels in the control treatment, while Spm content was higher in the salt treatments. All soluble conjugated PAs were found to be in lower concentrations in explants growing on medium supplemented with salt, while the opposite was true for the insoluble bound PAs. It appeared that certain PAs and PAs forms could play a significant role in the adaptation mechanism of jojoba under saline conditions.

  2. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  3. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  4. An efficient and reproducible indirect shoot regeneration from female leaf explants of Simmondsia chinensis, a liquid-wax producing shrub.

    Science.gov (United States)

    Bala, Raman; Beniwal, Vijay Singh; Laura, Jitender Singh

    2015-04-01

    Simmondsia chinensis (Link) Schneider is a perennial, dioecious, drought resistant and multipurpose seed oil crop grown in arid and semi-arid conditions throughout the world. A reproducible and more efficient method for indirect shoot organogenesis from female leaf explants has been standardized. The leaf explants cultured on Murashige and Skoog (MS) medium with 1.0 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D) alone produced the highest frequency of callus compared with 1.5 mg l(-1) IBA. Maximum proliferation of callus was observed on MS medium containing a combination of 1.0 mg l(-1) 2,4-D with 0.5 mg l(-1) BAP. For shoot differentiation, the proliferated callus was subcultured on MS medium supplemented with 6-benzylaminopurine (BAP) (1.0-4.0 mg l(-1)) along with 40 mg l(-1) adenine sulphate as additive or in combination with α-naphthalene acetic acid (NAA) or Indole-3-butyric acid (IBA). Optimum shoots differentiated from callus was obtained on MS medium supplemented with 2.0 mg l(-1) BAP and 0.2 mg l(-1) NAA. On this medium, 100 % cultures were responded with an average number of 14.44 shoots per explant with their mean length of 4.78 cm. In vitro rooting (6.22 roots per explant) was achieved on half strength MS medium containing 2 % sucrose with 3.0 mg l(-1) IBA and 300 mg l(-1) activated charcoal (AC). Rooted plantlets were successfully hardened under control conditions and acclimatized under field conditions with 90 % success rate. The present protocol is highly efficient, reproducible and economically viable for large scale production of female plants.

  5. Variation in phytate accumulation in common bean (Phaseolus vulgaris L. fruit explants

    Directory of Open Access Journals (Sweden)

    Cileide Maria Medeiros Coelho

    2008-02-01

    Full Text Available The in vitro synthesis of phytate was studied in common bean fruit explants. Different concentrations of sucrose; phosphorus (P; myo-inositol; abscisic acid (ABA; glutamine and methionine, were tested. Fixed concentrations of these compounds were tested at different periods (0, 3, 6 and 9 days. Variation in phytate coincided with different concentrations of sucrose, myo-inositol, P and ABA for the duration tested. These compounds caused an accumulation of phytate and were more effective in the presence of myo-inositol and P. The accumulation of P varied less than phytate for the different treatments tested in vitro. In conclusion, P, sucrose, ABA, and myo-inositol caused an increase in the phytate of bean seed, showing that it could be possible to alter its content by culturing bean fruit explants in vitro.O fósforo é armazenado na forma de fitato nas sementes, o qual forma complexos estáveis e insolúveis com minerais e proteínas, conferindo efeito antinutriente. A síntese de fitato foi estudada em cultivo de explantes de fruto de feijão in vitro sob diferentes concentrações de sacarose, fósforo (P, mio-inositol, ácido abscísico (ABA, glutamina e metionina. Fixada a concentração destes compostos, testou-se os diferentes tempos de cultivo (0, 3, 6 e 9 dias. A variação no acúmulo de fitato ocorreu na presença de sacarose, mio-inositol, P e ABA nas diferentes concentrações e tempos testados. O acúmulo mais efetivo de fitato ocorreu na presença de mio-inositol e P. O acúmulo de P variou menos do que fitato em todos os tratamentos. Em conclusão, P, sacarose, ABA e mio-inositol causaram aumento no fitato acumulado nas sementes, mostrando que foi possível alterar a síntese de fitato em cultivo de explantes de fruto de feijão.

  6. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  7. Repair of articular cartilage defects in minipigs by microfracture surgery and BMSCs transplantation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee. the left defect received microfracture surgery and was injected with 2. 5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results:Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibro-cartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion:Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.

  8. Nanofibrous poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair.

    Science.gov (United States)

    Ching, Kuan Y; Andriotis, Orestis G; Li, Siwei; Basnett, Pooja; Su, Bo; Roy, Ipsita; Tare, Rahul S; Sengers, Bram G; Stolz, Martin

    2016-07-01

    Articular cartilage defects, when repaired ineffectively, often lead to further deterioration of the tissue, secondary osteoarthritis and, ultimately, joint replacement. Unfortunately, current surgical procedures are unable to restore normal cartilage function. Tissue engineering of cartilage provides promising strategies for the regeneration of damaged articular cartilage. As yet, there are still significant challenges that need to be overcome to match the long-term mechanical stability and durability of native cartilage. Using electrospinning of different blends of biodegradable poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate), we produced polymer scaffolds and optimised their structure, stiffness, degradation rates and biocompatibility. Scaffolds with a poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) ratio of 1:0.25 exhibit randomly oriented fibres that closely mimic the collagen fibrillar meshwork of native cartilage and match the stiffness of native articular cartilage. Degradation of the scaffolds into products that could be easily removed from the body was indicated by changes in fibre structure, loss of molecular weight and a decrease in scaffold stiffness after one and four months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes revealed a hyaline-like cartilage matrix. The ability to fine tune the ultrastructure and mechanical properties using different blends of poly(3-hydroxybutyrate)/poly(3-hydroxyoctanoate) allows to produce a cartilage repair kit for clinical use to reduce the risk of developing secondary osteoarthritis. We further suggest the development of a toolbox with tailor-made scaffolds for the repair of other tissues that require a 'guiding' structure to support the body's self-healing process.

  9. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  10. Induction of Tetraploids from Petiole Explants through Colchicine Treatments in Echinacea purpurea L.

    Directory of Open Access Journals (Sweden)

    Dahanayake Nilanthi

    2009-01-01

    Full Text Available Petiole explants were obtained from in vitro grown diploid (2x=22 Echinacea purpurea plantlets. Shoots were regenerated by culturing the explants on MS basal medium containing 0.3 mg/L benzyladenine (BA, 0.01 mg/L naphthaleneacetic acid (NAA and four concentrations (30, 60, 120, and 240 mg/L of colchicine for 30 days, or 120 mg/L of colchicine for various durations (7, 14, 21, and 28 days. The regenerated shoots were induced to root on MS basal medium with 0.01 mg/L NAA, and then the root-tips of the regenerated shoots were sampled for count of chromosome number. It was found that a treatment duration of >7 days was necessary for induction of tetraploid (4x=44 shoots, and treatment with 120 mg/L colchicine for 28 days was the most efficient for induction of tetraploids, yielding 23.5% of tetraploids among all the regenerated shoots. Chimeras were observed in almost all the treatments. However, the ratio of tetraploid to diploid cells in a chimeric plant was usually low. In comparison with diploid plants, tetraploid plants in vitro had larger stomata and thicker roots with more root branches, and had prominently shorter inflorescence stalk when mature.

  11. Increased proliferation of explanted vascular smooth muscle cells: a marker presaging atherogenesis.

    Science.gov (United States)

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1997-06-01

    The JCR:LA-cp homozygous cp/cp corpulent rat is genetically predisposed to develop atherosclerosis evident after 9 and 18 months of age in males and females and to manifest metabolic derangements resembling those seen in type II diabetes in humans (hyperinsulinemia, insulin resistance, hyperglycemia and hypertriglyceridemia). The present study was undertaken to determine whether vascular smooth muscle cells (SMCs) explanted from vessels destined to become atherosclerotic later in life exhibit intrinsic properties ex vivo that presage atherogenesis to provide a means for evaluating promptly intervention designed to modify it. SMCs were cultured from aortic explants of JCR:LA-cp corpulent (cp/cp) and lean control (+/+) rats of 4, 5, 6, and 9 months of age. Compared with SMCs from controls, SMCs from cp/cp rats exhibited increased proliferation, higher saturation density, increased augmentation of proliferation in response to selected mitogens and greater adherence to extracellular matrix proteins. The increased proliferative activity ex vivo anteceded by several months the development of atherosclerotic lesions in vivo. Thus, it is a promising marker in assessments of the efficacy of interventions designed to retard or prevent atherosclerosis.

  12. In vitro direct shoot regeneration from proximal, middle and distal segment of Coleus forskohlii leaf explants.

    Science.gov (United States)

    Krishna, Gaurav; Sairam Reddy, P; Anoop Nair, N; Ramteke, P W; Bhattacharya, P S

    2010-04-01

    Coleus forskohlii is an endangered multipurpose medicinal plant that has widespread applications. In spite of this, there have been few attempts to propagate its cultivation in India. The present communication presents an in vitro rapid regeneration method using leaf explants of Coleus forskohlii through direct organogenesis. Leaf explants that were excised into three different segments i.e. proximal (P), middle (M) and distal (D) were cultured on Murashige and Skoog (MS) basal medium supplemented with cytokinins. MS Media containing 5.0 mg L(-1) BAP (6-Benzylaminopurine) promoted regeneration of multiple shoots through direct organogenesis from the leaf, which were further elongated on MS media augmented with 0.1 mg L-1 BAP and 0.1 mg L(-1) IAA (Indole-3-acetic acid), cytokinin and auxin combination. Regenerated and elongated shoots, when transferred to ose resulted in profuse rooting plants that were transferred to soil after acclimatization and maintained in a green house. The current protocol offers a direct, mass propagation method bypassing the callus phase of C. forskohlii and is suitable for conservation, large-scale commercial cultivation, and genetic transformation with agronomically desirable traits. PMID:23572969

  13. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus;

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... stimulation. This study demonstrated the chondrogenic potential of human cord blood-derived Multi-Lineage Progenitor Cells (MLPCs) under normoxic and hypoxic culture conditions. Second, MLPCs were seeded in a novel, structurally graded polycaprolactone (SGS-PCL) scaffold and chondrogenesis was evaluated...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  14. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  15. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology.

    Science.gov (United States)

    Bergmann, Simone; Steinert, Michael

    2015-01-01

    Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms. PMID:26404465

  16. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study.

    Science.gov (United States)

    Iyer, Kartik; Dearman, Bronwyn L; Wagstaff, Marcus J D; Greenwood, John E

    2016-01-01

    Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction. PMID:26284639

  17. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  18. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  19. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    Science.gov (United States)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  20. Mechanobiology and Cartilage Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Céline; HUSELSTEIN; Natalia; de; ISLA; Sylvaine; MULLER; Jean-Franois; STOLTZ

    2005-01-01

    1 IntroductionThe cartilage is a hydrated connective tissue in joints that withstands and distributes mechanical forces. Chondrocytes utilize mechanical signals to maintain tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. Different topics of chondrocytes mechanobiology have led to the de...

  1. Preclinical Studies for Cartilage Repair

    OpenAIRE

    Hurtig, Mark B.; Buschmann, Michael D; Fortier, Lisa A; Hoemann, Caroline D; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral...

  2. Laboratory analyses of two explanted hydrophobic acrylic intraocular lenses

    Directory of Open Access Journals (Sweden)

    Yunhai Dai

    2014-01-01

    Full Text Available Two three-piece hydrophobic acrylic intraocular lenses (IOLs were explanted from two patients at 7 and 9 years, respectively, after implantation, because of poor fundus visualisation and/or a clinically significant decrease in visual acuity related to their opacified IOLs. In addition to light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, confocal laser scanning microscopy was used for the first time to observe the explanted IOLs. The clinical aspect seemed to correspond to the phenomenon of surface light scattering, while laboratory analyses showed dense glistenings in the central layer of the IOL optic, which had no change next to the surface. Further studies on these phenomena are needed.

  3. Cartilage-Specific and Cre-Dependent Nkx3.2 Overexpression In Vivo Causes Skeletal Dwarfism by Delaying Cartilage Hypertrophy.

    Science.gov (United States)

    Jeong, Da-Un; Choi, Je-Yong; Kim, Dae-Won

    2017-01-01

    Nkx3.2, the vertebrate homologue of Drosophila bagpipe, has been implicated as playing a role in chondrogenic differentiation. In brief, Nkx3.2 is initially expressed in chondrocyte precursor cells and later during cartilage maturation, its expression is diminished in hypertrophic chondrocytes. In addition to Nkx3.2 expression analyses, previous studies using ex vivo chick embryo cultures and in vitro cell cultures have suggested that Nkx3.2 can suppress chondrocyte hypertrophy. However, it has never been demonstrated that Nkx3.2 functions in regulating chondrocyte hypertrophy during cartilage development in vivo. Here, we show that cartilage-specific and Cre-dependent Nkx3.2 overexpression in mice results in significant postnatal dwarfism in endochondral skeletons, while intramembranous bones remain unaltered. Further, we observed significant delays in cartilage hypertrophy in conditional transgenic ciTg-Nkx3.2 mice. Together, these findings confirm that Nkx3.2 is capable of controlling hypertrophic maturation of cartilage in vivo, and this regulation plays a significant role in endochondral ossification and longitudinal bone growth. J. Cell. Physiol. 232: 78-90, 2017. © 2016 Wiley Periodicals, Inc. PMID:27253464

  4. Bovine explant model of degeneration of the intervertebral disc

    OpenAIRE

    Sivan Sarit; Menage Janis; Roberts Sally; Urban Jill PG

    2008-01-01

    Abstract Background Many new treatments for degeneration of the intervertebral disc are being developed which can be delivered through a needle. These require testing in model systems before being used in human patients. Unfortunately, because of differences in anatomy, there are no ideal animal models of disc degeneration. Bovine explant model systems have many advantages but it is not possible to inject any significant volume into an intact disc. Therefore we have attempted to mimic disc de...

  5. Diverse response of tomato fruit explants to high temperature

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-02-01

    Full Text Available Tomato explants (fruit with a pedicel and a piece of peduncle, with fruit growth stimulated by treating the flowers with NOA + GA3 (NG-series were used as a model system for studying the effect of high temperature on C-sucrose uptake, its distribution and Ca retranslocation. Two cultivars with contrasting responses to high temperature were compared. In sensitive cv. Roma heat stress during 22h (40oC for 10h and 30oC for 12h, drastically depressed the uptake of 14C-sucrose coinciding with diminished fruit 14C-supply. It also decreased the specific activity of soluble acid invertase and the calcium content. All these strong negative responses to high temperature were markedly reduced in the NG-treated series involving remobilization of Ca to the fruits and a higher stability of the invertase activity. This indicates the indirect role of flower treatment with NG in addaptation to heat stress. In tolerant cv. Robin even higher temperatures (42oC for 10h and 34oC for 12h were not stressful. They did not affect the 14C-sucrose uptake and stimulated 14C-supply to the fruit. Increased specific activity of acid invertase and a higher calcium content were also recorded but only in the control explants. In contrast to cv. Roma elevated temperature was slightly stressful for cv. Robin explants of NG-series. The differences in response of both cultivar explants to elevated temperature, based on unequal fruit supply with 14C-sucrose, seem to be causaly connected with two factors: the invertase activity being more or less sensitive to the heat stress, the ability to translocate Ca to the heated fruits.

  6. Shoot Regeneration from Leaf Explants of Withania somnifera (L. Dunal

    Directory of Open Access Journals (Sweden)

    Aruna Girish JOSHI

    2010-03-01

    Full Text Available Regeneration from leaf explants of Withania somnifera (L. for mass propagation was studied on Murashige and Skoog�s medium supplemented with Kinetin (Kn and 6-benzylaminopurine (BAP alone or in combination. Shoot buds were induced from the midrib on the abaxial side in presence of Kn and BAP (4 �M. These shoot buds developed into shoots on the same medium. Rooting of these shoots was achieved in 0.5 �M of IBA.

  7. Foldable Lens Explantation and Exchange:The Reason and Solution

    Institute of Scientific and Technical Information of China (English)

    Danying Zheng; Zhenpin Zhang; Wenhui Yang; Weirong Chen

    2001-01-01

    Objective: To report the explantation and exchange of Hydrophilic Acrylic foldable intraocular lens (IOL) on 14 patients who had visual disturbances caused by the change of transparence on optic. Methods: Sixteen Hydrophilic Acrylic foldable intraocular lenses from 14 patients who presented with decreased visual acuity from 6 months to 1 year after normal phacoemulsification and IOL implantation associated with extensive transparent change on optic of the lens. The lenses were explanted with the bisection technique. All the eyes were reinserted with Acrysof foldable lenses. Results: Sixteen lenses were removed successfully and exchanged with the new lens in the capsule. The posterior capsular rupture and vitreous loss were found in the first two cases. One of them had the zonulysis due to the radial tear of the anterior capsule during the enlargement of the capsular opening. The anterior vitrectomy was performed with IOL fixed on the ciliary sulcus. The visual acuity of all the patients improved obviously without posterior complication. Conclusion: Foldable lens explantation with the bisection technique and exchange had a successful outcome with improvement of ocular condition. Eye science 2001; 17:54 ~56.

