WorldWideScience

Sample records for cartilage diseases

  1. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis: relation to growth and disease activity

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    OBJECTIVE: Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in...

  2. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy.

    Science.gov (United States)

    Hartmann, Kerstin; Koenen, Mascha; Schauer, Sebastian; Wittig-Blaich, Stephanie; Ahmad, Mubashir; Baschant, Ulrike; Tuckermann, Jan P

    2016-04-01

    Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone. PMID:26842265

  3. Expression profile analysis of mycotoxin-related genes in cartilage with endemic osteochondropathy kashin-beck disease

    Directory of Open Access Journals (Sweden)

    Zhang Feng

    2012-07-01

    Full Text Available Abstract Background Kashin-Beck Disease (KBD is an endemic osteochondropathy. Mycotoxins are believed to play an important role in the pathogenesis of KBD. Because the molecular mechanism of mycotoxin-induced cartilage lesions remains unclear, there is not effective treatment for KBD now. To identify key genes involved in the mycotoxin-induced cartilage lesions, we compared the expression profiles of mycotoxin-related genes (MRG between KBD cartilage and healthy cartilage. Methods Total RNA was isolated from cartilage samples, following by being amplified, labeled and hybridized to Agilent human whole genome microarray chip. qRT-PCR was conducted to validate the microarray data. 1,167 MRG were derived from the environmentally related genomic database Toxicogenomics. The microarray data of MRG was subjected to single gene and gene ontology (GO expression analysis for identifying differently expressed genes and GO. Results We identified 7 up-regulated MRG and 2 down-regulated MRG in KBD cartilage, involved in collagen, apoptosis, metabolism and growth & development. GO expression analysis found that 4 apoptosis-related GO and 5 growth & development-related GO were significantly up-regulated in KBD cartilage. Conclusions Based on the results of previous and our studies, we suggest that mycotoxins might contribute to the development of KBD through dysfunction of MRG involved in collagen, apoptosis and growth & development in cartilage.

  4. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg–Calvé–Perthes disease (LCPD)

    International Nuclear Information System (INIS)

    The purpose of the present study was to evaluate the feasibility of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in the detection of cartilage changes versus morphologic imaging in the long-term course of Legg–Calvé–Perthes disease (LCPD). A total of 31 hips in 26 patients (mean age, 30.0 years; range, 18–54 years) who were diagnosed with LCPD in childhood were included. Twenty-one radiographically normal contralateral hips served as controls. dGEMRIC indices of femoral and acetabular cartilage in the weight-bearing zone. Cartilage morphology was classified on radial PD-weighted images according to the modified Outerbridge classification. Mean dGEMRIC values of cartilage were significantly lower in hips after LCPD than in the radiographically normal contralateral hips (513 ± 100 ms vs. 579 ± 103 ms; P = 0.026). In 24 out of 31 LCPD hips and in 4 out of 21 radiographically normal contralateral hips, morphological cartilage changes were noted. Analysis of variance analysis revealed a significant influence of Outerbridge grading on decreased T1-values (P = 0.031). Our results suggest that dGEMRIC at 1.5 T is suitable to assess cartilage quality changes in the long-term follow-up after LCPD. The evaluation of biochemical cartilage quality with dGEMRIC may provide additional information about early cartilage changes occurring without visible alterations of cartilage morphology.

  5. Micro- and nano-mechanics of osteoarthritic cartilage: The effects of tonicity and disease severity.

    Science.gov (United States)

    Moshtagh, P R; Pouran, B; van Tiel, J; Rauker, J; Zuiddam, M R; Arbabi, V; Korthagen, N M; Weinans, H; Zadpoor, A A

    2016-06-01

    The present study aims to discover the contribution of glycosaminoglycans (GAGs) and collagen fibers to the mechanical properties of the osteoarthritic (OA) cartilage tissue. We used nanoindentation experiments to understand the mechanical behavior of mild and severe osteoarthritic cartilage at micro- and nano-scale at different swelling conditions. Contrast enhanced micro-computed tomography (EPIC-μCT) was used to confirm that mild OA specimens had significantly higher GAGs content compared to severe OA specimens. In micro-scale, the semi-equilibrium modulus of mild OA specimens significantly dropped after immersion in a hypertonic solution and at nano-scale, the histograms of the measured elastic modulus revealed three to four components. Comparing the peaks with those observed for healthy cartilage in a previous study indicated that the first and third peaks represent the mechanical properties of GAGs and the collagen network. The third peak shows considerably stiffer elastic modulus for mild OA samples as compared to the severe OA samples in isotonic conditions. Furthermore, this peak clearly dropped when the tonicity increased, indicating the loss of collagen (pre-) stress in the shrunk specimen. Our observations support the association of the third peak with the collagen network. However, our results did not provide any direct evidence to support the association of the first peak with GAGs. For severe OA specimens, the peak associated with the collagen network did not drop when the tonicity increased, indicating a change in the response of OA cartilage to hypertonicity, likely collagen damage, as the disease progresses to its latest stages. PMID:27043052

  6. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice

    Directory of Open Access Journals (Sweden)

    Haage Patrick

    2010-04-01

    Full Text Available Abstract Background In patients with osteoarthritis, a detailed assessment of degenerative cartilage disease is important to recommend adequate treatment. Using a representative sample of patients, this study investigated whether MRI is reliable for a detailed cartilage assessment in patients with osteoarthritis of the knee. Methods In a cross sectional-study as a part of a retrospective case-control study, 36 patients (mean age 53.1 years with clinically relevant osteoarthritis received standardized MRI (sag. T1-TSE, cor. STIR-TSE, trans. fat-suppressed PD-TSE, sag. fat-suppressed PD-TSE, Siemens Magnetom Avanto syngo MR B 15 on a 1.5 Tesla unit. Within a maximum of three months later, arthroscopic grading of the articular surfaces was performed. MRI grading by two blinded observers was compared to arthroscopic findings. Diagnostic values as well as intra- and inter-observer values were assessed. Results Inter-observer agreement between readers 1 and 2 was good (kappa = 0.65 within all compartments. Intra-observer agreement comparing MRI grading to arthroscopic grading showed moderate to good values for readers 1 and 2 (kappa = 0.50 and 0.62, respectively, the poorest being within the patellofemoral joint (kappa = 0.32 and 0.52. Sensitivities were relatively low at all grades, particularly for grade 3 cartilage lesions. A tendency to underestimate cartilage disorders on MR images was not noticed. Conclusions According to our results, the use of MRI for precise grading of the cartilage in osteoarthritis is limited. Even if the practical benefit of MRI in pretreatment diagnostics is unequivocal, a diagnostic arthroscopy is of outstanding value when a grading of the cartilage is crucial for a definitive decision regarding therapeutic options in patients with osteoarthritis.

  7. Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease.

    Science.gov (United States)

    Rizkalla, G; Reiner, A; Bogoch, E; Poole, A R

    1992-01-01

    Changes in the structure of the proteoglycan aggrecan (PG) of articular cartilage were determined immunochemically by RIA and gel chromatography and related to cartilage degeneration documented histologically by the Mankin grading system. Monoclonal antibodies to glycosaminoglycan epitopes were used. In all cartilages, three chondroitin sulfate (CS)-rich populations of large size were observed in addition to a smaller keratan sulfate (KS)-rich population. In grades 7-13 OA cartilages (phase II), molecules were significantly larger than the equivalent molecules of grades 2-6 (phase I). CS chain lengths remained unchanged. In most OA cartilages, a CS epitope 846 was elevated in content, this being most marked in phase II (mean: fivefold). Loss of uronic acid, KS, and hyaluronic acid were only pronounced in phase II OA because of variations in normal contents. Aggregation of PG was unchanged (50-60%) or reduced in OA cartilages, but molecules bearing epitope 846 exhibited almost complete aggregation in normal cartilages. This study provides evidence for the capacity of OA cartilage to synthesize new aggrecan molecules to replace those damaged and lost by disease-related changes. It also defines two phases of PG change in OA: an early predominantly degenerate phase I followed by a net reparative phase II accompanied by net loss of these molecules. Images PMID:1281828

  8. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  9. Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease.

    Science.gov (United States)

    Sampson, Steven; Botto-van Bemden, Angie; Aufiero, Danielle

    2013-09-01

    Younger adults, aged 65 years; however, the limited long-term durability of implanted prostheses decreases the preference of using such methods in more active patients aged cell-based orthobiologic injection therapies (pertaining to therapeutic injectables that aim to restore the biologic environment and/or structural components of diseased or damaged musculoskeletal tissue) is of tremendous interest for younger, more active patients, and is even more appealing in that such therapy can be delivered at point-of-care in the clinic during an office visit. Notably, the exponential rate of progress in biotechnology has allowed for immediate application of myriad novel therapies prior to clear evidence of benefit from randomized clinical trials. Orthobiologic intra-articular injection therapies include HA and platelet-rich plasma (PRP). We report on current, available findings for a third-generation intra-articular orthobiologic injectable therapy for cartilage disease, bone marrow concentrate (BMC). Bone marrow concentrate contains mesenchymal stem cells (MSCs), hematopoetic stem cells, platelets (containing growth factors), and cytokines. The anti-inflammatory and immunomodulatory properties of bone marrow stem cells (BMSCs) can facilitate regeneration of tissue. Additionally, BMSCs enhance the quality of cartilage repair by increasing aggrecan content and tissue firmness. Following bone marrow aspiration (BMA), BMC is easily prepared using centrifugation, and is available for a same-day procedure with minimal manipulation of cells, thus complying with US Food and Drug Association (FDA) restrictions. To date, there are no published randomized controlled trials on the efficacy of use of autologous BMC intra-articular injections performed as a same-day in-office procedure for treating patients with cartilage disease; however, several publications have reported the ease of use of this method, its strong safety profile, and the fundamental science suggesting great

  10. Transcriptomic profiling of cartilage ageing

    OpenAIRE

    Mandy Jayne Peffers; Xuan Liu; Peter David Clegg

    2014-01-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older dono...

  11. Chondroptosis in alkaptonuric cartilage.

    Science.gov (United States)

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio; Santucci, Annalisa

    2015-05-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. PMID:25336110

  12. Multimodal evaluation of tissue-engineered cartilage

    OpenAIRE

    Mansour, Joseph M.; Welter, Jean F.

    2013-01-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment...

  13. Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Happonen, Kaisa E; Saxne, Tore; Aspberg, Anders;

    2010-01-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and osteoarthr......Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage, where it catalyzes collagen fibrillogenesis. Elevated amounts of COMP are found in serum during increased turnover of cartilage associated with active joint disease, such as rheumatoid arthritis (RA) and...

  14. Multimodal evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Mansour, Joseph M; Welter, Jean F

    2013-02-01

    Tissue engineering (TE) has promise as a biological solution and a disease modifying treatment for arthritis. Although cartilage can be generated by TE, substantial inter- and intra-donor variability makes it impossible to guarantee optimal, reproducible results. TE cartilage must be able to perform the functions of native tissue, thus mechanical and biological properties approaching those of native cartilage are likely a pre-requisite for successful implantation. A quality-control assessment of these properties should be part of the implantation release criteria for TE cartilage. Release criteria should certify that selected tissue properties have reached certain target ranges, and should be predictive of the likelihood of success of an implant in vivo. Unfortunately, it is not currently known which properties are needed to establish release criteria, nor how close one has to be to the properties of native cartilage to achieve success. Achieving properties approaching those of native cartilage requires a clear understanding of the target properties and reproducible assessment methodology. Here, we review several main aspects of quality control as it applies to TE cartilage. This includes a look at known mechanical and biological properties of native cartilage, which should be the target in engineered tissues. We also present an overview of the state of the art of tissue assessment, focusing on native articular and TE cartilage. Finally, we review the arguments for developing and validating non-destructive testing methods for assessing TE products. PMID:23606823

  15. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  16. A new iron free treatment with oral fish cartilage polysaccharide for iron deficiency chronic anemia in inflammatory bowel diseases: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Andrea Belluzzi; Giulia Roda; Francesca Tonon; Antonio Soleti; Alessandra Caponi; Anna Tuci; Aldo Roda; Enrico Roda

    2007-01-01

    AIM: To investigate the effect of a new oral preparation, highly concentrated in fish cartilage, in a group of inflammatory bowel diseases (IBD) patients with chronic iron deficient anemia.METHODS: In an open label pilot study, we supplemented a group of 25 patients (11 with Crohn's disease and 14 with ulcerative colitis) in stable clinical conditions and chronic anemia with a food supplement which does not contain iron but contains a standardized fraction of fish cartilage glycosaminoglycans and a mixture of antioxidants (Captafer Medestea, Turin, Italy). Patients received 500 mg, twice a day during meals, for at least 4 mo. Patients were suggested to maintain their alimentary habit. At time 0 and after 2 and 4 mo, emocrome, sideremia and ferritin were examined. Paired data were analyzed with Student's t test.RESULTS: Three patients relapsed during the study (2 in the 3rt mo, 1 in the 4th mo), two patients were lost to follow up and two patients dropped out (1 for orticaria, 1 for gastric burning). Of the remaining 18 patients, levels of serum iron started to rapidly increase within the 2nd mo of treatment, P < 0.05), whereas serum ferritin and hemoglobin needed a longer period to significantly improve their serum levels (mo 4) P < 0.05. The product was safe, easy to administer and well tolerated by patients.CONCLUSION: These data suggest a potential new treatment for IBD patients with iron deficiency chronic anemia and warrant further larger controlled studies.

  17. Cartilage (Bovine and Shark) (PDQ)

    Science.gov (United States)

    ... Ask about Your Treatment Research Cartilage (Bovine and Shark) (PDQ®)–Patient Version Overview Go to Health Professional ... 8 ). Questions and Answers About Cartilage (Bovine and Shark) What is cartilage? Cartilage is a type of ...

  18. Transcriptomic profiling of cartilage ageing.

    Science.gov (United States)

    Peffers, Mandy Jayne; Liu, Xuan; Clegg, Peter David

    2014-12-01

    The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386). PMID:26484061

  19. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  20. Elements regulation during cartilage and bone deformity - potential clinical index in early diagnosis, monitoring and prognosis in children of kashin - beck disease

    International Nuclear Information System (INIS)

    Background: Kashin-Beck Disease (KBD) is a chronic deforming osteoarthritis starting in early childhood and affecting the cartilage metabolism and endochondral ossification. Selenium (Se) deficiency has been postulated as the major environmental etiological factor for KBD by many studies. Other minerals such as the Manganese (Mn) and calcium (Ca) which don't have uniform distribution in environment are also important elements involved in bone and cartilage formation but their regulation in KBD has been rarely reported. The study was done to investigate the role of Mn and Ca in addition to Se in KBD. Method: In this study, the Se, Mn and Calevels were investigated in children from different groups (KBD group, Healthy group from KBD endemic areas (inner control group), Healthy group (outer control group) from Non KBD areas and KBD group with selenium supplementation). The contents of Mn, S and Ca in serum and hair were analyzed by inductively coupled plasma mass spectrometry. Results: The increased Mn levels of. serum and hair in KBD children were observed compared with normal groups. The Mn and Ca have similar trends in different groups but Se and Mn displayed reversed trends. Conclusions: The Mn and Ca contributed to KBD pathogenesis combined with se in regulation of growth and development. The relative ratio of Mn to Se can be a potential clinical index in early diagnosis, monitoring and prognosis of KBD in children. (author)

  1. The bone-cartilage unit in osteoarthritis.

    Science.gov (United States)

    Lories, Rik J; Luyten, Frank P

    2011-01-01

    Osteoarthritis (OA) refers to a group of mechanically-induced joint disorders to which both genetic and acquired factors contribute. Current pathophysiological concepts focus on OA as a disease of the whole joint. Within these models, the functional unit formed by the articular cartilage and the subchondral bone seems to be of particular interest. Cartilage and bone receive and dissipate the stress associated with movement and loading, and are therefore continuously challenged biomechanically. Recent data support the view that cartilage and bone can communicate over the calcified tissue barrier; vessels reach out from bone into the cartilage zone, patches of uncalcified cartilage are in contact with bone, and microcracks and fissures further facilitate transfer of molecules. Several molecular signaling pathways such as bone morphogenetic proteins and Wnts are hypothesized to have a role in OA and can activate cellular and molecular processes in both cartilage and bone cells. In addition, intracellular activation of different kinase cascades seems to be involved in the molecular crosstalk between cartilage and bone cells. Further research is required to integrate these different elements into a comprehensive approach that will increase our understanding of the disease processes in OA, and that could lead to the development of specific therapeutics or treatment strategies. PMID:21135881

  2. Lubricin reduces cartilage--cartilage integration.

    Science.gov (United States)

    Schaefer, Dirk B; Wendt, David; Moretti, Matteo; Jakob, Marcel; Jay, Gregory D; Heberer, Michael; Martin, Ivan

    2004-01-01

    Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration. PMID:15299281

  3. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    Science.gov (United States)

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. PMID:27142453

  4. Cartilage collagen type II seromarker patterns in axial spondyloarthritis and psoriatic arthritis: associations with disease activity, smoking and HLA-B27.

    Science.gov (United States)

    Munk, Heidi Lausten; Gudmann, Natasja Staehr; Christensen, Anne Friesgaard; Ejstrup, Leif; Sorensen, Grith Lykke; Loft, Anne Gitte; Bay-Jensen, Anne C; Siebuhr, Anne Sofie; Junker, Peter

    2016-04-01

    The aim of the study was to assess the possible association between type II collagen turnover seromarkers and disease profile in patients with axial spondyloarthritis (SpA) and psoriatic arthritis (PsA). Outpatients with axial SpA (n = 110) or PsA (n = 101) underwent clinical examination including disease activity measures and HLA-B27 typing. The procollagen IIA N-terminal peptide (PIIANP) and a matrix metalloproteinase-generated type II collagen fragment (C2M) were quantified in serum by ELISA. C2M was higher in SpA than in controls, 0.41 versus 0.36 ng/ml (p = 0.004), while PIIANP did not differ between patients and healthy subjects, 2252 versus 2142 ng/ml (p = 0.13). However, DMARD-naïve SpA patients had higher PIIANP, 2461 ng/ml (p = 0.01) and C2M, 0.44 ng/ml (p = 0.0007) levels than controls, and PIIANP correlated with CRP (ρ = 0.34). C2M was lower in SpA smokers, 0.36 ng/ml versus non-smokers, 0.43 ng/ml (p = 0.02), while PIIANP was higher in HLA-B27 positive, 2312 ng/ml versus negative patients, 2021 ng/ml (p = 0.03). In PsA, PIIANP and C2M did not differ between patients and controls, but PIIANP was elevated in patients not receiving DMARDs, 2726 ng/ml. In PsA, PIIANP and C2M did not differ according to smoking and HLA-B27. Cartilage degradation assessed by C2M is increased in SpA irrespective of treatment but not in PsA. Cartilage synthesis reflected by PIIANP is increased in untreated SpA and PsA. PIIANP correlates with CRP in SpA while not in PsA. In DMARD-naïve SpA but not in PsA, HLA-B27 positivity and smoking are associated with a chondro-proliferative metabolic pattern. PMID:26620690

  5. Cartilage conduction hearing.

    Science.gov (United States)

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Yamanaka, Toshiaki; Levitt, Harry

    2014-04-01

    Sound information is known to travel to the cochlea via either air or bone conduction. However, a vibration signal, delivered to the aural cartilage via a transducer, can also produce a clearly audible sound. This type of conduction has been termed "cartilage conduction." The aural cartilage forms the outer ear and is distributed around the exterior half of the external auditory canal. In cartilage conduction, the cartilage and transducer play the roles of a diaphragm and voice coil of a loudspeaker, respectively. There is a large gap between the impedances of cartilage and skull bone, such that cartilage vibrations are not easily transmitted through bone. Thus, these methods of conduction are distinct. In this study, force was used to apply a transducer to aural cartilage, and it was found that the sound in the auditory canal was amplified, especially for frequencies below 2 kHz. This effect was most pronounced at an application force of 1 N, which is low enough to ensure comfort in the design of hearing aids. The possibility of using force adjustments to vary amplification may also have applications for cell phone design. PMID:25234994

  6. Cartilage Engineering and Microgravity

    Science.gov (United States)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  7. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration

    Science.gov (United States)

    Akkiraju, Hemanth; Nohe, Anja

    2016-01-01

    Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration. PMID:27347486

  8. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    NARCIS (Netherlands)

    Y.M. Bastiaansen-Jenniskens (Yvonne Maria)

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repai

  9. MRI of the cartilage

    International Nuclear Information System (INIS)

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  10. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases

    DEFF Research Database (Denmark)

    Sun, Shu; Bay-Jensen, Anne-Christine; Karsdal, Morten A;

    2014-01-01

    BACKGROUND: Matrix metalloproteinase-3 (MMP-3) plays an important role in the pathology of rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Measurement of active MMP-3 in clinical samples could provide information about progression of rheumatoid diseases, and potentially response to tre...

  11. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    Science.gov (United States)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  12. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue. PMID:26923076

  13. Zn deposition at the bone cartilage interface in equine articular cartilage

    Science.gov (United States)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  14. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  15. Zn deposition at the bone-cartilage interface in equine articular cartilage

    International Nuclear Information System (INIS)

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage

  16. Growing Three-Dimensional Cartilage-Cell Cultures

    Science.gov (United States)

    Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.

    1995-01-01

    Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.

  17. Cartilage oligomeric matrix protein in patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Bjørnhart, Birgitte; Juul, Anders; Nielsen, Susan;

    2009-01-01

    Cartilage oligomeric matrix protein (COMP) has been identified as a prognostic marker of progressive joint destruction in rheumatoid arthritis. In this population based study we evaluated associations between plasma concentrations of COMP, disease activity, and growth velocity in patients with...

  18. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  19. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair. PMID:26559963

  20. UP3005, a Botanical Composition Containing Two Standardized Extracts of Uncaria gambir and Morus alba, Improves Pain Sensitivity and Cartilage Degradations in Monosodium Iodoacetate-Induced Rat OA Disease Model

    Directory of Open Access Journals (Sweden)

    Mesfin Yimam

    2015-01-01

    Full Text Available Osteoarthritis (OA is a multifactorial disease primarily noted by cartilage degradation in association with inflammation that causes significant morbidity, joint pain, stiffness, and limited mobility. Present-day management of OA is inadequate due to the lack of principal therapies proven to be effective in hindering disease progression where symptomatic therapy focused approach masks the actual etiology leading to irreversible damage. Here, we describe the effect of UP3005, a composition containing a proprietary blend of two standardized extracts from the leaf of Uncaria gambir and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate- (MIA- induced rat OA disease model. Pain sensitivity, micro-CT, histopathology, and glycosaminoglycans (GAGs level analysis were conducted. Diclofenac at 10 mg/kg was used as a reference compound. UP3005 resulted in almost a complete inhibition in proteoglycans degradation, reductions of 16.6% (week 4, 40.5% (week 5, and 22.0% (week 6 in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, minimal visual subchondral bone damage, and statistically significant increase in bone mineral density when compared to the vehicle control with MIA. Therefore, UP3005 could potentially be considered as an alternative therapy from natural sources for the treatment of OA and/or its associated symptoms.

  1. UP3005, a Botanical Composition Containing Two Standardized Extracts of Uncaria gambir and Morus alba, Improves Pain Sensitivity and Cartilage Degradations in Monosodium Iodoacetate-Induced Rat OA Disease Model.

    Science.gov (United States)

    Yimam, Mesfin; Lee, Young-Chul; Kim, Tae-Woo; Moore, Breanna; Jiao, Ping; Hong, Mei; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Oh, Jin-Sun; Cleveland, Sabrina; Hyun, Eu-Jin; Chu, Min; Jia, Qi

    2015-01-01

    Osteoarthritis (OA) is a multifactorial disease primarily noted by cartilage degradation in association with inflammation that causes significant morbidity, joint pain, stiffness, and limited mobility. Present-day management of OA is inadequate due to the lack of principal therapies proven to be effective in hindering disease progression where symptomatic therapy focused approach masks the actual etiology leading to irreversible damage. Here, we describe the effect of UP3005, a composition containing a proprietary blend of two standardized extracts from the leaf of Uncaria gambir and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate- (MIA-) induced rat OA disease model. Pain sensitivity, micro-CT, histopathology, and glycosaminoglycans (GAGs) level analysis were conducted. Diclofenac at 10 mg/kg was used as a reference compound. UP3005 resulted in almost a complete inhibition in proteoglycans degradation, reductions of 16.6% (week 4), 40.5% (week 5), and 22.0% (week 6) in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, minimal visual subchondral bone damage, and statistically significant increase in bone mineral density when compared to the vehicle control with MIA. Therefore, UP3005 could potentially be considered as an alternative therapy from natural sources for the treatment of OA and/or its associated symptoms. PMID:25802546

  2. Semi-automatic knee cartilage segmentation

    Science.gov (United States)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  3. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  4. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  5. Fracture of articular cartilage.

    Science.gov (United States)

    Chin-Purcell, M V; Lewis, J L

    1996-11-01

    Crack formation and propagation is a significant element of the degeneration process in articular cartilage. In order to understand this process, and separate the relative importance of structural overload and material failure, methods for measuring the fracture toughness of cartilage are needed. In this paper, two such methods are described and used to measure fracture properties of cartilage from the canine patella. A modified single edge notch (MSEN) specimen was used to measure J, and a trouser tear test was used to measure T, both measures of fracture toughness with units of kN/m. A pseudo-elastic modulus was also obtained from the MSEN test. Several potential error sources were examined, and results for the MSEN test compared with another method for measuring the fracture parameter for urethane rubber. Good agreement was found. The two test methods were used to measure properties of cartilage from the patellae of 12 canines: 4-9 specimens from each of 12 patellae, with 5 right-left pairs were tested. Values of J ranged from 0.14-1.2 kN/m. J values correlated with T and were an average of 1.7 times larger than T. A variety of failure responses was seen in the MSEN tests, consequently a grade of 0 to 3 was assigned to each test, where 0 represented a brittle-like crack with minimal opening and 3 represented plastic flow with no crack formation. The initial cracks in 12/82 specimens did not propagate and were assigned to grade 3. The method for reducing data in the MSEN test assumed pseudo-elastic response and could not be used for the grade 3 specimens. Stiffness did not correlate with J. Neither J nor T was statistically different between right-left pairs, but varied between animals. The test methods appear useful for providing a quantitative measure of fracture toughness for cartilage and other soft materials. PMID:8950659

  6. A Novel Approach to Stimulate Cartilage Repair: Targeting Collagen Turnover

    OpenAIRE

    Bastiaansen-Jenniskens, Yvonne Maria

    2009-01-01

    textabstractOA is a complex disease of which the ethiopathology is not completely known and therapies to repair cartilage are still under investigation. The increase of collagen type II expression in osteoarthritic cartilage suggests an activated repair mechanism that is however ineffective in repairing or maintaining the ECM homeostasis. We therefore investigated the ability to modulate the formation of a functional collagen type II network that can ultimately contribute to innovation of car...

  7. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm3, using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.)

  8. Cartilage analysis by reflection spectroscopy

    Science.gov (United States)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  9. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  10. Differential allelic expression of the type II collagen gene (COL2A1) in osteoarthritic cartilage.

    OpenAIRE

    Loughlin, J.; Irven, C; Athanasou, N; Carr, A; Sykes, B

    1995-01-01

    Osteoarthritis (OA) is a common debilitating disease resulting from the degeneration of articular cartilage. The major protein of cartilage is type II collagen, which is encoded by the COL2A1 gene. Mutations at this locus have been discovered in several individuals with inherited disorders of cartilage. We have identified 27 primary OA patients who are heterozygous for sequence dimorphisms located in the coding region of COL2A1. These dimorphisms were used to distinguish the mRNA output from ...

  11. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering

    OpenAIRE

    Liao, Jinfeng; Qu, Ying; Chu, BingYang; Zhang, Xiaoning; Qian, ZhiYong

    2015-01-01

    Owing to the limited repair capacity of articular cartilage, it is essential to develop tissue-engineered cartilage for patients suffering from joint disease and trauma. Herein, we prepared a novel hybrid scaffold composed of methacrylated chondroitin sulfate (CSMA), poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA was used as abbreviation for MPEG-PCL-AC) and graphene oxide (GO) and evaluated its potential application in cartilage tissue engineering. To ...

  12. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F; Hvid, I

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... tissues that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  13. Improved Visualization of Cartilage Canals Using Quantitative Susceptibility Mapping.

    Directory of Open Access Journals (Sweden)

    Mikko J Nissi

    Full Text Available Cartilage canal vessels are critical to the normal function of epiphyseal (growth cartilage and damage to these vessels is demonstrated or suspected in several important developmental orthopaedic diseases. High-resolution, three-dimensional (3-D visualization of cartilage canals has recently been demonstrated using susceptibility weighted imaging (SWI. In the present study, a quantitative susceptibility mapping (QSM approach is evaluated for 3-D visualization of the cartilage canals. It is hypothesized that QSM post-processing improves visualization of the cartilage canals by resolving artifacts present in the standard SWI post-processing while retaining sensitivity to the cartilage canals.Ex vivo distal femoral specimens from 3- and 8-week-old piglets and a 1-month-old human cadaver were scanned at 9.4 T with a 3-D gradient recalled echo sequence suitable for SWI and QSM post-processing. The human specimen and the stifle joint of a live, 3-week-old piglet also were scanned at 7.0 T. Datasets were processed using the standard SWI method and truncated k-space division QSM approach. To compare the post-processing methods, minimum/maximum intensity projections and 3-D reconstructions of the processed datasets were generated and evaluated.Cartilage canals were successfully visualized using both SWI and QSM approaches. The artifactual splitting of the cartilage canals that occurs due to the dipolar phase, which was present in the SWI post-processed data, was eliminated by the QSM approach. Thus, orientation-independent visualization and better localization of the cartilage canals was achieved with the QSM approach. Combination of GRE with a mask based on QSM data further improved visualization.Improved and artifact-free 3-D visualization of the cartilage canals was demonstrated by QSM processing of the data, especially by utilizing susceptibility data as an enhancing mask. Utilizing tissue-inherent contrast, this method allows noninvasive assessment

  14. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly(ethylene glycol diacrylate scaffold

    Directory of Open Access Journals (Sweden)

    G. Musumeci

    2011-09-01

    Full Text Available Osteoarthritis (OA is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol (PEG based hydrogels (PEG-DA encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i in tissue explanted from OA and normal human cartilage; ii in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  15. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    Science.gov (United States)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  16. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis.

    Science.gov (United States)

    Asahara, Hiroshi

    2016-08-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  17. Current Status and Strategy of microRNA Research for Cartilage Development and Osteoarthritis Pathogenesis

    Science.gov (United States)

    2016-01-01

    MicroRNAs (miRNAs), which are small (~21 nucleotides) non-coding RNAs, are important players in endochondral ossification, articular cartilage homeostasis, and arthritis pathogenesis. Comprehensive and genetic analyses of cartilage-specific or cartilage-related miRNAs have provided new information on cartilage development, homeostasis, and related diseases. State-of-the-art combinatorial approaches, including transcription-activator like effector nuclease (TALEN)/clustered regularly interspaced short palindromic repeats (CRISPR) technique for targeting miRNAs and high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation for identifying target messenger RNAs, should be used to determine complex miRNA networks and miRNA-dependent cartilage regulation. Use of advanced drug delivery systems involving cartilage-specific miRNAs will accelerate the application of these new findings in arthritis therapy. PMID:27622175

  18. Colonies in engineered articular cartilage express superior differentiation.

    Science.gov (United States)

    Selvaratnam, L; Abd Rahim, S; Kamarul, T; Chan, K Y; Sureshan, S; Penafort, R; Ng, C L L

    2005-07-01

    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans. PMID:16381284

  19. New developments in osteoarthritis and cartilage biology.

    Science.gov (United States)

    Poulet, Blandine; Staines, Katherine A

    2016-06-01

    Osteoarthritis (OA) is a degenerative joint disease and the most common form of arthritis. Characterised by articular cartilage loss, subchondral bone thickening and osteophyte formation, the OA joint afflicts much pain and disability. Whilst OA has been associated with many contributing factors, its underpinning molecular mechanisms are, nevertheless, not fully understood. Clinical management of OA is largely palliative and there is an ever growing need for an effective disease modifying treatment. This review discusses some of the recent progress in OA therapies in the different joint tissues affected by OA pathology. PMID:26921602

  20. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  1. Andrographolide Exerts Chondroprotective Activity in Equine Cartilage Explant and Suppresses Interleukin-1β-Induced MMP-2 Expression in Equine Chondrocyte Culture

    OpenAIRE

    Tangyuenyong, Siriwan; Viriyakhasem, Nawarat; Peansukmanee, Siriporn; Kongtawelert, Prachya; Ongchai, Siriwan

    2014-01-01

    Cartilage erosion in degenerative joint diseases leads to lameness in affected horses. It has been reported that andrographolide from Andrographis paniculata inhibited cartilage matrix-degrading enzymes. This study aimed to explore whether this compound protects equine cartilage degradation in the explant culture model and to determine its effect on matrix metalloproteinase-2 (MMP-2) expression, a matrix-degrading enzyme, in equine chondrocyte culture. Equine articular cartilage explant cultu...

  2. Electrospun Cartilage-Derived Matrix Scaffolds for Cartilage Tissue Engineering

    OpenAIRE

    Garrigues, N. William; Little, Dianne; Sanchez-Adams, Johannah; David S Ruch; Guilak, Farshid

    2014-01-01

    Macroscale scaffolds created from cartilage-derived matrix (CDM) demonstrate chondroinductive properties, but many fabrication methods do not allow for control of nanoscale architecture. In this regard, electrospun scaffolds have shown significant promise for cartilage tissue engineering. However, nanofibrous materials generally exhibit a relatively small pore size and require techniques such as multi-layering or the inclusion of sacrificial fibers to enhance cellular infiltration. The object...

  3. Engineered cartilage covered ear implants for auricular cartilage reconstruction.

    Science.gov (United States)

    Lee, Sang Jin; Broda, Christopher; Atala, Anthony; Yoo, James J

    2011-02-14

    Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement. PMID:21182236

  4. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  5. MR imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    It is becoming increasingly important for the radiologist to evaluate the appearance and outcome of cartilage repair procedures. MR imaging is currently the best method for such evaluation but it is necessary to use cartilage-specific sequences and to modify those sequences when necessary to minimize artifacts from retained metal within the joint. This article reviews the surgical technique of the more commonly performed cartilage repair procedures, currently recommended techniques for the MR imaging evaluation of articular cartilage and cartilage repair procedures, and the MR imaging appearance of cartilage repair procedures and of the most frequently encountered complications following such procedures. (orig.)

  6. Compositional studies at the Bone-Cartilage interface using PIXE, RBS and cSAXS techniques

    International Nuclear Information System (INIS)

    Micro Proton Induced X-ray Emission (μ-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential cations in two thin slices of normal and diseased human articular cartilage, the latter being affected by osteoarthritis (OA). The elemental distribution maps for Ca, P, K, S and Zn in the normal and diseased slices showed similar patterns with marked increases in elemental concentrations in the bone-cartilage interface. The S concentration was significantly lower in bone than in cartilage. Conversely, the Ca and P concentrations were higher in bone. The Ca/P ratio (2.22) of the diseased slice was determined by employing the Rutherford backscattering technique (RBS). The RBS figures of this investigation agree with values previously reported by others. Structural and organisational changes of collagen networks were investigated by coherent Small-Angle X-ray Scattering (SAXS) using beamline facilities at the Swiss Light Source (SLS) for a decalcified diseased human articular cartilage slice. The SAXS findings showed a gradual reorientation of collagen type II fibres of cartilage from parallel to the surface of the joint to normal to the bone-cartilage interface. Similar patterns of orientation were observed at the subchondral bone to bone-cartilage interface

  7. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    OpenAIRE

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; André-Leroux, Gwenaelle; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we kno...

  8. Impact of cartilage invasion on treatment and prognosis of laryngeal cancer

    International Nuclear Information System (INIS)

    Invasion of laryngeal cartilage has long been considered as a contraindication to radiation treatment and to all types of conservation surgery. With the advent of axial imaging techniques clarification of the submucosal extent of disease became possible. However, controversies regarding diagnosis (preferred modality, accuracy of detection of cartilage invasion) and treatment of cartilage invasion (Is cartilage invasion really a contraindication for irradiation treatment?) arose. Based on currently accepted criteria, CT appears to be more specific in detecting neoplastic cartilage invasion than MRI, but tends to underestimate invasion and may therefore result in undertreatment. Magnetic resonance has a higher sensitivity than CT for detection of cartilage invasion. The superiority of MRI lies in its ability to detect intracartilaginous tumor spread. Unfortunately, MR findings suggesting neoplastic cartilage invasion may be false positive in a considerable number of instances. Two MRI-dependent parameters appear to be significant as a prognostic factor for success of radiation therapy: tumor volume and abnormal MR signal pattern in cartilage. Minimal abnormal MR signal patterns in cartilage in patients with small tumors (under 5 cc) does not appear to be a very ominous finding for tumor recurrence after radiation therapy. On the other hand, abnormal MR signal pattern in cartilage combined with large tumor volume (above 5 cc) appears to worsen the prognosis significantly. If voice conservation surgery is being considered, MR imaging is useful for assessing those structures (such as cartilages) whose involvement would contraindicate partial laryngectomy. Magnetic resonance imaging appears to be the optimal method of examination in cooperative patients. If MRI fails or if it is contraindicated, CT may still be recommended. The radiologist's experience with CT or MRI also determines the choice between the two modalities. (orig.)

  9. Clinical cases of joint disease in horse. Total glycosaminoglycans sulphate and keratansulphate in synovial fluid as markers of degenerative cartilage processes

    International Nuclear Information System (INIS)

    Total glycosaminoglycans sulphate (GAGs) and keratan sulphate (KS) were measured in synovial fluid (SF) obtained from 28 horses with different joint diseases (degenerative joint disease (DJD), osteochondrosis (OCD), positivity to Flex Test (FT)) and 15 horses without any clinical sign of lameness. All groups of animals with joint disease showed levels of total GAGs significantly higher (P0.001) than normal. On the contrary, only DJD affected joints showed a significantly (P0.01) higher level of KS

  10. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  11. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    Osteoarthritis (OA) is a widespread, chronic joint disease for which there are currently no effective treatments beyond symptom relief. The lack of any approved disease modifying osteoarthritic drugs may partly be explained by insufficient disease understanding, but may also be tied to the absence...

  12. PHOTOCROSSLINKABLE HYDROGELS FOR CARTILAGE TISSUE ENGINEERING

    NARCIS (Netherlands)

    Levett, Peter Andrew

    2015-01-01

    For millions of people, damaged cartilage is a major source of pain and disability. As those people often discover upon seeking medical treatment, once damaged, cartilage is very difficult to repair. Finding better clinical therapies for damaged cartilage has generated a huge amount of research inte

  13. Isolation, identification, and comparison of cartilage stem progenitor/cells from auricular cartilage and perichondrium

    OpenAIRE

    Xue, Ke; Zhang, Xiaodie; Qi, Lin; Zhou, Jia; Liu, Kai

    2016-01-01

    Auricular cartilage loss or defect remains a challenge to plastic surgeons, and cartilage regenerative medicine provides a novel method to solve the problem. However, ideal seeding cells seem to be the key point in the development of cartilage regeneration. Although bone marrow-mesenchymal stem cells were considered as the ideal seeding cells in cartilage regeneration, regenerative cartilage differentiated from bone marrow-mesenchymal stem cells still faces some problems. It is reported that ...

  14. MRI EVALUATION OF KNEE CARTILAGE

    Science.gov (United States)

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  15. Association between Wnt inhibitory factor-1 expression levels in articular cartilage and the disease severity of patients with osteoarthritis of the knee

    OpenAIRE

    GAO, SHU-GUANG; ZENG, CHAO; Liu, Jun-Jie; Tian, Jian; Cheng, Chao; ZHANG, FANG-JIE; Xiong, Yi-lin; Pan, Ding; XIAO, YONG-BING; LEI, GUANG-HUA

    2016-01-01

    Wnt inhibitory factor (WIF)-1 is a potent extracellular Wnt antagonist which may be used as a potential molecular therapy for the treatment of inflammatory and autoimmune diseases. Although previous studies have demonstrated that WIF-1 has a protective role in experimental studies of arthritis, its role in the various disease grades of osteoarthritis (OA) remains unclear. A total of 40 patients with various stages of primary OA of the knee and 10 control subjects were enrolled in the present ...

