WorldWideScience

Sample records for carteri induces tumor

  1. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ashley Richard A

    2009-03-01

    Full Text Available Abstract Background Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells. Methods Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis. Results Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis. Conclusion Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.

  2. Two different rickettsial bacteria invading Volvox carteri.

    Directory of Open Access Journals (Sweden)

    Kaoru Kawafune

    Full Text Available Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE.Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180.At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution.

  3. Tumor-induced osteomalacia.

    Science.gov (United States)

    Jan de Beur, Suzanne M

    2005-09-14

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic form of renal phosphate wasting that results in severe hypophosphatemia, a defect in vitamin D metabolism, and osteomalacia. This debilitating disorder is illustrated by the clinical presentation of a 55-year-old woman with progressive fatigue, weakness, and muscle and bone pain with fractures. After a protracted clinical course and extensive laboratory evaluation, tumor-induced osteomalacia was identified as the basis of her clinical presentation. In this article, the distinctive clinical characteristics of this syndrome, the advances in diagnosis of TIO, and new insights into the pathophysiology of this disorder are discussed.

  4. Tumor-induced osteomalacia

    Directory of Open Access Journals (Sweden)

    Pablo Florenzano

    2017-12-01

    Full Text Available Tumor-induced osteomalacia (TIO is a rare paraneoplastic syndrome clinically characterized by bone pain, fractures and muscle weakness. It is caused by tumoral overproduction of fibroblast growth factor 23 (FGF23 that acts primarily at the proximal renal tubule, decreasing phosphate reabsorption and 1α-hydroxylation of 25 hydroxyvitamin D, thus producing hypophosphatemia and osteomalacia. Lesions are typically small, benign mesenchymal tumors that may be found in bone or soft tissue, anywhere in the body. In up to 60% of these tumors, a fibronectin-1(FN1 and fibroblast growth factor receptor-1 (FGFR1 fusion gene has been identified that may serve as a tumoral driver. The diagnosis is established by the finding of acquired chronic hypophosphatemia due to isolated renal phosphate wasting with concomitant elevated or inappropriately normal blood levels of FGF23 and decreased or inappropriately normal 1,25-OH2-Vitamin D (1,25(OH2D. Locating the tumor is critical, as complete removal is curative. For this purpose, a step-wise approach is recommended, starting with a thorough medical history and physical examination, followed by functional imaging. Suspicious lesions should be confirmed by anatomical imaging, and if needed, selective venous sampling with measurement of FGF23. If the tumor is not localized, or surgical resection is not possible, medical therapy with phosphate and active vitamin D is usually successful in healing the osteomalacia and reducing symptoms. However, compliance is often poor due to the frequent dosing regimen and side effects. Furthermore, careful monitoring is needed to avoid complications such us secondary/tertiary hyperparathyroidism, hypercalciuria, and nephrocalcinosis. Novel therapeutical approaches are being developed for TIO patients, such as image-guided tumor ablation and medical treatment with the anti-FGF23 monoclonal antibody KRN23 or anti FGFR medications. The case of a patient with TIO is presented to

  5. Molecular and biochemical responses of Volvox carteri to oxidative stress

    Science.gov (United States)

    Lingappa, U.; Rankin-Gee, E. K.; Lera, M.; Bebour, B.; Marcu, O.

    2014-03-01

    Understanding the intracellular response to environmental stresses is a key aspect to understanding the limits of habitability for life as we know it. A wide range of relevant stressors, from heat shock to radiation, result in the intracellular production of reactive oxygen species (ROS). ROS are used physiologically as signaling molecules to cause changes in gene expression and metabolism. However, ROS, including superoxide (O2-) and peroxides, are also highly reactive molecules that cause oxidative damage to proteins, lipids and DNA. Here we studied stress response in the multicellular, eukaryotic green alga Volvox carteri, after exposure to heat shock conditions. We show that the ROS response to heat stress is paralleled by changes in photosynthetic metabolism, antioxidant enzyme activity and gene expression, and fluctuations in the elemental composition of cells. Metabolism, as measured by pulse amplitude modulated (PAM) fluorometry over two hours of heat stress, showed a linear decrease in the photosynthetic efficiency of Volvox. ROS quantification uncovered an increase in ROS in the culture medium, paralleled by a decrease in ROS within the Volvox colonies, suggesting an export mechanism is utilized to mitigate stress. Enzyme kinetics indicated an increase in superoxide dismutase (SOD) activity over the heat stress timecourse. Using X-ray fluorescence (XRF) at the Stanford Synchrotron Radiation Lightsource, we show that these changes coincide with cell-specific import/export and intracellular redistribution of transition elements and halides, suggesting that the cellular metallome is also engaged in mediating oxidative stress in Volvox.

  6. Radiation-induced tumors in transplanted ovaries

    International Nuclear Information System (INIS)

    Covelli, V.; Di Majo, V.; Bassani, B.; Metalli, P.; Silini, G.

    1982-01-01

    A comparison was made of tumor induction in the ovaries of whole-body-irradiation mice (250-kV X rays, doses of 0.25-4.00 Gy) or in ovaries irradiated in vivo and then transplanted intramuscularly into castrated syngeneic hosts. The form of the dose-induction relationships was similar in the two cases, showing a steeply rising branch at doses up to 0.75 Gy followed by a maximum and an elevated plateau up to 4.00 Gy. A higher incidence of tumors in transplanted organs was apparent for doses up to the maximum, which was attributed to castration-induced hormonal imbalance. Specific death rate analysis of mice dying with ovarian tumors showed that in this system radiation acts essentially by decreasing tumor latency. Ovarian tumors were classified in various histological types and their development in time was followed by serial sacrifice. Separate analysis of death rate of animals carrying different tumor classes allowed further resolution of the various components of the tumor induction phenomenon. It was thus possible to show that the overall death rate analysis masks a true effect of induction of granulosa cell tumors in whole-body-irradiation animals. The transplantation technique offers little advantage for the study of radiation induction of ovarian tumor

  7. A novel BLK-induced tumor model

    DEFF Research Database (Denmark)

    Petersen, David Leander; Berthelsen, Jens; Willerslev-Olsen, Andreas

    2017-01-01

    -hematological malignancies including breast, kidney, and lung cancers, suggesting that BLK could be a new potential target for therapy. Here, we studied the oncogenic potential of human BLK. We found that engrafted Ba/F3 cells stably expressing constitutive active human BLK formed tumors in mice, whereas neither Ba/F3 cells...... expressing wild type BLK nor non-transfected Ba/F3 cells did. Inhibition of BLK with the clinical grade and broadly reacting SRC family kinase inhibitor dasatinib inhibited growth of BLK-induced tumors. In conclusion, our study provides evidence that human BLK is a true proto-oncogene capable of inducing...... tumors, and we demonstrate a novel BLK activity-dependent tumor model suitable for studies of BLK-driven lymphomagenesis and screening of novel BLK inhibitors in vivo....

  8. Muusikamaailm : Uus hooaeg ooperiteatrites, kontserdimajades. Elliott Carteri esikooper. Birgit Cullberg surnud / Priit Kuusk

    Index Scriptorium Estoniae

    Kuusk, Priit, 1938-

    1999-01-01

    Uue hooaja kavadest Los Angeles Operas, Kölni Opernhausis, New York City Operas, Inglise Rahvusooperis, San Francisco Operas; Detroidi Sümfooniaorkestri, Turu ja Helsingi Linnaorkestri ja San Francisco Symhony Orchestra hooaja avakontserditest. E.Carteri esikooperi "What Next" maailmaesiettekandest Berliini Riigiooperis. B.Cullbergi tegevusest

  9. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  10. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    Energy Technology Data Exchange (ETDEWEB)

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  11. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  12. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki, E-mail: nagane@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yasui, Hironobu, E-mail: yassan@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Yamamori, Tohru, E-mail: yamamorit@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan); Zhao, Songji, E-mail: zsi@med.hokudai.ac.jp [Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kuge, Yuji, E-mail: kuge@med.hokudai.ac.jp [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan); Tamaki, Nagara, E-mail: natamaki@med.hokudai.ac.jp [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kameya, Hiromi, E-mail: kameya@affrc.go.jp [Food Safety Division, National Food Research Institute, Tsukuba (Japan); Nakamura, Hideo, E-mail: naka@science-edu.org [Department of Chemistry, Hokkaido University of Education, Hakodate (Japan); Fujii, Hirotada, E-mail: hgfujii@sapmed.ac.jp [Center for Medical Education, Sapporo Medical University, Sapporo (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo (Japan)

    2013-08-02

    Highlights: •IR-induced NO increased tissue perfusion and pO{sub 2}. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO{sub 2} in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.

  13. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  14. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  15. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  16. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  17. Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein

    DEFF Research Database (Denmark)

    Herrmann, Andreas; König, Simone; Lechtenberg, Matthias

    2012-01-01

    Water-soluble high molecular weight compounds were isolated in yields of 21-22% from the oleogum of Boswellia serrata and B. carteri. Using anion exchange chromatography and gel permeation chromatography, different proteoglycans were purified and characterized, leading to four principally different...

  18. Tumor irradiation enhances homing of vaccine induced tumor-specific CTLS

    NARCIS (Netherlands)

    Draghiciu, Oana; Walczak, Mateusz; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans; Daemen, Toos

    2012-01-01

    The recombinant Semliki Forest virus (rSFV) encoding human papilloma virus (HPV)-E6,7 tumor antigens induces both strong, longlasting CTL responses in a mouse model of cervical carcinoma and effective eradication of established tumors of HPV-transformed cells. Current therapeutic approaches of

  19. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria

    KAUST Repository

    Liew, Yi Jin

    2016-02-12

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.

  20. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria.

    Directory of Open Access Journals (Sweden)

    Yi Jin Liew

    Full Text Available MicroRNAs (miRNAs are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively. Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.

  1. miRNA Repertoires of Demosponges Stylissa carteri and Xestospongia testudinaria.

    Science.gov (United States)

    Liew, Yi Jin; Ryu, Taewoo; Aranda, Manuel; Ravasi, Timothy

    2016-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs that are involved in many biological process in eukaryotes. They play a crucial role in modulating genetic expression of their targets, which makes them integral components of transcriptional regulatory networks. As sponges (phylum Porifera) are commonly considered the most basal metazoan, the in-depth capture of miRNAs from these organisms provides additional clues to the evolution of miRNA families in metazoans. Here, we identified the core proteins involved in the biogenesis of miRNAs, and obtained evidence for bona fide miRNA sequences for two marine sponges Stylissa carteri and Xestospongia testudinaria (11 and 19 respectively). Our analysis identified several miRNAs that are conserved amongst demosponges, and revealed that all of the novel miRNAs identified in these two species are specific to the class Demospongiae.

  2. Tumor-Associated Macrophages Promote Malignant Progression of Breast Phyllodes Tumors by Inducing Myofibroblast Differentiation.

    Science.gov (United States)

    Nie, Yan; Chen, Jianing; Huang, Di; Yao, Yandan; Chen, Jiewen; Ding, Lin; Zeng, Jiayi; Su, Shicheng; Chao, Xue; Su, Fengxi; Yao, Herui; Hu, Hai; Song, Erwei

    2017-07-01

    Myofibroblast differentiation plays an important role in the malignant progression of phyllodes tumor, a fast-growing neoplasm derived from periductal stromal cells of the breast. Macrophages are frequently found in close proximity with myofibroblasts, but it is uncertain whether they are involved in the myofibroblast differentiation during phyllodes tumor progression. Here we show that increased density of tumor-associated macrophage (TAM) correlates with malignant progression of phyllodes tumor. We found that TAMs stimulated myofibroblast differentiation and promoted the proliferation and invasion of phyllodes tumor cells. Furthermore, we found that levels of the chemokine CCL18 in TAM was an independent prognostic factor of phyllodes tumor. Mechanistic investigations showed that CCL18 promoted expression of α-smooth muscle actin, a hallmark of myofibroblast, along with the proliferation and invasion of phyllodes tumor cells, and that CCL18-driven myofibroblast differentiation was mediated by an NF-κB/miR-21/PTEN/AKT signaling axis. In murine xenograft models of human phyllodes tumor, CCL18 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. Taken together, our findings indicated that TAM drives myofibroblast differentiation and malignant progression of phyllodes tumor through a CCL18-driven signaling cascade amenable to antibody disruption. Cancer Res; 77(13); 3605-18. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Molecular analysis of radiation-induced experimental tumors in mice

    International Nuclear Information System (INIS)

    Niwa, O.; Muto, M.; Suzuki, F.

    1992-01-01

    Molecular analysis was made on mouse tumors induced by radiation and chemicals. Expression of oncogenes was studied in 12 types of 178 mouse tumors. Southern blotting was done on tumors in which overexpression of oncogenes was noted. Amplification of the myc oncogene was found in chemically induced sarcomas, but not those induced by radiations. Radiogenic thymomas were studied in detail. These thymomas were induced in two different ways. The first was thymomas induced by direct irradiation of F1 mice between C57BL/6NxC3H/He. Southern analysis of DNA revealed deletion of specific minisatellite bands in these tumors. DNA from directly induced thymomas induced focus formation when transfected into normal Golden hamster cells. The mouse K-ras oncogene was detected in these transformants. The second type of thymomas was induced by X-irradiation of thymectomized B10.thy1.2 mice in which normal thymus from congenic B10,thy1.1. mice was grafted. Thymomas of the donor origin was analysed by transfection and the transformants by DNA from those indirectly induced thymomas did not contain activated ras oncogenes. (author)

  4. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Guillet Bastide, K.

    2008-11-01

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16 Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  5. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    KAUST Repository

    O’Rourke, Aubrie

    2016-02-04

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  6. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri

    KAUST Repository

    Giles, E.C.

    2013-04-04

    Despite the ubiquitous role sponges play in reef ecosystem dynamics, little is known about population-level connectivity in these organisms. The general field of population genetics in sponges remains in its infancy. To date, microsatellite markers have only been developed for few sponge species and no sponge population genetics studies using microsatellites have been conducted in the Red Sea. Here, with the use of next-generation sequencing, we characterize 12 novel polymorphic loci for the common reef sponge, Stylissa carteri. The number of alleles per loci ranged between three and eight. Observed heterozygosity frequencies (Ho) ranged from 0.125 to 0.870, whereas expected (He) heterozygosity frequencies ranged from 0.119 to 0.812. Only one locus showed consistent deviations from Hardy-Weinberg equilibrium (HWE) in both populations and two loci consistently showed the possible presence of null alleles. No significant linkage disequilibrium was detected for any pairs of loci. These microsatellites will be of use for numerous ecological studies focused on this common and abundant sponge. 2013 The Author(s).

  8. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  9. Tumor-derived exosomes induce CD8+T cell suppressors.

    Science.gov (United States)

    Maybruck, Brian T; Pfannenstiel, Lukas W; Diaz-Montero, Marcela; Gastman, Brian R

    2017-08-15

    The suppressive nature of immune cells in the tumor microenvironment plays a major role in regulating anti-tumor immune responses. Our previous work demonstrated that a soluble factor from tumor cells is able to induce a suppressor phenotype (SP) in human CD8 + T cells typified by loss of CD27/CD28 expression and acquisition of a potent suppressor function. The present study hypothesized that the soluble mechanism that is inducing the SP in CD8 + T cells are tumor-derived exosomes (TDEs). Membrane vesicles and TDEs from multiple head and neck cancer cell line's conditioned growth media were isolated by ultracentrifugation and precipitation, respectively. Human purified CD3 + CD8 + T cells were assessed for their induction of the T cell SP by flow cytometry identifying loss of CD27/CD28 expression and in vitro suppression assays. Furthermore, the T cell SP was characterized for the attenuation of IFN-γ production. To delineate exosomal proteins contributing to T cell SP, mass spectrometry was used to identify unique proteins that were present in TDEs. CRISPR/Cas9 knockout constructs were used to examine the role of one of these proteins, galectin-1. To assess the role of exosomal RNA, RNA purified from TDEs was nucleofected into CD8 + T cells followed by suppression analysis. Using fractionated conditioned growth media, factors >200 kDa induced CD8 + T cell SP, which was determined to be an exosome by mass spectrometry analysis. Multiple head and neck cancer-derived cell lines were found to secrete T cell SP-inducing exosomes. Mass spectrometry analysis revealed that an immunoregulatory protein, galectin-1 (Gal-1), was expressed in those exosomes, but not in TDEs unable to induce T cell SP. Galectin-1 knockout cells were found to be less able to induce T cell SP. Furthermore, RNA purified from the T cell SP-inducing exosomes were found to partially induce the SP when transfected into normal CD8 + T cells. For the first-time, TDEs have been identified to induce a

  10. FNAC induced histological changes in Warthin tumor mimicking as cancer

    Directory of Open Access Journals (Sweden)

    NK Sinha

    2015-03-01

    Full Text Available Warthin tumor is the second most common salivary gland tumor affecting male in 6th to 7th decade of life. It can grow in peri- parotid or cervical lymph nodes too. Preoperative FNAC procedure can induce partial to near total infarction and metaplastic changes in tumor masquerading with malignancy, mainly squamous cell carcinoma or low grade mucoepidermoid carcinoma.Here, I present a case in which FNAC procedure was performed. Later on histopathology, metaplastic changes in epithelium of Warthin tumor and extensive infarction were noted. Such lesion could have been mistaken as Squamous cell carcinoma or low grade mucoepidermoid carcinoma. Thus acquaintance with morphological alteration caused by FNAC procedure is very important to avoid misdiagnosis.Journal of Pathology of Nepal (2015 Vol. 5, 778-780

  11. Bone scintigraphic patterns in patients of tumor induced osteomalacia

    International Nuclear Information System (INIS)

    Sood, Ashwani; Agarwal, Kanhaiyalal; Shukla, Jaya; Goel, Reema; Dhir, Varun; Bhattacharya, Anish; Rai Mittal, Bhagwant

    2013-01-01

    Tumor induced osteomalacia (TIO) or oncogenic osteomalacia is a rare condition associated with small tumor that secretes one of the phosphaturic hormones, i.e., fibroblast growth factor 23, resulting in abnormal phosphate metabolism. Patients may present with non-specific symptoms leading to delay in the diagnosis. Extensive skeletal involvement is frequently seen due to delay in the diagnosis and treatment. The small sized tumor and unexpected location make the identification of tumor difficult even after diagnosis of osteogenic osteomalacia. The bone scan done for the skeletal involvement may show the presence of metabolic features and the scan findings are a sensitive indicator of metabolic bone disorders. We present the bone scan findings in three patients diagnosed to have TIO

  12. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  13. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea

    KAUST Repository

    Giles, Emily C.

    2015-06-01

    A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.

  14. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  15. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    Science.gov (United States)

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  16. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  18. Treatment-Induced Autophagy Associated with Tumor Dormancy and Relapse

    Science.gov (United States)

    2015-07-01

    frequently other steroid hormone receptors such as androgen receptor (102,259–275). Most of these chemicals also targeted growth factors and their...ATG12-/- MMC tumor cells where we might also expect that ADR treatment will results in sustained growth arrest/dormancy. ADR chemotherapy induces...Sevilla, Avda Manuel Siurot sn, 41013 Sevilla, Spain, 7Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine

  19. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  20. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  1. Successful treatment of tumor-induced osteomalacia due to an intracranial tumor by fractionated stereotactic radiotherapy.

    Science.gov (United States)

    Tarasova, Valentina D; Trepp-Carrasco, Alejandro G; Thompson, Robert; Recker, Robert R; Chong, William H; Collins, Michael T; Armas, Laura A G

    2013-11-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome, characterized by tumor secretion of fibroblast growth factor-23 (FGF23) causing hypophosphatemia due to renal phosphate wasting. TIO is usually caused by small, benign, difficult-to-localize, mesenchymal tumors. Although surgery with wide excision of tumor borders is considered the "gold standard" for definitive therapy, it can be associated with considerable morbidity depending on the location. To date, radiation therapy has not been considered as an effective treatment modality in TIO. A 67-year-old female presented with multiple nontraumatic fractures, progressive bone pain, and muscle weakness for 4 years. She was found to have biochemical evidence of urinary phosphate wasting with low serum phosphorus, low-normal serum calcium, normal 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and high serum FGF23 levels. TIO was diagnosed. Selective venous sampling for FGF23 confirmed that a 1.7-cm left frontal mass, radiographically similar to a meningioma, was the causative tumor. She declined surgery due to fear of complications and instead underwent fractionated stereotactic radiotherapy for 6 weeks. In less than 4 years after radiation therapy, she was successfully weaned off phosphorus and calcitriol, starting from 2 g of oral phosphorus daily and 1 μg of calcitriol daily. Her symptoms have resolved, and she has not had any new fractures. Stereotactic radiotherapy was an effective treatment modality for TIO in our patient. Fractionated stereotactic radiation therapy represents an alternative to surgery for patients with TIO who are not surgical candidates or who decline surgery.

  2. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Treatment and outcomes of tumor-induced osteomalacia associated with phosphaturic mesenchymal tumors: retrospective review of 12 patients

    OpenAIRE

    Zuo, Qing-yao; Wang, Hong; Li, Wei; Niu, Xiao-hui; Huang, Yan-hong; Chen, Jia; You, Yu-hua; Liu, Bao-yue; Cui, Ai-min; Deng, Wei

    2017-01-01

    Background Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by severe hypophosphatemia and osteomalacia. Nonspecific symptoms make the diagnosis elusive. In addition, locating the responsible tumor(s) is challenging. The aim of this study was to investigate the clinical management and outcomes of TIO. Methods The clinical features, diagnostic procedures, treatment, and outcomes of 12 patients were reviewed retrospectively. Results The cohort comprised six men a...

  4. Tumor manipulation during pancreatic resection for pancreatic cancer induces dissemination of tumor cells into the peritoneal cavity: a systematic review

    NARCIS (Netherlands)

    Steen, M. Willemijn; van Duijvenbode, Dennis C.; Dijk, Frederike; Busch, Oliver R.; Besselink, Marc G.; Gerhards, Michael F.; Festen, Sebastiaan

    2018-01-01

    Intraoperative tumor manipulation may induce the dissemination of occult peritoneal tumor cells (OPTC) into the peritoneal cavity. A systematic review was performed in the PubMed, Embase and Cochrane databases from inception to March 15, 2017. Eligible were studies that analyzed the presence of OPTC

  5. Linear ubiquitin chain induces apoptosis and inhibits tumor growth.

    Science.gov (United States)

    Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei

    2018-01-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.

  6. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  7. Homeostatic T Cell Expansion to Induce Anti-Tumor Autoimmunity in Breast Cancer

    National Research Council Canada - National Science Library

    Baccala, Roberto

    2007-01-01

    ... that (a) homeostatic T-cell proliferation consistently elicits anti-tumor responses; (b) irradiation is more effective than Tcell depletion by antibodies in inducing anti-tumor responses mediated by homeostatic T-cell proliferation...

  8. Fractional laser exposure induces neutrophil infiltration (N1 phenotype into the tumor and stimulates systemic anti-tumor immune response.

    Directory of Open Access Journals (Sweden)

    Masayoshi Kawakubo

    Full Text Available Ablative fractional photothermolysis (aFP using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP.We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25, which expressed a tumor antigen, beta-galactosidase (beta-gal. aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg, which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP.We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.

  9. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  10. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Shi, Yang; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation

  11. Tumor-infiltrating lymphocyte activity is enhanced in tumors with low IL-10 production in HBV-induced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yang, E-mail: yangshi_xz@126.com; Song, Qingwei; Hu, Dianhe; Zhuang, Xiaohu; Yu, Shengcai

    2015-05-22

    Hepatocellular carcinoma (HCC) is one of the most common cancers and can be induced by chronic HBV infection. The role of HBV-specific immune responses in mediating tumorigenesis and HCC prognosis is debated. The effect of intratumoral microenvironment on tumor-infiltrating lymphocytes (TILs) is also unclear. Here, we examined resected tumor tissue from 36 patients with HBV-induced HCC. We categorized study cohort based on ex vivo IL-10 secretion by tumor cells into high IL-10-secreting (Hi10) and low IL-10-secreting (Lo10) groups, and found that the Lo10 group was less sensitive to TLR ligand stimulation. TILs from the Lo10 group contained higher frequencies of HBV-specific IFN-g-producing cells and total IFN-g-producing cells, and possessed higher proliferative capacity. Moreover, the proliferative capacity of TILs from the Hi10 group was negatively correlated with IL-10 secretion from tumor cells. Together, our data demonstrated that low IL-10-producing capacity in HBV-induced HCC tumors is associated with enhanced TIL activity. - Highlights: • We examined intratumoral IL-10 production in HBV-induced HCC. • We grouped HCC tumors into Hi10 and Lo10 groups based on their IL-10 production. • Lo10 groups had better IFN-g response by TILs. • Lo10 groups had better TIL proliferative capacity. • Lo10 group tumor cells were refractory to TLR ligand stimulation.

  12. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  13. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis.

    Science.gov (United States)

    Murillo, Miguel Manuel; Zelenay, Santiago; Nye, Emma; Castellano, Esther; Lassailly, Francois; Stamp, Gordon; Downward, Julian

    2014-08-01

    Direct interaction of RAS with the PI3K p110α subunit mediates RAS-driven tumor development: however, it is not clear how p110α/RAS-dependant signaling mediates interactions between tumors and host tissues. Here, using a murine tumor cell transfer model, we demonstrated that disruption of the interaction between RAS and p110α within host tissue reduced tumor growth and tumor-induced angiogenesis, leading to improved survival of tumor-bearing mice, even when this interaction was intact in the transferred tumor. Furthermore, functional interaction of RAS with p110α in host tissue was required for efficient establishment and growth of metastatic tumors. Inhibition of RAS and p110α interaction prevented proper VEGF-A and FGF-2 signaling, which are required for efficient angiogenesis. Additionally, disruption of the RAS and p110α interaction altered the nature of tumor-associated macrophages, inducing expression of markers typical for macrophage populations with reduced tumor-promoting capacity. Together, these results indicate that a functional RAS interaction with PI3K p110α in host tissue is required for the establishment of a growth-permissive environment for the tumor, particularly for tumor-induced angiogenesis. Targeting the interaction of RAS with PI3K has the potential to impair tumor formation by altering the tumor-host relationship, in addition to previously described tumor cell-autonomous effects.

  14. Mycobacterium bovis BCG promotes tumor cell survival from tumor necrosis factor-α-induced apoptosis.

    Science.gov (United States)

    Holla, Sahana; Ghorpade, Devram Sampat; Singh, Vikas; Bansal, Kushagra; Balaji, Kithiganahalli Narayanaswamy

    2014-09-11

    Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guérin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-α in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain- and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-α treatment. Here, we show that BCG inhibits TNF-α-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-α-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.

  15. Constitutive Notch2 signaling induces hepatic tumors in mice.

    Science.gov (United States)

    Dill, Michael T; Tornillo, Luigi; Fritzius, Thorsten; Terracciano, Luigi; Semela, David; Bettler, Bernhard; Heim, Markus H; Tchorz, Jan S

    2013-04-01

    Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development. Copyright © 2012 American Association for the Study of Liver Diseases.

  16. Radiation-induced autologous in situ tumor vaccines

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Radiation therapy (RT) has been used as a definitive treatment for many solid tumors. While tumoricidal properties of RT are instrumental for standard clinical application, irradiated tumors can potentially serve as a source of tumor antigens in vivo, where dying tumor cells would release tumor antigens and danger signals and serve as autologous in situ tumor vaccines. Using murine tumor models of prostate, metastatic lung cancer and melanoma, we have demonstrated evidence of radiation-enhanced tumor-specific immune response that resulted in improved primary tumor control and reduction in systemic metastasis and cure. We will discuss the immunogenic properties of RT and determine how immunotherapeutic approaches can synergize with RT in boosting immune cells cell function. (author)

  17. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  18. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control.

    Science.gov (United States)

    Mishra, Rabinarayan; Polic, Bojan; Welsh, Raymond M; Szomolanyi-Tsuda, Eva

    2013-07-15

    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.

  19. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  20. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  1. Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice.

    Science.gov (United States)

    Kawahara, Mamoru; Takaku, Hiroshi

    2013-12-01

    Although tumor lysate contains all the potential helper and killer epitopes capable of stimulating T cells, it is difficult to use as a cancer vaccine because it suppresses dendritic cell (DC) function. We report that wild-type baculovirus possesses an adjuvant effect to improve the immunogenicity of tumor lysate. When mice were administered CT26 tumor cell lysate combined with baculovirus intradermally, antitumor immunity was induced and rejection of CT26 tumor growth was observed in 40% of the immunized mice. In contrast, such antitumor immunity was not elicited in mice inoculated with tumor cell lysate or baculovirus alone. In tumor-bearing mice, which had previously received the combined baculovirus and tumor lysate vaccine, the established tumors were completely eradicated by administering a booster dose of the combined vaccine. This antitumor effect was attributed to tumor-specific T cell immunity mediated primarily by CD8⁺ T cells. Baculovirus also strongly activated DCs loaded with tumor lysate. Increased interleukin (IL)-6 and IL-12p70 production were also observed in DCs co-cultured with tumor cell lysate and baculovirus. Our study demonstrates that combined baculovirus and tumor lysate vaccine can effectively stimulate DCs to induce acquired antitumor immunity.

  2. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors

    Directory of Open Access Journals (Sweden)

    Shanawaz Mohammed Ghouse

    2018-01-01

    Full Text Available Summary: High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth. : Mast cells accumulate in high numbers in many human tumors, and they are widely viewed as important promoters of tumor growth. Ghouse et al. show that growth, angiogenesis, and the immunological micro-milieu of tumors growing in mice genetically deficient for mast cells are unchanged compared to control tumors. Keywords: mast cells, HPV-induced skin cancer, tumor angiogenesis, tumor micro-milieu

  3. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1.

    Directory of Open Access Journals (Sweden)

    Martin Chopra

    Full Text Available Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%, TNF deficient (12.5%, and TNFR2 deficient mice (22.2% were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+ T cells and CD4(+ forkhead box P3 (FoxP3(+ regulatory T cells (Treg but reduced numbers of CD8(+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.

  4. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Yang, Jie; Li, Jun-Wen; Wang, Lu; Chen, Zhaoli; Shen, Zhi-Qiang; Jin, Min; Wang, Xin-Wei; Zheng, Yufei; Qiu, Zhi-Gang; Wang, Jing-feng

    2008-01-01

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  5. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    Directory of Open Access Journals (Sweden)

    Joseph T. Acquaviva

    2015-07-01

    Full Text Available The ideal treatment modality for metastatic cancer would be a local treatment that can destroy primary tumors while inducing an effective systemic anti-tumor response. To this end, we developed laser immunotherapy, combining photothermal laser application with an immunoadjuvant for the treatment of metastatic cancer. Additionally, to enhance the selective photothermal effect, we integrated light-absorbing nanomaterials into this innovative treatment. Specifically, we developed an immunologically modified carbon nanotube combining single-walled carbon nanotubes (SWNTs with the immunoadjuvant glycated chitosan (GC. To determine the effectiveness of laser irradiation, a series of experiments were performed using two different irradiation durations — 5 and 10 min. Rats were inoculated with DMBA-4 cancer cells, a metastatic cancer cell line. The treatment group of rats receiving laser irradiation for 10 min had a 50% long-term survival rate without residual primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 min had no long-term survivors; all rats died with multiple metastases at several distant sites. Therefore, Laser+SWNT–GC treatment with 10 min of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  6. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  7. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    Science.gov (United States)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  8. Radiation-induced irreparable heritable changes in cells promoting their tumoral transformation

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vagabova, M.Eh.; Yurov, S.S.

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobat. tumefaciens C-58D) it was shown that exposure of the recepient plant to low-level γ-radiation of Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells

  9. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors...

  10. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  11. Tumor vascularity under hypertension induced by intravenous infusion of angiotensin II

    International Nuclear Information System (INIS)

    Kato, Toshio

    1986-01-01

    We studied whether or not the blood flow of tumors was increased by AT-II-induced hypertension in patients. Angiograms of 51 patients before and after intravenous infusion of AT-II were compared carefully from 5 points of view which suggested increased tumor blood flow. These were, 1) Contraction of small arteries feeding normal tissue, 2) Enhanced visualization of tumor vessels, 3) Enhanced visualization of tumor stain, 4) Increase of venous return from tumor-bearing region, and 5) Enhanced visualization of metastatic lymph nodes. The results were as follows. Contractions of small arteries feeding normal tissue [Finding 1)] were observed in 34 cases (66.6 %) and enhanced visualization of tumor vessels, tumor stain and so on [Finding 2)-5] were observed in 18 cases (35.3 %). Concequently, an increase of tumor blood flow was suggested in 40 cases (78.4 %). Blood flow of human tumors and normal tissue during the full course of induced hypertension with AT-II were measures by means of radionuclide angiography ( 99m Tc-RBC) and laser Doppler velocimetry. Activities of the tumor-bearing region and the mid-portion of the thigh (selected as normal tissue) were measured continuously by collimated scintillation detectors. In 26 measurements out of 31 (83.8 %), the activity in the thigh decreased promptly and returned to the baseline synchronously with the rise and fall of blood pressure. In contrast, in 11 measurements (34.4 %) the activity of the tumor-bearing region increased and returned to the baseline accompanying the change of blood pressure. Preliminary observations using laser Doppler velocimetry revealed an increase of blood flow in 5 tumors. In conclusion, the blood flow of human tumors was increased by AT-II, in agreement with the findings in animal tumors. (J.P.N.)

  12. Naturally occurring and radiation-induced tumors in SPF mice, and genetic influence in radiation leukemogenesis

    International Nuclear Information System (INIS)

    Kasuga, T.