  8. Molecular weight characterization of virgin and explanted polyester arterial prostheses.

    Science.gov (United States)

    Maarek, J M; Guidoin, R; Aubin, M; Prud'homme, R E

    1984-10-01

    The macromolecular properties of 17 virgin commercial arterial prostheses and a series of explanted prostheses, both manufactured from poly(ethylene terephthalate) (PET) yarns, have been studied by gel permeation chromatography (GPC) and by differential scanning calorimetry (DSC). Only small differences were found between the average molecular weights and the degree of crystallinity of the unused reference grafts. A broadening of the DSC curves was observed for the prostheses containing texturized yarns compared with those made solely from flat, untexturized yarns. This broadening may be due to greater heterogeneity of the crystal sizes caused by the texturizing process and to the use of two or more different yarns with dissimilar thermal histories in the same prosthesis. Average molecular weights of the explant series were significantly lower than those of the corresponding reference grafts but almost time independent. The polydispersity index and the degree of crystallinity of the explants remained constant as a function of time. These results are discussed in regard to others available in the literature. PMID:6242474

  9. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  10. The Relationship between MR Parameters and Biomechanical Quantities of Loaded Human Articular Cartilage in Osteoarthritis: An In-Vitro Study

    Science.gov (United States)

    Juráš, V.; Szomolányi, P.; Gäbler, S.; Frollo, I.; Trattnig, S.

    2009-01-01

    The aim of this study was to assess the changes in MRI parameters during applied load directly in MR scanner and correlate these changes with biomechanical parameters of human articular cartilage. Cartilage explants from patients who underwent total knee replacement were examined in the micro-imaging system in 3T scanner. Respective MRI parameters (T1 without- and T1 with contrast agent as a marker of proteoglycan content, T2 as a marker of collagen network anisotropy and ADC as a measure of diffusivity) were calculated in pre- and during compression state. Subsequently, these parameters were compared to the biomechanical properties of articular cartilage, instantaneous modulus (I), equilibrium modulus (Eq) and time of tissue relaxation (τ). Significant load-induced changes of T2 and ADC were recorded. High correlation between T1Gd and I (r = 0.6324), and between ADC and Eq (r = -0.4884) was found. Multi-parametric MRI may have great potential in analyzing static and dynamic biomechanical behavior of articular cartilage in early stages of osteoarthritis (OA).

  11. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan R.; Dam, Erik B.; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learni...

  12. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  13. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  14. Preserved irradiated homolgous cartilage for orbital reconstruction.

    Science.gov (United States)

    Linberg, J V; Anderson, R L; Edwards, J J; Panje, W R; Bardach, J

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is concenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption. PMID:7393528

  15. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    Science.gov (United States)

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  16. Response of root explants to in vitro cultivation of marketable garlic cultivars Resposta dos explantes radiculares ao cultivo in vitro de cultivares comerciais de alho

    Directory of Open Access Journals (Sweden)

    Danielle C Scotton

    2013-03-01

    Full Text Available Garlic cultivars are sexually sterile under standard growth conditions, with direct implications for commercial production costs as well as breeding programs. Garlic is propagated commercially via bulblets, which facilitates disease transmission and virus load accumulation over vegetative generations. Tissue culture produces virus-free clones that are more productive, while keeping the desired traits of the cultivar. Consequently, this technique allows studies of garlic genetics as well as guarantees genetic conservation of varieties. We aimed at analyzing the in vitro regeneration of eight marketable cultivars of garlic using root segments as explants. For each genotype, bulblet-derived explants were isolated and introduced into MS medium supplemented with 2,4-D and 2-iP. Calli were transferred to MS medium supplemented with 8.8 mM BAP and 0.1 mM NAA (regeneration medium A, or with 4.6 mM kinetin alone (regeneration medium B. The calli were then evaluated for regeneration frequency after sixty days of in vitro cultivation. The noble cultivar 'Jonas' presented the highest rates of plant regeneration among the cultivars tested. The medium A, which contained auxin and cytokinin, induced the highest regeneration rates of all cultivars. The process described herein is simple, reproducible and can potentially be used as a tool in molecular breeding strategies for other marketable cultivars and genotypes of garlic.Cultivares de alho são sexualmente estéreis sob condições padrão de cultivo, com implicações diretas nos custos de produção comercial, bem como em programas de melhoramento. O alho é comercialmente propagado por meio de bulbilhos, o que facilita a transmissão de doenças e leva ao acúmulo de cargas virais ao longo das gerações. A cultura de tecidos produz clones livres de vírus que são mais produtivos, mantendo as características desejadas da cultivar. Consequentemente, esta técnica permite estudar a genética do alho, bem

  17. 体外共培养软骨细胞与脂肪基质细胞用于软骨构建的实验研究%Experimental study of in vitro co-culture of chondrocytes and adipose-de-rived stromal cells for cartilage construction

    Institute of Scientific and Technical Information of China (English)

    贾黎; 崔军

    2014-01-01

    Objective To investigate the feasibility of in vitro co-culture of chondrocytes and adipose-derived stromal cells (ADSCs) for cartilage construction. Methods ADSCs and porcine auricular chomdrocytes were collected and cul-tured in v itro,and then three groups were set as the experimental group,the positive control group and the negative con-trol group,which were inoculated ADSCs and chondrocytes(7:3 mixing ratio),simple chondrocytes,simply ADSCs respec-tively.And the contrast morphological changes,the wet weight,the proteoglycan content changes and type II collagen in the expression of histological feature of the three groups was observed and analyzed respectively. Results After eight weeks in v itro culture,the tissue of experimental group had a regular shape,which looked like the structure of cartilage tissue and was certain flexibility.For detection of the average wet weight and proteoglycan quantitative,the average wet weight and proteoglycan could reach 73.1%,81.9% of that in the positive experimental group respectively,which were significantly higher than that in the negative control group(P<0.01).HE staining showed that the experimental group oc-curred consecutive cartilage-like tissue,mature cartilage and fibrous tissue,and new cartilage thickness was more obvi-ous.Type II collagen immunohistochemical staining found that brownish yellow occurred near lacunas of cartilage in the experimental group. Conclusion Chondrocytes and ADSCs co-culture in vitro can be used to build cartilage,but further research is need to determine the direct evidence of ADSCs converted to mature chondrocytes.%目的:探讨体外共培养软骨细胞与脂肪基质细胞(ADSCs)用于软骨构建的可行性。方法分别收集并培养人ADSCs与猪耳软骨细胞,设置实验组、阳性对照组、阴性对照组,分别接种ADSCs和软骨细胞(以7:3比例混合)、单纯软骨细胞、单纯ADSCs,观察并对比三组的形态学变化、湿重、蛋白多糖含量

  18. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.S.; Lang, A. (Michigan State Univ., East Lansing (United States))

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  19. The effect of auxin 2,4-D and cytokinin 2-ip on direct somatic embryogenesis formation of Coffea arabica L. leaf explant

    Directory of Open Access Journals (Sweden)

    Rina Arimarsetiowati

    2011-08-01

    Full Text Available One of the propagation technique for coffee plant production is tissue culture. Tissue culture technique for Coffea arabica L. faces some problems, mainly in the planlet formation regenerated from explants. The objective of this experiment was to examine the effect 2,4-D and 2-ip combination on the formation of direct somatic embryogenesis of Coffea arabica L. in leaves explant. Auxin (2,4-D and cytokinin (2-ip concentrations of, respectively, 1; 5 µM and 5; 10; 15; 20 were used as treatments. This research was conducted using completely randomized design with 10 replications. Observation to induce somatic embryos was done by quantitatively on number of callus from explant and number of embryogenic callus. Beside that, observation by qualitative descriptive was also done on deve lopment of embryogenesis. The results showed that Arabica coffee leaves explant of AS 2K clones could be induced in all medium combination except 5µM 2,4-D and 20µM 2-ip combination. Arabica coffee leaves explant of S 795, Sigararutang and AS 1 varieties could be induced in all medium combination. The highest frequency of callus formation was found in AS 2K, Sigararutang and AS 1 varieties on medium containing 1µM 2,4-D in combination with 10µM 2-ip, whereas for the S 795 variety on medium containing 5µM 2,4-D in combination with 10µM 2-ip. The highest frequency of embriogenic callus in all Arabica coffee variety could be reached on medium containing 5µM 2,4-D in combination with 15µM 2-ip. Key words : Coffea arabica L., somatic embryogenesis, 2,4-D, 2-ip, tissue culture, leaves, callus embryogenic.

  20. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering

    Science.gov (United States)

    Recha-Sancho, Lourdes; Semino, Carlos E.

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  1. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-01

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.

  2. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-01

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants. PMID:27348536

  3. Development of cartilage conduction hearing aid

    Directory of Open Access Journals (Sweden)

    H. Hosoi

    2010-04-01

    Full Text Available Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing aids require surgery (bone anchored hearing aid or great pressure to the skull. The first purpose of this study is to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage. After the best position for the cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion earphone (air conduction, a bone conduction transducer, and a cartilage conduction transducer. Then we made a new hearing aid using cartilage conduction and got subjective data from the patients.Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was comparable to those from the bone conduction hearing aid.Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction. Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such as pain and the need for surgery.Originality/value: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype ‘cartilage

  4. Callus induction and biomass accumulation in vitro in explants from chokeberry (Aronia melanocarpa (Michx. Elliot fruit

    Directory of Open Access Journals (Sweden)

    Tatiana I. Calalb

    2014-09-01

    Full Text Available In this study, the following features were determined: biological (the optimal histogen as explant and the optimal age of donor fruit, biotechnological (type, dosage and combination of growth regulators supplements in culture medium Murashige and Skoog as well as sucrose dosage, and physical (light regime, to induce callusing and biomass accumulation in vitro from the succulent chokeberry (Aronia melanocarpa (Michx. Elliot fruit. It turned out that it was much easier to induce callus from explants composed of the epicarp and hypoderm cut from fruits at 50–60 days after flowering. The role of light regime and varied supplementation of the basic MS medium with different doses of growth regulators was established; they resulted in four pigmented carpomass: violet, cream-pink, cream-white and green. The best combinations for the proliferation of fruit callus were culture media with 0.2–2.5 mg × dm-3 2,4-D+0.5 mg × dm-3 KIN +60 g × dm-3sucrose, while for fruit biomass accumulation enriched with phenolic substances – 2.5–3.5 mg × dm-3 NAA+0.5 mg × dm-3 KIN+60 g × dm-3sucrose. The chemical study of phenolic compounds by HPLC coupled with the mass spectrometry method identified chlorogenic acid, hiperozide, quercetrin, isoquercitrin and rutozide quantitatively and qualitatively in all pigmented carpomass and fruits; an exception is p-coumaric present only qualitatively in green carpomass and absent in fruit and quercetol absent in green carpomass.

  5. Characterization of human primary chondrocytes of osteoarthritic cartilage at varying severity

    Institute of Scientific and Technical Information of China (English)

    YIN Jing; YANG Zheng; CAO Yong-ping; GE Zi-gang

    2011-01-01

    Background There is a difficulty in evaluating the in vivo functionality of individual chondrocytes,and there is much heterogeneity among cartilage affected by osteoarthritis (OA).In this study,in vitro cultured chondrocytes harvested from varying stages of degeneration were studied as a projective model to further understand the pathogenesis of osteoarthritis.Methods Cartilage of varying degeneration of end-stage OA was harvested,while cell yield and matrix glycosaminoglycan (GAG) content were measured.Cell morphology,proliferation,and gene expression of collagen type Ⅰ,Ⅱ,and Ⅹ,aggrecan,matrix metalloproteinase 13 (MMP-13),and ADAMTS5 of the acquired chondrocytes were measured during subsequent in vitro culture.Results Both the number of cells and the GAG content increased with increasing severity of OA.Cell spreading area increased and gradually showed spindle-like morphology during in vitro culture.Gene expression of collagen type Ⅱ,collagen type X as well as GAG decreased with severity of cartilage degeneration,while expression of collagen type Ⅰ increased.Expression of MMP-13 increased with severity of cartilage degeneration,while expression of ADAMTS-5 remained stable.Expression of collagen type Ⅱ,X,GAG,and MMP-13 substantially decreased with in vitro culture.Expression of collagen type Ⅰ increased with in vitro cultures,while expression of ADAMTS 5 remained stable.Conclusions Expression of functional genes such as collagen type Ⅱ and GAG decreased during severe degeneration of OA cartilage and in vitro dedifferentiation.Gene expression of collagen Ⅰ and MMP-13 increased with severity of cartilage degeneration.

  6. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  7. Organ culture-cell culture system for studying multistage carcinogenesis in respiratory epithelium. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Vernon E.; Marchok, Ann C.; Nettesheim, Paul

    1977-01-01

    An organ culture-cell culture system was used to demonstrate carcinogen dose-dependent transformation of tracheal epithelial cells in vitro. Tracheal explants were exposed to MNNG (N-methyl-N/sup 1/-nitro-N-nitrosoguanidine) in organ culture. Outgrowths from these explants provided epithelial cell cultures. The numbers of long term epithelial cell cultures and cell lines that were established per explant increased as MNNG exposure concentration increased. At the present time, more cell lines derived from explants exposed to the highest MNNG concentration have produced palpable tumors than cell lines derived from explants exposed to lower MNNG concentrations. No cell lines were established from primaries derived from control explants. TPA (12-0-tetradecanoyl-phorbol-13-acetate), stimulates DNA synthesis in tracheal epithelium in organ culture in a manner simular to that described for mouse skin. Short exposures to TPA not only stimulated DNA synthesis earlier, but the stimulation was greater than that obtained with continuous exposure. At the present time, exposure of tracheal organ cultures to MNNG followed by TPA has resulted in an enhanced production of morphologically altered cells in primary epithelial cell cultures, than exposure to either agent alone.

  8. Handheld-Level Electromechanical Cartilage Reshaping Device.

    Science.gov (United States)

    Kim, Sehwan; Manuel, Cyrus T; Wong, Brian J F; Chung, Phil-Sang; Mo, Ji-Hun

    2015-06-01

    We have developed a handheld-level multichannel electromechanical reshaping (EMR) cartilage device and evaluated the feasibility of providing a means of cartilage reshaping in a clinical outpatient setting. The effect of EMR on pig costal cartilage was evaluated in terms of shape change, tissue heat generation, and cell viability. The pig costal cartilage specimens (23 mm × 6.0 mm × 0.7 mm) were mechanically deformed to 90 degrees and fixed to a plastic jig and applied 5, 6, 7, and 8 V up to 8 minutes to find the optimal dosimetry for the our developed EMR device. The results reveal that bend angle increased with increasing voltage and application time. The maximum bend angle obtained was 70.5 ± 7.3 at 8 V, 5 minutes. The temperature of flat pig costal cartilage specimens were measured, while a constant electric voltage was applied to three pairs of electrodes that were inserted into the cartilages. The nonthermal feature of EMR was validated by a thermal infrared camera; that is, the maximum temperate of the flat cartilages is 20.3°C at 8 V. Cell viability assay showed no significant difference in cell damaged area from 3 to 7 minutes exposure with 7 V. In conclusion, the multichannel EMR device that was developed showed a good feasibility of cartilage shaping with minimal temperature change. PMID:26126226

  9. 旋转微重力细胞培养系统下Indianhedgehog转染兔BMSCs促进成软骨分化并抑制老化的实验研究%EFFECT OF Indianhedgehog GENE TRANSFECTION INTO RABBIT BONE MARROW MESENCHYMAL STEM CELLS IN PROMOTING CHONDROGENIC DIFFERENTIATION AND INHIBITING CARTILAGE AGING IN ROTARY CELL CULTURE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    刘鹏程; 刘宽; 刘俊峰; 夏阔; 陈礼阳; 吴兴

    2016-01-01

    间无明显差异.结论 在模拟微重力环境下,IHH基因转染BMSCs可有效促进软骨生成,并抑制软骨老化或向成骨发展,适合软骨组织工程的需要.%Objective To investigate the effect of overexpressing the Indianhedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) in a simulated microgravity environment.Methods The 2nd generation BMSCs from rabbit were divided into 2 groups:the rotary cell culture system (RCCS) group and conventional group.Each group was further divided into the IHH gene transfection group (RCCS 1 group and conventional 1 group),green fluorescent protein transfection group (RCCS 2 group and conventional 2 group),and blank control group (RCCS 3 group and conventional 3 group).RCCS group cells were induced to differentiate into chondrocytes under simulated microgravity environment;the conventional group cells were given routine culture and chondrogenic induction in 6 well plates.During differentiation induction,the ELISA method was used to detect IHH protein expression and alkaline phosphatase (ALP) activity,and quantitative real-time PCR to detect cartilage and cartilage hypertrophy related gene expressions,and Western blot to detect collagen type Ⅱ,agreecan (ANCN) protein expression;and methylene blue staining and Annexin V-cy3 immunofluorescence staining were used to observe cell slide.Results After transfection,obvious green fluorescence was observed in BMSCs under fluorescence microscopy in RCCS groups 1 and 2,the transfection efficiency was about 95%.The IHH protein levels of RCCS 1 group and conventional 1 group were significantly higher than those of RCCS 2,3 groups and conventional 2,3 groups (P<0.05);at each time point,ALP activity of conventional 1 group was significantly higher than that of conventional 2,3 groups (P<0.05);ALP activity of RCCS 1 group was significantly higher than that of RCCS 2 and 3 groups only at 3 and 7 days (P<0.05).Conventional 1 group expressed

  10. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul-Rehman Phull

    2016-01-01

    Full Text Available Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes.

  11. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    Science.gov (United States)

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  12. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    Science.gov (United States)

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  13. Comprehensive Profiling of Cartilage Extracellular Matrix Formation and Maturation Using Sequential Extraction and Label-free Quantitative Proteomics*

    OpenAIRE

    Wilson, Richard; Diseberg, Anders F.; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J.; Gorman, Jeffrey J.; Bateman, John F.

    2010-01-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture sy...