  16. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Objective: To compare the cartilage thickness, volume, and articular surface areas of the knee joint between young healthy, non-athletic female and male individuals. Subjects and design. MR imaging was performed in 18 healthy subjects without local or systemic joints disease (9 female, age 22.3±2.4 years, and 9 male, age 22.2.±1.9 years), using a fat-suppressed FLASH 3D pulse sequence (TR=41 ms, TE=11 ms, FA=30 ) with sagittal orientation and a spatial resolution of 2x0.31x0.31 mm3. After three-dimensional reconstruction and triangulation of the knee joint cartilage plates, the cartilage thickness (mean and maximal), volume, and size of the articular surface area were quantified, independent of the original section orientation. Results and conclusions: Women displayed smaller cartilage volumes than men, the percentage difference ranging from 19.9% in the patella, to 46.6% in the medial tibia. The gender differences of the cartilage thickness were smaller, ranging from 2.0% in the femoral trochlea to 13.3% in the medial tibia for the mean thickness, and from 4.3% in the medial femoral condyle to 18.3% in the medial tibia for the maximal cartilage thickness. The differences between the cartilage surface areas were similar to those of the volumes, with values ranging from 21.0% in the femur to 33.4% in the lateral tibia. Gender differences could be reduced for cartilage volume and surface area when normalized to body weight and body weight x body height. The study demonstrates significant gender differences in cartilage volume and surface area of men and women, which need to be taken into account when retrospectively estimating articular cartilage loss in patients with symptoms of degenerative joint disease. Differences in cartilage volume are primarily due to differences in joint surface areas (epiphyseal bone size), not to differences in cartilage thickness. (orig.)

  17. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    International Nuclear Information System (INIS)

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  18. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Hesper, Tobias; Bittersohl, Daniela; Krauspe, Ruediger; Zilkens, Christoph [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Center of Hip Preservation and Children' s Orthopaedics, San Diego, CA (United States); Welsch, Goetz H. [Medical University of Vienna, MR Center, Department of Radiology, Vienna (Austria); Bittersohl, Bernd [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Heinrich-Heine University, Medical School, Department of Orthopaedics, Duesseldorf (Germany)

    2014-10-15

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  19. Identification of latexin by a proteomic analysis in rat normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kouri Juan B

    2010-06-01

    Full Text Available Abstract Background Osteoarthritis (OA is characterized by degeneration of articular cartilage. Animal models of OA induced are a widely used tool in the study of the pathogenesis of disease. Several proteomic techniques for selective extraction of proteins have provided protein profiles of chondrocytes and secretory patterns in normal and osteoarthritic cartilage, including the discovery of new and promising biomarkers. In this proteomic analysis to study several proteins from rat normal articular cartilage, two-dimensional electrophoresis and mass spectrometry (MS were used. Interestingly, latexin (LXN was found. Using an immunohistochemical technique, it was possible to determine its localization within the chondrocytes from normal and osteoarthritic articular cartilage. Results In this study, 147 proteins were visualized, and 47 proteins were identified by MS. A significant proportion of proteins are involved in metabolic processes and energy (32%, as well as participating in different biological functions including structural organization (19%, signal transduction and molecular signaling (11%, redox homeostasis (9%, transcription and protein synthesis (6%, and transport (6%. The identified proteins were assigned to one or more subcellular compartments. Among the identified proteins, we found some proteins already recognized in other studies such as OA-associated proteins. Interestingly, we identified LXN, an inhibitor of mammalian carboxypeptidases, which had not been described in articular cartilage. Immunolabeling assays for LXN showed a granular distribution pattern in the cytoplasm of most chondrocytes of the middle, deep and calcified zones of normal articular cartilage as well as in subchondral bone. In osteoarthritic cartilage, LXN was observed in superficial and deep zones. Conclusions This study provides the first proteomic analysis of normal articular cartilage of rat. We identified LXN, whose location was demonstrated by

  20. Poroelasticity of cartilage at the nanoscale.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-11-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease. PMID:22067171

  1. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a dep

  2. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  3. Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques

    International Nuclear Information System (INIS)

    Micro-proton-induced X-ray emission (μ-PIXE) analysis has been employed in investigating the presence of number of essential anions and cations in thin sections of diseased human articular cartilage affected by osteoarthritis (OA). Distribution maps for Ca, P, K and S in diseased sections show marked alterations in the concentrations of these at the bone-cartilage interface compared to normal tissue. For a decalcified section of human articular cartilage, organisational changes of the collagen network were investigated by small-angle X-ray scattering (SAXS). The established gradual reorientation of collagen fibres from vertical to the surface of the joint to normal to the bone-cartilage interface is observed to be heavily disrupted in OA.

  4. Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques

    Science.gov (United States)

    Kaabar, W.; laklouk, A.; Bunk, O.; Baily, M.; Farquharson, M. J.; Bradley, David

    2010-07-01

    Micro-proton-induced X-ray emission (μ-PIXE) analysis has been employed in investigating the presence of number of essential anions and cations in thin sections of diseased human articular cartilage affected by osteoarthritis (OA). Distribution maps for Ca, P, K and S in diseased sections show marked alterations in the concentrations of these at the bone-cartilage interface compared to normal tissue. For a decalcified section of human articular cartilage, organisational changes of the collagen network were investigated by small-angle X-ray scattering (SAXS). The established gradual reorientation of collagen fibres from vertical to the surface of the joint to normal to the bone-cartilage interface is observed to be heavily disrupted in OA.

  5. Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: W.kaabar@surrey.ac.u [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Laklouk, A. [Al-Fateh University, Tripoli-Libya (Libyan Arab Jamahiriya); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Baily, M. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1 (Canada); Farquharson, M.J. [Surrey Ion Beam Centre, University of Surrey, Guildford, GU2 7XH (United Kingdom); Bradley, David [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2010-07-21

    Micro-proton-induced X-ray emission ({mu}-PIXE) analysis has been employed in investigating the presence of number of essential anions and cations in thin sections of diseased human articular cartilage affected by osteoarthritis (OA). Distribution maps for Ca, P, K and S in diseased sections show marked alterations in the concentrations of these at the bone-cartilage interface compared to normal tissue. For a decalcified section of human articular cartilage, organisational changes of the collagen network were investigated by small-angle X-ray scattering (SAXS). The established gradual reorientation of collagen fibres from vertical to the surface of the joint to normal to the bone-cartilage interface is observed to be heavily disrupted in OA.

  6. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee

    International Nuclear Information System (INIS)

    Purpose: The aim of this paper is to describe a technique for the visualization and mapping of focal, local cartilage thickness changes over time in magnetic resonance images of osteoarthritic knee. Methods: Magnetic resonance imaging was performed in 25 fresh frozen pig knee joints and 15 knees of patients with borderline to mild osteoarthritis (51.2 ± 6.3 years). Cartilage and corresponding bone structures were extracted by semi-automatic segmentation. Each point in the bone surface which was part of the bone–cartilage interface was assigned a cartilage thickness value. Cartilage thicknesses were computed for each point in the bone–cartilage interfaces and transferred to the bone surfaces. Moreover, we developed a three dimensional registration method for the identification of anatomically corresponding points of the bone surface to quantify local cartilage thickness changes. One of the main advantages of our method compared to other studies in the field of registration is a global optimization algorithm that does not require any initialization. Results and conclusion: The registration accuracy was 0.93 ± 0.05 mm (less than a voxel of magnetic resonance data). Local cartilage thickness changes were seen as having follow-up clinical study for detecting local changes in cartilage thickness. Experiment results suggest that our method was sufficiently accurate and effective for monitoring knee joint diseases.

  7. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis

    OpenAIRE

    Ju-Suk Nam; Sang-Soo Lee; Ashish R. Sharma; Supriya Jagga

    2013-01-01

    Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contri...

  8. Human Endogenous Retrovirus W Activity in Cartilage of Osteoarthritis Patients

    Directory of Open Access Journals (Sweden)

    Signy Bendiksen

    2014-01-01

    Full Text Available The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.

  9. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  10. Ontogeny of rat chondrocyte proliferation: studies in embryo, adult and osteoarthritic (OA) cartilage

    Institute of Scientific and Technical Information of China (English)

    Madaí A GóMEZ-CAMARILLO; Juan B.KOURI

    2005-01-01

    The aim of this work was to study the ontogeny of chondrocyte cell division using embryo, adult and osteoarthritic (OA) cartilage. We searched for mitosis phases and performed a comparative evaluation of mitotic index, basic fibroblast growth factor b (FGFb), transforming growth factor β1 (TGF-β1) receptors, cyclin dependent kinase (CDK1)and Cyclin-B expression in fetal, neonate, 3, 5, 8 weeks old rats and experimental OA. Our results showed that mitosis phases were observed in all normal cartilage studied, although, we found a decrease in mitotic index in relation to tissue development. No mitosis was detected in OA cartilage. We also found a statistical significant reduction in cell number in OA cartilage, compared with the normal tissue. Furthermore, FGFb and TGF-β1 receptors diminished in relation to tissue development, and were very scarce in experimental OA. Western blot assays showed CDK-1 expression in all cases, including human-OA cartilage. Similar results were observed for Cyclin-B, except for 8 weeks, when it was not expressed. Our results suggest that cell division seems to be scarce, if not absent within the OA cartilage studied.Nevertheless, the existence of factors essential for cell division leaves open the question concerning chondrocyte proliferation in OA cartilage, which is likely to be present in the early stages of the disease.

  11. μ-PIXE and SAXS studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Micro Proton Induced X-ray Emission (μ-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage.

  12. Micro-PIXE and SAXS studies at the bone-cartilage interface.

    Science.gov (United States)

    Kaabar, W; Gundogdu, O; Laklouk, A; Bunk, O; Pfeiffer, F; Farquharson, M J; Bradley, D A

    2010-01-01

    Micro Proton Induced X-ray Emission (micro-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage. PMID:19836249

  13. {mu}-PIXE and SAXS studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380, Kocaeli (Turkey); Laklouk, A. [Food Science Department, Al-Fateh Unversity, Tripoli (Libyan Arab Jamahiriya); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Pfeiffer, F. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-04-15

    Micro Proton Induced X-ray Emission ({mu}-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage.

  14. Preclinical Studies for Cartilage Repair

    OpenAIRE

    Hurtig, Mark B.; Buschmann, Michael D; Fortier, Lisa A; Hoemann, Caroline D; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral...

  15. Measurement of articular cartilage volumes in the normal knee by magnetic resonance imaging. Can cartilage volumes be estimated from physical characteristics?

    International Nuclear Information System (INIS)

    In recent times several studies have been performed on magnetic resonance imaging (MRI) sequences for imaging cartilage. A fat-suppressed three-dimensional sequence is one such noteworthy example. More recent studies have reported that the total volume of cartilage in a knee joint can be elucidated using this sequence. Based on these studies, we hypothesized that the total volume of cartilage in the knee joint may reflect certain other physical characteristics. The purpose of the current study was to clarify the articular cartilage volumes of the patella and femur in the human knee joints of healthy adults using MRI and to analyze the correlation of these volumes with other physical characteristics. The material comprised 68 knees of 68 Japanese healthy volunteers, aged from their twenties to their forties (37 men and 31 women) who had no past history of joint disease or trauma in the legs. The knees were imaged by MRI with a fat-suppressed three-dimensional sequence, and the cartilage volumes were calculated by computer processing. The factors analyzed were age, body weight, height, leg length, foot size, circumferences of the thigh and lower leg, the distance between medial and lateral femoral condyles, the diameter of the tibial head, body mass index, general joint laxity, quadriceps angle, and leg-heel alignment. The mean cartilage volume was 7.6±1.6 cm3 (8.3±1.6 cm3 in men, 6.7±0.9 cm3 in women). It was significantly larger in men than in women. However, the volume positively correlated with body weight, height, leg length, and foot size, without distinction of gender or age. Based on these data, a multiple regression analysis was developed: cartilage volume 0.113 x height-11.053. We concluded that the cartilage volume depends on physical size regardless of gender, and it can be estimated from factors of physical size. (author)

  16. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  17. Biological evaluation of nutraceuticals affecting cartilage metabolism and inflammation

    OpenAIRE

    Hartog, A.

    2010-01-01

    Osteoarthritis is the most common joint disease and an important cause of physical disability. Clinical symptoms are frequently associated with a significant functional impairment and signs and symptoms of inflammation, including pain, stiffness and loss of mobility. In osteoarthritis the balance between cartilage synthesis and degradation is disturbed as a result of an altered mainly autocrine exposure of the chondrocytes to various cytokines and growth factors. RA is a chronic, inflammatory...

  18. Modeling IL-1 induced degradation of articular cartilage.

    Science.gov (United States)

    Kar, Saptarshi; Smith, David W; Gardiner, Bruce S; Li, Yang; Wang, Yang; Grodzinsky, Alan J

    2016-03-15

    In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states. PMID:26874194

  19. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan R.; Dam, Erik B.; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learni...

  20. Advances in treatment of articular cartilage injuries

    Directory of Open Access Journals (Sweden)

    Yuan-cheng LI

    2013-05-01

    Full Text Available Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.

  1. Procyanidin B3 prevents articular cartilage degeneration and heterotopic cartilage formation in a mouse surgical osteoarthritis model.

    Directory of Open Access Journals (Sweden)

    Hailati Aini

    Full Text Available Osteoarthritis (OA is a common disease in the elderly due to an imbalance in cartilage degradation and synthesis. Heterotopic ossification (HO occurs when ectopic masses of endochondral bone form within the soft tissues around the joints and is triggered by inflammation of the soft tissues. Procyanidin B3 (B3 is a procyanidin dimer that is widely studied due to its high abundance in the human diet and antioxidant activity. Here, we evaluated the role of B3 isolated from grape seeds in the maintenance of chondrocytes in vitro and in vivo. We observed that B3 inhibited H(2O(2-induced apoptosis in primary chondrocytes, suppressed H(2O(2- or IL-1ß-induced nitric oxide synthase (iNOS production, and prevented IL-1ß-induced suppression of chondrocyte differentiation marker gene expression in primary chondrocytes. Moreover, B3 treatment enhanced the early differentiation of ATDC5 cells. To examine whether B3 prevents cartilage destruction in vivo, OA was surgically induced in C57BL/6J mice followed by oral administration of B3 or vehicle control. Daily oral B3 administration protected articular cartilage from OA and prevented chondrocyte apoptosis in surgically-induced OA joints. Furthermore, B3 administration prevented heterotopic cartilage formation near the surgical region. iNOS protein expression was enhanced in the synovial tissues and the pseudocapsule around the surgical region in OA mice fed a control diet, but was reduced in mice that received B3. Together, these data indicated that in the OA model, B3 prevented OA progression and heterotopic cartilage formation, at least in a part through the suppression of iNOS. These results support the potential therapeutic benefits of B3 for treatment of human OA and heterotopic ossification.

  2. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  3. Development of cartilage conduction hearing aid

    Directory of Open Access Journals (Sweden)

    H. Hosoi

    2010-04-01

    Full Text Available Purpose: The potential demand for hearing aids is increasing in accordance with aging of populations in many developed countries. Because certain patients cannot use air conduction hearing aids, they usually use bone conduction hearing aids. However, bone does not transmit sound as efficiently as air, and bone conduction hearing aids require surgery (bone anchored hearing aid or great pressure to the skull. The first purpose of this study is to examine the efficacy of a new sound conduction pathway via the cartilage. The second purpose is to develop a hearing aid with a cartilage conduction transducer for patients who cannot use regular air conduction hearing aids.Design/methodology/approach: We examined the hearing ability of a patient with atresia of both external auditory meatuses via three kinds of conduction pathways (air, bone, and cartilage. After the best position for the cartilage conduction transducer was found, audiometric evaluation was performed for his left ear with an insertion earphone (air conduction, a bone conduction transducer, and a cartilage conduction transducer. Then we made a new hearing aid using cartilage conduction and got subjective data from the patients.Findings: The tragal cartilage was the best position for the cartilage conduction transducer. The patient’s mean hearing levels were 58.3 dBHL, 6.7 dBHL, and 3.3 dBHL for air conduction, bone conduction, and cartilage conduction respectively. The hearing ability of the patients obtained from the cartilage conduction hearing aid was comparable to those from the bone conduction hearing aid.Practical implications: Hearing levels using cartilage conduction are very similar to those via bone conduction. Cartilage conduction hearing aids may overcome the practical disadvantages of bone conduction hearing aids such as pain and the need for surgery.Originality/value: We have clarified the efficacy of the cartilage conduction pathway and developed a prototype ‘cartilage

  4. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

    Science.gov (United States)

    Adán, Norma; Guzmán-Morales, Jessica; Ledesma-Colunga, Maria G.; Perales-Canales, Sonia I.; Quintanar-Stéphano, Andrés; López-Barrera, Fernando; Méndez, Isabel; Moreno-Carranza, Bibiana; Triebel, Jakob; Binart, Nadine; Martínez de la Escalera, Gonzalo; Thebault, Stéphanie; Clapp, Carmen

    2013-01-01

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3–dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor–null (Prlr–/–) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA. PMID:23908112

  5. Elemental and structural studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  6. Elemental and structural studies at the bone-cartilage interface

    Science.gov (United States)

    Kaabar, W.; Daar, E.; Bunk, O.; Farquharson, M. J.; Laklouk, A.; Bailey, M.; Jeynes, C.; Gundogdu, O.; Bradley, D. A.

    2011-10-01

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  7. Elemental and structural studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: w.kaabar@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Daar, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada); Laklouk, A. [Al-Fateh University, Tripoli (Libya); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380 Kocaeli (Turkey); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2011-10-01

    Micro-Proton Induced X-ray Emission ({mu}-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  8. A stem cell-based approach to cartilage repair.

    Science.gov (United States)

    Johnson, Kristen; Zhu, Shoutian; Tremblay, Matthew S; Payette, Joshua N; Wang, Jianing; Bouchez, Laure C; Meeusen, Shelly; Althage, Alana; Cho, Charles Y; Wu, Xu; Schultz, Peter G

    2012-05-11

    Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen, we identified the small molecule kartogenin, which promotes chondrocyte differentiation (median effective concentration = 100 nM), shows chondroprotective effects in vitro, and is efficacious in two OA animal models. Kartogenin binds filamin A, disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ), and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis. PMID:22491093

  9. Anatomical study of nasal cartilage in buffalo (Bubalus bubulus

    Directory of Open Access Journals (Sweden)

    Mahdi Yeganehzad

    2011-07-01

    Full Text Available This study used ten heads of adult buffalo taken from slaughterhouse. After transferring the samples to the anatomy hall, a split was carefully created on skin of muzzle and the skin was slowly separated from muscles and hypodermal connective tissue. Place of connection of cartilages to bone, cartilages to each other and shape of the cartilages were specified. In buffalo, nose apex has two nostrils fixed by bone and cartilage. After identifying and separating the cartilages, it was found that nasal cartilages in buffalo consisted of: 1 septum nasal located between two nostrils and reinforces it from inside. 2 dorso-lateral nasal cartilage constituting dorsal and lateral parts of the nostril. 3 ventro-lateral nasal cartilage constituting ventral and lateral parts of the nostril. 4 lateral accessory cartilage constituting lateral and ventral parts of the nostril. 5 medial accessory nasal cartilage located at Alar fold and connected to ventro-lateral nasal cartilage.

  10. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  11. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies.

    Science.gov (United States)

    Yuan, X L; Meng, H Y; Wang, Y C; Peng, J; Guo, Q Y; Wang, A Y; Lu, S B

    2014-08-01

    Currently, osteoarthritis (OA) is considered a disease of the entire joint, which is not simply a process of wear and tear but rather abnormal remodelling and joint failure of an organ. The bone-cartilage interface is therefore a functioning synergistic unit, with a close physical association between subchondral bone and cartilage suggesting the existence of biochemical and molecular crosstalk across the OA interface. The crosstalk at the bone-cartilage interface may be elevated in OA in vivo and in vitro. Increased vascularisation and formation of microcracks associated with abnormal bone remodelling in joints during OA facilitate molecular transport from cartilage to bone and vice versa. Recent reports suggest that several critical signalling pathways and biological factors are key regulators and activate cellular and molecular processes in crosstalk among joint compartments. Therapeutic interventions including angiogenesis inhibitors, agonists/antagonists of molecules and drugs targeting bone remodelling are potential candidates for this interaction. This review summarised the premise for the presence of crosstalk in bone-cartilage interface as well as the current knowledge of the major signalling pathways and molecular interactions that regulate OA progression. A better understanding of crosstalk in bone-cartilage interface may lead to development of more effective strategies for treating OA patients. PMID:24928319

  12. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis.

    Science.gov (United States)

    Sharma, Ashish R; Jagga, Supriya; Lee, Sang-Soo; Nam, Ju-Suk

    2013-01-01

    Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients. PMID:24084727

  13. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2013-09-01

    Full Text Available Osteoarthritis (OA is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.

  14. X-ray dark field imaging of human articular cartilage: Possible clinical application to orthopedic surgery

    International Nuclear Information System (INIS)

    Despite its convenience and non-invasiveness on daily clinical use, standard X-ray radiography cannot show articular cartilage. We developed a novel type of X-ray dark field imaging (DFI), which forms images only by a refracted beam with very low background illumination. We examined a disarticulated distal femur and a shoulder joint with surrounding soft tissue and skin, both excised from a human cadaver at the BL20B2 synchrotron beamline at SPring-8. The field was 90 mm wide and 90 mm high. Articular cartilage of the disarticulated distal femur was obvious on DFI, but not on standard X-ray images. Furthermore, DFI allowed visualization in situ of articular cartilage of the shoulder while covered with soft tissue and skin. The gross appearance of the articular cartilage on the dissected section of the proximal humerus was identical to the cartilage shown on the DFI image. These results suggested that DFI could provide a clinically accurate method of assessing articular cartilage. Hence, DFI would be a useful imaging tool for diagnosing joint disease such as osteoarthritis

  15. Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements.

    Science.gov (United States)

    Mondo, Kiyo; Broc Glover, W; Murch, Susan J; Liu, Guangliang; Cai, Yong; Davis, David A; Mash, Deborah C

    2014-08-01

    Shark cartilage products are marketed as dietary supplements with claimed health benefits for animal and human use. Shark fin and cartilage products sold as extracts, dry powders and in capsules are marketed based on traditional Chinese medicine claims that it nourishes the blood, enhances appetite, and energizes multiple internal organs. Shark cartilage contains a mixture of chondroitin and glucosamine, a popular nutritional supplement ingested to improve cartilage function. Sharks are long-lived apex predators, that bioaccumulate environmental marine toxins and methylmercury from dietary exposures. We recently reported detection of the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) in the fins of seven different species of sharks from South Florida coastal waters. Since BMAA has been linked to degenerative brain diseases, the consumption of shark products may pose a human risk for BMAA exposures. In this report, we tested sixteen commercial shark cartilage supplements for BMAA by high performance liquid chromatography (HPLC-FD) with fluorescence detection and ultra performance liquid chromatography/mass spectrometry/mass spectrometry (UPLC-MS/MS). Total mercury (Hg) levels were measured in the same shark cartilage products by cold vapor atomic fluorescence spectrometry (CVAFS). We report here that BMAA was detected in fifteen out of sixteen products with concentrations ranging from 86 to 265μg/g (dry weight). All of the shark fin products contained low concentrations of Hg. While Hg contamination is a known risk, the results of the present study demonstrate that shark cartilage products also may contain the neurotoxin BMAA. Although the neurotoxic potential of dietary exposure to BMAA is currently unknown, the results demonstrate that shark cartilage products may contain two environmental neurotoxins that have synergistic toxicities. PMID:24755394

  16. Cysts of the semilunar cartilage

    International Nuclear Information System (INIS)

    On the basis of the studies listed in the bibliography, this dissertation reports on the pathology, clinical symptoms and radiology of cysts of the semilunar cartilage. The author analyses 118 cases of his own, with special regard to the results of pneumo-arthrographic investigations carried through according to a special technique by Schaefer. In the course of this work, measurements of the meniscal base are for the first time used as radiological criteria indicating the presence of a cyst of the semilunar cartilage. Furthermore the well-known radiological signs of cysts, such as bone defects according to Albert and Keller, light central spot in the meniscal body, as well as Rauber's sign and horizontal rupture, are investigated as to the frequency of their incidence. For that purpose all the X-ray pictures were subjected to a further dose scrutiny. A list of all the 118 cases with their clinical and radiological data is found in the annex, together with the results of the operations and patho-anatomical investigations. (orig.)

  17. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T1WI, T2WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  18. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    Science.gov (United States)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  19. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible. PMID:26069647

  20. [Surgical therapeutic possibilities of cartilage damage].

    Science.gov (United States)

    Burkart, A C; Schoettle, P B; Imhoff, A B

    2001-09-01

    Therapy of cartilage damage is a frequent problem, especially in the young and active patient. For the treatment of a cartilage damage we have to consider the size of the defect, age and weight of the patient, meniscal tears, ligament instabilities and varus-/valgus-malalignment. Lavage, shaving and debridement are only sufficient for a short time and have no long term effect. Abrasio and drilling could be useful in eldery people. Microfracturing seems to be an effective alternative for small defects. The restoration of the cartilage surface with the use of autologous chondrocyte transplantation, osteochondral autograft transplantation and posterior condyle transfer seems to be an adequate treatment for younger patients. PMID:11572120

  1. Inter-subject comparison of MRI knee cartilage thickness

    OpenAIRE

    Carballido-Gamio, Julio; Jan S. Bauer; Stahl, Robert; Lee, Keh-Yang; Krause, Stefanie; Link, Thomas M.; Majumdar, Sharmila

    2007-01-01

    In this paper, we present the development and application of current image processing techniques to perform MRI inter-subject comparison of knee cartilage thickness based on the registration of bone structures. Each point in the bone surface which is part of the bone–cartilage interface is assigned a cartilage thickness value. Cartilage and corresponding bone structures are segmented and their shapes interpolated to create isotropic voxels. Cartilage thicknesses are computed for each point in...

  2. Influence of osteoarthritis grade on molecular signature of human cartilage.

    Science.gov (United States)

    Zhou, Shuanhu; Thornhill, Thomas S; Meng, Fangang; Xie, Li; Wright, John; Glowacki, Julie

    2016-03-01

    Articular chondrocytes maintain cartilage matrix turnover and have the capacity for anabolic and catabolic activities that can be influenced by injury and disease. This study tested the hypothesis that catabolic genes are upregulated with regional osteoarthritis (OA) disease severity within a joint. With IRB approval, specimens of knee cartilage obtained as discarded tissues from subjects undergoing arthroplasty were partitioned for each subject by OA disease severity and evaluated for gene expression by RT-PCR. There was regional OA grade-associated upregulation of expected inflammatory mediators TNF-α, TNF receptors, IFN-γ, and interleukins as well as genes encoding proteolytic enzymes, including Adamts-5 and MMPs. Osteoclast-related genes, cathepsin K, tartrate-resistant acid phosphatase (TRAP), RANKL, RANK, M-CSF, and c-fms, but not osteoprotegerin, were induced in advanced grades. In vitro treatment of normal human chondrocytes with interleukin-1β upregulated similar genes; this provides evidence that chondrocytes per se can be the source of osteoclast-related factors. Immunohistochemical staining showed that RANK- and RANKL-positive cells were abundant in advanced grades, especially in chondrocyte clusters. This suggests a possible autocrine mechanism by which an osteoclast phenotype is induced in articular chondrocytes. In sum, these studies identified gene expression signatures in human OA cartilage based upon regional disease severity within a joint. There was an effect of OA Grade on expression of osteoclastic lytic enzymes and regulatory factors in human articular chondrocytes. Induction of an osteoclast-like phenotype in chondrocytes may be part of OA progression and suggests specific therapeutic approaches. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:454-462, 2016. PMID:26336057

  3. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis

    OpenAIRE

    Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2015-01-01

    In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage ...

  4. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage

    OpenAIRE

    Pham, Phuc Van; Bui, Khanh Hong-Thien; Ngo, Dat Quoc; Vu, Ngoc Bich; Truong, Nhung Hai; Phan, Nhan Lu-Chinh; Le, Dung Minh; Duong, Triet Dinh; Nguyen, Thanh Duc; Le, Vien Tuong; Phan, Ngoc Kim

    2013-01-01

    Introduction Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation t...

  5. Controlled-Potential Electromechanical Reshaping of Cartilage.

    Science.gov (United States)

    Hunter, Bryan M; Kallick, Jeremy; Kissel, Jessica; Herzig, Maya; Manuel, Cyrus; Protsenko, Dmitri; Wong, Brian J F; Hill, Michael G

    2016-04-25

    An alternative to conventional "cut-and-sew" cartilage surgery, electromechanical reshaping (EMR) is a molecular-based modality in which an array of needle electrodes is inserted into cartilage held under mechanical deformation by a jig. Brief (ca. 2 min) application of an electrochemical potential at the water-oxidation limit results in permanent reshaping of the specimen. Highly sulfated glycosaminoglycans within the cartilage matrix provide structural rigidity to the tissue through extensive ionic-bonding networks; this matrix is highly permselective for cations. Our studies indicate that EMR results from electrochemical generation of localized, low-pH gradients within the tissue: fixed negative charges in the proteoglycan matrix are protonated, resulting in chemically induced stress relaxation of the tissue. Re-equilibration to physiological pH restores the fixed negative charges, and yields remodeled cartilage that retains a new shape approximated by the geometry of the reshaping jig. PMID:27059655

  6. Abnormal mandibular growth and the condylar cartilage.

    Science.gov (United States)

    Pirttiniemi, Pertti; Peltomäki, Timo; Müller, Lukas; Luder, Hans U

    2009-02-01

    Deviations in the growth of the mandibular condyle can affect both the functional occlusion and the aesthetic appearance of the face. The reasons for these growth deviations are numerous and often entail complex sequences of malfunction at the cellular level. The aim of this review is to summarize recent progress in the understanding of pathological alterations occurring during childhood and adolescence that affect the temporomandibular joint (TMJ) and, hence, result in disorders of mandibular growth. Pathological conditions taken into account are subdivided into (1) congenital malformations with associated growth disorders, (2) primary growth disorders, and (3) acquired diseases or trauma with associated growth disorders. Among the congenital malformations, hemifacial microsomia (HFM) appears to be the principal syndrome entailing severe growth disturbances, whereas growth abnormalities occurring in conjunction with other craniofacial dysplasias seem far less prominent than could be anticipated based on their often disfiguring nature. Hemimandibular hyperplasia and elongation undoubtedly constitute the most obscure conditions that are associated with prominent, often unilateral, abnormalities of condylar, and mandibular growth. Finally, disturbances of mandibular growth as a result of juvenile idiopathic arthritis (JIA) and condylar fractures seem to be direct consequences of inflammatory and/or mechanical damage to the condylar cartilage. PMID:19164410

  7. The structure and function of cartilage proteoglycans

    Directory of Open Access Journals (Sweden)

    P J Roughley

    2006-11-01

    Full Text Available Cartilage contains a variety of proteoglycans that are essential for its normal function. These include aggrecan, decorin, biglycan, fibromodulin and lumican. Each proteoglycan serves several functions that are determined by both its core protein and its glycosaminoglycan chains. This review discusses the structure/function relationships of the cartilage proteoglycans, and the manner in which perturbations in proteoglycan structure or abundance can adversely affect tissue function.

  8. Fibrin for tissue engineering of cartilage

    OpenAIRE

    Eyrich, Daniela

    2006-01-01

    Since the beginning of the 1990s a plethora of research approaches towards cartilage engineering for plastic and reconstructive surgery have been undertaken. However, a general standard method for generation of cartilage tissue equivalent is still lacking. The goal of this thesis is based on the project �Bavarian Research Cooperation for Tissue Engineering and Rapid Prototyping� (ForTEPro) for development of individually customized implants for facial and reconstructive surgery. The main o...

  9. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  10. Magnetic resonance imaging of articular cartilage at 3 tesla

    International Nuclear Information System (INIS)

    Smooth motor function can be maintained by articular cartilage. When the cartilage is injured, edema occurs, and as degeneration progresses, the cartilage thins and the cartilage matrix decreases. Magnetic resonance (MR) imaging allows noninvasive evaluation of these changes. Fat suppression proton density- and T2-weighted imaging are useful in the morphologic evaluation of articular cartilage. High resolution, 3-tesla MR imaging provides more detailed evaluation. Biochemical information from T2 mapping, T1ρ mapping, and delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) is useful for early diagnosis of cartilage injury and evaluation of cartilage repair. The role of MR imaging in evaluating articular cartilage will increase in the future aging society. (author)

  11. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  12. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy

    2016-07-01

    Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model

  13. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical propertie

  14. Correction of Asian Short Nose with Lower Lateral Cartilage Repositioning and Ear Cartilage Grafting

    Directory of Open Access Journals (Sweden)

    Jin Suk Byun, MD, PhD

    2013-09-01

    Conclusions: LLC repositioning and ear cartilage grafting aid in the correction of short nose in Asians. With LLC repositioning and ear cartilage grafting, the nasal tip can be positioned in accordance with the patient’s anatomic limits. The entire nasal tip and columella can be lengthened, while the tip maintains its mobility.

  15. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications.

    Science.gov (United States)

    Bugbee, William D; Pallante-Kichura, Andrea L; Görtz, Simon; Amiel, David; Sah, Robert

    2016-01-01

    The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194

  16. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    Science.gov (United States)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  17. Aggrecan structure in amphibian cartilage

    Directory of Open Access Journals (Sweden)

    Covizi D.Z.

    2000-01-01

    Full Text Available The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.

  18. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC shows no change in cartilage structural composition after viscosupplementation in patients with early-stage knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Jasper van Tiel

    Full Text Available INTRODUCTION: Viscosupplementation with hyaluronic acid (HA of osteoarthritic (OA knee joints has a well-established positive effect on clinical symptoms. This effect, however, is only temporary and the working mechanism of HA injections is not clear. It was suggested that HA might have disease modifying properties because of its beneficial effect on cartilage sulphated glycosaminoglycan (sGAG content. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC is a highly reproducible, non-invasive surrogate measure for sGAG content and hence composition of cartilage. The aim of this study was to assess whether improvement in cartilage structural composition is detected using dGEMRIC 14 weeks after 3 weekly injections with HA in patients with early-stage knee OA. METHODS: In 20 early-stage knee OA patients (KLG I-II, 3D dGEMRIC at 3T was acquired before and 14 weeks after 3 weekly injections with HA. To evaluate patient symptoms, the knee injury and osteoarthritis outcome score (KOOS and a numeric rating scale (NRS for pain were recorded. To evaluate cartilage composition, six cartilage regions in the knee were analyzed on dGEMRIC. Outcomes of dGEMRIC, KOOS and NRS before and after HA were compared using paired t-testing. Since we performed multiple t-tests, we applied a Bonferroni-Holm correction to determine statistical significance for these analyses. RESULTS: All KOOS subscales ('pain', 'symptoms', 'daily activities', 'sports' and 'quality of life' and the NRS pain improved significantly 14 weeks after Viscosupplementation with HA. Outcomes of dGEMRIC did not change significantly after HA compared to baseline in any of the cartilage regions analyzed in the knee. CONCLUSIONS: Our results confirm previous findings reported in the literature, showing persisting improvement in symptomatic outcome measures in early-stage knee OA patients 14 weeks after Viscosupplementation. Outcomes of dGEMRIC, however, did not change after Viscosupplementation

  19. First realisation of a labelling kit of N.T.P. 15-5 ligand by {sup 99m}Tc in view of a clinical application in cartilage functional imaging; Premiere realisation d'une trousse de marquage du ligand NTP 15-5 par le 99mTc en vue d'une application clinique en imagerie fonctionnelle du cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Miot-Noirault, E.; Cachin, F.; Vidal, A.; Auzeloux, P.; Chezal, J.M.; Gaumet, V.; Askienazy, S. [Inserm, EA4231, UMR 990, 63 - Clermont-Ferrand (France); Guenu, S. [UFR de pharmacie, laboratoire de chimie analytique, 63 - Clermont-Ferrand (France); Askienazy, S. [Laboratoires Cyclopharma, 63 - Saint-Beauzire (France)

    2010-07-01

    We are working on a SPECT tracer for functional imaging of articular cartilage, the {sup 99m}Tc-NTP 15-5. This molecule has its application in degenerative diseases of cartilage (arthrosis, arthritis and chondrosarcoma). Excellent reports of cartilage versus tissues fixing ratios are obtained in different animal models as well as human anatomical parts. For clinical application, we present the development of a labelling kit by the technetium of the ligand NTP 15-5. (N.C.)

  20. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    DEFF Research Database (Denmark)

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay;

    2008-01-01

    OBJECTIVE: Cartilage degradation in osteoarthritis (OA) generates the type II collagen fragments, Helix-II and CTX-II that can be used as clinical biological markers. Helix-II and C-telopeptide of type II collagen (CTX-II) levels are associated independently with progression of OA suggesting that...... they may be generated through different collagenolytic pathways. In this study we analyzed the release of Helix-II and CTX-II from human cartilage collagen by the proteinases reported to play a role in cartilage degradation. METHODS: In vitro, human articular cartilage extract was incubated with...... enzymatic pathways. Helix-II and CTX-II alone reflect only partially overall cartilage collagen degradation. These findings may explain why these two biological markers could provide complementary information on disease progression in OA....

  1. 大骨节病关节软骨真菌毒素环境反应基因表达谱研究%Gene expression profiling of mycotoxin-related environmental response genes in the articular cartilage of Kashin-Beck disease

    Institute of Scientific and Technical Information of China (English)

    张峰; 王伟卓; 郭雄; 武世勋; 王立新

    2012-01-01

    Objective To compare the expression profile of mycotoxin-related environmental response genes (MERGs) in the articular cartilage of patients with Kashin-Beck disease (KBD) and healthy controls,and explore the relationship between MERG and KBD.Methods Articular cartilage specimens were collected from 9 healthy human subjects and 9 adult KBD patients.Agilent microarray was used to evaluate the expression levels of MERG in cartilage specimens,and the expression ratios of MERG between KBD and healthy controls were calculated.GSEA software was used to calculate the NES scores and P values of gene ontology(GO).Results ①T-2 toxin,deoxynivalenol,zearalenone,aflatoxin B1,fumonisin B1 and ochratoxin A related 15 MERGs presented expression differences between KBD and healthy controls(ratios > 2.0 or < 0.5).Thirteen MERGs were up-regulated in KBD,including BAX,BCL2,COL5A2,FER1L3,GSTT2,IGFBP2,IGFBP4,PDE8B,SOCS3,THBS1,TMSL8,VGLL3 and TUBB2A (ratio > 2.0).Two MERGs,POSTN and FABP4,were down-regulated in KBD (ratio < 0.5).The 15 MERGs were involved in various biological processes; such as collage synthesis,apoptosis,metabolism,growth & development and so on.②Mycotoxin related 4 apoptosis GOs and 5 growth & development related GOs were up-regulated in KBD compared to healthy controls(NES > 0),including ANTI_APOPTOSIS,REGULATION_OF_PROGRAMMED_CELL_DEATH,APOPTOSIS_GO,REGULATION_OF_APOPTOSIS,ORGAN_MORPHOGENESIS,ANATOMICAL_STRUCTURE_DEVELOPMENT,ORGAN_DEVELOPMENT,SYSTEM_DEVELOPMENT and REGULATION OF DEVELOPMENTAL_PROCESS (NES > 0 and P < 0.05).Conclusions There are multiple mycotoxins related environmental response genes presenting significant expression difference between KBD cartilage and normal cartilage.Mycotoxin can affect the expression of MERGs in KBD articular cartilage,which might lead to dysfunction of chondrocytes,and articular cartilage lesions.%目的 比较分析真菌毒素环境反应基因在大骨节病(Kashin-Beck disease,KBD)和正常关节软骨

  2. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  3. Effect of estrogen and dietary loading on rat condylar cartilage

    OpenAIRE

    Orajärvi, M. (Marko)

    2015-01-01

    Abstract The temporomandibular joint (TMJ) is a synovial joint which attaches the mandible to the skull. The head of the mandibular condyle is covered by condylar cartilage, which functions as both growth and articular cartilage. Masticatory forces are transmitted to the condylar cartilage, and the consistency of a person’s diet partly defines the loading force. Condylar cartilage acts as a load-absorbing structure together with the articular disc. Temporomandibular disorders (TMDs) are...