    1979-01-01

    The data obtained so far in this study point to a strong genetic influence not only on the types and incidence of naturally occurring and radiation-induced tumors but also on radiation leukemogenesis. (Auth.)

  13. Ultraviolet radiation-induced tumors do not arise from a subpopulation of ultraviolet-resistant cells

    International Nuclear Information System (INIS)

    Fisher, M.S.

    1981-01-01

    A study was designed to determine whether UV-induced tumors have a selective growth advantage in the autochthonous host by virtue of possessing a heritable resistance to UV-induced lethality. Several fibrosarcomas were induced either by repeated exposure of C3H mice to UV radiation from FS40 sunlamps or by subcutaneous injection of C3H mice with a chemical carcinogen (methylcholanthrene). Tissue culture lines of these tumors were tested in vitro for susceptibility to the lethal effects of UV radiation from an FS40 sunlamp. Lethality was assessed by measuring colony formation as a function of increasing dose of radiation. Cells from the UV-induced fibrosarcomas were not more resistant to the lethal effects of UV radiation than cells from methylcholanthrene-induced fibrosarcomas or cells from a nontumorigenic C3H fibroblast cell line. This suggests that UV-induced tumors do not arise from a subpopulation of UV-resistant cells. (author)

  14. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea.

    Science.gov (United States)

    Almendros, Isaac; Wang, Yang; Becker, Lev; Lennon, Frances E; Zheng, Jiamao; Coats, Brittney R; Schoenfelt, Kelly S; Carreras, Alba; Hakim, Fahed; Zhang, Shelley X; Farré, Ramon; Gozal, David

    2014-03-01

    An increased cancer aggressiveness and mortality have been recently reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, enhances melanoma growth and metastasis in mice. To assess whether OSA-related adverse cancer outcomes occur via IH-induced changes in host immune responses, namely tumor-associated macrophages (TAMs). Lung epithelial TC1 cell tumors were 84% greater in mice subjected to IH for 28 days compared with room air (RA). In addition, TAMs in IH-exposed tumors exhibited reductions in M1 polarity with a shift toward M2 protumoral phenotype. Although TAMs from tumors harvested from RA-exposed mice increased TC1 migration and extravasation, TAMs from IH-exposed mice markedly enhanced such effects and also promoted proliferative rates and invasiveness of TC1 cells. Proliferative rates of melanoma (B16F10) and TC1 cells exposed to IH either in single culture or in coculture with macrophages (RAW 264.7) increased only when RAW 264.7 macrophages were concurrently present. Our findings support the notion that IH-induced alterations in TAMs participate in the adverse cancer outcomes reported in OSA.

  15. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice

    DEFF Research Database (Denmark)

    Forst, Birgitte; Hansen, Matilde Thye; Klingelhöfer, Jörg

    2010-01-01

    The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100...... has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved....

  16. Comparative Study of Histopathologic Characterization of Azoxymethane-induced Colon Tumors in Three Inbred Rat Strains

    DEFF Research Database (Denmark)

    Kobæk Larsen, Morten; Fenger, Claus; Hansen, Ket

    2002-01-01

    To obtain controlled genetic variation, colon cancer was chemically induced by use of four subcutaneous injections of azoxymethane (15 mg/kg of body weight/wk) to rats of 3 inbred strains (BDIX/OrlIco, F344/NHsd, WAG/Rij). The selection was based on the availability of established colon cancer cell...... characteristics should resemble the corresponding human tumors. The size of the tumors should be at about 1 cm in diameter, as these tumor cells were intended to be used in future transplantation studies. The two experiments yielded highly reproducible results: histologic evaluation of all colon tumors in all...

  17. Laser-induced thermo ablation of hepatic tumors: an update review; Termoablacao a laser de tumores hepaticos: atualizacao

    Energy Technology Data Exchange (ETDEWEB)

    D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: scopo@terra.com.br; Ribeiro, Marcelo [Sao Paulo Univ., SP (Brazil). Hospital das Clinicas. Grupo de Cirurgia de Figado e Hipertensao Portal

    2004-06-01

    Laser-induced thermo ablation has been used as a reliable method for producing coagulation necrosis in hepatic tumors in patients who are not suitable for surgical treatment. The procedure can be performed percutaneously, using image-guiding methods, by open laparotomy or laparoscopy. We review the current literature and discuss the principles, indications, complications and clinical results as well as the potential limitations and contraindications of this novel technique. (author)

  18. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  19. Stochastic fluctuation induced the competition between extinction and recurrence in a model of tumor growth

    International Nuclear Information System (INIS)

    Li, Dongxi; Xu, Wei; Sun, Chunyan; Wang, Liang

    2012-01-01

    We investigate the phenomenon that stochastic fluctuation induced the competition between tumor extinction and recurrence in the model of tumor growth derived from the catalytic Michaelis–Menten reaction. We analyze the probability transitions between the extinction state and the state of the stable tumor by the Mean First Extinction Time (MFET) and Mean First Return Time (MFRT). It is found that the positional fluctuations hinder the transition, but the environmental fluctuations, to a certain level, facilitate the tumor extinction. The observed behavior could be used as prior information for the treatment of cancer. -- Highlights: ► Stochastic fluctuation induced the competition between extinction and recurrence. ► The probability transitions are investigated. ► The positional fluctuations hinder the transition. ► The environmental fluctuations, to a certain level, facilitate the tumor extinction. ► The observed behavior can be used as prior information for the treatment of cancer.

  20. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis.

    Science.gov (United States)

    Tendler, D S; Bao, C; Wang, T; Huang, E L; Ratovitski, E A; Pardoll, D A; Lowenstein, C J

    2001-05-01

    Activated macrophages play a central role in antitumor immunity. However, the stimuli that activate macrophages to kill tumor cells are not completely understood. Because the center of solid tumors can be hypoxic, we hypothesized that hypoxia may be an important signal in activating macrophages to kill tumor cells. Hypoxia stimulates IFN-primed macrophages to express the inducible nitric oxide synthase (NOS2) and to synthesize nitric oxide (NO). We show that this synergy between IFN and hypoxia is mediated by the direct interaction of the hypoxia inducible factor-1 (HIF-1) and IFN regulatory factor-1 (IRF-1), which are both required for the hypoxic transcription of NOS2. This interaction between HIF-1 and IRF-1 may explain the mechanism by which macrophages infiltrating into tumors are activated to express NOS2 and to produce NO, a mediator of tumor apoptosis.

  1. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  2. Failure of the cultivated mushroom (Agaricus bisporus) to induce tumors in the A/J mouse lung tumor model

    DEFF Research Database (Denmark)

    Pilegaard, Kirsten; Kristiansen, E.; Meyer, Otto A.

    1997-01-01

    We studied whether the cultivated mushroom (Agaricus bisporus) or 4-(carboxy)phenylhydrazine (CP) induce lung adenomas in the A/J mouse lung tumor model. For 26 weeks female mice were fed a semisynthetic diet where 11 or 22% of the diet was replaced by freeze-dried mushrooms. The intake...... of the mushroom diets was equivalent to an intake of agaritine, the major phenylhydrazine derivative occurring in the mushroom, of 92 or 166 mg/kg body weight per day. The intake of CP was 106 mg/kg body weight per day. Neither the;freeze-dried mushroom nor CP induced statistically significant increased numbers...

  3. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts.

    Science.gov (United States)

    Chen, Meihua; Xiang, Rong; Wen, Yuan; Xu, Guangchao; Wang, Chunting; Luo, Shuntao; Yin, Tao; Wei, Xiawei; Shao, Bin; Liu, Ning; Guo, Fuchun; Li, Meng; Zhang, Shuang; Li, Minmin; Ren, Kexing; Wang, Yongsheng; Wei, Yuquan

    2015-09-23

    Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.

  4. The influence of septal lesions on sodium and water retention induced by Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    F. Guimarães

    1999-03-01

    Full Text Available In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15 and sham-operated (SW; N = 7 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR, N = 7 and lesioned food-restricted (LFR, N = 10 were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05, suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight, with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic.

  5. Transforming growth factor-beta1 induces tumor stroma and reduces tumor infiltrate in cervical cancer

    NARCIS (Netherlands)

    Hazelbag, Suzanne; Gorter, Arko; Kenter, Gemma G.; van den Broek, Lambert; Fleuren, Gertjan

    2002-01-01

    Cervical carcinomas consist of tumor cell nests surrounded by varying amounts of intratumoral stroma containing different quantities and types of immune cells. Besides controlling (epithelial) cell growth, the multifunctional cytokine transforming growth factor-beta(1) (TGF-beta(1)) is involved in

  6. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  7. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  8. Human pontine glioma cells can induce murine tumors

    NARCIS (Netherlands)

    Caretti, Viola; Sewing, A. Charlotte P.; Lagerweij, Tonny; Schellen, Pepijn; Bugiani, Marianna; Jansen, Marc H. A.; van Vuurden, Dannis G.; Navis, Anna C.; Horsman, Ilona; Vandertop, W. Peter; Noske, David P.; Wesseling, Pieter; Kaspers, Gertjan J. L.; Nazarian, Javad; Vogel, Hannes; Hulleman, Esther; Monje, Michelle; Wurdinger, Thomas

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop

  9. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Sophie, E-mail: sophie.vasseur@inserm.fr; Tomasini, Richard; Tournaire, Roselyne; Iovanna, Juan L. [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, BP 915,13288 Marseille cedex 9 (France)

    2010-12-16

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis.

  10. Psychological defense peculiarities in patients with brain tumor induced epilepsy

    Directory of Open Access Journals (Sweden)

    Alvin Acas Miranda

    2017-03-01

    Conclusion ― Life Style Index and Level of Subjective Control psychometric tests are an important component in the complex evaluation and treatment of patients with brain tumors and should be advocated as useful additional investigation method based on their prognostic value in patients with possible terminal illness.

  11. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    Directory of Open Access Journals (Sweden)

    Juan L. Iovanna

    2010-12-01

    Full Text Available Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis.

  12. HPMA Copolymer-Bound Doxorubicin Induces Immunogenic Tumor Cell Death

    Czech Academy of Sciences Publication Activity Database

    Šírová, Milada; Kabešová, Martina; Kovář, Lubomír; Etrych, Tomáš; Strohalm, Jiří; Ulbrich, Karel; Říhová, Blanka

    2013-01-01

    Roč. 20, č. 38 (2013), s. 4815-4826 ISSN 0929-8673 R&D Projects: GA ČR GAP301/12/1254 Institutional support: RVO:61388971 ; RVO:61389013 Keywords : Anti-tumor immune response * calreticulin * heat shock proteins Subject RIV: CE - Biochemistry Impact factor: 3.715, year: 2013

  13. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  14. Study of radiation-induced tumors in the Ohita Prefectural Hospital

    International Nuclear Information System (INIS)

    Ito, Masahiro; Kawase, Yoshihisa; Shikuwa, Saburo

    1989-01-01

    An epidemiological study on radiation induced tumor was carried out in the Ohita Prefectural Hospital in 1989. Radiation induced tumors were chosen among 62,831 surgical or biopsy specimens examined since 1968 to 1988. These tumors were defined as following conditions such as having a history of radiation therapy, occurring in the same field of irradiation, and having a latent period over five years. Total of eleven malignant tumors were selected with the average age of 64.2 years old, and the average latency of 16.4 years. All of them were female and seven cases belonged to A-1 group according to the reliability classification. The first tumor was all malignant and consisted of 9 uterus cancers and one rectal cancer. The second tumor included three rectal cancers, three vaginal cancers, two ureto-bladder cancers, one uterine body cancer, and one lymphangiosarcoma. Histological study showed poorly differentiated adenocarcinoma in two rectal cancers in which this type was unusual as rectal cancer. Others were common histological types identical to the location. Delayed effects of irradiation was confirmed in a background of some tumors. For instance, marked fibrosis, atypical fibroblast, and thickening of blood vessel were nominated. Total amount of irradiation ranged form 24 to 92 grey, and the year of irradiation concentrated in 1969 to 1973 (75%) and the year of discovery concentrated in 1983 to 1988 (75%). This study suggested the necessity of further investigation in other medical institutions and accumulation of the tumors. (author)

  15. Incidence and nature of tumors induced in Sprague-Dawley rats by gamma-irradiation

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.; Faraggiana, T.

    1988-01-01

    In our previous studies carried out on inbred rats of the Sprague-Dawley strain, the tumor incidence was increased following irradiation (150 rads, 5 times, at weekly intervals), from 22 to 93% in females and from 5 to 59% in males. Experiments here reported suggest that 2 consecutive total-body gamma-irradiations of 150 rads each are sufficient to induce in rats the development of tumors, some malignant; 18 of 19 females (94.7%) developed tumors at an average age of 11.4 mo, and seven of the 14 males in this group (50%) developed tumors at an average age of 10.4 mo. In the second group, which received 3 consecutive gamma-irradiations, 20 of 23 females (86.9%) and 5 of 13 males (38.4%) developed tumors at average ages of 9.1 and 7.5 mo, respectively. In the third group, among rats which received 4 consecutive gamma-irradiations, 17 of 19 females (89.4%) and 4 of 12 males (33.3%) developed tumors at average ages of 9.4 and 10.5 mo, respectively. The etiology of tumors either developing spontaneously or induced by irradiation in rats remains to be clarified. Our attempts to detect virus particles by electron microscopy in such tumors or lymphomas have not been successful. As a working hypothesis, we are tempted to theorize that tumors or lymphomas developing spontaneously or induced by gamma irradiation in rats are caused by latent viral agents which are integrated into the cell genome and are cell associated, i.e., not separable from the rat tumor cells by conventional methods thus far used

  16. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

    Science.gov (United States)

    Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-12-11

    Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    International Nuclear Information System (INIS)

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  18. Nanovectorized radiotherapy, a new strategy to induce anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Claire eVanpouille-Box

    2012-10-01

    Full Text Available Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radio-therapy. However, clinically-apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nano-devices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immuno-stimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  19. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  20. Two cases of false aneurysm rupture induced by nonvascular tumor

    International Nuclear Information System (INIS)

    Nakamura, Hiromasa; Komiya, Tatsuhiko; Tamura, Nobushige; Sakaguchi, Genichi; Kobayashi, Taira; Furukawa, Tomokuni; Matsushita, Akihito; Sunagawa, Gengo; Murashita, Takashi

    2008-01-01

    We presented here 2 cases of rare nonvascular tumor involving the aorta. A 69-year-old woman. She presented leg edema and dyspnea on admission. Computed tomography revealed abdominal aortic aneurysm perforating left common iliac vein. Abdominal aortic aneurysm replacement and fistula closure were done on an emergency basis. Immunohistologic examination revealed that malignant mesothelioma invaded the aortic wall. A 47-year-old woman presented with dyspnea. Enhanced computed tomography revealed rupture of the descending aortic aneurysm (saccular type). Aortic replacement was done on an emergency basis. One year after the operation, computed tomography revealed a giant mass (160 x 70 mm) surrounding the descending thoracic aorta. On biopsy, malignant schwannoma was found to invade the descending aorta. Sometimes nonvascular tumors form aneurysms. So we should be careful in diagnosis before operation. (author)

  1. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    Science.gov (United States)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  3. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  4. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    Science.gov (United States)

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts ( P < .001) and higher D-dimer levels ( P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens ( P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P = 010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  5. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  6. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  7. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  9. Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression

    Science.gov (United States)

    2016-10-01

    HLNL and DHLNL (Suppl. Figure 2). These data not only demonstrated a direct positive relationship between changes in stromal Lox expression, collagen...Force Microscopy (AFM). (Months 11-15 for Task 1B and 15-19 for Task 1C) Task 1G. Immunofluorescence analyses will be done using marker for...role for STAT3 activity in tumor-initiating cells (TICs) is well-known in mouse models of breast cancer; and 3) we have evidence that there is a direct

  10. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.

    1990-01-01

    In our previous studies carried out on inbred Sprague-Dawley rats, we reported a striking increase in the incidence of tumors following total-body gamma-irradiation [150 rads (1.5 Gy) five times at weekly intervals]. Subsequently, we observed that two or three irradiations, and to a lesser extent even a single irradiation, were sufficient to induce an impressive increase in the incidence of tumors, particularly in females. A significant reduction of the incidence of radiation-induced tumors resulted when the rats were placed on calorically restricted diet. In experiments reported here, we increased slightly the amount of food given to animals on restricted diet. In the new study, among 102 irradiated females on full diet, 91 (89%) developed tumors, as compared with 29 out of 128 female rats (23%) also irradiated but maintained on restricted diet and 43 out of 89 (48%) untreated control females. None of 77 nonirradiated females on restricted diet developed tumors. Among 65 irradiated male rats, 29 (45%) developed tumors, as compared with 5 out of 74 (7%) rats also irradiated but maintained on restricted diet. Of the 49 males in the nonirradiated groups, 2 (4%) developed tumors. There was a significant weight reduction in both females and males maintained on restricted diet; animals on restricted diet lived longer than those on full diet

  12. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  13. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  14. Immunohistochemical Study Effects of Spirulina Algae on the Induced Mammary Tumor in Rats

    International Nuclear Information System (INIS)

    BinMeferij, Mashael Mohammed

    2008-01-01

    This work aimed at investigating the protective effects of Spirulina platensis on the induced mammary tumor in rats by dimethylbenz(a)anthracene (DMBA) and the proliferation of the tumor cells by using immunohistochemical staining for proliferating cell nuclear antigen (PCNA). At 50 days of age, group 1 remained untreated, group 2 treated with 2% Spirulina platenesis in food, group 3 received 50 mg/kg DMBA i.p. groupe 4 received 50 mg/kg DMBA i.p and fed on 2% spirulina. Rats were killed when the largest mammary tumor reached 1-2 cm in diameter or after 6 months of animal>s age. All the tumors produced by DMBA were ductal carcinoma in 100% of group 3, but in group 4 two rats had mammary tumor. The groups 1 and 2 had no tumor and have the same histological and immunostaining features, but in group 4, 13/15 rats had no tumor except formation of some cysts and hyperplasia in epithelial cells. The conclusion of this work suggests that Spirulina platnesis could be considered as a chemotherapeutic agent that causes apoptosis to tumor cells by reducing the number of malignant cells and resists cancer formation. (author)

  15. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  16. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  17. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  19. PET MEASUREMENTS OF HYPERTHERMIA-INDUCED SUPPRESSION OF PROTEIN-SYNTHESIS IN TUMORS IN RELATION TO EFFECTS ON TUMOR-GROWTH

    NARCIS (Netherlands)

    DAEMEN, BJG; ELSINGA, PH; MOOIBROEK, J; PAANS, AMJ; WIERINGA, AR; KONINGS, AWT; VAALBURG, W

    HyPerthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-C-11]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47-degrees-C. Tumor blood flow, as measured by PET with (NH3)-N-13,

  20. Ionizing radiation induces tumor cell lysyl oxidase secretion

    DEFF Research Database (Denmark)

    Shen, Colette J; Sharma, Ashish; Vuong, Dinh-Van

    2014-01-01

    BACKGROUND: Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor beta and matrix...

  1. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  2. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  3. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    Science.gov (United States)

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  4. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    International Nuclear Information System (INIS)

    Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  5. Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Nils Ole Schmidt

    2005-06-01

    Full Text Available The transplantation of neural stem cells (NSCs offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumorupregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

  6. Changes in tumor hypoxia induced by mild temperature hyperthermia as assessed by dual-tracer immunohistochemistry

    International Nuclear Information System (INIS)

    Sun Xiaorong; Li Xiaofeng; Russell, James; Xing Ligang; Urano, Muneyasu; Li, Gloria C.; Humm, John L.; Ling, C. Clifton

    2008-01-01

    Purpose: To study the changes in hypoxia resulting from mild temperature hyperthermia (MTH) in a subcutaneous xenograft model using dual-tracer immunohistochemical techniques. Materials and methods: HT29 tumors were locally heated at 41 o C. Changes in tumor hypoxia were investigated by pimonidazole and EF5. Pimonidazole was given 1 h preheating, EF5 at various times during or after treatment, 1 h later the animals were sacrificed. Blood vessels were identified by CD31 staining, and perfusion by Hoechst 33342 injected 1 min pre-sacrifice. Results: The overall hypoxic fraction was significantly decreased by MTH during and immediately after heating. However, MTH induced both increases and decreases in tumor hypoxia in different parts of the tumor. Specifically, MTH decreased hypoxia in the regions with relatively well-perfused blood vessels, but increased hypoxia in regions that were poorly perfused. At 24-h post heating, newly formed hypoxic regions surrounded previously-hypoxic foci, which in turn surrounded pimonidazole-stained debris. Quantitative analysis did not evince changes in tumor oxygenation due to MTH at 24 h post-treatment. Conclusion: In this xenograft model, the effect of MTH on tumor oxygenation was variable, both spatially and kinetically. Overall tumor oxygenation was improved during and after heating, but the effect was short-lived

  7. IL4-induced gene 1 promotes tumor growth by shaping the immune microenvironment in melanoma.

    Science.gov (United States)

    Bod, Lloyd; Lengagne, Renée; Wrobel, Ludovic; Ramspott, Jan Philipp; Kato, Masashi; Avril, Marie-Françoise; Castellano, Flavia; Molinier-Frenkel, Valérie; Prévost-Blondel, Armelle

    2017-01-01

    Amino acid catabolizing enzymes emerged as a crucial mechanism used by tumors to dampen immune responses. The L-phenylalanine oxidase IL-4 induced gene 1 (IL4I1) is expressed by tumor-associated myeloid cells of most solid tumors, including melanoma. We previously provided the only evidence that IL4I1 accelerates tumor growth by limiting the CD8 + T cell mediated immune response, in a mouse model of melanoma cell transplantation. Here, we explored the role of IL4I1 in Ret mice, a spontaneous model of melanoma. We found that IL4I1 was expressed by CD11b + myeloid cells and that its activity correlated with disease aggressiveness. IL4I1 did not enhance tumor cell proliferation or angiogenesis, but orchestrated the remodeling of the immune compartment within the primary tumor. Indeed, the inactivation of IL4I1 limited the recruitment of polymorphonuclear myeloid-derived suppressor cells and enhanced the infiltration by Th1 and cytotoxic T cells, thus delaying tumor development and metastatic dissemination. Accordingly, human primary melanomas that were poorly infiltrated by IL4I1 + cells exhibited a higher density of CD8 + T cells. Collectively, our findings strengthen the rationale for therapeutic targeting of IL4I1 as one of the key immune regulators.

  8. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    NARCIS (Netherlands)

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Ganten, Tom M.; Krupp, Wolfgang; Bauer, Manfred; Ahnert, Peter; Meixensberger, Jürgen; Walczak, Henning

    2007-01-01

    Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the

  9. Novel Therapeutic Targets to Inhibit Tumor Microenvironment-Induced Castration Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    extracted from laser -captured PCa cells from human CRPC tumors revealed that MAPK4 expression is strongly correlated with AR activation (expression...Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and...signaling induced the expression of several AR targets as well as MAPK4 in PCa LNCaP cells, and that MAPK4 induced ligand-independent AR activation in

  10. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    Directory of Open Access Journals (Sweden)

    Apolinario Rosa M

    2009-08-01

    Full Text Available Abstract Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP, vault poly(ADP-ribose polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022. Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003. Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed.

  11. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice.

    Science.gov (United States)

    Gajovic, Nevena; Jurisevic, Milena; Pantic, Jelena; Radosavljevic, Gordana; Arsenijevic, Nebojsa; Lukic, Miodrag L; Jovanovic, Ivan

    2018-04-01

    Diabetic patients have higher incidence and mortality of cancer. Recent study revealed that hyperglycemia-induced oxidative stress is involved in the acceleration of tumor metastasis. We used model of high-dose streptozotocin-induced diabetes to investigate its effect on tumor growth and modulation of antitumor immune response of 4T1 murine breast cancer in BALB/c mice. Diabetes accelerated tumor appearance, growth and weight, which was associated with decreased NK cells cytotoxicity against 4T1 tumor cells in vitro Diabetes reduced frequencies of systemic NKG2D + , perforin + , granzyme + , IFN-γ + and IL-17 + NK cells, while increased level of PD-1 expression and production of IL-10 in NK cells. Diabetes decreased percentage of NKG2D + NK cells and increased percentage of PD-1 + NK cells also in primary tumor. Diabetes increased accumulation of IL-10 + Tregs and TGF-β + myeloid-derived suppressor cells (MDSCs) in spleen and tumor. Diabetic sera in vitro significantly increased the percentage of KLRG-1 + and PD-1 + NK cells, decreased the percentage of IFN-γ + NK cells, expression of NKp46 and production of perforin, granzyme, CD107a and IL-17 per NK cell in comparison to glucose-added mouse sera and control sera. Significantly increased percentages of inducible nitric oxide synthase (iNOS) and indoleamine 2,3-dioxygenase (IDO) producing MDSCs and dendritic cells (DC) were found in the spleens of diabetic mice prior to tumor induction. 1- methyl -DL- tryptophan , specific IDO inhibitor, almost completely restored phenotype of NK cells cultivated in diabetic sera. These findings indicate that diabetes promotes breast cancer growth at least in part through increased accumulation of immunosuppressive cells and IDO-mediated attenuation of NK cells. © 2018 Society for Endocrinology.

  12. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells.

    Science.gov (United States)

    Oizumi, Satoshi; Deyev, Vadim; Yamazaki, Koichi; Schreiber, Taylor; Strbo, Natasa; Rosenblatt, Joseph; Podack, Eckhard R

    2008-05-01

    Tumor-induced immune suppression is one of the most difficult obstacles to the success of tumor immunotherapy. Here, we show that established tumors suppress CD8 T cell clonal expansion in vivo, which is normally observed in tumor-free mice upon antigen-specific glycoprotein (gp) 96-chaperone vaccination. Suppression of CD8 T-cell expansion by established tumors is independent of tumor-associated expression of the antigen that is recognized by the CD8-T-cell receptor. Vaccination of tumor-bearing mice is associated with increased cellular recruitment to the vaccine site compared with tumor-free mice. However, rejection of established, suppressive tumors required frequent (daily) gp96 vaccination. B cells are known to attenuate T helper cell-1 responses. We found that in B-cell deficient mice, tumor rejection of established tumors can be achieved by a single vaccination. Accordingly, in tumor-free B-cell deficient mice, cognate CD8 cytotoxic T lymphocyte clonal expansion is enhanced in response to gp96-chaperone vaccination. The data have implications for the study of tumor-induced immune suppression and for translation of tumor immunotherapy into the clinical setting. Frequent vaccination with cellular vaccines and concurrent B-cell depletion may greatly enhance the activity of anticancer vaccine therapy in patients.

  13. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  14. Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Kumar, Gopal; Solanki, Malvika H; Xue, Xiangying; Mintz, Rachel; Madankumar, Swati; Chatterjee, Prodyot K; Metz, Christine N

    2017-08-01

    Approximately 30% of all cancer patients treated with cisplatin, a widely used broad-spectrum chemotherapeutic agent, experience acute kidney injury (AKI). Almost all patients receiving cisplatin have magnesium (Mg) losses, which are proposed to aggravate AKI. Currently, there are no methods to successfully treat or prevent cisplatin-AKI. Whereas Mg supplementation has been shown to reduce AKI in experimental models and several small clinical trials, the effects of Mg status on tumor outcomes in immunocompetent tumor-bearing mice and humans have not been investigated. The purpose of this study was to further examine the effects of Mg deficiency (±Mg supplementation) on cisplatin-mediated AKI and tumor killing in immunocompetent mice bearing CT26 colon tumors. Using a model where cisplatin alone (20 mg/kg cumulative dose) produced minimal kidney injury, Mg deficiency significantly worsened cisplatin-mediated AKI, as determined by biochemical markers (blood urea nitrogen and plasma creatinine) and histological renal changes, as well as markers of renal oxidative stress, inflammation, and apoptosis. By contrast, Mg supplementation blocked cisplatin-induced kidney injury. Using LLC-PK 1 renal epithelial cells, we observed that Mg deficiency or inhibition of Mg uptake significantly enhanced cisplatin-induced cytotoxicity, whereas Mg supplementation protected against cytotoxicity. However, neither Mg deficiency nor inhibition of Mg uptake impaired cisplatin-mediated killing of CT26 tumor cells in vitro. Mg deficiency was associated with significantly larger CT26 tumors in BALB/c mice when compared with normal-fed control mice, and Mg deficiency significantly reduced cisplatin-mediated tumor killing in vivo. Finally, Mg supplementation did not compromise cisplatin's anti-tumor efficacy in vivo. Copyright © 2017 the American Physiological Society.

  15. Radiation and inhibition of angiogenesis by canstatin synergize to induce HIF-1α–mediated tumor apoptotic switch

    Science.gov (United States)

    Magnon, Claire; Opolon, Paule; Ricard, Marcel; Connault, Elisabeth; Ardouin, Patrice; Galaup, Ariane; Métivier, Didier; Bidart, Jean-Michel; Germain, Stéphane; Perricaudet, Michel; Schlumberger, Martin

    2007-01-01

    Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1–regulated (HIF-1–regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1–dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1α increases the activity of the canstatin-induced αvβ5 signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1α activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy. PMID:17557121

  16. Value of tumor necrosis factor-like weak inducer of apoptosis and ...

    African Journals Online (AJOL)

    Tumor necrosis factor -like weak inducer of apoptosis (TWEAK) triggers multiple cellular activities in a wide variety of cells, ranging from proliferation to cell death. It also causes upregulation of chemokine (C-X-C motif) receptor 5, and its ligand, chemokine (C-XC motif) ligand 13 (CXCL13). However, the precise roles of ...

  17. Sennosides and aloin do not promote dimethylhydrazine-induced colorectal tumors in mice.

    Science.gov (United States)

    Siegers, C P; Siemers, J; Baretton, G

    1993-10-01

    In a model of dimethylhydrazine-induced colorectal tumors in male mice aloin- or sennoside-enriched diets (0.03%) did not promote incidence and growth of adenomas and carcinomas after 20 weeks. Furthermore, in anthranoid-fed mice no significant changes in serum electrolytes as well as parameters of hepato- and nephrotoxicity were observed.

  18. Chemoprevention with Acetylsalicylic Acid, Vitamin D and Calcium Reduces Risk of Carcinogen-induced Lung Tumors

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, J

    2013-01-01

    Background/Aim: Research has shown that chemoprevention may be effective against the development of lung cancer. The purpose of the present study was to evaluate the effect of oral chemoprevention in a mouse model of tobacco carcinogen-induced lung tumor....

  19. Treatment Induced Autophagy Associated with Tumor Dormancy and Relapse

    Science.gov (United States)

    2016-07-01

    The cells also demonstrated senescence, based on beta galactosidase staining (Figure 1C, lower panels). The induction of autophagy was confirmed...detection of autophagosomes (Panel C, upper portion) and beta galactosidase (β-gal) as a marker of senescence (panel C, lower portion). Induction...8  A. Control    ADR     IR   B. C.   Figure 5. Senescence induced in 4T1cells by Adriamycin and Radiation. Panel A shows beta galactosidase

  20. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL-induced

  1. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Directory of Open Access Journals (Sweden)

    Lee Sung

    2010-07-01

    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  2. The Raman spectrum character of skin tumor induced by UVB

    Science.gov (United States)

    Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng

    2016-03-01

    In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.

  3. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  4. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  5. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    International Nuclear Information System (INIS)

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  6. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...

  7. Tumor-induced rickets in a child with a central giant cell granuloma: a case report.

    Science.gov (United States)

    Fernández-Cooke, Elisa; Cruz-Rojo, Jaime; Gallego, Carmen; Romance, Ana Isabel; Mosqueda-Peña, Rocio; Almaden, Yolanda; Sánchez del Pozo, Jaime

    2015-06-01

    Tumor-induced osteomalacia/rickets is a rare paraneoplastic disorder associated with a tumor-producing fibroblast growth factor 23 (FGF23). We present a child with symptoms of rickets as the first clinical sign of a central giant cell granuloma (CGCG) with high serum levels of FGF23, a hormone associated with decreased phosphate resorption. A 3-year-old boy presented with a limp and 6 months later with painless growth of the jaw. On examination gingival hypertrophy and genu varum were observed. Investigations revealed hypophosphatemia, normal 1,25 and 25 (OH) vitamin D, and high alkaline phosphatase. An MRI showed an osteolytic lesion of the maxilla. Radiographs revealed typical rachitic findings. Incisional biopsy of the tumor revealed a CGCG with mesenchymal matrix. The CGCG was initially treated with calcitonin, but the lesions continued to grow, making it necessary to perform tracheostomy and gastrostomy. One year after onset the hyperphosphaturia worsened, necessitating increasing oral phosphate supplements up to 100 mg/kg per day of elemental phosphorus. FGF23 levels were extremely high. Total removal of the tumor was impossible, and partial reduction was achieved after percutaneous computed tomography-guided radiofrequency, local instillation of triamcinolone, and oral propranolol. Compassionate use of cinacalcet was unsuccessful in preventing phosphaturia. The tumor slowly regressed after the third year of disease; phosphaturia improved, allowing the tapering of phosphate supplements, and FGF23 levels normalized. Tumor-induced osteomalacia/rickets is uncommon in children and is challenging for physicians to diagnose. It should be suspected in patients with intractable osteomalacia or rickets. A tumor should be ruled out if FGF23 levels are high. Copyright © 2015 by the American Academy of Pediatrics.