  14. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  15. Establishment of high frequency shoot regeneration system in Himalayan poplar (Populus ciliata Wall. ex Royle) from petiole explants using Thidiazuron cytokinin as plant growth regulator

    Institute of Scientific and Technical Information of China (English)

    G Aggarwal; A Gaur; D K Srivastava

    2015-01-01

    Populus species are important resources for industry and in scientific study on biological and agricul-tural systems. Our objective was to enhance the frequency of plant regeneration in Himalayan poplar (Populus ciliata wall. ex Royle). The effect of TDZ alone and in combi-nation with adenine and NAA was studied on the regen-eration potential of petiole explants. The explants were excised from Himalayan poplar plants grown in glass-houses. After surface sterilization the explants were cul-tured on shoot induction medium. High percentage shoot regeneration (86%) was recorded on MS medium sup-plemented with 0.004 mg L-1 TDZ and 79.7 mg L-1 adenine. The regenerated shoots for elongation and multi-plication were transferred to MS ? 0.5 mg L-1 BAP ? 0.2 mg L-1 IAA ? 0.3 mg L-1 GA3. Root re-generation from shoots developed in vitro was observed on MS medium supplemented with 0.10 mg L-1 IBA. Hi-malayan poplar plantlets could be produced within 2 months after acclimatization in a sterile mixture of sand and soil. We developed a high efficiency plant regeneration protocol from petiole explants of P. ciliata.

  16. TRANSFORMING GROWTH FACTOR-β AND FIBROBLAST GROWTH FACTOR INDUCE LENS EPITHELIAL EXPLANT METAPLASIA: IMPLICATIONS FOR THE FORMATION OF SUBCAPSULAR OPACIFICATION

    Institute of Scientific and Technical Information of China (English)

    刘颉; 叶俊杰

    1998-01-01

    Objective. This study was to investigate the effects of transforming growth factor-β(TGFβ) and fibroblast growth factor (FGF) in the subcapsular opaeification formation of the lens. Methods. Lens epithelial explants from 10-day-old rats were cultured with TGFβ1 or TGFβ2 in the presence of FGF for 5 days, then were examined by light and electron microscopy, and by immunolocalization of α-smooth muscle(α-sm) actin and type Ⅰ collagen. Resets. In TGFβ/FGF-treated explants,extensive proliferation oeeured, with formation of spindle and star-shaped cells. These cells showed ultrastructure and biochemical features of fibroblast or myofibroblast.Prominent Golgi apparatus and rough endoplaie reticulum were observed in scene cells, Intracellular microfilaments with cytoplasmic dense bodies and membrane associated dense bodies, features of smooth muscle cells, were also observed. Some cells showed reactivity to α-sin actin antibody. TGFβ/FGF-treated explants were strongly stained with type I collagen antibody. Conclusion. In the presence of FGF, TGFβ1 and TGFβ2 induced lens epithelial cell(LEC)proliferation and transformation into fibroblast or myofibroblast like ceils, with producing of abundant collagen matrix in the explants. The changes are similar to the metaplasia that oeeurrs in subeapsular opacification of the lens. The findings suggest that TGFβ and FGF plays a role in the pathogenesis of subcapsular opacification of the lens.

  17. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.

    Directory of Open Access Journals (Sweden)

    Adel Tekari

    Full Text Available Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease

  18. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  19. The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants.

    Science.gov (United States)

    Fiordalisi, Samira A L; Honorato, Luciana A; Loiko, Márcia R; Avancini, César A M; Veleirinho, Maria B R; Machado Filho, Luiz C P; Kuhnen, Shirley

    2016-03-01

    The objective of this study was to evaluate in vitro the antimicrobial activity of Brazilian propolis from Urupema, São Joaquim, and Agua Doce (Santa Catarina State) and green propolis from Minas Gerais State, and the effects of propolis on bovine mammary gland explant viability. The propolis samples differed in flavonoid content and antioxidant activity. Green propolis showed the highest content of flavonoids, followed by the sample from São Joaquim. The propolis from Urupema showed the lowest flavonoid content along with the lowest antioxidant activity. The total phenolics were similar across all studied samples. Despite phytochemical differences, the propolis samples from Minas Gerais, São Joaquim, and Urupema presented the same level of antimicrobial activity against Staphylococcus aureus strains. The reduction in S. aureus growth was, on average, 1.5 and 4 log10 times at 200 and 500 μg/mL, respectively. At concentrations of 1,000 μg/mL, all propolis reduced bacterial growth to zero. On the other hand, when the propolis were tested against strains of Escherichia coli, the samples presented weak antimicrobial activity. Mammary explants were maintained in culture for 96h without a loss in viability, demonstrating the applicability of the model in evaluating the toxicity of propolis. The origin and chemical composition of the propolis had an effect on mammary explant viability. We encountered inhibitory concentrations of 272.4, 171.8, 63.85, and 13.26 μg/mL for the propolis from Água Doce, Urupema, São Joaquim, and Mina Gerais, respectively. A clear association between greater antimicrobial activity and toxicity for mammary explants was observed. Of all propolis tested, the Urupema sample was noteworthy, as it showed antimicrobial activity at less toxic concentrations than the other samples, reducing bacterial growth to an average of 9.3 × 10(2) cfu/mL after 6h of contact using 200 μg/mL of extract. The results demonstrate the potential for Brazilian

  20. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  1. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    Science.gov (United States)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  2. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    Science.gov (United States)

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  3. Study Progress on Tissue Culture of Maize Mature Embryo

    Science.gov (United States)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  4. Micropropagation of Origanum acutidens (HAND.-MAZZ. IETSWAART Using Stem Node Explants

    Directory of Open Access Journals (Sweden)

    Mehmet Ugur Yildirim

    2013-01-01

    Full Text Available Origanum acutidens (HAND.-MAZZ. IETSWAART is a promising ornamental plant that can be widely used in landscape management. It is endemic to Eastern Anatolian region of Turkey. Tissue culture has not been used to micropropagate it. The study reports stem node explants from one-week-old seedlings of the plant for successful micropropagation. The stem nodes were cultured on MS medium containing 0.6, 1.2, 1.8, and 2.4 mg/L BAP with 0.2 mg/L NAA. Visible effects of culture media on shoot proliferation were recorded. Shoot regeneration rate was maximum on MS medium containing 1.80 mg/L BAP-0.2 mg/L NAA. The micropropagated shoots were rooted on MS medium containing 0.2 mg/L NAA. All microrooted plantlets survived during acclimatisation on peat moss. It was concluded that O. acutidens can be successfully micropropagated under in vitro conditions.

  5. Organ of Corti explants direct tonotopically graded morphology of spiral ganglion neurons in vitro.

    Science.gov (United States)

    Smith, Felicia L; Davis, Robin L

    2016-08-01

    The spiral ganglion is a compelling model system to examine how morphological form contributes to sensory function. While the ganglion is composed mainly of a single class of type I neurons that make simple one-to-one connections with inner hair cell sensory receptors, it has an elaborate overall morphological design. Specific features, such as soma size and axon outgrowth, are graded along the spiral contour of the cochlea. To begin to understand the interplay between different regulators of neuronal morphology, we cocultured neuron explants with peripheral target tissues removed from distinct cochlear locations. Interestingly, these "hair cell microisolates" were capable of both increasing and decreasing neuronal somata size, without adversely affecting survival. Moreover, axon characteristics elaborated de novo by the primary afferents in culture were systematically regulated by the sensory endorgan. Apparent peripheral nervous system (PNS)-like and central nervous system (CNS)-like axonal profiles were established in our cocultures allowing an analysis of putative PNS/CNS axon length ratios. As predicted from the in vivo organization, PNS-like axon bundles elaborated by apical cocultures were longer than their basal counterparts and this phenotype was methodically altered when neuron explants were cocultured with microisolates from disparate cochlear regions. Thus, location-dependent signals within the organ of Corti may set the "address" of neurons within the spiral ganglion, allowing them to elaborate the appropriate tonotopically associated morphological features in order to carry out their signaling function. J. Comp. Neurol. 524:2182-2207, 2016. © 2015 Wiley Periodicals, Inc. PMID:26663318

  6. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Simon, V., E-mail: viosimon@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Radu, T.; Vulpoi, A. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Rosca, C. [Optilens Clinic of Ophthalmology, 400604 Cluj-Napoca (Romania); Eniu, D. [Iuliu Haţieganu University of Medicine and Pharmacy, Department of Molecular Sciences, 400349 Cluj-Napoca (Romania)

    2015-01-15

    Highlights: • Changes on intraocular lens (IOL) surface after implantation. • Partial opacification of IOL central area. • Elemental composition on IOL surface prior to and after implantation. • First XPS depth profiling examination of the opacifying deposits. • Cell-mediated hydroxyapatite structuring. - Abstract: The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  7. Microscopic and spectroscopic investigation of an explanted opacified intraocular lens

    Science.gov (United States)

    Simon, V.; Radu, T.; Vulpoi, A.; Rosca, C.; Eniu, D.

    2015-01-01

    The investigated polymethylmethacrylate intraocular lens explanted an year after implantation presented a fine granularity consisting of ring-like grains of about 15 μm in diameter. In order to evidence the changes occurred on intraocular lens relative to morphology, elemental composition and atomic environments, microscopic and spectroscopic analyses were carried out using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), energy-dispersive X-ray (EDS), and X-ray photoelectron (XPS) spectroscopies. The results revealed that the grains contain hydroxyapatite mineral phase. A protein layer covers the lens both in opacified and transparent zones. The amide II band is like in basal epithelial cells. The shape and size of the grains, and the XPS depth profiling results indicate the possibility of a cell-mediated process involving lens epithelial cells which fagocitated apoptotic epithelial cells, and in which the debris derived from cell necrosis were calcified. To the best of our knowledge, this is the first investigation on explanted intraocular lenses using XPS depth profiling in order to examine the inside of the opacifying deposits.

  8. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  9. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.

    Science.gov (United States)

    Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle

    2016-08-01

    Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters

  10. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients. PMID:11572120

  13. Effect of plant growth regulators and explant types on regeneration and micropropagation of a commercial strawberry cultivar (Fragaria ×ananassa cv. Selva

    Directory of Open Access Journals (Sweden)

    G. Madani

    2013-10-01

    Full Text Available Strawberry (Fragaria× ananassa L. is an important horticultural product that is highly acceptable because of its desirable taste, flavor, mineral elements, vitamins and secondary metabolites. Conventionally, strawberries are vegetatively propagated by runners arising from axillary buds on the plant crown. Plant propagation through runner produces a limited number of propagules. In the view of mass propagation and transformation, it is highly desirable to optimize methods of rapid, efficient and large scale multiplication of Fragaria X ananassa Duch. through tissue culture. In present study, developing an effective protocol for regeneration of strawberry cv. Selva, different explants (leaf disk, shoot tips and hypocotyls and media modifications were examined. The best response towards shoot induction was observed on shoot tip explants cultured on MS medium supplemented with 2 mg/l of BAP and IAA. Direct shoots emerged from hypocotyls grown on MS medium supplemented by 2,4-D, BAP and TDZ at 0.01, 0.1 and 1 mg/l respectively. Indirect shoot regeneration was produced from hypocotyls on MS medium containing 2 mg/l of BAP. Using activated charcoal enhanced explants proliferation on culture media due to decreasing the toxic metabolites, phenolic exudation and adsorption of inhibitory compounds.

  14. Effect of explant density and volume of cultivation medium on in-vitro multiplication of blueberry (Vaccinium corymbosum L. varieties "Brigitta" and "Legacy"

    Directory of Open Access Journals (Sweden)

    Mario Rodríguez Beraud

    2015-03-01

    Full Text Available The objective of the investigation was to evaluate the in-vitro multiplication of two varieties of blueberry (Vaccinium corymbosum L., “Brigitta” and “Legacy” in response to five explants densities (5, 10, 15, 20 and 25 and four flask volumes (10, 20, 30 and 40 mL for cultivation. For both varieties the cultivation medium WPM (Woody Plant Medium was used. The experiment was completely randomized with 20 treatments and 12 repetitions per treatment. After 45 days of cultivation we evaluated the height of shoots, number of shoots/explant, number of nodes/shoot and number of shoots/flask. Variety “Brigitta” had highest shoots at higher densities and flask volumes, while variety “Legacy” had the highest average shoot height with intermediate densities and high volumes. Regarding the number of shoots/explant, the volume of the medium had no influence on “Brigitta”, however, higher plant densities affected this parameter. With variety “Legacy” the maximum number of shoots was achieved with lower plant densities and intermediate culture volumes per flask. In relation to the number of nodes per explant "Brigitta had lower numbers as compared to “Legacy”, but with both varieties the number of nodes decresed with smaller volumes of medium in the flasks. For the number of shoots per flask, “Brigitta” responsed best at higher densities exceeding 40 shoots per flask. In contrast, “Legacy” produced maximum results at density of 25 explants in 30 mL of medium. It is concluded that for the optimum multiplication of both varieties the correct selection of both, the planting density and the volume of multiplication medium are important.

  15. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J.; Treadwell, B.V.; Mankin, H.J.

    1984-01-01

    Incorporation of radioactive precursors into macromolecules was studied with human normal and osteoarthritic articular cartilage organ culture. Analysis of the salt extracted matrix components separated by cesium chloride buoyant density gradient centrifugation showed an increase in the specific activities of all gradient fractions prepared from the osteoarthritic cartilage. Further analysis of these fractions showed the osteoarthritic cartilage contained 5 times as much sulfate incorporated into proteoglycans, and an even greater amount of 3H-glucosamine incorporated into material sedimenting to the middle of the gradient. Greater than half of this radioactive middle fraction appears to be hyaluronate, as judged by the position it elutes from a DEAE column and its susceptibility to hyaluronidase digestion. This study supports earlier findings showing increased rates of macromolecular synthesis in osteoarthritis, and in addition, an even greater synthetic rate for hyaluronic acid is demonstrated.

  16. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  17. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  18. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering.

  19. High-frequency in vitro plantlet regeneration from apical bud as a novel explant of Carum copticum L.

    Institute of Scientific and Technical Information of China (English)

    Mansoureh Salehi; Bahman Hosseini; Zohreh Jabbarzadeh

    2014-01-01

    Objective: To develop an in vitro regeneration system to increase the recovery of Carum copticum L. plantlets as a part of developing a metabolic engineering program.Methods:3-acetic acid and indole butyric acid on direct shoot regeneration and rooting of ajowan from apical bud explants were assessed. All explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of 6-benzyl amino purine (BAP) (0, 2.2, 4.4, 8.8µ The efficacy of different concentrations and combinations of 6-benzyladenine, indole-Results: The maximum shoot regeneration frequency (97.5%) and the highest number of shoots produced from apical buds (34 shoots per explant) were obtained on MS medium fortified with BAP (4.4 µmol/L) and IAA (0.5 µmol/L). Low shoot regeneration frequency was observed in BAP free treatments. The effects of different strengths of MS medium and various concentrations of IAA and indole-3- butyric acid on rooting rate, length and average number of roots were also investigated. Application of indole-3- butyric acid (6 µmol/L) in full-strength MS medium, was more effective than IAA and resulted in highest shoot regeneration frequency with the rooting rate of 100% and highest mean number of roots per shoot (41.8). The rooted plantlets were acclimatized successfully in greenhouse conditions with a survival rate of 90%. mol/L) and indole-3-acetic acid (IAA) (0, 0.5, 1.1, 2.2 µmol/L). Conclusion: In this study, a simple and reliable regeneration and acclimatization protocol for Carum copticum has been presented. This protocol can be found very advantageous for a variety of purposes, including mass multiplication of Carum species, medicinal plant breeding studies and transgenic plant production.

  20. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  1. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical propertie

  2. Evaluation for Plant Regeneration Potential of Root Explants in Echinacea purpurea%松果菊根外植体植株再生能力的评价

    Institute of Scientific and Technical Information of China (English)

    Dahanayake NILANTHI; 赵福成; 杨跃生; 吴鸿

    2009-01-01

    为了评价松果菊Echinacea purpurea L.根外植体的再生能力,将从松果菊无菌小苗得到的根外植体和叶片以及叶柄外植体接种到含有不同种类和浓度的细胞分裂素和生长素的培养基上,诱导不定芽的再生.结果表明,在多数情况下,根外植体的再生能力显著高于叶片,和叶柄类似.0.3 mg/L的苄基腺嘌呤和0.01 mg/L的萘乙酸是诱导根外植体不定芽再生最合适的激素种类和质量浓度组合.根外植体培养的不定芽再生频率为100%,每个根外植体得到再生芽1.75个.当把这些由根再生的不定芽从母体组织切开并转移培养到含有0.01 mg/L萘乙酸的培养基后,很容易生根并成为完整的植株.可见根是组培快繁松果菊理想的外植体材料.%For evaluation of the plant regeneration potential of root explants, explants of root, leaf and petiole were taken from in vitro grown purple coneflower, Echinacea purpurea L. Plantlets and cultured on adventitious bud inducing media with different cytokinins and auxins at various concentrations. In most of the cases, the regeneration potential of root explants was much higher than that of leaf ones and similar to that of petiole explants, and a combination of 0.3 mg/L benzyladeine with 0.01 mg/L naphthaleneacetic acid was the most effective combination and concentrations for inducing adventitious bud regen-eration. Although the best result of bud regeneration was obtained from culture of petiole explants, a good result in regenera-tion rate of 100% and a high number of 1.75 buds per exphnt were obtained from culture of root explants. Buds regenerated from root explants initiated roots and became intact plants readily upon transfer to a medium containing 0.01 mg/L naphthale-neacetic acid. Results of the experiments indicated that root was an ideal explant source for rapid propagation by means of tis-sue culture in this plant species.

  3. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl).