  4. Engineering articular cartilage using newly developed carrageenan basedhydrogels

    OpenAIRE

    Popa, Elena Geta

    2014-01-01

    Articular cartilage holds specific functionality in the human body creating smooth gliding areas and allowing the joints to move easily without pain. However, due to its avascular nature and to the low metabolic activity of the constituent cells-the chondrocytes, cartilage has a low regenerative potential. The current surgical options to treat damaged cartilage are not long lasting and involve frequent revisions. Tissue engineering may provide an alternative approach for cartilage...

  5. Type III Collagen, a Fibril Network Modifier in Articular Cartilage*

    OpenAIRE

    Wu, Jiann-Jiu; Weis, Mary Ann; Kim, Lammy S.; Eyre, David R.

    2010-01-01

    The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules...

  6. Irradiated homologous costal cartilage for augmentation rhinoplasty

    International Nuclear Information System (INIS)

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed

  7. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Biswajit Bera

    2009-10-01

    The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra ethoxy silane (TEOS) by sol–gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying bone with high bond strength.

  8. Arthrosonography and biomarkers in the evaluation of destructive knee cartilage osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Živanović Sandra

    2009-01-01

    Full Text Available Introduction. Knee osteoarthrosis (OA is a degenerative disease with progressive loss of cartilage of joints and bone destruction. During this process, the release of fragments of connective tissue matrix is detected in the biological fluids such as human cartilage glycoprotein (YKL-40, cartilage oligomeric matrix protein (COMP and collagen type I C terminal telopeptid (CTX-I. Objective. The aim of the study was to determine the degree of connection cartilage thickness measured by ultrasound with serum concentrations of biomarkers YKL-40, COMP and CTX-I in patients with primary knee OA. Methods. The analysis included 88 patients with the diagnosis of knee OA. Ultrasound examination of knees were done by two rheumatologists. The analysis of serum samples determined the concentration of COMP, YKL-40 and CTX-I by the ELISA method. Results. The average age of patients was 69.97±9.37 years and the duration of knee OA 6.46±6.73 years. The average cartilage thickness of the femoral condyle was 1.33±0.20 mm; of the medial condyle (MC (front access 1.30±0.23 mm, (rear access 1.30±0.29 mm and lateral condyli (LC (front access 1.39±0.27 mm. The average cartilage thickness of MC (front access was 1.27 mm (0.98-1.42 mm, (rear access 1.27 mm (0.84-1.46 mm and LC (front access 1.36 mm (1.01-1.57 mm (p=0.002. There was a significant connection in the negative direction between the patients' age and the cartilage thickness of MC (front and rear access and LC (front access (r=-0.253; p=0.017. There was a significant negative direction of interrelationship between the cartilage thickness of MC (front access (r=-0.259; p=0.015 and LC (front access and the disease duration (r=-0.259; p=0.015. In patients with knee OA lasting for 5 years the measured cartilage thickness was 1.27 mm (1.16-1.49 mm, and 0.99 mm (0.94-1.23 mm (p=0.007 in those lasting for 20 years. There was a significant relationship in a negative direction between the concentration of YKL-40 and

  9. Characterization and Localization of Citrullinated Proteoglycan Aggrecan in Human Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Tibor T Glant

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor, and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes of proteoglycan (PG aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG can contribute to autoimmunity in RA.CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1 was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA and RA cartilage using immunohistochemistry.Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage.CitPG is a new member of citrullinated proteins identified in human joints. CitPG could be found in

  10. Tissue engineering of cartilage in space

    OpenAIRE

    Freed, Lisa E.; Langer, Robert; Martin, Ivan; Pellis, Neal R.; Vunjak-Novakovic, Gordana

    1997-01-01

    Tissue engineering of cartilage, i.e., the in vitro cultivation of cartilage cells on synthetic polymer scaffolds, was studied on the Mir Space Station and on Earth. Specifically, three-dimensional cell-polymer constructs consisting of bovine articular chondrocytes and polyglycolic acid scaffolds were grown in rotating bioreactors, first for 3 months on Earth and then for an additional 4 months on either Mir (10−4–10−6 g) or Earth (1 g). This mission provided a unique opportunity to study the...

  11. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    Science.gov (United States)

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular

  12. The determination of apoptosis rates on articular cartilages of ovariectomized rats with and without alendronate treatment.

    Science.gov (United States)

    Acar, Nuray; Balkarli, Huseyin; Soyuncu, Yetkin; Ozbey, Ozlem; Celik-Ozenci, Ciler; Korkusuz, Petek; Ustunel, Ismail

    2016-06-01

    Osteoporosis (OP) is a major health problem characterized by compromised bone strength. Osteoarthritis (OA) is a joint disease that progresses slowly and is characterized by breakdown of the cartilage matrix. Alendronate (ALN), a nitrogen-containing bisphosphonate (BIS), inhibits bone loss and increases bone mineralization, and has been used clinically for the treatment of OP. It is still controversial whether BIS is effective in inhibiting the progression of OA. Chondrocyte apoptosis has been described in both human and experimentally induced OA models. In our study we aimed to detect whether ALN could protect articular cartilage from degeneration and reduce apoptosis rates in experimentally OA induced rats. For this rats were ovariectomized (ovex), nine weeks after operation rats were injected 30 µg/kg/week ALN subcutaneously for six weeks. After six weeks articular cartilages were obtained. We did Safranin O staining and Mankin and Pritzker scorings to evaluate degeneration and investigated the expressions of p53, cleaved caspase 3, Poly ADP-ribose (PAR), Poly ADP-ribose polymerase 1 (PARP 1), and applied TUNEL technique to determine apoptotis rates. We found a significant decrease in glycosaminoglycan (GAG) amount and increased apoptosis which indicates damage on articular cartilages of ovex rats. GAG amount was higher and apoptosis rate was lower on articular cartilages of ALN treated ovex rats compared to the ovex group. In contrary to studies showing that early ALN treatment has a protective effect, our study shows late ALN treatment has a chondroprotective effect on articular cartilage since we treated rats nine weeks after ovariectomy. PMID:26631351

  13. Implantation of scaffold-free engineered cartilage constructs in a rabbit model for chondral resurfacing.

    Science.gov (United States)

    Brenner, Jillian M; Ventura, Nicole M; Tse, M Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Hurtig, Mark B; Waldman, Stephen D

    2014-02-01

    Joint resurfacing techniques offer an attractive treatment for damaged or diseased cartilage, as this tissue characteristically displays a limited capacity for self-repair. While tissue-engineered cartilage constructs have shown efficacy in repairing focal cartilage defects in animal models, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of larger defects. In a previous study, we developed a novel approach to generate large, scaffold-free cartilaginous constructs from a small number of donor cells (20 000 cells to generate a 3-cm(2) tissue construct). As comparable thicknesses to native cartilage could be achieved, the purpose of the present study was to assess the ability of these constructs to survive implantation as well as their potential for the repair of critical-sized chondral defects in a rabbit model. Evaluated up to 6 months post-implantation, allogenic constructs survived weight bearing without a loss of implant fixation. Implanted constructs appeared to integrate near-seamlessly with the surrounding native cartilage and also to extensively remodel with increasing time in vivo. By 6 months post-implantation, constructs appeared to adopt both a stratified (zonal) appearance and a biochemical composition similar to native articular cartilage. In addition, constructs that expressed superficial zone markers displayed higher histological scores, suggesting that transcriptional prescreening of constructs prior to implantation may serve as an approach to achieve superior and/or more consistent reparative outcomes. As the results of this initial animal study were encouraging, future studies will be directed toward the repair of chondral defects in more mechanically demanding anatomical locations. PMID:24571514

  14. TYMPANOPLASTY WITH SEPTAL CARTILAGE AND CORTICAL MASTOID BONE IN CHOLESTEATOMA PATIENTS

    Directory of Open Access Journals (Sweden)

    Biram Singh

    2015-12-01

    Full Text Available OBJECTIVE This study was conducted to find out the ideal graft between septal cartilage and cortical mastoid bone in Farrior’s type 3 tympanoplasty in cholesteatoma patients in terms of hearing improvement, graft status and recurrence rate of the disease after canal wall down mastoidectomy. METHODS This randomized controlled trial was conducted in a tertiary care centre and the procedure and data collections were carried out for one and a half calendar year with effect from September 2007 and each case was followed up for 6 months. The data were entered and calculated statistically using SPSS16 for windows. RESULTS The study shows significant hearing improvement in both the groups. The tympanoplasty type 3 with cortical mastoid bone had air bone gap less than 20dB in 40% of patients. In septal cartilage, tympanoplasty group air bone gap less than 20dB was observed in 36.4%. Retraction of graft developed in 1(2.4% out of 20 patients among cortical mastoid bone tympanoplasty group. Among 22 patients of septal cartilage tympanoplasty type 3, 2(4.8% patients had cartilage resorption and 3(7.1% had graft displacement. Of the total 42 patients, 2(4.8% developed recurrence of the disease. CONCLUSION Cholesteatoma management is controversial. Canal wall down mastoidectomy can reduce the recurrence of disease. The cortical mastoid bone and septal cartilage grafts can provide hearing improvement after tympanoplasty type 3. There is no significant difference in hearing improvement between the two grafts.

  15. Interactive segmentation of Hip Joint Cartilage

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Juráš, V.; Vogl, W.; Chytil, J.

    Cambridge: The Electromagnetics Academy, 2014, s. 2369-2372. ISBN 978-1-934142-28-8. [PIERS 2014. Progress In Electromagnetics Research Symposium /35./. Guangzhou (CN), 25.08.2014-28.08.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : hip joint * MRI * segmentation of cartilage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Birth injuries to the epiphyseal cartilage

    International Nuclear Information System (INIS)

    A birth injury in the vicinity of a joint might lead to a fracture through the epiphyseal cartilage. The criteria for diagnosing such a fracture at radiography are considered and the continued remodelling of the bone demonstrated. The history of 2 cases with late diagnosis and serious long-term sequelae are described, in order to emphasize the necessity of early radiography. (Auth.)

  17. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  18. Spatially resolved elemental distributions in articular cartilage

    International Nuclear Information System (INIS)

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network

  19. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  20. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism.

    Science.gov (United States)

    Wang, Zhenzhong; Guo, Ai; Ma, Lifeng; Yu, Haomiao; Zhang, Liang; Meng, Hai; Cui, Yinpeng; Yu, Fei; Yang, Bo

    2016-06-01

    Osteoarthritis (OA) is a common chronic inflammatory disease, characterized by cartilage degradation. The aberrant expression of matrix metalloproteinase-13 (MMP-13) plays a vital role in the pathogenesis of OA. The anti‑inflammatory property of docosahexenoic acid (DHA) was previously revealed and showed that DHA retards the progress of many types of inflammatory disease. To evaluate the prophylactic function of DHA in OA, the effect of DHA on cartilage degeneration was assessed in interleukin‑1β (IL‑1β) stimulated human chondrosarcoma SW1353 cells or a rat model of adjuvant‑induced arthritis (AIA). The safe concentration range (0‑50 µg/ml in vitro) of DHA was determined by flow cytometry and MTT assay. The inhibitory effects of DHA on MMP‑13 mRNA and protein expression were confirmed by RT‑qPCR, ELISA and western blotting. Furthermore, findings of an in vivo study showed that DHA can increase the thickness of articular cartilage and decrease MMP‑13 expression in cartilage matrix in a rat AIA model. We also revealed the mechanism by which DHA ameliorates cartilage degeneration from OA. The DHA-mediated inhibition of MMP‑13 expression was partially attributed to the inactivation of the p38 mitogen‑activated protein kinases pathway by suppressing p‑p38 in IL-1β-stimulated SW1353 cells and a rat AIA model. Our findings suggested that DHA is a promising therapeutic agent that may be used for the prevention and treatment of OA. PMID:27082436

  1. Naringin Protects Against Cartilage Destruction in Osteoarthritis Through Repression of NF-κB Signaling Pathway.

    Science.gov (United States)

    Zhao, Yunpeng; Li, Zhong; Wang, Wenhan; Zhang, Hui; Chen, Jianying; Su, Peng; Liu, Long; Li, Weiwei

    2016-02-01

    Naringin was previously reported as a multifunctional agent. Recently, naringin was found to play a protective role in various inflammatory conditions. However, the role of naringin in cartilage degeneration and osteoarthritis (OA) progression is still unknown. TNF-α is reported to play a detrimental role in OA. Herein, primary murine chondrocytes were isolated and cultured with stimulation of TNF-α, in the presence or absence of naringin treatment. As a result, naringin attenuated TNF-α-mediated inflammation and catabolism in chondrocyte. Besides, surgically induced OA mice models were established. Cartilage degradation and OA severity were evaluated using Safranin-O staining, immunohistochemistry, and ELISA. Moreover, levels of inflammatory cytokines and catabolic markers in OA were analyzed. Oral administration of naringin alleviated degradation of cartilage matrix and protected against OA development in the surgically induced OA models. Furthermore, the protective function of naringin in cartilage and chondrocyte was possibly due to suppression of NF-κB signaling pathway. Collectively, this study presents naringin as a potential target for the treatment of joint degenerative diseases, including OA. PMID:26438631

  2. Development of large engineered cartilage constructs from a small population of cells.

    Science.gov (United States)

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. PMID:23197468

  3. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. PMID:26970769

  4. Cartilage restoration technique of the hip.

    Science.gov (United States)

    Mardones, Rodrigo; Larrain, Catalina

    2016-04-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear concentrate in a platelet-rich plasma matrix and expanded mesenchymal stem cells seeded in a collagen membrane. This review will discuss the bases, techniques and preliminary results obtained with the use of stem cells for the treatment of hip cartilage lesions. PMID:27026816

  5. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  6. Remobilization causes site-specific cyst formation in immobilization-induced knee cartilage degeneration in an immobilized rat model.

    Science.gov (United States)

    Nagai, Momoko; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2016-06-01

    An understanding of the articular cartilage degenerative process is necessary for the prevention and treatment of joint disease. The present study aimed to examine how long-term immobilization-induced cartilage degeneration is aggravated by remobilization. Sixty 8-week-old male Wistar rats were used in this study. The unilateral knee joint was immobilized using an external fixator for 8 weeks. The rats were killed at 0 and 3 days, and at 1, 2, 4 and 8 weeks after removing the fixator. After the rats were killed, the maximum knee extension angles were measured. Histological sections at the medial mid-condylar region (non-contact, transitional and contact regions of the femur and tibia) were prepared and scored. The cartilage thickness and number of chondrocytes were measured, and CD44 and Col2-3/4c expression levels were assessed immunohistochemically. The histological assessment revealed progressive aggravation of cartilage degeneration in the transitional region, with a decreased number of chondrocytes and CD44-positive chondrocytes as well as poor scoring over time, particularly in the tibia. Cyst formation was confirmed in the transitional region of the tibia at 8 weeks post-remobilization. The cartilage thickness in the transitional region was thicker than that in the contact region, particularly in the tibia. Col2-3/4c expression was observed in the non-contact and transitional regions, and the knee extension angle was recovered. In conclusion, immobilization-induced cartilage degeneration was aggravated by remobilization over time in the transitional region, followed by observations of a decreased number of chondrocytes and morphological disparity between different cartilage regions. PMID:26989984

  7. Time-Dependent Nanomechanics of Cartilage

    OpenAIRE

    Han, Lin; Frank, Eliot H.; Greene, Jacqueline J.; Lee, Hsu-Yi; Hung, Han-Hwa K.; Grodzinsky, Alan J.; Ortiz, Christine

    2011-01-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus Eind, force-relaxation time constant τ, magnitude of dynamic complex modulus |E∗|, phase angle δ between force and indentation depth, storage modulus E′, and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E∗| increased significant...

  8. Cartilage restoration technique of the hip

    OpenAIRE

    Mardones, Rodrigo; Larrain, Catalina

    2015-01-01

    Hip cartilage lesions represent a diagnostic challenge and can be an elusive source of pain. Treatment may present difficulties due to localization and spherical form of the joint and is most commonly limited to excision, debridement, thermal chondroplasty and microfractures. This chapter will focus in new technologies to enhance the standard techniques. These new technologies are based in stem cells therapies; as intra-articular injections of expanded mesenchymal stem cells, mononuclear conc...

  9. Oxygen, nitric oxide and articular cartilage

    OpenAIRE

    Fermor, B.; Christensen, S. E.; I Youn; J M Cernanec; C M Davies; Weinberg, J. B.

    2007-01-01

    Molecular oxygen is required for the production of nitric oxide (NO), a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O...

  10. Articular cartilage collagen: an irreplaceable framework?

    OpenAIRE

    Eyre, D. R.; Weis, M A; J-J Wu

    2006-01-01

    Adult articular cartilage by dry weight is two-thirds collagen. The collagen has a unique molecular phenotype. The nascent type II collagen fibril is a heteropolymer, with collagen IX molecules covalently linked to the surface and collagen XI forming the filamentous template of the fibril as a whole. The functions of collagens IX and XI in the heteropolymer are far from clear but, evidently, they are critically important since mutations in COLIX and COLXI genes can result in chondrodysplasia ...

  11. Cartilage Tissue Engineering: What Have We Learned in Practice?

    Science.gov (United States)

    Doran, Pauline M

    2015-01-01

    Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort. PMID:26445827

  12. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  13. Time-dependent nanomechanics of cartilage.

    Science.gov (United States)

    Han, Lin; Frank, Eliot H; Greene, Jacqueline J; Lee, Hsu-Yi; Hung, Han-Hwa K; Grodzinsky, Alan J; Ortiz, Christine

    2011-04-01

    In this study, atomic force microscopy-based dynamic oscillatory and force-relaxation indentation was employed to quantify the time-dependent nanomechanics of native (untreated) and proteoglycan (PG)-depleted cartilage disks, including indentation modulus E(ind), force-relaxation time constant τ, magnitude of dynamic complex modulus |E(∗)|, phase angle δ between force and indentation depth, storage modulus E', and loss modulus E″. At ∼2 nm dynamic deformation amplitude, |E(∗)| increased significantly with frequency from 0.22 ± 0.02 MPa (1 Hz) to 0.77 ± 0.10 MPa (316 Hz), accompanied by an increase in δ (energy dissipation). At this length scale, the energy dissipation mechanisms were deconvoluted: the dynamic frequency dependence was primarily governed by the fluid-flow-induced poroelasticity, whereas the long-time force relaxation reflected flow-independent viscoelasticity. After PG depletion, the change in the frequency response of |E(∗)| and δ was consistent with an increase in cartilage local hydraulic permeability. Although untreated disks showed only slight dynamic amplitude-dependent behavior, PG-depleted disks showed great amplitude-enhanced energy dissipation, possibly due to additional viscoelastic mechanisms. Hence, in addition to functioning as a primary determinant of cartilage compressive stiffness and hydraulic permeability, the presence of aggrecan minimized the amplitude dependence of |E(∗)| at nanometer-scale deformation. PMID:21463599

  14. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  15. [Great Scandinavian Jahre Prize 1993. Studies of cartilage and bone yields new knowledge of tissue homeostasis].

    Science.gov (United States)

    Heinegård, D

    1994-01-01

    Increased knowledge of connective tissue, such as cartilage and bone, has improved our understanding of tissue replenishment under normal and pathological conditions. Although developments in this field are still at an early stage, it is already possible to discern avenues for future development leading to new diagnostic and therapeutic methods in connective tissue diseases. In this article, Dick Heinegård, the second recipient of the Jahre Prize for 1993, gives an account of his research. PMID:8121785

  16. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    Science.gov (United States)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  17. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings

    International Nuclear Information System (INIS)

    Recent advances in hemophilia prophylaxis have raised the need for accurate noninvasive methods for assessment of early cartilage damage in maturing joints to guide initiation of prophylaxis. Such methods can either be semiquantitative or quantitative. Whereas semiquantitative scores are less time-consuming to be performed than quantitative methods, they are prone to subjective interpretation. To test the feasibility of a manual segmentation and a quantitative methodology for cross-sectional evaluation of articular cartilage status in growing ankles of children with blood-induced arthritis, as compared with a semiquantitative scoring system and clinical-radiographic constructs. Twelve boys, 11 with hemophilia (A, n = 9; B, n = 2) and 1 with von Willebrand disease (median age: 13; range: 6-17), underwent physical examination and MRI at 1.5 T. Two radiologists semiquantitatively scored the MRIs for cartilage pathology (surface erosions, cartilage loss) with blinding to clinical information. An experienced operator applied a validated quantitative 3-D MRI method to determine the percentage area of denuded bone (dAB) and the cartilage thickness (ThCtAB) in the joints' MRIs. Quantitative and semiquantitative MRI methods and clinical-radiographic constructs (Hemophilia Joint Health Score [HJHS], Pettersson radiograph scores) were compared. Moderate correlations were noted between erosions and dAB (r = 0.62, P = 0.03) in the talus but not in the distal tibia (P > 0.05). Whereas substantial to high correlations (r range: 0.70-0.94, P < 0.05) were observed between erosions, cartilage loss, HJHS and Pettersson scores both at the distal tibia and talus levels, moderate/borderline substantial (r range: 0.55-0.61, P < 0.05) correlations were noted between dAB/ThCtAB and clinical-radiographic constructs. Whereas the semiquantitative method of assessing cartilage status is closely associated with clinical-radiographic scores in cross-sectional studies of blood-induced arthropathy

  18. Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect

    Institute of Scientific and Technical Information of China (English)

    Si-yuan LI; Jun-ling CAO; Zhong-li SHI; Jing-hong CHEN; Zeng-tie ZHANG; Clare E. HUGHES; Bruce CATERSON

    2008-01-01

    Objective: To identify the relationship between T-2 toxin and Kashin-Beck disease (KBD), the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro. Methods: Chondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA), soluble CD44 (sCD44), IL-1β and TNF-α levels in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was determined by flow cytometry (FCM). CD44, hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13, 3-B-3(-) and 2-B-6 epitopes in the cartilage reconstructed in vitro. Results: T-2 toxin inhibited CD44, HAS-2, and aggrecan mRNA expressions, but promoted aggrecanase-2 mRNA expression. Meanwhile, CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition,ELISA results indicated that there were higher sCD44, IL-1β and TNF-α levels in T-2 toxin group. Similarly, higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore, using monoclonal antibodies BC-13, 3-B-3 and 2-B-6, strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin, whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above. Conclusion: T-2 toxin could inhibit aggrecan synthesis, promote aggrecanases and pro-inflammatory cytokines production, and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage, inducing aggrecan loss in the end, which may be the initiation of the cartilage

  19. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Zhang, Ningning [Children' s Hospital, Department of Radiology, Beijing (China); Lundin, Bjorn [Skaane University Hospital and Lund University, University Hospital of Lund, Center for Medical Imaging and Physiology, Lund (Sweden); Hilliard, Pamela [The Hospital for Sick Children, Department of Rehabilitation Services, Toronto, ON (Canada); Man, Carina; Weiss, Ruth; Detzler, Garry [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Blanchette, Victor [The Hospital for Sick Children, Department of Hematology, Toronto, ON (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto, ON (Canada); Eckstein, Felix [Paracelsus Medical University, Institute of Anatomy and Musculoskeletal Research, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Sussman, Marshall S. [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); University Health Network, Department of Medical Imaging, Toronto, ON (Canada)

    2014-05-15

    Recent advances in hemophilia prophylaxis have raised the need for accurate noninvasive methods for assessment of early cartilage damage in maturing joints to guide initiation of prophylaxis. Such methods can either be semiquantitative or quantitative. Whereas semiquantitative scores are less time-consuming to be performed than quantitative methods, they are prone to subjective interpretation. To test the feasibility of a manual segmentation and a quantitative methodology for cross-sectional evaluation of articular cartilage status in growing ankles of children with blood-induced arthritis, as compared with a semiquantitative scoring system and clinical-radiographic constructs. Twelve boys, 11 with hemophilia (A, n = 9; B, n = 2) and 1 with von Willebrand disease (median age: 13; range: 6-17), underwent physical examination and MRI at 1.5 T. Two radiologists semiquantitatively scored the MRIs for cartilage pathology (surface erosions, cartilage loss) with blinding to clinical information. An experienced operator applied a validated quantitative 3-D MRI method to determine the percentage area of denuded bone (dAB) and the cartilage thickness (ThCtAB) in the joints' MRIs. Quantitative and semiquantitative MRI methods and clinical-radiographic constructs (Hemophilia Joint Health Score [HJHS], Pettersson radiograph scores) were compared. Moderate correlations were noted between erosions and dAB (r = 0.62, P = 0.03) in the talus but not in the distal tibia (P > 0.05). Whereas substantial to high correlations (r range: 0.70-0.94, P < 0.05) were observed between erosions, cartilage loss, HJHS and Pettersson scores both at the distal tibia and talus levels, moderate/borderline substantial (r range: 0.55-0.61, P < 0.05) correlations were noted between dAB/ThCtAB and clinical-radiographic constructs. Whereas the semiquantitative method of assessing cartilage status is closely associated with clinical-radiographic scores in cross-sectional studies of blood

  20. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging.

    Science.gov (United States)

    Hyun, Hoon; Owens, Eric A; Wada, Hideyuki; Levitz, Andrew; Park, GwangLi; Park, Min Ho; Frangioni, John V; Henary, Maged; Choi, Hak Soo

    2015-07-20

    A novel class of near-infrared fluorescent contrast agents was developed. These agents target cartilage with high specificity and this property is inherent to the chemical structure of the fluorophore. After a single low-dose intravenous injection and a clearance time of approximately 4 h, these agents bind to all three major types of cartilage (hyaline, elastic, and fibrocartilage) and perform equally well across species. Analysis of the chemical structure similarities revealed a potential pharmacophore for cartilage targeting. Our results lay the foundation for future improvements in tissue engineering, joint surgery, and cartilage-specific drug development. PMID:26095685

  1. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  2. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  3. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  4. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Texas Health Science Center at San Antonio, Department of Radiology, San Antonio, TX (United States); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Hayashi, Daichi [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Yale University School of Medicine, Department of Radiology, Bridgeport Hospital, Bridgeport, CT (United States); Crema, Michel D. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Hospital do Coracao and Teleimagem, Department of Radiology, Sao Paulo (Brazil); Felson, David T. [Boston University School of Medicine, Clinical Epidemiology Research and Training Unit, Boston, MA (United States); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Boston Medical Center, Boston, MA (United States)

    2014-11-07

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  5. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    Science.gov (United States)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  6. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    International Nuclear Information System (INIS)

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  7. Reduced articular cartilage thickness in joints without a history of active arthritis in children with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Pradsgaard, Dan Østergaard; Spannow, Anne Helene; Heuck, Carsten;

    joint cartilage thickness (Cth) between healthy children and JIA children measured by US (1). But are there any differences in Cth measured by US between healthy children and joints without a history of activity among JIA children’s. Aim: To investigate a possible effect of the inflammatory process on......, and 189 2nd PIP joints. Cartilage thickness was measured perpendicular to the bone surface. History of joint activity was found by review of medical records. An age-, and sex-matched healthy cohort investigated in a previous study served as a control group (2), age, 10.9 (6-16), girls/boys (177...... joints never directly affected by arthritic activity during the history of the child’s disease course. Furthermore we wanted to compare joint cartilage thickness within the JIA group in joints with or without a history of activity. Methods: We included 95 Danish JIA children. Age, mean (range) 10...

  8. Disease: H00758 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00758 Progressive pseudorheumatoid dysplasia (PPRD); Spondyloepiphyseal dysplasia ... dysplasia in which the spine is affected as in spondyloepiphyseal dysplasia tarda. There is degeneration of... articular cartilage that leads to stiffness and swelling of joints. The disease

  9. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  11. Computational model for the analysis of cartilage and cartilage tissue constructs.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Davidson, John B; Grodzinsky, Alan J

    2016-04-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23784936

  12. Computational model for the analysis of cartilage and cartilage tissue constructs

    Science.gov (United States)

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  13. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid

    Science.gov (United States)

    Bonnevie, Edward D.; Galesso, Devis; Secchieri, Cynthia; Cohen, Itai; Bonassar, Lawrence J.

    2015-01-01

    When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants. PMID:26599797

  14. Phosphorylation of proteoglycans from human articular cartilage

    International Nuclear Information System (INIS)

    Previous studies have shown that sulfated proteoglycans from human articular and epiphyseal cartilage were phosphorylated. These macromolecules contribute to the stiffness and resiliency of this tissue. We demonstrate here that the phosphate moieties are an integral part of proteoglycan subunits. Specifically, evidence is presented which indicates that proteoglycan monomers contain 3 to 4 phosphate moieties per core protein and that these appear to exist as phosphoserine residues. Furthermore, the data illustrate that human articular cartilage also contains more than 20 different phosphoproteins, some of which are closely associated with proteoglycan aggregates. Proteoglycan subunits were purified from extracts of articular cartilage or from media fractions which had been used to label tissue specimens with 32P-orthophosphate. Chemical and radiographic analyses revealed that the phosphate concentration with respect to sulfate and uronic acid content remained constant when purified proteoglycan monomers were subjected to equilibrium ultracentrifugation and size-exclusion chromatography. That the phosphate moieties were bound to proteoglycan monomers via monoester linkages was indicated by the release of 32P-orthophosphate from proteoglycan subunits incubated under mild alkaline conditions or reacted with acid or alkaline phosphatases. Identification of serine residues in the core protein as the sites of phosphorylation was made by autoradiography of thin layer plates on which hydrolyzed samples of purified 32P-proteoglycan subunits had been subjected to 2-dimensional electrophoresis/chromatography. Quantification of 3 to 4 phosphate moieties per core protein of 200,000 daltons was made by chemical analysis of inorganic phosphate released from proteoglycans by acid hydrolysis

  15. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  16. MORPHOMETRIC STUDY OF THYROID CARTILAGES IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Mohini M.Joshi

    2015-06-01

    Full Text Available Background: Morphometrical evaluation of the larynx has always been interesting for both morphologists and the physicians. A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilages is important Objective: Objective of the present study was to collect exact and reliable morphometric data of thyroid cartilage in adult human larynx of regional population. Methods: The totals of 50 thyroid cartilage specimens were studied. The cartilages were preserved in 5% formalin. The measurements were taken with the help of Digital Vernier Caliper. The cartilages were weighed on Single pan electronic balance. For each of the parameters, the mean, standard deviation (S.D. and range was calculated. Results: Mean depth of superior thyroid notch was 9.7± 3.36 mm. Asymmetry between the length of superior horn of thyroid cartilages in left and right sides can be seen, but difference was not statistically significant (p>0.05. It is observed that inner thyroid angle varies from 55 to 1040 and outer thyroid angle varies from 53 to 990. In present study mean weight of thyroid cartilage was 6.70±1.55 grams. Conclusions: A fair amount of intersubject variability in the dimensions was observed. Bilateral asymmetry, though present in majority of specimens, was insignificant. Various dimensions of thyroid cartilages are smaller as compared to the western population.

  17. Crosstalk between cartilage and bone: when bone cytokines matter.

    Science.gov (United States)

    Funck-Brentano, Thomas; Cohen-Solal, Martine

    2011-04-01

    The cartilage damage which characterizes osteoarthritis is often accompanied by bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate the physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation, which suggests their role in the dialogue between both cells. Accumulative in vivo evidence shows that increased bone resorption occurs at an early stage in the development of osteoarthritis and that blocking bone-resorbing cytokines prevents cartilage damage, confirming the role of bone factors in the crosstalk of both tissues. Recently, molecules of the Wnt pathway have emerged as key regulators of bone and cartilage. Activation of Wnt/βcatenin induces an imbalance in cartilage homeostasis, and agonists/antagonists of Wnt are potential candidates for this interaction. This review will summarize what is known about the contribution of bone cytokines to the physiological remodeling of cartilage and in the pathophysiology of osteoarthritis. PMID:21596615

  18. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  19. THIONIN STAINING OF PARAFFIN AND PLASTIC EMBEDDED SECTIONS OF CARTILAGE

    NARCIS (Netherlands)

    BULSTRA, SK; DRUKKER, J; KUIJER, R; BUURMAN, WA; VANDERLINDEN, AJ

    1993-01-01

    The usefulness of thionin for staining cartilage sections embedded in glycol methacrylate (GMA) and the effect of decalcification on cartilage sections embedded in paraffin and GMA were assessed. Short decalcification periods using 5% formic acid or 10% EDTA did not influence the staining properties

  20. Poroelasticity of Cartilage at the Nanoscale

    OpenAIRE

    Nia, Hadi Tavakoli; Han, Lin; Li, Yang; Ortiz, Christine; Grodzinsky, Alan

    2011-01-01

    Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ∼15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ∼ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E∗|, and phase angle, ϕ, between the force and tip displacement sinusoids, were me...

  1. Cartilage Aggrecan Can Undergo Self-Adhesion

    OpenAIRE

    Han, Lin; Dean, Delphine; Daher, Laura A.; Grodzinsky, Alan J.; Ortiz, Christine

    2008-01-01

    Here it is reported that aggrecan, the highly negatively charged macromolecule in the cartilage extracellular matrix, undergoes Ca2+-mediated self-adhesion after static compression even in the presence of strong electrostatic repulsion in physiological-like solution conditions. Aggrecan was chemically end-attached onto gold-coated planar silicon substrates and gold-coated microspherical atomic force microscope probe tips (end radius R ≈ 2.5 μm) at a density (∼40 mg/mL) that simulates physiolo...

  2. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    cartilage engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes......Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...

  3. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Science.gov (United States)

    Yamada, Jun; Abula, Kahaer; Inoue, Makiko; Sekiya, Ichiro; Muneta, Takeshi

    2014-01-01

    Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration. PMID:25574420

  4. Simultaneous Magnetic Resonance Imaging and Consolidation Measurement of Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Robert Mark Wellard

    2014-05-01

    Full Text Available Magnetic resonance imaging (MRI offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP. MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.

  5. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  6. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice

    Science.gov (United States)

    Chen, Yupeng; Cossman, Jack; Jayasuriya, Chathuraka T.; Li, Xin; Guan, Yingjie; Fonseca, Vera; Yang, Kun; Charbonneau, Cherie; Yu, Hongchuan; Kanbe, Katsuaki; Ma, Peter; Darling, Eric; Chen, Qian

    2016-01-01

    Matrilin-1 (Matn1), a cartilage-specific peri-cellular and extracellular matrix (ECM) protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/-) mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+) mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment. PMID:27270603

  7. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    Science.gov (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  8. Optical methods for diagnostics and feedback control in laser-induced regeneration of spine disc and joint cartilages

    Science.gov (United States)

    Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir

    2011-03-01

    In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.

  9. Abnormal cartilage from the mandibular condyle of stumpy (stm) mutant mice.

    OpenAIRE

    Johnson, D.R.

    1983-01-01

    The mammalian mandibular condyle is composed of secondary cartilage and may thus be susceptible to genes causing achondroplasia and which result in abnormal++ primary cartilage formation. This paper describes the secondary cartilage in the mandible of the stumpy achondroplastic mutation in the mouse: both primary and secondary cartilage are affected by the gene.

  10. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  11. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNF{alpha} inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick;

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... growth factor (VEGF)), cartilage (C-terminal crosslinking telopeptide of type II collagen (CTX-II), matrix metalloproteinase-3 (MMP-3), total aggrecan, cartilage oligomeric matrix protein) and bone (C-terminal crosslinking telopeptide of type I collagen, osteocalcin) turnover in 60 patients with axial...

  12. ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFα inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Garnero, Patrick;

    2011-01-01

    To investigate the relation between ankylosing spondylitis disease activity score (ASDAS), Bath ankylosing spondylitis disease activity index (BASDAI) and treatment response and biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), YKL-40), angiogenesis (vascular endothelial...... growth factor (VEGF)), cartilage (C-terminal crosslinking telopeptide of type II collagen (CTX-II), matrix metalloproteinase-3 (MMP-3), total aggrecan, cartilage oligomeric matrix protein) and bone (C-terminal crosslinking telopeptide of type I collagen, osteocalcin) turnover in 60 patients with axial...

  13. The identification of matrix Gla protein in cartilage.

    Science.gov (United States)

    Hale, J E; Fraser, J D; Price, P A

    1988-04-25

    The vitamin K-dependent bone protein matrix gamma-carboxyglutamic acid (Gla) protein (MGP) has been identified by radioimmunoassay in the guanidine extract of rat cartilage. MGP was present in all cartilages tested at levels comparable to the MGP level in bone. Western blot analysis indicated that the molecular weight of cartilage MGP is the same as bone MGP, and Northern blot analysis revealed that MGP mRNA from cartilage is the same size as the MGP mRNA from bone. The structurally related vitamin K-dependent protein bone Gla protein could not be detected in cartilage by radioimmunoassay or by Northern blot analysis. The discovery that MGP is synthesized by growth plate cartilage could provide an explanation for the excessive growth plate mineralization disorder seen in rats treated with the vitamin K antagonist warfarin and the punctate mineralization of the growth plate seen in infants whose mothers received warfarin in the first trimester of pregnancy (the fetal warfarin syndrome). Both disorders appear to be caused by the inactivation of a vitamin K-dependent mineralization inhibitor in cartilage, an inhibitor which we suggest is MGP. PMID:3258600

  14. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  15. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

    Science.gov (United States)

    Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine

    2015-03-24

    Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue. PMID:25758717

  16. Effects of anti-arthritic drugs on proteoglycan synthesis by equine cartilage.

    Science.gov (United States)

    Frean, S P; Cambridge, H; Lees, P

    2002-08-01

    The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease. PMID:12213118

  17. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  18. Experimental pharmacological investigation of the antiarthrotic effects of the cartilage and bone marrow extract Rumalon

    Energy Technology Data Exchange (ETDEWEB)

    Kalbhen, D.A.

    1981-08-05

    On the basis of animal experiments, the authors have developed a model of arthrosis which is compatible in its radiological, macroscopic, biochemical, and histological aspects with the pathophysiology of human arthrosis and has been tried in the testing of the antiarthrotic properties of pharmaceuticals. Biochemically induced gonarthroses of experimental animals were used for studies of the effects of a cartilage and bone marrow extract (Rumalon) and a cartilage extract and its high-molecular component DAK-16 on the frequency and progression of degenerative joint diseases. As test parameters, measurements of the articular space, X-ray findings, and macroscopic findings were quantitatively evaluated. The animal experiments show that the inhibitive effects of steroidal and nonsteroidal antirheumatics on the synthesis of the cartilage matrix can be prevented or reduced by simultaneous administration of chondroprotective pharmaceuticals; this may be important on the clinical sector. This antagonism between antiphlogistic agents and Rumalon, which has been observed also in fibroblast cultures and wound healing experiments, is of interest especially for the treatment of activated arthroses.

  19. Experimental pharmacological investigation of the antiarthrotic effects of the cartilage and bone marrow extract Rumalon

    International Nuclear Information System (INIS)

    On the basis of animal experiments, the authors have developed a model of arthrosis which is compatible in its radiological, macroscopic, biochemical, and histological aspects with the pathophysiology of human arthrosis and has been tried in the testing of the antiarthrotic properties of pharmaceuticals. Biochemically induced gonarthroses of experimental animals were used for studies of the effects of a cartilage and bone marrow extract (Rumalon) and a cartilage extract and its high-molecular component DAK-16 on the frequency and progression of degenerative joint diseases. As test parameters, measurements of the articular space, X-ray findings, and macroscopic findings were quantitatively evaluated. The animal experiments show that the inhibitive effects of steroidal and nonsteroidal antirheumatics on the synthesis of the cartilage matrix can be prevented or reduced by simultaneous administration of chondroprotective pharmaceuticals; this may be important on the clinical sector. This antagonism between antiphlogistic agents and Rumalon, which has been observed also in fibroblast cultures and wound healing experiments, is of interest especially for the treatment of activated arthroses. (orig./MG)

  20. Modeling the Insulin-Like Growth Factor System in Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Lihai Zhang

    Full Text Available IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i what are the key factors influencing IGF-IR complex formation, and (ii how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.