  8. MR-guided laser-induced thermotherapy in recurrent extrahepatic abdominal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Mack, M.G.; Straub, R.; Eichler, K.; Boettger, M.; Woitaschek, D.; Vogl, T.J. [Dept. of Diagnostic and Interventional Radiology, University of Frankfurt (Germany); Roggan, A. [LMTB GmbH, Berlin (Germany)

    2001-10-01

    The aim of this study was to evaluate the feasibility of MR-guided laser-induced thermotherapy (LITT) for treatment of recurrent extrahepatic abdominal tumors. In 11 patients (6 women and 5 men; mean age 53 years, age range 29-67 years) with 14 lesions the following tumors were treated in this study: paravertebral recurrence of hypernephroma (n=1); recurrence of uterus carcinoma (n=1); recurrence of chondrosarcoma of the pubic bone (n=1); presacral recurrence of rectal carcinoma (n=1); recurrent anal cancer (n=1); metastases in the abdominal wall (n=1); and lymph node metastases from colorectal cancer (n=8). A total of 27 laser applications were performed. A fast low-angle shot 2D sequence (TR/TE/flip angle=102 ms/8 ms/70 ) was used for nearly real-time monitoring during treatment. All patients had no other treatment option. Seventeen LITT sessions were performed using a conventional laser system with a mean laser power of 5.2 W (range 4.5-5.7 W), and 10 LITT session were performed using a power laser system with a mean laser power of 28.0 W. In 10 lesions total destruction could be achieved. In the remaining recurrent tumors, significant reduction of tumor volume by 60-80% was obtained. All patients tolerated the procedure well under local anesthesia. No complications occurred during treatment. Laser-induced thermotherapy is a practicable, minimally invasive, well-tolerated technique that can produce large areas of necrosis within recurrent tumors, substantially reducing active tumor volume if not resulting in outright destruction of tumor. (orig.)

  9. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  10. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, Søren; Lauemøller, S L; Ruhwald, Morten

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors we...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  11. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  12. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

    DEFF Research Database (Denmark)

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.

    2016-01-01

    stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression...... by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were...

  13. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  14. Nano-Pulse Stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response.

    Directory of Open Access Journals (Sweden)

    Joseph G Skeate

    Full Text Available Nano-Pulse Stimulation (NPS is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence.

  15. Specificity of antigens on UV radiation-induced antigenic tumor cell variants measured in vitro and in vivo

    International Nuclear Information System (INIS)

    Hostetler, L.W.; Romerdahl, C.A.; Kripke, M.L.

    1989-01-01

    The purpose of this study was to determine whether antigenic variants cross-react immunologically with the parental tumor and whether the UVR-associated antigen unique to UVR-induced tumors is also present on the variants. Antigenic (regressor) variants and nonimmunogenic (progressor) clones derived from UV-irradiated cultures of the C3H K1735 melanoma and SF19 spontaneous fibrosarcoma cell lines were used to address these questions. In an in vivo immunization and challenge assay, the antigenic variants did not induce cross-protection among themselves, but each induced immunity against the immunizing variant, the parent tumor cells, and nonimmunogenic clones derived from UV-irradiated parent cultures. Therefore, the variants can be used to induce in mice a protective immunity that prevents the growth of the parent tumor and nonimmunogenic clones, but not other antigenic variants. In contrast, immunization with cells of the parental tumor or the nonimmunogenic clones induced no protective immunity against challenge with any of the cell lines. Utilizing the K1735 melanoma-derived cell lines in vitro, T-helper (Th) cells isolated from tumor-immunized mice were tested for cross-reactivity by their ability to collaborate with trinitrophenyl-primed B-cells in the presence of trinitrophenyl-conjugated tumor cells. Also, the cross-reactivity of cytotoxic T-lymphocytes from tumor-immunized mice was assessed by a 4-h 51Cr-release assay. Antigenic variants induced cytotoxic T-lymphocytes and Th activity that was higher than that induced by the parent tumor and nonimmunogenic clones from the UVR-exposed parent tumor and cross-reacted with the parental tumor cells and nonimmunogenic clones, but not with other antigenic variants

  16. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  17. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  18. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Directory of Open Access Journals (Sweden)

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  19. The influence of patients age, type of tumor growth, hematocrit, and radiation-induced tumor regression on the prognosis of advanced uterine cervix carcinoma

    International Nuclear Information System (INIS)

    Boljesikova, E.; Gyarfasova, M.

    1988-01-01

    The age of patients, type of tumor growth, pretreatment hematocrit, and radiation-induced tumor regression were evaluated as possible prognostic factors in 222 patients with advanced cervical cancer treated at the Institute of Clinical Oncology in Bratislava in the period from 1960 through 1980. The five-year disease-free survival rate for Stage IIb patients was 50%, for Stage III patients 23.1%, and for Stage IV patients 13%. Radiatoin-induced tumor regression and type of tumor growth were noted to be a significant prognostic factor with regard to the control of disease in the pelvis. Age of the patients and pretreatment hematocrit were found to be a weak prognostic factor. (author). 4 figs., 6 tabs., 25 refs

  20. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    International Nuclear Information System (INIS)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-01

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation

  1. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    International Nuclear Information System (INIS)

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed

  2. Mutations in cancer genes of UV-induced skin tumors of hairless mice.

    Science.gov (United States)

    van Kranen, H J; de Gruijl, F R

    1999-12-01

    Ultraviolet (UV) radiation is a very common carcinogen in our environment. Epidemiological data on the relationship between skin cancers and ambient solar UV radiation are very limited. Hairless mice provide the possibility to study the process of UV carcinogenesis in more detail. Experiments with this animal model have yielded quantitative data on how tumor development depends on dose, time and wavelength of the UV radiation. In addition, at the molecular level the interactions between UV, specific cancer genes-like the Ras oncogene family and the p53 tumor suppressor gene, together with the role of DNA repair in this process have been addressed recently. In wildtype hairless mice mutations in the p53 gene are clearly linked to UVB but not to UVA radiation. Furthermore, the p53 alterations seem to be essential early in tumor development. However, in Xpa-deficient mice this dependency on p53 alterations appeared to be different as is the tumor type induced by UVB. Research using genetically modified hairless mice should enable us to further unravel the mechanisms of UV-induced skin cancer.

  3. Tumor-associated proteins in rat submandibular gland induced by DMBA and irradiation

    International Nuclear Information System (INIS)

    Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1997-01-01

    This study was performed in order to identify changes of the plasma membrane proteins in rat submandibular gland tumors induced by 7,12-dimethylbenz[a]anthracene [DMBA] and X-irradiation. Two kinds of tumor associated membrane proteins (protein A and B) were isolated with 3 M KCl extraction from rat submandibular gland tumors induced by DMBA and X-irradiation. To identify their antigenicities, immunoelectrophoresis and double immunodiffusion was carried out with various proteins extracted from liver, heart, skin and pancreas of adult rats and from embryonic liver, heart and skin. The rabbit antisera against the protein A did not cross-react with any of the proteins extracted from the above mentioned tissues, suggesting that protein A might be tumor specific antigen. However, the rabbit antisera against protein B was precipitated with proteins extracted from the liver of adult and embryonic rats. Polyacrylamide gel electrophoresis of these two proteins (A and B) showed that protein A was a dimer with molecular weights of 69,000 and 35,000 dalton, whereas protein B was a monomer with molecular weight of 50,000 dalton.

  4. Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats.

    Science.gov (United States)

    Möller, Frank Josef; Pemp, Daniela; Soukup, Sebastian T; Wende, Kathleen; Zhang, Xiajie; Zierau, Oliver; Muders, Michael H; Bosland, Maarten C; Kulling, Sabine E; Lehmann, Leane; Vollmer, Günter

    2016-08-01

    There is an ongoing debate whether the intake of soy-derived isoflavones (sISO) mediates beneficial or adverse effects with regard to breast cancer risk. Therefore, we investigated whether nutritional exposure to a sISO-enriched diet from conception until adulthood impacts on 17β-estradiol (E2)-induced carcinogenesis in the rat mammary gland (MG). August-Copenhagen-Irish (ACI) rats were exposed to dietary sISO from conception until postnatal day 285. Silastic tubes containing E2 were used to induce MG tumorigenesis. Body weight, food intake, and tumor growth were recorded weekly. At necropsy, the number, position, size, and weight of each tumor were determined. Plasma samples underwent sISO analysis, and the morphology of MG was analyzed. Tumor incidence and multiplicity were reduced by 20 and 56 %, respectively, in the sISO-exposed rats compared to the control rats. Time-to-tumor onset was shortened from 25 to 20 weeks, and larger tumors developed in the sISO-exposed rats. The histological phenotype of the MG tumors was independent of the sISO diet received, and it included both comedo and cribriform phenotypes. Morphological analyses of the whole-mounted MGs also showed no diet-dependent differences. Lifelong exposure to sISO reduced the overall incidence of MG carcinomas in ACI rats, although the time-to-tumor was significantly shortened.

  5. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    Science.gov (United States)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  6. Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

    Directory of Open Access Journals (Sweden)

    Masashi Ueda

    2014-01-01

    Full Text Available Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1 expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α, which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.

  7. Low-dose steroid-induced tumor lysis syndrome in a hepatocellular carcinoma patient

    Directory of Open Access Journals (Sweden)

    Jin Ok Kim

    2015-03-01

    Full Text Available Tumor lysis syndrome is rare in hepatocellular carcinoma (HCC, but it has been reported more frequently recently in response to treatments such as transcatheter arterial chemoembolization (TACE, radiofrequency thermal ablation (RFTA, and sorafenib. Tumor lysis syndrome induced by low-dose steroid appears to be very unusual in HCC. We report a patient with hepatitis-C-related liver cirrhosis and HCC in whom tumor lysis syndrome occurred due to low-dose steroid (10 mg of prednisolone. The patient was a 90-year-old male who presented at the emergency room of our hospital with general weakness and poor oral intake. He had started to take prednisolone to treat adrenal insufficiency 2 days previously. Laboratory results revealed hyperuricemia, hyperphosphatemia, and increased creatinine. These abnormalities fulfilled the criteria in the Cairo-Bishop definition of tumor lysis syndrome. Although the patient received adequate hydration, severe metabolic acidosis and acute kidney injury progressed unabated. He finally developed multiple organ failure, and died 3 days after admission. This was a case of tumor lysis syndrome caused by administration of low-dose steroid in a patient with HCC.

  8. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G-T mismatch.

    Science.gov (United States)

    Yuan, Yi; Zhao, Yongyun; Chen, Lianqi; Wu, Jiasi; Chen, Gangyi; Li, Sheng; Zou, Jiawei; Chen, Rong; Wang, Jian; Jiang, Fan; Tang, Zhuo

    2017-09-06

    Riboflavin (vitamin B2) has been thought to be a promising antitumoral agent in photodynamic therapy, though the further application of the method was limited by the unclear molecular mechanism. Our work reveals that riboflavin was able to recognize G-T mismatch specifically and induce single-strand breaks in duplex DNA targets efficiently under irradiation. In the presence of riboflavin, the photo-irradiation could induce the death of tumor cells that are defective in mismatch repair system selectively, highlighting the G-T mismatch as potential drug target for tumor cells. Moreover, riboflavin is a promising leading compound for further drug design due to its inherent specific recognition of the G-T mismatch. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  10. Tumor size and elasticity estimation using Smartphone-based Compression-Induced scope.

    Science.gov (United States)

    Won, C-H; Goldstein, Jesse; Oleksyuk, Vira; Caroline, Dina; Pascarella, Suzanne

    2017-07-01

    A simple-to-use, noninvasive, and risk-free system, which will provide accurate identification of potentially life threatening malignant tumors using tactile pressure, is developed. The Smartphone-based Compression-Induced (SCI) Scope will allow physicians to quickly capture the mechanical properties of a benign or malignant tumor with the convenience of a smartphone platform. The size and elasticity property is described using estimating methods from the pressure-induced images of SCI Scope. The device is based on the Apple iPhone 6. The image will be captured through a waveguide. The image information in combination with the force sensor value will be transmitted wirelessly to a computer for processing. The size and elasticity estimation experiments with SCI Scope showed that the size estimation error of 2.31% and estimated relative elastic modulus error of 23.9%.

  11. Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer

    Directory of Open Access Journals (Sweden)

    Shojaei Farbod

    2012-03-01

    Full Text Available Abstract Osteopontin (OPN, also known as SPP1 (secreted phosphoprotein, is an integrin binding glyco-phosphoprotein produced by a variety of tissues. In cancer patients expression of OPN has been associated with poor prognosis in several tumor types including breast, lung, and colorectal cancers. Despite wide expression in tumor cells and stroma, there is limited evidence supporting role of OPN in tumor progression and metastasis. Using phage display technology we identified a high affinity anti-OPN monoclonal antibody (hereafter AOM1. The binding site for AOM1 was identified as SVVYGLRSKS sequence which is immediately adjacent to the RGD motif and also spans the thrombin cleavage site of the human OPN. AOM1 efficiently inhibited OPNa binding to recombinant integrin αvβ3 with an IC50 of 65 nM. Due to its unique binding site, AOM1 is capable of inhibiting OPN cleavage by thrombin which has been shown to produce an OPN fragment that is biologically more active than the full length OPN. Screening of human cell lines identified tumor cells with increased expression of OPN receptors (αvβ3 and CD44v6 such as mesothelioma, hepatocellular carcinoma, breast, and non-small cell lung adenocarcinoma (NSCLC. CD44v6 and αvβ3 were also found to be highly enriched in the monocyte, but not lymphocyte, subset of human peripheral blood mononuclear cells (hPBMCs. In vitro, OPNa induced migration of both tumor and hPBMCs in a transwell migration assay. AOM1 significantly blocked cell migration further validating its specificity for the ligand. OPN was found to be enriched in mouse plasma in a number of pre-clinical tumor model of non-small cell lung cancers. To assess the role of OPN in tumor growth and metastasis and to evaluate a potential therapeutic indication for AOM1, we employed a KrasG12D-LSLp53fl/fl subcutaneously implanted in vivo model of NSCLC which possesses a high capacity to metastasize into the lung. Our data indicated that treatment of tumor

  12. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    International Nuclear Information System (INIS)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-01-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 α-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author)

  13. Laser-induced thermo ablation of hepatic tumors: an update review

    International Nuclear Information System (INIS)

    D'Ippolito, Giuseppe; Ribeiro, Marcelo

    2004-01-01

    Laser-induced thermo ablation has been used as a reliable method for producing coagulation necrosis in hepatic tumors in patients who are not suitable for surgical treatment. The procedure can be performed percutaneously, using image-guiding methods, by open laparotomy or laparoscopy. We review the current literature and discuss the principles, indications, complications and clinical results as well as the potential limitations and contraindications of this novel technique. (author)

  14. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  15. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  16. Introducing Cichorium Pumilum as a potential therapeutical agent against drug-induced benign breast tumor in rats.

    Science.gov (United States)

    Al-Akhras, M-Ali H; Aljarrah, Khaled; Al-Khateeb, Hasan; Jaradat, Adnan; Al-Omari, Abdelkarim; Al-Nasser, Amjad; Masadeh, Majed M; Amin, Amr; Hamza, Alaaeldin; Mohammed, Karima; Al Olama, Mohammad; Daoud, Sayel

    2012-12-01

    Cichorium Pumilum (chicory) is could be a promising cancer treatment in which a photosensitizing drug concentrates in benign tumor cells and activated by quanta at certain wavelength. Such activated extracts could lead to cell death and tumor ablation. Previous studies have shown that Cichorium Pumilum (chicory) contains photosensitive compounds such as cichoriin, anthocyanins, lactucin, and Lactucopicrin. In the present study, the protective effect of sun light-activated Cichorium against the dimethylbenz[a]anthracene (DMBA) induced benign breast tumors to female Sprague-Dawley rats was investigated. Chicory's extract has significantly increase P.carbonyl (PC) and malondialdehyde (MDA) and decreases the hepatic levels of total antioxidant capacity (TAC) and superoxide dismutase (SOD) in benign breast tumors-induced group compared to control. It also significantly decrease the number of estrogen receptors ER-positive cells in tumor masses. These results suggest that chicory extracts could be used as herbal photosensitizing agent in treating benign breast tumor in rats.

  17. Vanadium pentoxide induces pulmonary inflammation and tumor promotion in a strain-dependent manner

    Directory of Open Access Journals (Sweden)

    Bauer Alison K

    2010-04-01

    Full Text Available Abstract Background Elevated levels of air pollution are associated with increased risk of lung cancer. Particulate matter (PM contains transition metals that may potentiate neoplastic development through the induction of oxidative stress and inflammation, a lung cancer risk factor. Vanadium pentoxide (V2O5 is a component of PM derived from fuel combustion as well as a source of occupational exposure in humans. In the current investigation we examined the influence of genetic background on susceptibility to V2O5-induced inflammation and evaluated whether V2O5 functions as a tumor promoter using a 2-stage (initiation-promotion model of pulmonary neoplasia in mice. Results A/J, BALB/cJ (BALB, and C57BL/6J (B6 mice were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/g; i.p. or corn oil followed by 5 weekly aspirations of V2O5 or PBS and pulmonary tumors were enumerated 20 weeks following MCA treatment. Susceptibility to V2O5-induced pulmonary inflammation was assessed in bronchoalveolar lavage fluid (BALF, and chemokines, transcription factor activity, and MAPK signaling were quantified in lung homogenates. We found that treatment of animals with MCA followed by V2O5 promoted lung tumors in both A/J (10.3 ± 0.9 tumors/mouse and BALB (2.2 ± 0.36 mice significantly above that observed with MCA/PBS or V2O5 alone (P 2O5 were also found to be more susceptible to V2O5-induced pulmonary inflammation and hyperpermeability (A/J>BALB>B6. Differential strain responses in inflammation were positively associated with elevated levels of the chemokines KC and MCP-1, higher NFκB and c-Fos binding activity, as well as sustained ERK1/2 activation in lung tissue. Conclusions In this study we demonstrate that V2O5, an occupational and environmentally relevant metal oxide, functions as an in vivo lung tumor promoter among different inbred strains of mice. Further, we identified a positive relationship between tumor promotion and susceptibility

  18. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2.

    Science.gov (United States)

    Xu, Dong; Jin, Junzhe; Yu, Hao; Zhao, Zheming; Ma, Dongyan; Zhang, Chundong; Jiang, Honglei

    2017-03-20

    Hexokinase-2(HK-2) plays dual roles in glucose metabolism and mediation of cell apoptosis, making it an attractive target for cancer therapy. Chrysin is a natural flavone found in plant extracts which are widely used as herb medicine in China. In the present study, we investigated the antitumor activity of chrysin against hepatocellular carcinoma (HCC) and the role of HK-2 played for chrysin to exert its function. The expression of HK-2 in HCC cell line and tumor tissue was examined by western blotting and immunohistochemistry staining. The activities of chrysin against HCC cell proliferation and tumor glycolysis were investigated. Chrysin-induced apoptosis was analyzed by flow cytometry. The effect of chrysin on HK-2 expression and the underlying mechanisms by which induced HCC cell apoptosis were studied. In HK-2 exogenous overexpression cell, the changes of chrysin-induced cell apoptosis and glycolysis suppression were investigated. HCC cell xenograft model was used to confirm the antitumor activity of chrysin in vivo and the effect on HK-2 was tested in chrysin-treated tumor tissue. In contrast with normal cell lines and tissue, HK-2 expression was substantially elevated in the majority of tested HCC cell lines and tumor tissue. Owing to the decrease of HK-2 expression, glucose uptake and lactate production in HCC cells were substantially inhibited after exposure to chrysin. After chrysin treatment, HK-2 which combined with VDAC-1 on mitochondria was significantly declined, resulting in the transfer of Bax from cytoplasm to mitochondria and induction of cell apoptosis. Chrysin-mediated cell apoptosis and glycolysis suppression were dramatically impaired in HK-2 exogenous overexpression cells. Tumor growth in HCC xenograft models was significantly restrained after chrysin treatment and significant decrease of HK-2 expression was observed in chrysin-treated tumor tissue. Through suppressing glycolysis and inducing apoptosis in HCC, chrysin, or its derivative has

  19. Tumor mouse model confirms MAGE-A3 cancer immunotherapeutic as an efficient inducer of long-lasting anti-tumoral responses.

    Directory of Open Access Journals (Sweden)

    Catherine Gérard

    Full Text Available MAGE-A3 is a potential target for immunotherapy due to its tumor-specific nature and expression in several tumor types. Clinical data on MAGE-A3 immunotherapy have raised many questions that can only be addressed by using animal models. In the present study, different aspects of the murine anti-tumor immune responses induced by a recombinant MAGE-A3 protein (recMAGE-A3 in combination with different immunostimulants (AS01, AS02, CpG7909 or AS15 were investigated.Based on cytokine profile analyses and protection against challenge with MAGE-A3-expressing tumor, the combination recMAGE-A3+AS15 was selected for further experimental work, in particular to study the mechanisms of anti-tumor responses. By using MHC class I-, MHC class II-, perforin-, B-cell- and IFN-γ- knock-out mice and CD4+ T cell-, CD8+ T cell- and NK cell- depleted mice, we demonstrated that CD4+ T cells and NK cells are the main anti-tumor effectors, and that IFN-γ is a major effector molecule. This mouse tumor model also established the need to repeat recMAGE-A3+AS15 injections to sustain efficient anti-tumor responses. Furthermore, our results indicated that the efficacy of tumor rejection by the elicited anti-MAGE-A3 responses depends on the proportion of tumor cells expressing MAGE-A3.The recMAGE-A3+AS15 cancer immunotherapy efficiently induced an antigen-specific, functional and long-lasting immune response able to recognize and eliminate MAGE-A3-expressing tumor cells up to several months after the last immunization in mice. The data highlighted the importance of the immunostimulant to induce a Th1-type immune response, as well as the key role played by IFN-γ, CD4+ T cells and NK cells in the anti-tumoral effect.

  20. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Etzerodt, Anders; Ulhøi, Benedicte Parm

    2012-01-01

    .017, and aggressive (grade III/IV) cancers (p = 0.015). The expression strongly correlated with local expression of IL-6 (r = 0.72; p ... by a significant portion of the malignant cells in both tumors and lymph nodes. CD163 expressing tumor cells may constitute a subpopulation of tumor cells with a phenotypic shift associated with epithelial-to-mesenchymal transition (EMT) and increased metastatic activity induced by TAMs....

  1. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice.

    Science.gov (United States)

    Chaurio, Ricardo; Janko, Christina; Schorn, Christine; Maueröder, Christian; Bilyy, Rostyslav; Gaipl, Udo; Schett, Georg; Berens, Christian; Frey, Benjamin; Munoz, Luis E

    2013-08-01

    The presence of a solid tumor is the result of a complex balance between rejection, tolerance and regeneration in which the interactions of tumor cells with cells of the host immune system contribute strongly to the final outcome. Here we report on a model where lethally UVB-irradiated cells cause accelerated growth of viable tumor cells in vitro and in allogeneic immune competent mice. UVB-irradiated tumor cells alone did not form tumors and failed to induce tolerance for a second challenge with the same allogeneic tumor. Our data show an important role for dying cells in promoting accelerated tumor cell growth of a small number of viable tumor cells in a large inoculum of UVB-irradiated tumor cells. This occurs when viable and dying/dead tumor cells are in close proximity, suggesting that mobile factors contribute to growth promotion. The anti-inflammatory and growth promoting properties of apoptotic cells are based on several independent effects. UVB-irradiated apoptotic cells directly release a growth promoting activity and clearance by macrophages of apoptotic cells is accompanied by the secretion of IL10, TGFß, and PGE2. Growth promotion is even observed with dying heterologous cells implying a conserved mechanism. Future experiments should focus on the effects of dying tumor cells generated in vivo on the outgrowth of surviving tumor cells which is prone to have implications for cancer therapy.

  2. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  3. Characterization of pancreatic islet cell tumors and renal tumors induced by a combined treatment of streptozotocin and nicotinamide in male SD rats.

    Science.gov (United States)

    Kato, Yuki; Masuno, Koichi; Fujisawa, Kae; Tsuchiya, Noriko; Torii, Mikinori; Hishikawa, Atsuko; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2017-09-05

    We herein investigated the histopathological features, including proliferative activity and immunoexpression, of pancreatic islet cell tumors (ICTs) in male SD rats induced by streptozotocin (STZ) and nicotinamide (NA), and discussed their relevance to biological behaviors and prognoses. A total of 70 and 43% of rats developed ICTs 37-45 weeks after the treatment with STZ (50 or 75mg/kg, i.v.) and NA (350mg/kg, twice, p.o.), respectively. Among the islet tumors observed in the STZ/NA-treated groups, 75% were adenomas, while 25% were carcinomas. Most STZ/NA-induced carcinomas were characterized by well-differentiated tumor cells with/without local invasion into the surrounding tissues, and weak proliferative activity. No outcome such as distance metastasis and death was noted. All of the ICTs strongly expressed insulin, part of which had hormone productivity; however there were no hypoglycemia-related clinical signs such as convulsion in these rats 36 weeks after the treatment. These results suggested that rat ICTs induced STZ/NA have small impact on biological activity or prognosis. STZ/NA treatment significantly increased of focal proliferative lesions in the kidney, liver and adrenal glands other than pancreatic islets. Of the STZ/NA-induced kidney tumors, more than 60% were renal cell adenomas, and many of them were basophilic type. The incidence of eosinophilic or clear cell type of tumors was less than 10%, respectively. Immunohistochemical analyses revealed that many of the STZ/NA-induced basophilic type of renal tumors were derived from proximal tubules, whereas the clear cell and eosinophilic types were derived from collecting tubules. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Ultraviolet radiation-induced inflammation activates β-catenin signaling in mouse skin and skin tumors.

    Science.gov (United States)

    Prasad, Ram; Katiyar, Santosh K

    2014-04-01

    UVB-induced inflammation, in particular the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2, has been implicated in photocarcinogenesis. UVB-induced COX-2 has been associated with β-catenin signaling in keratinocytes. However, a definitive role for COX-2 in the activation of β-catenin signaling as well as its role in UVB-induced skin tumors has not been established. We report that exposure of the skin to UVB resulted in a time- and dose-dependent activation of β-catenin in C3H/HeN mice. This response was COX-2-dependent as UVB-exposed COX-2-deficient mice exhibited significantly lower levels of UVB-induced activation of β-catenin. Moreover, treatment of mice with indomethacin, a COX-2 inhibitor, and an EP2 antagonist inhibited UVB-induced β-catenin signaling. Exposure of SKH-1 hairless mice to UVB radiation (180 mJ/cm2) 3 times a week for 24 weeks resulted in activation of β-catenin signaling in UVB-irradiated skin as well as UVB-induced skin tumors. Concomitantly, the levels of CK1α and GSK-3β, which are responsible for β-catenin signaling, were reduced while the levels of c-Myc and cyclin D1, which are downstream targets of β-catenin, were increased. To further verify the role of UVB-induced inflammation in activation of β-catenin signaling, a high-fat-diet model was used. Administration of high-fat diet exacerbated UVB-induced inflammation. Administration of the high-fat diet enhanced β-catenin signaling and the levels of its downstream targets (c-Myc, cyclin D1, cyclin D2, MMP-2 and MMP-9) in UVB-exposed skin and skin tumors in SKH-1 mice. These data suggest that UV-induced COX-2/PGE2 stimulates β-catenin signaling, and that β-catenin activation may contribute to skin carcinogenesis.

  5. Tumor-associated FGF-23-induced hypophosphatemic rickets in children: a case report and review of the literature.

    Science.gov (United States)

    Burckhardt, Marie-Anne; Schifferli, Alexandra; Krieg, Andreas H; Baumhoer, Daniel; Szinnai, Gabor; Rudin, Christoph

    2015-01-01

    Tumor-associated fibroblast growth factor 23 (FGF-23)-induced hypophosphatemic rickets is a rare but known pediatric entity first described in 1959. It results from local production of phosphatonins by benign and malignant mesenchymal tumors. We report an 8-year-old boy with tumor-associated hypophosphatemic rickets due to paraneoplastic FGF-23 secretion from a benign mesenchymal pelvic-bone tumor. Excessive FGF-23 production was visualized by immunohistochemistry in the resected tumor. Phosphate wasting stopped immediately after tumor resection. We reviewed 26 reports of pediatric patients with tumor-induced hypophosphatemic rickets; paraneoplastic FGF-23 secretion was documented in only three of them. All tumors developed inside bone, were benign in 21/26 cases, and were localized in femur/tibia (13/26), radius/ulna/humerus (7/26), pelvis (4/26), rib (1/26), and craniofacial (1/26) bones. Mean interval between onset of signs and/or symptoms and diagnosis was 34 months. In patients with hypophosphatemic rickets acquired beyond infancy, radiologic investigations for bone tumors need to be performed rapidly. In contrast to biochemical screening for increased circulating FGF-23 levels, immunohistochemical confirmation of FGF-23 production in resected tumor tissue can be regarded as being well established.

  6. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  7. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    International Nuclear Information System (INIS)

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-01-01

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm 2 /session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality

  8. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    International Nuclear Information System (INIS)

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A.

    1990-01-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN

  9. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ildefonso Alves da Silva-Junior

    2018-02-01

    Full Text Available Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT, the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa and squamous carcinoma cell lines (SCC90 and SCC78 express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2 in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP were more resistant to radiation compared to those lacking the receptor (KBM. PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.

  10. Induced Pluripotent Stem Cells Reduce Progression of Experimental Chronic Kidney Disease but Develop Wilms’ Tumors

    Directory of Open Access Journals (Sweden)

    Heloisa Cristina Caldas

    2017-01-01

    Full Text Available The therapeutic effect of induced pluripotent stem cells (iPSs on the progression of chronic kidney disease (CKD has not yet been demonstrated. In this study, we sought to assess whether treatment with iPSs retards progression of CKD when compared with bone marrow mesenchymal stem cells (BMSCs. Untreated 5/6 nephrectomized rats were compared with CKD animals receiving BMSCs or iPSs. Renal function, histology, immunohistochemistry, and gene expression were studied. Implanted iPSs were tracked by the SRY gene expression analysis. Both treatments minimized elevation in serum creatinine, significantly improved clearance, and slowed down progression of disease. The proteinuria was reduced only in the iPS group. Both treatments reduced glomerulosclerosis, iPSs decreased macrophage infiltration, and TGF-β was reduced in kidneys from the BMSC group. Both types of treatments increased VEGF gene expression, TGF-β was upregulated only in the iPS group, and IL-10 had low expression in both groups. The SRY gene was found in 5/8 rats treated with iPSs. These 5 animals presented tumors with histology and cells highly staining positive for PCNA and Wilms’ tumor protein antibody characteristics of Wilms’ tumor. These results suggest that iPSs may be efficient to retard progression of CKD but carry the risk of Wilms’ tumor development.

  11. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  12. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    International Nuclear Information System (INIS)

    Pimenta, Erica M.; Barnes, Betsy J.

    2014-01-01

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin ® ) and rituximab (Rituxan ® )) and the first approved cancer vaccine, Provenge ® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response

  13. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  14. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells.

    Directory of Open Access Journals (Sweden)

    Gwendaline Guidicelli

    Full Text Available BACKGROUND: The amount of inosine monophosphate dehydrogenase (IMPDH, a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP, is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA-mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL-overexpressing cells. All tested cells remained sensitive to MPA-mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. CONCLUSIONS/SIGNIFICANCE: These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.

  15. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  16. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  17. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    Science.gov (United States)

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  18. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  19. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Science.gov (United States)

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  20. A Case of Acute Prosthesis Migration after Femoral Head Replacement due to Osteomalacia by FGF23-Induced Tumor

    Directory of Open Access Journals (Sweden)

    Shinya Hayashi

    2012-01-01

    Full Text Available Fibroblast growth factor 23 (FGF23 was recently identified as an important factor involved in the development of hypophosphatemic rickets and osteomalacia. We experienced a rare case of acute prosthesis migration after hemihip arthroplasty due to FGF23-induced tumor. The patient underwent femoral head replacement because of femoral neck fracture, but prosthesis migration was occurred at 1 week after operation. The patient took various examinations, and FGF23-induced tumor was found in his right wrist. The tumor was resected, and he underwent total hip arthroplasty 8 month later. Finally, he was able to obtain free gait without pain.

  1. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm-EDTMP

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong; Han Xiaofeng

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153 Sm-EDTMP bone tumor cells displayed feature of apoptosis, such as margination of condensed chromatin, chromatin fragmentation, as well as the membrane bounded apoptotic bodies formation. The quantification analysis of fragmentation DNA for bone tumor cells induced by 153 Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time. These characteristics suggest that 153 Sm-EDTMP internal irradiation could induce bone tumor cells to go to apoptosis

  2. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the “biomechanical imbalances” induced in GBM patient-derived glioblastoma cells (GC and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a “drug repurposing approach” to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti

  3. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis.

    Science.gov (United States)

    John, Sebastian; Sivakumar, K C; Mishra, Rashmi

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.

  4. Comparison of bone tumors induced by beta-emitting or alpha-emitting radionuclides: Schemes of pathogenesis

    International Nuclear Information System (INIS)

    Gillett, N.A.; Muggenburg, B.A.; Pool, R.R.; Hahn, F.F.

    1988-01-01

    Life-span studies in Beagle dogs have documented the occurrence of bone tumors following exposure to bone-seeking alpha- or beta-emitting radionuclides administered by different routes of exposure. Bone tumors from dogs in four different life-span studies were analyzed according to tumor phenotype, tumor location, radiographic appearance, incidence of metastasis, and association with radiation osteodystrophy. Marked differences in these parameters were observed that did not correlate with differences in radionuclide type, route of exposure, or duration of radionuclide uptake. Radiation osteodystrophy, which is postulated to be a preneoplastic lesion, was not a significant component in one of the studies. Analysis of the data from these four studies suggests that at least two different mechanisms of bone tumor pathogenesis occur for radiation-induced bone tumors. (author)

  5. The neuroimmune changes induced by cohabitation with an Ehrlich tumor-bearing cage mate rely on olfactory information.