    Science.gov (United States)

    Mithila, J; Hall, J C; Victor, J M R; Saxena, P K

    2003-01-01

    Regeneration via shoot organogenesis and somatic embryogenesis was observed from thidiazuron (TDZ)-treated leaf and petiole explants of greenhouse- and in vitro-grown African violet plants. The response of cultures to other growth regulators over a range of 0.5 microM to 10 microM was 50% less than that observed with TDZ. A comparative study among several cultivars of African violet indicated that "Benjamin" and "William" had the highest regeneration potential. In "Benjamin", higher frequencies of shoot organogenesis (twofold) and somatic embryogenesis (a 50% increase) were observed from in vitro- and greenhouse-grown plants, respectively. At concentrations lower than 2.5 microM, TDZ induced shoot organogenesis, whereas at higher doses (5-10 microM) somatic embryos were formed. These findings provide the first report of simultaneous shoot organogenesis and somatic embryogenesis of African violet explants in response to TDZ. PMID:12789442

  4. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  5. ANATOMICAL STUDIES OF IN VITRO ORGANOGENESIS INDUCED IN LEAF-DERIVED EXPLANTS OF PASSIONFRUIT ESTUDOS ANATÔMICOS DA ORGANOGÊNESE IN VITRO INDUZIDA EM EXPLANTES DE FOLHA DE MARACUJÁ

    Directory of Open Access Journals (Sweden)

    BEATRIZ APPEZZATO DA GLORIA

    1999-11-01

    Full Text Available With the aim of studying the organogenesis in vitro in Passiflora edulis Sims f. flavicarpa Deg., the passionfruit, leaf-derived explants were cultured on media containing NAA or BAP and incubated either in continuous darkness or in light. The histological events leading to de novo organ formation were evaluated. Darkness induces rhizogenesis in the presence of NAA, whereas direct shoot regeneration is stimulated by light and BAP. This latter condition is recommended for passionfruit micropropagation as several adventitious shoot buds were formed from meristemoids of parenchymal origin.Com o objetivo de estudar a organogênese in vitro em Passiflora edulis Sims f. flavicarpa Deg., o maracujá-amarelo, explantes derivados de folha foram cultivados em meio contendo NAA ou BAP, no escuro e na presença de luz. Foram descritos os eventos histológicos que levam à formação de novo de órgãos. Concluiu-se que o escuro induz a rizogênese, na presença de NAA, enquanto a regeneração de brotos é estimulada pela luz e BAP. Esta condição é recomendada para micropropagar o maracujá uma vez que vários brotos adventícios são formados a partir de meristemóides de origem parenquimática.

  6. Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect

    Institute of Scientific and Technical Information of China (English)

    Si-yuan LI; Jun-ling CAO; Zhong-li SHI; Jing-hong CHEN; Zeng-tie ZHANG; Clare E. HUGHES; Bruce CATERSON

    2008-01-01

    Objective: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD), the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA), soluble CD44 (sCD44), IL-1β and TNF-α levels in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was determined by flow cytometry (FCM). CD44, hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13, 3-B-3(-) and 2-B-6 epitopes in the cartilage reconstructed in vitro. Results: T-2 toxin inhibited CD44, HAS-2, and aggrecan mRNA expressions, but promoted aggrecanase-2 mRNA expression. Meanwhile, CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition,ELISA results indicated that there were higher sCD44, IL-1β and TNF-α levels in T-2 toxin group. Similarly, higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore, using monoclonal antibodies BC-13, 3-B-3 and 2-B-6, strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin, whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above. Conclusion: T-2 toxin could inhibit aggrecan synthesis, promote aggrecanases and pro-inflammatory cytokines production, and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage, inducing aggrecan loss in the end, which may be the initiation of the cartilage

  7. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  8. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-01-01

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines. PMID:27232665

  9. Reproducible simulation of respiratory motion in porcine lung explants

    International Nuclear Information System (INIS)

    Purpose: To develop a model for exactly reproducible respiration motion simulations of animal lung explants inside an MR-compatible chest phantom. Materials and Methods: The materials included a piston pump and a flexible silicone reconstruction of a porcine diaphragm and were used in combination with an established MR-compatible chest phantom for porcine heart-lung preparations. The rhythmic inflation and deflation of the diaphragm at the bottom of the artificial thorax with water (1-1.5 L) induced lung tissue displacement resembling diaphragmatic breathing. This system was tested on five porcine heart-lung preparations using 1.5T MRI with transverse and coronal 3D-GRE (TR/TE=3.63/1.58, 256 x 256 matrix, 350 mm FOV, 4 mm slices) and half Fourier T2-FSE (TR/TE=545/29, 256 x 192, 350 mm, 6 mm) as well as multiple row detector CT (16 x 1 mm collimation, pitch 1.5, FOV 400 mm, 120 mAs) acquired at five fixed inspiration levels. Dynamic CT scans and coronal MRI with dynamic 2D-GRE and 2D-SS-GRE sequences (image frequencies of 10/sec and 3/sec, respectively) were acquired during continuous 'breathing' (7/minute). The position of the piston pump was visually correlated with the respiratory motion visible through the transparent wall of the phantom and with dynamic displays of CT and MR images. An elastic body splines analysis of the respiratory motion was performed using CT data. Results: Visual evaluation of MRI and CT showed three-dimensional movement of the lung tissue throughout the respiration cycle. Local tissue displacement inside the lung explants was documented with motion maps calculated from CT. The maximum displacement at the top of the diaphragm (mean 26.26 [SD 1.9] mm on CT and 27.16 [SD 1.5] mm on MRI, respectively [p=0.25; Wilcoxon test]) was in the range of tidal breathing in human patients. Conclusion: The chest phantom with a diaphragmatic pump is a promising platform for multi-modality imaging studies of the effects of respiratory lung motion. (orig.)

  10. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  11. Polarized IR microscopic imaging of articular cartilage

    Science.gov (United States)

    Ramakrishnan, Nagarajan; Xia, Yang; Bidthanapally, Aruna

    2007-08-01

    The objective of this spectroscopic imaging study is to understand the anisotropic behavior of articular cartilage under polarized infrared radiation at 6.25 µm pixel resolution. Paraffin embedded canine humeral cartilage-bone blocks were used to obtain 6 µm thick tissue sections. Two wire grid polarizers were used to manipulate the polarization states of IR radiation by setting them for various polarizer/analyzer angles. The characteristics of the major chemical components (amide I, amide II, amide III and sugar) of articular cartilage were investigated using (a) a polarizer and (b) a combination of a polarizer and an analyzer. These results were compared to those obtained using only an analyzer. The infrared anisotropy (variation in infrared absorption as a function of polarization angles) of amide I, amide II and amide III bands correlates with the orientation of collagen fibrils along the tissue depth in different histological zones. An 'anisotropic flipping' region of amide profiles indicates the possibility of using Fourier transform infrared imaging (FTIRI) to determine the histological zones in cartilage. Cross-polarization experiment indicates the resolution of overlapping peaks of collagen triple helix and/or proteoglycan in articular cartilage.

  12. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  13. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  14. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  15. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite

    International Nuclear Information System (INIS)

    Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues, which needs high compressive strength for clinical use. HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images showed pCol-HAp/ChS to have the roughest surface compared with pCol and pCol-HAp. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Safranin O, Toluidine blue and Alcian blue staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic in each case. In addition, MSCs in pCol-HAp/ChS produced more glycosaminoglycans, a cartilage matrix, than those in pCol-HAp. Further, pCol-HAp/ChS regenerated 15 times more cartilaginous tissue than pCol. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.

  16. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  17. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aaron X Sun

    2015-08-01

    Full Text Available Poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light based PSL (VL-PSL system to encapsulate human adipose-derived stem cells (hASCs into a biodegradable polymer (poly-D,L-lactic acid/polyethylene glycol/ poly-D,L-lactic acid (PDLLA-PEG/hyaluronic acid (HA matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84% and were uniformly distributed throughout the constructs, which possessed high mechanical property with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in Control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium treated group (TGF-β3 group hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 x 10(5 fold increases, respectively, compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan (GAG-rich extracellular matrix, detected by immunohistochemistry, and Alcian blue and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group, cell viability decreased with time (65% at 28 days and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL- and PLLA-PEG/HA based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage

  18. Cells that emerge from embryonic explants produce fibers of type IV collagen.

    Science.gov (United States)

    Chen, J M; Little, C D

    1985-10-01

    Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.

  19. In Vitro Callus Induction and Embryogenesis of Oil Palm (Elaeis guineensis Jacq. from Leaf Explants

    Directory of Open Access Journals (Sweden)

    DWI HAPSORO

    2011-06-01

    Full Text Available This research was to study in vitro callus induction and somatic embryogenesis in oil palm from leaf explants. Young leaf segments from mature oil palm were cultured on MS medium supplemented with different concentrations of 2,4-D with or without addition of 2 g/l activated charcoal (AC or 2,4-D and picloram. Embryogenesis induction was done using MS medium containing 2,4-D 450 M and benziladenine 4.4 M with 3g/l activated charcoal. The treatment of 2,4-D 15 M resulted in the highest percentage of callus induction. The treatment of 2,4-D and AC showed that 2,4-D 450 M and AC led to higher percentage of callus induction than that of 2,4-D 400 M and 2 g/l AC. Embryogenesis occured in 27 out of 250 clumps of primary callus was occurred after 2-3 times subcultures. Somatic embryo development occurred when the embryogenic callus was transferred on the same basal medium supplemented with casein hydrolysate with 1 M BA or growth regulator free basal medium with 2 g/l activated charcoal.

  20. Engineering articular cartilage using newly developed carrageenan basedhydrogels

    OpenAIRE

    Popa, Elena Geta

    2014-01-01

    Articular cartilage holds specific functionality in the human body creating smooth gliding areas and allowing the joints to move easily without pain. However, due to its avascular nature and to the low metabolic activity of the constituent cells-the chondrocytes, cartilage has a low regenerative potential. The current surgical options to treat damaged cartilage are not long lasting and involve frequent revisions. Tissue engineering may provide an alternative approach for cartilage...

  1. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  2. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  3. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  4. Preparation of Articular Cartilage Specimens for Scanning Electron Microscopy.

    Science.gov (United States)

    Stupina, T A

    2016-08-01

    We developed and adapted a technology for preparation of articular cartilage specimens for scanning electron microscopy. The method includes prefixation processing, fixation, washing, and dehydration of articular cartilage specimens with subsequent treatment in camphene and air-drying. The technological result consists in prevention of deformation of the articular cartilage structures. The method is simpler and cheaper than the known technologies. PMID:27591865

  5. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  6. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants

    Science.gov (United States)

    Mol, Juliana P. S.; Pires, Simone F.; Chapeaurouge, Alexander D.; Perales, Jonas; Santos, Renato L.; Andrade, Hélida M.; Lage, Andrey P.

    2016-01-01

    Brucella abortus is the etiological agent of bovine brucellosis, a zoonotic disease that causes significant economic losses worldwide. The differential proteomic profile of bovine chorioallantoic membrane (CAM) explants at early stages of infection with B. abortus (0.5, 2, 4, and 8 h) was determined. Analysis of CAM explants at 0.5 and 4 h showed the highest differences between uninfected and infected CAM explants, and therefore were used for the Differential Gel Electrophoresis (DIGE). A total of 103 spots were present in only one experimental group and were selected for identification by mass spectrometry (MALDI/ToF-ToF). Proteins only identified in extracts of CAM explants infected with B. abortus were related to recognition of PAMPs by TLR, production of reactive oxygen species, intracellular trafficking, and inflammation. PMID:27104343

  7. Effect of Age of Explant on Transgenic Cotton (Gossypium Plant Due to Expression of Mannose-Binding Lectin Gene from Allium sativum

    Directory of Open Access Journals (Sweden)

    Lynelle van Emmenes

    2011-09-01

    Full Text Available Cotton is the most important textile plant in the world and is one of the most important crops for the production of oilseed. Because of its worldwide economic importance, new cultivars are constantly being released in the world. Although great improvements have been achieved through traditional breeding methods, cotton breeders are facing many problems, i.e., narrow genetic base, inability to use alien genes and difficulty in breaking gene linkages. Genetic transformations analyses are main tools used by breeders to overcome these problems. The aim of the study reported in this paper is to determine the effect of age of explant on regeneration response of apical shoot for tissue culture and gene transfer systems of cotton. This enabled us evaluate it effects on cotton transformation. The age of explants was observed to have significant effect on shoot tip elongation. The elongation rates of the three varieties studied were not significantly different from each other (p = 0.1573 and was observed to be affected by the size of isolated tips. It was observed that if the starting size of the apex was less than 1 mm, the tips would not grow at all. Insecticidal lectin gene from Allium sativum was transferred into the transgenic cotton plants via Agrobacterium-mediated transformation using shoot apices as explants. Putative transgenic plants were confirmed by leaf GUS assay, kanamycin leaf test and molecular analysis of plantlet.

  8. Effects of laser irradiation on immature olfactory neuroepithelial explants from the rat

    Energy Technology Data Exchange (ETDEWEB)

    Mester, A.F.; Snow, J.B. Jr.

    1988-07-01

    The photobiological effect of low-output laser irradiation on the maturation and regeneration of immature olfactory bipolar receptor cells of the rat was studied. The maturation and regeneration of the receptor cells of rat fetuses were quantified in neuroepithelial explants with morphometric analysis. The number of explants with outgrowth and the number and length of neuritic outgrowths were determined on a regular basis for 12 days. Explants in the experimental group were irradiated with a helium-neon laser using different incident energy densities (IED). Explants in the fluorescent light control group were exposed to fluorescent light for the same periods of time as those in the experimental group were exposed to laser irradiation. Explants in another control group were not exposed to laser or fluorescent light irradiation. The IED of 0.5 J/cm2 laser irradiation has been found to increase significantly the number of explants with outgrowth and the number and length of the outgrowths. Other laser IEDs or fluorescent light irradiation did not influence maturation or regeneration.

  9. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  10. An Uncommon Plant Growth Regulator, Diethyl Aminoethyl Hexanoate, Is Highly Effective in Tissue Cultures of the Important Medicinal Plant Purple Coneflower (Echinacea purpurea L.

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Chen

    2013-01-01

    Full Text Available We investigated the effects of various concentrations of diethyl aminoethyl hexanoate (DA-6 on the regeneration and growth of adventitious buds in in vitro purple coneflower cultures. Among the 3 types of explants tested, leaf explants required higher concentrations of DA-6 than petiole and root explants in order to obtain high regeneration rates, while root explants required the lowest concentration of DA-6. Additionally, explants with higher ploidy levels were more sensitive to the addition of DA-6, while explants with lower ploidy levels required higher concentrations of DA-6 to achieve its maximal regeneration rate. Interestingly, the application of a concentration that was conducive to the regeneration of explants with lower ploidy levels was inhibitory to the regeneration of explants with higher ploidy levels. Moreover, during the growth of regenerated buds, DA-6 application significantly improved plant height and weight, root weight, root thickness, root number, primary root length, total root length, and root/top ratio. Differences in the responses of explants to supplementation with DA-6 were also observed among explants with different ploidy levels, with buds having lower ploidy levels responding to lower concentrations of DA-6. Taken together, the results of the present experiments showed that proper application of DA-6 could increase in vitro culture efficiency in purple coneflower.

  11. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  12. In vitro establishment of a highly effective method of castor bean (Ricinus communisL.) regeneration using shoot explants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-xing; CHI Yue; CHEN Yong-sheng; WANG Xiao-yu; FENG Zi-zhou; GENG Xue-jun; MU Sha-moli; HUO Hong-yan; TONG Huan; LI Meng-zhu; LI Yi

    2016-01-01

    An efifcient plant regeneration protocol was established for castor bean (Ricinus communisL.), in which 0.3 mg L–1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hypocotyl tissue. Our results showed that treatment under dark conditions signiifcantly promoted the average number of shoots per explant to 37.36±4.54 (with a 6-d treatment). Modiifed 1/2 Murashige and Skoog (MS) basal medium supplemented with 440 mg L–1 Ca2+, 0.2 mg L–1 gibberelic acid and 0.1 mg L–1 TDZ signiifcantly increased shoot elongation rates and lowered vitriifcation rates. Further-more, 1/2 MS media supplemented with 0.2 mg L–1 1-naphthaleneacetic acid induced a higher rooting rate compared with other culture conditions.

  13. Effect of Basal Medium, Explants Size and Density on the In Vitro Proliferation and Growth of Date Palm (Phoenix dactylifera L. Cultivar ‘16-bis’

    Directory of Open Access Journals (Sweden)

    Mouaad Amine MAZRI

    2013-08-01

    Full Text Available The effect of basal medium, explant size and density on shoot multiplication, growth, rooting and acclimatization of date palm cv. ‘16-bis’ was evaluated. Bud clusters of different sizes (2, 3, 4 and 5 buds per cluster were cultured at density of 1, 2, 3 and 4 clusters on Murashige and Skoog medium (MS, woody plant medium (WPM and Nitsch medium (NM supplemented with 0.5 mg/L 2-naphthoxyacetic acid and 0.5 mg/L kinetin for three months (multiplication phase. Separated shoots of different sizes (<3 cm; 3 to 4.5 cm and 4.5 to 6 cm were cultured at density of 1, 2, 3 and 4 shoots on hormone free MS medium, WPM or NM for three months (Elongation-rooting phase. The proliferation and development of shoots were affected by the basal medium, explant size and density. The optimal shoot proliferation (18.1 was observed when 4 buds clusters were cultured at the density of 2 clusters per jar in MS medium. Separated shoots of 4.5 to 6 cm length exhibited the optimal in vitro development in terms of leaf length and greening, and root number and length when cultured on MS medium. In addition, these shoots reached the highest acclimation frequency with 80%. Our results would be utilized for an efficient propagation of plantlets of cv. ‘16-bis’, a selected date palm cultivar resistant to the bayoud disease.