  1. Modeling the Insulin-Like Growth Factor System in Articular Cartilage

    Science.gov (United States)

    Zhang, Lihai; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2013-01-01

    IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling. PMID:23840540

  2. A controlled double-duration inducible gene expression system for cartilage tissue engineering

    Science.gov (United States)

    Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong

    2016-01-01

    Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification. PMID:27222430

  3. A controlled double-duration inducible gene expression system for cartilage tissue engineering.

    Science.gov (United States)

    Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong

    2016-01-01

    Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification. PMID:27222430

  4. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke;

    2015-01-01

    BACKGROUND: A gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies. Ideally, the animal model should allow for testing of clinically relevant...... treatments and the biological response should be reproducible and comparable to humans. This allows for a reliable translation of results to clinical studies.This study aimed at verifying the Göttingen minipig as a pre-clinical model for articular cartilage repair by testing existing clinical cartilage...

  5. Premature Calcifications of Costal Cartilages: A New Perspective Premature Calcifications of Costal Cartilages: A New Perspective

    International Nuclear Information System (INIS)

    Calcifications of the costal cartilages occur, as a rule, not until the age of 30 years. The knowledge of the clinical significance of early and extensive calcifications is still incomplete. Materials and Methods. A search was made to find patients below the age of 30 years who showed distinct calcifications of their lower costal cartilages by viewing 360 random samples of intravenous pyelograms and abdominal plain films. The histories, and clinical and laboratory findings of these patients were analyzed. Results. Nineteen patients fulfilled the criteria of premature calcifications of costal cartilages (CCCs). The patients had in common that they were frequently referred to a hospital and were treated by several medical disciplines. Nevertheless many complaints of the patients remained unsolved. Premature CCCs were often associated with rare endocrine disorders, inborn errors of metabolism, and abnormal hematologic findings. Among the metabolic disorders there were 2 proven porphyrias and 7 patients with a suspected porphyria but with inconclusive laboratory findings. Conclusion. Premature CCCs are unlikely to be a normal variant in skeletal radiology. The findings in this small group of patients call for more intensive studies, especially in regard to the putative role of a porphyria

  6. Butterfly cartilage graft versus fat graft myringoplasty

    Directory of Open Access Journals (Sweden)

    Sonika Kanotra

    2016-01-01

    Full Text Available Aim: The aim of the study was to compare the graft take up rates of two minimally invasive techniques of butterfly cartilage graft (BCG and fat graft myringoplasty (FGM. Materials and Methods: Two groups of 30 patients each with small dry central perforations of the tympanic membrane (T.M. were randomly subjected to either of the two techniques of myringoplasty. Statistical Analysis Used: The results were compared using the Chi-square test. A value of <0.05 was taken as statistically significant. Results: The graft take up rate was 93.3% with BCG and 83.3% with fat graft. Conclusions: The BCG scores over FGM in small perforations of the T.M.

  7. Polylactide fibrous scaffolds for cartilage implant engineering

    Czech Academy of Sciences Publication Activity Database

    Mulinková, Katarína; Machová, Luďka; Lesný, P.; Kubies, Dana; Rypáček, František

    Prague: Czech Society for New Materials and Technologies, 2005. Poster Session II. [European Congress on Advanced Materials and Processes. 5.9.2005-8.9.2005, Prague] R&D Projects: GA MZd ND7448 Keywords : biodegradable polymers * polylactide fibres * cartilage engineering Subject RIV: FJ - Surgery incl. Transplants http://webdb.dgm.de/dgm_lit/prg/FMPro?-db=w%5fprogram&- format =prog%5fpaper%5fresults.htm&-lay=standard&TB=%3d%3d688&tgb%5fsymposium%5fund%5fnr=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-max=20&-skip=20&-token.0=688&-token.1=B14%20Engineering%20and%20Design%20of%20Biomedical%20Materials&-find=

  8. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  9. Cartilage (Bovine and Shark) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Expert-reviewed information summary about the use of bovine and shark cartilage as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  10. Now approaches to the treatment of articular cartilage lesions

    Directory of Open Access Journals (Sweden)

    M. Coviello

    2011-01-01

    Full Text Available Various approaches to the treatment of cartilage defects have been proposed in the literature; reparative and regenerative methods and, more recently, the Maioregen technique are currently available.

  11. Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse.

    Science.gov (United States)

    Dasa, Osama; Siddiqui, Nauman; Ruzieh, Mohammed; Javaid, Toseef

    2016-01-01

    Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149

  12. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  13. The sulphation of chondroitin sulphate in embryonic chicken cartilage

    Science.gov (United States)

    Robinson, H. C.

    1969-01-01

    1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [35S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1·5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3′-phosphate 5′-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed. PMID:5807213

  14. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  15. Starch-modified magnetite nanoparticles for impregnation into cartilage

    International Nuclear Information System (INIS)

    The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases

  16. Articular cartilage repair and the evolving role of regenerative medicine

    Directory of Open Access Journals (Sweden)

    Pieter K Bos

    2010-10-01

    Full Text Available Pieter K Bos1, Marloes L van Melle1, Gerjo JVM van Osch1,21Department of Orthopaedic Surgery, Erasmus MC, Rotterdam, the Netherlands; 2Department of Otorhinolaryngology, Erasmus MC, Rotterdam, the NetherlandsAbstract: Among the growing applications of regenerative medicine, clinical articular cartilage repair has now been used for 2 decades and forms a successful example of translational medicine. Cartilage is characterized by a limited intrinsic repair capacity following injury. Articular cartilage defects cause symptoms, are not spontaneously repaired, and are generally believed to result in early osteoarthritis. Marrow stimulation techniques, osteochondral transplantation, and cell-based therapies, such as autologous chondrocyte implantation (ACI and use of mesenchymal stem cells (MSCs, are used for tissue regeneration, symptom relief, and prevention of further joint degeneration. The exact incidence of cartilage defects and the natural outcome of joints with these lesions are unclear. Currently available cartilage repair techniques are designed for defect treatment in otherwise healthy joints and limbs, mostly in young adults. The natural history studies presented in this review estimated that the prevalence of cartilage lesions in this patient group ranges from 5% to 11%. The background and results from currently available randomized clinical trials of the three mostly used cartilage repair techniques are outlined in this review. Osteochondral transplantation, marrow stimulation, and ACI show improvement of symptoms with an advantage for cell-based techniques, but only a suggestion that risk for joint degeneration can be reduced. MSCs, characterized by their good proliferative capacity and the potential to differentiate into different mesenchymal lineages, form an attractive alternative cell source for cartilage regeneration. Moreover, MSCs provide a regenerative microenvironment by the secretion of bioactive factors. This trophic activity

  17. Post-traumatic glenohumeral cartilage lesions: a systematic review

    Directory of Open Access Journals (Sweden)

    Stussi Edgar

    2008-07-01

    Full Text Available Abstract Background Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. Methods PubMed (MEDLINE, ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1 acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2 chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. Results The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. Conclusion The great majority of glenohumeral cartilage

  18. Comparative digital cartilage histology for human and common osteoarthritis models

    OpenAIRE

    Pedersen DR; Goetz JE; Kurriger GL; Martin JA

    2013-01-01

    Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA) animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage healt...

  19. Nanomechanical phenotype of chondroadherin-null murine articular cartilage.

    Science.gov (United States)

    Batista, Michael A; Nia, Hadi T; Önnerfjord, Patrik; Cox, Karen A; Ortiz, Christine; Grodzinsky, Alan J; Heinegård, Dick; Han, Lin

    2014-09-01

    Chondroadherin (CHAD), a class IV small leucine rich proteoglycan/protein (SLRP), was hypothesized to play important roles in regulating chondrocyte signaling and cartilage homeostasis. However, its roles in cartilage development and function are not well understood, and no major osteoarthritis-like phenotype was found in the murine model with CHAD genetically deleted (CHAD(-/-)). In this study, we used atomic force microscopy (AFM)-based nanoindentation to quantify the effects of CHAD deletion on changes in the biomechanical function of murine cartilage. In comparison to wild-type (WT) mice, CHAD-deletion resulted in a significant ≈70-80% reduction in the indentation modulus, Eind, of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old animals. This mechanical phenotype correlates well with observed increases in the heterogeneity collagen fibril diameters in the surface zone. The results suggest that CHAD mainly plays a major role in regulating the formation of the collagen fibrillar network during the early skeletal development. In contrast, CHAD-deletion had no appreciable effects on the indentation mechanics of middle/deep zone cartilage, likely due to the dominating role of aggrecan in the middle/deep zone. The presence of significant rate dependence of the indentation stiffness in both WT and CHAD(-/-) knee cartilage suggested the importance of both fluid flow induced poroelasticity and intrinsic viscoelasticity in murine cartilage biomechanical properties. Furthermore, the marked differences in the nanomechanical behavior of WT versus CHAD(-/-) cartilage contrasted sharply with the relative absence of overt differences in histological appearance. These observations highlight the sensitivity of nanomechanical tools in evaluating structural and mechanical phenotypes in transgenic mice. PMID:24892719

  20. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage.

    Science.gov (United States)

    Macpherson, J V; O'Hare, D; Unwin, P R; Winlove, C P

    1997-11-01

    The scanning electrochemical microscope (SECM) is a scanned probe microscope that uses the response of a mobile ultramicroelectrode (UME) tip to determine the reactivity, topography, and mass transport characteristics of interfaces with high spatial resolution. SECM strategies for measuring the rates of solute diffusion and convection through samples of cartilage, using amperometric UMEs, are outlined. The methods are used to determine the diffusion coefficients of oxygen and ruthenium(III) hexamine [Ru(NH3)6(3+)] in laryngeal cartilage. The diffusion coefficient of oxygen in cartilage is found to be approximately 50% of that in aqueous electrolyte solution, assuming a partition coefficient of unity for oxygen between cartilage and aqueous solution. In contrast, diffusion of Ru(NH3)6(3+) within the cartilage sample cannot be detected on the SECM timescale, suggesting a diffusion coefficient at least two orders of magnitude lower than that in solution, given a measured partition coefficient for Ru(NH3)6(3+) between cartilage and aqueous solution, Kp = [Ru(NH3)6(3+)]cartilage/[RU(NH3)6(3+)]solution = 3.4 +/- 0.1. Rates of Ru(NH3)6(3+) osmotically driven convective transport across cartilage samples are imaged at high spatial resolution by monitoring the current response of a scanning UME, with an osmotic pressure of approximately 0.75 atm across the slice. A model is outlined that enables the current response to be related to the local flux. By determining the topography of the sample from the current response with no applied osmotic pressure, local transport rates can be correlated with topographical features of the sample surface, at much higher spatial resolution than has previously been achieved. PMID:9370471

  1. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    OpenAIRE

    Finlay, Scott; Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene ter...

  2. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    OpenAIRE

    Grenier, Stephanie; Donnelly, Patrick E; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crossl...

  3. Reducing the morbidity involved in harvesting autogenous rib cartilage.

    Science.gov (United States)

    Siegert, Ralf; Magritz, Ralph

    2009-08-01

    Although the use of autogenous cartilage is the gold standard in auricular reconstruction, its main disadvantage is the morbidity due to harvesting the cartilage. This includes postoperative pain, visible scar, and possibly asymmetry and reduced stability of the thorax. To reduce all of these drawbacks, we describe some modifications that reduce pain to a low tolerable level, hide the scar invisibly in the submammary fold in females, and induce regeneration as well reestablish stability of the rib defect. PMID:19809948

  4. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  5. The Role of Sirtuins in Cartilage Homeostasis and Osteoarthritis.

    Science.gov (United States)

    Dvir-Ginzberg, Mona; Mobasheri, Ali; Kumar, Ashok

    2016-07-01

    The past decade has witnessed many advances in the understanding of sirtuin biology and related regulatory circuits supporting the capacity of these proteins to serve as energy-sensing molecules that contribute to healthspan in various tissues, including articular cartilage. Hence, there has been a significant increase in new investigations that aim to elucidate the mechanisms of sirtuin function and their roles in cartilage biology, skeletal development, and pathologies such as osteoarthritis (OA), rheumatoid arthritis (RA), and intervertebral disc degeneration (IVD). The majority of the work carried out to date has focused on SIRT1, although SIRT6 has more recently become a focus of some investigations. In vivo work with transgenic mice has shown that Sirt1 and Sirt6 are essential for maintaining cartilage homeostasis and that the use of sirtuin-activating molecules such as resveratrol may have beneficial effects on cartilage anabolism. Current thinking is that SIRT1 exerts positive effects on cartilage by encouraging chondrocyte survival, especially under stress conditions, which may provide a mechanism supporting the use of sirtuin small-molecule activators (STACS) for future therapeutic interventions in OA and other degenerative pathologies of joints, especially those that involve articular cartilage. PMID:27289467

  6. In Vitro Engineering of High Modulus Cartilage-Like Constructs.

    Science.gov (United States)

    Finlay, Scott; Seedhom, Bahaa B; Carey, Duane O; Bulpitt, Andy J; Treanor, Darren E; Kirkham, Jennifer

    2016-04-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  7. In Vitro Engineering of High Modulus Cartilage-Like Constructs

    Science.gov (United States)

    Seedhom, Bahaa B.; Carey, Duane O.; Bulpitt, Andy J.; Treanor, Darren E.; Kirkham, Jennifer

    2016-01-01

    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibrocartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long-term repair. This study attempted to create such constructs, in vitro, using tissue engineering principles. Bovine synoviocytes were seeded on nonwoven polyethylene terephthalate fiber scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 h per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13% and 23%. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed, that is, the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted. PMID:26850081

  8. Validity of echographic evaluation of cartilage in gonarthrosis. Preliminary report.

    Science.gov (United States)

    Martino, F; Ettorre, G C; Angelelli, G; Macarini, L; Patella, V; Moretti, B; D'Amore, M; Cantatore, F P

    1993-06-01

    We studied an echographic technique by which precise reproducible measurements of articular cartilage thickness of the knee is possible. Two groups of individuals were studied: a group of 18 patients with gonarthrosis and a control group of 10 normal individuals. The group of 18 patients with gonarthrosis was studied by ultrasound (US) before knee prosthesis surgery. The cartilage thickness was measured within the weight-bearing area. US re-evaluation and histological measurements were made on the pathological specimen following the operation. Results of pre- and post-operative US data were compared with histological data. A good correlation between these measurements was found [P(t) > 10%]. In order to have comparative reference values of the articular cartilage within the weight-bearing area of the femoral trochlea a group of 10 control subjects was also studied with US as above. We found that the articular cartilage thickness of the femoral trochlea in the weight-bearing area has a mean of 2.2 +/- 0.3 mm for the lateral condyle and 2.3 +/- 0.2 mm for the medial condyle. The intra-observer and inter-observer difference in measurements was evaluated with Student's t-test. Our data demonstrate that US measurements of articular cartilage thickness of femoral condyles is a sensitive and reproducible technique which permits early diagnosis and management of knee arthropathy as well as quantification of cartilage damage. PMID:8358975

  9. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    Science.gov (United States)

    Zhang, Yongchun; Sheu, Tzong-Jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. © 2015 American Society for Bone and Mineral Research. PMID:26363286

  10. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3 T: A prospective controlled study

    International Nuclear Information System (INIS)

    Purpose: To assess acetabular and femoral hip joint cartilage with three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in patients with degeneration of hip joint cartilage and asymptomatic controls with morphologically normal appearing cartilage. Methods and materials: A total of 40 symptomatic patients (18 males, 22 females; mean age: 32.8 ± 10.2 years, range: 18–57 years) with different hip joint deformities including femoroacetabular impingement (n = 35), residual hip dysplasia (n = 3) and coxa magna due to Legg–Calve–Perthes disease in childhood (n = 2) underwent high-resolution 3D dGEMRIC for the evaluation of acetabular and femoral hip joint cartilage. Thirty-one asymptomatic healthy volunteers (12 males, 19 females; mean age: 24.5 ± 1.8 years, range: 21–29 years) without underlying hip deformities were included as control. MRI was performed at 3 T using a body matrix phased array coil. Region of interest (ROI) analyses for T1Gd assessment was performed in seven regions in the hip joint, including anterior to superior and posterior regions. Results: T1Gd mapping demonstrated the typical pattern of acetabular cartilage consistent with a higher glycosaminoglycan (GAG) content in the main weight-bearing area. T1Gd values were significantly higher in the control group than in the patient group whereas significant differences in T1Gd values corresponding to the amount of cartilage damage were noted both in the patient group and in the control group. Conclusions: Our study demonstrates the potential of high-resolution 3D dGEMRIC at 3 T for separate acetabular and femoral hip joint cartilage assessment in various forms of hip joint deformities.

  11. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  12. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  13. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3 T: A prospective controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph, E-mail: christoph.zilkens@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Kim, Young-Jo, E-mail: young-jo.kim@childrens.harvard.edu [Department of Orthopaedic Surgery, The Children' s Hospital Boston, 300 Longwood Ave., Boston, MA 02115 (United States); Hosalkar, Harish, E-mail: hhosalkar@rchsd.org [Department of Orthopaedic Surgery, Rady Children' s Hospital San Diego, 3030 Childrens Way Ste 410, San Diego, CA 92123 (United States); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Krauspe, Ruediger, E-mail: krauspe@med.uni-duesseldorf.de [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany); Bittersohl, Bernd, E-mail: bbittersohl@partners.org [Univ. Dusseldorf, Medical Faculty, Department of Orthopaedic Surgery, Moorenstrasse 5, D-40225 Dusseldorf (Germany)

    2012-11-15

    Purpose: To assess acetabular and femoral hip joint cartilage with three-dimensional (3D) delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in patients with degeneration of hip joint cartilage and asymptomatic controls with morphologically normal appearing cartilage. Methods and materials: A total of 40 symptomatic patients (18 males, 22 females; mean age: 32.8 {+-} 10.2 years, range: 18-57 years) with different hip joint deformities including femoroacetabular impingement (n = 35), residual hip dysplasia (n = 3) and coxa magna due to Legg-Calve-Perthes disease in childhood (n = 2) underwent high-resolution 3D dGEMRIC for the evaluation of acetabular and femoral hip joint cartilage. Thirty-one asymptomatic healthy volunteers (12 males, 19 females; mean age: 24.5 {+-} 1.8 years, range: 21-29 years) without underlying hip deformities were included as control. MRI was performed at 3 T using a body matrix phased array coil. Region of interest (ROI) analyses for T1{sub Gd} assessment was performed in seven regions in the hip joint, including anterior to superior and posterior regions. Results: T1{sub Gd} mapping demonstrated the typical pattern of acetabular cartilage consistent with a higher glycosaminoglycan (GAG) content in the main weight-bearing area. T1{sub Gd} values were significantly higher in the control group than in the patient group whereas significant differences in T1{sub Gd} values corresponding to the amount of cartilage damage were noted both in the patient group and in the control group. Conclusions: Our study demonstrates the potential of high-resolution 3D dGEMRIC at 3 T for separate acetabular and femoral hip joint cartilage assessment in various forms of hip joint deformities.

  14. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    International Nuclear Information System (INIS)

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured. (author)

  15. Does cartilage volume measurement or radiographic osteoarthritis at baseline independently predict ten-year cartilage volume loss?

    OpenAIRE

    McBride, Andrew; Khan, Hussain Ijaz; Aitken, Dawn; Chou, Louisa; Ding, Changhai; Blizzard, Leigh; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Cicuttini, Flavia; Jones, Graeme

    2016-01-01

    Background The aim of this study was to examine whether cartilage volume as measured by MRI and radiographic osteoarthritis (OA) at baseline predict cartilage volume loss over ten years independent of each other and other structural co-pathologies. Methods 219 participants [mean-age 45(26–61); 57 % female] were studied at baseline and ten years. Approximately half were the adult offspring of subjects who underwent knee replacement for OA and the remainder were randomly selected controls. Join...

  16. RNA Microarray Analysis of Macroscopically Normal Articular Cartilage from Knees Undergoing Partial Medial Meniscectomy: Potential Prediction of the Risk for Developing Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Rai

    Full Text Available (i To provide baseline knowledge of gene expression in macroscopically normal articular cartilage, (ii to test the hypothesis that age, body-mass-index (BMI, and sex are associated with cartilage RNA transcriptome, and (iii to predict individuals at potential risk for developing "pre-osteoarthritis" (OA based on screening of genetic risk-alleles associated with OA and gene transcripts differentially expressed between normal and OA cartilage.Healthy-appearing cartilage was obtained from the medial femoral notch of 12 knees with a meniscus tear undergoing arthroscopic partial meniscectomy. Cartilage had no radiographic, magnetic-resonance-imaging or arthroscopic evidence for degeneration. RNA was subjected to Affymetrix microarrays followed by validation of selected transcripts by microfluidic digital polymerase-chain-reaction. The underlying biological processes were explored computationally. Transcriptome-wide gene expression was probed for association with known OA genetic risk-alleles assembled from published literature and for comparison with gene transcripts differentially expressed between healthy and OA cartilage from other studies.We generated a list of 27,641 gene transcripts in healthy cartilage. Several gene transcripts representing numerous biological processes were correlated with age and BMI and differentially expressed by sex. Based on disease-specific Ingenuity Pathways Analysis, gene transcripts associated with aging were enriched for bone/cartilage disease while the gene expression profile associated with BMI was enriched for growth-plate calcification and OA. When segregated by genetic risk-alleles, two clusters of study patients emerged, one cluster containing transcripts predicted by risk studies. When segregated by OA-associated gene transcripts, three clusters of study patients emerged, one of which is remarkably similar to gene expression pattern in OA.Our study provides a list of gene transcripts in healthy

  17. Variations in radiographic appearance of articular cartilage of knee joints in persons of 35 to 65 years of age

    OpenAIRE

    Himani Pulivarthi; Vasantha Maddikunta; P. Koteswara Rao

    2015-01-01

    Background: Osteoarthritis is a slowly progressive degenerative disease characterized by gradual loss of articular cartilage. Osteoarthritis is not a normal process of ageing processes. Age related changes are distinct from osteoarthritic changes but when coupled with certain precipitating factors like obesity, muscle weakness and neurological dysfunction may play an important role in the causation of osteoarthritis. Osteoarthritis occurrence appears to increase with patient's age in a non-li...

  18. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair

    OpenAIRE

    Snyder, Timothy N; Madhavan, Krishna; Intrator, Miranda; Dregalla, Ryan C.; Park, Daewon

    2014-01-01

    Background Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invas...

  19. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis

    Science.gov (United States)

    Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2015-01-01

    In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400

  20. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  1. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ping-Huei Tsai

    Full Text Available BACKGROUND: There is an emerging interest in using magnetic resonance imaging (MRI T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA. However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX. MATERIALS AND METHODS: Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group. Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. RESULTS: Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001. In the ACLX group (compared to the sham and control groups, T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001, then in the anterior horn of the medial meniscus at 13 weeks (p<0.001, and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043. CONCLUSION: Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.

  2. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  3. An exploration of the ability of tepoxalin to ameliorate the degradation of articular cartilage in a canine in vitro model

    Directory of Open Access Journals (Sweden)

    Clegg Peter D

    2009-07-01

    Full Text Available Abstract Background To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX and lipoxygenase (LOX and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA. Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. Cartilage explants were cultured in media containing the recombinant canine interleukin-1β (IL-1β at 100 ng/ml and recombinant human oncostatin-M (OSM at 50 ng/ml. The effects of tepoxalin and its metabolite were studied at three concentrations (1 × 10-5, 1 × 10-6 and 1 × 10-7 M. Total glycosaminoglycan (GAG and collagen (hydroxyproline release from cartilage explants were used as outcome measures of proteoglycan and collagen depletion respectively. PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity. Results Treatment with IL-1β and OSM significantly upregulated both collagen (p = 0.004 and proteoglycan (p = 0.001 release from the explants. Tepoxalin at 10-5 M and 10-6 M caused a decrease in collagen release from the explants (p = 0.047 and p = 0.075. Drug treatment showed no effect on GAG release. PGE2 concentration in culture media at day 7 was significantly increased by IL-1β and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production. LTB4 concentrations were too low to be quantified. Cytotoxicity assays suggested that neither tepoxalin nor its metabolite had a toxic effect on the cartilage chondrocytes at the concentrations and used in this study. Conclusion This study provides evidence that tepoxalin exerts inhibition of COX and can reduce in vitro collagen loss from canine cartilage explants at a concentration of 10-5 M. We can conclude that, in this model, tepoxalin can partially inhibit the development of cartilage degeneration when it is available locally to

  4. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng on cartilage cytokines and transcription factor NF-κB: a study on induced arthritis in rats

    Directory of Open Access Journals (Sweden)

    Zhao Linhua

    2009-07-01

    Full Text Available Abstract Background Triptolide, an active compound of Radix Tripterygium wilfordii, is immunosuppressive, cartilage protective and anti-inflammatory both in human and animal studies of various inflammatory and autoimmune diseases, including rheumatoid arthritis, but its therapeutic mechanism remains unclear. The aim of this study is to investigate the effects of triptolide on cartilage cytokines in the CIA model. Methods Sprague Dawley rats were immunized with type II collagen and orally administered with triptolide. The arthritic scores and incidence changes of the rats were observed. The expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage was studied with immunohistochemical staining. Results Triptolide, at both high and low doses, significantly lowered the arthritic scores, delayed the onset of arthritis and lowered the arthritis incidence. Triptolide treatment at both high and low doses lowered the expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage in arthritic rats. Conclusion Triptolide lowers the arthritic scores, delays the onset of collagen induced arthritis and reduces the expressions of TNF-α, IL-6, NF-κB and COX-2 in paw cartilage in arthritic rats.

  5. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Science.gov (United States)

    Ng, Wuey Min

    2016-01-01

    Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  6. Nasal reconstruction with articulated irradiated rib cartilage

    International Nuclear Information System (INIS)

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed

  7. Nasal reconstruction with articulated irradiated rib cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, C.S.; Cook, T.A.; Guida, R.A. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-03-01

    Nasal structural reconstruction is a formidable task in cases where there is loss of support to both the nasal dorsum and tip. A multitude of surgical approaches and materials have been used for the correction of the saddle-nose deformity with varying degrees of success. Articulated irradiated rib cartilage inserted through an external rhinoplasty approach was used to reconstruct nasal deformities in 18 patients over a 6-year period. Simultaneous use of a midline forehead flap to reconstruct the overlying soft tissue was required in four cases. Follow-up ranged from 1 to 6 years (mean, 2.8 years). Results were rewarding in most cases with marked improvement in nasal support and airway. Revision and/or replacement secondary to trauma or warping of the graft was required in four cases. None of the patients exhibited infection, extrusion, or noticeable resorption. A description of the surgical technique, review of all the cases, and recommendation for continued use of this graft material are discussed.

  8. Noninvasive determination of knee cartilage deformation during jumping.

    Science.gov (United States)

    Filipovic, Nenad; Vulovic, Radun; Peulic, Aleksandar; Radakovic, Radivoje; Kosanic, Djordje; Ristic, Branko

    2009-01-01

    The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping. Key pointsEven there are many existing mathematical models of force distribution during running or jumping (Liu et al, 1998), to our knowledge there is no interdisciplinary approach where imaging processing, finite element modeling and experimental force plate system are employed.The aim is to explore noninvasive deformation in the knee cartilage during athlete's jumping on the force plate.An original image algorithms and software were developed as well as complex mathematical models using high-performance computational power of finite element modeling together with one-dimensional dynamics model.The initial results showed cartilage deformation in the knee and future research will be focused on the methodology and more precisely determination of the stress and strain distribution in the knee cartilage during training phase of sportsman. PMID:24149600

  9. Demonstration of the therapeutic effect of /sup 35/S labelled L-cystine in articular and intervertebral cartilage as well as in skeletal musculature

    Energy Technology Data Exchange (ETDEWEB)

    Schmiegelow, P.; Puschmann, M.; Giese, U.

    1984-01-16

    Clinical experience has obviously shown a positive effect of application of sulfated amino acids on degenerative cartilage diseases. L-Cystin, presumed to be of therapeutic effect, was autoradiographically localized in articular, columnar and intervertebral cartilage as well as in skeletal musculature. In 10 days old NMRI-mice, we had shown a dose-dependent incorporation of the radioactively labelled /sup 35/S-Cystin in hair follicle. These statistically significant differences had been measured by quantitative autoradiographical microscope photometry. The sulfated amino acids are also proven in nail matrix, nail hyponychium as well as in cartilage and skeletal musculature. Besides a localization of radioactively labelled L-Cystin in tissues, presumed as target organs of a therapeutic effect, there is still lacking an experimental proof of efficacy on cell proliferation and functional metabolism e.g. in arthrosis by suitable animal models.

  10. Demonstration of the therapeutic effect of 35S labelled L-cystine in articular and intervertebral cartilage as well as in skeletal musculature

    International Nuclear Information System (INIS)

    Clinical experience has obviously shown a positive effect of application of sulfated amino acids on degenerative cartilage diseases. L-Cystin, presumed to be of therapeutic effect, was autoradiographically localized in articular, columnar and intervertebral cartilage as well as in skeletal musculature. In 10 days old NMRI-mice, we had shown a dose-dependent incorporation of the radioactively labelled 35S-Cystin in hair follicle. These statistically significant differences had been measured by quantitative autoradiographical microscope photometry. The sulfated amino acids are also proven in nail matrix, nail hyponychium as well as in cartilage and skeletal musculature. Besides a localization of radioactively labelled L-Cystin in tissues, presumed as target organs of a therapeutic effect, there is still lacking an experimental proof of efficacy on cell proliferation and functional metabolism e.g. in arthrosis by suitable animal models. (orig.)

  11. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  12. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    Science.gov (United States)

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. PMID:27195911

  13. Variations in radiographic appearance of articular cartilage of knee joints in persons of 35 to 65 years of age

    Directory of Open Access Journals (Sweden)

    Himani Pulivarthi

    2015-01-01

    Full Text Available Background: Osteoarthritis is a slowly progressive degenerative disease characterized by gradual loss of articular cartilage. Osteoarthritis is not a normal process of ageing processes. Age related changes are distinct from osteoarthritic changes but when coupled with certain precipitating factors like obesity, muscle weakness and neurological dysfunction may play an important role in the causation of osteoarthritis. Osteoarthritis occurrence appears to increase with patient's age in a non-linear fashion. The prevalence of disease increases dramatically after the age of 50 years, likely because of age related alterations in collagen and proteoglycan synthesis coupled with diminished nutrient supply to the cartilage. Methods: In this paper presenting the naked eye assessment of radiographic appearance of articular cartilage of knee joints of 100 persons (both men and women of 35 to 65 years of age with symptoms like pain and stiffness of the joint. Results: Parameters like changes in the joint space width, the presence or absence of osteophytes and subchondral sclerosis and cysts were noted. The correlation between the patient's age, sex, symptoms and radiological appearance were observed. Conclusion: Osteoarthritis has a higher prevalence and more often generalized in women than in men. Before the age of 50 years, the incidence of osteoarthritis is low and men have a slightly higher prevalence than women, but after the age of 50 years, the disease becomes more frequent and women have a much higher prevalence with a female to male ration of about 12:1. The reason for this is sex difference in cartilage volume. [Int J Res Med Sci 2015; 3(1.000: 22-26

  14. Matrilin-3 Role in Cartilage Development and Osteoarthritis.

    Science.gov (United States)

    Muttigi, Manjunatha S; Han, Inbo; Park, Hun-Kuk; Park, Hansoo; Lee, Soo-Hong

    2016-01-01

    The extracellular matrix (ECM) of cartilage performs essential functions in differentiation and chondroprogenitor cell maintenance during development and regeneration. Here, we discuss the vital role of matrilin-3, an ECM protein involved in cartilage development and potential osteoarthritis pathomechanisms. As an adaptor protein, matrilin-3 binds to collagen IX to form a filamentous network around cells. Matrilin-3 is an essential component during cartilage development and ossification. In addition, it interacts directly or indirectly with transforming growth factor β (TGF-β), and bone morphogenetic protein 2 (BMP2) eventually regulates chondrocyte proliferation and hypertrophic differentiation. Interestingly, matrilin-3 increases interleukin receptor antagonists (IL-Ra) in chondrocytes, suggesting its role in the suppression of IL-1β-mediated inflammatory action. Matrilin-3 downregulates the expression of matrix-degrading enzymes, such as a disintegrin metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5, matrix metalloproteinase 13 (MMP13), and collagen X, a hypertrophy marker during development and inflammatory conditions. Matrilin-3 essentially enhances collagen II and aggrecan expression, which are required to maintain the tensile strength and elasticity of cartilage, respectively. Interestingly, despite these attributes, matrilin-3 induces osteoarthritis-associated markers in chondrocytes in a concentration-dependent manner. Existing data provide insights into the critical role of matrilin-3 in inflammation, matrix degradation, and matrix formation in cartilage development and osteoarthritis. PMID:27104523

  15. EFFECT OF LOW SELENIUM ON CHONDROCYTE DIFFERENTIATION AND DIFFERENTIAL EXPRESSION OF COLLAGEN TYPES Ⅰ , Ⅱ AND X IN ARTICULAR CARTILAGE FROM MINI-PIGS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective According to the distribution of low selenium areas, low nutrition state of the residents and the affecting cartilage growth and articular cartilage of Kashin-Beck Disease(KBD),the chondrocyte differentia- tion and differential expression of collagen types Ⅰ , Ⅱ and Ⅹ in articular cartilage from Chinese mini-pigs treated with low selenium were investigated in order to gain insight into the effects of these conditions on chondrocyte differ- entiation in KBD cartilage. Mothods Eleven male juvenile mini-pigs, aged from 4 weeks to 6 weeks after birth, were divided into 3 groups. The Se content in the diet of the “low Se” group was 0. 035mg/kg diet, and 0. 175 mg/kg diet in the control. For Se-supplemented group 0. 390mg /kg diet was added. The content of Se in blood was assayed at the beginning and at the end of each experiment. Samples of articular cartilage were taken from the right femur condylus, and collagen types Ⅰ , Ⅱ and Ⅹ in articular cartilage were analyzed by immunohistochemistry and in situ hybridization. Results ①All cartilage samples from juvenile mini-pigs fed with low selenium diet revealed a re- duction in type Ⅹ collagen mRNA expression in the hypertrophic chondrocytes as shown by in situ hybridization, and reduced type Ⅹ collagen deposition in the lower hypertrophic zone as shown by immunohistochemistry. ②Addition of selenium to the diet restored the type Ⅹ collagen to normal level. ③Type Ⅱ collagen was evenly distributed over the entire articular cartilage in all experimental and control groups. Type Ⅱ collagen mRNA signals were most prominent in the upper articular layer as well as in the hypertrophic zone in all groups. Type Ⅱ collagen expression was restrict- ed to the zone of endochondral ossification in all experimental groups and the control. Conclusion Low selenium has an down-regulatory role on the synthesis and deposition of collagen type Ⅹ in hypertrophic chondrocytes in articular cartilage of

  16. The evolution of articular cartilage imaging and its impact on clinical practice

    International Nuclear Information System (INIS)

    Over the past four decades, articular cartilage imaging has developed rapidly. Imaging now plays a critical role not only in clinical practice and therapeutic decisions but also in the basic research probing our understanding of cartilage physiology and biomechanics. (orig.)

  17. Cartilage Tissue Engineering: the effect of different biomaterials, cell types and culture methods

    NARCIS (Netherlands)

    W.J.C.M. Marijnissen (Willem)

    2006-01-01

    textabstractChapter 1 outlines the normal structure and composition of articular cartilage and the inefficient spontaneous healing response after focal damage. Current surgical treatment options are briefly discussed and tissue engineering techniques for the repair of articular cartilage defects

  18. Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers

    Science.gov (United States)

    ... Cartilage Grown in Lab Might One Day Help Younger Arthritis Sufferers Made of patients' stem cells and ... eliminate the need for hip replacement surgery in younger arthritis patients. The cartilage hasn't been tested ...

  19. Biological Therapies for Cartilage Lesions in the Hip: A New Horizon.

    Science.gov (United States)

    Chahla, Jorge; LaPrade, Robert F; Mardones, Rodrigo; Huard, Johnny; Philippon, Marc J; Nho, Shane; Mei-Dan, Omer; Pascual-Garrido, Cecilia

    2016-07-01

    Treatment of hip cartilage disease is challenging, and there is no clear algorithm to address this entity. Biomarkers are arising as promising diagnostic tools because they could play a role in the early assessment of the prearthritic joint and as a prognostic factor before and after treatment. The potential effect of biomarkers may be used to categorize individuals at risk of evolving to severe osteoarthritis, to develop new measures for clinical progression of the disease, and to develop new treatment options for the prevention of osteoarthritis progression. A trend toward a less invasive biological treatment will usher in a new treatment era. With the growth of surgical skills in hip arthroscopy, cartilage restoration techniques are evolving in a fast and exponential manner. Biological and surgical treatments have been proposed to treat these pathologies. Biological treatments include platelet-rich plasma, stem cells or bone marrow aspirate concentration, hyaluronic acid, losartan, and fish oil. Surgical treatments include microfracture alone or augmented, direct repair, autologous chondrocyte implantation, matrix-induced chondrocyte implantation, autologous matrix-induced chondrogenesis, mosaicplasty, osteochondral allograft transplantation, and stem cells implanted in matrix (stem cells in membranes/expanded stem cells). This article reviews new evidence available on treatment options for chondral lesions and early osteoarthritis of the hip. [Orthopedics. 2016; 39(4):e715-e723.]. PMID:27359284

  20. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  1. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    OpenAIRE

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  2. Viscoelastic properties of bovine knee joint articular cartilage: dependency on thickness and loading frequency

    OpenAIRE

    Espino, Daniel M; Shepherd, Duncan ET; Hukins, David WL

    2014-01-01

    Background The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints. At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the ...

  3. The development and characterization of a competitive ELISA for measuring active ADAMTS-4 in a bovine cartilage ex vivo model

    DEFF Research Database (Denmark)

    He, Yi; Zheng, Qinlong; Simonsen, Ole; Petersen, Kristian Kjær; Christiansen, Thorbjørn G.; Karsdal, Morten A.; Bay-Jensen, Anne C.

    ADAMTS-4 (aggrecanase1) is believed to play an important role in the degradation of aggrecan during the progression of joint diseases. ADAMTS-4 is synthesized as a latent pro-enzyme that requires the removal of the pro-domain, exposing the N-terminal neoepitope, to achieve activity. We developed a...... monoclonal antibody against this neoepitope of active ADAMTS-4. Furthermore, we established and characterized a competitive ELISA for measuring active ADAMTS-4 form applying the specific antibody. We used this assay to profile the presence of active ADAMTS-4 and its aggrecan degradation product (NITEGE(373...... supernatant and retained in the cartilage matrix increased continuously throughout the 21days of the study. The activity of ADAMTS-4 on the last day of catabolic stimulation was verified in vitro by adding deglycosylated or native aggrecan to the conditioned medium. Samples of human cartilage affected by...