    Science.gov (United States)

    Alves, Glaucie J; Ribeiro, Alison; Palermo-Neto, João

    2012-01-01

    Cohabitation for 14 days with Ehrlich tumor-bearing mice was shown to increase locomotor activity, to decrease hypothalamic noradrenaline (NA) levels, to increase NA turnover and to decrease innate immune responses and decrease the animals' resistance to tumor growth. Cage mates of a B16F10 melanoma-bearer mice were also reported to show neuroimmune changes. Chemosignals released by Ehrlich tumor-bearing mice have been reported to be relevant for the neutrophil activity changes induced by cohabitation. The present experiment was designed to further analyze the effects of odor cues on neuroimmune changes induced by cohabitation with a sick cage mate. Specifically, the relevance of chemosignals released by an Ehrlich tumor-bearing mouse was assessed on the following: behavior (open-field and plus maze); hypothalamic NA levels and turnover; adrenaline (A) and NA plasmatic levels; and host resistance induced by tumor growth. To comply with such objectives, devices specifically constructed to analyze the influence of chemosignals released from tumor-bearing mice were employed. The results show that deprivation of odor cues released by Ehrlich tumor-bearing mice reversed the behavioral, neurochemical and immune changes induced by cohabitation. Mice use scents for intraspecies communication in many social contexts. Tumors produce volatile organic compounds released into the atmosphere through breath, sweat, and urine. Our results strongly suggest that volatile compounds released by Ehrlich tumor-injected mice are perceived by their conspecifics, inducing the neuroimmune changes reported for cohabitation with a sick companion. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Prognostic relevance of induced and spontaneous apoptosis of disseminated tumor cells in primary breast cancer patients

    International Nuclear Information System (INIS)

    Krawczyk, Natalia; Fehm, Tanja; Hartkopf, Andreas; Banys, Malgorzata; Meier-Stiegen, Franziska; Staebler, Annette; Wallwiener, Markus; Röhm, Carmen; Hoffmann, Juergen; Hahn, Markus

    2014-01-01

    An imbalance between cell proliferation and programmed cell death can result in tumor growth. Although most systemic cytotoxic agents induce apoptosis in tumor cells, a high apoptotic rate in primary breast cancer correlates with poor prognosis. The aim of this study was to investigate the incidence and the prognostic significance of apoptotic disseminated tumor cells (DTC) in the bone marrow (BM) of breast cancer patients who either underwent primary surgery or primary systemic chemotherapy (PST). A total of 383 primary breast cancer patients with viable DTC in the BM were included into this study. Eighty-five patients were initially treated with primary systemic chemotherapy whereas 298 patients underwent surgery first. Detection of apoptotic DTC were performed by immunocytochemistry using the M30 antibody which detects a neo-epitope expressed after caspase cleavage of cytokeratin 18 during early apoptosis. The median follow up was 44 months (range 10–88 months). Eighty-two of 298 (27%) primary operated patients and 41 of 85 (48%) patients treated with primary systemic systemic therapy had additional apoptotic DTC (M30 positive). In the neoadjuvant group M30-positive patients were less likely to suffer relapse than those without apoptotic DTC (7% vs. 23% of the events, p = 0.049). In contrast, the detection of apoptotic DTC in patients treated by primary surgery was significantly associated with poor overall survival (5% vs. 12% of the events, p = 0.008). Apoptotic DTC can be detected in breast cancer patients before and after systemic treatment. The presence of apoptotic DTC in patients with PST may be induced by the cytotoxic agents. Thus, both spontaneous and chemotherapy-induced apoptosis may have different prognostic significance

  7. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  8. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors

    International Nuclear Information System (INIS)

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs

  9. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells.

    Science.gov (United States)

    Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K

    2016-07-01

    Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.

  10. A sesquiterpenelactone from Inula britannica induces anti-tumor effects dependent on Bcl-2 phosphorylation.

    Science.gov (United States)

    Rafi, Mohamed M; Bai, Nai-Sheng; Chi-Tang-Ho; Rosen, Robert T; White, Eileen; Perez, Denise; Dipaola, Robert S

    2005-01-01

    The over-expression of the anti-apoptotic protein Bcl-2 in cancer is associated with resistance to chemotherapeutic drugs. The phosphorylation of Bcl-2 is one mechanism by which anti-microtubule agents, such as paclitaxel or docetaxel, may inactivate Bcl-2. Although initially active in clinical studies, current anti-microtubule agents are only temporarily effective and the discovery of new agents is warranted. We isolated and identified two known sesquiterpenelactones, O, O-diacetylbritannilactone (OODABL) and O-acetylbritaanilactone (OABL) from the flowers of the medicinal plant Inula britannica and studied their mechanism of anti-tumor effects. To determine the biological significance of Bcl-2 phosphorylation, we used a baby rat kidney (BRK-p53) cell line that was transformed with EIA and a temperature-sensitive mutant p53. The BRK-p53 cell line was transfected with either a vector with wild type Bcl-2 or a vector in which Bcl-2 had mutations in the paclitaxel phosphorylation sites (pcDNA3.1 V5/His Bcl-2 S70, 87A). OODABL and OABL induced phosphorylation of Bcl-2 in breast, ovary and prostate cancer cell lines and induced G2/M cell cycle arrest. Using the BRK cells with mutant Bcl-2 (BRK-Bcl-2-mt) and control (BRK-Bcl-2-wt), we found that OODABL induced phosphorylation of Bcl-2 at sites similar to paclitaxel. Phosphorylation of Bcl-2 was important for OODABL-induced cytotoxicity, since the abrogation of phosphorylation in BRK-Bcl-2-mt cells decreased OODABL-induced cytotoxicity. We concluded that OODABL is cytotoxic in multiple tumor cell lines, and the cytotoxicity is dependent, at least in part, on the phosphorylation of Bcl-2.

  11. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  12. Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2006-06-01

    Full Text Available Abstract Background In vivo studies have recently demonstrated that interleukin 21 (IL-21 enhances the anti-tumor function of T-cells and NK cells in murine tumor models, and the combined use of IL-21 and IL-15 has resulted in prolonged tumor regression and survival in mice with previously established tumors. However, the combined anti-tumor effects of IL-21 and low dose IL-2 have not been studied even though IL-2 has been approved for human use, and, at low dose administration, stimulates the proliferation of memory T cells, and does not significantly increase antigen-induced apoptosis or regulatory T cell (Treg expansion. This study examined whether recombinant IL-21 alone or in combination with low-dose IL-2 could improve the in vivo anti-tumor function of naïve, tumor-antigen specific CD8+ T cells in a gp10025–33 T cell receptor transgenic pmel murine melanoma model. Methods Congenic C57BL/6 (Ly5.2 mice bearing subcutaneous B16F10 melanoma tumors were sublethally irradiated to induce lymphopenia. After irradiation naive pmel splenocytes were adoptively transferred, and mice were immunized with bone marrow-derived dendritic cells pulsed with human gp10025–33 (hgp10025–33. Seven days after vaccination groups of mice received 5 consecutive days of intraperitoneal administration of IL-2 alone (20 × 103 IU, IL-21 alone (20 μg or IL-21 and IL-2. Control animals received no cytokine therapy. Results IL-21 alone and IL-2 alone both delayed tumor progression, but only IL-21 significantly augmented long-term survival (20% compared to the control group. However, combination therapy with IL-21 and IL-2 resulted in the highest long-term (>150 days tumor-free survival frequency of 46%. Animals that were tumor-free for > 150 days demonstrated tumor-specific protection after rechallenge with B16F10 melanoma cells. At peak expansion (21 days post vaccination, the combination of IL-21 plus IL-2 resulted in a 2- to 3-fold higher absolute number of

  13. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  14. Activated astrocytes induce nitric oxide synthase-2 in cerebral endothelium via tumor necrosis factor alpha.

    Science.gov (United States)

    Shafer, R A; Murphy, S

    1997-12-01

    Astrocytes under pathological conditions become activated and produce a variety of cytokines and low molecular weight signal molecules. Previously we demonstrated that activated astrocytes release nitric oxide which can downregulate the expression of nitric oxide synthase (NOS)-2 in co-cultured cerebral endothelium, and also release a transcriptionally regulated factor that can induce NOS-2 expression in endothelium (Borgerding and Murphy: J Neurochem 65:1342, 1995). The activity of this NOS-2-inducing factor was impeded by inhibitors of tyrosine kinases and NF-kappaB activation. Tumor necrosis factor (TNF alpha) alone, or in combination with IL-6, induced NOS-2 expression in endothelial cells. A neutralizing antibody against TNF alpha attenuated the NOS-2 expression in endothelial cells exposed to activated astrocytes. These results imply that cytokine-activated astrocytes release TNF alpha which can induce NOS-2 expression in endothelium and suggest that activated astrocytes within the CNS may induce expression of NOS-2 in cells of the adjacent microvasculature. The ensuing alterations in blood-brain barrier properties may be either beneficial or detrimental.

  15. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  16. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  17. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Saber, Anne T.; Bornholdt, Jette; Dybdahl, Marianne; Sharma, Anoop K.; Vogel, Ulla; Wallin, Haakan [National Institute of Occupational Health, Copenhagen (Denmark); Loft, Steffen [Copenhagen University, Institute of Public Health, Copenhagen (Denmark)

    2005-03-01

    Particle-induced carcinogenicity is not well understood, but might involve inflammation. The proinflammatory cytokine tumor necrosis factor (TNF) is considered to be an important mediator in inflammation. We investigated its role in particle-induced inflammation and DNA damage in mice with and without TNF signaling. TNF-/- mice and TNF+/+ mice were exposed by inhalation to 20 mg m{sup -3} carbon black (CB), 20 mg m{sup -3} diesel exhaust particles (DEP), or filtered air for 90 min on each of four consecutive days. DEP, but not CB particles, induced infiltration of neutrophilic granulocutes into the lung lining fluid (by the cellular fraction in the bronchoalveolar lavage fluid), and both particle types induced interleukin-6 mRNA in the lung tissue. Surprisingly, TNF-/- mice were intact in these inflammatory responses. There were more DNA strand breaks in the BAL cells of DEP-exposed TNF-/- mice and CB-exposed mice compared with the air-exposed mice. Thus, the CB-induced DNA damage in BAL-cells was independent of neutrophil infiltration. The data indicate that an inflammatory response was not a prerequisite for DNA damage, and TNF was not required for the induction of inflammation by DEP and CB particles. (orig.)

  18. Inactivation of PITX2 transcription factor induced apoptosis of gonadotroph tumoral cells.

    Science.gov (United States)

    Acunzo, Julie; Roche, Catherine; Defilles, Celine; Thirion, Sylvie; Quentien, Marie-Helene; Figarella-Branger, Dominique; Graillon, Thomas; Dufour, Henry; Brue, Thierry; Pellegrini, Isabelle; Enjalbert, Alain; Barlier, Anne

    2011-10-01

    Nonfunctioning pituitary adenomas (NFPA; gonadotroph derived), even not inducing hormonal hypersecretion, cause significant morbidity by compression neighboring structures. No effective and specific medical methods are available so far for treating these tumors. The pituitary homeobox 2 (PITX2) gene is a member of the bicoid-like homeobox transcription factor family, which is involved in the Wnt/Dvl/β-catenin pathway. PITX2 is overexpressed in NFPA. PITX2 mutations are known to be responsible for Axenfield Rieger syndrome, a genetic disorder in which pituitary abnormalities have been detected. The R91P mutant identified in Axenfeld Rieger syndrome is a dominant-negative factor, which is able to block the expression of several pituitary genes activated by PITX2. To better understand the role of Pitx2 on gonadotroph tumorigenesis and to explore new approach for inhibiting tumoral growth, the R91P mutant was transferred via a lentiviral vector in tumoral gonadotroph cells of two kinds: the αT3-1 cell line and human adenoma cells. R91P mutant and small interfering RNA directed against Pitx2 both decreased the viability of αT3-1 cells via an apoptotic mechanism involving the activation of executioner caspase. Similar effects of the R91P mutant were observed on human gonadotroph cells in primary culture. Therefore, Pitx2 overexpression may play an antiapoptotic role during NFPA tumorigenesis.

  19. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  20. Tumor microenvironmental changes induced by the sulfamate carbonic anhydrase IX inhibitor S4 in a laryngeal tumor model.

    Directory of Open Access Journals (Sweden)

    Tineke W H Meijer

    Full Text Available BACKGROUND AND PURPOSE: Carbonic anhydrase IX (CAIX plays a pivotal role in pH homeostasis, which is essential for tumor cell survival. We examined the effect of the CAIX inhibitor 4-(3'(3",5"-dimethylphenyl-ureidophenyl sulfamate (S4 on the tumor microenvironment in a laryngeal tumor model by analyzing proliferation, apoptosis, necrosis, hypoxia, metabolism and CAIX ectodomain shedding. METHODS: SCCNij202 tumor bearing-mice were treated with S4 for 1, 3 or 5 days. CAIX ectodomain shedding was measured in the serum after therapy. Effects on tumor cell proliferation, apoptosis, necrosis, hypoxia (pimonidazole and CAIX were investigated with quantitative immunohistochemistry. Metabolic transporters and enzymes were quantified with qPCR. RESULTS: CAIX ectodomain shedding decreased after treatment with S4 (p<0.01. S4 therapy did neither influence tumor cell proliferation nor the amount of apoptosis and necrosis. Hypoxia (pimonidazole and CAIX expression were also not affected by S4. CHOP and MMP9 mRNA as a reference of intracellular pH did not change upon treatment with S4. Compensatory mechanisms of pH homeostasis at the mRNA level were not observed. CONCLUSION: As the clinical and biological meaning of the decrease in CAIX ectodomain shedding after S4 therapy is not clear, studies are required to elucidate whether the CAIX ectodomain has a paracrine or autocrine signaling function in cancer biology. S4 did not influence the amount of proliferation, apoptosis, necrosis and hypoxia. Therefore, it is unlikely that S4 can be used as single agent to influence tumor cell kill and proliferation, and to target primary tumor growth.

  1. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    to identify TAA, mice were immunized with mixtures of peptides representing putative cytotoxic T cell epitopes derived from one of the gene products. Indeed, such immunized mice were partially protected against subsequent tumor challenge. Despite being immunized with bona fide self antigens, no clinical signs...... imprints, which may be used to identify patient-specific arrays of TAA. This may enable a multi-epitope based immunotherapy with improved prospects of clinical tumor rejection....

  2. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea.

    Science.gov (United States)

    Campillo, Noelia; Torres, Marta; Vilaseca, Antoni; Nonaka, Paula Naomi; Gozal, David; Roca-Ferrer, Jordi; Picado, César; Montserrat, Josep Maria; Farré, Ramon; Navajas, Daniel; Almendros, Isaac

    2017-03-16

    An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE 2 ). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE 2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE 2 .

  3. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells

    International Nuclear Information System (INIS)

    Yamashita, N.; Kojima, I.; Shibuya, N.; Ogata, E.

    1987-01-01

    The effect of pertussis toxin on somatostatin-induced K + current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K + current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K + , Na + , and Ca 2+ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with [ 32 P]NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment

  4. Cordycepin Induced MA-10 Mouse Leydig Tumor Cell Apoptosis through Caspase-9 Pathway

    Directory of Open Access Journals (Sweden)

    Chun-Yi Jen

    2011-01-01

    Full Text Available In the present study, the apoptotic effect of cordycepin on MA-10 cells, a mouse Leydig tumor cell line, was investigated. Results demonstrated that the number of rounding-up cell increased by cordycepin (10 μM to 5 mM for 24 h, and cells with plasma membrane blebbing could be observed by 100 μM cordycepin. In viability test, MA-10 cell surviving rate significantly decreased as the dosage (10 μM to 5 mM and duration (3–24 h of cordycepin treatment increased (P < 0.05. Cordycepin at 100 μM and 1 mM for 24 h treatment induced significant DNA fragmentation (P < 0.05. In addition, the percentage of G1 and G2/M phase cell significantly declined by cordycepin (100 μM and 1 mM for 24 h treatment, while the percentages of subG1 phase cell increased by 100 μM and/or 1 mM cordycepin in 6, 12 and 24 h treatments (P < 0.05, respectively, which highly suggested that cordycepin induced MA-10 cell apoptosis. In mechanism study with the treatments of caspases, c-Jun NH2 terminal kinase (JNK or reactive oxygen species (ROS inhibitors plus cordycepin for 24 h, only caspases inhibitor suppressed subG1 phase in MA-10 cells. Moreover, western blotting results showed that cordycepin induced caspase-9, -3 and -7 protein expressions, but not caspase-8, in time- and dose-dependent manners. In conclusion, cordycepin induced apoptosis in MA-10 mouse Leydig tumor cells through a caspase-9 and -3 and -7 dependent pathway.

  5. Biodentine Reduces Tumor Necrosis Factor Alpha-induced TRPA1 Expression in Odontoblastlike Cells.

    Science.gov (United States)

    El Karim, Ikhlas A; McCrudden, Maelíosa T C; McGahon, Mary K; Curtis, Tim M; Jeanneau, Charlotte; Giraud, Thomas; Irwin, Chris R; Linden, Gerard J; Lundy, Fionnuala T; About, Imad

    2016-04-01

    The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression. Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies. Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment. In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity.

    Science.gov (United States)

    Rösler, J; Niraula, B; Strack, V; Zdunczyk, A; Schilt, S; Savolainen, P; Lioumis, P; Mäkelä, J; Vajkoczy, P; Frey, D; Picht, T

    2014-03-01

    This article explores the feasibility of a novel repetitive navigated transcranial magnetic stimulation (rnTMS) system and compares language mapping results obtained by rnTMS in healthy volunteers and brain tumor patients. Fifteen right-handed healthy volunteers and 50 right-handed consecutive patients with left-sided gliomas were examined with a picture-naming task combined with time-locked rnTMS (5-10 Hz and 80-120% resting motor threshold) applied over both hemispheres. Induced errors were classified into four psycholinguistic types and assigned to their respective cortical areas according to the coil position during stimulation. In healthy volunteers, language disturbances were almost exclusively induced in the left hemisphere. In patients errors were more frequent and induced at a comparative rate over both hemispheres. Predominantly dysarthric errors were induced in volunteers, whereas semantic errors were most frequent in the patient group. The right hemisphere's increased sensitivity to rnTMS suggests reorganization in language representation in brain tumor patients. rnTMS is a novel technology for exploring cortical language representation. This study proves the feasibility and safety of rnTMS in patients with brain tumor. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  8. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Kaneda, Hideki [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Sakuraba, Yoshiyuki [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Saiki, Yuriko [Department of Molecular Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Wakana, Shigeharu [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Suzuki, Hiroshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Gondo, Yoichi [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Shiroishi, Toshihiko [Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka (Japan); Noda, Tetsuo, E-mail: tnoda@jfcr.or.jp [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo (Japan)

    2016-08-05

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.

  9. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models.

    Directory of Open Access Journals (Sweden)

    Anastasia Wyce

    Full Text Available BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726, and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.

  10. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    International Nuclear Information System (INIS)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, André; Gnanasekar, Munirathinam

    2012-01-01

    Highlights: ► Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. ► Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. ► Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. ► Knock down of RAGE abrogates prostate tumor growth in vivo. ► Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  11. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth factor...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice implanted...

  12. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  13. Gene alterations in radiation-induced F344 rat lung tumors

    International Nuclear Information System (INIS)

    Kelly, G.; Hahn, F.F.

    1994-01-01

    The p53 tumor suppressor gene is frequently altered in all major histopathologic types of human lung tumors. Reported p53 mutations include base substitutions, allelic loss, rearrangements, and deletions. Point mutations resulting in base substitutions are clustered within a highly conserved region of the gene encoding exons 508, and mutations in this region substantially extend the half-life of the p53 protein. In addition to its prominent importance in lung carcinogenesis, the p53 gene plays a critical role in the cellular response to genetic damage caused by radiation. Specifically, the protein product of p53 induces a pause or block at the G 1 to S boundary of the cell cycle following radiation-caused DNA damage. This G 1 block may allow the cell time to repair the damaged DNA prior to replication. Cells lacking a functional p53 protein fail to pause for repair and consequently accumulate mutations in the genome at an accelerated rate. p53 has also been implicated as a controlling factor in apoptosis or in programmed cell death induced by DNA-damaging agents, such as ionizing radiation. The p53 gene is mutated in approximately 50% of squamous cell carcinomas from uranium miners who inhaled high doses of radon daughters. The purpose of the present study was to determine if a similar percentage of squamous cell carcinomas with p53 mutations developed in the lungs of rats exposed to aerosols of 239 PuO 2

  14. Implications of Therapy-Induced Selective Autophagy on Tumor Metabolism and Survival

    Directory of Open Access Journals (Sweden)

    Luke R. K. Hughson

    2012-01-01

    Full Text Available Accumulating evidence indicates that therapies designed to trigger apoptosis in tumor cells cause mitochondrial depolarization, nuclear damage, and the accumulation of misfolded protein aggregates, resulting in the activation of selective forms of autophagy. These selective forms of autophagy, including mitophagy, nucleophagy, and ubiquitin-mediated autophagy, counteract apoptotic signals by removing damaged cellular structures and by reprogramming cellular energy metabolism to cope with therapeutic stress. As a result, the efficacies of numerous current cancer therapies may be improved by combining them with adjuvant treatments that exploit or disrupt key metabolic processes induced by selective forms of autophagy. Targeting these metabolic irregularities represents a promising approach to improve clinical responsiveness to cancer treatments given the inherently elevated metabolic demands of many tumor types. To what extent anticancer treatments promote selective forms of autophagy and the degree to which they influence metabolism are currently under intense scrutiny. Understanding how the activation of selective forms of autophagy influences cellular metabolism and survival provides an opportunity to target metabolic irregularities induced by these pathways as a means of augmenting current approaches for treating cancer.

  15. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  16. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  17. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice.

    Science.gov (United States)

    Zheng, Jiamao; Almendros, Isaac; Wang, Yang; Zhang, Shelley X; Carreras, Alba; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    The molecular mechanisms underlying how sleep fragmentation (SF) influences cancer growth and progression remain largely elusive. Here, we present evidence that SF reduced ROS production by downregulating gp91 phox expression and activity in TC1 cell tumor associated macrophages (TAMs), while genetic ablation of phagocytic Nox2 activity increased tumor cell proliferation, motility, invasion, and extravasation in vitro . Importantly, the in vivo studies using immunocompetent syngeneic murine tumor models suggested that Nox2 deficiency mimics SF-induced TAMs infiltration and subsequent tumor growth and invasion. Taken together, these studies reveal that perturbed sleep could adversely affect innate immunity within the tumor by altering Nox2 expression and activity, and indicate that selective potentiation of Nox2 activity may present a novel therapeutic strategy in the treatment of cancer.

  18. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice

    Science.gov (United States)

    Zheng, Jiamao; Almendros, Isaac; Wang, Yang; Zhang, Shelley X; Carreras, Alba; Qiao, Zhuanhong; Gozal, David

    2015-01-01

    The molecular mechanisms underlying how sleep fragmentation (SF) influences cancer growth and progression remain largely elusive. Here, we present evidence that SF reduced ROS production by downregulating gp91phox expression and activity in TC1 cell tumor associated macrophages (TAMs), while genetic ablation of phagocytic Nox2 activity increased tumor cell proliferation, motility, invasion, and extravasation in vitro. Importantly, the in vivo studies using immunocompetent syngeneic murine tumor models suggested that Nox2 deficiency mimics SF-induced TAMs infiltration and subsequent tumor growth and invasion. Taken together, these studies reveal that perturbed sleep could adversely affect innate immunity within the tumor by altering Nox2 expression and activity, and indicate that selective potentiation of Nox2 activity may present a novel therapeutic strategy in the treatment of cancer. PMID:25949873

  19. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3

    International Nuclear Information System (INIS)

    Holl, V.P.

    2000-01-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  20. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-04-03

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Intratumoral vaccination of adenoviruses expressing fusion protein RM4/tumor necrosis factor (TNF)-alpha induces significant tumor regression.

    Science.gov (United States)

    Wright, P; Zheng, C; Moyana, T; Xiang, J

    1998-01-01

    Recombinant adenovirus (AdV) vectors are highly efficient at in vitro and in vivo gene delivery. VKCK is a murine myeloma cell line expressing the light chain of the fusion protein RM4/tumor necrosis factor (TNF)-alpha. The in vitro transfection of VKCK cells with the AdV AdV5LacZ, which contains the marker gene beta-galactosidase, can reach a maximal 75% at a multiplicity of infection of 1000. Intratumoral injections of AdV5LacZ (2 x 10(9) plaque-forming units) resulted in substantial gene transfer in nearly 50% of VKCK tumors. The AdV pLpA/M4-TNF-alpha, which contains a fused gene M4-TNF-alpha that codes for the heavy chain of fusion protein RM4/TNF-alpha, was constructed. After the in vitro transfection of pLpA/M4-TNF-alpha at a multiplicity of infection of 1000, transfected VKCK cells showed significant secretion of RM4/TNF-alpha (36 ng/mL/10(6) cells) containing the functional TNF-alpha moiety in tissue culture. The secretion peaks at day 3 and is diminished at day 6 following the viral infection. These transfected VKCK cells also became more immunogenic with enhanced expression of major histocompatibility complex class I antigen. Intratumoral injections of 2 x 10(9) plaque-forming units of pLpA/M4-TNF-alpha virus with a repeated booster resulted in significant VKCK tumor regression in immune-competent mice, but not in athymic nude mice with a mean tumor weight of 0.07 g that were compared with 1.58 g and 1.70 g for tumors injected with AdV5LacZ and phosphate-buffered saline, respectively (P management of solid human tumors.

  2. Calcitriol exerts an anti-tumor effect in osteosarcoma by inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Shimizu, Takatsune; Kamel, Walied A; Yamaguchi-Iwai, Sayaka; Fukuchi, Yumi; Muto, Akihiro; Saya, Hideyuki

    2017-09-01

    Osteosarcoma is the most common type of primary bone tumor, and novel therapeutic approaches for this disease are urgently required. To identify effective agents, we screened a panel of Food and Drug Administration (FDA)-approved drugs in AXT cells, our newly established mouse osteosarcoma line, and identified calcitriol as a candidate compound with therapeutic efficacy for this disease. Calcitriol inhibited cell proliferation in AXT cells by blocking cell cycle progression. From a mechanistic standpoint, calcitriol induced endoplasmic reticulum (ER) stress, which was potentially responsible for downregulation of cyclin D1, activation of p38 MAPK, and intracellular production of reactive oxygen species (ROS). Knockdown of Atf4 or Ddit3 restored cell viability after calcitriol treatment, indicating that the ER stress response was indeed responsible for the anti-proliferative effect in AXT cells. Notably, the ER stress response was induced to a lesser extent in human osteosarcoma than in AXT cells, consistent with the weaker suppressive effect on cell growth in the human cells. Thus, the magnitude of ER stress induced by calcitriol might be an index of its anti-osteosarcoma effect. Although mice treated with calcitriol exhibited weight loss and elevated serum calcium levels, a single dose was sufficient to decrease osteosarcoma tumor size in vivo. Our findings suggest that calcitriol holds therapeutic potential for treatment of osteosarcoma, assuming that techniques to diminish its toxicity could be established. In addition, our results show that calcitriol could still be safely administered to osteosarcoma patients for its original purposes, including treatment of osteoporosis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Gene expression profiles of progestin-induced canine mammary hyperplasia and spontaneous mammary tumors.

    Science.gov (United States)

    Rao, N A S; van Wolferen, M E; Gracanin, A; Bhatti, S F M; Krol, M; Holstege, F C; Mol, J A

    2009-05-01

    Spontaneous mammary tumors are the most prevalent type of neoplasms in women as well as in female dogs. Although ovarian hormones estrogen and progesterone are known to play a key role in mammary tumorigenesis, conflicting reports have been obtained from in vivo and in vitro studies concerning the role of especially progesterone in mammary tumorigenesis. Prolonged exposure to high concentrations of progesterone during the unusually long luteal phase of the estrous cycle is suspected to be the key event in canine mammary tumorigenesis. Accordingly, previous studies have shown the development of mammary hyperplasia in dogs upon prolonged progestin administration. In this study, a dog-specific cDNA microarray was used to identify oncogenic determinants in progestin-induced canine hyperplasia (CMH) and spontaneous mammary tumors (CMC) by comparing expression profiles to those obtained from mammary glands of healthy dogs. The CMH profile showed elevated expression of genes involved in cell proliferation such as PCNA, NPY, RAN and also alterations in expression of transcription factors and cell adhesion molecules. Whereas in CMC, major alterations to the expression of genes involved in cell motility, cytoskeletal organization and extra cellular matrix production was evident besides differential expression of cell proliferation inducing genes. The overall gene expression profile of CMH was related to cell proliferation where as that of CMC was associated with both cell proliferation as well as neoplastic transformation. In conclusion, our findings support a strong cell proliferation inducing potential of progestins in the canine mammary gland. Moreover, deregulated genes identified in CMC are potentially involved in their malignant and may serve as prospective therapeutic targets.

  4. Monitoring and Targeting Anti-VEGF Induced Hypoxia within the Viable Tumor by 19F–MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2017-11-01

    Full Text Available The effect of anti-angiogenic agents on tumor oxygenation has been in question for a number of years, where both increases and decreases in tumor pO2 have been observed. This dichotomy in results may be explained by the role of vessel normalization in the response of tumors to anti-angiogenic therapy, where anti-angiogenic therapies may initially improve both the structure and the function of tumor vessels, but more sustained or potent anti-angiogenic treatments will produce an anti-vascular response, producing a more hypoxic environment. The first goal of this study was to employ multispectral (MS 19F–MRI to noninvasively quantify viable tumor pO2 and evaluate the ability of a high dose of an antibody to vascular endothelial growth factor (VEGF to produce a strong and prolonged anti-vascular response that results in significant tumor hypoxia. The second goal of this study was to target the anti-VEGF induced hypoxic tumor micro-environment with an agent, tirapazamine (TPZ, which has been designed to target hypoxic regions of tumors. These goals have been successfully met, where an antibody that blocks both murine and human VEGF-A (B20.4.1.1 was found by MS 19F–MRI to produce a strong anti-vascular response and reduce viable tumor pO2 in an HM-7 xenograft model. TPZ was then employed to target the anti-VEGF-induced hypoxic region. The combination of anti-VEGF and TPZ strongly suppressed HM-7 tumor growth and was superior to control and both monotherapies. This study provides evidence that clinical trials combining anti-vascular agents with hypoxia-activated prodrugs should be considered to improved efficacy in cancer patients.

  5. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.

    Science.gov (United States)

    Devine, Raymond D; Bicer, Sabahattin; Reiser, Peter J; Wold, Loren E

    2017-06-01

    Cancer cachexia is a progressive wasting disease resulting in significant effects on the quality of life and high mortality. Most studies on cancer cachexia have focused on skeletal muscle; however, the heart is now recognized as a major site of cachexia-related effects. To elucidate possible mechanisms, a proteomic study was performed on the left ventricles of colon-26 (C26) adenocarcinoma tumor-bearing mice. The results revealed several changes in proteins involved in metabolism. An integrated pathway analysis of the results revealed a common mediator in hypoxia-inducible factor-1α (HIF-1α). Work by other laboratories has shown that extensive metabolic restructuring in the C26 mouse model causes changes in gene expression that may be affected directly by HIF-1α, such as glucose metabolic genes. M-mode echocardiography showed progressive decline in heart function by day 19 , exhibited by significantly decreased ejection fraction and fractional shortening, along with posterior wall thickness. Using Western blot analysis, we confirmed that HIF-1α is significantly upregulated in the heart, whereas there were no changes in its regulatory proteins, prolyl hydroxylase domain-containing protein 2 (PHD2) and von Hippel-Lindau protein (VHL). PHD2 requires both oxygen and iron as cofactors for the hydroxylation of HIF-1α, marking it for ubiquination via VHL and subsequent destruction by the proteasome complex. We examined venous blood gas values in the tumor-bearing mice and found significantly lower oxygen concentration compared with control animals in the third week after tumor inoculation. We also examined select skeletal muscles to determine whether they are similarly affected. In the diaphragm, extensor digitorum longus, and soleus, we found significantly increased HIF-1α in tumor-bearing mice, indicating a hypoxic response, not only in the heart, but also in skeletal muscle. These results indicate that HIF-1α may contribute, in part, to the metabolic changes

  6. Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium-porphyrin complex ATX-70.

    Science.gov (United States)

    Yumita, Nagahiko; Okuyama, Nobuo; Sasaki, Kazuaki; Umemura, Shin-Ichiro

    2007-11-01

    Sonodynamically induced antitumor effect of a gallium porphyrin complex, ATX-70 was evaluated on a chemically induced mammary tumor in Sprague-Dawley rats. The timing of 24 h after the administration of ATX-70 was chosen for ultrasonic exposure, based on pharmacokinetic analysis of ATX-70 concentrations in the tumor, plasma, skin, and muscle. At an ATX-70 dose not less than 2.5 mg/kg and at a free-field ultrasonic intensity not less than 3 W/cm(2), the synergistic effect between ATX-70 administration and ultrasonic exposure on the tumor growth inhibition was significant. These results suggest that ATX-70 is a potential sonosensitizer for sonodynamic treatment of spontaneous mammary tumors.