  14. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Science.gov (United States)

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  15. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    Directory of Open Access Journals (Sweden)

    Pengzhen Wang

    Full Text Available Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1 and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic

  16. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  17. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  18. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  19. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  20. Nonspecific otalgia: Indication for cartilage tympanoplasty

    Directory of Open Access Journals (Sweden)

    Rauf Ahmad

    2015-01-01

    Full Text Available Introduction: Myringoplasty and tympanoplasty are commonly performed otologic surgical procedures. The aim of this study was to analyze the influence of nonspecific otalgia on the successful autologous conchal cartilage and temporalis fascia graft take up in type-1 tympanoplasty. Materials and Methods: A total of 250 adult patients who met the inclusion criteria were enrolled for this study. Patients were placed in two groups (otalgia and nonotalgia group depending upon the history of otalgia. Patients in both groups were operated (type-1 tympanoplasty using randomly either temporalis fascia or conchal cartilage as the graft material. Follow-up of patients was done after 3 weeks, 6 weeks, and 3 months of surgery to check the status of graft take up. Result: Our study shows that patients in otalgia group in which autologous temporalis fascia was used as the graft material, the majority of patients had graft necrosis by 3 months after surgery (9.6% success only. Whereas patients of the same group in which autologous conchal cartilage was used as the graft material, successful graft take up was in 93.5% patients after 3 months of surgery. Our study shows that there was not much difference in using autologous temporalis fascia or autologous conchal cartilage on successful graft take up in nonotolgia group of patients, with success rate of 97.89% and 97.84%, respectively.

  1. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  2. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated. PMID:26119536

  3. Development of large engineered cartilage constructs from a small population of cells.

    Science.gov (United States)

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. PMID:23197468

  4. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration.

    Science.gov (United States)

    Park, Kyung Min; Lee, Sang Young; Joung, Yoon Ki; Na, Jae Sik; Lee, Myung Chul; Park, Ki Dong

    2009-07-01

    Injectable hydrogels have been studied for potential applications for articular cartilage regeneration. In this study, a thermosensitive chitosan-Pluronic (CP) hydrogel was designed as an injectable cell delivery carrier for cartilage regeneration. The CP conjugate was synthesized by grafting Pluronic onto chitosan using EDC/NHS chemistry. The sol-gel phase transition and mechanical properties of the CP hydrogel were examined by rheological experiments. The CP solution underwent a sol-gel transition around 25 degrees C at which the storage modulus (G') approaches 10(4)Pa, highlighting the potential of this material as an injectable scaffold for cartilage regeneration. The CP hydrogel was formed rapidly by increasing the temperature. The morphology of the dried CP hydrogel was observed by scanning electron microscopy. In vitro cell culture was performed using bovine chondrocytes. The proliferation of bovine chondrocytes and the amount of synthesized glycosaminoglycan increased for 28 days. These results suggested that the CP hydrogel has potential as an injectable cell delivery carrier for cartilage regeneration and could serve as a new biomaterial for tissue engineering. PMID:19261553

  5. Naringin Protects Against Cartilage Destruction in Osteoarthritis Through Repression of NF-κB Signaling Pathway.

    Science.gov (United States)

    Zhao, Yunpeng; Li, Zhong; Wang, Wenhan; Zhang, Hui; Chen, Jianying; Su, Peng; Liu, Long; Li, Weiwei

    2016-02-01

    Naringin was previously reported as a multifunctional agent. Recently, naringin was found to play a protective role in various inflammatory conditions. However, the role of naringin in cartilage degeneration and osteoarthritis (OA) progression is still unknown. TNF-α is reported to play a detrimental role in OA. Herein, primary murine chondrocytes were isolated and cultured with stimulation of TNF-α, in the presence or absence of naringin treatment. As a result, naringin attenuated TNF-α-mediated inflammation and catabolism in chondrocyte. Besides, surgically induced OA mice models were established. Cartilage degradation and OA severity were evaluated using Safranin-O staining, immunohistochemistry, and ELISA. Moreover, levels of inflammatory cytokines and catabolic markers in OA were analyzed. Oral administration of naringin alleviated degradation of cartilage matrix and protected against OA development in the surgically induced OA models. Furthermore, the protective function of naringin in cartilage and chondrocyte was possibly due to suppression of NF-κB signaling pathway. Collectively, this study presents naringin as a potential target for the treatment of joint degenerative diseases, including OA. PMID:26438631

  6. Benoxaprofen stimulates proteoglycan synthesis in normal canine knee cartilage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Palmoski, M.J.; Brandt, K.D.

    1983-06-01

    Several nonsteroidal antiinflammatory drugs which are cyclooxygenase inhibitors (e.g., salicylates, fenoprofen, ibuprofen) have been shown to suppress proteoglycan synthesis by normal joint cartilage in vitro. We examined the effect of benoxaprofen, a long-acting proprionic acid derivative which inhibits lipoxygenase in addition to causing moderate cyclooxygenase inhibition. When added to the culture medium in concentrations comparable with those obtainable in serum of patients treated with the drug (e.g., 10 and 50 micrograms/ml), benoxaprofen increased proteoglycan synthesis in slices of normal canine knee cartilage to 126% and 135%, respectively, of control levels. These concentrations of the drug augmented net protein synthesis to 154% and 123%, respectively, of control levels. Incorporation of /sup 3/H glucosamine into 9-aminoacridine precipitable material was increased by benoxaprofen, showing that it stimulates net proteoglycan synthesis, and not merely sulfation. At concentrations of either 10 or 50 micrograms/ml, the drug had no effect on proteoglycan catabolism or on the ability of proteoglycans to interact with cartilage hyaluronic acid to form macromolecular aggregates. Nordihydroguaiaretic acid, a free radical scavenger which, like benoxaprofen, inhibits the lipoxygenase as well as cyclooxygenase pathways of arachidonic acid metabolism, also increased /sup 35/S glycosaminoglycan synthesis in cartilage slices. The stimulation of glycosaminoglycan and protein synthesis by benoxaprofen suggests that its action on the chondrocyte may be different from that of most other nonsteroidal antiinflammatory drugs.

  7. MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB

    Directory of Open Access Journals (Sweden)

    Raghavendra D.R.

    2014-12-01

    Full Text Available Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures.

  8. Establishment of in vitro culture of grapes

    International Nuclear Information System (INIS)

    The establishment of in vitro culture from shoot tip explants (meristemetic tissue) of grapes was investigated through tissue culture technique. These explants were collected from gene bank of Institute of Agricultural Biotechnology and Genetic Resources (IABGR), National Agricultural Research Centre (NARC), Islamabad, Pakistan. Fifteen accessions of grapes were surface sterilized and tested on 75% MS media for germination and initial growth parameters. Accession No. 020017 (Dakh-1) exhibited highest viability (100%), shoot length (4.12 cm) and nodes plant (3.8). Moreover, it was found that response of cultures to different treatments was dependent both on accession and treatment duration. In conclusion, this protocol proved to be useful in optimizing the dose and duration of the treatment of grape explants with the surface disinfectant. (author)

  9. Facilitating cartilage volume measurement using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Maataoui, Adel, E-mail: adel.maataoui@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Gurung, Jessen, E-mail: jessen.gurung@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Ackermann, Hanns, E-mail: h.ackermann@add.uni-frankfurt.d [Institute for Epidemiology and Medical Statistics, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Abolmaali, Nasreddin [Biological and Molecular Imaging, ZIK OncoRay - Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Kafchitsas, Konstantinos [Department of Orthopedics and Orthopedic Surgery, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Khan, M. Fawad, E-mail: fawad@gmx.d [Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2010-08-15

    Purpose: To compare quantitative cartilage volume measurement (CVM) using different slice thicknesses. Materials and methods: Ten knees were scanned with a 1.5 T MRI (Sonata, Siemens, Erlangen, Germany) using a 3D gradient echo sequence (FLASH, fast low-angle shot). Cartilage volume of the medial and lateral tibial plateau was measured by two independent readers in 1.5 mm, 3.0 mm and 5.0 mm slices using the Argus software application. Accuracy and time effectiveness served as control parameters. Results: Determining cartilage volume, time for calculation diminished for the lateral tibial plateau from 384.6 {+-} 127.7 s and 379.1 {+-} 117.6 s to 214.9 {+-} 109.9 s and 213.9 {+-} 102.2 s to 122.1 {+-} 60.1 s and 126.8 {+-} 56.2 s and for the medial tibial plateau from 465.0 {+-} 147.7 s and 461.8 {+-} 142.7 s to 214.0 {+-} 67.9 s and 208.9 {+-} 66.2 s to 132.6 {+-} 41.5 s and 130.6 {+-} 42.0 s measuring 1.5 mm, 3 mm and 5 mm slices, respectively. No statistically significant difference between cartilage volume measurements was observed (p > 0.05) while very good inter-reader correlation was evaluated. Conclusion: CVM using 1.5 mm slices provides no higher accuracy than cartilage volume measurement in 5 mm slices while an overall time saving up to 70% is possible.

  10. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis.

    Science.gov (United States)

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2013-02-01

    Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.

  11. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-01-01

    Full Text Available Osteoarthritis (OA is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs in the form of stromal vascular fraction (SVF may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP, have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA.

  12. Cartilage tissue engineering using pre-aggregated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-12-01

    Full Text Available In this study, we first aimed at determining whether human articular chondrocytes (HAC proliferate in aggregates in the presence of strong chondrocyte mitogens. We then investigated if the aggregated cells have an enhanced chondrogenic capacity as compared to cells cultured in monolayer. HAC from four donors were cultured in tissue culture dishes either untreated or coated with 1% agarose in the presence of TGFb-1, FGF-2 and PDGF-BB. Proliferation and stage of differentiation were assessed by measuring respectively DNA contents and type II collagen mRNA. Expanded cells were induced to differentiate in pellets or in Hyaff®-11 meshes and the formed tissues were analysed biochemically for glycosaminoglycans (GAG and DNA, and histologically by Safranin O staining. The amount of DNA in aggregate cultures increased significantly from day 2 to day 6 (by 3.2-fold, but did not further increase with additional culture time. Expression of type II collagen mRNA was about two orders of magnitude higher in aggregated HAC as compared to monolayer expanded cells. Pellets generated by aggregated HAC were generally more intensely stained for GAG than those generated by monolayer-expanded cells. Scaffolds seeded with aggregates accumulated more GAG (1.3-fold than scaffolds seeded with monolayer expanded HAC. In conclusion, this study showed that HAC culture in aggregates does not support a relevant degree of expansion. However, aggregation of expanded HAC prior to loading into a porous scaffold enhances the quality of the resulting tissues and could thus be introduced as an intermediate culture phase in the manufacture of engineered cartilage grafts.

  13. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  14. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants.

    Science.gov (United States)

    Lone, Abdul G; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R; Call, Douglas R

    2015-06-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P < 0.0001). Thus, the difference in DO level was attributable to biofilm-induced oxygen demand rather than changes in oxygen diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing.

  15. Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants

    Science.gov (United States)

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.

    2015-01-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing. PMID:25847960

  16. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    Science.gov (United States)

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.

  17. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    Directory of Open Access Journals (Sweden)

    Charlotte M. Beddoes

    2016-06-01

    Full Text Available Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  18. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  19. Indução de calos em sempre-viva (Syngonanthus mucugensis Giulietti, utilizando diferentes tipos de explantes e concentrações de BAP = Callus induction in sempre-viva (Syngonanthus mucugensis Giulietti using different types of explants and BAP concentrations

    Directory of Open Access Journals (Sweden)

    Janilza da Paixão Santos

    2008-04-01

    Full Text Available A sempre-viva-de-mucugê [Syngonanthus mucugensis – Eriocaulaceae] é uma planta com grande valor ornamental e caracteriza-se pela durabilidade de suas inflorescências que se mantém mesmo depois de coletadas e secas. A propagação sexuada dessa espécie resulta em plantas desuniformes por ser geneticamente segregante e, aliada aeste fato, existe a ameaça de extinção da espécie, sendo por isso restrita a coleta na sua região de origem. Desta forma, a cultura de tecidos torna-se uma alternativa viável para a formação de novas mudas e, por isso, objetivou-se, neste trabalho, avaliar a indução de calos in vitro de Syngonanthus mucugensis, utilizando diferentes concentrações de BAP (6-benzilaminapurina. O delineamento experimental foi inteiramente casualizado (DIC, sendo que cadatratamento continha quatro repetições e cada repetição era formada por quatro explantes. Os explantes utilizados foram plantas cultivadas in vitro e segmentos nodais delas. O meio de cultivo utilizado foi o MS (metade dos sais, suplementado com (0,0; 0,89; 1,78; 3,55; 7,10; 14,21 e 28,42 μM de BAP. Aos 60 dias, avaliaram-se a sobrevivência dos explantes e a porcentagem de formação de calos. Verificou-se que plantas inteiras e segmentos nodais deSyngonanthus mucugensis são explantes responsíveis à formação de calos friáveis, sendo que a produção significativa é obtida utilizando-se as concentrações de 1,78 e 3,55 μM de BAP.Sempre-viva-de-mucugê [Syngonanthus mucugensis – Eriocaulaceae] is a plant with great ornamental value characterized by the durability of its inflorescences, which remains even after collected and dried. Thesexual propagation of this species results in disuniform plants, as it is genetically segregating; in addition, this species is currently endangered, with collection therefore restricted to its region of origin. Thus, tissue culture becomes a viable alternative for theformation of new plants. This study aimed to

  20. Organogênese de explante foliar de clones de Eucalyptus grandis x E. urophylla Organogenesis of the leaf explant of Eucalyptus grandis x E. urophylla clones

    Directory of Open Access Journals (Sweden)

    Elisa Cristina Soares de Carvalho Alves

    2004-05-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos dos reguladores de crescimento TDZ [1-fenil-3-(1,2,3-tia-diazol-5-iluréia], BAP (6-benzilaminopurina e ANA (ácido naftalenoacético no desempenho da propagação in vitro por organogênese de explante foliar de três clones híbridos de Eucalyptus grandis x Eucalyptus urophylla. Houve resposta diferenciada dos clones quanto a intensidade, textura e coloração dos calos, em razão dos tratamentos com os reguladores de crescimento. Os melhores resultados de calejamento dos três genótipos foram observados nos tratamentos com a combinação dos reguladores de crescimento TDZ (0,5 mg L-1 e ANA (0,1 mg L-1, obtendo-se 100% de calejamento no explante foliar. Os piores resultados de calejamento foram observados nos tratamentos com a combinação dos reguladores de crescimento BAP (0,1 mg L-1 e ANA (0,1 mg L-1. Em relação à regeneração, a melhor resposta foi obtida com 1,0 mg L-1 BAP em que 8% dos calos formados a partir de explantes foliares regeneraram gemas, com número médio destas formadas por calo igual a 4,2.The aim of this work was to evaluate the effects of growth regulators TDZ [1-phenil-3-(1,2,3-thiadiazol-5-yl urea], BAP (6-benzilaminopurine e NAA (Naphthalene acetic acid on the in vitro propagation by organogenesis from foliar explants of Eucalyptus grandis x E. urophylla. Depending on the clone used, there were singular responses to growth regulators treatment regarding callusing intensity, texture and color. The best results of the three genotypes used were observed with the TDZ (0.5 mg L-1 and NAA (0.1 mg L-1 treatment, where 100% of the foliar explants presented callus. The worst results were observed with the BAP (0.1 mg L-1 and NAA (0.1 mg L-1 treatment. Subsequently, considering the regeneration process, the best response was achieved with 1.0 mg L-1 BAP, in which 8% of the calli regenerated buds, with an average of 4.2 buds per explant.

  1. Factors affecting proliferation and elongation of shoots of Phak Liang (Gnetum gnemon Linn. through tissue culture technique

    Directory of Open Access Journals (Sweden)

    Te-chato, S.

    2003-09-01

    Full Text Available The tissue culture of Phak Liang (Gnetum gnemon Linn. was investigated for micropropagation. The types of explant, culture media, types and concentrations of plant growth regulators, orientation of explant and section of explant were tested for their efficacy in inducing and proliferating shoot buds. The elongation of shoots and root induction was also studied. Young leaves gave the highest number of shoot buds when they were cultured in Murashige and Skoog (MS medium supplemented with 0.25 mg/l IBA and 1.53 mg/l BA. The medium supplemented with 0.25 mg/l thidiazuron (TDZ alone provided the best result on multiple shoot bud induction both in percentage of explant forming shoots and number of shoot buds per explant. The percentage of explant forming shoot buds and number of shoot buds obtained from leaves were 90% and 26.50 shoot buds, while those from stems were 96.25% and 23.00 shoot buds, respectively. One hundred percent friable callus was induced from stem explant in the same medium supplemented with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D after 2 months of culture. Culturing whole leaf in the position of dorsal contact with medium gave the best multiple shoot bud formation of 92% and 23.00 shoot buds/explant. Cutting stem into half and culturing in horizontal position gave the best multiple shoot bud formation of 96% and 23.00 shoot buds/explant after culture for 2 months. The best elongation of shoot buds (2.54 shoots derived from cultured leaves was induced in the liquid medium. While stem-derived shoot buds (3.45 shoots was induced in the solid medium of the same medium components. However, root could not be induced from elongated shoots.

  2. STIMULATION OF RAPID REGENERATION BY A MAGNETIC FIELD IN PAULOWNIA NODE CULTURES

    OpenAIRE

    Özge Çelik; Çimen Atak; Aitekin Rzakulieva

    2008-01-01

    In this study, the aim was to determine the effect of magnetic fields on regeneration of Paulownia node cultures. Paulownia tomentosa node cultures were used to generate explants and these explants were passed through a 2.9- 4.6-mT magnetic flux density 1 and 9 times at 2.2 and 19.8 seconds, respectively. Chlorophyll quantities, total RNA concentrations of shoots and shoot formation rates from control and treated explants were determined. While the shoot formation rate was 61.9% in the contro...