  4. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    Science.gov (United States)

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embedded osteochondral samples (7 OC, 8 normal) and cDNA from whole cartilage (7 OC, 10 normal) and chondrocytes surrounding cartilage canals and osteochondral junctions captured with laser capture microdissection (4 OC, 6 normal) were obtained from femoropatellar joints of 17 immature horses. Equine-specific Wnt signaling molecule mRNA expression levels were evaluated by two-step real-time qPCR. Spatial tissue protein expression of β-catenin, Wnt-11, Wnt-4, and Dkk-1 was determined by immunohistochemistry. There was significantly decreased Wnt-11 and increased β-catenin, Wnt-5b, Dkk-1, Lrp6, Wif-1, Axin1, and SC-PEP gene expression in early OC cartilage canal chondrocytes compared to controls. There was also significantly increased β-catenin gene expression in early OC osteochondral junction chondrocytes compared to controls. Based on this study, abundant gene expression differences in OC chondrocytes surrounding cartilage canals suggest pathways associated with catabolism and inhibition of chondrocyte maturation are targeted in early OC pathogenesis. PMID:25676127

  5. Does Radio Frequency Ablation (RFA) Epiphysiodesis Affect Joint Cartilage?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Abood, Ahmed Abdul-Hussein; Rahbek, Ole;

    Background: Epiphysiodesis made with RFA has resulted, in animal models, an effective procedure that disrupts the growth plate and induces LLD. This procedure involves an increase of temperature (>92°C) of the targeted region causing thermal damage. To our knowledge, no study that investigates...... the effect of this procedure in the adjacent joint articular cartilage has been reported Purpose / Aim of Study: Proof of concept that epiphysiodesis made with RFA is a safe procedure that disrupts the growth plate without damaging the adjacent joint articular cartilage Materials and Methods: RFA...... Epiphysiodesis RFA was done for 8 minutes in vivo in 40 growing pig tibia physis. In addition, three tibiae were ablated for 16 minutes, and three more for 24 minutes. As a damage reference, 6 tibiae were ablated on the joint articular cartilage for 8 minutes. MRI was done ex vivo after the procedure to evaluate...

  6. Evaluation of Automated Volumetric Cartilage Quantification for Hip Preservation Surgery.

    Science.gov (United States)

    Ramme, Austin J; Guss, Michael S; Vira, Shaleen; Vigdorchik, Jonathan M; Newe, Axel; Raithel, Esther; Chang, Gregory

    2016-01-01

    Automating the process of femoroacetabular cartilage identification from magnetic resonance imaging (MRI) images has important implications to guiding clinical care by providing a temporal metric that allows for optimizing the timing for joint preservation surgery. In this paper, we evaluate a new automated cartilage segmentation method using a time trial, segmented volume comparison, overlap metrics, and Euclidean distance mapping. We report interrater overlap metrics using the true fast imaging with steady-state precession MRI sequence of 0.874, 0.546, and 0.704 for the total overlap, union overlap, and mean overlap, respectively. This method was 3.28× faster than manual segmentation. This technique provides clinicians with volumetric cartilage information that is useful for optimizing the timing for joint preservation procedures. PMID:26377376

  7. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  8. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes. PMID:26414246

  9. Articular Cartilage Thickness Measured with US is Not as Easy as It Appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Bartels, E. M.; Wilhjelm, Jens E.;

    2011-01-01

    Background: Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage ismeasured under orthogonal in...

  10. Articular cartilage thickness measured with US is not as easy as it appears

    DEFF Research Database (Denmark)

    Torp-Pedersen, S; Bartels, E M; Wilhjelm, Jens E.;

    2011-01-01

    Theoretically, the high spatial resolution of US makes it well suited to monitor the decrease in articular cartilage thickness in osteoarthritis. A requirement is, however, that the borders of the cartilage are correctly identified and that the cartilage is measured under orthogonal insonation. I...

  11. Ultrasonographic Measurement of the Femoral Cartilage Thickness in Hemiparetic Patients after Stroke

    Science.gov (United States)

    Tunc, Hakan; Oken, Oznur; Kara, Murat; Tiftik, Tulay; Dogu, Beril; Unlu, Zeliha; Ozcakar, Levent

    2012-01-01

    The aim of the study was to evaluate the femoral cartilage thicknesses of hemiparetic patients after stroke using musculoskeletal ultrasonography and to determine whether there is any correlation between cartilage thicknesses and the clinical characteristics of the patients. Femoral cartilage thicknesses of both knees were measured in 87 (33…

  12. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.

    Science.gov (United States)

    Hosseini, Ali; Van de Velde, Samuel; Gill, Thomas J; Li, Guoan

    2012-11-01

    We investigated the in vivo cartilage contact biomechanics of the tibiofemoral joint in patients after reconstruction of a ruptured anterior cruciate ligament (ACL). A dual fluoroscopic and MR imaging technique was used to investigate the cartilage contact biomechanics of the tibiofemoral joint during in vivo weight-bearing flexion of the knee in eight patients 6 months following clinically successful reconstruction of an acute isolated ACL rupture. The location of tibiofemoral cartilage contact, size of the contact area, cartilage thickness at the contact area, and magnitude of the cartilage contact deformation of the ACL-reconstructed knees were compared with those previously measured in intact (contralateral) knees and ACL-deficient knees of the same subjects. Contact biomechanics of the tibiofemoral cartilage after ACL reconstruction were similar to those measured in intact knees. However, at lower flexion, the abnormal posterior and lateral shift of cartilage contact location to smaller regions of thinner tibial cartilage that has been described in ACL-deficient knees persisted in ACL-reconstructed knees, resulting in an increase of the magnitude of cartilage contact deformation at those flexion angles. Reconstruction of the ACL restored some of the in vivo cartilage contact biomechanics of the tibiofemoral joint to normal. Clinically, recovering anterior knee stability might be insufficient to prevent post-operative cartilage degeneration due to lack of restoration of in vivo cartilage contact biomechanics. PMID:22528687

  13. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration.

    Science.gov (United States)

    Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J; Elisseeff, Jennifer H

    2016-04-01

    Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis. PMID:27019285

  14. Synchrotron and ion beam studies of the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A., E-mail: d.a.bradley@surrey.ac.u [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Kaabar, W.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 (Canada); Janousch, M. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-07-21

    The divalent cations Ca, P and Zn have been reported to play an important role in the normal growth and remodelling of articular cartilage and subchondral bone and in the degenerative and inflammatory processes associated with osteoarthritis (OA). In particular, they act as co-factors of a class of enzymes known as metalloproteinases, believed to be active during the initiation, progress and remodelling processes associated with the disease. The relative presence of cations and anions, in particular the ions Na{sup 2+} and Cl{sup -}, is also intimately associated with the fixed charge density (FCD) of cartilage, neutralizing the highly charged structure associated with for instance chondroitin sulphate. Finally, structural components of bone can be expected to result from dietary intake, yielding for instance strontium apatite and fluorapatite that form inclusions in the calcium hydroxyapatite of bone. In the present investigation, thin sections of articular cartilage affected by OA have been examined using a combination of physical techniques: low energy synchrotron micro X-ray fluorescence ({mu}-SXRF), micro proton induced X-ray emission ({mu}-PIXE) and micro proton-induced gamma emission ({mu}-PIGE), primarily to investigate the distribution of essential cations and anions. The combination of these physical techniques offers the ability to make comprehensive assessment of the elemental content of such tissues, simultaneous mappings of a range of relatively low atomic number ions being obtained over quite large areas ({approx}few mm{sup 2}). Such capability has only become a realistic prospect in recent times.

  15. Analysis of cartilage-polydioxanone foil composite grafts.

    Science.gov (United States)

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  16. Resistive Exercise for Arthritic Cartilage Health (REACH: A randomized double-blind, sham-exercise controlled trial

    Directory of Open Access Journals (Sweden)

    Smith Richard M

    2009-01-01

    Full Text Available Abstract Background This article provides the rationale and methodology, of the first randomised controlled trial to our knowledge designed to assess the efficacy of progressive resistance training on cartilage morphology in women with knee osteoarthritis. Development and progression of osteoarthritis is multifactorial, with obesity, quadriceps weakness, joint malalignment, and abnormal mechanical joint forces particularly relevant to this study. Progressive resistance training has been reported to improve pain and disability in osteoarthritic cohorts. However, the disease-modifying potential of progressive resistance training for the articular cartilage degeneration characteristic of osteoarthritis is unknown. Our aim was to investigate the effect of high intensity progressive resistance training on articular cartilage degeneration in women with knee osteoarthritis. Methods Our cohort consisted of women over 40 years of age with primary knee osteoarthritis, according to the American College of Rheumatology clinical criteria. Primary outcome was blinded measurement of cartilage morphology via magnetic resonance imaging scan of the tibiofemoral joint. Secondary outcomes included walking endurance, balance, muscle strength, endurance, power, and velocity, body composition, pain, disability, depressive symptoms, and quality of life. Participants were randomized into a supervised progressive resistance training or sham-exercise group. The progressive resistance training group trained muscles around the hip and knee at 80% of their peak strength and progressed 3% per session, 3 days per week for 6 months. The sham-exercise group completed all exercises except hip adduction, but without added resistance or progression. Outcomes were repeated at 3 and 6 months, except for the magnetic resonance imaging scan, which was only repeated at 6 months. Discussion Our results will provide an evaluation of the disease-modifying potential of progressive

  17. Magnetic resonance imaging of hip joint cartilage and labrum

    Directory of Open Access Journals (Sweden)

    Christoph Zilkens

    2011-09-01

    Full Text Available Hip joint instability and impingement are the most common biomechanical risk factors that put the hip joint at risk to develop premature osteoarthritis. Several surgical procedures like periacetabular osteotomy for hip dysplasia or hip arthroscopy or safe surgical hip dislocation for femoroacetabular impingement aim at restoring the hip anatomy. However, the success of joint preserving surgical procedures is limited by the amount of pre-existing cartilage damage. Biochemically sensitive MRI techniques like delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC might help to monitor the effect of surgical or non-surgical procedures in the effort to halt or even reverse joint damage.

  18. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Maria Cattell

    Full Text Available The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs. While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of

  19. Inter -and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children

    Directory of Open Access Journals (Sweden)

    Stenbøg Elisabeth

    2009-06-01

    Full Text Available Abstract Background There is an increasing interest among pediatric rheumatologist for using ultrasonography (US in the daily clinical examination of children with juvenile idiopathic arthritis (JIA. Loss of joint cartilage may be an early feature of destructive disease in JIA. However, US still needs validation before it can be used as a diagnostic bedside tool in a pediatric setting. This study aims to assess the inter- and intraobserver reliability of US measurements of cartilage thickness in the joints of healthy children. Methods 740 joints of 74 healthy Caucasian children (27 girls/47 boys, aged 11.3 (7.11 – 16 years were examined with bilateral US in 5 preselected joints to assess the interobserver variability. In 17 of these children (6 girls/11 boys, aged 10.1(7.11–11.1 years, 170 joints was examined in an intraobserver sub study, with a 2 week interval between the first and second examination. Results In this study we found a good inter- and intraobserver agreement expressed as a coefficient of variation (CV less than 10% in the knee (CV = 9.5%interobserver and 5.9%intraobservserI, 9.3%intraobserverII respectively for the two intraobserver measurements and fairly good for the MCP joints (CV = 11.9%interobserver, 12.9%intraobserverI and 11.9%intraobsevrerII. In the ankle and PIP joints the inter- and intraobserver agreement was within an acceptable limit (CV26%. We found no difference in cartilage thickness between the left and right extremity in the investigated joints. Conclusion We found a good inter -and intraobserver agreement when measuring cartilage thickness with US. The inter- and intraobserver variation seemed not to be related to joint size. These findings suggest that positioning of the joint and the transducer is of major importance for reproducible US measurements. We found no difference in joint cartilage thickness between the left and right extremity in any of the examined joint of the healthy children. This is an

  20. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads;

    2007-01-01

    Rationale and Objectives Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... those with OA. The purpose of this study was twofold. First, we wished to evaluate whether the results on cartilage homogeneity from the previous study can be reproduced using an independent population. Second, based on the homogeneity framework, we present an automatic technique that partitions the...... the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. Results The P values for separating the different groups based on cartilage homogeneity were 2 × 10-5 (KL 0 versus KL 1) and 1 × 10-7 (KL 0 versus KL >0...

  1. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly...... investigate the age-related and osteoarthrosis-related changes in the mechanical properties of the human tibial cartilage-bone complex; and 3) to evaluate mutual associations among various properties. Normal specimens from human autopsy proximal tibiae were used for investigation of age variations in the...... focused on the central vertebral trabecular bone, while little is known about age-related changes in the properties of human peripheral (tibial) trabecular bone. Knowledge of the properties of peripheral (tibial) trabecular bone is of major importance for the understanding of degenerative diseases such as...

  2. Cartilage collagen type II seromarker patterns in axial spondyloarthritis and psoriatic arthritis

    DEFF Research Database (Denmark)

    Munk, Heidi Lausten; Gudmann, Natasja Staehr; Christensen, Anne Friesgaard;

    2016-01-01

    disease activity measures and HLA-B27 typing. The procollagen IIA N-terminal peptide (PIIANP) and a matrix metalloproteinase-generated type II collagen fragment (C2M) were quantified in serum by ELISA. C2M was higher in SpA than in controls, 0.41 versus 0.36 ng/ml (p = 0.004), while PIIANP did not differ......-smokers, 0.43 ng/ml (p = 0.02), while PIIANP was higher in HLA-B27 positive, 2312 ng/ml versus negative patients, 2021 ng/ml (p = 0.03). In PsA, PIIANP and C2M did not differ between patients and controls, but PIIANP was elevated in patients not receiving DMARDs, 2726 ng/ml. In PsA, PIIANP and C2M did not...... differ according to smoking and HLA-B27. Cartilage degradation assessed by C2M is increased in SpA irrespective of treatment but not in PsA. Cartilage synthesis reflected by PIIANP is increased in untreated SpA and PsA. PIIANP correlates with CRP in SpA while not in PsA. In DMARD-naïve SpA but not in Ps...

  3. Vascularization of engineered cartilage constructs in a mouse model.

    Science.gov (United States)

    Burghartz, Marc; Gehrke, Thomas; Storck, Katharina; Staudenmaier, Rainer; Mandlik, Veronika; Schurr, Christian; Hoang, Nguyen; Hagen, Rudolf; Kleinsasser, Norbert

    2015-02-01

    Tissue engineering of cartilage tissue offers a promising method for reconstructing ear, nose, larynx and trachea defects. However, a lack of sufficient nutrient supply to cartilage constructs limits this procedure. Only a few animal models exist to vascularize the seeded scaffolds. In this study, polycaprolactone (PCL)-based polyurethane scaffolds are seeded with 1 × 10(6) human cartilage cells and implanted in the right hind leg of a nude mouse using an arteriovenous flow-through vessel loop for angiogenesis for the first 3 weeks. Equally seeded scaffolds but without access to a vessel loop served as controls. After 3 weeks, a transposition of the vascularized scaffolds into the groin of the nude mouse was performed. Constructs (verum and controls) were explanted 1 and 6 weeks after transposition. Constructs with implanted vessels were well vascularized. The amount of cells increased in vascularized constructs compared to the controls but at the same time noticeably less extracellular matrix was produced. This mouse model provides critical answers to important questions concerning the vascularization of engineered tissue, which offers a viable option for repairing defects, especially when the desired amount of autologous cartilage or other tissues is not available and the nutritive situation at the implantation site is poor. PMID:25381568

  4. Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair

    NARCIS (Netherlands)

    Neves, Sara C.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Alves, Natália M.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Chitosan (CHT)/poly(ɛ-caprolactone) (PCL) blend 3D fiber-mesh scaffolds were studied as possible support structures for articular cartilage tissue (ACT) repair. Micro-fibers were obtained by wet-spinning of three different polymeric solutions: 100:0 (100CHT), 75:25 (75CHT) and 50:50 (50CHT) wt.% CHT

  5. Surgical correction of joint deformities and hyaline cartilage regeneration

    Directory of Open Access Journals (Sweden)

    Vyacheslav Alexandrovich Vinokurov

    2015-12-01

    Full Text Available Aim. To determine a method of extra-articular osteochondral fragment formation for the improvement of surgical correction results of joint deformities and optimization of regenerative conditions for hyaline cartilage. Materials and Methods. The method of formation of an articular osteochondral fragment without penetration into the joint cavity was devised experimentally. More than 30 patients with joint deformities underwent the surgery. Results. During the experiments, we postulated that there may potentially be a complete recovery of joint defects because of hyaline cartilage regeneration. By destructing the osteochondral fragment and reforming it extra-articularally, joint defects were recovered in all patients. The results were evaluated as excellent and good in majority of the patients. Conclusion. These findings indicate a novel method in which the complete recovery of joint defects due to dysplastic genesis or osteochondral defects as a result of injuries can be obtained. The devised method can be used in future experiments for objectification and regenerative potential of hyaline cartilage (e.g., rate and volume of the reformed joints that regenerate, detection of cartilage elements, and the regeneration process.

  6. Holmium laser ablation of cartilage: effects of cavitation bubbles

    Science.gov (United States)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  7. Healing Osteoarthritis: Engineered Proteins Created for Therapeutic Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin M. Cherry

    2012-01-01

    Full Text Available Millions of people worldwide are afflicted with painfulosteoarthritis, which is characterized by degradationof articular cartilage found in major joints such as thehip or knee. Symptoms include inflammation, pain,and decreased mobility. Because cartilage has a limitedability to self-heal, researchers have focused efforts onmethods that trigger cartilage regeneration. Our approachis to develop an injectable, protein-based hydrogel withmechanical properties analogous to healthy articularcartilage. The hydrogel provides an environment for cellgrowth and stimulates new tissue formation. We utilizedrecombinant DNA technology to create multifunctional,elastomeric proteins. The recombinant proteins weredesigned with biologically active domains to influence cellbehavior and resilin structural domains that mimic thestiffness of native cartilage. Resilin, a protein found in thewing and leg joints of mosquitoes, provided inspiration forthe mechanical domain in the recombinant protein. Thenew resilin-based protein was expressed in E. coli bacteria.Forming hydrogels requires a large quantity of engineeredprotein, so parameters such as bacterial host, incubationtemperature, expression time, and induction method wereoptimized to increase the protein yield. Using salt toprecipitate the protein and exploiting resilin’s heat stability,27 mg/L of recombinant protein was recovered at 95%purity. The protein expression and purification protocolswere established by analyzing experimental samples onSDS-PAGE gels and by Western blotting. The mechanicalproperties and interactions with stem cells are currentlybeing evaluated to assess the potential of the resilin-basedhydrogel as a treatment for osteoarthritis.

  8. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  9. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    International Nuclear Information System (INIS)

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium

  10. Focal changes of the anticular cartilage in the femorotibial joint

    International Nuclear Information System (INIS)

    This paper reports on the value of routine MR sequences in detecting focal changes in the femorotibial hyaline cartilage. T1-, proton density-, and T2-weighted spin-echo and gradient-echo images were acquired in 20 cadaveric knees (cadavers aged 56-88 years; mean, 73.8 years). Three hundred eight coronal and sagittal (3-mm) anatomic sections were prepared, allowing identification of 85 areas of cartilage fissuring, fibrillation, or ulceration. Initially, MR images and anatomic sections were correlated in an unblinded fashion. Subsequently, images of a subset of 35 pathologic and 35 normal cartilage surfaces were blindly evaluated. In the unblinded study, 61 lesions were detectable on T1-weighted images, 59 with meniscal windows, 51 on proton density images, 58 on T2-weighted images, and 57 on gradient-echo images. A fissure usually manifested as a focus of abnormal signal. Ulcers and fibrillation presented as more extensive irregular signal, often accompanied by subchondral sclerosis. In the blinded study, the sensitivity was 71.4% for the detection of focal cartilage changes, the specificity was 68.6%, and the accuracy was 70%. Single fissures and superficial ulcers accounted for the majority of false-negative results

  11. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  12. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage.

    Science.gov (United States)

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-09-01

    Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε-CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  13. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    Science.gov (United States)

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  14. Evaluation of nasal cartilage using three-dimensional soft tissue images in patients with unilateral cleft lip

    International Nuclear Information System (INIS)

    In the treatment of nasal deformities associated with cleft lip and palate, deformities of the alar cartilage and upper lateral cartilage are usually repaired. It is very useful if deformities of the nasal cartilage are evaluated preoperatively. We created three-dimensional CT images of soft tissues by the volume rendering method, the nasal cartilage. In 26 patients with unilateral cleft lip and palate, the alar cartilage, upper lateral cartilage, and septal cartilage were evaluated morphologically. As a result, in each case, these cartilages were deviated and deformed. However, the size of both the alar cartilage and the upper lateral cartilage on the cleft side were approximately similar to those on the healthy side. It is suggested that using this method formulated for the imaging of cartilaginous morphology, preoperative planning and follow-up can be performed easily. (author)

  15. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years.

    Science.gov (United States)

    Favre, Julien; Erhart-Hledik, Jennifer C; Chehab, Eric F; Andriacchi, Thomas P

    2016-06-14

    Although kinematic alterations during walking have been reported with knee osteoarthritis (OA), there is a paucity of longitudinal data, therefore limiting our understanding of the role of kinematics in OA development. This study tested the hypothesis that less knee extension angle and less posterior displacement of the femur relative to the tibia during the heel-strike portion of the gait cycle are associated with greater loss of medial cartilage thickness during a follow-up period of five years. This study also tested for associations between flexion-extension angle and anterior-posterior displacement during other periods of the gait cycle and 5-year cartilage thinning. 16 subjects with moderate medial knee OA were tested with gait analysis and MRI at baseline and had a follow-up MRI after 5 years. Linear regressions were used to assess the relationship between changes in cartilage thickness and baseline kinematics using Pearson correlation coefficients. Multivariate regressions were also performed to adjust for gender, baseline age, BMI, walking speed, Kellgren/Lawrence grade, and baseline knee pain score. As hypothesized, baseline knee flexion angle and femoral displacement during heel-strike and other gait cycle periods were significantly associated with medial femoral and tibial cartilage thinning at the 5 year follow-up; these associations were strengthened after adjustment for covariates. This study provided new insight into the pathogenesis of knee OA where baseline knee kinematics were associated with longitudinal disease progression. These results could serve as a basis for developing newer gait modification interventions to reduce the risk for developing knee OA. PMID:27178021

  16. A Validated Model of the Pro- and Anti-Inflammatory Cytokine Balancing Act in Articular Cartilage Lesion Formation

    OpenAIRE

    Wang, Xiayi; Brouillette, Marc J.; Ayati, Bruce P; Martin, James A.

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et ...

  17. Multiparametric MRI of Epiphyseal Cartilage Necrosis (Osteochondrosis with Histological Validation in a Goat Model.

    Directory of Open Access Journals (Sweden)

    Luning Wang

    Full Text Available To evaluate multiple MRI parameters in a surgical model of osteochondrosis (OC in goats.Focal ischemic lesions of two different sizes were induced in the epiphyseal cartilage of the medial femoral condyles of goats at 4 days of age by surgical transection of cartilage canal blood vessels. Goats were euthanized and specimens harvested 3, 4, 5, 6, 9 and 10 weeks post-op. Ex vivo MRI scans were conducted at 9.4 Tesla for mapping the T1, T2, T1ρ, adiabatic T1ρ and TRAFF relaxation times of articular cartilage, unaffected epiphyseal cartilage, and epiphyseal cartilage within the area of the induced lesion. After MRI scans, safranin O staining was conducted to validate areas of ischemic necrosis induced in the medial femoral condyles of six goats, and to allow comparison of MRI findings with the semi-quantitative proteoglycan assessment in corresponding safranin O-stained histological sections.All relaxation time constants differentiated normal epiphyseal cartilage from lesions of ischemic cartilage necrosis, and the histological staining results confirmed the proteoglycan (PG loss in the areas of ischemia. In the scanned specimens, all of the measured relaxation time constants were higher in the articular than in the normal epiphyseal cartilage, consistently allowing differentiation between these two tissues.Multiparametric MRI provided a sensitive approach to discriminate between necrotic and viable epiphyseal cartilage and between articular and epiphyseal cartilage, which may be useful for diagnosing and monitoring OC lesions and, potentially, for assessing effectiveness of treatment interventions.

  18. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil [Yildirim Beyazit University, Department of Radiology, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey); Isik, Cetin; Bozkurt, Murat [Yildirim Beyazit University, Department of Orthopedics, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey)

    2015-04-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  19. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  20. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies.

    Science.gov (United States)

    Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; García-López, J; Brena-Molina, A M; Gutiérrez-Gómez, C; Ibarra, C; Velasquillo, C

    2016-09-01

    The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies. PMID:27566509

  1. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    Science.gov (United States)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  2. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.

    Science.gov (United States)

    Cox, Lieke G E; van Rietbergen, B; van Donkelaar, C C; Ito, K

    2011-06-01

    During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage. PMID:21546025

  3. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    International Nuclear Information System (INIS)

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  4. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2.

    Science.gov (United States)

    Igai, Hitoshi; Chang, Sung Soo; Gotoh, Masashi; Yamamoto, Yasumichi; Yamamoto, Masaya; Tabata, Yasuhiko; Yokomise, Hiroyasu

    2008-01-01

    We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin. PMID:18204324

  5. PREVALENCE OF LARYNGEAL CARTILAGE CALCIFICATIONS IN MANGALORE POPULATION; A RADIOGRAPHIC STUDY

    Directory of Open Access Journals (Sweden)

    Nandita Shenoy

    2014-10-01

    Full Text Available Soft tissue calcifications in the orofacial region are uncommon and are usually asymptomatic in nature. Some of the common calcifications found are Carotid artery calcifications (CAC, Triticeous cartilage, and Superior cornu of the thyroid cartilage, Tonsilloliths and lymph nodes calcifications. Disordered ossification or calcification of ligaments or cartilages may compress neurovascular structures, may be able to cause serious implications in any surgical intervention in the region, may lead to false neurological differential diagnosis or may be benign in nature without any clinical significance. Ossification and calcification of the laryngeal cartilages have been widely investigated since the original study by Chievitz in 1882 1 . The thyroid, cricoid, and greater part of the arytenoid cartilages consist of hyaline cartilage that undergoes calcification and ossification as part of the ageing process. The thyroid cartilage tends to be visible on the cephalometric and lateral neck radiograph when the ossification starts within the lamina or either of the cornua. The cricoids and arytenoid cartilages also become apparent when the ossification begins within their laminae. Radiographs of the head and neck are used to study the growth and development of skeletal structures can be used for identification of these calcifications 2 . A good understanding of the anatomy and the knowledge of variations in the laryngeal cartilage ossification is important for all clinicians especially while interpreting head and neck radiographs of patients who exhibit anatomical or functional deviations from the normal. The lateral cephalometric radiographs are advised more commonly by an orthodontist to look for occlusion and lateral profile of the patient pre and post orthodontic treatment. They also demonstrate the posterosuperior part of the lamina, and the superior cornu of the thyroid cartilage. Laryngeal and related cartilages like the cricoid and triticeal

  6. Articular Cartilage Evaluation After TruFit Plug Implantation Analyzed by Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC)

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Bartels, L.W.; Vincken, K.L.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2013-01-01

    Background: Quantitative MRI of articular cartilage has rapidly developed in recent years and provides the clinician with a noninvasive tool to determine the biological consequence of an intervention. Purpose: To evaluate the quality of intra-articular cartilage, using the dGEMRIC scanning techniqu

  7. Radiological, computertomographic, pathoanatomical and histological examination of the rib cartilage of the dog

    International Nuclear Information System (INIS)

    This study was concerned with the representation and description of the rib cartilage of the dog and the abnormalities of such by means of radiological, computer tomographic, pathoanatomical and histological examinations and the comparison of the results of the various examination methods. The study material consisted of 100 ventral thorax walls of dogs of different ages and breeds. In 39 of the subjects, no abnormalities of rib cartilage other than unremarkable calcification were observed. Among the subjects, there were 11 puppies (0-3 months), whose rib cartilage appeared soft tissue dense due to the absence of calcification, 14 juvenile animals (4-18 months), the rib cartilage of which showed a typical finely granulated structure, and 14 adult dogs (over 18 months), whose rib cartilage exhibited a homogeneous to net-like calcified appearance. In the calcified rib cartilage, the histological section showed a centrally located spongiosa rod surrounded by a hyaline cartilage shell. The calcification tendency of the first pair of rib cartilage was remarkable: in 70 dogs, the first pair of rib cartilage remained uncalcified despite calcification of the other rib cartilage. Sixty-one dogs exhibited rib cartilage abnormalities. According to the radiological appearance of the abnormalities, they were divided into groups and their incidence was calculated. Abnormalities seen included interruption in the continuity of the calcified rib cartilage with and without callus formation, enlargement of rib cartilage, cuff formation, and abnormalities on the Articulationes sternocostales (projections in or around articulations, calcified and fractured joint surfaces). In addition, remarkable calcification patterns were observed. By means of CT examination the densities of the tissue forming the various abnormalities was determined. In the course of the pathoanatomical examination, it was shown that the interruptions in continuity with callus and the various enlarged areas of the

  8. The relationship between retinal vessel calibre and knee cartilage and BMLs

    Directory of Open Access Journals (Sweden)

    Davies-Tuck Miranda L

    2012-12-01

    Full Text Available Abstract Background Whether the increase in vascular disease prevalence and mortality in OA populations is a result of co-occurrence of cardiovascular disease and OA, which are both common in the older population, is due to OA treatments or to the common association with reduced physical activity and/or obesity is unclear. One way to explore this non-invasively is to examine the cross-sectional relationship between changes in retinal microvasculature, which have been shown to be markers of generalized vascular pathology, and knee structural changes in an asymptomatic community-based population. Methods A community sample of 289 (61% women aged 50–79 years with no knee symptoms underwent magnetic resonance imaging (MRI of their dominant knee in 2003. Cartilage volume and bone marrow lesions (BMLs were determined. All subjects also had retinal photographs taken from which retinal arteriolar and venular diameters were determined and summarized as the central retinal arteriolar equivalent (CRAE and the central retinal venular equivalent (CRVE. Results Retinal venular diameter was significantly wider in subjects with a BML compared with subjects without a BML (mean (SD 214.2 (2.8 μm versus 207.5 (1.1 μm respectively independent of age, gender and BMI. A trend for decreased medial tibial cartilage with increasing CRAE was also observed (regression coefficient −2.70 μl, 95%CI-5.74, 0.5, p=0.08. Conclusion These findings suggest that vascular pathology, indicative of inflammatory processes, is associated with early structural knee changes. The role of micro-vascular changes in the pathogenesis of OA warrants further investigation.

  9. Biochemical Characterization of Normal Navicular Bone Flexor Surface Cartilage

    OpenAIRE

    Vits, Lucia Carolina

    2002-01-01

    Cartilage tissue specimens were obtained from the flexor surface of the navicular bone and distal radiocarpal bone articular surface (controls) from 8 horses 2 to 5 years old. Water, DNA, total collagen, total glycosaminoglycans, chondroitin sulphate, and keratan sulphate contents were determined. The results from each site were compared and the differences were analyzed by paired t-test (P < 0.05). Significant differences were determined between the water content of the navicular bon...

  10. Hyaluronic Acid-Binding Scaffold for Articular Cartilage Repair

    OpenAIRE

    Unterman, Shimon A.; Gibson, Matthew; Lee, Janice H.; Crist, Joshua; Chansakul, Thanissara; Yang, Elaine C.; Jennifer H. Elisseeff

    2012-01-01

    Hyaluronic acid (HA) is an extracellular matrix molecule with multiple physical and biological functions found in many tissues, including cartilage. HA has been incorporated in a number of biomaterial and scaffold systems. Howegver, HA in the material may be difficult to control if it is not chemically modified and chemical modification of HA may negatively impact biological function. In this study, we developed a poly(ethylene glycol) hydrogel with noncovalent HA-binding capabilities and eva...

  11. Advances in the Surgical Management of Articular Cartilage Defects

    OpenAIRE

    Stein, Spencer; Strauss, Eric; Bosco, Joseph

    2013-01-01

    Objective: The purpose of this review is to gain insight into the latest methods of articular cartilage implantation (ACI) and to detail where they are in the Food and Drug Administration approval and regulatory process. Design: A PubMed search was performed using the phrase “Autologous Chondrocyte Implantation” alone and with the words second generation and third generation. Additionally, clinicaltrials.gov was searched for the names of the seven specific procedures and the parent company we...

  12. Tissue Engineering of Muscles and Cartilages Using Polyelectrolyte Hydrogels

    OpenAIRE

    Hyuck Joon Kwon

    2014-01-01

    The prevalent nature of osteoarthritis that causes the erosion of joint surfaces and loss of mobility and muscle dystrophy that weakens the musculoskeletal system and hampers locomotion underlies the importance of developing functional replacement or regeneration of muscle and cartilage tissues. Polyelectrolyte gels have high potential as cellular scaffolds due to characteristic properties similar to biological matrixes. A number of in vitro and in vivo studies demonstrated that polyelectroly...

  13. Composite Scaffolds for Cartilage Tissue Engineering

    OpenAIRE

    Moutos, Franklin T.; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines, and DNA fragments) with a biomaterial scaffold that function as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a cruc...

  14. Endoscopic trans-canal cartilage tympanoplsty

    OpenAIRE

    El Batawi, A; Galal, N; Harhash, K; Abd El Warith, A

    2016-01-01

    Introduction: The Tympanic Membrane (TM) plays an important role in the physiology and the patho-physiology of chronic inflammatory middle ear diseases. The TM perforations significantly impair the quality of life for millions of patients. With the advent of endoscopy, ear surgery has gained new momentum. We discuss in this study the opportunity of using the endoscopy not only as a cheaper alternative to the microscope, but also a superior and more effective tool in managing cases of CSOM (s...

  15. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    Science.gov (United States)

    Reinert, Tilo; Reibetanz, Uta; Schwertner, Michael; Vogt, Jürgen; Butz, Tilman; Sakellariou, Arthur

    2002-04-01

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures.

  16. The architecture of cartilage: Elemental maps and scanning transmission ion microscopy/tomography

    International Nuclear Information System (INIS)

    Articular cartilage is not just a jelly-like cover of the bone within the joints but a highly sophisticated architecture of hydrated macromolecules, collagen fibrils and cartilage cells. Influences on the physiological balance due to age-related or pathological changes can lead to malfunction and subsequently to degradation of the cartilage. Many activities in cartilage research are dealing with the architecture of joint cartilage but have limited access to elemental distributions. Nuclear microscopy is able to yield spatially resolved elemental concentrations, provides density information and can visualise the arrangement of the collagen fibres. The distribution of the cartilage matrix can be deduced from the elemental and density maps. The findings showed a varying content of collagen and proteoglycan between zones of different cell maturation. Zones of higher collagen content are characterised by aligned collagen fibres that can form tubular structures. Recently we focused on STIM tomography to investigate the three dimensional arrangement of the collagen structures

  17. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  18. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage.

    Science.gov (United States)

    Correro-Shahgaldian, Maria Rita; Introvigne, Jasmin; Ghayor, Chafik; Weber, Franz E; Gallo, Luigi M; Colombo, Vera

    2016-05-01

    Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents-measured by spectrophotometric assay and hydroxyproline assay-were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner's Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments. PMID:26502171

  19. Regeneration of articular cartilage using adipose stem cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-07-01

    Articular cartilage (AC) has limited potential for self-regeneration and damage to AC eventually leads to the development and progression of osteoarthritis (OA). Cell implantation strategies have emerged as a new treatment modality to regenerate AC. Adipose stem cells/adipose-derived stromal cells (ASCs) have gained attention due to their abundance, excellent proliferative potential, and minimal morbidity during harvest. These advantages lower the cost of cell therapy by circumventing time-consuming procedure of culture expansion. ASCs have drawn attention as a potential source for cartilage regeneration since the feasibility of chondrogenesis from ASCs was first reported. After several groups reported inferior chondrogenesis from ASCs, numerous methods were devised to overcome the intrinsic properties. Most in vivo animal studies have reported good results using predifferentiated or undifferentiated, autologous or allogeneic ASCs to regenerate cartilage in osteochondral defects or surgically-induced OA. In this review, we summarize literature on the isolation and in vitro differentiation processes of ASCs, in vivo studies to regenerate AC in osteochondral defects and OA using ASCs, and clinical applications of ASCs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1830-1844, 2016. PMID:26990234

  20. Supramolecular design of self-assembling nanofibers for cartilage regeneration.

    Science.gov (United States)

    Shah, Ramille N; Shah, Nirav A; Del Rosario Lim, Marc M; Hsieh, Caleb; Nuber, Gordon; Stupp, Samuel I

    2010-02-23

    Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coassembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor beta-1 (TGFbeta-1). Growth factor release studies showed that passive release of TGFbeta-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration. PMID:20133666

  1. Class characteristics of serrated knife stabs to cartilage.

    Science.gov (United States)

    Pounder, Derrick J; Cormack, Lesley; Broadbent, Elizabeth; Millar, John

    2011-06-01

    A total of 136 stab wounds were made in cartilage with 8 serrated knives and 72 stabs with 4 nonserrated knives. The walls of the stab track were documented by photography, cast with dental impression material, and the casts photographed. Staining the translucent cartilage surface with blue or green food dye improved photography. Serrated blades produced striations on cartilage in all stabbings. Patterns of blade serration beyond the broad categories of coarse and fine were recognizable. The overall pattern of striations was "irregularly regular." The distance between the blade-spine wound end and the first serration striation is a class characteristic of the knife which produced the defect, as are distances to the subsequent serration striations, which become ever close together and eventually merge near the blade-edge wound end. Serrated knives may be ground (scalloped) on either the left side or the right side of the blade and this class characteristic is identifiable from the walls of the wound track, on which the scalloped blade surface produces broad ridges and narrow striation valleys, with a reverse image on the opposing wound wall. A drop point serrated blade consistently produced an additional oblique mark angled from the blade-spine wound end, accurately reflecting the shape of the blade tip, and representing a chatter mark. PMID:20407362

  2. Hyaline articular cartilage dissected by papain: light and scanning electron microscopy and micromechanical studies.

    OpenAIRE

    O'Connor, P; Brereton, J D; Gardner, D.L.

    1984-01-01

    Papain was used to digest the hyaline femoral condylar cartilages of 30 adult Wistar rats. Matrix proteoglycan degradation was assessed by the light microscopy of paraffin sections stained with toluidine blue. The extent of surface structural change was estimated by scanning electron microscopy, and the structural integrity of the hyaline cartilage tested by the controlled impact of a sharp pin. The results demonstrated an early loss of cartilage metachromasia, increasing with time of papain ...

  3. The Effects of Extracellular Matrix on Tissue Engineering Construction of Cartilage in Vitro

    Institute of Scientific and Technical Information of China (English)

    YU Li; LI Fa-tao; TANG Ming-qiao; YAN Wei-qun

    2006-01-01

    The effects of various cartilage extracellular matrix on the construction of rabbit growth plate cartilage tissue in vitro were studied. The results show that collagen, proteoglycan and hyaluronic acid can promote the growth of cultured chondrocytes but the effects of various cartilage extracellular matrix(ECM)on chondrocyte differentiation are different. Collagen can promote the hypertrophy of chondrocytes while proteoglycan and hyaluronic acid inhibit the transition of mature chondrocytes into hypertrophied chondrocytes.

  4. Influence of Cartilage Extracellular Matrix Molecules on Cell Phenotype and Neocartilage Formation

    OpenAIRE

    Grogan, Shawn P.; Chen, Xian; Sovani, Sujata; Taniguchi, Noboru; Colwell, Clifford W.; Lotz, Martin K; D'Lima, Darryl D

    2013-01-01

    Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decor...

  5. Use of Environmental and Physical Stimuli in Cartilage Tissue Engineering Engineering

    OpenAIRE

    Das, Ruud

    2014-01-01

    markdownabstract__Abstract__ Articular cartilage enables friction-free, and thus painless, joint movement, while also functioning as a shock absorber. Although articular cartilage is made up of only few main components, natural healing fails to re-establish the native organization of the extracellular matrix and surgical intervention has only limited success in long term follow up. The relatively simple composition of articular cartilage, combined with a high prevalence of damage, make it an ...

  6. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    OpenAIRE

    M Pei; Li JT; Shoukry, M; Y Zhang

    2011-01-01

    Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the ...

  7. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue

    OpenAIRE

    Gelse, K; A Olk; Eichhorn, S.; B Swoboda; M Schoene; K Raum

    2010-01-01

    The increasing spectrum of different cartilage repair strategies requires the introduction of adequate non-destructive methods to analyse their outcome in-vivo, i.e. arthroscopically. The validity of non-destructive quantitative ultrasound biomicroscopy (UBM) was investigated in knee joints of five miniature pigs. After 12 weeks, six 5-mm defects, treated with different cartilage repair approaches, provided tissues with different structural qualities. Healthy articular cartilage from each con...