  7. INDOLEAMINE 2,3-DIOXYGENASE INDUCES EXPRESSION OF A NOVEL TRYPTOPHAN TRANSPORTER IN MOUSE AND HUMAN TUMOR CELLS1

    Science.gov (United States)

    Silk, Jonathan D.; Lakhal, Samira; Laynes, Robert; Vallius, Laura; Karydis, Ioannis; Marcea, Cornelius; Boyd, C. A. Richard; Cerundolo, Vincenzo

    2011-01-01

    Indoleamine 2,3 dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. As mammalian cells cannot synthesize tryptophan, it remains unclear how IDO positive tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO positive tumor cells express a novel amino acid transporter, which accounts for approximately 50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO positive tumors relative to tryptophan uptake through the low affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation. PMID:21742973

  8. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  9. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Science.gov (United States)

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  10. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice.

    Science.gov (United States)

    Jahanban-Esfahlan, Rana; Seidi, Khaled; Monhemi, Hassan; Adli, Amir Daei Farshchi; Minofar, Babak; Zare, Peyman; Farajzadeh, Davoud; Farajnia, Safar; Behzadi, Ramezan; Abbasi, Mehran Mesgari; Zarghami, Nosratollah; Javaheri, Tahereh

    2017-08-15

    Induction of thrombosis in tumor vasculature represents an appealing strategy for combating cancer. Herein, we combined unique intrinsic coagulation properties of staphylocoagulase with new acquired functional potentials introduced by genetic engineering, to generate a novel bi-functional fusion protein consisting of truncated coagulase (tCoa) bearing an RGD motif on its C-terminus for cancer therapy. We demonstrated that free coagulase failed to elicit any significant thrombotic activity. Conversely, RGD delivery of coagulase retained coagulase activity and afforded favorable interaction of fusion proteins with prothrombin and α v β 3 endothelial cell receptors, as verified by in silico, in vitro, and in vivo experiments. Although free coagulase elicited robust coagulase activity in vitro, only targeted coagulase (tCoa-RGD) was capable of producing extensive thrombosis, and subsequent infarction and massive necrosis of CT26 mouse colon, 4T1 mouse mammary and SKOV3 human ovarian tumors in mice. Additionally, systemic injections of lower doses of tCoa-RGD produced striking tumor growth inhibition of CT26, 4T1 and SKOV3 solid tumors in animals. Altogether, the nontoxic nature, unique shortcut mechanism, minimal effective dose, wide therapeutic window, efficient induction of thrombosis, local effects and susceptibility of human blood to coagulase suggest tCoa-RGD fusion proteins as a novel and promising anticancer therapy for human trials.

  11. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  12. Hyperthermically induced changes in high spectral and spatial resolution MR images of tumor tissue—a pilot study

    Science.gov (United States)

    Foxley, Sean; Fan, Xiaobing; River, Jonathan; Zamora, Marta; Markiewicz, Erica; Sokka, Shunmugavelu; Karczmar, Gregory S.

    2012-05-01

    This pilot study investigated the feasibility of using MRI based on BOLD (blood-oxygen-level-dependent) contrast to detect physiological effects of locally induced hyperthermia in a rodent tumor model. Nude mice bearing AT6.1 rodent prostate tumors inoculated in the hind leg were imaged using a 9.4 T scanner using a multi-gradient echo pulse sequence to acquire high spectral and spatial resolution (HiSS) data. Temperature increases of approximately 6 °C were produced in tumor tissue using fiber-optic-guided light from a 250 W halogen lamp. HiSS data were acquired over three slices through the tumor and leg both prior to and during heating. Water spectra were produced from these datasets for each voxel at each time point. Time-dependent changes in water resonance peak width were measured during 15 min of localized tumor heating. The results demonstrated that hyperthermia produced both significant increases and decreases in water resonance peak width. Average decreases in peak width were significantly larger in the tumor rim than in normal muscle (p = 0.04). The effect of hyperthermia in tumor was spatially heterogeneous, i.e. the standard deviation of the change in peak width was significantly larger in the tumor rim than in normal muscle (p = 0.005). Therefore, mild hyperthermia produces spatially heterogeneous changes in water peak width in both tumor and muscle. This may reflect heterogeneous effects of hyperthermia on local oxygenation. The peak width changes in tumor and muscle were significantly different, perhaps due to abnormal tumor vasculature and metabolism. Response to hyperthermia measured by MRI may be useful for identifying and/or characterizing suspicious lesions as well as guiding the development of new hyperthermia protocols.

  13. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Tumor vaccines

    International Nuclear Information System (INIS)

    Frank, M.; Ihan, A.

    2006-01-01

    Tumor vaccines have several potential advantages over standard anticancer regiments. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tumor vaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which immune tolerance exists. That is why the population of tumor-specific lymphocytes is represented by a small number of low-affinity T-lymphocytes that induce weak antitumor immune response. Simultaneously, tumors evolve many mechanisms to actively evade immune system, what makes them poorly immunogenic or even tolerogenic. Novel immunotherapeutic strategies are directed toward breaking immune tolerance to tumor antigens, enhancing immunogenicity of tumor vaccines and overcoming mechanisms of tumor escape. There are several approaches, unfortunately, all of them still far away from an ideal tumor vaccine that would reject a tumor. Difficulties in the activation of antitumor immune response by tumor vaccines have led to the development of alternative immunotherapeutic strategies that directly focus on effector mechanisms of immune system (adoptive tumor- specific T-lymphocyte transfer and tumor specific monoclonal antibodies). (author)

  15. Radiation-induced organizing pneumonia after stereotactic body radiotherapy for lung tumor

    International Nuclear Information System (INIS)

    Ochiai, Satoru; Yamashita, Yasufumi; Nomoto, Yoshihito

    2015-01-01

    The aim of this retrospective study was to investigate characteristics of organizing pneumonia (OP) after stereotactic body radiotherapy (SBRT) for lung tumor. Between September 2010 and June 2014, patients who were diagnosed as Stage I lung cancer and treated with SBRT at our institution were included in this study. A total of 78 patients (47 males with a median age of 80 years) were analyzed. The median follow-up period was 23 months. Five patients (6.4%) developed OP at 6–18 months after SBRT. The cumulative incidence of OP was 4.3% (95% confidence interval [CI], 1.1–11.0) and 8.2% (95% CI, 2.9–17.0) at 1 and 2 years, respectively. Tumor location (superior and middle lobe vs inferior lobe) was shown to be a borderline significant factor for the occurrence of OP (P = 0.069). In the subgroup analysis of patients with a radiographic follow-up period at least 6 months, or who died within 6 months after SBRT, 7 of 72 patients (9.7%) developed Grade 2 or 3 radiation pneumonitis (G2/3 RP) at 2–4 months after SBRT. A statistically significant association between G2/3 RP in the subacute phase and OP was shown (P = 0.040). In two of the five patients who developed OP, the symptoms and radiographic change were improved rapidly by corticosteroid administration. One patient had relapsed OP after suspending the treatment and re-administration was required. Three patients with minor symptoms were managed without corticosteroid administration and OP resolved without any relapse. The radiation-induced OP should be considered as one of the late lung injuries after SBRT for lung tumors. (author)

  16. Agonist-induced desensitization of adenylyl cyclase in Y1 adrenocortical tumor cells

    International Nuclear Information System (INIS)

    Olson, M.F.; Tsao, J.; Pon, D.J.; Schimmer, B.P.

    1991-01-01

    Y1 adrenocortical tumor cells (Y1DS) and Y1 mutants resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were transfected with a gene encoding the mouse beta 2-adrenergic receptor (beta 2-AR). Transfectants expressed beta 2-ARs that were able to stimulate adenylyl cyclase activity and steroid biosynthesis. These transfectants were used to explore the basis for the DR mutation in Y1 cells. The authors demonstrate that beta-adrenergic agonists desensitize the adenylyl cyclase system in transfected Y1DS cells whereas transfected Y1DR cells are resistant to desensitization by beta-adrenergic agonists. The fate of the beta 2-ARs during desensitization was evaluated by photoaffinity labelling with [125I]iodocyanopindolol diazerine. Desensitization of Y1DS transfectants was accompanied by a modest loss in receptor density that was insufficient to account for the complete loss of responsiveness to beta-adrenergic agonists. The extent of receptor loss induced by beta-adrenergic agonists in Y1DR transfectants exceeded that in the Y1DS transfectants indicating that the mutation which protects Y1DR cells from agonist-induced desensitization is prior to receptor down-regulation in the desensitization pathway. From these results we infer that ACTH and isoproterenol desensitize adenylyl cyclase by a common pathway and that receptor loss is not a major component of the desensitization process in these cells

  17. Effects of Tumor Necrosis Factor Blocker on Salicylate-Induced Tinnitus in Mice.

    Science.gov (United States)

    Hwang, Juen-Haur; Huang, David Chang-Wei; Lu, Yin-Chang; Yang, Wei-Shiung; Liu, Tien-Chen

    2017-06-01

    Neuroinflammation is considered a novel mechanism for acute tinnitus. Here, we investigated the effects of a tumor necrosis factor (TNF) blocker on the gene expression of inflammatory-cytokine in the cochlea in a tinnitus animal model. Enbrel® (30 mg/kg, intraperitoneally (i.p.)) were administrated to the mice with the salicylate induced tinnitus for 3 days. Tinnitus score and mRNA expression levels of TNFR1, TNFR2, and N-methyl-d-aspartate receptor subunit 2B (NR2B) and its downstream regulatory element antagonist modulator (DREAM) in the cochlea of mice were measured and compared to the control. The tinnitus score significantly decreased in the Enbrel® treated group. The mRNA levels of both TNFR1 and TNFR2 were significantly lower in the treatment than in the control group. The mRNA levels of NR2B and DREAM followed a similar trend. we found that treatment with 30 mg/ kg Enbrel® decreased salicylate-induced behavior associated with tinnitus and reduced the mRNA expression levels of TNFR1/R2, NR2B, and DREAM in the cochlea of mice. These findings supported the hypothesis that neuroinflammation might be a novel mechanism for salicylate-induced tinnitus.

  18. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  19. Tumor necrosis factor-α enhances IL-15-induced natural killer cell differentiation

    International Nuclear Information System (INIS)

    Lee, Jiwon; Lee, Suk Hyung; Shin, Nara; Jeong, Mira; Kim, Mi Sun; Kim, Mi Jeong; Yoon, Suk Ran; Chung, Jin Woong; Kim, Tae-Don; Choi, Inpyo

    2009-01-01

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-α (TNF-α) is a positive regulator of NK cell differentiation. TNF-α augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-α alone also induced NK cell maturation as well as IL-15. TNF-α also increased IFN-γ production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-α and IL-15. In addition, TNF-α increased nuclear factor-kappa B (NF-κB) activity in NK cells and inhibition of NF-κB impeded TNF-α-enhanced NK cell maturation. Overall, these data suggest that TNF-α significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-κB activity.

  20. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  1. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors.

    Science.gov (United States)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  2. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-01-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  3. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  4. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  6. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment.

    Science.gov (United States)

    Yu, Ya-Nan; Yu, Ta-Chung; Zhao, Hui-Jun; Sun, Tian-Tian; Chen, Hui-Min; Chen, Hao-Yan; An, Hui-Fang; Weng, Yu-Rong; Yu, Jun; Li, Min; Qin, Wen-Xin; Ma, Xiong; Shen, Nan; Hong, Jie; Fang, Jing-Yuan

    2015-10-13

    Accumulating evidence links colorectal cancer (CRC) with the intestinal microbiota. However, the disturbance of intestinal microbiota and the role of Fusobacterium nucleatum during the colorectal adenoma-carcinoma sequence have not yet been evaluated. 454 FLX pyrosequencing was used to evaluate the disturbance of intestinal microbiota during the adenoma-carcinoma sequence pathway of CRC. Intestinal microbiota and mucosa tumor-immune cytokines were detected in mice after introducing 1,2-dimethylhydrazine (DMH), F. nucleatum or Berberine (BBR), using pyrosequencing and Bio-Plex Pro™ cytokine assays, respectively. Protein expressions were detected by western blotting. The levels of opportunistic pathogens, such as Fusobacterium, Streptococcus and Enterococcus spp. gradually increased during the colorectal adenoma-carcinoma sequence in human fecal and mucosal samples. F. nucleatum treatment significantly altered lumen microbial structures, with increased Tenericutes and Verrucomicrobia (opportunistic pathogens) (P nucleatum-mediated increase in opportunistic pathogens, and the secretion of IL-21/22/31, CD40L and the expression of p-STAT3, p-STAT5 and p-ERK1/2 in mice, compared with mice fed with F. nucleatum alone. F. nucleatum colonization in the intestine may prompt colorectal tumorigenesis. BBR could rescue F. nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment and blocking the activation of tumorigenesis-related pathways.

  7. Tumor-induced osteomalacia: the importance of measuring serum phosphorus levels.

    Science.gov (United States)

    Halperin, Florencia; Anderson, Ronald J; Mulder, Jean E

    2007-10-01

    A previously healthy 32-year-old man presented with pain in his chest, ankle, and hip. His musculoskeletal pain progressed over the course of 6 months to the point of difficulty with ambulation. Radiographic studies included chest and ankle X-rays, multiple bone scans, and foot and pelvic MRI. Laboratory evaluation comprised a serum chemistry panel (including electrolyte levels, renal function tests and liver function tests), and measuring serum levels of phosphorus, parathyroid hormone, vitamin D, alkaline phosphatase, and fibroblast growth factor 23, as well as urine levels of calcium and phosphorus. Tumor-induced osteomalacia. The patient received phosphate and vitamin D supplementation in the form of potassium-phosphorus (500 mg, three times daily) and calcitriol (0.5 microg, three times daily). Six months after his first presentation, he underwent surgical resection of a rib mass, with subsequent normalization of phosphorus concentration.

  8. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  9. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors.

    Science.gov (United States)

    Floris, Giuseppe; Debiec-Rychter, Maria; Wozniak, Agnieszka; Stefan, Cristiana; Normant, Emmanuel; Faa, Gavino; Machiels, Kathleen; Vanleeuw, Ulla; Sciot, Raf; Schöffski, Patrick

    2011-10-01

    The activity of the receptor tyrosine kinase KIT is crucial for gastrointestinal stromal tumor (GIST) growth and survival. Imatinib and sunitinib are very effective in advanced GIST, but have no curative potential. The observation that heat shock protein 90 (HSP90) inhibition results in KIT degradation prompted us to assess the efficacy of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) alone or in combination with imatinib or sunitinib in two GIST xenografts with distinctive KIT mutations. Nude mice were grafted with human GIST carrying KIT exon 13 (GIST-882; n = 59) or exon 11 (GIST-PSW; n = 44) mutations and dosed with imatinib (50 mg/kg twice daily), sunitinib (40 mg/kg once daily), IPI-504 (100 mg/kg 3 times per week), IPI-504 + imatinib, or IPI-504 + sunitinib. We evaluated tumor volume, proliferation and apoptosis, KIT expression and activation, as well as adverse events during treatment. Treatment with IPI-504 alone resulted in tumor regression, proliferation arrest, and induction of tumor necrosis. We documented downregulation of KIT and its signaling cascade in IPI-504-treated animals. Treatment effects were enhanced by combining IPI-504 with imatinib or sunitinib. On histologic examination, liver damage was frequently observed in animals exposed to combination treatments. In conclusion, IPI-504 shows consistent antitumor activity and induces KIT downregulation in GIST, as a single agent, and is more potent in combination with imatinib or sunitinib. The sequence of drug administration in the combination arms warrants further studies.

  10. RhoB promotes cancer initiation by protecting keratinocytes from UVB-induced apoptosis but limits tumor aggressiveness.

    Science.gov (United States)

    Meyer, Nicolas; Peyret-Lacombe, Alexis; Canguilhem, Bruno; Médale-Giamarchi, Claire; Mamouni, Kenza; Cristini, Agnese; Monferran, Sylvie; Lamant, Laurence; Filleron, Thomas; Pradines, Anne; Sordet, Olivier; Favre, Gilles

    2014-01-01

    The role of UVB-induced apoptosis in the formation of squamous cell carcinoma (SCC) is recognized. We previously identified the small RhoB (Ras homolog gene family, member B) GTPase, an early response gene to cellular stress, as a critical protein controlling apoptosis of human keratinocytes after UVB exposure. Here we generated SKH1 (hairless immunocompetent mouse) mice invalidated for RhoB to evaluate its role in UVB-induced skin carcinogenesis in vivo. We show that rhob-/- mice have a lower risk of developing UVB-induced keratotic tumors and actinic keratosis that is associated with a higher sensitivity of UVB-exposed keratinocytes to apoptosis. We extend this observation to primary cultures of normal human keratinocytes in which RhoB was downregulated with small interfering RNA (siRNA) and further show that the hypersensitivity to apoptosis depends on B-cell lymphoma 2 (Bcl-2) downregulation. In rhob-/- mice, the UVB-induced tumors were preferentially undifferentiated and highly proliferative. Finally, we show in humans an almost constant loss of RhoB expression in undifferentiated SCCs. These undifferentiated and RhoB-deficient tumors have elevated phosphorylated histone H2AX (γH2AX) and 53BP1, two markers of DNA double-strand breaks. Together, our results indicate that UVB-induced RhoB expression participates in in vivo SCC initiation by increasing keratinocyte survival. Conversely, RhoB may limit tumor aggressiveness as loss of RhoB expression in tumor cells is associated with tumor progression.

  11. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    Directory of Open Access Journals (Sweden)

    Tao Yan-Fang

    2012-12-01

    Full Text Available Abstract Background Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. Methods SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3 compared to DMSO group (DMSO: 3.70 ± 2.4 cm3 or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P Conclusions The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.

  12. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota.

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-10-01

    DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.

  13. UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-01-01

    DNA polymerase η (Pol η) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol η is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh−/− mice has not been examined until very recently. Another translesion synthesis polymerase, Pol ι, a Pol η paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol ι is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol ι deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol ι deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh−/− mice. These results suggest the involvement of the Pol η and Pol ι proteins in UV-induced skin carcinogenesis. PMID:17015482

  14. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    Science.gov (United States)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-01-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers. PMID:27256519

  15. δ-Tocotrienol Oxazine Derivative Antagonizes Mammary Tumor Cell Compensatory Response to CoCl2-Induced Hypoxia

    Directory of Open Access Journals (Sweden)

    Suryatheja Ananthula

    2014-01-01

    Full Text Available In response to low oxygen supply, cancer cells elevate production of HIF-1α, a hypoxia-inducible transcription factor that subsequently acts to stimulate blood vessel formation and promote survival. Studies were conducted to determine the role of δ-tocotrienol and a semisynthetic δ-tocotrienol oxazine derivative, compound 44, on +SA mammary tumor cell hypoxic response. Treatment with 150 µM CoCl2 induced a hypoxic response in +SA mammary tumor cells as evidenced by a large increase in HIF-1α levels, and combined treatment with compound 44 attenuated this response. CoCl2-induced hypoxia was also associated with a large increase in Akt/mTOR signaling, activation of downstream targets p70S6K and eIF-4E1, and a significant increase in VEGF production, and combined treatment with compound 44 blocked this response. Additional in vivo studies showed that intralesional treatment with compound 44 in BALB/c mice bearing +SA mammary tumors significantly decreased the levels of HIF-1α, and this effect was associated with a corresponding decrease in Akt/mTOR signaling and activation of downstream targets p70S6kinase and eIF-4E1. These findings demonstrate that treatment with the δ-tocotrienol oxazine derivative, compound 44, significantly attenuates +SA mammary tumor cell compensatory responses to hypoxia and suggests that this compound may provide benefit in the treatment of rapidly growing solid breast tumors.

  16. Activation of Apoptotic Signal in Endothelial Cells through Intracellular Signaling Molecules Blockade in Tumor-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Hossein Bazmara

    2015-01-01

    Full Text Available Tumor-induced angiogenesis is the bridge between avascular and vascular tumor growth phases. In tumor-induced angiogenesis, endothelial cells start to migrate and proliferate toward the tumor and build new capillaries toward the tumor. There are two stages for sprout extension during angiogenesis. The first stage is prior to anastomosis, when single sprouts extend. The second stage is after anastomosis when closed flow pathways or loops are formed and blood flows in the closed loops. Prior to anastomosis, biochemical and biomechanical signals from extracellular matrix regulate endothelial cell phenotype; however, after anastomosis, blood flow is the main regulator of endothelial cell phenotype. In this study, the critical signaling pathways of each stage are introduced. A Boolean network model is used to map environmental and flow induced signals to endothelial cell phenotype (proliferation, migration, apoptosis, and lumen formation. Using the Boolean network model, blockade of intracellular signaling molecules of endothelial cell is investigated prior to and after anastomosis and the cell fate is obtained in each case. Activation of apoptotic signal in endothelial cell can prevent the extension of new vessels and may inhibit angiogenesis. It is shown that blockade of a few signaling molecules in endothelial cell activates apoptotic signal that are proposed as antiangiogenic strategies.

  17. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  18. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  19. Involvement of FLIP in 2-methoxyestradiol-induced tumor regression in transgenic adenocarcinoma of mouse prostate model.

    Science.gov (United States)

    Ganapathy, Manonmani; Ghosh, Rita; Jianping, Xie; Zhang, Xiaoping; Bedolla, Roble; Schoolfield, John; Yeh, I-Tien; Troyer, Dean A; Olumi, Aria F; Kumar, Addanki P

    2009-03-01

    The purpose of this study is to investigate whether Fas-associated death domain interleukin-1 converting enzyme like inhibitory protein (FLIP) inhibition is a therapeutic target associated with 2-methoxyestradiol (2-ME2)-mediated tumor regression. Expression and levels of FLIP were analyzed using (a) real-time PCR and immunoblot analysis in androgen-independent PC-3 cells treated with the newly formulated 2-ME2 and (b) immunohistochemistry in different Gleason pattern human prostate tumors. Transient transfections and chromatin immunoprecipitation (ChIP) assays were used to identify the transcription factors that regulate FLIP. Involvement of FLIP in 2-ME2-induced tumor regression was evaluated in transgenic adenocarcinoma mouse prostate (TRAMP) mice. High Gleason pattern (5+5) human prostate tumors exhibit significant increase in FLIP compared with low Gleason pattern 3+3 (P=ormanagement.

  20. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system

    Directory of Open Access Journals (Sweden)

    Oh KS

    2014-06-01

    Full Text Available Keun Sang Oh,1 Ji Young Yhee,2 Dong-Eun Lee,3 Kwangmeyung Kim,2 Ick Chan Kwon,2 Jae Hong Seo,4 Sang Yoon Kim,5 Soon Hong Yuk1,4 1College of Pharmacy, Korea University, Sejong, 2Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 3Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk, 4Biomedical Research Center, Korea University Guro Hospital, Seoul, 5Department of Otolaryngology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea Abstract: Primary tumor and tumor-associated metastatic lymphatics have emerged as new targets for anticancer therapy, given that these are difficult to treat using traditional chemotherapy. In this study, docetaxel-loaded Pluronic nanoparticles with Flamma™ (FPR-675, fluorescence molecular imaging dye; DTX/FPR-675 Pluronic NPs were prepared using a temperature-induced phase transition for accurate detection of metastatic lymphatics. Significant accumulation was seen at the primary tumor and in metastatic lymph nodes within a short time. Particle size, maximum drug loading capacity, and drug encapsulation efficiency of the docetaxel-loaded Pluronic NPs were approximately 10.34±4.28 nm, 3.84 wt%, and 94±2.67 wt%, respectively. Lymphatic tracking after local and systemic delivery showed that DTX/FPR-675 Pluronic NPs were more potent in tumor-bearing mice than in normal mice, and excised mouse lymphatics showed stronger near-infrared fluorescence intensity on the tumor-bearing side than on the non-tumor-bearing side at 60 minutes post-injection. In vivo cytotoxicity and efficacy data for the NPs demonstrated that the systemically administered NPs caused little tissue damage and had minimal side effects in terms of slow renal excretion and prolonged circulation in tumor-bearing mice, and rapid renal excretion in non-tumor-bearing mice using an in vivo real-time near-infrared fluorescence imaging system. These results

  1. Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non-Self-Tumor Antigens

    DEFF Research Database (Denmark)

    Pedersen, Sara R; Sørensen, Maria R; Buus, Søren

    2013-01-01

    It is generally accepted that CD8 T cells play a major role in tumor control, yet vaccination aimed at eliciting potent CD8 T cell responses are rarely efficient in clinical trials. To try and understand why this is so, we have generated potent adenoviral vectors encoding the endogenous tumor Ags...... (TA) tyrosinase-related protein-2 (TRP-2) and glycoprotein 100 (GP100) tethered to the invariant chain (Ii). Using these vectors, we sought to characterize the self-TA-specific CD8 T cell response and compare it to that induced against non-self-Ags expressed from a similar vector platform...... construct expressing a foreign (viral) TA induced efficient tumor control. Analyzing the self-TA-specific CD8 T cells, we observed that these could be activated to produce IFN-γ and TNF-α. In addition, surface expression of phenotypic markers and inhibitory receptors, as well as in vivo cytotoxicity...

  2. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  3. Bone tumors induced by inhalation of 238PuO2 in dogs

    International Nuclear Information System (INIS)

    Park, J.F.; Lund, J.E.; Ragan, H.A.; Hackett, P.L.; Frazier, M.E.

    1976-01-01

    Plutonium-238, an alpha-emitting radionuclide, is used as a heat source in thermoelectric power generators such as have been employed on lunar expeditions of communications satellites and in cardiac pacemakers. It has an 86.4 year half-life and emits 5.5 MeV alpha particles. Beagle dogs were given single 10 to 30 minute exposures to 238 PuO 2 aerosols to study the long-term translocation of plutonium and biologicl effects. Dogs with a terminal body burden ranging from 7 to 260 MuCi were euthanized due to respiratory insufficiency related to plutonium-induced pneumonitis during the first 3 years after exposure. Nine of the 11 dogs euthanized during the 4 to 6 year postexposure period had osteosarcomas. The terminal plutonium body burden in the tumor-bearing dogs ranged from 0.5 to 2.6 muCi with 30 to 55 percent of the plutonium in the skeleton. Experiments are in progress to further define the dose-effect relationship of inhaled 238 PuO 2 and investigate the mechanisms of plutonium-induced neoplasia

  4. Insulin Induces Phosphorylation of Serine Residues of Translationally Controlled Tumor Protein in 293T Cells

    Directory of Open Access Journals (Sweden)

    Jeehye Maeng

    2015-04-01

    Full Text Available Insulin induces the activation of Na,K-ATPase while translationally controlled tumor protein (TCTP inhibits this enzyme and the associated pump activity. Because binding of insulin with its membrane receptor is known to mediate the phosphorylation of multiple intracellular proteins, phosphorylation of TCTP by insulin might be related to the sodium pump regulation. We therefore examined whether insulin induces TCTP phosphorylation in embryonic kidney 293T cells. Using immunoprecipitation and Western blotting, we found that insulin phosphorylates serine (Ser residues of TCTP. Following fractionation of the insulin-treated cells into cytosol and membrane fractions, phosphorylated TCTP at its Ser residue (p-Ser-TCTP was detected exclusively in the cytosolic part and not in the membrane fraction. Phosphorylation of TCTP reached maximum in about 10 min after insulin treatment in 293T cells. In studies of cell-type specificity of insulin-mediated phosphorylation of TCTP, insulin did not phosphorylate TCTP in HeLa cells. Computational prediction and immunoprecipitation using several constructs having Ser to Ala mutation at potential p-Ser sites of TCTP revealed that insulin phosphorylated the serine-9 and -15 residues of TCTP. Elucidations of how insulin-mediated TCTP phosphorylation promotes Na,K-ATPase activation, may offer potential therapeutic approaches to diseases associated with vascular activity and sodium pump dysregulation.

  5. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  6. Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells

    Directory of Open Access Journals (Sweden)

    Denise eBecker

    2013-12-01

    Full Text Available Neurons which lose part of their input respond with a compensatory increase in excitatory synaptic strength. This observation is of particular interest in the context of neurological diseases, which are accompanied by the loss of neurons and subsequent denervation of connected brain regions. However, while the cellular and molecular mechanisms of pharmacologically induced homeostatic synaptic plasticity have been identified to a certain degree, denervation-induced homeostatic synaptic plasticity remains not well understood. Here, we employed the entorhinal denervation in vitro model to study the role of tumor necrosis factor alpha (TNFα on changes in excitatory synaptic strength of mouse dentate granule cells following partial deafferentation. Our experiments disclose that TNFα is required for the maintenance of a compensatory increase in excitatory synaptic strength at 3/4 days postlesion (dpl, but not for the induction of synaptic scaling at 1 - 2 dpl. Furthermore, laser capture microdissection (LMD combined with quantitative PCR (qPCR demonstrates an increase in TNFα-mRNA levels in the denervated zone, which is consistent with our previous finding on a local, i.e., layer-specific increase in excitatory synaptic strength at 3 - 4 dpl. Immunostainings for the glial fibrillary acidic protein (GFAP and TNFα suggest that astrocytes are a source of TNFα in our experimental setting. We conclude that TNFα-signaling is a major regulatory system that aims at maintaining the homeostatic synaptic response of denervated neurons.

  7. Early onset imatinib mesylate-induced hepatotoxicity in a patient with gastrointestinal stromal tumors.

    Science.gov (United States)

    Yachoui, Ralph

    2014-01-01

    Imatinib mesylate is used for the treatment of patients with Philadelphia chromosome-positive chronic myeloid leukemia and gastrointestinal stromal tumors (GISTs). It has been associated with severe hepatotoxicity, which may lead to liver failure and death. Few cases of imatinib mesylate-induced liver failure have been reported; most of them were observed in patients treated for chronic myeloid leukemia. To date, 2 cases were reported in patients treated for GISTs. Elevation of liver function tests is usually observed during the first 2-3 months after the initiation of therapy. We report a 46-year-old woman with advanced GISTs who developed hepatotoxicity 11 days after the initiation of imatinib therapy. Before therapy with imatinib, her liver function tests were normal. She had no known risk factors for viral or alcoholic liver disease. Imatinib was her only regular medication, and she had not used acetaminophen or over-the-counter medications. Her serologic studies for hepatitis were all negative. One week after imatinib discontinuation, liver function tests improved significantly. The present report confirms the possibility of early onset imatinib mesylate-induced liver failure in patients treated for GISTs. Surveillance of liver function tests should start early after the initiation of treatment and during all the duration of therapy.

  8. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  9. Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Irina V Pinchuk

    Full Text Available Gastric cancer is associated with chronic inflammation and Helicobacter pylori infection. Th17 cells are CD4(+ T cells associated with infections and inflammation; but their role and mechanism of induction during carcinogenesis is not understood. Gastric myofibroblasts/fibroblasts (GMF are abundant class II MHC expressing cells that act as novel antigen presenting cells. Here we have demonstrated the accumulation of Th17 in H. pylori-infected human tissues and in the gastric tumor microenvironment. GMF isolated from human gastric cancer and H. pylori infected tissues co-cultured with CD4(+ T cells induced substantially higher levels of Th17 than GMF from normal tissues in an IL-6, TGF-β, and IL-21 dependent manner. Th17 required interaction with class II MHC on GMF for activation and proliferation. These studies suggest that Th17 are induced during both H. pylori infection and gastric cancer in the inflammatory milieu of gastric stroma and may be an important link between inflammation and carcinogenesis.

  10. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance

  11. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    NARCIS (Netherlands)

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with

  12. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    NARCIS (Netherlands)

    Boudewijns, S; Bol, K.F.; Schreibelt, G.; Westdorp, H.; Textor, J.C.; Rossum, M.M. van; Scharenborg, N.M.; Boer, A.J. de; Rakt, M.W.M.M. van de; Pots, J.M.; Oorschot, T.G.M. van; Boer, T. de; Nordkamp, M.A. Olde; Meeteren, W.S. van; Graaf, W.T.A. van der; Bonenkamp, J.J.; Wilt, J.H.W. de; Aarntzen, E.H.J.G.; Punt, C.J.A.; Gerritsen, W.R.; Figdor, C.G.; Vries, I.J.M. de

    2016-01-01

    PURPOSE: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. EXPERIMENTAL DESIGN: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with

  13. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography

    NARCIS (Netherlands)

    Jin, Peng; Hulshof, Maarten C. C. M.; de Jong, Rianne; van Hooft, Jeanin E.; Bel, Arjan; Alderliesten, Tanja

    2016-01-01

    Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided

  14. Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1994-01-01

    To determine the kinetics of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in serum and aqueous humor of rats with different susceptibilities to endotoxin-induced uveitis (EIU), after footpad injection of lipopolysaccharide (LPS). Samples were collected from EIU-susceptible Lewis rats and

  15. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  16. Impacts of autophagy-inducing ingredient of areca nut on tumor cells.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    Full Text Available Areca nut (AN is a popular carcinogen used by about 0.6-1.2 billion people worldwide. Although AN contains apoptosis-inducing ingredients, we previously demonstrated that both AN extract (ANE and its 30-100 kDa fraction (ANE 30-100K predominantly induce autophagic cell death in both normal and malignant cells. In this study, we further explored the action mechanism of ANE 30-100K-induced autophagy (AIA in Jurkat T lymphocytes and carcinoma cell lines including OECM-1 (mouth, CE81T/VGH (esophagus, SCC25 (tongue, and SCC-15 (tongue. The results showed that chemical- and small hairpin RNA (shRNA-mediated inhibition of AMP-activated protein kinase (AMPK resulted in the attenuation of AIA in Jurkat T but not in OECM-1 cells. Knockdown of Atg5 and Beclin 1 expressions ameliorated AIA in OECM-1/CE81T/VGH/Jurkat T and OECM-1/SCC25/SCC-15, respectively. Furthermore, ANE 30-100K could activate caspase-3 after inhibition of Beclin 1 expression in OECM-1/SCC25/SCC15 cells. Meanwhile, AMPK was demonstrated to be the upstream activator of the extracellular-regulated kinase (ERK in Jurkat T cells, and inhibition of MEK attenuated AIA in Jurkat T/OECM-1/CE81T/VGH cells. Finally, we also found that multiple myeloma RPMI8226, lymphoma U937, and SCC15 cells survived from long-term non-cytotoxic ANE 30-100K treatment exhibited stronger resistance against serum deprivation through upregulated autophagy. Collectively, our studies indicate that Beclin-1 and Atg5 but not AMPK are commonly required for AIA, and MEK/ERK pathway is involved in AIA. Meanwhile, it is also suggested that long-term AN usage might increase the resistance of survived tumor cells against serum-limited conditions.