  3. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  4. Interleukin 17A evoked mucosal damage is attenuated by cannabidiol and anandamide in a human colonic explant model.

    Science.gov (United States)

    Harvey, B S; Sia, T C; Wattchow, D A; Smid, S D

    2014-02-01

    Interleukin 17A (IL-17A) is a cytokine linked to inflammatory bowel disease. We investigated IL-17A expression in human colonic mucosa, whether IL-17A can elicit colonic mucosal damage in a human explant model and modulate gastrointestinal epithelial permeability in cell culture. We also tested if select cannabinoid ligands, shown to be protective in colitis models could attenuate damage caused by IL-17A. In addition, the ability of pro-inflammatory cytokines TNF-α and IL-1β to modulate levels of IL-17A in the explant colitis model was also explored. IL-17A incubation caused significant mucosal epithelial and crypt damage which were attenuated following hydrocortisone treatment, and also reduced following anandamide or cannabidiol incubation. IL-17A-evoked mucosal damage was also associated with an increase in matrix metalloprotease activity. However, IL-17A did not induce any significant changes in epithelial permeability in confluent Caco-2 cell monolayers over a 48h incubation period. IL-17A was located predominantly in human mucosal epithelium together with IL-17C, but both IL-17A and IL-17C were also expressed in the lamina propria and submucosa. Incubation of human colonic mucosal tissue or Caco-2 cells with pro-inflammatory cytokines TNF-α and IL-1β however did not alter IL-17A expression. These results indicate IL-17A has a widespread distribution in the human colon and the capacity to elicit mucosal damage which can be attenuated by cannabinoid ligands. PMID:24238999

  5. Cartilage restoration technique of the hip.

    Science.gov (United States)

    Mardones, Rodrigo; Larrain, Catalina

    2016-04-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  6. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  7. Novel nano-rough polymers for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2014-04-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,31Surfatek, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU and polycaprolactone (PCL. Nanoembossed polyurethane (NPU and nanoembossed polycaprolactone (NPCL were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes. All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary

  8. Time-Dependent Nanomechanics of Cartilage

    OpenAIRE

    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    2011-01-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...

  9. Cartilage restoration technique of the hip

    OpenAIRE

    Mardones, Rodrigo; Larrain, Catalina

    2015-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear conc...

  10. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  11. Oxygen, nitric oxide and articular cartilage

    OpenAIRE

    Fermor, B.; Christensen, S. E.; I Youn; J M Cernanec; C M Davies; Weinberg, J. B.

    2007-01-01

    Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O...

  12. Elimination of browning exudate and in vitro development of shoots in Pistacia vera L. cv. mateur and Pistacia atlantica Desf. Culture

    OpenAIRE

    M. I. Trujillo; S. Mederos-Molina

    2014-01-01

    We report diminution and/or elimination of browning exudate followed by in vitro establishment of in Pistacia vera cv. mateur and Pistacia atlantica explants. Soaking P. vera cv. mateur explants prior to culture in L-cysteine HCl for 15 min (100 µM) inhibits blackening of the modified Murashige and Skoog medium - MS + 400 mg/l NH4NO3 - and of the explants; while shoot formation was increased. The browning in P. vera cv. mateur and P. atlantica explants dissolved when modified MS and Quoirin a...

  13. BACTERIAL MICROORGANISMS ASSOCIATED WITH THE PLANT TISSUE CULTURE: IDENTIFICATION AND POSSIBLE ROLE (review)

    OpenAIRE

    S.E. DUNAEVA; Yu, S.

    2015-01-01

    Effective sterilization of plant explants and antiseptics rules compliance do not exclude the presence of so-called covert (endophytic) bacteria in in vitro cultures. But the role of these bacteria in tissues cultures has been not enough studied whereas it was related to the explants regeneration capacity and the possibility of animal and human cells transformation under in vitro cultivation. Bacterial strains pathogenic to humans can be stably maintained in cultivated tissues and ex vitro pl...

  14. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  15. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    Science.gov (United States)

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  16. Time-dependent nanomechanics of cartilage.

    Science.gov (United States)

    Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine

    2011-04-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599

  17. Technique and results of cartilage shield tympanoplasty

    Directory of Open Access Journals (Sweden)

    Sohil I Vadiya

    2014-01-01

    Full Text Available Aim: Use of cartilage for repair of tympanic membrane is recommended by many otologists. The current study aims at evaluating results of cartilage shield tympanoplasty in terms of graft take up and hearing outcomes. Material and Methods: In the current study, cartilage shield tympanoplasty(CST is used in ears with high risk perforations of the tympanic membrane. A total of 40 ears were selected where type I CST was done in 30 ears and type III CST was done in 10 ears. Results: An average of 37.08 dB air bone gap(ABG was present in pre operative time and an average of 19.15 dB of ABG was observed at 6 months after the surgery with hearing gain of 17.28 dB on average was observed. Graft take up rate of 97.5% was observed. The technique is modified to make it easier and to minimize chances of lateralization of graft. Conclusion: The hearing results of this technique are comparable to other methods of tympanic membrane repair.

  18. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  19. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  20. Stem Cell-assisted Approaches for Cartilage Tissue Engineering

    OpenAIRE

    Park, In-Kyu; Cho, Chong-Su

    2010-01-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When d...

  1. Efficient Regeneration of �Caralis� Alstroemeria Cultivar from Rhizome Explants

    OpenAIRE

    Amir Ghaffar SHAHRIARI; Bagheri, Abdolreza; Sharifi, Ahmad; Nasrin MOSHTAGHI

    2012-01-01

    In this paper, the effects of a number of growth regulators as well as supplements to the Murashige and Skoog (MS) basal medium were evaluated on the regeneration of Alstroemeria rhizome explants. In the first experiment the effects of three cytokinins (BA, TDZ and 2IP each at 0.5, 1 and 2 mg/l) in combination with NAA (0.2 mg/l), followed by another PGR combination of 2IP (at 0.5, 1 and 2 mg/l) with NAA (0 and 0.2 mg/l), on regeneration of rhizome-derived explants, was investigated. Through ...

  2. Early somatic embryogenesis in Heliconia chartacea Lane ex Barreiros cv. Sexy Pink ovary section explants

    Directory of Open Access Journals (Sweden)

    Cláudia Ulisses

    2010-02-01

    Full Text Available The present work evaluated the development of embryogenic callus from transversal ovary sections. The experiments were carried out under two experimental regimes using combinations of IAA (0; 5.71; 8.56; 11.42; 14.27μM and 2,4-D (0; 13.57; 18.10; 22.62μM or combinations of 2,4-D with BA (0; 4.43; 6.65; 8.87; 11.09μM. Assessments were made of anatomical aspects of the callus and for the presence of embryogenic structures using cytochemical and histological analyses and stereomicroscopic and scanning electronic microscopic observations. Treatments with 2,4-D and IAA produced friable calluses demonstrating cellular acquisition of morphogenetic competence as well as the formation of pro-embryogenic sectors. The expression of embryogenic program could be observed, with proembryogenic cell clusters developing into globular embryos. These results offer the possibility of using new types of explants for culturing helicons that avoid the growth of endophytic bacteria.Este trabalho teve como objetivo avaliar a resposta de secções transversais de ovários e o desenvolvimento de calos embriogênicos. O experimento constou de dois ensaios. No primeiro avaliou-se combinações entre AIA (0; 5.71; 8.56; 11.42; 14.27μM e 2,4-D (0; 13.57; 18.10; 22.62μM e no segundo avaliou-se as concentrações de 2,4-D supracitadas, combinadas com concentrações de BA (0; 4.43; 6.65; 8.87; 11.09μM. Os calos formados foram avaliados quanto à presença de estruturas embriogênicas utilizando-se estereomicroscópio, microscópio eletrônico de varredura, além de análises citoquímicas e histológicas. Combinações entre 2,4-D e AIA induziram a formação de calos friáveis com setores pró-embriogênicos, refletindo a aquisição de competência morfogenética. Posteriormente foi observada a expressão do programa embriogênico quando massas pró-embriogências desenvolveram-se formando embriões somáticos. Esses resultados apresentam uma alternativa para a utiliza

  3. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  4. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  5. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  6. Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics.

    Science.gov (United States)

    Wilson, Richard; Diseberg, Anders F; Gordon, Lavinia; Zivkovic, Snezana; Tatarczuch, Liliana; Mackie, Eleanor J; Gorman, Jeffrey J; Bateman, John F

    2010-06-01

    Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage

  7. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  8. The Experimental Studies of the Tissue Engineering Cartilage by Co-Culturing Microtia Chondrocytes and Adipose Tissue-Derived Stem Cells in Vivo%残耳软骨细胞与脂肪干细胞共培养体内构建软骨的实验研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 蒋海越; 何乐仁; 赵延勇; 杨庆华; 韩娟; 宋宇鹏

    2011-01-01

    Objective To explore the feasibility of the chondrogenesis by co-culturing microtia chondrocytes and human adipose tissue-derived stem cells in vivo. Methods hADSCs and microtia chondrocytes were isolated in vitro. 24 nude mice were randomly divided into 4 groups: ①Exp group, injected with microtia chondrocytes and hADSCs by a mixing ratio of 1:1 and the cell concentration was 5.0×l07 cells/mL; ②Ctrl 1 group, injected with only microtia chondrocytes and the cell concentration was 5.0×107 cellshnL; ③Ctrl 2 group, injected with only hADSCs and the cell concentration was 5.0×l07 cells/mL;④Ctrl 3 group, injected with only microtia chondrocytes and the cell concentration was 2.5×107 cells/mL. 6 nude mice were injected each group at a dose of 0.2 mL. All samples were harvested 10 weeks after culturingin vivo. Gross observation, average wet weights, glycosaminoglycan (GAG) quantification, histology and immunohistochemisty were used to evaluate the chondrogenesis of all groups. Results In Exp, Ctrl 1, and Ctrl 3 group, all the specimens formed homogeneous cartilagelike tissue with typical histological structure at different extent. In Ctrl 2 group, the specimens formed fiber-like tissue.Average wet weight and GAG content of specimens in Exp group were more than 88% of Ctrl 1 group while they were less than 40% in Ctrl 3 group. Cartilage lacuna was detected by HE staining in Exp, Ctrl 1 and Ctrl 3 group at different extent,but not in Ctrl 2 group. Collagen type Ⅱ was detected by immunohistochemistry in Exp, Ctrl 1 and Ctrl 3 group at different extent, but not in Ctrl 2 group. Conclusion Microtia chondrocytes could promote chondrogenesis of ADSCs in vivo under the co-culturing system. Tissue engineering cartilage by co-culturing microtia chondrocytes and ADSCs in vivo is feasible.%目的 验证残耳软骨细胞与脂肪来源的间充质干细胞(Adipose derived stem cells,ADSCs)共培养,体内构建软骨的可行性.方法 分离培养同一先天性

  9. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  10. A HYBRID SCAFFOLD OF POLY(LACTIDE-CO-GLYCOLIDE) SPONGE FILLED WITH FIBRIN GEL FOR CARTILAGE TISSUE ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Dan Li; Mei-cong Wang; Yang-lin Li; Chang-you Gao

    2011-01-01

    The poly(lactide-co-glycolide) (PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro. The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying. In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage. Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds, they were remarkably elongated, forming a fibroblast-like morphology. Moreover, a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks. The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.

  11. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  12. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  13. Re-use of explanted DDD pacemakers as VDD- clinical utility and cost effectiveness.

    Science.gov (United States)

    Namboodiri, K K N; Sharma, Y P; Bali, H K; Grover, A

    2004-01-01

    Re-use of DDD pulse generators explanted from patients died of unrelated causes is associated with an additional cost of two transvenous leads if implanted as DDD itself, and high rate of infection according to some studies. We studied the clinical and economical aspects of reutilization of explanted DDD pacemakers programmed to VDD mode. Out of 28 patients who received VDD pacemaker during the period, October 2000- September 2001 in the Department of Cardiology, PGIMER, Chandigarh, 5 poor patients were implanted with explanted DDD pulse generators programmed to VDD mode. Each implantation was planned and carried out according to a standard protocol. The age ranged from 45 to 75 (mean-61) years. The indications for pacing were complete heart block (4) and second degree AV block (1). The clinical profile, costs and complications, if any were noted and followed up at regular intervals. The results were compared with patients who received new DDD pulse generators during this period. The additional cost for the atrial lead was not required in these patients. None of these patients had any local site infection. Compared to the two-lead system, the single lead system provided more rapid implantation and minimized complications associated with placement of an atrial lead. The explanted DDD pacemaker can be safely reused as VDD mode with same efficacy in selected patient population. This is associated with lower cost and complications compared to reimplantation as DDD itself.

  14. Computational model for the analysis of cartilage and cartilage tissue constructs

    Science.gov (United States)

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  15. Computational model for the analysis of cartilage and cartilage tissue constructs.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  16. Prevention of Cartilage Degeneration and Restoration of Chondroprotection by Lubricin Tribosupplementation in the Rat Following ACL Transection

    Science.gov (United States)

    Jay, Gregory D.; Fleming, Braden C.; Watkins, Bryn A.; McHugh, Karen A.; Anderson, Scott C.; Zhang, Ling X.; Teeple, Erin; Waller, Kimberly A.; Elsaid, Khaled A.

    2010-01-01

    Objective To investigate whether cartilage degeneration is prevented or minimized in an anterior cruciate ligament (ACL) injury rat model following intra-articular injections of lubricin derived from human synoviocytes in culture (HSL), recombinant protein (rhPRG4), or from human synovial fluids (HSFL). Methods Unilateral ACL transection (ACLT) was performed in Lewis rats (n=45). Intra-articular injections (50μl/injection) of PBS (n=9), HSL (n=9; 200μg/ml), rhPRG4 (n=9; 200μg/ml) and HSFL (n=9; 200μg/ml) started on day 7 post-injury and continued twice weekly. Animals were harvested on day 32 post-injury. Histological analysis was performed using Safranin O/Fast green stain and blinded investigators graded articular cartilage degeneration using OARSI modified Mankin criteria. Histological specimens were immunoprobed for lubricin and sulphated glycosaminoglycans. 24 hour urine collection was performed on days 17 and 29 post-injury and urinary CTXII (uCTXII) levels were measured. Results Treatment with HSL resulted in significantly (p<0.05) lower OARSI scores for cartilage degeneration compared to no treatment or PBS treatment. Increased immunostaining for lubricin in the superficial zone chondrocytes and on the surface of cartilage was observed in lubricins-treated but not untreated or PBS-treated joints. On day 17, uCTXII levels of HSL and HSFL-treated animals were significantly lower than untreated (p=0.005; p=0.002) and PBS-treated (p=0.002; p<0.001) animals, respectively. Conclusion Across all types of lubricin evaluated in this study, a reduction in cartilage damage following ACLT was evident, combined with a reduction in collagen type II degradation. Intraarticular lubricin injection following an ACL injury may be beneficial in retarding cartilage degeneration and development of post-traumatic OA. PMID:20506144

  17. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  18. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  19. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  20. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne Maria)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  1. Poroelasticity of Cartilage at the Nanoscale

    OpenAIRE

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-01-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ∼15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ∼ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E∗|, and phase angle, ϕ, between the force and tip displacement sinusoids, were me...

  2. Cartilage Aggrecan Can Undergo Self-Adhesion

    OpenAIRE

    Han, Lin; Dean, Delphine; Daher, Laura A.; Grodzinsky, Alan J.; Ortiz, Christine

    2008-01-01

    Here it is reported that aggrecan, the highly negatively charged macromolecule in the cartilage extracellular matrix, undergoes Ca2+-mediated self-adhesion after static compression even in the presence of strong electrostatic repulsion in physiological-like solution conditions. Aggrecan was chemically end-attached onto gold-coated planar silicon substrates and gold-coated microspherical atomic force microscope probe tips (end radius R ≈ 2.5 μm) at a density (∼40 mg/mL) that simulates physiolo...

  3. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  4. Efficient Regeneration of �Caralis� Alstroemeria Cultivar from Rhizome Explants

    Directory of Open Access Journals (Sweden)

    Amir Ghaffar SHAHRIARI

    2012-05-01

    Full Text Available In this paper, the effects of a number of growth regulators as well as supplements to the Murashige and Skoog (MS basal medium were evaluated on the regeneration of Alstroemeria rhizome explants. In the first experiment the effects of three cytokinins (BA, TDZ and 2IP each at 0.5, 1 and 2 mg/l in combination with NAA (0.2 mg/l, followed by another PGR combination of 2IP (at 0.5, 1 and 2 mg/l with NAA (0 and 0.2 mg/l, on regeneration of rhizome-derived explants, was investigated. Through the second experiment, the effects of a number of supplements, including glucose (30 g/l as the alternative for sucrose, casein hydrolysate (1 g/l, asparagine and glutamine, (each at 30 mg/l added to MS medium, containing 1 mg/l BA and 0.2 mg/l NAA, was examined on rhizome explants� regeneration. Among the tested cytokinins, BA induced better regeneration of rhizome explants, resulting in a higher number of shoots compared to the other cytokinins. A medium supplemented with 1 mg/l BA and 0.2 mg/l NAA proved to be the most effective, with an average of 4.16 regenerated shoots per explant. In the second PGR combination, addition of NAA at 0.2 mg/l improved regeneration, compared to NAA-free treatments. In the second experiment, glucose substitution for sucrose improved regeneration with an average of 5.10 regenerated shoots per explant, compared to 4.16 shoots in sucrose-containing medium; whereas glutamine and asparagine (with 2.66 shoots and casein hydrolysate (with 3.80 shoots showed a negative influence on rhizome explants� regeneration.