  8. Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue

    Directory of Open Access Journals (Sweden)

    K Gelse

    2010-02-01

    Full Text Available The increasing spectrum of different cartilage repair strategies requires the introduction of adequate non-destructive methods to analyse their outcome in-vivo, i.e. arthroscopically. The validity of non-destructive quantitative ultrasound biomicroscopy (UBM was investigated in knee joints of five miniature pigs. After 12 weeks, six 5-mm defects, treated with different cartilage repair approaches, provided tissues with different structural qualities. Healthy articular cartilage from each contralateral unoperated knee joint served as a control. The reflected and backscattered ultrasound signals were processed to estimate the integrated reflection coefficient (IRC and apparent integrated backscatter (AIB parameters. The cartilage repair tissues were additionally assessed biomechanically by cyclic indentation, histomorphologically and immunohistochemically. UBM allowed high-resolution visualisation of the structure of the joint surface and subchondral bone plate, as well as determination of the cartilage thickness and demonstrated distinct differences between healthy cartilage and the different repair cartilage tissues with significant higher IRC values and a steeper negative slope of the depth-dependent backscatter amplitude AIBslope for healthy cartilage. Multimodal analyses revealed associations between IRC and the indentation stiffness. Furthermore, AIBslope and AIB at the cartilage-bone boundary (AIBdC were associated with the quality of the repair matrices and the subchondral bone plate, respectively. This ex-vivo pilot study confirms that UBM can provide detailed imaging of articular cartilage and the subchondral bone interface also in repaired cartilage defects, and furthermore, contributes in certain aspects to a basal functional characterization of various forms of cartilage repair tissues. UBM could be further established to be applied arthroscopically in-vivo.

  9. Effects of local administration of hydrocortisone on cartilage degradation in vivo.

    OpenAIRE

    Sedgwick, A. D.; Sin, Y M; Moore, A R; Edwards, J C; Willoughby, D. A.

    1984-01-01

    The effect of corticosteroid on autologous minced cartilage transplanted into facsimile synovial cavities has been studied. The soluble form of hydrocortisone, as the sodium succinate, reduced proteoglycan loss from cartilage in a dose-dependent manner. In contrast, insoluble hydrocortisone acetate, if given directly into the cartilage-containing cavity, enhanced proteoglycan loss. Injection of the same dose of drug into the inflamed lining tissue reversed this effect. These findings suggest ...

  10. Transplantation of sheep embrionic stem cells in cartilage lesions: preliminary observations

    OpenAIRE

    Rocca, Stefano; Antuofermo, Elisabetta; Dattena, Maria; Manunta, Maria Lucia Gabriella M.; Pilichi, Susanna; Meloni, Floriana; Leoni, Antonio

    2007-01-01

    Once damaged, joint cartilage never completely regenerates. This is due to absence of vascularisation, slow cellular turnover and impossibility for inflammation mediators to reach the cartilage lesion. Even small lesions involve alteration in joint functionality and can cause invalidating pathologies. Treatment is complex and the surgical techniques used to repair the joint surfaces do not give satisfactory and durable results because the new tissue produced is fibrous cartilage. The...

  11. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair

    OpenAIRE

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for t...

  12. Long-range movement and fibril association of type X collagen within embryonic cartilage matrix.

    OpenAIRE

    Chen, Q A; Gibney, E; Fitch, J M; Linsenmayer, C; Schmid, T.M.; Linsenmayer, T F

    1990-01-01

    A recent immunoelectron microscopic study of type X collagen in developing cartilage gave results that could be explained by movement of the molecule from one region of the cartilage matrix to another, there becoming associated with preexisting collagen fibrils. In the present study, to test the feasibility of this model we incubated pieces of nonhypertrophic, embryonic chicken sternal cartilage (which has no endogenous type X collagen) in medium with type X collagen and then used immunofluor...

  13. Cathepsin-Mediated Alterations in TGFß-Related Signaling Underlie Disrupted Cartilage and Bone Maturation Associated With Impaired Lysosomal Targeting.

    Science.gov (United States)

    Flanagan-Steet, Heather; Aarnio, Megan; Kwan, Brian; Guihard, Pierre; Petrey, Aaron; Haskins, Mark; Blanchard, Frederic; Steet, Richard

    2016-03-01

    Hypersecretion of acid hydrolases is a hallmark feature of mucolipidosis II (MLII), a lysosomal storage disease caused by loss of carbohydrate-dependent lysosomal targeting. Inappropriate extracellular action of these hydrolases is proposed to contribute to skeletal pathogenesis, but the mechanisms that connect hydrolase activity to the onset of disease phenotypes remain poorly understood. Here we link extracellular cathepsin K activity to abnormal bone and cartilage development in MLII animals by demonstrating that it disrupts the balance of TGFß-related signaling during chondrogenesis. TGFß-like Smad2,3 signals are elevated and BMP-like Smad1,5,8 signals reduced in both feline and zebrafish MLII chondrocytes and osteoblasts, maintaining these cells in an immature state. Reducing either cathepsin K activity or expression of the transcriptional regulator Sox9a in MLII zebrafish significantly improved phenotypes. We further identify components of the large latent TGFß complex as novel targets of cathepsin K at neutral pH, providing a possible mechanism for enhanced Smad2,3 activation in vivo. These findings highlight the complexity of the skeletal disease associated with MLII and bring new insight to the role of secreted cathepsin proteases in cartilage development and growth factor regulation. © 2015 American Society for Bone and Mineral Research. PMID:26404503

  14. Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability

    Directory of Open Access Journals (Sweden)

    Pfeiffer-Jensen Mogens

    2007-04-01

    Full Text Available Abstract Background Loss of joint cartilage is a feature of destructive disease in JIA. The cartilage of most joints can be visualized with ultrasonography (US. Our present study focuses on discriminant validity of US in children. We studied reproducibility between and within a skilled and a non-skilled investigator of US assessment of cartilage thickness in small and large joints in healthy children. Methods and results In 11 healthy children (5 girls/6 boys, aged 9.6 years (9.3–10 years, 110 joints were examined. Cartilage thickness of the right and left hip, knee, ankle, 2nd metacarpophalangeal (MCP, and 2nd proximal interphalangeal (PIP joint independently. The joints were examined twice, two days apart by a skilled and a non-skilled investigator. Mean cartilage thickness in the five joints was: hip 2.59 ± 0.41, knee 3.67 ± 0.64, ankle 1.08 ± 0.31, MCP 1.52 ± 0.27 and PIP 0.73 ± 0.15 mm. We found the same mean differences in CTh of 0.6 mm in the inter-observer part with regard of the PIP joint. Within investigators (intra-observer, the smallest mean difference of CTh was found in the MCP joint with -0.004 (skilled and 0.013 mm (non-skilled. Conclusion We found the level of agreement between observers within a 95% Confidence Interval in assessment of cartilage thickness in hip-, knee-, ankle-, MCP-, and PIP joints in healthy children. Observer variability seems not to relate to joint size but to the positioning of the joints and the transducer. These factors seem to be of major importance for reproducible US measurements. The smallest difference in measurement of cartilage thickness between observers was found in the PIP joint, and within observers in the MCP joint and it seems that using EULAR standard US guidelines is feasible for a pediatric setting. The use of US in children is promising. Studies on larger groups of children are needed to confirm the validation and variability of US in children as well as determining the smallest

  15. Construction of tissue-engineered cartilage using human placenta-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Human placenta-derived stem cells (hPDSCs) were isolated by trypsinization and further induced into cartilage cells in vitro.The engineered cartilage was constructed by combining hPDSCs with collagen sponge and the cartilage formation was observed by implantation into nude mice.Results showed that hPDSCs featured mesenchymal stem cells and maintained proliferation in vitro for over 30 passages while remaining undifferentiated.All results indicated that hPDSCs have the potential to differentiate into functional cartilage cells in vitro when combined with collagen sponge,which provided experimental evidence for prospective clinical application.

  16. Extracorporeal shockwave therapy promotes chondrogenesis in cartilage tissue engineering: A hypothesis based on previous evidence.

    Science.gov (United States)

    Ji, Qiaodan; He, Chengqi

    2016-06-01

    The dearth of intrinsic regenerative capacity of articular cartilage makes it a challenge to deal with the cartilage defects. Among all the recommended clinical options, cartilage tissue engineering (CTE) which is highlighted of dominant features and less drawbacks for functional cartilage restoration, has been emphasized recently. Shock waves, a mode of therapeutic mechanical forces, utilized in extracorporeal shockwave therapy (ESWT), is hypothesized to enhance proliferation, chondrogenic differentiation, and cartilage extracellular matrix production of target cells seeded on bioactive scaffolds. The hypothesis is firstly based on cellular mechanotransduction by which cells convent the shockwave mechanical signals into biochemical responses via integrins, iron channels, cytoskeletal filaments, growth factor receptors and nuclei. Secondly, by modulating gene expression and up-regulating the release of various growth factors which are of vital importance in three-dimensional cartilage culture environment, ESWT holds a promising potential to favor the cell sources (e.g. chondrocytes and stem cells) to mimic the optimal functional cartilage. In all, on the basis of cellular mechanotransduction and previous evidence, the hypothesis is developed to support the beneficial effects of ESWT on chondrogenesis in CTE. If this hypothesis is confirmed, shockwaves may allow a better success in combination with other stimulating factors for cartilage repair. There is a paucity of studies investigating the assistant role of shockwave stimulation in CTE. Further research is required to elucidate the mechanisms, and explore effectiveness and appropriate protocols of this novel stimulative factor in cartilage tissue engineering. PMID:27142133

  17. Minced articular cartilage--basic science, surgical technique, and clinical application.

    Science.gov (United States)

    McCormick, Frank; Yanke, Adam; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Minced articular cartilage procedures are attractive surgical approaches for repairing articular cartilage, as they are 1-staged, autologous, and inserted on a carrier that can potentially be placed arthroscopically. The principle of mincing the autologous donor cartilage is to create a larger surface area for cartilage expansion. Placement on a scaffold carrier allows for a chondro-inductive and chondro-conductive milieu. Early animal and preclinical models have demonstrated hyaline-like tissue repair. Further work needs to be conducted in this promising approach. PMID:19011553

  18. Mouth and genital ulcers with inflamed cartilage syndrome: Case report and review of the published work

    Directory of Open Access Journals (Sweden)

    Yuka Kaneko

    2016-01-01

    Full Text Available Mouth and genital ulcers with inflamed cartilage (MAGIC syndrome are disease that fulfilled criteria for diagnosis of Behcet's disease (BD and relapsing polychondritis (RP. We report a 22-year-old Japanese woman presented with MAGIC syndrome and we described the clinicopathological characteristics of MAGIC syndrome based on a review of published cases from July 1985 to December 2015. In our case, the patient with oral aphthae, erythema nodosum, acne-like eruptions, uveitis, and polyarthritis fulfilled criteria for diagnosis of incomplete form of BD. The patient with uveitis, polyarthritis, and histological confirmation of chondritis also fulfilled criteria for diagnosis of RP. The patient was successfully treated with oral colchicine followed by prednisolone. The symptoms of MAGIC syndrome gradually disappeared, and the prednisolone dosage was gradually decreased and stopped. She has been in remission without active medication for a further 8 months. In the previous reports, some authors suggested that MAGIC syndrome was not a disease entity and might be RP occurring secondary to BD, another association of an autoimmune disease, or vasculitis with RP. However, the pathogenic association between MAGIC syndrome, BD, and RP is still unclear, and the number of reported cases of MAGIC syndrome is insufficient to establish a clear explanation. Therefore, further accumulation of data and careful observation of the clinical course are required to improve the understanding of MAGIC syndrome.

  19. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect.

    Science.gov (United States)

    Caminal, M; Peris, D; Fonseca, C; Barrachina, J; Codina, D; Rabanal, R M; Moll, X; Morist, A; García, F; Cairó, J J; Gòdia, F; Pla, A; Vives, J

    2016-08-01

    Current developments in tissue engineering strategies for articular cartilage regeneration focus on the design of supportive three-dimensional scaffolds and their use in combination with cells from different sources. The challenge of translating initial successes in small laboratory animals into the clinics involves pilot studies in large animal models, where safety and efficacy should be investigated during prolonged follow-up periods. Here we present, in a single study, the long-term (up to 1 year) effect of biocompatible porous scaffolds non-seeded and seeded with fresh ex vivo expanded autologous progenitor cells that were derived from three different cell sources [cartilage, fat and bone marrow (BM)] in order to evaluate their advantages as cartilage resurfacing agents. An ovine model of critical size osteochondral focal defect was used and the test items were implanted arthroscopically into the knees. Evidence of regeneration of hyaline quality tissue was observed at 6 and 12 months post-treatment with variable success depending on the cell source. Cartilage and BM-derived mesenchymal stromal cells (MSC), but not those derived from fat, resulted in the best quality of new cartilage, as judged qualitatively by magnetic resonance imaging and macroscopic assessment, and by histological quantitative scores. Given the limitations in sourcing cartilage tissue and the risk of donor site morbidity, BM emerges as a preferential source of MSC for novel cartilage resurfacing therapies of osteochondral defects using copolymeric poly-D,L-lactide-co-glycolide scaffolds. PMID:25595211

  20. Delayed Gadolinium-Enhanced Magnetic Resonance Imaging (dGEMRIC) of Hip Joint Cartilage: Better Cartilage Delineation after Intra-Articular than Intravenous Gadolinium Injection

    International Nuclear Information System (INIS)

    Purpose: To investigate and compare delayed gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in the hip joint using intravenous (i.v.) or ultrasound-guided intra-articular (i.a.) Gd-DTPA injection. Material and Methods: In 10 patients (50% males, mean age 58 years) with clinical and radiographic hip osteoarthritis (OA; Kellgren score II-III), MRI of the hip was performed twice on a clinical 1.5T MR scanner: On day 1, before and 90-180 min after 0.3 mmol/kg body weight i.v. Gd-DTPA and, on day 8, 90-180 min after ultrasound-guided i.a. injection of a 4 mmol/l Gd-DTPA solution. Coronal STIR, coronal T1 fat-saturated spin-echo, and a cartilage-sensitive gradient-echo sequence (3D T1 SPGR) in the sagittal plane were applied. Results: Both the post-i.v. and post-i.a. Gd-DTPA images showed significantly higher signal-to-noise (SNR) and contrast-to-noise (CNR) in the joint cartilage compared to the non-enhanced images ( P <0.002). I.a. Gd-DTPA provided significantly higher SNR and CNR compared to i.v. Gd-DTPA ( P <0.01). Furthermore, a better delineation of the cartilage in the synovial/cartilage zone and of the chondral/subchondral border was observed. Conclusion: The dGEMRIC MRI method markedly improved delineation of hip joint cartilage compared to non-enhanced MRI. The i.a. Gd-DTPA provided the best cartilage delineation. dGEMRIC is a clinically applicable MRI method that may improve identification of early subtle cartilage damage and the accuracy of volume measurements of hip joint cartilage

  1. Stereomicroscopic evaluation of the joint cartilage and bone tissue in osteoporosis

    Science.gov (United States)

    Vasile, Liliana; Torok, Rodica; Deleanu, Bogdan; Marchese, Cristian; Valeanu, Adina; Bodea, Rodica

    2012-06-01

    Aim of the study. Assessment by stereomicroscopy of the severity of lesions in osteoporotic bone at both sexes and to correlate micro-and macro-bone fracture due to low bone density values with the disease evolution. Material and method: The study material consists of fragments of bone from the femoral head, vertebral bone, costal and iliac crest biopsy obtained from patients aged over 70 years, female and male, treated in the County Hospital of Timisoara, Department of Orthopedics. For the purpose of studying the samples in stereomicroscopy and trough polarized light it has been used the Olympus Microscope SZ ×7 and an Olympus camera with 2,5 × digital zoom and a 3× optical zoom in the Vest Politechnic Univesity. Results and discussions: Subchondral bone presents osteolysis associated with a osteoporotic bone transformation. Pseudocystic chondrolisis was noted in the osteoarticular cartilage, in addition with areas of hemorrhagic postfractural necrosis. The osteoporotic bone exhibits ischemic necrosis and focal hemorrhagic necrosis adjacent fracture. Microporosity pattern of the bone observed by stereomicroscopy correspond to the spongy bone osteoporosis images. Morphometry of the bone spiculi reveals length of 154.88 and 498.32 μ. In men we found a greater thickness of bone trabeculi compared with bone texture porosity in women. The subchondral bone supports and fulfills an important role in transmitting forces from the overlying articular cartilage inducing the bone resorbtion. The femoral head fracture may be the final event of many accumulated bone microcracks. Conclusions: Bone fragility depends not only of the spongy bone but also of the cortical bone properties. Osteolysis produced by loss of balance in the process of remodeling in favor of bone resorption leads to the thinning of the subchondral bone at both sexes.

  2. Cartilage Tympanoplasty: Is it more effective than temporalis fascia grafting for tympanoplasty?

    Directory of Open Access Journals (Sweden)

    Shyamakant Prasad

    2015-12-01

    Full Text Available Chronic suppurative otitis media is a disease which is a major cause of morbidity in our country. A large proportion of these patients have safe (mucosal chronic suppurative otitis media. It leads to otorrhoea and deafness which hampers productivity of many individuals. Otolaryngologist play an important role in its correction and amelioration by con-servative or operative procedures. One such procedure is tympanoplasty. AIMS AND OBJECTIVES 1. To evaluate improvement in hearing following tympanoplasty using temporalis fascia graft and cartilage island graft at 8 weeks after surgery. 2. Graft status after tympanoplasty using temporalis fascia graft and cartilage island graft. 3. Assess other complications after surgery in both groups. This study was conducted in the Department of Otorhinolaryngology and Head and Neck Sur-gery, ST. STEPHEN’S HOSPITAL, DELHI between November 2010 to November 2012. INCLUSION CRITERIA 1. Includes patient in the age group of 20-40 years, having good general physical condition. 2. No evidence of active infection in nose, throat or paranasal sinuses, central perforation of pars tensa of the tympanic membrane with dry ear for a minimum period of 3 weeks be-fore the day of operation. 3. Patients having good eustachian tube function with good cochlear reserve. Exclusion criteria: 1. Patients having blocked eustachian tube, with polyp, granulations or cholesteatoma 2. Failed myringoplasty in the same ear 3. Otogenic intra cranial complications in the past 4. Evidence of otitis externa or otomycosis 5. Per operative ossicular discontinuity, fixed foot plate 6. Patients with evidence of focal sepsis

  3. Osteochondritis dissecans (OCD), an endoplasmic reticulum storage disease?

    DEFF Research Database (Denmark)

    Skagen, Peter Storgaard; Horn, T; Kruse, H A;

    2011-01-01

    Osteochondritis dissecans (OCD) fragments, cartilage and blood from four patients were used for morphological and molecular analysis. Controls included articular cartilage and blood samples from healthy individuals. Light microscopy and transmission electron microscopy (TEM) showed abnormalities ...... polymorphism was found within the COL2A1 gene for one patient. We suggest that OCD lesions are caused by an alteration in chondrocyte matrix synthesis causing an endoplasmic reticulum storage disease phenotype, which disturbs or abrupts endochondral ossification....

  4. DISEASES

    DEFF Research Database (Denmark)

    Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi;

    2015-01-01

    Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of...... human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not...... stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The...

  5. Role Of Shark Cartilage In Reducing Changes In Gene Expression Of Some Enzymes Induced By N-Nitroso-N-Methyl Urea In Prostate Of Irradiated Rats

    International Nuclear Information System (INIS)

    There is overwhelming evidence to indicate that free radicals cause oxidative damage to lipids, proteins and nucleic acids and are involved in the pathogenesis of several diseases. Therefore, antioxidants, which can neutralize free radicals, may be of central importance in the prevention of these diseases. Recent studies demonstrated the role of shark cartilage in protecting cells against reactive oxygen species induced DNA damage and mutagenesis. Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GSHPx), glutathione-S-transferase (GST-π) and super oxide dismutase (SOD), which protects against cellular and molecular damage caused by the reactive oxygen metabolites (ROMs).In this study, the effect of shark cartilage against the N-nitroso-N-methyl urea + testosterone and/or gamma radiation-induced mutagens and carcinogens in rat prostate were investigated.The data showed significant decrease in gene expression of manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GSHPx1) , enzyme activities of total superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) and non-significant increase in glutathione-S-transferase (GST-π) in N-nitroso-N-methyl urea + testosterone, N-nitroso-N-methyl urea + testosterone + gamma radiation groups as compared to control group.The results revealed that shark cartilage administration afford a significant protective effect against N-nitroso-N-methyl urea + testosterone and/or gamma radiation- induced oxidative injury.

  6. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    DEFF Research Database (Denmark)

    Wang, Bijue; Chen, Pingping; Jensen, Anne-Christine Bay; Karsdal, Morten A; Madsen, Suzi H; Sondergaard, Bodil-Cecilie; Zheng, Qinlong; Qvist, Per

    2009-01-01

    . We found that (1) aggrecanase-derived aggrecan fragments are released in the early (day 2-7) and mid phase (day 9-14) into the supernatant from bovine explants cultures stimulated with catabolic cytokines, (2) the release of NITEGE(373 )neo-epitopes are delayed compared to the corresponding (374......BACKGROUND: Progressive loss of articular cartilage is a central hallmark in many joint disease, however, the relative importance of individual proteolytic pathways leading to cartilage erosion is at present unknown. We therefore investigated the time-dependant release ex vivo of MMP- and...... cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo...

  7. Multi-parametric MRI characterization of enzymatically degraded articular cartilage.

    Science.gov (United States)

    Nissi, Mikko J; Salo, Elli-Noora; Tiitu, Virpi; Liimatainen, Timo; Michaeli, Shalom; Mangia, Silvia; Ellermann, Jutta; Nieminen, Miika T

    2016-07-01

    Several laboratory and rotating frame quantitative MRI parameters were evaluated and compared for detection of changes in articular cartilage following selective enzymatic digestion. Bovine osteochondral specimens were subjected to 44 h incubation in control medium or in collagenase or chondroitinase ABC to induce superficial collagen or proteoglycan (glycosaminoglycan) alterations. The samples were scanned at 9.4 T for T1 , T1 Gd (dGEMRIC), T2 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , TRAFF2 , and T1 sat relaxation times and for magnetization transfer ratio (MTR). For reference, glycosaminoglycan content, collagen fibril orientation and biomechanical properties were determined. Changes primarily in the superficial cartilage were noted after enzymatic degradation. Most of the studied parameters were sensitive to the destruction of collagen network, whereas glycosaminoglycan depletion was detected only by native T1 and T1 Gd relaxation time constants throughout the tissue and by MTR superficially. T1 , adiabatic T1 ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat correlated significantly with the biomechanical properties while T1 Gd correlated with glycosaminoglycan staining. The findings indicated that most of the studied MRI parameters were sensitive to both glycosaminoglycan content and collagen network integrity, with changes due to enzymatic treatment detected primarily in the superficial tissue. Strong correlation of T1 , adiabatic T1ρ , adiabatic T2 ρ , continuous-wave T1 ρ , and T1 sat with the altered biomechanical properties, reflects that these parameters were sensitive to critical functional properties of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1111-1120, 2016. PMID:26662555

  8. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    Science.gov (United States)

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  9. Rib cartilage grafting in upper limb surgery: an overview

    Directory of Open Access Journals (Sweden)

    Obert Laurent

    2015-01-01

    Full Text Available Introduction: Used routinely in maxillofacial reconstructive surgery, the chondrocostal graft is also used in hand surgery. The purpose of this overview was to analyze at long follow-up the radiological and histological evolution of this autograft, in the hand and wrist surgery. Materials and methods: Since 1992, 144 patients have benefitted from a chondrocostal autograft: 116 osteoarthritis of the thumb carpometacarpal joint, 18 radioscaphoid arthritis, six articular malunions of the distal radius, four kienbock, and four traumatic loss of cartilage of the PIP joint. Magnetic Resonance Imaging (MRI was performed in 19 patients and histological study in 12 patients with a mean follow-up of 68 months (4–159. Results: Whatever the indication, the reconstruction by a chondrocostal or ostochondrocostal graft has allowed us to obtain satisfactory clinical results at long follow-up. The main question was the viability of the graft. The radiological study has shown the non-wear of the graft and a certain degree of ossification. The MRI confirmed a very small degree of osseous metaplasia but its viability. The biopsies showed a neo-vascularization of the cartilage. Conclusion: Despite the strong mechanical strain in the hand and wrist, the chondrocostal graft is a biological arthroplasty, trustworthy and secure at long time even if it can cause infrequent complications inherent to this type of surgery. Despite the inevitable histological modification, the cartilage remains alive and is of satisfactory quality at long term follow-up and fulfilling the requirements for interposition and reconstruction of an articular surface.

  10. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-01-01

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines. PMID:27232665

  11. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  12. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    Science.gov (United States)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  13. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    Science.gov (United States)

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  14. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    Science.gov (United States)

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program. PMID:26240062

  15. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    OpenAIRE

    P. Koshy; Henderson, N; Logan, C.; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed.

  16. An effective technique of helical cartilage scoring for correction of prominent ear deformity

    Directory of Open Access Journals (Sweden)

    Ashok Raj Koul

    2011-01-01

    Full Text Available Otoplasty has a long history starting from 1948, when Dieffenbach described it first. Multiple technical modifications have been reported since. We propose a technique of scoring the helical cartilage without a visible incision on the lateral aspect of pinna for easier remolding of cartilage through posterior approach. The results have been excellent.

  17. An effective technique of helical cartilage scoring for correction of prominent ear deformity

    OpenAIRE

    Ashok Raj Koul; Patil, Rahul K.

    2011-01-01

    Otoplasty has a long history starting from 1948, when Dieffenbach described it first. Multiple technical modifications have been reported since. We propose a technique of scoring the helical cartilage without a visible incision on the lateral aspect of pinna for easier remolding of cartilage through posterior approach. The results have been excellent.

  18. Treatment of deep hyalin cartilage defects with autologous perichondrial grafts.

    Science.gov (United States)

    Bruns, J; Steinhagen, J

    2003-07-01

    Perichondrial transplantation was performed in 29 patients suffering from a deep chondral lesion with different etiologies. Only those patients with a cartilage lesion in the knee joint were included. Patients were initially and postoperatively examined using the Lysholm- and HSS-Score. In most of the patients (20/29) trauma and the recurrence of osteochondrosis dissecans (6/29) were the cause of the cartilage lesion. Most often the medial femoral condyle (19/29) and, secondly, the lateral femoral condyle (5/29) were involved. In six patients additional therapeutic measures (ACL-plasty, n = 2; high tibial osteotomy because of varus mal-alignment, n = 4) had to be adopted. Follow-up examination was possible in 26/29 patients after a minimum postoperative period of 12 months. All patients exhibited a distinct and significant increase in both the Lysholm and the HSS-score. A follow-up after a minimum of 24 months was possible in 13/29 patients. Even these patients exhibited a distinct and significant improvement. Multiple follow-up examinations in 9/29 patients demonstrated maintenance of the first postoperative results obtained after one postoperative year for a maximum of 49 months in most of the patients. Only in one female patient, implantation of a semi-constrained total knee replacement was necessary because of osteoarthrosis resulting from crystal arthropathy (chondrocalcinosis). It was possible to obtain biopsies from three patients at the time osteosynthetic material was removed. In all cases hyaline-like cartilage was histologically observed. In the treatment of selected patients suffering from a circumscript cartilaginous lesion resulting from trauma or the recurrence of osteochondritis dissecans with a concomitant cartilage lesion but without major signs of osteoarthritis, perichondrial grafting can achieve acceptable clinical results, after a short follow-up period. In order to achieve satisfying results a good selection of patients and additional

  19. Cartilage turnover reflected by metabolic processing of type II collagen

    DEFF Research Database (Denmark)

    Gudmann, Karoline Natasja Stæhr; Wang, Jianxia; Hoielt, Sabine;

    2014-01-01

    The aim of this study was to enable measurement of cartilage formation by a novel biomarker of type II collagen formation. The competitive enzyme-linked immunosorbent assay (ELISA) Pro-C2 was developed and characterized for assessment of the beta splice variant of type II procollagen (PIIBNP). This...... our models. To our knowledge this is the first assay, which is able to specifically evaluate PIIBNP excretion. The Pro-C2 assay seems to provide a promising and novel marker of type II collagen formation....

  20. Effects of cigarette smoke on the Meckel's cartilage of rat fetus: morphologic, morphometric and stereologic study.

    Science.gov (United States)

    Brandini, Daniela Atili; Sala, Miguel Angel; Lopes, Ruberval Armando; Semprini, Marisa; Contrera, Mary Garcia Duarte

    2005-01-01

    The purpose of this study was to investigate the effects of cigarette smoke on the development of the embryo mandible (Meckel's) cartilage in rat fetuses. When inhaled by female Wistar rats between the 9th and the 12th day of pregnancy, cigarette smoke (5 cigarettes a day) caused intrauterine growth retardation, providing smaller fetuses and placentas. In fetuses from the experimental group, the histopathologic examination revealed a poorly developed Meckel's cartilage with smaller chondroblasts showing a scanty cytoplasm with spherical and paler central nuclei, as well as more abundant cartilage matrix. Morphometric analysis revealed that Meckel's cartilage lacunae were smaller in the fetuses from the experimental group, although not showing any remarkable alteration in shape. The results suggested that inhalation of cigarette smoke by pregnant rats during the organogenic period induced growth retardation and delayed cellular differentiation in rat fetal Meckel's cartilage. PMID:16113936

  1. Articular cartilage damage with intramedullary lesion (bone bruise) in anterior cruciate ligament rupture

    International Nuclear Information System (INIS)

    We evaluated the relationship between the intramedullary lesion on MRI and cartilage damage in patients associated with acute anterior cruciate ligament (ACL) rupture. Thirty-two cases documented by MRI and arthroscopy within one month from injury underwent ACL reconstruction using ST-G, and arthroscopy was performed again after surgery. The mean term between reconstruction and postoperative arthroscopy was twelve months. The cartilage damage on arthroscopy was compared with the intramedullary lesion on MRI. Cartilage damage was observed in 9 cases (28.1%) during the initial arthroscopy and in 16 cases (50.0%) during the second arthroscopy. Intramedullary lesion was detected in all 32 cases (total: 73 lesions) on MRI. Intramedullary lesion leading to cartilage damage was common in the geographic-type lateral femoral condyle. There was significant difference between the lateral meniscus tear and the cartilage damage of the lateral compartment. (author)

  2. Articular cartilage damage with intramedullary lesion (bone bruise) in anterior cruciate ligament rupture

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Shuya; Ohdera, Toshihiro; Tokunaga, Masami; Hiroshima, Shiro; Yoshimoto, Eiji [Fukuoka Orthopaedic Hospital (Japan)

    2002-09-01

    We evaluated the relationship between the intramedullary lesion on MRI and cartilage damage in patients associated with acute anterior cruciate ligament (ACL) rupture. Thirty-two cases documented by MRI and arthroscopy within one month from injury underwent ACL reconstruction using ST-G, and arthroscopy was performed again after surgery. The mean term between reconstruction and postoperative arthroscopy was twelve months. The cartilage damage on arthroscopy was compared with the intramedullary lesion on MRI. Cartilage damage was observed in 9 cases (28.1%) during the initial arthroscopy and in 16 cases (50.0%) during the second arthroscopy. Intramedullary lesion was detected in all 32 cases (total: 73 lesions) on MRI. Intramedullary lesion leading to cartilage damage was common in the geographic-type lateral femoral condyle. There was significant difference between the lateral meniscus tear and the cartilage damage of the lateral compartment. (author)

  3. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    International Nuclear Information System (INIS)

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  4. Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration.

    Science.gov (United States)

    Li, Xuezhou; Ding, Jianxun; Zhang, Zhengzheng; Yang, Modi; Yu, Jiakuo; Wang, Jincheng; Chang, Fei; Chen, Xuesi

    2016-03-01

    Recently, cartilage tissue engineering (CTE) attracts increasing attention in cartilage defect repair. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a thermogel of poly(L-lactide-co-glycolide)-poly(ethylene glycol)-poly(L-lactide-co-glycolide) (PLGA-PEG-PLGA) to fabricate an appropriate microenvironment of bone marrow mesenchymal stem cells (BMSCs) for effective cartilage regeneration. More integrative and smoother repaired articular surface, more abundant characteristic glycosaminoglycans (GAGs) and collagen II (COL II), and less degeneration of normal cartilage were obtained in the KGN and BMSCs coloaded thermogel group in vivo. In conclusion, the KGN-loaded PLGA-PEG-PLGA thermogel can be utilized as an alternative support for BMSCs to regenerate damaged cartilage in vivo. PMID:26844837

  5. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC; Hvid, I; Sumner, DR; Weinans, H

    2001-01-01

    the elastic modulus at the apparent level. The volume fraction of trabecular bone was higher in the medial compartment compared to the lateral compartment of tibiae with cartilage damage (but not the controls), suggesting that mechanical properties were preserved in part at the apparent level by an......In osteoarthritis, one postulate is that changes in the mechanical properties of the subchondral bone layer result in cartilage damage. The goal of this study was to examine changes in subchondral trabecular bone properties at the calcified tissue level in the early stages of cartilage damage....... Finite element models were constructed from microCT scans of trabectilar bone from the proximal tibia of donors with mild cartilage damage and from normal donors. In the donors with cartilage damage, macroscopic damage was present only in the medial compartment. The effective tissue elastic moduli were...

  6. Comparative anatomy of the vomeronasal cartilage in mammals: mink, cat, dog, pig, cow and horse.

    Science.gov (United States)

    Salazar, I; Sánchez Quinteiro, P S; Cifuentes, J M

    1995-07-01

    The vomeronasal cartilages of mink, cat, dog, pig, cow and horse were studied by dissection, microdissection and by means of series of transverse sections. In all the species studied the cartilage is of hyaline type and the medial sheet is well-defined and perfectly moulded to the adjacent bone. However, interspecies differences are apparent in the manner in which the medial sheet associates and eventually fuses with the cartilage of the incisive duct; the morphology of the horse vomeronasal cartilage is particularly distinctive in this respect. The lateral sheet of the vomeronasal cartilage, although always present, has a different arrangement in each species studied. Similarly, the gaps in the lateral sheet (corresponding to the opening of the vomeronasal organ) differ among the species studied in form, location and number. PMID:7645743

  7. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS

    OpenAIRE

    Bleil, Janine; Sieper, Joachim; Maier, Rene; Schlichting, Uwe; Hempfing, Axel; Syrbe, Uta; Appel, Heiner

    2015-01-01

    Introduction In ankylosing spondylitis (AS), joint remodeling leading to joint ankylosis involves cartilage fusion. Here, we analyzed whether chondrocyte hypertrophy is involved in cartilage fusion and subsequent joint remodeling in AS. Methods We assessed the expression of chondrocyte hypertrophy markers runt-related transcription factor 2 (Runx2), type X collagen (COL10), matrix metalloproteinase 13 (MMP13), osteocalcin and beta-catenin and the expression of positive bone morphogenic protei...

  8. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    Science.gov (United States)

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases. PMID:27278552

  9. The study on the mechanical characteristics of articular cartilage in simulated microgravity

    Institute of Scientific and Technical Information of China (English)

    Hai-Jun Niu; Qing Wang; Yue-Xiang Wang; Ang Li; Lian-Wen Sun; Yan Yan; Fan Fan; De-Yu Li; Yu-Bo Fan

    2012-01-01

    The microgravity environment of a long-term space flight may induce acute changes in an astronaut's musculo-skeletal systems.This study explores the effects of simulated microgravity on the mechanical characteristics of articular cartilage.Six rats underwent tail suspension for 14 days and six additional rats were kept under normal earth gravity as controls.Swelling strains were measured using high-frequency ultrasound in all cartilage samples subject to osmotic loading.Site-specific swelling strain data were used in a triphasic theoretical model of cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix.No severe surface irregularities were found in the cartilage samples obtained from the control or tail-suspended groups.For the tail-suspended group,the thickness of the cartilage at a specified site,as determined by ultrasound echo,showed a minor decrease.The uniaxial modulus of articular cartilage at the specified site decreased significantly,from (6.31 ± 3.37) MPa to (5.05 ± 2.98) MPa (p < 0.05).The histology-stained image of a cartilage sample also showed a reduced number of chondrocytes and decreased degree of matrix staining.These results demonstrated that the 14 d simulated microgravity induced significant effects on the mechanical characteristics of articular cartilage.This study is the first attempt to explore the effects of simulated microgravity on the mechanical characteristics of articular cartilage using an osmotic loading method and a triphasic model.The conclusions may provide reference information for manned space flights and a better understanding of the effects of microgravity on the skeletal system.

  10. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis.

    Science.gov (United States)

    Goldring, Steven R

    2012-08-01

    The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. The changes in periarticular bone tend to occur very early in the development of OA. Although chondrocytes also have the capacity to modulate their functional state in response to loading, the capacity of these cells to repair and modify their surrounding extracellular matrix is relatively limited in comparison to the adjacent subchondral bone. This differential adaptive capacity likely underlies the more rapid appearance of detectable skeletal changes in OA in comparison to the articular cartilage. The OA changes in periarticular bone include increases in subchondral cortical bone thickness, gradual decreases in subchondral trabeular bone mass, formation of marginal joint osteophytes, development of bone cysts and advancement of the zone of calcified cartilage between the articular cartilage and subchondral bone. The expansion of the zone of calcified cartilage contributes to overall thinning of the articular cartilage. The mechanisms involved in this process include the release of soluble mediators from chondrocytes in the deep zones of the articular cartilage and/or the influences of microcracks that have initiated focal remodeling in the calcified cartilage and subchondral bone in an attempt to repair the microdamage. There is the need for further studies to define the pathophysiological mechanisms involved in the interaction between subchondral bone and articular cartilage and for applying this information to the development of therapeutic interventions to improve the

  11. The cartilage of the third eyelid: a comparative macroscopical and histological study in domestic animals.

    Science.gov (United States)

    Schlegel, T; Brehm, H; Amselgruber, W M

    2001-03-01

    The purpose of this comparative study was to evaluate morphological differences between the cartilages of the third eyelid in dogs, cats, pigs, cows, small ruminants and horses. For that reason a total of 83 third eyelids were investigated. By the aid of a modified maceration technique, the three-dimensional form of the cartilage could be demonstrated for the first time. Generally, the cartilage consists of a long narrow appendix which is followed by a variable crossbar. In dogs the appendix is cone shaped in the basal end and extends to form a triangular plate. The former is crescent-like in shape and has a marked bulge. The cartilage of the cat consists of an appendix which is enlarged in the proximal end as compared to the dog. The crossbar resembles a reverse s-form with ends tapering off to a point. In contrast pig and cow cartilage possess a typical anchorform whereas the cartilage of small ruminants starts with a thin rod which extends in a slightly curved form ending in an oval plate. The crossbar is crescent-like in these animals. In the horse the base of the cartilage is surrounded by a massive fatty tissue and the crossbar has a characteristic hook-form. Moreover, there are significant differences in regard to the quality of the cartilage, especially concerning the presence and distribution of elastic fibres. In cats and horses the elastic fibres of the adjacent connective tissue penetrate the perichondrium. Additionally, the centre of the cartilage shows a very dense network consisting of fine elastic fibres. In dogs, pigs, cows and small ruminants the cartilage consists of hyaline quality and only in the neighbouring connective tissue are some elastic fibres detectable. PMID:11325064

  12. Cdc42 is critical for cartilage development during endochondral ossification.

    Science.gov (United States)

    Suzuki, Wataru; Yamada, Atsushi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Harada, Takeshi; Nakayama, Mutsuko; Nagahama, Ryo; Maki, Koutaro; Takeda, Shu; Yamamoto, Matsuo; Aiba, Atsu; Baba, Kazuyoshi; Kamijo, Ryutaro

    2015-01-01

    Cdc42 is a widely expressed protein that belongs to the family of Rho GTPases and controls a broad variety of signal transduction pathways in a variety of cell types. To investigate the physiological functions of Cdc42 during cartilage development, we generated chondrocyte-specific inactivated Cdc42 mutant mice (Cdc42(fl/fl); Col2-Cre). The gross morphology of mutant neonates showed shorter limbs and body as compared with the control mice (Cdc42(fl/fl)). Skeletal preparations stained with alcian blue and alizarin red also revealed that the body and the long bone length of the mutants were shorter than those of the control mice. Furthermore, severe defects were found in growth plate chondrocytes in the femur sections of mutant mice, characterized by a reduced proliferating zone height, wider hypertrophic zone, and loss of columnar organization in proliferating chondrocytes. The expression levels of chondrocyte marker genes, such as Col2, Col10, and Mmp13, in mutant mice were decreased as compared with the control mice. Mineralization of trabecular bones in the femur sections was also decreased in the mutants as compared with control mice, whereas osteoid volume was increased. Together these results suggested that chondrocyte proliferation and differentiation in growth plates in the present mutant mice were not normally organized, which contributed to abnormal bone formation. We concluded that Cdc42 is essential for cartilage development during endochondral bone formation. PMID:25343271

  13. Permeability of cartilage to neutral and charged polysaccharides

    International Nuclear Information System (INIS)

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 μ) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged 3H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of 3H-inulin and 14C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin

  14. pH-dependent mechanisms of electromechanical cartilage reshaping

    Science.gov (United States)

    Wu, Edward C.; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Karimi, Koohyar; Hamamoto, Ashley; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping of cartilage is a novel modality that has significant clinical applications in otolaryngology and plastic surgery. Although EMR dosimetry has been extensively studied, little is known about the mechanisms of EMR, of which local tissue pH changes is believed to play a role. In this study, rabbit nasal septal cartilage is subject to a number of experiments aimed at elucidating pH-related changes using phenol red. The lateral extent and magnitude of pH change as well as factors that impact pH change are studied. Increasing voltage and application appear to increase the area and intensity of color change. With parameters known to produce thermal tissue injury, a transitional zone likely representing a confluence of acid-base products is noted in the region around the bend axis. Furthermore, rehydration and pH indicator application time do not appear to play a role in the quality of pH change. These simple experiments may provide insight into the role of pH changes in EMR that may allow correlation of dosimetry to tissue damage, further optimizing the clinical potential of EMR.