  17. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  18. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Wu, Dong; Wang, Na; Feng, Xing; Li, Yan-Hong; Ni, Jian; Wang, Jian; Pan, Jian; Lu, Jun; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Xuan; Peng, Liang; Cao, Lan; Xiao, Pei-Fang; Pang, Li

    2012-01-01

    Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm 3 ; YM155 10 mg/kg: 0.95 ± 0.55 cm 3 ) compared to DMSO group (DMSO: 3.70 ± 2.4 cm 3 ) or PBS group cells (PBS: 3.78 ± 2.20 cm 3 , ANOVA P < 0.01). YM155 treatment decreased weight of tumors (YM155 5 mg/kg: 1.05 ± 0.24 g; YM155 10 mg/kg: 0.72 ± 0.17 g) compared to DMSO group (DMSO: 2.06 ± 0.38 g) or PBS group cells (PBS: 2.36 ± 0.43 g, ANOVA P < 0.01). Real-time PCR array analysis showed between Test group and control group there are 32 genes significantly up-regulated and 54 genes were significantly down-regulated after YM155 treatment. Ingenuity pathway analysis (IPA) showed cell death was the highest rated network with 65 focus molecules and the significance score of 44. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to cell

  19. Calorie restriction reduces the incidence of radiation-induced myeloid leukemia and spontaneous tumor

    International Nuclear Information System (INIS)

    Yoshida, Kazuko

    1999-01-01

    The host-defense mechanisms against cancers are known to be modulated by changing the environmental factor(s). The spontaneous incidence of myeloid leukemia is about 1% in C3H/He mice, and the incidence increases up to 23.3% when a single dose of radiation, 3 Gy X-ray, is exposed to a whole-body. Since calorie restriction was known to reduce the incidence of spontaneous tumors, a question as to whether such radiation induced-increase of myeloid leukemia would be also decreased by calorie restriction, was aimed to answer to elucidate possible mechanism of radiation-induced myeloid leukemia. By the calorie restriction, the incidence of myeloid leukemia was significantly decreased; it was reduced to 7.9% and 10.7% when restriction was started before (6 weeks old) and after (10 weeks old) irradiation, respectively. In addition, the latent period of the myeloid leukemia in the groups for calorie restriction was significantly extended at a greater extent as compared with the control diet groups. Number of hematopoietic stem cells, the possible target cells for radiation-induced leukemias, in the groups for the calorie restriction demonstrated a significant decrease, especially in the spleen, as compared with that in the control, when the evaluation was made at the time of radiation exposure. Then, we examined whether the decreased number of target cells at the time of exposure is caused by the reduction of radiation-induced myeloid leukemia with caloric restriction. The third restricted groups were fed 65 kcal diet (restricted diet) for the first 4 weeks i.e. from 6 weeks to 10 weeks old, then, the mice were fed with control diet after radiation. The incidence of myeloid leukemia in this group was slightly decreased but did not show statistically significance. Therefore, the caloric restriction seems to be more effective in the promotion stage than the initiation stage on radiation-induced leukemogenesis. It is well known that C3H/He mice develop hepatoma spontaneously

  20. Calorie restriction reduces the incidence of radiation-induced myeloid leukemia and spontaneous tumor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuko [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-06-01

    The host-defense mechanisms against cancers are known to be modulated by changing the environmental factor(s). The spontaneous incidence of myeloid leukemia is about 1% in C3H/He mice, and the incidence increases up to 23.3% when a single dose of radiation, 3 Gy X-ray, is exposed to a whole-body. Since calorie restriction was known to reduce the incidence of spontaneous tumors, a question as to whether such radiation induced-increase of myeloid leukemia would be also decreased by calorie restriction, was aimed to answer to elucidate possible mechanism of radiation-induced myeloid leukemia. By the calorie restriction, the incidence of myeloid leukemia was significantly decreased; it was reduced to 7.9% and 10.7% when restriction was started before (6 weeks old) and after (10 weeks old) irradiation, respectively. In addition, the latent period of the myeloid leukemia in the groups for calorie restriction was significantly extended at a greater extent as compared with the control diet groups. Number of hematopoietic stem cells, the possible target cells for radiation-induced leukemias, in the groups for the calorie restriction demonstrated a significant decrease, especially in the spleen, as compared with that in the control, when the evaluation was made at the time of radiation exposure. Then, we examined whether the decreased number of target cells at the time of exposure is caused by the reduction of radiation-induced myeloid leukemia with caloric restriction. The third restricted groups were fed 65 kcal diet (restricted diet) for the first 4 weeks i.e. from 6 weeks to 10 weeks old, then, the mice were fed with control diet after radiation. The incidence of myeloid leukemia in this group was slightly decreased but did not show statistically significance. Therefore, the caloric restriction seems to be more effective in the promotion stage than the initiation stage on radiation-induced leukemogenesis. It is well known that C3H/He mice develop hepatoma spontaneously

  1. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  2. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J.

    1995-01-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 INK4a tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized

  3. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  4. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  5. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-12-01

    Full Text Available Tumor-associated macrophages (TAMs promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA blocks occurrence of tumor associated macrophages (TAMs in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA, a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80+ macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206+ TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  6. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors.

    Science.gov (United States)

    Notas, George; Pelekanou, Vassiliki; Kampa, Marilena; Alexakis, Konstantinos; Sfakianakis, Stelios; Laliotis, Aggelos; Askoxilakis, John; Tsentelierou, Eleftheria; Tzardi, Maria; Tsapis, Andreas; Castanas, Elias

    2015-11-01

    Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ∼50% of ERα-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ERα-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ERα-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ERα-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ERα-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH

  7. Rapid tumor necrosis and massive hemorrhage induced by bevacizumab and paclitaxel combination therapy in a case of advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Ono M

    2013-10-01

    Full Text Available Mayu Ono, Tokiko Ito, Toshiharu Kanai, Koichi Murayama, Hiroshi Koyama, Kazuma Maeno, Yasuhiro Mochizuki, Asumi Iesato, Toru Hanamura, Toshihiro Okada, Takayuki Watanabe, Ken-ichi ItoDivision of Breast and Endocrine Surgery, Department of Surgery (II, Shinshu University School of Medicine, Matsumoto, JapanAbstract: Bevacizumab when combined with chemotherapy exerts significant activity against many solid tumors through tumor angiogenesis inhibition; however, it can induce severe side effects. We report the rare case of a 27-year-old premenopausal woman with locally advanced breast cancer that was marked by rapid tumor necrosis followed by massive hemorrhage shortly after bevacizumab and paclitaxel administration. On the basis of histopathological examination of a biopsy specimen and computed tomography findings, she was diagnosed with stage IV estrogen and progesterone receptor-negative and human epidermal growth factor receptor type 2-positive breast cancer with multiple organ metastases when she had entered gestational week 24. Cyclophosphamide, Adriamycin®, fluorouracil therapy was initiated, but multiple liver metastases continued to progress. A healthy fetus was delivered by induced delivery and trastuzumab-based treatment was initiated. Although the multiple liver metastases were controlled successfully by trastuzumab combined with paclitaxel, the primary tumor continued to expand even after subsequent administration of three other treatment regimens including anti-human epidermal growth factor receptor type 2 agents and cytotoxic drugs. To inhibit primary tumor growth, a combination therapy with paclitaxel and bevacizumab was subsequently initiated. Following therapy initiation, however, the large tumor occupying the patient's entire left breast became necrotic and ulcerated rapidly. Furthermore, massive hemorrhage from the tumor occurred 5 weeks after bevacizumab-based therapy initiation. Although hemostasis was achieved by manual

  8. Cimetidine inhibits salivary gland tumor cell adhesion to neural cells and induces apoptosis by blocking NCAM expression

    Directory of Open Access Journals (Sweden)

    Sakashita Hideaki

    2008-12-01

    Full Text Available Abstract Background Cimetidine, a histamine type-2 receptor antagonist, has been reported to inhibit the growth of glandular tumors such as colorectal cancer, however the mechanism of action underlying this effect is unknown. Adenoid cystic carcinoma is well known as a malignant salivary gland tumor which preferentially invades neural tissues. We demonstrated previously that human salivary gland tumor (HSG cells spontaneously express neural cell adhesion molecule (NCAM, that HSG cell proliferation may be controlled via a homophilic (NCAM-NCAM binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. We further demonstrated that cimetidine inhibited NCAM expression and induced apoptosis in HSG cells. Here, we investigated the effects of cimetidine on growth and perineural/neural invasion of salivary gland tumor cells. Methods In this study, we have examined the effect of cimetidine on cancer cell adhesion to neural cells in vitro, one of the critical steps of cancer invasion and metastasis. We have also used an in vivo carcinogenesis model to confirm the effect of cimetidine. Results We have demonstrated for the first time that cimetidine can block the adhesion of HSG cells to neural cell monolayers and that it can also induce significant apoptosis in the tumor mass in a nude mouse model. We also demonstrated that these apoptotic effects of cimetidine might occur through down-regulation of the cell surface expression of NCAM on HSG cells. Cimetidine-mediated down-regulation of NCAM involved suppression of the nuclear translocation of NF-κB, a transcriptional activator of NCAM gene expression. Conclusion These findings suggest that growth and perineural/neural invasion of salivary gland tumors can be blocked by administration of cimetidine via induction of apoptosis and in which NCAM plays a role.

  9. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  10. Participation of the NO/cGMP/K+ATP pathway in the antinociception induced by Walker tumor bearing in rats

    International Nuclear Information System (INIS)

    Barbosa, A.L.R.; Pinheiro, C.A.; Oliveira, G.J.; Torres, J.N.L.; Moraes, M.O.; Ribeiro, R.A.; Vale, M.L.; Souza, M.H.L.P.

    2012-01-01

    Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K + ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K + ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E 2 - (PGE 2 , 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE 2 ) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE 2 ) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE 2 ; 8 µg/paw) and the ATP-sensitive K + channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE 2 ; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels

  11. Epithelioid trophoblastic tumor after induced abortion with previous broad choriocarcinoma: a case report and review of literature.

    Science.gov (United States)

    Zhang, Xiaofei; Shi, Haiyan; Chen, Xiaoduan

    2014-01-01

    Epithelioid trophoblastic tumor (ETT) is a rare trophoblastic tumor originating from chorionic-type intermediate trophoblasts (ITs). It is usually associated with a prior gestational event. We present a 44-year-old woman who had unusual pregnancy related history. The patient received her second spontaneous abortion at the age of 25 years and had suffered from choriocarcinoma in left board ligament at the age of 29 years. She admitted no more treatment after 3 courses of multiagent chemotherapy when serum β-hCG returned to normal. Then she had Full-term delivery, induced abortion at the ages of 32, 33 years. The patient had high serum levels of beta-human chorionic gonadotropin (6587 IU/L). Microscopically, the tumor was composed of mainly mononuclear tumor cells, grew in cords, nests, and sheets within which were aggregates of hyaline material. Most were with distinct cell borders, eosinophilic cytoplasm. Immunohistochemical staining revealed strong diffuse reactivity for cytokeratins (AE1/AE3, CK18), P63, focal reactivity for beta-human chorionic gonadotropin, human placental lactogen, and inhibin-alpha. The Ki-67 index was 77%. The histological and immunohistochemical features were characteristic of epithelioid trophoblastic tumor. This is the first reported case of these two gestational trophoblastic tumor happened on one person with the intervening normal pregnancy.

  12. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficacy and biological effects of techniques used to induce hypoxia in tumors

    International Nuclear Information System (INIS)

    Rockwell, S.; Moulder, J.E.; Martin, D.F.

    1985-01-01

    The authors tested several aspects of the assumptions using BA1112 rat rhabdomyosacromas and EMT6 mouse mammary tumors. Both techniques were effective in producing hypoxia: survival curves for tumors made hypoxic by the 2 techniques were the same, and were indistinguishable from survival curves for hypoxic tumor cells in vitro. Induction of hypoxia for the 30-60 min necessary for irradiation did not alter the yield or clonogenicity of cells suspended from the tumors. Longer clamping was cytotoxic. Clamping did not alter tumor growth unless a major blood vessel was injured. However, clamping BA1112 tumors for 30 min and removing the clamp just before irradiation altered the tumor cell survival curve and TCD/sub 50/. Anesthesia or restrain, often used during clamping, can have major effects

  14. Pharmacokinetics of endogenous porphyrins induced by 5-aminolevulinic acid as observed by means of laser-induced fluorescence from several organs of tumor-bearing mice

    Science.gov (United States)

    Sroka, Ronald; Baumgartner, Reinhold; Beyer, Wolfgang; Gossner, Liebwin; Sassy, T.; Stocker, Susanne

    1995-04-01

    Photodynamic therapy (PDT) and photodynamic diagnosis (PDD) add support to efficient treatment modalities of superficial and early stage cancer. Recently 5-aminolevulinic acid (5-ALA), a precursor of hemoglobin in the hem biosynthetic pathway, was used to stimulate endogenous porphyrin production. The time dependency of 5-ALA induced porphyrin fluorescence has been investigated on several normal tissues as well as on a tumor in an in-vivo tumor model (human gastrointestinal adenocarcinoma Grade II, UICC IIa). 5-ALA has been administered intravenously at a concentration of 50 mg/(kg bw). With respect to a certain time schedule the animals were sacrificed and 12 different organs as well as the tumor were removed. Using laser-induced fluorescence techniques the emission spectra in the range of (lambda) equals (550-750) nm were detected from the tissues after excitation with light of the wavelength (lambda) equals (411 +/- 4) nm. For quantitative evaluation the integral fluorescence intensity at (lambda) equals (635 +/- 2) nm of the porphyrin specific spectra has been determined. All tissues showed porphyrin fluorescence, while brightest fluorescence has been detected from the tumor. With respect to the other tissues the relative tumor selectivity showed a maximum ratio at 406 h post injection. The kinetics of the porphyrin fluorescence intensity of the organs follow different time dependencies. Simple mathematical pharmacokinetic models are developed and discussed.

  15. Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient

    Directory of Open Access Journals (Sweden)

    Yamin Zhang

    2017-12-01

    Full Text Available Skin fibroblasts and tumor fibroblasts were extracted from a 64-year old male patient clinically diagnosed with laryngeal carcinoma. Control and tumor specific induced pluripotent stem cells were reprogrammed with 5 reprogramming factors, Klf-4, c-Myc, Oct-4, Sox-2, and Lin-28, using the messenger RNA reprogramming system. The transgene-free iPSC lines showed pluripotency, confirmed by immunofluorescence staining. The iPSC lines also showed normal karyotype, and could form embryoid bodies in vitro and differentiate into the 3 germ layers in vivo. This in vitro cellular model can be used to study the oncogenesis and pathogenesis of laryngeal carcinoma.

  16. Imaging-guided synergetic therapy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules.

    Science.gov (United States)

    Tang, Shunsong; Fu, Changhui; Tan, Longfei; Liu, Tianlong; Mao, Jingsong; Ren, Xiangling; Su, Hongying; Long, Dan; Chai, Qianqian; Huang, Zhongbing; Chen, Xudong; Wang, Jingzhuo; Ren, Jun; Meng, Xianwei

    2017-07-01

    It is an ambitious target to improve overall Hepatocellular Carcinoma therapeutic effects. Recently, MW ablation has emerged as a powerful thermal ablation technique, affording favorable survival with excellent local tumor control. To achieve better therapeutic effects of MW ablation, MW sensitizers are prepared for enhanced MW ablation to preferentially heat tumor territory. However, it is still not practicable for treatment of the orthotopic transplantation tumor. Herein, biocompatible and degradable methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) microcapsules with hierarchical structure have been designed for microwave-induced tumor therapy. Chemical drug doxorubicin hydrochloride (DOX·HCl), microwave (MW) sensitizers and CT imaging contrast MoS 2 nanosheets and MR imaging contrast Fe 3 O 4 nanoparticles are co-incorporated into the microcapsules. In vitro/vivo MR/CT dual-modal imaging results prove the potential application for guiding synergetic therapy and predicting post-therapy tumor progression in the orthotopic transplantation tumor model. After blocking the tumor-feeding arteries, these microcapsules not only exclude the cooling effect by cutting off the blood flow but also enhance MW heating conversion at tumor site. The focused MW heating makes microcapsules mollescent or ruptured and releases DOX·HCl from the microcapsules, achieving the controlled release of drugs for chemical therapy. Compared with MW ablation, 29.4% increase of necrosis diameter of normal liver in rabbit is obtained under MW ablation combined with transcatheter arterial blocking, and the average size of necrosis and inhibition rate of VX-2 liver orthotopic transplantation tumor in rabbit has increased by 129.33% and 73.46%. Moreover, it is proved that the superselectively arterial administration of the as-prepared microcapsules has no recognizable toxicity on the animals. Therefore, this research provides a novel strategy for the construction of MW-induced

  17. Renal cell neoplasias: reversion-inducing cysteine-rich protein with Kazal motifs discriminates tumor subtypes, while extracellular matrix metalloproteinase inducer indicates prognosis.

    Science.gov (United States)

    Rabien, Anja; Stephan, Carsten; Kilic, Ergin; Weichert, Wilko; Kristiansen, Glen; Miller, Kurt; Jung, Klaus; Erbersdobler, Andreas

    2013-10-16

    Matrix metalloproteinases can promote invasion and metastasis, which are very frequent in renal cell carcinoma even at the time of diagnosis. Knowing the reversion-inducing cysteine-rich protein with Kazal motifs (RECK) as an inhibitor of matrix metalloproteinases and the extracellular matrix metalloproteinase inducer (EMMPRIN) protein as inducer, we aimed to determine their expression, localization and possible antagonistic action in the pathogenesis and progression of renal cell tumors in a retrospective study. Tumor and adjacent normal tissues of 395 nephrectomized patients were immunostained for RECK and EMMPRIN on a tissue microarray. RECK strongly decreased in renal cell carcinoma compared to normal counterparts (Wilcoxon signed rank test, P<0.001), and it discriminated tumor entities showing the highest expression in oncocytomas. EMMPRIN, however, could be significantly correlated to pT stage and Fuhrman grading (Spearman's correlation coefficient rs=0.289 and rs=0.382, respectively). Higher expression of EMMPRIN was associated with decreased overall survival in Kaplan-Meier analysis (P<0.001), and the EMMPRIN level could independently predict survival for cases without metastasis and involvement of lymph nodes. Decreased RECK expression was confirmed by Western blotting in tissue of eight normal/tumor matches of patients after radical nephrectomy, whereas the EMMPRIN pattern appeared to be heterogeneous. We propose RECK down regulation in renal cell carcinoma to be an early event that facilitates tumor formation and progression. EMMPRIN, however, as a prognostic tumor marker, increases only when aggressiveness is proceeding and could add an additional step to invasive properties of renal cell carcinoma.

  18. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  19. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers.

    Science.gov (United States)

    Buddington, Karyl K; Donahoo, Jillian B; Buddington, Randal K

    2002-03-01

    Prebiotics induce changes in the population and metabolic characteristics of the gastrointestinal bacteria, modulate enteric and systemic immune functions, and provide laboratory rodents with resistance to carcinogens that promote colorectal cancer. There is less known about protection from other challenges. Therefore, mice of the B6C3F1 strain were fed for 6 wk a control diet with 100 g/kg cellulose or one of two experimental diets with the cellulose replaced entirely by the nondigestible oligosaccharides (NDO) oligofructose and inulin. From each diet, 25 mice were challenged by a promoter of colorectal cancer (1,2-dimethylhydrazine), B16F10 tumor cells, the enteric pathogen Candida albicans (enterically), or were infected systemically with Listeria monocytogenes or Salmonella typhimurium. The incidences of aberrant crypt foci in the distal colon after exposure to dimethylhdrazine for mice fed inulin (53%) and oligofructose (54%) were lower than in control mice (76%; P 80% for control mice), but fewer of the mice fed inulin died (60%; P dietary NDO was not elucidated, but the findings are consistent with enhanced immune functions in response to changes in the composition and metabolic characteristics of the bacteria resident in the gastrointestinal tract.

  20. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Science.gov (United States)

    Lin, Marie C; Lee, Nikki P; Zheng, Ning; Yang, Pai-Hao; Wong, Oscar G; Kung, Hsiang-Fu; Hui, Chee-Kin; Luk, John M; Lau, George Ka-Kit

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins. METHODS: The gene expression profile was compared in a pair of HBV-infected twins. RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV, whereas the other became a chronic HBV carrier. Eighty-eight and forty-six genes were found to be up- or down-regulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RT-PCR. However, upon HBV core antigen stimulation, TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+ channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins. CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV. PMID:16437679

  1. Tumor necrosis factor-α induced protein 6 attenuates acute lung injury following paraquat exposure.

    Science.gov (United States)

    Xu, Jiajun; Zhen, Jiantao; Zhu, Jingfa; Lin, Qingming

    2016-01-01

    Paraquat exposure commonly occurs in the developing countries and the mortality rate is high. However, there is currently no consensus on the efficacy of treatment for paraquat exposure. The study was aimed to explore the effects of tumor necrosis factor-α (TNF-α) induced protein 6 (TSG-6) on acute lung injury (ALI) following paraquat exposure in rats. Male Sprague-Dawley (SD) rats were randomly divided into the sham group (n = 8), the paraquat group (n = 8), and the paraquat TSG-6-treated group (n = 8). Rats were administered with 50 mg/kg of paraquat intraperitoneally. At 1 h after exposure, rats were treated with 30 μg of recombinant human TSG-6 (rhTSG-6) intraperitoneally. After 6 h of exposure, ALI scores were evaluated by histology and the expression of pro-inflammatory cytokines in lung was assayed using real-time RT-PCR. ALI scores were significantly lower in the paraquat TSG-6-treated group, compared with the paraquat group (p paraquat TSG-6-treated group, compared with the paraquat group (p paraquat exposure by suppressing inflammatory response.

  2. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    Directory of Open Access Journals (Sweden)

    Green HN

    2014-11-01

    Full Text Available Hadiyah N Green,1,2 Stephanie D Crockett,3 Dmitry V Martyshkin,1 Karan P Singh,2,4 William E Grizzle,2,5 Eben L Rosenthal,2,6 Sergey B Mirov11Department of Physics, Center for Optical Sensors and Spectroscopies, 2Comprehensive Cancer Center, 3Department of Pediatrics, Division of Neonatology, 4Department of Medicine, Division of Preventive Medicine, Biostatistics and Bioinformatics Shared Facility, 5Department of Pathology, 6Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Nanoparticle (NP-enabled near infrared (NIR photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies.Methods: Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed.Results: The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a

  3. Molecular alterations in thyroid tumors induced after exposure to ionising radiation in infancy

    International Nuclear Information System (INIS)

    Bounacer, A.; Wicker, R.; Sarasin, A.; Suarez, H.G.; Schlumberger, M.; Caillou, B.

    1997-01-01

    We investigated the presence of molecular lesions in the ras, gsp and ret genes, in epithelial thyroid tumors developed in patients who had received ionising radiation therapy in infancy for benign or malignant conditions. Our data showed: a similar frequency of ras and gsp activating mutations in radiation-associated and 'spontaneous' tumors. However, while the mutations are only transversions in the radiation-associated tumors, they are transversions as well as transitions in the 'spontaneous' ones and a mutation in codon 691 giving rise to a polymorphism in the ret gene, and frequently associated to a C-cell hyperplasia in radiation-associated tumors. The frequency of this mutation was significantly higher (60%) in these tumors, than in normal controls (21%) or 'spontaneous' epithelial thyroid tumors (23%). (author)

  4. Tumor vaccines:

    OpenAIRE

    Frank, Mojca; Ihan, Alojz

    2006-01-01

    Tumor vaccines have several potential advantages over standard anticancer regirrcents. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tccmor aaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which imrrtune tol...

  5. The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury

    Science.gov (United States)

    Fiteih, Yahya; Law, Jennifer; Volodko, Natalia; Mohamed, Anwar; El-Kadi, Ayman O. S.; Liu, Lei; Odenbach, Jeff; Thiesen, Aducio; Onyskiw, Christina; Ghazaleh, Haya Abu; Park, Jikyoung; Lee, Sean Bong; Yu, Victor C.; Fernandez-Patron, Carlos; Alexander, R. Todd; Wine, Eytan; Baksh, Shairaz

    2013-01-01

    Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR

  6. Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors.

    Directory of Open Access Journals (Sweden)

    Dickson K Kirui

    Full Text Available BACKGROUND: Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs. We also determined the optimal time window at which maximal accumulation occur. RESULTS: In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm(2 amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. CONCLUSIONS: Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy.

  7. A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia

    International Nuclear Information System (INIS)

    Wen Bixiu; Burgman, Paul; Zanzonico, Pat; O'Donoghue, Joseph; Li, Gloria C.; Ling, C. Clifton; Cai Shangde; Finn, Ron; Serganova, Inna; Blasberg, Ronald; Gelovani, Juri

    2004-01-01

    Hypoxia is associated with tumor aggressiveness and is an important cause of resistance to radiation therapy and chemotherapy. Assays of tumor hypoxia could provide selection tools for hypoxia-modifying treatments. The purpose of this study was to develop and characterize a rodent tumor model with a reporter gene construct that would be transactivated by the hypoxia-inducible molecular switch, i.e., the upregulation of HIF-1. The reporter gene construct is the herpes simplex virus 1-thymidine kinase (HSV1-tk) fused with the enhanced green fluorescent protein (eGFP) under the regulation of an artificial hypoxia-responsive enhancer/promoter. In this model, tumor hypoxia would up-regulate HIF-1, and through the hypoxia-responsive promoter transactivate the HSV1-tkeGFPfusion gene. The expression of this reporter gene can be assessed with the 124 I-labeled reporter substrate 2'-fluoro-2'-deoxy-1-β-d-arabinofuranosyl-5-iodouracil ( 124 I-FIAU), which is phosphorylated by the HSV1-tk enzyme and trapped in the hypoxic cells. Animal positron emission tomography (microPET) and phosphor plate imaging (PPI) were used in this study to visualize the trapped 124 I-FIAU, providing a distribution of the hypoxia-induced molecular events. The distribution of 124 I-FIAU was also compared with that of an exogenous hypoxic cell marker, 18 F-fluoromisonidazole (FMISO). Our results showed that 124 I-FIAU microPET imaging of the hypoxia-induced reporter gene expression is feasible, and that the intratumoral distributions of 124 I-FIAU and 18 F-FMISO are similar. In tumor sections, detailed radioactivity distributions were obtained with PPI which also showed similarity between 124 I-FIAU and 18 F-FMISO. This reporter system is sufficiently sensitive to detect hypoxia-induced transcriptional activation by noninvasive imaging and might provide a valuable tool in studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia. (orig.)

  8. Growth inhibition of unresectable tumors induced by hepatic cryoablation: report of two cases.

    Science.gov (United States)

    Osada, Shinji; Imai, Hisashi; Yawata, Kazunori; Tanahashi, Toshiyuki; Sakashita, Fumio; Tanaka, Chihiro; Sugiyama, Yasuyuki

    2008-01-01

    The efficacy of percutaneous cryosurgery (PCS) as a treatment strategy for unresected liver tumor was evaluated in two cases. The first patient was a 64-year-old man who was found to have multiple liver tumors after undergoing gastrectomy for gastric cancer (T3, N0, M0, Stage II). Two PCS treatments under local anesthesia decreased the size of both the treated and untreated tumors. The second patient was a 61-year-old man in whom multiple liver tumors were discovered after hepatectomy for metastases of a duodenal gastrointestinal stromal tumor, which also had been treated surgically. A third surgery was performed for mass reduction. The patient showed stable improvement after surgery, and PCS combined with administration of polysaccharide-Kureha was selected to treat the unresectable tumors. PCS was performed once a week with an overnight hospital stay. After nine PCS treatment, the remarkable reduction in the size and number of liver tumors was observed, even among non-treated tumors. The patient remains in good condition without tumors 21 months after treatment.

  9. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSC are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.

  10. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    Science.gov (United States)

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  11. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    Science.gov (United States)

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1 tm1Mom mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  13. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression.

    Directory of Open Access Journals (Sweden)

    Elena I Fomchenko

    Full Text Available Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis.

  14. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  15. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  16. Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells.

    Science.gov (United States)

    Lin, Ying-Chu; Murayama, Yoshinobu; Hashimoto, Koichiro; Nakamura, Yukio; Lin, Chang-Shin; Yokoyama, Kazunari K; Saito, Shigeo

    2014-01-01

    Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.

  17. Dieckol, isolated from the edible brown algae Ecklonia cava, induces apoptosis of ovarian cancer cells and inhibits tumor xenograft growth.

    Science.gov (United States)

    Ahn, Ji-Hye; Yang, Yeong-In; Lee, Kyung-Tae; Choi, Jung-Hye

    2015-02-01

    Ecklonia cava is an abundant brown alga and has been reported to possess various bioactive compounds having anti-inflammatory effect. However, the anticancer effects of dieckol, a major active compound in E. cava, are poorly understood. In the present study, we investigated the anti-tumor activity of dieckol and its molecular mechanism in ovarian cancer cells and in a xenograft mouse model . MTT assay, PI staining, and PI and Annexin double staining were performed to study cell cytotoxicity, cell cycle distribution, and apoptosis. We also investigated reactive oxygen species (ROS) production and protein expression using flow cytometry and Western blot analysis, respectively. Anti-tumor effects of dieckol were evaluated in SKOV3 tumor xenograft model. We found that the E. cava extract and its phlorotannins have cytotoxic effects on A2780 and SKOV3 ovarian cancer cells. Dieckol induced the apoptosis of SKOV3 cells and suppressed tumor growth without any significant adverse effect in the SKOV3-bearing mouse model. Dieckol triggered the activation of caspase-8, caspase-9, and caspase-3, and pretreatment with caspase inhibitors neutralized the pro-apoptotic activity of dieckol. Furthermore, treatment with dieckol caused mitochondrial dysfunction and suppressed the levels of anti-apoptotic proteins. We further demonstrated that dieckol induced an increase in intracellular ROS, and the antioxidant N-acetyl-L-cysteine (NAC) significantly reversed the caspase activation, cytochrome c release, Bcl-2 downregulation, and apoptosis that were caused by dieckol. Moreover, dieckol inhibited the activity of AKT and p38, and overexpression of AKT and p38, at least in part, reversed dieckol-induced apoptosis in SKOV3 cells. These data suggest that dieckol suppresses ovarian cancer cell growth by inducing caspase-dependent apoptosis via ROS production and the regulation of AKT and p38 signaling.

  18. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Nilesh K Sharma

    Full Text Available Camptothecin (CPT, a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO, a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16, a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29 and breast (MCF-7 cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.

  19. The Never ripe Mutant Provides Evidence That Tumor-Induced Ethylene Controls the Morphogenesis of Agrobacterium tumefaciens-Induced Crown Galls on Tomato Stems12

    Science.gov (United States)

    Aloni, Roni; Wolf, Asnat; Feigenbaum, Pua; Avni, Adi; Klee, Harry J.

    1998-01-01

    We confirm the hypothesis that Agrobacterium tumefaciens-induced galls produce ethylene that controls vessel differentiation in the host stem of tomato (Lycopersicon esculentum Mill.). Using an ethylene-insensitive mutant, Never ripe (Nr), and its isogenic wild-type parent we show that infection by A. tumefaciens results in high rates of ethylene evolution from the developing crown galls. Ethylene evolution from isolated internodes carrying galls was up to 50-fold greater than from isolated internodes of control plants when measured 21 and 28 d after infection. Tumor-induced ethylene substantially decreased vessel diameter in the host tissues beside the tumor in wild-type stems but had a very limited effect in the Nr stems. Ethylene promoted the typical unorganized callus shape of the gall, which maximized the tumor surface in wild-type stems, whereas the galls on the Nr stems had a smooth surface. The combination of decreased vessel diameter in the host and increased tumor surface ensured water-supply priority to the growing gall over the host shoot. These results indicate that in addition to the well-defined roles of auxin and cytokinin, there is a critical role for ethylene in determining crown-gall morphogenesis. PMID:9662526

  20. A case of virilization induced by a Krukenberg tumor from gastric cancer

    Directory of Open Access Journals (Sweden)

    Schlitt Hans-Jürgen

    2008-02-01

    Full Text Available Abstract Background The Krukenberg tumor represents ovarian metastases associated with gastric cancer or other gastrointestinal malignancies. Histology shows typical mucus-production and numerous signet-ring cells. Occasionally Krukenberg tumors have endocrine function and, as a consequence, some patients demonstrate hirsutism and virilization. Case presentation Here we report a case of virilization associated with an extensive gastric adenocarcinoma and Krukenberg tumor in a premenopausal woman. Virilization occurred three months after diagnosis of gastric cancer and the ovarian tumors. Palliative chemotherapy was initiated as primary therapy, but gastric outlet obstruction required a gastrojejunostomy. In addition, oopherectomy was performed to relieve abdominal tension and to abate hormonal effects. It is likely that virilization of the patient could have been prevented by earlier oopherectomy prior to development of hormone production. Conclusion Despite the limitation in survival time early oopherectomy should be considered to prevent the development of virilization even in palliative situations if a Krukenberg tumor is diagnosed with gastric cancer.