  5. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Nathaniel S Hwang

    Full Text Available BACKGROUND: Heterogeneous and uncontrolled differentiation of human embryonic stem cells (hESCs in embryoid bodies (EBs limits the potential use of hESCs for cell-based therapies. More efficient strategies are needed for the commitment and differentiation of hESCs to produce a homogeneous population of specific cell types for tissue regeneration applications. METHODOLOGY/PRINCIPAL FINDINGS: We report here that significant chondrocytic commitment of feeder-free cultured human embryonic stem cells (FF-hESCs, as determined by gene expression and immunostaining analysis, was induced by co-culture with primary chondrocytes. Furthermore, a dynamic expression profile of chondrocyte-specific genes was observed during monolayer expansion of the chondrogenically-committed cells. Chondrogenically-committed cells synergistically responded to transforming growth factor-beta1 (TGF-beta1 and beta1-integrin activating antibody by increasing tissue mass in pellet culture. In addition, when encapsulated in hydrogels, these cells formed cartilage tissue both in vitro and in vivo. In contrast, the absence of chondrocyte co-culture did not result in an expandable cell population from FF-hESCs. CONCLUSIONS/SIGNIFICANCE: The direct chondrocytic commitment of FF-hESCs can be induced by morphogenetic factors from chondrocytes without EB formation and homogenous cartilage tissue can be formed in vitro and in vivo.

  6. Stem Cell-assisted Approaches for Cartilage Tissue Engineering.

    Science.gov (United States)

    Park, In-Kyu; Cho, Chong-Su

    2010-05-01

    The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.

  7. Epiphyseal and Physeal Cartilage: Normal Gadolinium-enhanced MR Imaging

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To evaluate the normal appearance of epiphyseal and physeal cartilage on Gadolinium (Gd)-enhanced MR imaging. The appearance and enhancement ratios of 20 proximal and distal femoral epiphyses in 10 normal piglets were analyzed on Gd-enhanced MR images. The correlation of the MR imaging appearance with corresponding histological findings of immature epiphyses was examined. Our results showed that Gd-enhanced MRI could differentiate the differences in enhancement between physeal and epiphyseal cartilage and show vascular canals within the epiphyseal cartilage. Enhanced ratios in the physeal were greater than those in the epiphyseal cartilage (P<0.005). It is concluded that Gd-enhanced MR imaging reveals epiphyseal vascular canals and shows difference in enhancement of physeal and epiphyseal cartilage.

  8. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  9. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold.

    Science.gov (United States)

    Yang, Bo; Yin, Zhanhai; Cao, Junling; Shi, Zhongli; Zhang, Zengtie; Song, Hongxing; Liu, Fuqiang; Caterson, Bruce

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 microm) than in cortical BMG (5-15 microm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  10. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  11. Mesenchymal stem cells as a potent cell source for articular cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    Mohamadreza; Baghaban; Eslaminejad; Elham; Malakooty; Poor

    2014-01-01

    Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.

  12. Kartogenin induces cartilage-like tissue formation in tendon–bone junction

    Science.gov (United States)

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon–bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  13. Kartogenin induces cartilage-like tissue formation in tendon-bone junction

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhang; James H-C Wang

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.

  14. Kartogenin induces cartilage-like tissue formation in tendon-bone junction.

    Science.gov (United States)

    Zhang, Jianying; Wang, James H-C

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs. PMID:25419468

  15. Binding of chemical carcinogens to macromolecules in cultured human colon

    DEFF Research Database (Denmark)

    1977-01-01

    Metabolic activation of different chemical classes of carcinogens was studied in cultured human colon epithelia. Human colon epithelia were maintained in explant culture up to 4 days. Binding of benzo(a)pyrene, dimethylnitrosamine, and 1,2- dimethylhydrazine was found in both cell DNA and protein...

  16. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  17. Radiological observation of determination of sex by costal cartilage calcification

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin Hwa; Won, Jong Jin; Rhee, Song Joo; Moon, Moo Chang; Oh, Jong Hyun; Choi, Ki Chul [Jeonbug National University College of Medicine, Jeonjju (Korea, Republic of)

    1979-12-15

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  18. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  19. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  20. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.

    Science.gov (United States)

    Tonna, Stephen; Poulton, Ingrid J; Taykar, Farzin; Ho, Patricia W M; Tonkin, Brett; Crimeen-Irwin, Blessing; Tatarczuch, Liliana; McGregor, Narelle E; Mackie, Eleanor J; Martin, T John; Sims, Natalie A

    2016-02-15

    The majority of the skeleton arises by endochondral ossification, whereby cartilaginous templates expand and are resorbed by osteoclasts then replaced by osteoblastic bone formation. Ephrin B2 is a receptor tyrosine kinase expressed by osteoblasts and growth plate chondrocytes that promotes osteoblast differentiation and inhibits osteoclast formation. We investigated the role of ephrin B2 in endochondral ossification using Osx1Cre-targeted gene deletion. Neonatal Osx1Cre.Efnb2(Δ/Δ) mice exhibited a transient osteopetrosis demonstrated by increased trabecular bone volume with a high content of growth plate cartilage remnants and increased cortical thickness, but normal osteoclast numbers within the primary spongiosa. Osteoclasts at the growth plate had an abnormal morphology and expressed low levels of tartrate-resistant acid phosphatase; this was not observed in more mature bone. Electron microscopy revealed a lack of sealing zones and poor attachment of Osx1Cre.Efnb2(Δ/Δ) osteoclasts to growth plate cartilage. Osteoblasts at the growth plate were also poorly attached and impaired in their ability to deposit osteoid. By 6 months of age, trabecular bone mass, osteoclast morphology and osteoid deposition by Osx1Cre.Efnb2(Δ/Δ) osteoblasts were normal. Cultured chondrocytes from Osx1Cre.Efnb2(Δ/Δ) neonates showed impaired support of osteoclastogenesis but no significant change in Rankl (Tnfsf11) levels, whereas Adamts4 levels were significantly reduced. A population of ADAMTS4(+) early hypertrophic chondrocytes seen in controls was absent from Osx1Cre.Efnb2(Δ/Δ) neonates. This suggests that Osx1Cre-expressing cells, including hypertrophic chondrocytes, are dependent on ephrin B2 for their production of cartilage-degrading enzymes, including ADAMTS4, and this might be required for attachment of osteoclasts and osteoblasts to the cartilage surface during endochondral ossification.

  1. An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts

    Directory of Open Access Journals (Sweden)

    Endres Michaela

    2012-11-01

    Full Text Available Abstract Background Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA/fibrin biomaterials for scaffold-assisted cartilage repair. Methods Ovine chondrocytes harvested from adult articular cartilage were expanded in monolayer and re-assembled three-dimensionally in PGA-fibrin scaffolds. De- and re-differentiation of ovine chondrocytes in PGA-fibrin scaffolds was assessed by histological and immuno-histochemical staining as well as by real-time gene expression analysis of typical cartilage marker molecules and the matrix-remodelling enzymes matrix metalloproteinases (MMP -1, -2 and −13 as well as their inhibitors. PGA scaffolds characteristics including degradation and stiffness were analysed by electron microscopy and biomechanical testing. Results Histological, immuno-histochemical and gene expression analysis showed that dedifferentiated chondrocytes re-differentiate in PGA-fibrin scaffolds and form a cartilaginous matrix. Re-differentiation was accompanied by the induction of type II collagen and aggrecan, while MMP expression decreased in prolonged tissue culture. Electron microscopy and biomechanical tests revealed that the non-woven PGA scaffold shows a textile structure with high tensile strength of 3.6 N/mm2 and a stiffness of up to 0.44 N/mm2, when combined with gel-like fibrin. Conclusion These data suggest that PGA-fibrin is suited as a mechanically stable support structure for scaffold-assisted chondrocyte grafts, initiating chondrogenic re-differentiation of expanded chondrocytes.

  2. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  3. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Chen, Chih-Hao; Shyu, Victor Bong-Hang; Chen, Jyh-Ping; Lee, Ming-Yih

    2014-03-01

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology.

  4. Poroelasticity of cartilage at the nanoscale.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease. PMID:22067171

  5. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  6. Influencing micropropagation in Clitoria ternatea L. through the manipulation of TDZ levels and use of different explant types.

    Science.gov (United States)

    Mukhtar, Seemab; Ahmad, Naseem; Khan, Md Imran; Anis, Mohammad; Aref, Ibrahim M

    2012-10-01

    A comparative performance of two explants types (CN and Nodal) for their efficiency to induce multiple shoot regeneration in Clitoria ternatea has been carried out. Thidiazuron (TDZ) in different concentrations (0.05-2.5 μM) was used as a supplement to the Murashige and Skoog's (MS) basal media. Explant type apart, two factors viz. concentration and exposure duration to TDZ played an important role in affecting multiple shoot regeneration. Cotyledonary node explants produced the best results at 0.1 μM TDZ, while in nodal explants the highest rate of shoot formation was achieved on MS medium supplemented with 1.0 μM TDZ. In both the explants, shoot multiplication increased when the regenerated shoots were subcultured on hormone free MS medium after 4 weeks of exposure to TDZ. Among the two, cotyledonary node explants produced considerably higher number of shoots at a comparatively lower concentration of TDZ than nodal explants. The regenerated shoots rooted best on MS medium containing 1.0 μM indole-3-butyric acid (IBA) and were successfully established in pots containing garden soil with 88 % survival rate. All the regenerated plants showed normal morphology and growth characteristics. PMID:24082502

  7. Plant regeneration from pulse-treated longitudinally sliced half cotyledon node explants of Turkish ochrus chickling [Lathyrus ochrus (L. D.C.

    Directory of Open Access Journals (Sweden)

    Saglam S.

    2012-01-01

    Full Text Available The forage legume ochrus chickling [Lathyrus ochrus (L. D.C.] which is distributed in the Mediterranean region, is gaining importance in terms of economy and agriculture in Turkey. However, the full potential of the legume has yet to be realized due to the presence of neurotoxin, β-N-oxalyl-L-a, β-diaminopropionic acid (ODAP causing lathyrism. This study aimed to develop an efficient micropropagation system using longitudinally sliced cotyledon node explants for use in Agrobacterium-mediated genetic transformation in the future. The results show that the maximum number of shoots per explant was achieved on MS medium solidified with 8 g/l isubgol gelled medium containing 0.30 mg/l BA-0.2 mg/l NAA. Well-developed shoots were rooted by pulse treatment with 50 mg/l IBA and culturing on an 8 g/l isubgol gel solidified MS medium. The results showed 60% rooting in the treated shoots. The rooted plantlets were transferred to pots containing sand and organic matter and acclimatized.

  8. Plant regeneration of bananas Ambon kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source

    International Nuclear Information System (INIS)

    Plant regeneration of bananas Ambon Kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source. Female organ was taken from heart of banana stem, while shoot-tip taken from sucker in banana plantation at Pasar Jumat, Jakarta. Those explants were cultured on MS medium containing 3 mg/l BAP, 0.5 mg/l IAA and supplemented by 100 tyrosin and 80 mg/l adenin hemisulphate. Observation showed that 180 and 42 buds were obtained from JBR 02 mutant lines respectively, while 84 and 79 buds for JAK 01 and JAK 02 respectively. The highest shoot formation was 1.013 shoots were obtained from BRC variety and lowest one was JBR 01 mutant line. statistical data analysis indicated that shoot formation between BRC variety and another mutant lines were significant difference using LSD test at level 0.05. Plantlet formation derived from female organ as well as shoot-tip showed that BRC variety produced number of plantlets per bottle was higher that another one. (author)

  9. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  10. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation....... If US measurements are compared to measurements with other techniques, they should be corrected for the higher sound speed in cartilage....

  11. Regeneração in vitro de urucum (Bixa orellana L. a partir de diferentes tipos de explantes In vitro regeneration of annatto (Bixa orellana L. from various explants

    Directory of Open Access Journals (Sweden)

    Jane Fiuza Rodrigues Portela de Carvalho

    2005-12-01

    Full Text Available Este trabalho teve como objetivo avaliar a regeneração in vitro de plantas de urucum (Bixa orellana L. a partir de diferentes tipos de explantes. Para definir o meio de cultura adequado para indução de brotações, diferentes concentrações e, ou, combinações da auxina AIA e das citocininas BAP e ZEA foram testadas. As melhores respostas de regeneração para segmentos de hipocótilo, nós cotiledonares e hipocótilos invertidos foram observadas em meios suplementados de ZEA (2,28 µM e AIA (0,30 µM, ZEA (4,56 µM e ZEA (4,56 µM, respectivamente. O meio de enraizamento mais eficaz foi o MS, com a metade de sua concentração salina e 5 µM de AIB. Análises citológicas, realizadas antes da aclimatação, confirmaram a estabilidade cromossômica das plantas cultivadas in vitro, não sendo detectado variação com relação ao número de cromossomos metafásicos (2n = 14.The present work aimed the establishment of a regeneration protocol for annatto (Bixa orellana L. from different juvenile explants. In order to promote shoot induction, different concentrations and/or combinations of IAA and the cytokinins BAP and ZEA were assessed. Better regeneration responses were achieved when segmented hypocotyl, cotiledonary nodes and inverted hypocotyl were cultured onto MS-based medium supplemented with ZEA (2.28 µM and IAA (0.30 µM, ZEA (4.56 µM or ZEA (4.56 µM, respectively. Rooting of elongated shoots displayed higher frequencies when half-strength MS medium with IBA (5 µM was used. No genetic variation was detected among regenerants as revealed by cytological analysis based on metaphasic chromosome countings (2n = 14.

  12. The pathogenicity of Mycoplasma ovipneumoniae and Mycoplasma arginini in ovine and caprine tracheal organ cultures.

    Science.gov (United States)

    Jones, G E; Keir, W A; Gilmour, J S

    1985-10-01

    The effects of M. ovipneumoniae and M. arginini on tracheal organ cultures prepared from a neonatal kid and a foetal lamb were studied. Both organisms were isolated from the cultures throughout the 14 days of observation. M. ovipneumoniae produced ciliostasis and loss of cilia, confirmed by scanning electron microscope (SEM), after 4 days. These effects were sudden and profound in lamb explants, and gradual and less pronounced in kid explants. Clusters of organisms attached to epithelial surfaces and in association with cilia were visible by SEM. M. arginini also induced ciliostasis and cilia loss in both kid and lamb explants, but onset was more rapid, at 2 days, and there was evident recovery after day 6, with apparent regeneration of cilia. No clearly recognizable mycoplasmas were observed by SEM in M. arginini-infected explants.

  13. Mutation induction in mangosteen : Response of explants to mutagens

    Directory of Open Access Journals (Sweden)

    Phrommee, V.

    1999-01-01

    Full Text Available Young purplish red leaves of mangosteen raised in two-phase medium and calli were collected and treated with two mutagens, gamma rays and ethylethane sulfonate (EMS. After treating with both mutagens, leaves and calli were cultured onto callus induction medium to evaluate the effect of mutagens on percent leaf forming callus and survival percentage of callus. The results showed that an increament of EMS caused decreased in survival rate of calli. The concentration that inhibited 50%growth of the calli was 0.5%. A similar result was also found in the case of leaf-forming callus. A 50% inhibition of leaf-forming callus was obtained by treating with EMS at concentrations of 0.5-0.75%. In the case of irradiation, gamma rays at 20 and 40 grays gave survival percentages of 84.2 and 80.8, which were significantly different from that of the control (100% survival. Contrary result was obtained when young red leaves were exposed to gamma ray. A drastic decrease in leaf-forming callus was found when leaves were irradiated with dose higher than 10 grays. Irradiation at 20 and 40 grays completely inhibited callus formation from leaves while 5 and 10 gray irradiation gave leaf-forming callus percentages of 50 and 10. The dose that inhibited 50% callus formation was 10 grays.

  14. In vitro and In vivo Evaluation of the Developed PLGA/HAp/Zein Scaffolds for Bone-Cartilage Interface Regeneration

    Institute of Scientific and Technical Information of China (English)

    LIN Yong Xin; DING Zhi Yong; ZHOU Xiao Bin; LI Si Tao; XIE De Ming; LI Zhi Zhong; SUN Guo Dong

    2015-01-01

    Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution. hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P>0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction.

  15. Development of a hybrid scaffold and a bioreactor for cartilage regeneration

    Institute of Scientific and Technical Information of China (English)

    LEE Seung-Jae; LEE In Hwan; PARK Jeong Hun; GWAK So-Jung; RHIE Jong-Won; CHO Dong-Woo; KO Tae Jo; KIM Dong Sung

    2009-01-01

    We developed a hybrid scaffold and a bioreactor for cartilage regeneration. The hybrid scaffold was developed as combination of two components: a biodegradable framework and hydrogel-containing chondrocytes. We performed the MTT cell proliferation assay to compare the proliferation and viability of chondrocytes on three types of scaffolds: an alginate gel, the hybrid scaffold, and an alginate sponge. Cells were encapsulated in 2% agarose gel. The bioreactor consisted of a circulation system and a compression system. We performed dynamic cell culture on these agarose gels in the bioreactor for 3 days.

  16. ERK activation is required for hydrostatic pressure induced-tensile changes in engineered articular cartilage

    OpenAIRE

    DuRaine, G D; Athanasiou, K.A.

    2012-01-01

    The objective of this study was to identify the ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot following application of hydrostatic pressure (1 hour of static 10MPa) applied at day 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14....

  17. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    OpenAIRE

    Sorina Dinescu; Bianca Gălăţeanu; Mădălina Albu; Adriana Lungu; Eugen Radu; Anca Hermenean; Marieta Costache

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffol...

  18. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  19. Floret primordia differentiation from in vitro cultured sunflower capitula

    OpenAIRE

    Pellegrini C.N.; Hernandez L.F.