  15. A simple measuring device for laboratory indentation tests on cartilage.

    Science.gov (United States)

    Koeller, Wolfgang; Kunow, Julius; Ostermeyer, Oliver; Stomberg, Peter; Boos, Carsten; Russlies, Martin

    2008-04-01

    Mechanical testing of articular cartilage and repair tissue enables judgment of their capacity in withstanding mechanical loading. In the past, different methods have been developed requiring a complex technical setup and extensive data analysis. Therefore, the aim of the present project was to build up a simple measuring apparatus for laboratory indentation tests. The device consists of an incremental optical displacement transducer with a sleeve bearing guided plunger and a spherical tip made of polished steel (radius: 0.75 or 1.5 mm), a sensitive load cell and a stiff frame. The indentation force results from the plunger's gravity plus the force of the spring inside the displacement transducer and levels at 0.170 N or 0.765 N. The displacement transducer is fixed to the frame via the load cell that enables one to detect the initial contact of the tip with the tissue. The load cell has a standard uncertainty of 2 mN and the displacement transducer of 1 microm. From indentation-creep tests, a "0.25-s elastic modulus" is calculated. Measurements on thin rubber sheets were carried out to determine the quality of the measuring device. Compression tests on cylinders made of these rubber sheets yielded control data, and a good agreement with the "0.25-s elastic modulus" was found. Indentation tests on cartilage at different sites of sheep femoral condyles yielded a very good repeatability of the measurement results (+/-7.5%). PMID:18979621

  16. Cartilage Oligomeric Matrix Protein Increases in Photodamaged Skin.

    Science.gov (United States)

    Kobayashi, Masaki; Kawabata, Keigo; Kusaka-Kikushima, Ayumi; Sugiyama, Yoshinori; Mabuchi, Tomotaka; Takekoshi, Susumu; Miyasaka, Muneo; Ozawa, Akira; Sakai, Shingo

    2016-06-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage. Recent studies have described COMP as a pathogenic factor that promotes collagen deposition in fibrotic skin disorders such as scleroderma and keloid skin. Although collagen, a major dermis component, is thought to decrease in photoaged skin, recent reports have demonstrated the presence of tightly packed collagen fibrils with a structural resemblance to fibrosis in the papillary dermis of photoaged skin. Here we examined how photoaging damage relates to COMP expression and localization in photoaged skin. In situ hybridization revealed an increase in COMP-mRNA-positive cells with the progress of photoaging in preauricular skin (sun-exposed skin). The signal intensity of immunostaining for COMP increased with photoaging in not only the papillary dermis but also the reticular dermis affected by advancing solar elastosis. Immunoelectron microscopy detected the colocalization of COMP with both elastotic materials and collagen fibrils in photoaged skin. Ultraviolet light A irradiation of human dermal fibroblasts induced COMP expression at both the mRNA and protein levels. Ultraviolet light A-induced COMP expression was inhibited by an anti-transforming growth factor-β antibody or SB431542, an activin receptor-like kinase 5 inhibitor. These results suggest that the transforming growth factor-β-mediated upregulation of COMP expression may contribute to the modulation of dermal extracellular matrix in the photoaging process. PMID:26968261

  17. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x1070 s-1 and Ea=4.5x105 J mole-1, were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  18. Delivering Agents Locally into Articular Cartilage by Intense MHz Ultrasound

    Science.gov (United States)

    Nieminen, Heikki J.; Ylitalo, Tuomo; Suuronen, Jussi-Petteri; Rahunen, Krista; Salmi, Ari; Saarakkala, Simo; Serimaa, Ritva; Hæggström, Edward

    2015-01-01

    There is no cure for osteoarthritis. Current drug delivery relies on systemic delivery or injections into the joint. Because articular cartilage (AC) degeneration can be local and drug exposure outside the lesion can cause adverse effects, localized drug delivery could permit new drug treatment strategies. We investigated whether intense megahertz ultrasound (frequency: 1.138 MHz, peak positive pressure: 2.7 MPa, Ispta: 5 W/cm2, beam width: 5.7 mm at −6 dB, duty cycle: 5%, pulse repetition frequency: 285 Hz, mechanical index: 1.1) can deliver agents into AC without damaging it. Using ultrasound, we delivered a drug surrogate down to a depth corresponding to 53% depth of the AC thickness without causing histologically detectable damage to the AC. This may be important because early osteoarthritis typically exhibits histopathologic changes in the superficial AC. In conclusion, we identify intense megahertz ultrasound as a technique that potentially enables localized non-destructive delivery of osteoarthritis drugs or drug carriers into articular cartilage. PMID:25922135

  19. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  20. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  1. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    International Nuclear Information System (INIS)

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  2. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  3. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  4. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues.

    Science.gov (United States)

    Jaipaew, Jirayut; Wangkulangkul, Piyanun; Meesane, Jirut; Raungrut, Pritsana; Puttawibul, Puttisak

    2016-07-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. PMID:27127042

  5. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage

    CERN Document Server

    Cillero-Pastor, Berta; Kiss, Andras; Blanco, Francisco J; Heeren, Ron M A

    2013-01-01

    Osteoarthritis (OA) is a pathology that ultimately causes joint destruction. The cartilage is one of the principal affected tissues. Alterations in the lipid mediators and an imbalance in the metabolism of cells that form the cartilage (chondrocytes) have been described as contributors to the OA development. In this study, we have studied the distribution of lipids and chemical elements in healthy and OA human cartilage. Time of flight-secondary ion mass spectrometry (TOF-SIMS) allows us to study the spatial distribution of molecules at a high resolution on a tissue section. TOF-SIMS revealed a specific peak profile that distinguishes healthy from OA cartilages. The spatial distribution of cholesterol-related peaks exhibited a remarkable difference between healthy and OA cartilages. A distinctive colocalization of cholesterol and other lipids in the superficial area of the cartilage was found. A higher intensity of oleic acid and other fatty acids in the OA cartilages exhibited a similar localization. On the ...

  6. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells.

    Science.gov (United States)

    Cleary, Mairéad A; van Osch, Gerjo J V M; Brama, Pieter A; Hellingman, Catharine A; Narcisi, Roberto

    2015-04-01

    Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor-β (TGFβ) and wingless-type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future. PMID:23576364

  7. Enzymatic digestion of articular cartilage results in viscoelasticity changes that are consistent with polymer dynamics mechanisms

    Directory of Open Access Journals (Sweden)

    June Ronald K

    2009-11-01

    Full Text Available Abstract Background Cartilage degeneration via osteoarthritis affects millions of elderly people worldwide, yet the specific contributions of matrix biopolymers toward cartilage viscoelastic properties remain unknown despite 30 years of research. Polymer dynamics theory may enable such an understanding, and predicts that cartilage stress-relaxation will proceed faster when the average polymer length is shortened. Methods This study tested whether the predictions of polymer dynamics were consistent with changes in cartilage mechanics caused by enzymatic digestion of specific cartilage extracellular matrix molecules. Bovine calf cartilage explants were cultured overnight before being immersed in type IV collagenase, bacterial hyaluronidase, or control solutions. Stress-relaxation and cyclical loading tests were performed after 0, 1, and 2 days of incubation. Results Stress-relaxation proceeded faster following enzymatic digestion by collagenase and bacterial hyaluronidase after 1 day of incubation (both p ≤ 0.01. The storage and loss moduli at frequencies of 1 Hz and above were smaller after 1 day of digestion by collagenase and bacterial hyaluronidase (all p ≤ 0.02. Conclusion These results demonstrate that enzymatic digestion alters cartilage viscoelastic properties in a manner consistent with polymer dynamics mechanisms. Future studies may expand the use of polymer dynamics as a microstructural model for understanding the contributions of specific matrix molecules toward tissue-level viscoelastic properties.

  8. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    International Nuclear Information System (INIS)

    To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)

  9. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints

    International Nuclear Information System (INIS)

    We have previously described a technology based on diffuse reflectance of broadband light for measuring joint articular cartilage thickness, utilizing that optical absorption is different in cartilage and subchondral bone. This study is the first evaluation of the technology in human material. We also investigated the prospects of cartilage lesion imaging, with the specific aim of arthroscopic integration. Cartilage thickness was studied ex vivo in a number of sites (n = 87) on human knee joint condyles, removed from nine patients during total knee replacement surgery. A reflectance spectrum was taken at each site and the cartilage thickness was estimated using the blue, green, red and near-infrared regions of the spectrum, respectively. Estimated values were compared with reference cartilage thickness values (taken after sample slicing) using an exponential model. Two-dimensional Monte Carlo simulations were performed in a theoretical analysis of the experimental results. The reference cartilage thickness of the investigated sites was 1.60 ± 1.30 mm (mean ± SD) in the range 0-4.2 mm. Highest correlation coefficients were seen for the calculations based on the near-infrared region after normalization to the red region (r = 0.86) and for the green region (r = 0.80).

  10. Evaluation on Cartilage Morphology after Intra-Articular Injection of Titanium Dioxide Nanoparticles in Rats

    International Nuclear Information System (INIS)

    Nano scale wear particles would generate from orthopedic implants with nano scale surface topography because of residual stress. In this study, the effect of TiO2 nanoparticles on articular cartilage was investigated by intra-articular injection in rats. Using contrast-enhanced high-resolution micro computed tomography (micro-CT) technology, the decreased thickness of articular cartilage in distal femur was determined at 1, 7, 14, and 30 days after nanoparticle exposure. A strong linear correlation (r=0.928, P2 nanoparticles, cartilage thickness showed time-dependent decrease, and cartilage volume was decreased too. Further, the histopathological examination showed the edema chondrocyte and shrinked nucleus in the radial and calcified zone of cartilage. The ultrastructure of articular cartilage implied that the chondrocytes was degenerated, expressing as the condensed chromatin, the dilated endoplasmic reticulum, and the rich mitochondria. Even, the fragments of ruptured endoplasmic reticulum were observed in the cytoplasm of chondrocytes at postexposure day 30. Results indicate that potential damage of articular cartilage was induced by particles existed in knee joint and imply that the bio monitoring should be strengthened in patients with prostheses replacement.

  11. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Yoshioka, Hiroshi [University of California Irvine, Department of Radiological Sciences, Orange, CA (United States); Kaneshiro, Kayleigh [University of California Irvine, School of Medicine, Irvine, CA (United States); Schwarzkopf, Ran [University of California Irvine, Department of Orthopedic Surgery, Irvine, CA (United States); Hara, Takeshi [Gifu University Graduate School of Medicine, Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Gifu (Japan)

    2016-06-15

    To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)

  12. Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait.

    Science.gov (United States)

    Räsänen, Lasse P; Mononen, Mika E; Lammentausta, Eveliina; Nieminen, Miika T; Jurvelin, Jukka S; Korhonen, Rami K

    2016-08-01

    Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to -413 and -26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue. PMID:26714834

  13. Changes in growth patterns in mouse condylar cartilage associated with skeletal maturation and senescence

    Energy Technology Data Exchange (ETDEWEB)

    Livne, E.; Weiss, A.; Silbermann, M. (Technion-Israel Inst. of Tech., Haifa (Israel))

    The squamoso-mandibular joint (SMJ) represents one of the most active joints in the mouse. In the young animal the main function of condylar cartilage in the SMJ is to serve as a growth center for the developing mandible. This first phase of skeletal growth lasts up to the age of 6-8 weeks, and is manifested by appositional growth of cartilage followed by endochondral ossification. Thereafter, the condylar cartilage gradually changes its function and serves mainly as an articulating surface for the joint. Consequently, the cartilage changes from a calcifying hyaline cartilage to a fibrous non-calcifying cartilage. The latter phase lasts through the stage of maturation (6 months of age) and it is manifested by a combination of appositional and interstitial patterns of cellular growth. Thereafter, the third phase develops which is characterized by degenerative changes that typify the aging process. In vivo autoradiography with ({sup 3}H)-thymidine indicated that in the very young animal labeled cells are confined to the chondroprogenitor (proliferative) zone of the condylar cartilage. With maturation, the dimension of this zone as well as the number of labeled cells decrease, so that by 3 months of age the labeling index decreases by 30%. By the age of 6, 12 and 18 months, almost no cells take up the radioisotope while the total number of cells declines. During senescence only a very limited interstitial growth is taking place, a feature that might be associated with the repair processes that accompany the onset of osteoarthritic lesions.

  14. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    Directory of Open Access Journals (Sweden)

    Kurokawa Takayuki

    2011-09-01

    Full Text Available Abstract Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid and poly-(N, N'-Dimetyl acrylamide, at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.

  15. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage.

    Science.gov (United States)

    Seol, Dongrim; Yu, Yin; Choe, Hyeonghun; Jang, Keewoong; Brouillette, Marc J; Zheng, Hongjun; Lim, Tae-Hong; Buckwalter, Joseph A; Martin, James A

    2014-07-01

    Depending on the damage extent and adjacent tissue condition in traumatic cartilage injury, it is possible to heal the tissue by resident cells. Unlike autologous chondrocyte implantation, short-term enzymatic treatment is an effective single-step procedure without extra cell expansion. Moreover, this method has been shown to significantly increase cellularity in lesion edges, resulting in enhanced integration and interfacial strength. We hypothesize that the locally digested extracellular matrix by treatment allows effortless cell migration from the adjacent tissue. Full-thickness cartilage discs and osteochondral explants were prepared from mature bovine stifle joints. These specimens were treated with collagenase in a culture medium. Two concentrations, 0.25 and 0.5 mg/mL, were used with various treating time of 10, 30, and 180 min. The cartilages were subsequently washed and cultured with fibrin hydrogel. The effect of enzymatic treatment on cell migration was apparent in both experiments of the cartilage disc and full-thickness cartilage defect model. In the disc culture, the treatment resulted in an approximately three to four times higher number of migrated cells than nontreated control. In short-term collagenase-treated groups, the proteoglycan (PG) loss was localized in the edge of tissue with minimal cell death. The treatment also accelerated cell migration in the full-thickness cartilage defects and some cells differentiated into chondrocytes with the deposit of PG. Gene expression results could support the characteristics of migrated cells, which had migratory ability and chondrogenic differentiation potential with overexpression of collagen type I and II, respectively. Based on these results, short-term enzymatic treatment, which can accelerate cell migration into traumatically injured cartilage, has great potential for clinical application. PMID:24428547

  16. Repair of articular cartilage defects in minipigs by microfracture surgery and BMSCs transplantation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee. the left defect received microfracture surgery and was injected with 2. 5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results:Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibro-cartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion:Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.

  17. Drying of open animal joints in vivo subsequently causes cartilage degeneration

    Science.gov (United States)

    Paterson, S. I.; Eltawil, N. M.; Simpson, A. H. R. W.; Amin, A. K.

    2016-01-01

    Objectives During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes. Methods The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively. Results Joint drying caused extensive chondrocyte death within the superficial regions of cartilage. Histology of dried cartilage demonstrated a loss of surface integrity at four weeks, fibrillations at eight weeks, and an increased modified Mankin score (p < 0.001). Cartilage thickness increased (p < 0.001), whereas chondrocyte density decreased at four weeks (p < 0.001), but then increased towards sham-operated levels (p < 0.01) at eight weeks. By week eight, chondrocyte pairing/clustering and cell volume increased (p < 0.05; p < 0.001, respectively). Conclusions These in vivo results demonstrated for the first time that as a result of laminar airflow, cartilage degeneration occurred which has characteristics similar to those seen in early osteoarthritis. Maintenance of adequate cartilage hydration during open orthopaedic surgery is therefore of paramount importance. Cite this article: Dr A. Hall. Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Joint Res 2016;5:137–144. DOI: 10.1302/2046-3758.54.2000594. PMID:27114348

  18. Magnetic resonance imaging of articular cartilage abnormalities of the far posterior femoral condyle of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Shuhei; Huang, Thomas; Watanabe, Atsuya; Iranpour-Boroujeni, Tannaz; Yoshioka, Hiroshi (Dept. of Radiology, Brigham and Women' s Hospital, Boston, MA (United States)), e-mail: hiroshi@uci.edu

    2010-01-15

    Background: Incidental articular cartilage lesions of the far posterior femoral condyle (FPFC) are commonly detected. Whether or not these cartilage lesions are symptomatic or clinically significant is unknown. Purpose: To characterize and assess prevalence of articular cartilage abnormalities of the FPFC and associated bone marrow edema (BME) and/or internal derangements through magnetic resonance (MR) images. Material and Methods: 654 knee MR examinations were reviewed retrospectively. Sagittal fast spin-echo proton density-weighted images with and without fat suppression were acquired with a 1.5T scanner, and were evaluated by two readers by consensus. The following factors were assessed: 1) the prevalence of cartilage abnormalities, 2) laterality, 3) the type of cartilage abnormalities, 4) cartilage abnormality grading, 5) associated BME, 6) complications such as meniscal injury and cruciate ligament injury, and 7) knee alignment (femorotibial angle [FTA]). Results: Articular cartilage abnormalities of the FPFC were demonstrated in 157 of the 654 patients (24%). Of these, 40 patients demonstrated medial and lateral FPFC cartilage abnormalities and were thus counted as 80 cases. Focal lateral FPFC abnormalities were demonstrated in 117 of 197 cases (59.4%), while diffuse lateral FPFC abnormalities were demonstrated in 24 of 197 cases (12.2%). Focal medial FPFC abnormalities were demonstrated in 23 of 197 cases (11.6%), while diffuse medial FPFC abnormalities were demonstrated in 33 of 197 cases (16.8%). No statistically significant pattern of associated BME, FTA, or internal derangements including meniscal and cruciate ligament injury was demonstrated. Conclusion: Articular cartilage abnormalities of the FPFC are common and were demonstrated in 24% of patients or 30% of cases. Lateral FPFC abnormalities occur 2.5 times more frequently than medial FPFC abnormalities and were more frequently focal compared with medial cohorts. BME is associated in 36.5% of cases

  19. Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus.

    Science.gov (United States)

    Danso, E K; Honkanen, J T J; Saarakkala, S; Korhonen, R K

    2014-01-01

    Nonlinear, linear and failure properties of articular cartilage and meniscus in opposing contact surfaces are poorly known in tension. Relationships between the tensile properties of articular cartilage and meniscus in contact with each other within knee joints are also not known. In the present study, rectangular samples were prepared from the superficial lateral femoral condyle cartilage and lateral meniscus of bovine knee joints. Tensile tests were carried out with a loading rate of 5mm/min until the tissue rupture. Nonlinear properties of the toe region, linear properties in larger strains, and failure properties of both tissues were analysed. The strain-dependent tensile modulus of the toe region, Young's modulus of the linear region, ultimate tensile stress and toughness were on average 98.2, 8.3, 4.0 and 1.9 times greater (p<0.05) for meniscus than for articular cartilage. In contrast, the toe region strain, yield strain and failure strain were on average 9.4, 3.1 and 2.3 times greater (p<0.05) for cartilage than for meniscus. There was a significant negative correlation between the strain-dependent tensile moduli of meniscus and articular cartilage samples within the same joints (r=-0.690, p=0.014). In conclusion, the meniscus possesses higher nonlinear and linear elastic stiffness and energy absorption capability before rupture than contacting articular cartilage, while cartilage has longer nonlinear region and can withstand greater strains before failure. These findings point out different load carrying demands that both articular cartilage and meniscus have to fulfil during normal physiological loading activities of knee joints. PMID:24182695

  20. Novel nano-rough polymers for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2014-04-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,31Surfatek, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: This study presents an innovative method for creating a highly porous surface with nanoscale roughness on biologically relevant polymers, specifically polyurethane (PU and polycaprolactone (PCL. Nanoembossed polyurethane (NPU and nanoembossed polycaprolactone (NPCL were produced by the casting of PU and PCL over a plasma-deposited, spiky nanofeatured crystalline titanium (Ti surface. The variables used in the process of making the spiky Ti surface can be altered to change the physical properties of the spiky particles, and thus, the cast polymer substrate surface can be altered. The spiky Ti surface is reusable to produce additional nanopolymer castings. In this study, control plain PU and PCL polymers were produced by casting the polymers over a plain Ti surface (without spikes. All polymer surface morphologies were characterized using both scanning electron microscopy and atomic force microscopy, and their surface energies were measured using liquid contact angle measurements. The results revealed that both NPU and NPCL possessed a higher degree of nanometer surface roughness and higher surface energy compared with their respective unaltered polymers. Further, an in vitro study was carried out to determine chondrocyte (cartilage-producing cells functions on NPU and NPCL compared with on control plain polymers. Results of this study provided evidence of increased chondrocyte numbers on NPU and NPCL compared with their respective plain polymers after periods of up to 7 days. Moreover, the results provide evidence of greater intracellular protein production and collagen secretion by chondrocytes cultured on NPU and NPCL compared with control plain polymers. In summary

  1. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  2. Spontaneous Minced Cartilage Procedure for Unexpectedly Large Femoral Condyle Surface Defect.

    Science.gov (United States)

    Salzmann, G M; Baumann, G A; Preiss, S

    2016-01-01

    Articular cartilage defects at the knee joint are being identified and treated with increasing frequency. Chondrocytes may have strongest potential to generate high-quality repair tissue within the defective region, in particular when large diameter defects are present. Autologous chondrocyte implantation is not available in every country. We present a case where we spontaneously covered an acute cartilage defect, which was significantly larger than expected and loose during initial arthroscopic inspection after reading preoperative MRI, by mincing the separated fragment and directly implanting the autologous cartilage chips into the defective region. PMID:27504207

  3. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    OpenAIRE

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Kaneshiro, Kayleigh; Schwarzkopf, Ran; Hara, Takeshi; Yoshioka, Hiroshi

    2015-01-01

    Objectives To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. Methods T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and an...

  4. Lesions of cartilage in the femoropateliar joint, diagnosis by computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M.; Anacker, H.; Karpf, P.M.; Hoerterer, H.; Paar, O.; Riel, K.A.

    1982-01-21

    The conventional arthrographic methods for demonstration of the femoro-patellar joint are not sufficiently reliable. Through the use of CT-arthrography a cross-sectional image free of superimposition and possessing a high density resolution is available thus facilitating a direct demonstration of the joint cartilage. Traumatic and degenerative lesions of the cartilage can be clearly shown by CT-arthrography. Damage of cartilage in patients with chondromalacia patellae can be differentiated in its different stages. The shape of the patella and its relation to femoral condyles can be evaluated more accurate than by conventional axial X-rays.

  5. Effects of exercises on knee cartilage volume in young healthy adults: a randomized controlled trial

    Institute of Scientific and Technical Information of China (English)

    Lu Liangyu; Wang Yubin

    2014-01-01

    Background Acute effects of physical exercise on the deformational behavior of knee articular cartilage and changes in cartilage volume are definite.However,conclusive effects of different exercises on the loss of articular cartilage volume have not been proved.In this parallel-group randomized controlled trial,we tested whether 12 weeks of swimming,powerstriding,cycling,and running exercises would decrease the cartilage volume significantly and whether there would be a difference in the loss of cartilage volume after different types of exercises.Methods From October 2012 to January 2013 we evaluated 120 healthy volunteer students in Biomechanics Laboratory of Tongji University.Body mass index (BMI),right lower limb strength,and right knee cartilage magnetic resonance imaging (MRI) were obtained before exercise.MRI were conducted in East Hospital.The study was approved by Tongji University Ethical Committee,all subjects were randomly assigned to the running,powerstriding,cycling,swimming,and control groups by a drawing of lots.Each group contained 24 samples.At the end of 12 weeks of regular exercises,the same measurement procedures were applied.Cartilage volume was calculated with OSIRIS software based on the quantitative-MRI.Pre-and post-exercise comparisons were carried out using paired t-tests and one-way analysis of variance (ANOVA) was used to compare differences of cartilage volume loss between groups with Student-Newman-Keuls procedure for multiple comparisons.Results Running,cycling,and swimming groups resulted in a significant decrease in BMI.The quadriceps peak torque increased significantly in the swimming and cycling groups.Total cartilage volume significantly decreased in the running and cycling groups after 12 weeks of training,without any significant change in the nonimpact swimming,low-impact powerstriding,and control groups.Loss of total cartilage volume in the running and cycling groups were 2.21% (3.03) and 1.50% (0.42).Conclusions Twelve

  6. Full-thickness cartilage lesion do not affect knee function in patients with ACL injury

    OpenAIRE

    2011-01-01

    Full-thickness cartilage lesion do not affect knee function in patients with ACL injury Abstract There is debate in the literature regarding the impact of full-thickness cartilage lesion on knee function in patients with ACL injury. The hypothesis of this study is that a full-thickness cartilage lesion at the time of ACL reconstruction does not influence knee function as measured by the Knee injury and Osteoarthritis Outcome Score (KOOS) in patients with ACL injury. Of the 4,849 prim...

  7. MR diffusion weighted imaging experimental study on early stages of articular cartilage degeneration of knee

    International Nuclear Information System (INIS)

    Objective: To study the appearance of MR diffusion weighted imaging in early stages of cartilage degeneration and to detect its values. Methods: In 20 goat left knees, intra- articular injection of 5 units of papain was performed causing a loss of cartilage proteoglycan. Twenty right knees were used as control group. MR diffusion weighted imaging was performed at 24 hours after intra-articular injection of papain. ADC of each part of articular cartilage was measured and compared with each other. The proteoglycan content was measured biochemically and histochemically. Routine MRI and DWI were performed in 100 patients with osteoarthritis and 20 healthy people. The ADC of each interested part of articular cartilage was measured and compared with each other. Results: In experimental control group, the ADCav of articular cartilage was (14.2±2.3) x 10-4 mm2/s. In early stages of cartilage degeneration group, the ADCav of articular cartilage was (17.5±4.2) x 10-4 mm2/s. The ADCav of the control group was lower than that of the early stages of cartilage degeneration group (t=2.709; P=0.016). The proteloglycan content of articular cartilage was 4.22 x 106 μg/kg in control group, and 0.82 x 106 μg/kg in experimental group at 24 hours after injection of papain. The difference between control group and experimental group was significant (t=2.705, P=0.018). In healthy people, the ADCav of articular cartilage was (7.6±2.2) x 10-4 mm2/s. In osteoarthritis group, the ADCav of articular cartilage was (10.3±4.2) x 10-4 mm2/s. The ADCav in the healthy group was significantly lower than that in the osteoarthritis group (t=2.609,P=0.014). Conclusion: DWI is an useful method in detecting early stages of cartilage degeneration which can not be showed on routine sequences. (authors)

  8. Cellular responses of embryonic hyaline cartilage to experimental wounding in vitro.

    Science.gov (United States)

    Walker, E A; Verner, A; Flannery, C R; Archer, C W

    2000-01-01

    It is well established that the reparative potential of many tissues is greatest during embryonic development. Despite the extensive literature documenting repair in nonembryonic cartilage models, there is no comparable wealth of experience relating to embryonic cartilage repair. With the embryonic chick sternum as a model of hyaline cartilage, this paper accounts cellular responses and alterations in extracellular matrix composition in response to experimental wounding in vitro. Creation of an experimental lesion induced a rapid (apoptosis and the expression of alpha5 and alpha6 integrin subunits. PMID:10716275

  9. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  10. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  11. Novel aspects to the structure of rabbit articular cartilage

    Directory of Open Access Journals (Sweden)

    ap Gwynn I.

    2002-12-01

    Full Text Available Applying cryo and modified chemical preparation techniques, mainly for scanning electron microscopy, revealed entirely new aspects to the structure of the radial zone of rabbit tibial plateau articular cartilage. The aggrecan component of the extracellular matrix was contained radially in columns, each with a diameter of 1-3mm, by a tightly packed matrix of collagen fibrils. The collagen fibrils were arranged radially, some straight and others in an opposed spiral arrangement, with regularly repeating patterns. This organization existed in the regions surrounding the columns of chondrocytes, known as chondrons. The load bearing property of the tissue was explained by the directed flow and containment of the interstitial fluid, modulated by the protein-carbohydrate complexes, along these collagen bounded tubular structures. The reason why such a structure has not been described previously may be that it is not retained by aldehyde fixation followed by dehydration, the method commonly used for tissue preparation for electron microscopy.

  12. Isolation and characterization of new collagens from chick cartilage.

    Science.gov (United States)

    von der Mark, K; van Menxel, M; Wiedemann, H

    1982-05-01

    Three unique collagen chains were isolated from chick sternal cartilage following pepsin solubilization of total cartilage collagens and removal of the predominant type II collagen by fractional salt precipitation. Native molecules containing 1 alpha, 2 alpha and 3 alpha chains precipitated between 0.7 M and 1.2 M NaCl at acidic pH and could be purified by chromatography on carboxymethyl-cellulose and agarose columns. Although similar to mammalian 1 alpha, 2 alpha and 3 alpha chains, differences in the mobilities on sodium dodecylsulfate gel electrophoresis, CNBr peptide profiles and amino acid composition were found. The 1 alpha and 2 alpha chains resemble, but are structurally distinct from, the chick alpha 1(V) and alpha 2(V) chains. The 3 alpha chain appears to be closely related to the alpha 1(II) chain, although some differences in the cyanogen bromide peptides suggest that they might be different gene products. In addition, two collagenous fragments of Mr 140 000 (M1) and 35 000 (M2) were found which precipitated at 2.0 m NaCl at acidic pH. Both fragments contain interchain disulfide bonds. The larger fragment was reducible to subunits of approximate Mr 120 000, 48 000, 28 000 and 11 000. The smaller fragment gave rise to peptides of Mr about 12 000 and 10 000 after reduction. By the technique of rotary shadowing the native, unreduced larger fragment M1 appeared as a slender rod-like molecule with a distinct bend approximately 40 nm from one end. We interpret this finding as indicative of a focal amino acid sequence irregularity, disrupting the triple-helical conformation. PMID:7084229

  13. Biochemical analysis of normal articular cartilage in horses.

    Science.gov (United States)

    Vachon, A M; Keeley, F W; McIlwraith, C W; Chapman, P

    1990-12-01

    Articular cartilage specimens from the distal articular surface of 32 radiocarpal bones from 24 2- to 5-year-old horses were analyzed. The total collagen content was determined on the basis of the 4-hydroxyproline content, using a colorimetric method. A method for estimating the proportions of types-I and -II collagen by measuring spectrophotometric densities of specific cyanogen bromide peptide bands from mixtures of types-I and -II collagen on sodium dodecyl sulfate-polyacrylamide gels was used. The cyanogen bromide peptides representative of each collagen types-I and -II were identified. The peptide ratios were then computed for each of several standards of type-I and -II mixtures. A standard curve was derived from the correlation between these ratios and the corresponding proportions of type-II collagen in standard mixtures. Galactosamine and glucosamine content (hexosamines) were measured by ion chromatography. The galactosamine-to-glucosamine ratio, chondroitin sulfate and keratan sulfate values, and total glycosaminoglycan content were derived from the measured hexosamine content. The total collagen content averaged 556 mg/g (55.6 mg/100 mg) of tissue (dry weight, [dw]). Type-II collagen was the major collagen type in normal articular cartilage specimens. The ratio of the area under the alpha 1 (II)CB10 peak to the area under the alpha 1 (I)CB 7,8 + alpha 1 (II)CB11 peak was a second-order polynomial function of the proportion of type-II collagen in the specimens. The mean galactosamine and glucosamine content were 20.6 mg/g and 7.9 mg/g (dw), respectively. The mean galactosamine-to-glucosamine ratio was 3.74 +/- 0.62.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2085215

  14. Relationship between the trochlear groove angle and patellar cartilage morphology defined by 3D spoiled gradient-echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Yuko; Tokuda, Osamu; Matsunaga, Naofumi [Yamaguchi University Graduate School of Medicine, Department of Radiology, Yamaguchi (Japan); Fukuda, Kouji [Shunan Memorial Hospital, Division of Radiological Technology, Yamaguchi (Japan); Shiraishi, Gen; Motomura, Tetsuhisa [Shunan Memorial Hospital, Department of Orthopedics Surgery, Yamaguchi (Japan); Kimura, Motoichi [Customer Application Gr., GE Healthcare MR Sales and Marketing Department, Osaka (Japan)

    2012-05-15

    To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10{sup -3} cm{sup 3} (95% CI: 1.27 x 10{sup -3}, 10.9 x 10{sup -3}) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)

  15. Relationship between the trochlear groove angle and patellar cartilage morphology defined by 3D spoiled gradient-echo imaging

    International Nuclear Information System (INIS)

    To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10-3 cm3 (95% CI: 1.27 x 10-3, 10.9 x 10-3) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)

  16. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  17. Editorial Commentary: The Search for the Cartilage "Holy Grail": Are We There Yet?

    Science.gov (United States)

    Weber, Alexander E; Cole, Brian J

    2016-07-01

    A study by Zhang et al. provided a Level IV systematic review of 23 studies (13 clinical and 10 basic science) that examined the current state of single-stage procedures for cartilage repair. The results of this review suggested that in the short-term (minimum 2-year follow-up), single-stage cell-based cartilage procedures significantly improve pain and function from the preoperative state and provide comparable defect fill and tissue quality as compared with their predecessor 2-stage procedures. The authors should be commended for summarizing the current state of single-stage cartilage repair techniques; however, further work must be done to find the cartilage restoration "holy grail." PMID:27373184

  18. Correction: Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints.

    Science.gov (United States)

    Hong, Jin-Yong; Yun, Sol; Wie, Jeong Jae; Zhang, Xu; Dresselhaus, Mildred S; Kong, Jing; Park, Ho Seok

    2016-07-14

    Correction for 'Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints' by Jin-Yong Hong, et al., Nanoscale, 2016, DOI: 10.1039/c6nr01986b. PMID:27326802

  19. Correction: Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints

    Science.gov (United States)

    Hong, Jin-Yong; Yun, Sol; Wie, Jeong Jae; Zhang, Xu; Dresselhaus, Mildred S.; Kong, Jing; Park, Ho Seok

    2016-06-01

    Correction for `Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints' by Jin-Yong Hong, et al., Nanoscale, 2016, DOI: 10.1039/c6nr01986b.

  20. A Novel Model for the Mass Transfer of Articular Cartilage: Rolling Depression Load Device

    Science.gov (United States)

    Fan, Zhenmin; Zhang, Chunqiu; Liu, Haiying; Xu, Baoshan; Li, Jiang; Gao, Lilan

    The mass transfer is one of important aspects to maintain the physiological activity proper of tissue, specially, cartilage cannot run without mechanical environment. The mechanical condition drives nutrition in and waste out in the cartilage tissue, the change of this process plays a key role for biological activity. Researchers used to adopt compression to study the mass transfer in cartilage, here we firstly establish a new rolling depression load (RDL) device, and also put this device into practice. The device divided into rolling control system and the compression adjusting mechanism. The rolling control system makes sure the pure rolling and uniform speed of roller applying towards cultured tissue. The compression adjusting mechanism can realize different compressive magnitudes and uniform compression. Preliminary test showed that rolling depression load indeed enhances the process of mass transfer articular cartilage.

  1. Effects of immobilization on thickness of superficial zone of articular cartilage of patella in rats

    Directory of Open Access Journals (Sweden)

    Khadija Iqbal

    2012-01-01

    Conclusion: Each segment of superficial zone behaves differentially on immobilization and remobilization. Perhaps a much longer duration of remobilization is required to reverse changes of immobilization in articular cartilage and plays a significant role in knee joint movements.

  2. MR-based water content estimation in cartilage: design and validation of a method

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Kristiansen, Maja Sophie; Ringgaard, Steffen;

    Purpose: Design and validation of an MR-based method that allows the calculation of the water content in cartilage tissue. Methods and Materials: Cartilage tissue T1 map based water content MR sequences were used on a 37 Celsius degree stable system. The T1 map intensity signal was analyzed on 6...... cartilage samples from living animals (pig) and on 8 gelatin samples which water content was already known. For the data analysis a T1 intensity signal map software analyzer used. Finally, the method was validated after measuring and comparing 3 more cartilage samples in a living animal (pig). The obtained...... data was analyzed and the water content calculated. Then, the same samples were freeze-dried (this technique allows to take out all the water that a tissue contains) and we measured the water they contained. Results:The 37 Celsius degree system and the analysis can be reproduced in a similar way. MR T1...

  3. MR-based Water Content Estimation in Cartilage: Design and Validation of a Method

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Kristiansen, Maja Sofie; Ringgaard, Steffen;

    2012-01-01

    system (the closest to the body temperature) we measured, using the modified MR sequences, the T1 map intensity signal on 6 cartilage samples from living animals (pig) and on 8 gelatin samples which water content was already known. For the data analysis a T1 intensity signal map software analyzer was......Objective Design and validation of an MR-based method that allows the calculation of the water content in cartilage tissue. Material and Methods We modified and adapted to cartilage tissue T1 map based water content MR sequences commonly used in the neurology field. Using a 37 Celsius degree stable...... costumed and programmed. Finally, we validated the method after measuring and comparing 3 more cartilage samples in a living animal (pig). The obtained data was analyzed and the water content calculated. Then, the same samples were freeze-dried (this technique allows to take out all the water that a tissue...

  4. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI

    International Nuclear Information System (INIS)

    Introduction: To investigate the degree of the effect of aging and weight-bearing on T1rho values in normal cartilage. Materials and methods: Thirty-two asymptomatic patients were examined using 3.0-T magnetic resonance imaging (MRI) to determine knee cartilage T1rho values and T2 values. The femoral and tibial cartilage was divided into weight-bearing (WB-Rs) and less-weight-bearing (LWB-Rs) regions. Single regression analysis was used to assess the relationship between cartilage T1rho values and age and between T2 values and age. Analysis of variance and post hoc-testing were used to evaluate differences in WB-Rs and LWB-Rs cartilage T1rho values and T2 values. Multiple linear regression modeling was performed to predict cartilage T1rho values. Results: Cartilage T1rho values correlated positively with age for all cartilage regions tested (p < 0.001). There were no significant correlations between cartilage T2 values and age. In both the medial femoral and tibial cartilage, T1rho values were significantly higher in WB-Rs than in LWB-Rs (p < 0.05). There were no significant differences in T2 values between WB-Rs and LWB-Rs. Multiple linear regression analysis showed that both age and weight-bearing were significant predictors of increased medial knee cartilage T1rho values (p < 0.001). Conclusions: Aging and the degree of weight-bearing correlate with the change in cartilage T1rho values. Based on multiple regression modeling, aging may be a more important factor than weight-bearing for cartilage T1rho values.