  1. The role of reactive oxygen species in tumor cells apoptosis induced by landomycin A

    Directory of Open Access Journals (Sweden)

    L. V. Lehka

    2015-10-01

    Full Text Available Landomycin A (LA is a new antitumor antibiotic of angucycline group, possessing high antitumor activity against cancer cells of different origin, which induces early apoptosis in target cells. It was shown that under LA action the level of reactive oxygen species (ROS in human T-leukemia cells had increased 5.6 times in comparison to control already at the 1st hour after the addition of studied antibiotic to the culture medium. At the 6th hour after incubation of cells with LA the nucleosomal DNA cleavage, chromatin condensation and nucleus fragmentation were observed, indicating apoptotic cell death. Catalase (scavenger of hydrogen peroxide, mannitol (scavenger of hydroxyl radicals and superoxide dismutase (scavenger of superoxide radicals reduced the level of ROS production under LA, suggesting the generation of H2O2, OH• and O2– radicals, respectively. It was revealed that catalase and mannitol effectively inhibited LA-mediated tumor cell death, increasing 2.5 times the percentage of alive cells in comparison to LA. However, superoxide dismutase had no significant inhibitory effect on cytotoxic activity of LA, indicating the minor role of superoxide anions in the implementation of antitumor activity of this antibiotic. Combination of catalase, mannitol and superoxide dismutase with LA increased 4-fold the percentage of alive cells in comparison to the action of LA. Dynamics of ROS formation confirms that the increase of ROS is a very rapid process, but at the same time it is not a direct consequence of apoptosis triggering, mediated by mitochondria

  2. Photodynamic therapy induced production of cytokines by latent Epstein Barr virus infected epithelial tumor cells

    Science.gov (United States)

    Koon, H. K.; Lo, K. W.; Lung, M. L.; Chang, C. K. C.; Wong, R. N. S.; Mak, N. K.

    2007-02-01

    Photodynamic therapy (PDT) is a method to treat cancer or non-cancer diseases by activation of the light-sensitive photosensitizers. Epstein Barr virus (EBV) has been implicated in the development of certain cancers such as nasopharyngeal carcinoma and B cell lymphoma. This study aims to examine the effects of EBV infection on the production of pro-inflammatory cytokines and chemokines in cells after the photosensitizer Zn-BC-AM PDT treatment. Epithelial tumor cell lines HONE-1 and latent EBV-infected HONE-1 (EBV-HONE-1) cells were used in this study. Cells were treated with the photosensitizer Zn-BC-AM for 24 hours before light irradiation. RT-PCR and quantitative ELISA methods were used for the evaluation of mRNA expression and production of cytokines, respectively. Results show that Zn-BC-AM PDT increases the production of IL-1a and IL-1b in EBV-HONE-1. Over a 10-fold increase in the production of IL-6 was observed in the culture supernatant of Zn-BC-AM PDT-treated HONE-1 cells. PDT-induced IL-6 production was observed in HONE-1 cells. EBV-HONE-1 has a higher background level of IL-8 production than the HONE-1. The production of IL-8 was suppressed in EBV-HONE-1cells after Zn-BC-AM PDT. Our results indicate that the response of HONE-1 cells to Zn-BC-AM PDT depends on the presence of latent EBV infection. Since IL-8 is a cytokine with angiogenic activity, Zn-BC-AM PDT may exert an anti-angiogenic effect through the suppression of IL-8 production by the EBV-infected cells.

  3. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death.

    Science.gov (United States)

    Kumar, Amrendra; Gordy, Laura E; Bezbradica, Jelena S; Stanic, Aleksandar K; Hill, Timothy M; Boothby, Mark R; Van Kaer, Luc; Joyce, Sebastian

    2017-11-15

    Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-x L -coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.

  4. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  5. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  6. Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice

    International Nuclear Information System (INIS)

    Davidson, Todd; Kluz, Thomas; Burns, Fredric; Rossman, Toby; Zhang, Qunwei; Uddin, Ahmed; Nadas, Arthur; Costa, Max

    2004-01-01

    Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both occupational and environmental settings. Although lung carcinogenicity has been well documented for occupational exposure via inhalation, the carcinogenic hazard of drinking water exposure to Cr (VI) has yet to be established. We used a hairless mouse model to study the effects of K 2 CrO 4 in the drinking water on ultraviolet radiation (UVR)-induced skin tumors. Hairless mice were unexposed or exposed to UVR alone (1.2 kJ/m 2 ), K 2 CrO 4 alone at 2.5 and 5.0 ppm, or the combination of UVR and K 2 CrO 4 at 0.5, 2.5, and 5.0 ppm. Mice were observed on a weekly basis for the appearance of skin tumors larger than 2 mm. All the mice were euthanized on day 182. The skin tumors were excised and subsequently analyzed microscopically for malignancy by histopathology. There was a total absence of observable skin tumors in untreated mice and in mice exposed to chromate alone. However, there was a dose-dependent increase in the number of skin tumors greater than 2 mm in mice exposed to K 2 CrO 4 and UV compared with mice exposed to UV alone. The increase in tumors larger than 2 mm was statistically significant (P 2 CrO 4 at the two highest K 2 CrO 4 doses (2.5 and 5.0 ppm), and there was a statistically significant increase in the numbers of malignant tumors per mouse in the UVR plus K 2 CrO 4 (5 ppm) group compared with UV alone. The data presented here indicate that K 2 CrO 4 increases the number of UV-induced skin tumors in a dose-dependent manner, and these results support the concern that regulatory agencies have relative to the carcinogenic health hazards of widespread human exposure to Cr (VI) in drinking water

  7. Termoablação a laser de tumores hepáticos: atualização Laser-induced thermoablation of hepatic tumors: an update review

    Directory of Open Access Journals (Sweden)

    Giuseppe D'Ippolito

    2004-06-01

    Full Text Available A termoablação por raio laser de tumores hepáticos tem despontado como alternativa válida de tratamento em pacientes que não são candidatos a ressecção cirúrgica. O procedimento pode ser realizado por via percutânea, laparoscópica ou por laparotomia, e orientado por métodos de imagem. O objetivo deste trabalho é apresentar o mecanismo de ação deste método, bem como as suas indicações, contra-indicações, complicações e resultados clínicos, baseados em revisão bibliográfica.Laser-induced thermoablation has been used as a reliable method for producing coagulation necrosis in hepatic tumors in patients who are not suitable for surgical treatment. The procedure can be performed percutaneously, using image-guiding methods, by open laparotomy or laparoscopy. We review the current literature and discuss the principles, indications, complications and clinical results as well as the potential limitations and contraindications of this novel technique.

  8. Termoablação a laser de tumores hepáticos: atualização Laser-induced thermoablation of hepatic tumors: an update review

    OpenAIRE

    Giuseppe D'Ippolito; Marcelo Ribeiro

    2004-01-01

    A termoablação por raio laser de tumores hepáticos tem despontado como alternativa válida de tratamento em pacientes que não são candidatos a ressecção cirúrgica. O procedimento pode ser realizado por via percutânea, laparoscópica ou por laparotomia, e orientado por métodos de imagem. O objetivo deste trabalho é apresentar o mecanismo de ação deste método, bem como as suas indicações, contra-indicações, complicações e resultados clínicos, baseados em revisão bibliográfica.Laser-induced thermo...

  9. Promising markers for the detection of premature senescence tumor cells induced by ionizing radiation: Cathepsin D and eukaryotic translation elongation factor 1

    International Nuclear Information System (INIS)

    Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon

    2008-01-01

    Recently, it has been proved that induction of senescence could be a promising way of tumor treatment. Senescence was originally described in normal human cells undergoing a finite number of divisions before permanent growth arrest. It has now become regarded more broadly as a general biological program of terminal growth arrest. A variety of stresses such as ionizing radiation (IR), oxidative stress, oncogenic transformation, DNA damaging agents triggers stress-induced premature senescence, i.e. rapid and permanent cell growth arrest. Therefore, premature senescence is bona fide barrier to tumorigenesis and hallmark of premalignant tumors. However, there is lack of obvious markers for senescent tumor cells. To identify useful premature senescence markers for tumor cells, we monitored the changes of protein expression profile in IR-induced premature senescence MCF7 human breast cancer cells. We identified biomarkers which evidently changed their expression levels in ionizing radiation-induced senescenct tumor cells

  10. Promising markers for the detection of premature senescence tumor cells induced by ionizing radiation: Cathepsin D and eukaryotic translation elongation factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-05-15

    Recently, it has been proved that induction of senescence could be a promising way of tumor treatment. Senescence was originally described in normal human cells undergoing a finite number of divisions before permanent growth arrest. It has now become regarded more broadly as a general biological program of terminal growth arrest. A variety of stresses such as ionizing radiation (IR), oxidative stress, oncogenic transformation, DNA damaging agents triggers stress-induced premature senescence, i.e. rapid and permanent cell growth arrest. Therefore, premature senescence is bona fide barrier to tumorigenesis and hallmark of premalignant tumors. However, there is lack of obvious markers for senescent tumor cells. To identify useful premature senescence markers for tumor cells, we monitored the changes of protein expression profile in IR-induced premature senescence MCF7 human breast cancer cells. We identified biomarkers which evidently changed their expression levels in ionizing radiation-induced senescenct tumor cells.

  11. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice.

    Science.gov (United States)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180mJ/cm(2)) three times a week for 24weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (Pdiet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (Pskin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (Pskin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser(473) in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. © 2013.

  12. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells

    International Nuclear Information System (INIS)

    Soula-Rothhut, Mahdhia; Coissard, Cyrille; Sartelet, Herve; Boudot, Cedric; Bellon, Georges; Martiny, Laurent; Rothhut, Bernard

    2005-01-01

    Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF-but not TSP-1-stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development

  13. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy.

    Science.gov (United States)

    Kim, Seong Muk; Oh, Ji Hyeon; Park, Soon A; Ryu, Chung Heon; Lim, Jung Yeon; Kim, Dal-Soo; Chang, Jong Wook; Oh, Wonil; Jeun, Sin-Soo

    2010-12-01

    Irradiation is a standard therapy for gliomas and many other cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer gene therapy. Here, we show that tumor irradiation enhances the tumor tropism of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and the therapeutic effect of TRAIL delivered by UCB-MSCs. The sequential treatment with irradiation followed by TRAIL-secreting UCB-MSCs (MSC-TRAIL) synergistically enhanced apoptosis in either TRAIL-sensitive or TRAIL-resistant glioma cells by upregulating the death receptor 5 and by inducing caspase activation. Migration assays showed greater MSC migration toward irradiated glioma cells and the tumor site in glioma-bearing mice compared with unirradiated tumors. Irradiated glioma cells had increased expression of interleukin-8 (IL-8), which leads to the upregulation of the IL-8 receptor on MSCs. This upregulation, which is involved in the migratory capacity of UCB-MSCs, was confirmed by siRNA inhibition and an antibody-neutralizing assay. In vivo survival experiments in orthotopic xenografted mice showed that MSC-based TRAIL gene delivery to irradiated tumors had greater therapeutic efficacy than a single treatment. These results suggest that clinically relevant tumor irradiation increases the therapeutic efficacy of MSC-TRAIL by increasing tropism of MSCs and TRAIL-induced apoptosis, which may be a more useful strategy for cancer gene therapy.

  14. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats.

    Science.gov (United States)

    McIntosh, G H; Royle, P J; Playne, M J

    1999-01-01

    Probiotic bacteria strains were examined for their influence on 1,2-dimethylhydrazine (DMH)-induced intestinal tumors in 100 male Sprague-Dawley rats. Lactobacillus acidophilus (Delvo Pro LA-1), Lactobacillus rhamnosus (GG), Bifidobacterium animalis (CSCC1941), and Streptococcus thermophilus (DD145) strains were examined for their influence when added as freeze-dried bacteria to an experimental diet based on a high-fat semipurified (AIN-93) rodent diet. Four bacterial treatments were compared: L. acidophilus, L. acidophilus + B. animalis, L. rhamnosus, and S. thermophilus, the bacteria being added daily at 1% freeze-dried weight (10(10) colony-forming units/g) to the diet. Trends were observed in the incidence of rats with large intestinal tumors for three treatments: 25% lower than control for L. acidophilus, 20% lower for L. acidophilus + B. animalis and L. rhamnosus treatments, and 10% lower for S. thermophilus. Large intestinal tumor burden was significantly lower for treated rats with L. acidophilus than for the control group (10 and 3 tumors/treatment group, respectively, p = 0.05). Large intestinal tumor mass index was also lower for the L. acidophilus treatment than for control (1.70 and 0.10, respectively, p L. acidophilus, no adenocarcinomas were present in the colons. Pulsed-field gel electrophoresis of bacterial chromosomal DNA fragments was used to differentiate introduced (exogenous) bacterial strains from indigenous bacteria of the same genera present in the feces. Survival during gut passage and displacement of indigenous lactobacilli occurred with introduced L. acidophilus and L. rhamnosus GG during the probiotic treatment period. However, introduced strains of B. animalis and S. thermophilus were not able to be isolated from feces. It is concluded that this strain of L. acidophilus supplied as freeze-dried bacteria in the diet was protective, as seen by a small but significant inhibition of tumors within the rat colon.

  15. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells.

    Science.gov (United States)

    Alvarez-Díaz, Silvia; Valle, Noelia; García, José Miguel; Peña, Cristina; Freije, José M P; Quesada, Víctor; Astudillo, Aurora; Bonilla, Félix; López-Otín, Carlos; Muñoz, Alberto

    2009-08-01

    The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] has wide but not fully understood antitumor activity. A previous transcriptomic analysis of 1alpha,25(OH)2D3 action on human colon cancer cells revealed cystatin D (CST5), which encodes an inhibitor of several cysteine proteases of the cathepsin family, as a candidate target gene. Here we report that 1alpha,25(OH)2D3 induced vitamin D receptor (VDR) binding to, and activation of, the CST5 promoter and increased CST5 RNA and protein levels in human colon cancer cells. In cells lacking endogenous cystatin D, ectopic cystatin D expression inhibited both proliferation in vitro and xenograft tumor growth in vivo. Furthermore, cystatin D inhibited migration and anchorage-independent growth, antagonized the Wnt/beta-catenin signaling pathway, and repressed c-MYC expression. Cystatin D repressed expression of the epithelial-mesenchymal transition inducers SNAI1, SNAI2, ZEB1, and ZEB2 and, conversely, induced E-cadherin and other adhesion proteins. CST5 knockdown using shRNA abrogated the antiproliferative effect of 1alpha,25(OH)2D3, attenuated E-cadherin expression, and increased c-MYC expression. In human colorectal tumors, expression of cystatin D correlated with expression of VDR and E-cadherin, and loss of cystatin D correlated with poor tumor differentiation. Based on these data, we propose that CST5 has tumor suppressor activity that may contribute to the antitumoral action of 1alpha,25(OH)2D3 in colon cancer.

  16. A novel sphingosine kinase 1 inhibitor (SKI-5C) induces cell death of Wilms' tumor cellsin vitroandin vivo.

    Science.gov (United States)

    Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Zhao, He; Li, Xiao-Lu; Fang, Fang; Wu, Yi; Lu, Jun; Li, Yan-Hong; Du, Wei-Wei; Ren, Jun-Li; Li, Yi-Ping; Xu, Yun-Yun; Feng, Xing; Wang, Jian; He, Wei-Qi; Pan, Jian

    2016-01-01

    Sphingosine kinase 1 (SphK1) is over-expressed in many cancers and therefore serves as a biomarker for cancer prognosis. SKI-5C is a new SphK1 inhibitor, and until now its molecular function in Wilms' tumor cells remained unknown. Here, using CCK-8 and nude mice experiments we assessed cell growth in Wilms' tumor cell lines (SK-NEP-1 and G401) in vitro and in vivo . We demonstrated that SphK1 is highly expressed in SK-NEP-1 and G401 cells, and through annexin V/propidium iodide staining and flow cytometry analysis, we detected cell apoptosis. Treatment with SKI-5C inhibited proliferation and induced apoptosis of SK-NEP-1 and G401 cells in a dose-dependent manner. Moreover, SKI-5C treatment inhibited the growth of SK-NEP-1 xenograft tumors in nude mice, with few side effects. Our microarray analysis revealed that SKI-5C-treated SK-NEP-1 cells mostly downregulated PRKACA and significantly inhibited phosphorylation of ERK1/2 and NF-κB p65. These results imply that SKI-5C induces apoptosis of SK-NEP-1 cells through the PRKACA/MAPK/NF-κB pathway. While, further research is required to determine the underlying details, these results provide new clues for the molecular mechanism of cell death induced by SKI-5C and suggest that SKI-5C may act as new candidate drug for Wilms' tumor.

  17. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells.

    Science.gov (United States)

    Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P

    2017-07-01

    Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

  18. Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Liao, Yong

    2005-01-01

    The purpose of this project is to study the molecular mechanisms underlying ElA's proapoptotic effect and anti-tumor activity and to dissect the functional domains of ElA that are critical for its antitumor activity...

  19. Tumor Suppression and Sensitization to Taxol Induced Apoptosis of E1A in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Liao, Yong

    2002-01-01

    The purpose of this project is to study the molecular mechanisms underlying ElA's proapoptotic effect and anti-tumor activity and to dissect the functional domains of ElA that are critical for its antitumor activity...

  20. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  1. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  2. Homeostatic T Cell Expansion to Induce Anti-Tumor Antoimmunity in Breast Cancer

    Science.gov (United States)

    2005-04-01

    response by manipulating the composition of the infused T cells; and (c) to potentiate the anti-tumor effect by using T cell survival and proliferation... antineoplastic drugs with tumor vaccines. Cancer Immunol Immunother 52:680 79. Theofilopoulos AN, Dummer W, Kono DH (2001) T cell homeostasis and systemic...recovered were approved by the Institutional Animal Care Committee. 7 days after transfer had undergone one to four cell divisions, with Donor cells no

  3. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.

    Science.gov (United States)

    Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders

    2013-03-01

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Sublingual Vaccination Induces Mucosal and Systemic Adaptive Immunity for Protection against Lung Tumor Challenge

    OpenAIRE

    Singh, Shailbala; Yang, Guojun; Schluns, Kimberly S.; Anthony, Scott M.; Sastry, K. Jagannadha

    2014-01-01

    Sublingual route offers a safer and more practical approach for delivering vaccines relative to other systemic and mucosal immunization strategies. Here we present evidence demonstrating protection against ovalbumin expressing B16 (B16-OVA) metastatic melanoma lung tumor formation by sublingual vaccination with the model tumor antigen OVA plus synthetic glycolipid alpha-galactosylceramide (aGalCer) for harnessing the adjuvant potential of natural killer T (NKT) cells, which effectively bridge...

  5. Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L.

    Science.gov (United States)

    Buonocore, Sofia; Haddou, Najate Ouled; Moore, Fabrice; Florquin, Sandrine; Paulart, Frédéric; Heirman, Carlo; Thielemans, Kris; Goldman, Michel; Flamand, Véronique

    2008-09-01

    Overexpression of CD95 (Fas/Apo-1) ligand (CD95L) has been shown to induce T cell tolerance but also, neutrophilic inflammation and rejection of allogeneic tissue. We explored the capacity of dendritic cells (DCs) genetically engineered to overexpress CD95L to induce an antitumor response. We first found that DCs overexpressing CD95L, in addition to MHC class I-restricted OVA peptides (CD95L-OVA-DCs), induced increased antigen-specific CD8(+) T cell responses as compared with DCs overexpressing OVA peptides alone. The enhanced T cell responses were associated with improved regression of a tumor expressing OVA, allowing survival of all animals. When DCs overexpressing CD95L (CD95L-DCs) were injected with the tumor expressing OVA, in vivo tumor proliferation was strikingly inhibited. A strong cellular apoptosis and a massive neutrophilic infiltrate developed in this setting. Neutrophil depletion prevented tumor regression as well as enhanced IFN-gamma production induced by CD95L-OVA-DCs. Furthermore, the CD8(+) T cell response induced by the coadministration of tumor cells and CD95L-DCs led to rejection of a tumor implanted at a distance from the DC injection site. In summary, DCs expressing CD95L promote tumor rejection involving neutrophil-mediated innate immunity and CD8(+) T cell-dependent adaptative immune responses.

  6. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  7. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  8. Perillyl Alcohol Protects against Fe-NTA-Induced Nephrotoxicity and Early Tumor Promotional Events in Rat Experimental Model

    Directory of Open Access Journals (Sweden)

    Tamanna Jahangir

    2007-01-01

    Full Text Available Plants have been widely used as protective agents against a wide variety of processes and compounds that damage tissues via free radical mechanisms. Perillyl alcohol (PA is a naturally occurring monoterpene found in the essential oils of numerous species of plants including mints, cherries and celery seeds. This monocyclic monoterpene has shown antioxidant and therapeutic activity in various studies against various xenobiotics. In this study, we have analyzed the effects of PA against single intraperitoneal dose of ferric nitrilotriacetate (Fe-NTA (9 mg iron per kg body weight-induced nephrotoxicity and early tumor promotional events. The pretreatment of Fe-NTA-treated rats with 0.5% per kg body weight dose and 1% per kg body weight dose of PA for seven consecutive days significantly reversed the Fe-NTA-induced malondialdehyde formation, xanthine oxidase activity (P < 0.001, ornithine decarboxylase activity (P < 0.001 and 3[H]thymidine incorporation in renal DNA (P < 0.001 with simultaneous significant depletion in serum toxicity markers blood urea nitrogen and creatinine (P < 0.001. Significant restoration at both the doses was recorded in depleted renal glutathione content, and its dependent enzymes with prophylactic treatment of PA. Present results suggest that PA potentially attenuates against Fe-NTA-induced oxidative damage and tumor promotional events that preclude its development as a future drug to avert the free radical-induced toxicity.

  9. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  10. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  11. Discontinuous Schedule of Bevacizumab in Colorectal Cancer Induces Accelerated Tumor Growth and Phenotypic Changes

    Directory of Open Access Journals (Sweden)

    Selma Becherirat

    2018-04-01

    Full Text Available Antiangiogenics administration in colorectal cancer patients seemed promising therapeutic approach. Inspite of early encouraging results, it however gave only modest clinical benefits. When AAG was administered with discontinuous schedule, the disease showed acceleration in certain cases. Though resistance to AAG has been extensively studied, it is not documented for discontinuous schedules. To simulate clinical situations, we subjected a patient-derived CRC subcutaneous xenograft in mice to three different protocols: 1 AAG (bevacizumab treatment for 30 days (group A (group B was the control, 2 bevacizumab treatment for 50 days (group C and bevacizumab for 30 days and 20 without treatment (group D, and 3 bevacizumab treatment for 70 days (group E and 70 days treatment with a drug-break period between day 30 and 50 (group F. The tumor growth was monitored, and at sacrifice, the vascularity of tumors was measured and the proangiogenic factors quantified. Tumor phenotype was studied by quantifying cancer stem cells. Interrupting bevacizumab during treatment accelerated tumor growth and revascularization. A significant increase of proangiogenic factors was observed when therapy was stopped. On withdrawal of bevacizumab, as also after the drug-break period, the plasmatic VEGF increased significantly. Similarly, a notable increase of CSCs after the withdrawal and drug-break period of bevacizumab was observed (P<.01. The present study indicates that bevacizumab treatment needs to be maintained because discontinuous schedules tend to trigger tumor regrowth, and increase tumor resistance and CSC heterogeneity.

  12. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  13. Mechanism of inhibitory effect of atorvastatin on resistin expression induced by tumor necrosis factor-α in macrophages

    Directory of Open Access Journals (Sweden)

    Chua Su-Kiat

    2009-05-01

    Full Text Available Abstract Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNF-α induced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.

  14. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Ranganatha R Somasagara

    Full Text Available The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties.Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB fruits in leukaemia (CEM and breast cancer (T47D cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated.The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  15. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Somasagara, Ranganatha R; Hegde, Mahesh; Chiruvella, Kishore K; Musini, Anjaneyulu; Choudhary, Bibha; Raghavan, Sathees C

    2012-01-01

    The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved.

  16. High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen.

    Science.gov (United States)

    Savelyeva, Natalia; Shipton, Michael; Suchacki, Amy; Babbage, Gavin; Stevenson, Freda K

    2011-07-21

    Induction of antibody-mediated immunity against hematologic malignancies requires CD4(+) T-cell help, but weak tumor antigens generally fail to induce adequate T-cell responses, or to overcome tolerance. Conjugate vaccines can harness alternative help to activate responses, but memory B cells may then be exposed to leaking tumor-derived antigen without CD4(+) T-cell support. We showed previously using lymphoma-derived idiotypic antigen that exposure to "helpless" antigen silences the majority of memory IgG(+) B cells. Transfer experiments now indicate that silencing is permanent. In marked contrast to IgG, most coexisting IgM(+) memory B cells exposed to "helpless" antigen survive. Confirmation in a hapten (NP) model allowed measurement of affinity, revealing this, rather than isotype, as the determinant of survival. IgM(+) B cells had Ig variable region gene usage similar to IgG but with fewer somatic mutations. Survival of memory B cells appears variably controlled by affinity for antigen, allowing a minority of low affinity IgG(+), but most IgM(+), memory B cells to escape deletion in the absence of T-cell help. The latter remain, but the majority fail to undergo isotype switch. These findings could apply to other tumor antigens and are relevant for vaccination strategies aimed to induce long-term antibody.

  17. The TORC1/2 inhibitor TAK228 sensitizes atypical teratoid rhabdoid tumors to cisplatin-induced cytotoxicity.

    Science.gov (United States)

    Rubens, Jeffrey A; Wang, Sabrina Z; Price, Antoinette; Weingart, Melanie F; Allen, Sariah J; Orr, Brent A; Eberhart, Charles G; Raabe, Eric H

    2017-10-01

    Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells. We therefore hypothesized that mTOR is activated downstream of LIN28 in AT/RT, and the brain-penetrating mTOR complex 1 and 2 (mTORC1/2) kinase inhibitor TAK228 would reduce AT/RT tumorigenicity. Activation of mTOR in AT/RT was determined by measuring pS6 and pAKT (Ser473) by immunohistochemistry on tissue microarray of 18 primary AT/RT tumors. In vitro growth assays (BrdU and MTS), death assays (CC3, c-PARP by western blot), and survival curves of AT/RT orthotopic xenograft models were used to measure the efficacy of TAK228 alone and in combination with cisplatin. Lentiviral short hairpin RNA-mediated knockdown of LIN28A led to decreased mTOR activation. Primary human AT/RT had high levels of pS6 and pAKT (Ser473) in 21% and 87% of tumors by immunohistochemistry. TAK228 slowed cell growth, induced apoptosis in vitro, and nearly doubled median survival of orthotopic xenograft models of AT/RT. TAK228 combined with cisplatin synergistically slowed cell growth and enhanced cisplatin-induced apoptosis. Suppression of AKT sensitized cells to cisplatin-induced apoptosis and forced activation of AKT protected cells. Combined treatment with TAK228 and cisplatin significantly extended survival of orthotopic xenograft models of AT/RT compared with each drug alone. TAK228 has efficacy in AT/RT as a single agent and synergizes with conventional chemotherapies by sensitizing tumors to cisplatin-induced apoptosis. These results suggest TAK228 may be an effective new treatment for AT/RT. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations In Vivo

    Directory of Open Access Journals (Sweden)

    Brandon J. Aubrey

    2015-03-01

    Full Text Available The CRISPR/Cas9 technology enables the introduction of genomic alterations into almost any organism; however, systems for efficient and inducible gene modification have been lacking, especially for deletion of essential genes. Here, we describe a drug-inducible small guide RNA (sgRNA vector system allowing for ubiquitous and efficient gene deletion in murine and human cells. This system mediates the efficient, temporally controlled deletion of MCL-1, both in vitro and in vivo, in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth. Unexpectedly, repeated induction of the same sgRNA generated similar inactivating mutations in the human Mcl-1 gene due to low mutation variability exerted by the accompanying non-homologous end-joining (NHEJ process. Finally, we were able to generate hematopoietic cell compartment-restricted Trp53-knockout mice, leading to the identification of cancer-promoting mutants of this critical tumor suppressor.

  19. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Kohlhaas, Susan L; Craxton, Andrew; Sun, Xiao-Ming; Pinkoski, Michael J; Cohen, Gerald M

    2007-04-27

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.

  20. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Kou, Xingrui; Zhao, Qiudong; Zhao, Xue; Li, Rong; Wei, Lixin; Wu, Mengchao; Jing, Yingying; Deng, Weijie; Sun, Kai; Han, Zhipeng; Ye, Fei; Yu, Guofeng; Fan, Qingmin; Gao, Lu

    2013-01-01

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  1. Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment.

    Science.gov (United States)

    Michaeli, Janna; Shaul, Merav E; Mishalian, Inbal; Hovav, Avi-Hai; Levy, Liran; Zolotriov, Lidia; Granot, Zvi; Fridlender, Zvi G

    2017-01-01

    The role of neutrophils in tumor progression has become in recent years a subject of growing interest. Tumor-associated neutrophils (TANs), which constitute an important portion of the tumor microenvironment, promote immunosuppression in advanced tumors by modulating the proliferation, activation and recruitment of a variety of immune cell types. Studies which investigated the consequences of manipulating TAN polarization suggest that the impact of these neutrophils on tumor progression is considerably mediated by and dependent on the presence of CD8 T-cells. It has been previously shown that granulocytic myeloid regulatory cells, i.e. TANs and granulocytic myeloid-derived suppressor cells (G-MDSCs) are capable of suppressing CD8 T-cell proliferation and affect their activation. In the current study, we find that in addition, TANs isolated from different models of murine cancer promote immunosuppression by strongly inducing CD8 T-cell apoptosis. We demonstrate that the TNFα pathway in TANs is critical for the induction of apoptosis, and that the mechanism through which apoptosis is induced involves the production of NO, but not ROS. In the absence of pre-activation, TANs are capable of activating CD8 T-cells, but specifically induce the apoptosis of non-activated CD8 + CD69 - cells. Despite this contradictive effect on T-cell function, we show in vivo that TANs suppress the anti-tumor effect of CD8 T-cells and abolish their ability to delay tumor growth. Our results add another important layer on the understanding of the possible mechanisms by which TANs regulate the anti-tumor immune response mediated by CD8 T-cells, therefore promoting a tumor-supportive environment.

  2. Histogenesis of lung tumors induced in rats by inhalation of α emitters. An overview

    International Nuclear Information System (INIS)

    Masse, R.

    1979-01-01

    Recent reviews have shown that simular risks coefficients for α irradiation of the lung in man could be deduced using epidemiological or experimental data in animals. Most experimental data were obtained in rats. In this overview the histogenesis and ultrastructure of lung tumors are presented. Only few tumors originating from lung parenchyma could be considered as non relevant for extrapolation to man. Most tumors arose from axial bronchus or bronchioles and their histogenesis was very similar to what is known in man. The only striking difference between the two species was related to the growth characteristics of the tumors. Tumors in rat, frequently papillary, acquired only slowly their full malignancy. They seem to be only potentially malignant. Two main types of tumors were considered: bronchogenic (B) and bronchiolo alveolar (b.a.) carcinomas. Survivals of the cancerous rats were log normal distribution in a given group of dose and were supposed to reflect latent period. No difference was found between B and b.a. carcinomas; geometric standard deviation did not increase when doses decrease. Since risk coefficients were found to increase when dose decreased, and through latent period fitted well with a power function of dose within the dose range studied, it is observed that the latent period can not be deduced by extrapolation at low doses. b.a. carcinomas prevailed at low doses; the relevance of this observation to man is however dubious since combined action with environmental carcinogens led to a high prevalence of B. carcinomas. Though genetic and immune surveillance are factors of some importance in the determination of the tumors it is suggested that critical individuals will be mostly multi-exposed individuals

  3. GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth.

    Science.gov (United States)

    Esquerré, Michaël; Momot, Marie; Goubier, Anne; Gonindard, Christophe; Leung-Theung-Long, Stéphane; Misseri, Yolande; Bissery, Marie-Christine

    2017-03-13

    GTL001 is a bivalent therapeutic vaccine containing human papillomavirus (HPV) 16 and HPV18 E7 proteins inserted in the Bordetella pertussis adenylate cyclase (CyaA) vector intended to prevent cervical cancer in HPV-infected women with normal cervical cytology or mild abnormalities. To be effective, therapeutic cervical cancer vaccines should induce both a T cell-mediated effector response against HPV-infected cells and a robust CD8 + T-cell memory response to prevent potential later infection. We examined the ability of GTL001 and related bivalent CyaA-based vaccines to induce, in parallel, effector and memory CD8 + T-cell responses to both vaccine antigens. Intradermal vaccination of C57BL/6 mice with GTL001 adjuvanted with a TLR3 agonist (polyinosinic-polycytidylic acid) or a TLR7 agonist (topical 5% imiquimod cream) induced strong HPV16 E7-specific T-cell responses capable of eradicating HPV16 E7-expressing tumors. Tumor-free mice also had antigen-specific memory T-cell responses that protected them against a subsequent challenge with HPV18 E7-expressing tumor cells. In addition, vaccination with bivalent vaccines containing CyaA-HPV16 E7 and CyaA fused to a tumor-associated antigen (melanoma-specific antigen A3, MAGEA3) or to a non-viral, non-tumor antigen (ovalbumin) eradicated HPV16 E7-expressing tumors and protected against a later challenge with MAGEA3- and ovalbumin-expressing tumor cells, respectively. These results show that CyaA-based bivalent vaccines such as GTL001 can induce both therapeutic and prophylactic anti-tumor T-cell responses. The CyaA platform can be adapted to different antigens and adjuvants, and therefore may be useful for developing other therapeutic vaccines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  5. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia

    Science.gov (United States)

    Tatini, Francesca; Ratto, Fulvio; Centi, Sonia; Landini, Ida; Nobili, Stefania; Witort, Ewa; Fusi, Franco; Capaccioli, Sergio; Mini, Enrico; Pini, Roberto

    2014-03-01

    Gold nanorods (GNRs) are optimal contrast agents for near-infrared (NIR) laser-induced photothermal ablation of cancer. Selective targeting of cancer cells can be pursued by attaching specific molecules on the particles surface or by the use of cellular vectors loaded with GNRs. We performed and tested various targeting approaches by means of GNRs functionalization with (i) antibodies against Cancer-Antigen-125 (CA-125), (ii) inhibitors of the carbonic anhydrase 9 (CA9) and (iii) by the use of macrophages as cellular vectors. GNRs with a NIR absorption band at 810 nm were synthesized and PEGylated. For GNRs functionalization the targets of choice were CA-125, the most widely used biomarker for ovarian cancer, and CA9, overexpressed by hypoxic cells which are often located within the tumor mass. In the case of cellular vectors, to be used as Trojan horses naturally able to reach tumor areas, the surface of PEG-GNRs was modified to achieve unspecific interactions with macrophage membranes. In all cases the cellular uptake was evaluated by silver staining and cell viability was assessed by MTT test. Then tests of laser-induced GNRs-mediated hyperthermia were performed in various cell cultures illuminating with an 810 nm diode laser (CW, 0,5-4 W/cm2 power density, 1-10 min exposure time) and cell death was evaluated. Each targeting strategy we tested may be used alone or in combination, to maximize the tumor loading and therefore the efficiency of the laser treatment. Moreover, a multiple approach could help when the tumor variability interferes with the targeting directed to a single marker.