    2004-01-01

    In vitro culture has become a useful tool for studies concerning the assessment of physiological and biochemical factors controlling floral morphogenesis. For sunflower, in vitro techniques starting from different explants yield good results on culture initiation and plant regeneration. Although inflorescence generation on cultured shoots is sometimes achieved there are no reports about in vitro florets developed from cultured young capitula. This work describes a protocol for the in vitro cu...

  20. Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteris-tics of the resultant calli

    Institute of Scientific and Technical Information of China (English)

    Shashita JAYARAMAN; Nurul Hazwani DAUD; Rasmina HALIS; Rozi MOHAMED

    2014-01-01

    The endangered tropical tree, Aquilaria malaccensis, produces agarwood for use in fragrance and medicines. Efforts are currently un-derway to produce valuable agarwood compoundsn tissue culture. The purpose of this study was to develop an optimal growth medium, specif-ically, the best hormone combination for callus suspension culture. Using nursery-grown A. malaccensis, sterilized leaf explants were first incu-bated on basic Murashige and Skoog (MS) gel medium containing 15g/L sucrose and at pH 5.7. Different auxin types including 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-butyric acid (IBA), were tested at various concentrations (0.55, 1.1 and 1.65 µM) using the basic medium. Leaf explants were incubated for 30 days in the dark. Callus induced by 1.1 µM NAA had the highest biomass dry weight (DW) of 17.3 mg;however the callus was of a compact type. This auxin concentration was then combined with either 6-benzylaminopurine (BAP) or kinetin at 0.55, 1.1, 2.2 or 3.3 µM to induce growth of friable callus. The 1.1µM NAA+2.2µM BAP com-bination produced friable callus with the highest biomass (93.3mg DW). When testing the different carbon sources and pHs, sucrose at 15g/L and pH at 5.7 yielded highest biomasses at 87.7mg and 83mg DW, respec-tively. Microscopic observations revealed the arrangement of the friable cells as loosely packed with relatively large cells, while for the compact callus, the cells were small and densely packed. We concluded that MS medium containing 15 g/L sucrose, 1.1 µM NAA + 2.2 µM BAP hor-mone combination, and a pH of 5.7 was highly effective for inducing friable callus from leaf explants of A. malaccensis for the purpose of establishing cell suspension culture.

  1. Establishment of an efficient protocol for micropropagation of some pakistani cultivars of date palm (phonex dactylifera l.) using novel inflorescence explants

    International Nuclear Information System (INIS)

    An efficient protocol for rapid and large scale In vitro propagation of some Pakistani cultivars of date palm has been established using inflorescence explants at Date Palm Research Institute (DPRI), Shah Abdul Latif University (SALU), Khairpur, Pakistan. Immature inflorescences of desired cultivars of date palm detached from mother palms followed by surface sterilization with low torrent of current tap water and then 30 percentage NaOCl/sub 2/ solution, the outer cover were removed in order to get spike explants and cut into the 2-3 cm small pieces and cultured on modified MS medium supplemented with 0.1 mg l-1 2, 4-D + 0.1 mg l-1 IAA + 5.0 mg l-1 NAA for initiation and establishment of cultures. The obtained somatic embryos were subjected to multiplication medium involved 0.1 mg l-1 NAA + 0.05 mg l-1BA. Rooting was achieved using quarter strength MS medium containing 0.1 mg l-1NAA without activated charcoal (AC) initially and then with 3 g l-1 AC. Strong rooted plantlets with 2-3 leaves were transferred to pots contained sand and peat moss mixture (1:1 v/v) with more than 95 percentage success in acclimatization. The acclimatized plants with at least one compound leaf were shifted to the open field conditions at SALU campus for further studying morphological and fruit characterization to ensure the true-to-type nature of tissue culture derived plantlets. High multiplication efficiency and survival percentage with no any somaclonal variation ensured the efficacy of the protocol developed for the production of elite cultivars of date palm of Pakistan and can be used to optimize production of other cultivars of date palm worldwide. (author)

  2. Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system.

    LENUS (Irish Health Repository)

    Bhatt, Lavinia

    2010-01-01

    PURPOSE: The production of reactive oxygen species (ROS) can lead to oxidative stress, which is a strong contributory factor to many ocular diseases. In this study, the removal of trophic factors is used as a model system to investigate the effects of stress in the retina. The aims were to determine if both rod and cone photoreceptor cells produce ROS when they are deprived of trophic factor support and to demonstrate if the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes are responsible for this ROS production. METHODS: Retinas were explanted from mice aged between postnatal days 8-10 and cultured overnight. The following morning, confocal microscopy combined with various fluorescent probes was used to detect the production of ROS. Each time peanut agglutinin (PNA), a cone photoreceptor marker, was used to facilitate orientation of the retina. Dihydroethidium and dihydrorhodamine 123 (DHR123) were used to determine which cells produce ROS. Subsequently, western blots of retinal serial sections were used to detect the presence of Noxs in the different retinal layers. The Nox inhibitor apocynin was then tested to determine if it altered the production of ROS within these cells. RESULTS: Live retinal explants, viewed at high magnifications using confocal microscopy, displayed an increase in the fluorescent products of dihydroethidium and DHR123 upon serum removal when compared to controls. DHR123 fluorescence, once oxidized, localized to mitochondria and was found in the same focal plane as the PNA staining. This showed that cones and rods produced ROS when stressed. Retinal serial sectioning established that the photoreceptor layer expressed Nox4, dual oxidase (Duox) 1, and Duox2 at varying levels. Finally, the Nox inhibitor apocynin decreased the burst stimulated by the stress of serum removal. CONCLUSIONS: Confocal microscopy and PNA staining allowed differentiation of cell types within the outermost layers of the retina, demonstrating

  3. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  4. Techniques for diced cartilage with deep temporalis fascia graft.

    Science.gov (United States)

    Calvert, Jay; Kwon, Edwin

    2015-02-01

    Diced cartilage with deep temporalis fascia (DC-F) graft has become a popular technique for reconstruction of the nasal dorsum. Cartilage can be obtained from the septum, ear, or costal cartilage when employing the DC-F technique. The complications seen with DC-F grafts tend to occur early in the surgeon's implementation of this technique. Management of the complications varies depending on the severity of the problem. This article gives an overview of both the technique and the complications commonly encountered.

  5. In vitro culture of higher plants as a tool in the propagation of horticultural crops.

    NARCIS (Netherlands)

    Pierik, R.L.M.

    1988-01-01

    In vitro culture of higher plants is the culture, under sterile conditions, of plants, seeds, embryos, organs, explants, tissues, cells and protoplasts on nutrient media. This type of culture has shown spectacular development since 1975, resulting in the production and regeneration of viable individ

  6. EFFECTIVENESS OF AUXIN INDUCED IN VITRO ROOT CULTURE IN CHICORY

    OpenAIRE

    Nandagopal, S.; B Ranjitha Kumari

    2007-01-01

    An efficient protocol has been developed for the root culture of (Cichorium intybus L. cv. Focus), the leaf and hypocotyl explants from 25 days old in vitro raised seedlings were cultured on half-strength Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of Indole-3-acetic acid (IAA), Indole-3-butyric acid (IBA), α-Napthalenacetic acid (NAA). 0.5 mg/l NAA and 0.1 mg/l IBA induced highest percentage of rooting from matured leaf explants, under total da...

  7. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var. alata

    OpenAIRE

    Ling, Anna Pick Kiong; Tan, Kinn Poay; Hussein, Sobri

    2013-01-01

    Objective: Labisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Metho...

  8. Staphylococcus aureus Induces Hypoxia and Cellular Damage in Porcine Dermal Explants

    OpenAIRE

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Douglas R. Call

    2015-01-01

    We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrat...

  9. Ni2+ treatment causes cement gland formation in ectoderm explants of Xenopus laevis embryo

    Institute of Scientific and Technical Information of China (English)

    HUANGYONG; XIAOYANDING

    1999-01-01

    We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants.Nother T-typer specific calcium channel blocker Amiloride can also induce the formation of cement gland,while L-type specific calcium channel blocker Nifedipine as no inductive effect.These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluar calcium concentration.

  10. Prospective Clinical Trial for Septic Arthritis: Cartilage Degradation and Inflammation Are Associated with Upregulation of Cartilage Metabolites

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2016-01-01

    Full Text Available Background. Intra-articular infections can rapidly lead to osteoarthritic degradation. The aim of this clinical biomarker analysis was to investigate the influence of inflammation on cartilage destruction and metabolism. Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions (n=76 was analyzed. Characteristics of epidemiology and disease severity were correlated with levels of cytokines with known roles in cartilage turnover and degradation. Results. Higher synovial IL-1β concentrations were associated with clinical parameters indicating a higher disease severity (p<0.03 excluding the incidence of sepsis. Additionally, intra-articular IL-1β levels correlated with inflammatory serum parameters as leucocyte counts (LC and C-reactive protein concentrations (p<0.05 but not with age or comorbidity. Both higher LC and synovial IL-1β levels were associated with increased intra-articular collagen type II cleavage products (C2C indicating cartilage degradation. Joints with preinfectious lesions had higher C2C levels. Intra-articular inflammation led to increased concentrations of typical cartilage metabolites as bFGF, BMP-2, and BMP-7. Infections with Staphylococcus species induced higher IL-1β expression but less cartilage destruction than other bacteria. Conclusion. Articular infections have bacteria-specific implications on cartilage metabolism. Collagen type II cleavage products reliably mark destruction, which is associated with upregulation of typical cartilage turnover cytokines. This trial is registered with DRKS00003536, MISSinG.

  11. Butterfly cartilage graft versus fat graft myringoplasty

    Directory of Open Access Journals (Sweden)

    Sonika Kanotra

    2016-01-01

    Full Text Available Aim: The aim of the study was to compare the graft take up rates of two minimally invasive techniques of butterfly cartilage graft (BCG and fat graft myringoplasty (FGM. Materials and Methods: Two groups of 30 patients each with small dry central perforations of the tympanic membrane (T.M. were randomly subjected to either of the two techniques of myringoplasty. Statistical Analysis Used: The results were compared using the Chi-square test. A value of <0.05 was taken as statistically significant. Results: The graft take up rate was 93.3% with BCG and 83.3% with fat graft. Conclusions: The BCG scores over FGM in small perforations of the T.M.

  12. Chondrocyte Generation of Cartilage-Like Tissue Following Photoencapsulation in Methacrylated Polysaccharide Solution Blends.

    Science.gov (United States)

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2016-07-01

    Chondrocyte-seeded, photo-cross-linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load-bearing soft tissue repair. The photo-cross-linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co-cross-linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications. PMID:27061241

  13. In vitro regeneration from petiole explants of non-toxic Jatropha curcas

    KAUST Repository

    Kumar, Nitish

    2011-01-01

    Jatropha curcas, a multipurpose shrub has acquired significant economic potential as biodiesel plant. The seeds or pressed cake is toxic due to the presence of toxic substances and is not useful as food/fodder despite having the best protein composition. A simple, efficient, and reproducible method for plant regeneration through direct organogenesis from petiole explants of non-toxic J. curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ). The best induction of shoot buds (57.61%), and number of shoot buds (4.98) per explant were obtained when in vitro petiole explants were placed horizontally on MS medium supplemented with 2.27 mu M TDZ. The Induced shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for shoot proliferation and subsequent elongation was achieved on MS medium supplemented with 2.25 mu M BA and 8.5 mu M IAA. The elongated shoots could be rooted on half-strength MS medium with 15 mu M IBA, 11.4 mu M IAA and 5.5 mu M NAA with more than 90% survival rate. (C) 2010 Elsevier B.V. All rights reserved.

  14. Heparin exerts anti-apoptotic effects on uterine explants by targeting the endocannabinoid system.

    Science.gov (United States)

    Salazar, Ana Inés; Vercelli, Claudia; Schiariti, Victoria; Davio, Carlos; Correa, Fernando; Franchi, Ana María

    2016-09-01

    Miscarriage caused by Gram-negative bacteria infecting the female genital tract is one of the most common complications of human pregnancy. Intraperitoneal administration of LPS to 7-days pregnant mice induces embryo resorption after 24 h. Here, we show that LPS induced apoptosis on uterine explants from 7-days pregnant mice and that CB1 receptor was involved in this effect. On the other hand, heparin has been widely used for the prevention of pregnancy loss in women with frequent miscarriage with or without thrombophilia. Besides its anticoagulant properties, heparin exerts anti-inflammatory, immunomodulatory and anti-apoptotic effects. Here, we sought to investigate whether the administration of heparin prevented LPS-induced apoptosis in uterine explants from 7-days pregnant mice. We found that heparin enhanced cell survival in LPS-treated uterine explants and that this effect was mediated by increasing uterine FAAH activity. Taken together, our results point towards a novel mechanism involved in the protective effects of heparin. PMID:27364950

  15. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished, ep

  16. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  17. IN VITRO REGENERATION FROM SHOOT TIP AND NODAL EXPLANTS OF SIMAROUBA GLAUCA DC, A PROMISING BIODIESEL TREE

    Directory of Open Access Journals (Sweden)

    Shastri P. Shukla

    2013-03-01

    Full Text Available An efficient regeneration protocol was developed from shoot tip and nodal explants of Simarouba glauca DC, a promising biodiesel plant. Nodal explants appeared to have better regeneration capacity than shoot tip explants (40% in the tested media. The highest regeneration frequency (90% and shoot number (7.00 ± 1.00 shoots per explants were obtained in nodal explants in Murashige and Skoog’s (MS medium supplemented with 6-benzylaminopurine (BAP 4.43 μM and α-naphthalene acetic acid (NAA 5.36 μM.Induced shoot buds were multiplied and elongated on the MS medium supplemented with BAP (4.44 μM, NAA (5.36 μM and TDZ (Thidiazuron 2.27 μM with 9.66±0.33 (mean length 5.35±0.32 cm and 9.00±0.57 (mean length 4.51±0.15cm shoots using nodal segments and shoot tip explants, respectively. Halfstrength woody plant medium (WPM containing 2.46μM indole-3-butyric acid (IBA produced the maximum number of roots (6.00±1.15. The rooted plantlets were hardened on MS basal liquid medium and subsequently in polycups containing sterile soil and vermiculite (1:1 and successfully established in pots.

  18. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with...

  19. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse

    Science.gov (United States)

    Siddiqui, Nauman; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  20. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    Science.gov (United States)

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  1. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  2. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  3. Cartilage reshaping: an overview of the state of the art

    Science.gov (United States)

    Karamzadeh, Amir M.; Sobol, Emil N.; Rasouli, Alexandre; Nelson, J. Stuart; Milner, Thomas E.; Wong, Brian J.

    2001-05-01

    The laser irradiation of cartilage results in a plastic deformation of the tissue allowing for the creation of new stable shapes. During photothermal stimulation, mechanically deformed cartilage undergoes a temperature dependent phase transition, which results in accelerated stress relaxation of the tissue matrix. Cartilage specimens thus reshaped can be used to recreate the underlying framework of structures in the head and neck. Optimization of this process has required an understanding of the biophysical processes accompanying reshaping and also determination of the laser dosimetry parameters, which maintain graft viability. Extensive in vitro, ex-vivo, and in vivo animal investigations, as well as human trials, have been conducted. This technology is now in use to correct septal deviations in an office-based setting. While the emphasis of clinical investigation has focused on septoplasty procedures, laser mediated cartilage reshaping may have application in surgical procedures involving the trachea, laryngeal framework, external ear, and nasal tip. Future directions for research and device design are discussed.

  4. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  5. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  6. In vitro clonal propagation of Achyranthes aspera L. and Achyranthes bidentata Blume using nodal explants

    Institute of Scientific and Technical Information of China (English)

    Wesely Edward Gnanaraj; Johnson MarimuthuAntonisamy; Mohanamathi RB

    2012-01-01

    Objective: To develop the reproducible in vitro propagation protocols for the medicinally important plants viz., Achyranthes aspera (A. aspera) L. and Achyranthes bidentata (A. bidentata) Blume using nodal segments as explants. Methods: Young shoots of A. aspera and A. bidentata were harvested and washed with running tap water and treated with 0.1% bavistin and rinsed twice with distilled water. Then the explants were surface sterilized with 0.1% (w/v) HgCl2 solutions for 1 min. After rinsing with sterile distilled water for 3-4 times, nodal segments were cut into smaller segments (1 cm) and used as the explants. The explants were placed horizontally as well as vertically on solid basal Murashige and Skoog (MS) medium supplemented with 3% sucrose, 0.6% (w/v) agar (Hi-Media, Mumbai) and different concentration and combination of 6-benzyl amino purine (BAP), kinetin (Kin), naphthalene acetic acid (NAA) and indole acetic acid (IAA) for direct regeneration.Results:Adventitious proliferation was obtained from A. aspera and A. bidentata nodal segments inoculated on MS basal medium with 3% sucrose and augmented with BAP and Kin with varied frequency. MS medium augmented with 3.0 mg/L of BAP showed the highest percentage (93.60±0.71) of shootlets formation for A. aspera and (94.70±0.53) percentages for A. bidentata. Maximum number of shoots/explants (10.60±0.36) for A. aspera and (9.50±0.56) for A. bidentata was observed in MS medium fortified with 5.0 mg/L of BAP. For A. aspera, maximum mean length (5.50±0.34) of shootlets was obtained in MS medium augmented with 3.0 mg/L of Kin and for A. bidentata (5.40±0.61) was observed in the very same concentration. The highest percentage, maximum number of rootlets/shootlet and mean length of rootlets were observed in 1/2 MS medium supplemented with 1.0 mg/L of IBA. Seventy percentages of plants were successfully established in polycups. Sixty eight percentages of plants were well established in the green house condition

  7. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which mea