  5. Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees.

    Directory of Open Access Journals (Sweden)

    Melissa Schultz

    Full Text Available This study aimed to investigate the pathology occurring at the calcified zone of articular cartilage (CZC in the joints afflicted with post-traumatic osteoarthritis (PTOA.Rats underwent bilateral anterior cruciate ligament (ACL transection and medial meniscectomy to induce PTOA. Sham surgery was performed on another five rats to serve as controls. The rats were euthanized after four weeks of surgery and tibial plateaus were dissected for histology. The pathology of PTOA, CZC area and the tidemark roughness at six pre-defined locations on the tibial plateaus were quantified by histomorphometry.PTOA developed in the knees, generally more severe at the medial plateau than the lateral plateau, of rats in the experimental group. The CZC area was unchanged in the PTOA joints, but the topographic variations of CZC areas that presented in the control knees were reduced in the PTOA joints. The tidemark roughness decreased in areas of the medial plateau of PTOA joints and that was inversely correlated with the Mankin's score of PTOA pathology.Reduced tidemark roughness and unchanged CZC area differentiate PTOA from primary osteoarthritis, which is generally believed to have the opposite pathology at CZC, and may contribute to the distinct disease progression of the two entities of arthropathy.

  6. Clinical and immunologic outcome of patients with cartilage hair hypoplasia after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bordon, Victoria; Gennery, Andrew R; Slatter, Mary A; Vandecruys, Els; Laureys, Genevieve; Veys, Paul; Qasim, Waseem; Waseem, Qasim; Friedrich, Wilhelm; Wulfraat, Nico M; Scherer, Franziska; Cant, Andrew J; Fischer, Alain; Cavazzana-Calvo, Marina; Cavazanna-Calvo, Marina; Bredius, Robbert G M; Notarangelo, Luigi D; Mazzolari, Evelina; Neven, Benedicte; Güngör, Tayfun; Tayfun, Güngör

    2010-07-01

    Cartilage-hair hypoplasia (CHH) is a rare autosomal recessive disease caused by mutations in the RMRP gene. Beside dwarfism, CHH has a wide spectrum of clinical manifestations including variable grades of combined immunodeficiency, autoimmune complications, and malignancies. Previous reports in single CHH patients with significant immunodeficiencies have demonstrated that allogeneic hematopoietic stem cell transplantation (HSCT) is an effective treatment for the severe immunodeficiency, while growth failure remains unaffected. Because long-term experience in larger cohorts of CHH patients after HSCT is currently unreported, we performed a European collaborative survey reporting on 16 patients with CHH and immunodeficiency who underwent HSCT. Immune dysregulation, lymphoid malignancy, and autoimmunity were important features in this cohort. Thirteen patients were transplanted in early childhood ( approximately 2.5 years). The other 3 patients were transplanted at adolescent age. Of 16 patients, 10 (62.5%) were long-term survivors, with a median follow-up of 7 years. T-lymphocyte numbers and function have normalized, and autoimmunity has resolved in all survivors. HSCT should be considered in CHH patients with severe immunodeficiency/autoimmunity, before the development of severe infections, major organ damage, or malignancy might jeopardize the outcome of HSCT and the quality of life in these patients. PMID:20375313

  7. Glycoconjugate expression of chondrocytes and perichondrium during hyaline cartilage development in the rat.

    OpenAIRE

    Zschäbitz, A; Krahn, V; Gabius, H J; Weiser, H; Khaw, A; Biesalski, H. K.; Stofft, E

    1995-01-01

    Alterations in the expression of glycoconjugate structures during cartilage development in the chondrocranium, nasal skeleton, Meckel's cartilage, limb buds, vertebral bodies and ribs were investigated comparatively in 13 to 21-d-old rat embryos. The binding patterns of 24 biotinylated lectins were analysed in serial sections and compared with results obtained using histochemical methods. Proteoglycan distribution, assessed by conventional staining procedures, was not associated with lectin b...

  8. Age-related changes in the role of matrix vesicles in the mandibular condylar cartilage.

    OpenAIRE

    Livne, E; Oliver, C; Leapman, R D; Rosenberg, L C; Poole, A. R.; Silbermann, M

    1987-01-01

    A combined approach of light microscopy, immunofluorescence, transmission electron microscopy and electron energy loss spectroscopy (EELS) was used to study age-related changes in the condylar cartilage in mice. Chondrocalcin, a cartilage matrix calcium-binding protein, was demonstrated by indirect immunofluorescence microscopy using monospecific antibodies. In one week old animals the most intense staining was observed in the matrix around the hypertrophic cells in the mineralising zone, to ...

  9. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions

    Directory of Open Access Journals (Sweden)

    G Kerckhofs

    2013-02-01

    Full Text Available We describe a non-destructive imaging method, named contrast-enhanced nanofocus X-ray computed tomography (CE-nanoCT, that permits simultaneously imaging and quantifying in 3D the (subtissue architecture and (biochemical composition of cartilage and bone in small animal models at a novel contrast and spatial resolution. To demonstrate the potential of this novel methodology, a newborn mouse was scanned using CE-nanoCT. This allowed simultaneously visualising the bone and cartilage structure much like the traditional alcian blue-alizarin red skeletal stain. Additionally, it enabled a 3D visualisation at such a high spatial image resolution that internal, micro-scale structures could be digitally dissected and evaluated for size, structure and composition. Ex vivo treatment with papain, that is known to specifically remove the non-calcified cartilage layer but keep the calcified cartilage intact, proved CE-nanoCT to be applicable to visualise the subdivisions within the hyaline cartilage of the articular joint of mice. The quantitative power of CE-nanoCT in vivo was evaluated using a mouse model for osteoarthritis (OA, where OA-like cartilage lesions are induced by meniscus destabilisation surgery. The thickness of both the non-calcified and calcified cartilage layer in the knee joint of such mice was visualised and quantified in 3D and compared to unaffected mice. Finally, to show that different forms of cartilage and tissue combinations can be distinguished using CE-nanoCT, different cartilaginous body parts of the mouse were imaged. In conclusion, CE-nanoCT can provide novel insights in preclinical research by quantifying in a non-destructive 3D manner pathological differences, in particular in developing mice, newborns or adults

  10. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions.

    Science.gov (United States)

    Kerckhofs, G; Sainz, J; Wevers, M; Van de Putte, T; Schrooten, J

    2013-01-01

    We describe a non-destructive imaging method, named contrast-enhanced nanofocus X-ray computed tomography (CE-nanoCT), that permits simultaneously imaging and quantifying in 3D the (sub)tissue architecture and (biochemical) composition of cartilage and bone in small animal models at a novel contrast and spatial resolution. To demonstrate the potential of this novel methodology, a newborn mouse was scanned using CE-nanoCT. This allowed simultaneously visualising the bone and cartilage structure much like the traditional alcian blue-alizarin red skeletal stain. Additionally, it enabled a 3D visualisation at such a high spatial image resolution that internal, micro-scale structures could be digitally dissected and evaluated for size, structure and composition. Ex vivo treatment with papain, that is known to specifically remove the non-calcified cartilage layer but keep the calcified cartilage intact, proved CE-nanoCT to be applicable to visualise the subdivisions within the hyaline cartilage of the articular joint of mice. The quantitative power of CE-nanoCT in vivo was evaluated using a mouse model for osteoarthritis (OA), where OA-like cartilage lesions are induced by meniscus destabilisation surgery. The thickness of both the non-calcified and calcified cartilage layer in the knee joint of such mice was visualised and quantified in 3D and compared to unaffected mice. Finally, to show that different forms of cartilage and tissue combinations can be distinguished using CE-nanoCT, different cartilaginous body parts of the mouse were imaged. In conclusion, CE-nanoCT can provide novel insights in preclinical research by quantifying in a non-destructive 3D manner pathological differences, in particular in developing mice, newborns or adults. PMID:23389752

  11. Inhibition of β-catenin signaling causes defects in postnatal cartilage development

    OpenAIRE

    Chen, Mo; Zhu, Mei; Awad, Hani; Li, Tian-Fang; Sheu, Tzong-Jen; Boyce, Brendan F; Chen, Di; O'Keefe, Regis J.

    2008-01-01

    The Wnt/β-catenin signaling pathway is essential for normal skeletal development because conditional gain or loss of function of β-catenin in cartilage results in embryonic or early postnatal death. To address the role of β-catenin in postnatal skeletal growth and development, Col2a1-ICAT transgenic mice were generated. Mice were viable and had normal size at birth, but became progressively runted. Transgene expression was limited to the chondrocytes in the growth plate and articular cartilag...

  12. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  13. Chondroprotective Effect of Kartogenin on CD44-Mediated Functions in Articular Cartilage and Chondrocytes

    OpenAIRE

    Ono, Yohei; Ishizuka, Shinya; Knudson, Cheryl B.; Knudson, Warren

    2014-01-01

    Objective: A recent report identified the small molecule kartogenin as a chondrogenic and chondroprotective agent. Since changes in hyaluronan metabolism occur during cartilage degeneration in osteoarthritis, we began studies to determine whether there was a connection between extracellular hyaluronan, CD44–hyaluronan interactions and the effects of kartogenin on articular chondrocytes. Methods: Chondrocytes cultured in monolayers, bioengineered neocartilages, or cartilage explants were treat...

  14. Tissue engineering for articular cartilage repair – the state of the art

    OpenAIRE

    Johnstone, B.; Alini, M.; M Cucchiarini; GR Dodge; Eglin, D.; F Guilak; Madry, H.; Mata, A.; RL Mauck; CE Semino; MJ Stoddart

    2013-01-01

    Articular cartilage exhibits little capacity for intrinsic repair, and thus even minor injuries or lesions may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. While there have been numerous attempts to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, there remain significant challenges in the clinical application of cell-based therapies for cartilage repair. This paper reviews the cu...

  15. Development of Scaffold-Free Elastic Cartilaginous Constructs with Structural Similarities to Auricular Cartilage

    OpenAIRE

    Giardini-Rosa, Renata; Joazeiro, Paulo P.; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna; Waldman, Stephen D.

    2014-01-01

    External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternati...

  16. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    OpenAIRE

    Fukui, Tomoaki; Tenborg, Elizabeth; Jasper H. N. Yik; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has no...

  17. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis

    OpenAIRE

    Goldring, Steven R.

    2012-01-01

    The articular cartilage and the subchondral bone form a biocomposite that is uniquely adapted to the transfer of loads across the diarthrodial joint. During the evolution of the osteoarthritic process biomechanical and biological processes result in alterations in the composition, structure and functional properties of these tissues. Given the intimate contact between the cartilage and bone, alterations of either tissue will modulate the properties and function of the other joint component. T...

  18. Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization

    OpenAIRE

    Chahine, Nadeen O.; Collette, Nicole M.; Thomas, Cynthia B.; Genetos, Damian C.; Loots, Gabriela G

    2014-01-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and bioc...

  19. Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions

    OpenAIRE

    Kerckhofs, G; Sainz, J; Wevers, M.; Van de Putte, T; Schrooten, J.

    2013-01-01

    We describe a non-destructive imaging method, named contrast-enhanced nanofocus X-ray computed tomography (CE-nanoCT), that permits simultaneously imaging and quantifying in 3D the (sub)tissue architecture and (biochemical) composition of cartilage and bone in small animal models at a novel contrast and spatial resolution. To demonstrate the potential of this novel methodology, a newborn mouse was scanned using CE-nanoCT. This allowed simultaneously visualising the bone and cartilage structur...

  20. Strain-Dependent Oxidant Release in Articular Cartilage Originates from Mitochondria

    OpenAIRE

    J, Brouillette M; S, Ramakrishnan P; M, Wagner V; E, Sauter E; J, Journot B; O, McKinley T; A, Martin J

    2013-01-01

    Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult, and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically-induced mitochondrial ROS is related to the m...

  1. Original Functional Rehabilitation Programme Based on Healing Physiology After Reconstruction of Articular Cartilage in Knee Joint

    OpenAIRE

    Guliyan, Volodymyr; Plenzler, Marcin; Straszewski, Dariusz; Paśnik, Marcin; Korbolewska, Olga; Suszczyński, Wojciech; Śmigielski, Robert

    2014-01-01

    Objectives: The evaluation of the quality of articular cartilage remodelling by means of arthroscopy findings and MRI imaging in a patient, who completed the original rehabilitation program. Methods: The rehabilitation program was conducted according to the Carolina Medical Center rehabilitation protocol. The patient was a 46 years old woman with fourth-degree cartilage damage (Outerbridge classification) located on the right medial femoral condyle of the following size: 1.5x2cm and 1x1.5cm. ...

  2. A short-term evaluation between the result of palisade cartilage tympanoplasty and temporalis fascia technique

    OpenAIRE

    Irfan Ul Shamas; Zafarullah Beigh; Shakil Ahmad; Aleena Shafi; Rafiq Ahmad Pampori

    2014-01-01

    Introduction: The use of cartilage as a grafting material has been advocated in cases where there is a high risk of graft failure, such as subtotal perforations, adhesive processes, and residual defects after primary tympanoplasties. The purpose of this study was to compare the graft acceptance rates and auditory outcomes of cartilage tympanoplasty operations using a palisade technique with those of primary tympanoplasty using temporalis fascia in a homogenous group of patients. Study Design:...

  3. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  4. Recombinant equine interleukin-1β induces putative mediators of articular cartilage degradation in equine chondrocytes

    OpenAIRE

    Tung, J. T.; Fenton, J. I.; Arnold, C; Alexander, L.; Yuzbasiyan-Gurkan, V.; Venta, P J; Peters, T. L.; Orth, M W; Richardson, D. W.; Caron, J P

    2002-01-01

    Interleukin-1 is considered a central mediator of cartilage loss in osteoarthritis in several species, however an equine recombinant form of this cytokine is not readily available for in vitro use in equine osteoarthritis research. Equine recombinant interleukin-1β was cloned and expressed and its effects on the expression and activity of selected chondrocytic proteins implicated in cartilage matrix degradation were characterized. Reverse transcriptase polymerase chain reaction methods were u...

  5. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    OpenAIRE

    Kunz, Manuela; Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional ap...

  6. A Short-term Comparison Between Result of Palisade Cartilage Tympanoplasty and Temporalis Fascia Technique

    OpenAIRE

    Mahmood Shishegar; Abolhasan Faramarzi; Ayeh Taraghi

    2012-01-01

    Introduction: The use of cartilage as a grafting material has been advocated in cases where there is a high risk of graft failure, such as subtotal perforations, adhesive processes, and residual defects after primary tympanoplasties. The purpose of this study was to compare the graft acceptance rates and auditory outcomes of cartilage tympanoplasty operations using a palisade technique with those of primary tympanoplasty using temporalis fascia in a homogenous group of patients. Study Design:...

  7. Protein-based injectable hydrogels towards the regeneration of articular cartilage

    OpenAIRE

    Poveda Reyes, Sara

    2016-01-01

    [EN] Articular cartilage is a tissue with low capacity for self-restoration due to its avascularity and low cell population. It is located on the surface of the subchondral bone covering the diarthrodial joints. Degeneration of articular cartilage can appear in athletes, in people with genetic degenerative processes (osteoarthritis or rheumatoid arthritis) or due to a trauma; what produces pain, difficulties in mobility and progressive degeneration that finally leads to joint failure. Self-re...

  8. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates

    OpenAIRE

    Saskia Schadow; Hans-Christian Siebert; Günter Lochnit; Jens Kordelle; Markus Rickert; Jürgen Steinmeyer

    2013-01-01

    Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen ...

  9. Role of Insulin-Transferrin-Selenium in Auricular Chondrocyte Proliferation and Engineered Cartilage Formation in Vitro

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2014-01-01

    Full Text Available The goal of this study is to determine the effects of Insulin-Transferrin-Selenium (ITS on proliferation of auricular chondrocytes and formation of engineered cartilage in vitro. Pig auricular monolayer chondrocytes and chondrocyte pellets were cultured in media containing 1% ITS at different concentrations of fetal bovine serum (FBS, 10%, 6%, 2%, 0%, or 10% FBS alone as a control for four weeks. Parameters including cell proliferation in monolayer, wet weight, collagen type I/II/X (Col I, II, X and glycosaminoglycan (GAG expression, GAG content of pellets and gene expression associated with cartilage formation/dedifferentiation (lost cartilage phenotype/hypertrophy within the chondrocyte pellets were assessed. The results showed that chondrocytes proliferation rates increased when FBS concentrations increased (2%, 6%, 10% FBS in ITS supplemented groups. In addition, 1% ITS plus 10% FBS significantly promoted cell proliferation than 10% FBS alone. No chondrocytes grew in ITS alone medium. 1% ITS plus 10% FBS enhanced cartilage formation in terms of size, wet weight, cartilage specific matrices, and homogeneity, compared to 10% FBS alone group. Furthermore, ITS prevented engineered cartilage from dedifferentiation (i.e., higher index of Col II/Col I mRNA expression and expression of aggrecan and hypertrophy (i.e., lower mRNA expression of Col X and MMP13. In conclusion, our results indicated that ITS efficiently enhanced auricular chondrocytes proliferation, retained chondrogenic phenotypes, and promoted engineered cartilage formation when combined with FBS, which is potentially used as key supplementation in auricular chondrocytes and engineered cartilage culture.

  10. μ-XRF and μ-XANES at calcification fronts of human articular cartilage

    International Nuclear Information System (INIS)

    Full text: One of the main threats to human health from heavy metals is associated with exposure to lead (Pb), which is associated with chronic diseases in the nervous, hematopoietic, skeletal, renal and endocrine system. Although much progress has been made to limit Pb exposure in industrialized countries, primarily through the elimination of leaded gasoline, workplace exposures and leaded pipes, most adults have already accumulated a substantial body burden of Pb. Most of the affiliated Pb is deposited in human bones, where it is stored up to 20 years and accounts for 90.95 of the total lead body burden. Pb is able to displace Ca2+ by cation exchange processes in the hydroxyapatite crystal (the main constituent of bone) and is liberated from it in cases of increased bone turnover such as osteoporosis, pregnancy, hyperthyroidism and hyperparathyroidism. Besides these phenomenological studies on the release of Pb from human calcified tissue analytical studies are essential to gain insight on storage sites and storage mechanisms on a microscopic scale. Therefore detailed synchrotron radiation induced micro x-ray fluorescence analyses (SR μ - XRF) have been carried out to study the distribution of Pb in bones from human joints (femoral heads and patellas). As a very recent result we found a highly specific accumulation of Pb in the tidemark, which is a metabolically active mineralization front (thickness about 5 - 10 μm) between calcified and non-calcified articular cartilage and plays an important role in developing osteoarthritis. From the results obtained for single tidemark bones one would expect an accumulation of Pb in both tidemarks of bones showing tidemark duplication. However, Pb shows a strong accumulation at the older of the two tidemarks, while it is not present at the younger one. A comparison of the Pb distribution with the one of other tidemark-seekers (e.g. Zn) exhibits a time difference in the accumulation of different metals at the calcification

  11. Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher's discriminant analysis.

    Science.gov (United States)

    Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang

    2016-02-01

    Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher's discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354

  12. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  13. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis.

    Science.gov (United States)

    Morille, Marie; Toupet, Karine; Montero-Menei, Claudia N; Jorgensen, Christian; Noël, Danièle

    2016-05-01

    In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration. PMID:26945456

  14. Improved cartilage repair via in vitro pre-maturation of MSC-seeded hyaluronic acid hydrogels

    International Nuclear Information System (INIS)

    Functional repair of focal cartilage defects requires filling the space with neotissue that has compressive properties comparable to native tissue and integration with adjacent host cartilage. While poor integration is a common complication with current clinical treatments, reports of tissue engineering advances in the development of functional compressive properties rarely include analyses of their potential for integration. Our objective was thus to assess both the maturation and integration of mesenchymal stem cell (MSC)-laden hyaluronic acid (HA) hydrogels in an in vitro cartilage defect model. Furthermore, we considered the effects of an initial period of pre-maturation as well as various material formulations to maximize both construct compressive properties and integration strength. MSCs were encapsulated in 1%, 3% and 5% methacrylated HA (MeHA) or 2% agarose (Ag) and gelled directly (in situ) within an in vitro cartilage defect or were formed and then pre-cultured for 4 weeks before implantation. Results showed that the integration strength of pre-cultured repair constructs was equal to (1% MeHA) or greater than (2% Ag) the integration of in situ repaired cartilage. Moreover, MSC chondrogenesis and maturation was restricted by the in situ repair environment with constructs maturing to a much lesser extent than pre-matured constructs. These results indicate that construct pre-maturation may be an essential element of functional cartilage repair. (paper)

  15. Macroscopical, Histological, and In Vitro Characterization of Nonosteoarthritic Versus Osteoarthritic Hip Joint Cartilage

    Science.gov (United States)

    Badendick, Jessica; Godkin, Owen; Kohl, Benjamin; Meier, Carola; Jagielski, Michal; Huang, Zhao; Arens, Stephan; Schneider, Tobias; Schulze-Tanzil, Gundula

    2016-01-01

    Osteoarthritis (OA) might affect chondrocyte culture characteristics and complement expression. Therefore, this study addressed the interrelation between macroscopical and microscopical structure, complement expression, and chondrocyte culture characteristics in non-OA and OA cartilage. Femoral head cartilage samples harvested from patients with femoral neck fractures (FNFs) and OA were analyzed for macroscopical alterations using an in-house scoring system, graded histologically (Mankin score), and immunolabeled for complement regulatory proteins (CRPs) and receptors. Morphology of monolayer cultured chondrocytes isolated from a subset of samples was assessed. The macroscopical score distinguished the FNF and OA cartilage samples and correlated significantly with the histological results. Chondrocyte phenotype from FNF or OA cartilage differed. Complement receptor C5aR, CRPs CD55 and CD59, and weakly receptor C3AR were detected in the investigated FNF and OA cartilage, except for CD46, which was detected in only two of the five investigated donors. The in-house score also allows inexperienced observers to distinguish non-OA and OA cartilage for experimental purposes. PMID:27158224

  16. Articular cartilage lesions of the knee. MRI of tibial condylar fractures

    International Nuclear Information System (INIS)

    Lesions of the articular cartilage are rarely observed in convensional radiography and CT, and may be one of the most important prognostic factors in assessing traumatic or degenerative disorders at the knee joints. To discuss the usefulness of MRI for detecting cartilage lesions, knees with tibial condylar fractures were examined with MRI. 47 patients with tibial condylar fractures were reviewed 4 months to 15 years (average of 4 years) after the fractures. Good to excellent results were obtained in 91.5% of them. It is known that anatomical reduction of conventional radiography is not consistent with the clinical outcome, because radiography can show the changes of bones only. However, the results of MRI examinations are consistent with the clinical outcome, because they can directly show the state of the articular surface, such as defects of cartilage in the joint. In my study, no abnormality of well repaired joint surfaces employing MRI were observed in the patients with excellent or good results, and various degrees of cartilage lesions were detected using MRI in the other patients. MRI is a useful method for noninvasively determining the integrity of articular cartilage, detecting cartilage lesions and degenerative disorders of tibial condyle, and also may be useful in studying and following the natural aging process in osteoarthritis following intra-articular fractures. (author) 52 refs

  17. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  18. Tibolone inhibits bone resorption without secondary positive effects on cartilage degradation

    Directory of Open Access Journals (Sweden)

    Byrjalsen I

    2008-11-01

    Full Text Available Abstract Background Osteoarthritis is associated with increased bone resorption and increased cartilage degradation in the subchondral bone and joint. The objective of the present study was to determine whether Tibolone, a synthetic steroid with estrogenic, androgenic, and progestogenic properties, would have similar dual actions on both bone and cartilage turnover, as reported previously with some SERMS and HRT. Methods This study was a secondary analysis of ninety-one healthy postmenopausal women aged 52–75 yrs entered a 2-yr double blind, randomized, placebo-controlled study of treatment with either 1.25 mg/day (n = 36, or 2.5 mg/day Tibolone (n = 35, or placebo (n = 20, (J Clin Endocrinol Metab. 1996 Jul;81(7:2419–22 Second void morning urine samples were collected at baseline, and at 3, 6, 12, and 24 months. Urine CrossLaps® ELISA (CTX-I and Urine CartiLaps® ELISA (CTX-II was investigated as markers of bone resorption and cartilage degradation, respectively. Results Tibolone significantly (P Conclusion These data suggest uncoupling of the bone and cartilage effects of the synthetic steroid, Tibolone. Bone resorption was significantly decreased, whereas cartilage degradation was unchanged. These effects are in contrast to those observed some SERMs with effects on both bone and cartilage degradation. These effects may in part be described by the complicated pharmacology of Tibolone on testosterone, estrogen and progesterone receptors.

  19. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  20. Noncontact evaluation of articular cartilage degeneration using a novel ultrasound water jet indentation system.

    Science.gov (United States)

    Lu, M-H; Zheng, Y P; Huang, Q-H; Ling, C; Wang, Q; Bridal, L; Qin, L; Mak, A

    2009-01-01

    We previously reported a noncontact ultrasound water jet indentation system for measuring and mapping tissue mechanical properties. The key idea was to utilize a water jet as an indenter as well as the coupling medium for high-frequency ultrasound. In this paper, the system was employed to assess articular cartilage degeneration, using stiffness ratio as an indicator of the mechanical properties of samples. Both the mechanical and acoustical properties of intact and degenerated bovine patellar articular cartilage (n = 8) were obtained in situ. It was found that the stiffness ratio was reduced by 44 +/- 17% after the articular cartilage was treated by 0.25% trypsin at 37 degrees C for 4 h while no significant difference in thickness was observed between the intact and degenerated samples. A significant decrease of 36 +/- 20% in the peak-to-peak amplitude of ultrasound echoes reflected from the cartilage surface was also found for the cartilage samples treated by trypsin. The results also showed that the stiffness obtained with the new method highly correlated with that measured using a standard mechanical testing protocol. A good reproducibility of the measurements was demonstrated. The present results showed that the ultrasound water jet indentation system may provide a potential tool for the non-destructive evaluation of articular cartilage degeneration by simultaneously obtaining mechanical properties, acoustical properties, and thickness data. PMID:19011965

  1. Precision carving of costal cartilage graft for contour fill in aesthetic and reconstructive rhinoplasty

    Directory of Open Access Journals (Sweden)

    Uday Bhat

    2014-01-01

    Full Text Available Background: Autogenous costal cartilage is a good option for large volume requirements in rhinoplasty, when septal or conchal cartilages do not suffice. Reluctance to use costal cartilage is due to apprehension of warping. However, warping can be avoided if we follow the principle of balanced section as advocated by Gibson and Davis. "Warping" can also be utilized to change the curvature of the graft. Materials and Methods: We have used 69 costal cartilage grafts as a solid piece for contour fill in rhinoplasty in 31 patients over the last 10 years. Principle of balanced section as advocated by Gibson and Davis was adhered to while carving the grafts, however some grafts were allowed to warp to get different sizes and shapes. Results: All the procedures were uneventful. Aesthetic appearance of all patients was satisfactory and acceptable to all the patients. In two cases, the dorsal graft minimally shifted to one side, but remained straight. In one patient, there was late appearance of distortion. Conclusion: The mode of cartilage warping is predictable and it can be used to advantage. Apprehension to use costal cartilage graft is unjustified, as with precision carving a desired shape can be obtained.

  2. Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage.

    Science.gov (United States)

    Ruggiero, Leonardo; Zimmerman, Brandon K; Park, Miri; Han, Lin; Wang, Liyun; Burris, David L; Lu, X Lucas

    2015-11-01

    In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension-compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding. PMID:25893511

  3. Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching

    International Nuclear Information System (INIS)

    Accurate segmentation of hip joint cartilage from magnetic resonance (MR) images offers opportunities for quantitative investigations of pathoanatomical conditions such as osteoarthritis. In this paper, we present a fully automatic scheme for the segmentation of the individual femoral and acetabular cartilage plates in the human hip joint from high-resolution 3D MR images. The developed scheme uses an improved optimal multi-object multi-surface graph search framework with an arc-weighted graph representation that incorporates prior morphological knowledge as a basis for segmentation of the individual femoral and acetabular cartilage plates despite weak or incomplete boundary interfaces. This automated scheme was validated against manual segmentations from 3D true fast imaging with steady-state precession (TrueFISP) MR examinations of the right hip joints in 52 asymptomatic volunteers. Compared with expert manual segmentations of the combined, femoral and acetabular cartilage volumes, the automatic scheme obtained mean (± standard deviation) Dice’s similarity coefficients of 0.81 (± 0.03), 0.79 (± 0.03) and 0.72 (± 0.05). The corresponding mean absolute volume difference errors were 8.44% (± 6.36), 9.44% (± 7.19) and 9.05% (± 8.02). The mean absolute differences between manual and automated measures of cartilage thickness for femoral and acetabular cartilage plates were 0.13 mm (± 0.12) and 0.11 mm (± 0.11), respectively. (paper)

  4. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  5. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage

    International Nuclear Information System (INIS)

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Oe = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist (registered) , gadodiamide: Omniscan(TM), ioxaglate: Hexabrix(TM) or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.

  6. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, Tuomo S; Toeyraes, Juha [Department of Clinical Neurophysiology, Kuopio University Hospital, PO Box 1777, 70211 Kuopio (Finland); Kokkonen, Harri T; Jurvelin, Jukka S [Department of Physics, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Quinn, Thomas M [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Nieminen, Miika T [Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, 90029, Oulu (Finland)], E-mail: Tuomo.Silvast@uku.fi

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Oe = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist (registered) , gadodiamide: Omniscan(TM), ioxaglate: Hexabrix(TM) or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.

  7. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.

    Science.gov (United States)

    Silvast, Tuomo S; Kokkonen, Harri T; Jurvelin, Jukka S; Quinn, Thomas M; Nieminen, Miika T; Töyräs, Juha

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity. PMID:19864699

  8. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  9. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair: International Cartilage Repair Society Recommendations Based on Current Scientific Evidence and Standards of Clinical Care

    OpenAIRE

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for t...

  10. Disease: H00765 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00765 Spondyloepiphyseal dysplasia, Kimberley type; Spondyloepimetaphyseal dysplas...ia, aggrecan type Spondyloepiphyseal dysplasia Kimberley type is a mild form of spondyloepiphyseal dysplasia... (SED) with early-onset arthropathy. The phenotype of the disease is short stature and stocky build due to f...lattened vertebral bodies. Aggrecan, the protein of the proteoglycan of cartilage, is linked to the disea...eat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dyspla

  11. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    OpenAIRE

    Siebelt, M.; Groen, H.C.; Koelewijn, S. J.; de Blois, E.; Sandker, M.; Waarsing, J. H.; Müller, C.(Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 , Bamberg, Germany); van Osch, G. J. V. M.; de Jong, M.; Weinans, H.H.

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increase...

  12. Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates

    OpenAIRE

    Zhang, Guangjun; Cohn, Martin J.

    2006-01-01

    The origin of vertebrates was defined by evolution of a skeleton; however, little is known about the developmental mechanisms responsible for this landmark evolutionary innovation. In jawed vertebrates, cartilage matrix consists predominantly of type II collagen (Col2α1), whereas that of jawless fishes has long been thought to be noncollagenous. We recently showed that Col2α1 is present in lamprey cartilage, indicating that type II collagen-based cartilage evolved earlier than previously reco...

  13. Exploring cartilage damage in gout using 3-T MRI: distribution and associations with joint inflammation and tophus deposition

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, I. [University of Auckland, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland (New Zealand); Dalbeth, N. [University of Auckland, Department of Medicine, Auckland (New Zealand); Auckland District Health Board, Department of Rheumatology, Auckland (New Zealand); Doyle, A.; Reeves, Q. [Auckland District Health Board, Department of Radiology, Auckland (New Zealand); McQueen, F.M. [University of Auckland, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, 85 Park Road, Grafton, Auckland (New Zealand); Auckland District Health Board, Department of Rheumatology, Auckland (New Zealand)

    2014-07-15

    Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82 % of lesions) and identified in 40 out of 280 (14 %) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout. (orig.)

  14. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression

    OpenAIRE

    Guo, Hongqiang; Maher, Suzanne A; Torzilli, Peter A.

    2014-01-01

    The aim of this study was to investigate the role of the superficial zone on the mechanical behavior of articular cartilage. Confined compression of articular cartilage was modeled using a biphasic finite element analysis to calculate the one-dimensional deformation of the extracellular matrix (ECM) and movement of the interstitial fluid through the ECM and articular surface. The articular cartilage was modeled as an inhomogeneous, nonlinear hyperelastic biphasic material with depth and strai...

  15. Targeting Bone Alleviates Osteoarthritis in Osteopenic Mice and Modulates Cartilage Catabolism

    Science.gov (United States)

    Funck-Brentano, Thomas; Lin, Hilène; Hay, Eric; Ah Kioon, Marie-Dominique; Schiltz, Corinne; Hannouche, Didier; Nizard, Rémy; Lioté, Frédéric; Orcel, Philippe; de Vernejoul, Marie-Christine; Cohen-Solal, Martine Esther

    2012-01-01

    Objective Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism. Methods OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody. Results Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2–3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade. Conclusion The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA. PMID:22432033

  16. Quantitative MRI Evaluation of Articular Cartilage Using T2 Mapping Following Hip Arthroscopy for Femoroacetabular Impingement

    Science.gov (United States)

    Mayer, Stephanie W.; Wagner, Naomi; Fields, Kara G.; Wentzel, Catherine; Burge, Alissa; Potter, Hollis G.; Lyman, Stephen; Kelly, Bryan T.

    2016-01-01

    Objectives: Cam-type femoroacetabular impingement (FAI) causes a shearing and delamination injury to the acetabular articular cartilage due to a mismatch between the size of the femoral head and the acetabulum. This mechanism is thought to lead to early osteoarthritis in this population. Cam decompression has been advocated to eliminate impingement, with the ultimate goal of halting the progression of articular cartilage delamination. Although outcomes following this procedure in the young adult population have been favorable at short and medium term follow up, it is not known whether the articular cartilage itself is protected from further injury by changing the biomechanics of the joint with decompression of the cam morphology. The purpose of this study is to compare the pre- and post-operative integrity of the acetabular articular cartilage using T2 mapping to determine if hip arthroscopy is protective of the articular cartilage at short- to medium term follow up. Methods: Males between 18 and 35 years of age who had pre-operative T2 mapping MRIs, underwent hip arthroscopy for cam or mixed-type FAI with an alpha angle greater than 50°, and had at least 2 year follow-up were identified. Post-operative MRIs were performed and T2 relaxation times in the transition zone and weight bearing articular cartilage in the anterosuperior acetabulum at deep and superficial chondral layers were recorded at nine points on three sagittal sequences on pre and post-operative MRIs. A paired t-test was used to compare T2 relaxation values between pre-operative and post-operative scans. Results: Eleven hips were evaluated. Mean age was 26.3 years (range 21 - 35). Mean follow up time to post-operative T2 mapping MRI was 2.6 years (range 2.4 - 2.7). The change in T2 relaxation time was not significantly different between pre- and post-operative MRI scans for any of the nine regions in the deep zone of the acetabular cartilage (p=0.065 - 0.969) or the superficial zone of the

  17. MRI findings of juvenile acute pure cartilage fracture of the knee joint

    International Nuclear Information System (INIS)

    Objective: To study the MRI manifestation of juvenile acute pule cartilage fracture of the knee joint. Methods: The MRI changes of cartilage, subcartilage low signal line and subcartilage bone were analysed retrospectively in 26 juvenile patients with acute pure cartilage fracture confirmed by arthroscopy. Sagittal and coronal MRI scanning were performed in 26 patients. Using fast low angle shot fat saturation T1-weighted image (FLASH-FS-T1WI) sequences, spin echo T1-weighted image (SE-TWI) and fast imaging with steady-state precession three dimensional fat saturation T2-weighted image(FISP-3D -FS- T2WI) sequences in sagittal plane, SE-T1WI and multi echo data image combination T2-weighted imaging (MEDIC or ME-T2WI) in coronal plane. Using ME-T2WI sequence, axial plane MRI scanning in 5 patients. Results: Twenty-seven sites of 26 patients include 8 patella, 7 femoral medial condyle, 11 femoral lateral condyle and l tibial plateau. Three types pure cartilage fracture were observed, totally defect of the cartilage in 7 sites (include 3 patella, 2 femoral medial condyle, 1 femoral lateral condyle and 1 tibial plateau), fissuring fracture in 3 sites (include 2 femoral medial and 1 femoral lateral condyles), superficial defect of the cartilage in 17 sites (include 5 patella, 3 femoral medial and 9 femoral lateral condyle). Corpus liberum was found in 21 patients' knee joints by arthroscopy, but only 3 cases by MRI. Bone bruise was detected, and subcartilage low signal lines were normal. Conclusion: Using FLASH-FS- T1WI, SE-T1WI, FISP-3D-FS-T2WI and ME-T2WI sequences, sagittal and coronal MRI scanning in femoral and tibial plateau pure cartilage fractures, and using ME-T2WI sequence axial scanning in patellar cartilage fractures may show the position, extension and types of the acute pure cartilage fracture of the knee joint. MRI is the best non-invasive method for studying cartilage fracture. (authors)

  18. Research Progress of Pulse Electromagnetic Field in Cartilage Defects Repair%脉冲电磁场用于软骨缺损修复的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘印

    2013-01-01

    软骨缺损是临床上常见的一种关节退行性病变,是由于关节处的组织失衡而导致的机械性或生物性损伤.脉冲电磁场作为非侵入性的疗法,已获广泛应用,可以促使软骨干细胞组织增生及分化,使骨髓中的干细胞移植到软骨缺损处,从而修复软骨组织.实验和研究表明,脉冲电磁场刺激对软骨缺损来说是一种有前途的治疗手段.总结分析有关脉冲电磁场治疗软骨缺损的体外、体内、临床研究概况,为今后的深入研究提供参考.%Cartilage defect is a clinically common kind of degenerative joint disease,due to the imbalance of joint organization in mechanical or biological damage.As a noninvasive treatment,pulse electromagnetic field has been widely used,it can stimulate the proliferation and differentiation of stem cells,the transplantation of the bone marrow stem cell into the cartilage defects place to repair cartilage fiber.Experiment and studies indicate that pulse electromagnetic field is a promising treatment for cartilage defect.Here is to provide a reference basis for I further studies from the perspectives of pulse electromagnetic field treatment of cartilage defects in vitro,in vivo,and in clinical.

  19. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    International Nuclear Information System (INIS)

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis

  20. A radiological study of the patella and the cartilage of patella by computed tomography following double-contrast arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Joon; Yang, Seoung Oh [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1987-04-15

    Recurrent subluxation or dislocation of the patella is a painful condition that frequently leads to chondromalacia or arthrosis of the patellofemoral joint. A radiographic evaluation of the patella and patella cartilage is important in the diagnosis of chondromalacia and mal alignment. Authors performed the patellofemoral joint CT following the double contrast arthrography in 53 patients with knee joint pains who had visited to Capital Armed Forces General Hospital from July to December, 1986. Authors analysed the shape and position of patella and the shape of patella cartilage. The results were as follows; 1. shape of patella:The most common types are type II/III (14 cases) and type III (14 cases). type III {yields} IV-9 cases, type I-5 cases, type IV-5 cases, other type-4 cases, type II-2 cases, no type V. 2. position of patella:Only 2 cases showed subluxation and external rotation of patella. 3. shape of patella cartilage:a)congruous cartilage-21 cases (39.6%) b)regular cartilage-22 cases (41.5%) c)irregular cartilage-10 cases (18.9%) irregular imbibition of contrast media-7 cases localized loss of cartilage or erosion-2 cases thinning of cartilage-1 case 4. Fissure and erosions of cartilages in 3 cases were confirmed by operation and knee arthroscopy.