  7. Edema‐induced changes in tumor cell surviving fraction and tumor control probability in  131Cs permanent prostate brachytherapy implant patients

    Science.gov (United States)

    Jones, Heather A.; Huq, M. Saiful; Smith, Ryan P.

    2013-01-01

    The study is designed to investigate the effect of edema on the delivered dose, tumor cell surviving fraction (SF), and tumor control probability (TCP) in the patients of prostate cancer who underwent  131Cs permanent seed implantation. The dose reduction, the SF, and the TCP for edematous prostate implants were calculated for 31 patients who underwent real‐time  131Cs permanent seed implantation for edema half‐lives (EHL), ranging from 4 days to 34 days and for edema magnitudes (M0) varying from 5% to 60% of the actual prostate volume. A dose reduction in  131Cs implants varied from 1.1% (for EHL=4 days and M0=5%) to 32.3% (for EHL=34 days and M0=60%). These are higher than the dose reduction in  125I implants, which vary from 0.3% (for EHL=4 days and M0=5%) to 17.5% (for EHL=34 days and M0=60%). As EHL increased from 4 days to 34 days and edema magnitude increased from 5% to 60%, the natural logarithmic value of SF increased by 4.57 and the TCP decreased by 0.80. Edema induced increase in the SF and decrease in the TCP in  131Cs seed implants, is significantly more pronounced in a combination of higher edema magnitude and larger edema half‐lives than for less edema magnitude and lower edema half‐lives, as compared for M0=60% and EHL=34, and M0=5% and EHL=4 days. PACS number: 87.53.Jw PMID:23318378

  8. Conversion of Tumors into Autologous Vaccines by Intratumoral Injection of α-Gal Glycolipids that Induce Anti-Gal/α-Gal Epitope Interaction

    Directory of Open Access Journals (Sweden)

    Uri Galili

    2011-01-01

    Full Text Available Anti-Gal is the most abundant antibody in humans, constituting 1% of immunoglobulins. Anti-Gal binds specifically α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R. Immunogenicity of autologous tumor associated antigens (TAA is greatly increased by manipulating tumor cells to express α-gal epitopes and bind anti-Gal. Glycolipids with αgal epitopes (α-gal glycolipids injected into tumors insert into the tumor cell membrane. Anti-Gal binding to the multiple α-gal epitopes de novo presented on the tumor cells results in targeting of these cells to APC via the interaction between the Fc portion of the bound anti-Gal and Fcγ; receptors on APC. The APC process and present immunogenic TAA peptides and thus, effectively activate tumor specific CD4+ helper T cells and CD8+ cytotoxic T cells which destroy tumor cells in micrometastases. The induced immune response is potent enough to overcome immunosuppression by Treg cells. A phase I clinical trial indicated that α-gal glycolipid treatment has no adverse effects. In addition to achieving destruction of micrometastases in cancer patients with advance disease, α-gal glycolipid treatment may be effective as neo-adjuvant immunotherapy. Injection of α-gal glycolipids into primary tumors few weeks prior to resection can induce a protective immune response capable of destroying micrometastases expressing autologous TAA, long after primary tumor resection.

  9. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  10. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor.

    Directory of Open Access Journals (Sweden)

    Anna V Miller

    Full Text Available Paclitaxel (Taxol-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/- MEFs (mouse embryonic fibroblasts, the bim(-/- mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/- MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/- MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.

  11. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  12. Antisense oligonucleotide mediated knockdown of HOXC13 affects cell growth and induces apoptosis in tumor cells and over expression of HOXC13 induces 3D-colony formation.

    Science.gov (United States)

    Kasiri, Sahba; Ansari, Khairul I; Hussain, Imran; Bhan, Arunoday; Mandal, Subhrangsu S

    2013-01-01

    HOXC13 is a homeobox containing gene that plays crucial roles in hair development and origin of replication. Herein, we investigated the biochemical functions of HOXC13 and explored its potential roles in tumor cell viability. We have designed a phosphorothioate based antisense-oligonucleotide that specifically knockdown HOXC13 in cultured cells. Cell viability and cytotoxicity assays demonstrated that HOXC13 is essential for cell growth and viability. Antisense-mediated knockdown of HOXC13 affected the cell viability and induced apoptosis in cultured tumor cells. HOXC13 regulates the expression of cyclins and antisense-mediated knockdown of HOXC13 resulted in cell cycle arrest and apoptosis in colon cancer cells. Finally over expression of HOXC13 resulted in 3D-colony formation in soft-agar assay indicating its potential roles in cell proliferation and tumorigenesis.

  13. Determination of boron distribution in a tumor induced in a rat brain

    International Nuclear Information System (INIS)

    Pazirandeh, Ali; Zargar, Maysam; Jameii, Behnam

    2006-01-01

    The success of BNCT is partly depends on the uniformity of boron carrier distribution in tumor. Rat model implanted with C6, 9L and F98 glioma cells has been widely utilized for the assessment of new therapeutic modalities. An experiment is undergoing on a rat brain to measure the boron distribution in tumor and rat brain at times after injection of glioma cells. After growth of tumor in rat brain, the BSH will be injected into the rat body. Then the rat is sacrificed and the brain is dissected. The frozen brain slices sandwiched with two pieces of CR-39 are bombarded with thermal neutrons. The alpha tracks registered on CR-39 after etching the plastic in NaOH are viewed on an optical microscopy equipped with a CCD. The boron distribution is assessed by scanning alpha tracks. (author)

  14. Cohabitation with an Ehrlich tumor-bearing cagemate induces immune but not behavioral changes in male mice.

    Science.gov (United States)

    Machado, Thalita R M; Alves, Glaucie J; Quinteiro-Filho, Wanderley M; Palermo-Neto, João

    2017-02-01

    Cohabitation with Ehrlich ascitic tumor-injected conspecifics induces behavioral, neurochemical, endocrine and immune changes indicative of stress and immune impairment in female mice. The present work analyzed the effects of similar cohabitation in Swiss and Balb/C male mice. At least 12 pairs of male mice were divided into a control group and an experimental group. On experimental day 1 (ED1), one animal within each experimental pair was inoculated with 5×10 6 Ehrlich tumor cells intraperitoneally (i.p.); the other animal was kept undisturbed and was referred to as the CSP (companion of a sick partner). One male mouse of each control pair was treated i.p. with 0.9% NaCl (1mL/kg); the other animal (the CHP, companion of a healthy partner) was kept undisturbed. Cohabitation with a sick partner for 11days did not induce any behavioral, hypothalamic noradrenergic, corticosterone or adrenal weight changes in the Swiss CSP male mice compared to those of the Swiss CHP group. However, impairments in neutrophil phagocytosis and oxidative burst as well as increased levels of catecholamines were observed in Swiss and Balb/C CSP mice relative to CHP male animals of the same strains on ED11 and ED14, respectively. Moreover, after a challenge with 5×10 6 Ehrlich tumor cells on ED11 of cohabitation, the number and concentration of tumor cells found in the ascitic fluid were higher in the Swiss CSP male mice than in the CHP mice. These data suggest that the immune changes observed in Swiss and Balb/C male CSP mice after cohabitation with a sick cagemate might, ultimately, depend on the changes induced by catecholamines, as previously reported for CSP female mice. However, contrary to that reported in Swiss CSP female mice, changes in behavioral and hypothalamic noradrenaline activity were not found in the Swiss CSP male mice analyzed in this work. This fact suggests that male and female CSP mice might use similar immune but different CNS strategies against the threats posed by

  15. Levo-Corydalmine Alleviates Neuropathic Cancer Pain Induced by Tumor Compression via the CCL2/CCR2 Pathway

    Directory of Open Access Journals (Sweden)

    Yahui Hu

    2017-06-01

    Full Text Available Background: Tumor compression-induced pain (TCIP is a complex pathological cancer pain. Spinal glial cells play a critical role in maintenance of cancer pain by releasing proinflammatory cytokines and chemokines. In this study, we verified the role of levo-corydalmine (l-CDL on TCIP. Methods: Spontaneous pain, paw withdrawal threshold and latency were assessed using TCIP mouse model. Immunofluorescence was used to identify the reactions of glia. RT-PCR and western blot or ELISA were used to determine mRNA or protein expression of tumor necrosis factor-α (TNF-α, interlukin-1β (IL-1β, CC chemokine ligand 2 (CCL2 and chemotactic cytokine receptor 2 (CCR2 in vivo and in vitro. Results: l-CDL significantly attenuated TCIP hypersensitivity, accompanying with downregulation of TNF-α and IL-1β expression levels and declined astrocytes and microglial activation. It also significantly decreased the expression of the mRNA and protein level for CCL2 and CCR2. Further, l-CDL could suppress TNF-α-induced astrocytes activation and IL-1β expression through downregulating the CCL2/CCR2. Besides, CCL2-induced BV-microglia activation and inflammatory factors secretion were suppressed by l-CDL via CCR2. Conclusions: Suppression of CCL2/CCR2 by l-CDL may contribute to alleviate TCIP, offering an alternative medication for TCIP.

  16. Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression

    Directory of Open Access Journals (Sweden)

    Hosseini F.

    2017-09-01

    Full Text Available Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of sprouting along an existing parent blood vessel, with a mathematical model of sprout progression in the extracellular matrix (ECM in response to some tumor angiogenic factors (TAFs. We perform simulations of the siting of capillary sprouts on an existing blood vessel using finite difference approximation of the dynamic equations of some angiogenesis activators and inhibitors. Angiogenesis activators are chemicals secreted by hypoxic tumor cells for initiating angiogenesis, and inhibitors of the angiogenesis are chemicals that are produced around every new sprout during tumor angiogenesis to inhibit the formation of further sprouts as a feedback of sprouting in angiogenesis. Moreover, for modelling sprout progression in ECM, we use three equations for the motility of endothelial cells at the tip of the activated sprouts, the consumption of TAF and the production and uptake of Fibronectin by endothelial cells. Results: Coupling these two basic models not only does provide a better time estimation of angiogenesis process, but also it is more compatible with reality. Conclusion: This model can be used to provide basic information for angiogenesis in the related studies. Related simulations can estimate the position and number of sprouts along parent blood vessel during the initial steps of angiogenesis and models the process of sprout progression in ECM until they vascularize a tumor.

  17. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-01-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-α)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-α induces various biological effects on vascular cells, TNF-α dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-α concentrations, we adopted the lower TNF-α (0.2 ng/ml) to rule out the possible involvement of other TNF-α-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-α-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-α-induced nuclear factor-kappaB (NF-κB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-α. Inhibition of ERK, JNK, or NF-κB attenuates TNF-α-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-α induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-κB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-α. Although AP-1 activation by the lower TNF-α was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-α-induced adhesion molecule expression

  18. Ga-68 DOTATOC PET/CT-Guided Biopsy and Cryoablation with Autoradiography of Biopsy Specimen for Treatment of Tumor-Induced Osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Maybody, Majid, E-mail: maybodym@mskcc.org [Memorial Sloan Kettering Cancer Center, Interventional Radiology Service (United States); Grewal, Ravinder K. [Memorial Sloan Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Healey, John H. [Memorial Sloan Kettering Cancer Center, Orthopedic Surgical Oncology Service, Department of Surgery (United States); Antonescu, Cristina R. [Memorial Sloan Kettering Cancer Center, Department of Pathology (United States); Fanchon, Louise [Memorial Sloan Kettering Cancer Center, Department of Physics (United States); Hwang, Sinchun [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States); Carrasquillo, Jorge A. [Memorial Sloan Kettering Cancer Center, Molecular Imaging and Therapy Service, Department of Radiology (United States); Kirov, Assen [Memorial Sloan Kettering Cancer Center, Department of Physics (United States); Farooki, Azeez [Memorial Sloan Kettering Cancer Center, Department of Medicine (United States)

    2016-09-15

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by small benign tumors of mesenchymal origin also known as phosphaturic mesenchymal tumors mixed connective tissue variant. Excellent prognosis is expected with eradication of the culprit tumor. These small tumors are notoriously difficult to localize with conventional imaging studies; this often leads to an extensive work up and prolonged morbidity. We report a patient with clinical diagnosis of TIO whose culprit tumor was localized with Ga-68 DOTATOC PET/CT and MRI. Biopsy and cryoablation were performed under Ga-68 DOTATOC PET/CT guidance. Autoradiography of the biopsy specimen was performed and showed in situ correlation between Ga-68 DOTATOC uptake and histopathology with millimeter resolution.

  19. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors.

    Science.gov (United States)

    Peller, Michael; Willerding, Linus; Limmer, Simone; Hossann, Martin; Dietrich, Olaf; Ingrisch, Michael; Sroka, Ronald; Lindner, Lars H

    2016-09-10

    The efficacy of systemically applied, classical anti-cancer drugs is limited by insufficient selectivity to the tumor and the applicable dose is limited by side effects. Efficacy could be further improved by targeting of the drug to the tumor. Using thermosensitive liposomes (TSL) as a drug carrier, targeting is achieved by control of temperature in the target volume. In such an approach, effective local hyperthermia (40-43°C) (HT) of the tumor is considered essential but technically challenging. Thus, visualization of local heating and drug release using TSL is considered an important tool for further improvement. Visualization and feasibility of chemodosimetry by magnetic resonance imaging (MRI) has previously been demonstrated using TSL encapsulating both, contrast agent (CA) and doxorubicin (DOX) simultaneously in the same TSL. Dosimetry has been facilitated using T1-relaxation time change as a surrogate marker for DOX deposition in the tumor. To allow higher loading of the TSL and to simplify clinical development of new TSL formulations a new approach using a mixture of TSL either loaded with DOX or MRI-CA is suggested. This was successfully tested using phosphatidyldiglycerol-based TSL (DPPG2-TSL) in Brown Norway rats with syngeneic soft tissue sarcomas (BN175) implanted at both hind legs. After intravenous application of DOX-TSL and CA-TSL, heating of one tumor above 40°C for 1h using laser light resulted in highly selective DOX uptake. The DOX-concentration in the heated tumor tissue compared to the non-heated tumor showed an almost 10-fold increase. T1 and additional MRI surrogate parameters such as signal phase change were correlated to intratumoral DOX concentration. Visualization of DOX delivery in the sense of a chemodosimetry was demonstrated. Although phase-based MR-thermometry was affected by CA-TSL, phase information was found suitable for DOX concentration assessment. Local differences of DOX concentration in the tumors indicated the need for

  20. Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer.

    Science.gov (United States)

    Ambs, Stefan; Glynn, Sharon A

    2011-02-15

    Inducible nitric oxide synthase (NOS2) is an inflammation responsive enzyme (EC 1.14.13.39) that is induced during acute and chronic inflammation and tissue injury as part of the host defense and wound healing process. NOS2 up-regulation leads to increased nitric oxide (NO) production, the means by which this enzyme can initiate NO-dependent signal transduction, influence the redox state of cells and induce modifications of proteins, lipids, and DNA. Aberrant expression of NOS2 has been observed in many types of human tumors. In breast cancer, increased NOS2 is associated with markers of poor outcome and decreased survival. Growth factor and cytokine signaling, tissue remodeling, NF-kB activation, and hypoxia are candidate mechanisms that induce NOS2 in tumor epithelial and tumor-infiltrating cells. NOS2 induction will trigger the release of variable amounts of NO into the tumor microenvironment and can activate oncogenic pathways, including the Akt, epidermal growth factor receptor and c-Myc signaling pathways, and stimulate tumor microvascularization. Constitutively increased NO levels may also select for mutant p53 cells to overcome the tumor suppressor function of NO-activated wild-type p53. More recent findings suggest that NO induces stem cell-like tumor characteristics in breast cancer. In this review, we will discuss the effects of NO in tumor biology and disease progression with an emphasis on breast cancer, and will examine the mechanisms that link increased NO to a basal-like transcription pattern in human breast tumors and poor disease outcome.

  1. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  2. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.

  3. Pathomorphology of laser-induced interstitial tumor thermotherapy for the liver; Pathomorphologie der Laser-induzierten interstitiellen Tumor-Thermotherapie an der Leber

    Energy Technology Data Exchange (ETDEWEB)

    Filler, T.J.; Peuker, E.T. [Inst. fuer Anatomie, Univ. Muenster (Germany); Bremer, C. [Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, MA (United States); Bankert, J.; Kreft, G. [Inst. fuer klinische Radiologie, Univ. Muenster (Germany); Reimer, P. [Zentralinst. fuer Bildgebende Diagnostik, Staedtisches Klinikum Karlsruhe (Germany)

    2001-02-01

    The aim of this study was to analyse pathomorphological findings after treatment with laser induced tumor thermotherapy (LITT) on liver tissue and to correlate the results with magnetic resonance imaging. LITT was performed ex vivo and in vivo using a Neodym-YAG-Laser. Lesions were monitored by MR-thermometry ex vivo and by contrast-enhanced MRI in vivo. After LITT the lesions were examined macroscopically, histologically and electronmicrosopically. LITT-induced tissue damage was qualitatively evaluated, classified, and quantified by means of digital image analysis. Four different zones of tissue damage were identified within the lesions. Adjacent to the applicator the tissue was completely ablated while more peripheral lesions exhibited only sublethal cell damages seen by EM. In vivo the pattern of tissue injury followed the lobular architecture of the liver tissue. Ultrastructural examination revealed only in areas of minor tissue injury intact sinusoidal patterns. MRI overestimated the diameter of the core zone of complete tissue ablation both ex vivo and to a lesser extent in vivo. (orig.) [German] Ziel der Untersuchungen war die Darstellung pathomorphologischer Befunde nach LITT (Laser-induzierte interstitielle Tumor-Thermotherapie) an Lebergewebe und deren Korrelate in der Kernspintomographie. Die LITT wurde ex- und in vivo unter Verwendung eines Neodym-YAG-Lasers durchgefuehrt. Die LITT-bedingten Laesionen wurden ex vivo mittels kontinuierlichem MR-Thermomonitoring und in vivo mittels KM-MRT untersucht. Nach Beendigung mit LITT wurden die Praeparate vermessen und histologisch sowie elektronenmikroskopisch untersucht. Die Veraenderungen wurden qualitativ erfasst, klassifiziert und mittels digitaler Bildanalyse quantifiziert. Die Laesionen konnten in 4 Schaedigungszonen eingeteilt werden. Zentral fand sich eine komplette Ablation, in der Uebergangszone ultrastrukturell fassbare subletale Zellschaedigungen. In vivo hielt sich die Ausdehnung an die lobulaere

  4. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  5. Anti-tumor activities of andrographolide, a diterpene from Andrographis paniculata, by inducing apoptosis and inhibiting VEGF level.

    Science.gov (United States)

    Zhao, Feng; He, En-Qi; Wang, Lu; Liu, Ke

    2008-01-01

    Andrographolide (1), a diterpenoid lactone isolated from a traditional herb (Andrographis paniculata), is known to possess potent anti-inflammatory activity. In this study, we investigated the anti-tumor effect of 1 on various cancer cell lines in vitro. It induced apoptosis of prostate cancer (PC-3) cells (the most sensitive cell line among the cell lines screened) via the activation of caspase 3, up-regulation of bax, and down-regulation of bcl-2. Furthermore, its inhibitory activity on the level of vascular endothelial growth factor was also verified by ELISA.

  6. Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Berg, E.A. van den; Fiers, W.; Dooijewaard, G.

    1990-01-01

    Endothelial cells play an important role in the regulation of fibrinolysis by the production of several key regulatory proteins. The cytokines tumor necrosis factor (TNF), lymphotoxin, and interleukin-1 (IL-1), but not interleukin-6, increase the production of plasminogen activator inhibitor-1

  7. Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Stott, Brandon; Cecic, Ivana; Payne, Peter; Sun, Jinghai

    2006-02-01

    Acute phase response is an effector process orchestrated by the innate immune system for the optimal mobilization of the resources of the organism distant from the local insult site needed in the execution of a host-protecting reaction. Our research has shown that mice bearing tumors treated by photodynamic therapy (PDT) exhibit the three major hallmarks of acute phase response: release of acute phase reactants, neutrophilia, and pituitary/adrenal axis activation. Of particular interest in this study were acute phase proteins that have a pivotal role in the clearance of dead cells, since the occurrence of this process in PDT-treated tumors emerges as a critical event in the course of PDT-associated host response. It is shown that this type of acute phase reactants, including complement proteins (C3, C5, C9, mannose-binding lectin, and ficolin A) and related pentraxins (serum amyloid P component and PTX3), are upregulated following tumor PDT and accumulate in the targeted lesions. Based on the recently accumulated experimental evidence it is definitely established that the acute phase response is manifested in the hosts bearing PDT-treated tumors and it is becoming clear that this effector process is an important element of PDT-associated host response bearing in impact on the eventual outcome of this therapy.

  8. Systemic elevation of PTEN induces a tumor-suppressive metabolic state

    NARCIS (Netherlands)

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C. J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial

  9. Deletion of tumor progression locus 2 attenuates alcohol induced hepatic inflammation

    Science.gov (United States)

    BACKGROUND: The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine threonine kinase that functions as a critical regulator of inflammator...

  10. IT-141, a Polymer Micelle Encapsulating SN-38, Induces Tumor Regression in Multiple Colorectal Cancer Models.

    Science.gov (United States)

    Carie, Adam; Rios-Doria, Jonathan; Costich, Tara; Burke, Brian; Slama, Richard; Skaff, Habib; Sill, Kevin

    2011-01-01

    Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.

  11. IT-141, a Polymer Micelle Encapsulating SN-38, Induces Tumor Regression in Multiple Colorectal Cancer Models

    Directory of Open Access Journals (Sweden)

    Adam Carie

    2011-01-01

    Full Text Available Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101 that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.

  12. Hypoxia Inducible Factor-independent functions for the von Hippel-Lindau tumor suppressor gene

    NARCIS (Netherlands)

    Lolkema, Martijn Paul Jung Kyu

    2006-01-01

    Inactivating mutations of the von Hippel-Lindau gene (VHL) on chromosome 3p have been associated with the autosomal dominant VHL disease, characterized by extensively vascularized tumors and cysts in different organs, as well as the majority of conventional kidney cancers. The VHL gene product

  13. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  14. Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism.

    Directory of Open Access Journals (Sweden)

    Jen-Chieh Tseng

    Full Text Available Physical measurement of tumor volume reduction is the most commonly used approach to assess tumor progression and treatment efficacy in mouse tumor models. However, it is relatively insensitive, and often requires long treatment courses to achieve gross physical tumor destruction. As alternatives, several non-invasive imaging methods such as bioluminescence imaging (BLI, fluorescence imaging (FLI and positron emission tomography (PET have been developed for more accurate measurement. As tumors have elevated glucose metabolism, 18F-fludeoxyglucose (18F-FDG has become a sensitive PET imaging tracer for cancer detection, diagnosis, and efficacy assessment by measuring alterations in glucose metabolism. In particular, the ability of 18F-FDG imaging to detect drug-induced effects on tumor metabolism at a very early phase has dramatically improved the speed of decision-making regarding treatment efficacy. Here we demonstrated an approach with FLI that offers not only comparable performance to PET imaging, but also provides additional benefits, including ease of use, imaging throughput, probe stability, and the potential for multiplex imaging. In this report, we used sorafenib, a tyrosine kinase inhibitor clinically approved for cancer therapy, for treatment of a mouse tumor xenograft model. The drug is known to block several key signaling pathways involved in tumor metabolism. We first identified an appropriate sorafenib dose, 40 mg/kg (daily on days 0-4 and 7-10, that retained ultimate therapeutic efficacy yet provided a 2-3 day window post-treatment for imaging early, subtle metabolic changes prior to gross tumor regression. We then used 18F-FDG PET as the gold standard for assessing the effects of sorafenib treatment on tumor metabolism and compared this to results obtained by measurement of tumor size, tumor BLI, and tumor FLI changes. PET imaging showed ~55-60% inhibition of tumor uptake of 18F-FDG as early as days 2 and 3 post-treatment, without

  15. Radiation-induced changes of telomerase activity in a human Ewing xenograft tumor

    International Nuclear Information System (INIS)

    Schuck, A.; Koenemann, S.; Schleifer, T.; Horn, K.; Hesselmann, S.; Willich, N.; Poremba, C.; Wai, D.; Braun, Y.; Frodermann, B.; Schaefer, K.L.; Diallo, R.I.; Lanvers, C.; Ruebe, C.E.; Ruebe, C.; Dockhorn-Dworniczak, B.

    2002-01-01

    Aim: The effect of ionizing irradiation on telomerase activity and further associated biological factors was evaluated in a human Ewing tumor xenograft model on nude mice. Material and Methods: The human Ewing tumor cell line STA-ET-1 was established in a nude mouse model. Initially, the dose-response relationship for the tumor model was established. For the radiation experiments two dose levels were chosen: 5 Gy and 30 Gy. After 5 Gy, there was no significant growth delay whereas after 30 Gy there was a marked growth delay without the induction of a complete remission. Tumors were examined 6, 12, 24, 48, 72, and 96 hours post irradiation. After irradiation with 30 Gy further time points were 6, 9, 12 and 15 days. For each dose and time group, three tumors were evaluated. Results: There was a reduction of telomerase activity after 5 Gy to 50% (not statistically significant) after 3 days; however, after 30 Gy there was a reduction of telomerase activity to 23% of the initial value after 6 days (p=0.001). Telomerase activity correlated with the expression of human telomerase reverse transcriptase (hTERT), but not with the expression of telomerase-associated protein (TP1) and human telomerase RNA (hTR). The maximal amounts of necrosis or apoptosis after 30 Gy were 19% and 6,9%, respectively. Conclusions: Ionizing radiation reduces telomerase activity and the expression of hTERT which cannot be explained by the induction of necrosis or apoptosis alone. The reduction of telomerase activity may contribute to delayed cell death after radiotherapy. The combined use of radiation and specific telomerase inhibitors may be a potentially synergistic treatment strategy. (orig.) [de

  16. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    Science.gov (United States)

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  17. STAT3/p53 pathway activation disrupts IFN-β-induced dormancy in tumor-repopulating cells.

    Science.gov (United States)

    Liu, Yuying; Lv, Jiadi; Liu, Jinyan; Liang, Xiaoyu; Jin, Xun; Xie, Jing; Zhang, Le; Chen, Degao; Fiskesund, Roland; Tang, Ke; Ma, Jingwei; Zhang, Huafeng; Dong, Wenqian; Mo, Siqi; Zhang, Tianzhen; Cheng, Feiran; Zhou, Yabo; Jia, Qingzhu; Zhu, Bo; Kong, Yan; Guo, Jun; Zhang, Haizeng; Hu, Zhuo-Wei; Cao, Xuetao; Qin, F Xiao-Feng; Huang, Bo

    2018-03-01

    Dynamic interaction with the immune system profoundly regulates tumor cell dormancy. However, it is unclear how immunological cues trigger cancer cell-intrinsic signaling pathways for entering into dormancy. Here, we show that IFN-β treatment induced tumor-repopulating cells (TRC) to enter dormancy through an indolamine 2,3-dioxygenase/kynurenine/aryl hydrocarbon receptor/p27-dependent (IDO/Kyn/AhR/p27-dependent) pathway. Strategies to block this metabolic circuitry did not relieve dormancy, but led to apoptosis of dormant TRCs in murine and human melanoma models. Specifically, blocking AhR redirected IFN-β signaling to STAT3 phosphorylation through both tyrosine and serine sites, which subsequently facilitated STAT3 nuclear translocation and subsequent binding to the p53 promoter in the nucleus. Upregulation of p53 in turn disrupted the pentose phosphate pathway, leading to excessive ROS production and dormant TRC death. Additionally, in melanoma patients, high expression of IFN-β correlated with tumor cell dormancy. Identification of this mechanism for controlling TRC dormancy by IFN-β provides deeper insights into cancer-immune interaction and potential new cancer immunotherapeutic modalities.

  18. Tumor-Induced Osteomalacia Caused by Primary Fibroblast Growth Factor 23 Secreting Neoplasm in Axial Skeleton: A Case Report

    Directory of Open Access Journals (Sweden)

    Gunjan Y. Gandhi

    2012-01-01

    Full Text Available We report the case of a 66-year-old woman with tumor-induced osteomalacia (TIO caused by fibroblast growth factor 23 (FGF-23 secreting mesenchymal tumor localized in a lumbar vertebra and review other cases localized to the axial skeleton. She presented with nontraumatic low back pain and spontaneous bilateral femur fractures. Laboratory testing was remarkable for low serum phosphorus, phosphaturia, and significantly elevated serum FGF-23 level. Magnetic resonance imaging (MRI of the lumbar spine showed a focal lesion in the L-4 vertebra which was hypermetabolic on positron emission tomography (PET scan. A computed tomography (CT guided needle biopsy showed a low grade spindle cell neoplasm with positive FGF-23 mRNA expression by reverse transcriptase polymerase chain reaction (RT-PCR, confirming the diagnosis of a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT. The patient elected to have surgery involving anterior resection of L-4 vertebra with subsequent normalization of serum phosphorus. Including the present case, we identified 12 cases of neoplasms localized to spine causing TIO. To our knowledge, this paper represents the first documented case of lumbar vertebra PMT causing TIO. TIO is a rare metabolic bone disorder that carries a favorable prognosis. When a lesion is identifiable, surgical intervention is typically curative.

  19. Laser-induced thermotherapy of lung metastases and primary lung tumors; Laserinduzierte Thermotherapie von Lungenmetastasen und primaeren Lungentumoren

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J. (Institut fuer Diagnostische und Interventionelle Radiologie, Klinikum der J.-W.-Goethe-Universitaet Frankfurt; Institut fuer Diagnostische und Interventionelle Radiologie, Klinikum der J.-W.-Goethe-Universitaet, Theodor-Stern-Kai 7, 60590, Frankfurt); Fieguth, H.G. (Klinik fuer Thorax-, Herz- und thorakale Gefaesschirurgie, Klinikum der J.-W.-Goethe-Universitaet Frankfurt); Eichler, K.; Straub, R.; Lehnert, T.; Zangos, S.; Mack, M. (Institut fuer Diagnostische und Interventionelle Radiologie, Klinikum der J.-W.-Goethe-Universitaet Frankfurt)

    2004-07-01

    We present laser-induced thermotherapy (LITT) of primary and secondary lung tumors analysing indications and technical concepts. Thirty patients with lung metastases of different primary tumors (n=24) as well as localized lung tumors (n=6) were prospectively treated in 41 sessions using laser-induced thermotherapy (LITT). An MR-compatible puncture system was used with direct puncture technique. The puncture was performed via CT guidance in care vision technique. Eight patients were thermoablated using MR tomographical monitoring, 22 patients using CT monitoring. Local therapy effects, tumor control rate, side effects, complications, and survival were evaluated. In 74% of cases (28/38 lesions) of 24 patients with lung metastases and in all cases of the 6 patients with lung carcinoma a complete local ablation could be achieved. The complication rate (pneumothorax) was 9,8%. One patient with bronchial carcinoma had to be thoracotomized and resected. 93% of the patients are still alive. Percutaneous LITT of lung tumors permits a complete ablation of lung metastases and lung carcinomas with a low complication rate. Indications for the procedure were defined for patients with no more than 5 metastases up to 3 cm in size. (orig.) [German] Wir stellen nachfolgend die Ergebnisse der laserinduzierten Thermotherapie (LITT) primaerer und sekundaerer Lungentumoren vor und analysieren die Indikationsstellung und die Interventionstechnik. Dreissig Patienten mit Lungenmetastasen unterschiedlicher Primaertumoren (n=24) sowie lokalisierten Bronchialkarzinomen (n=6) wurden prospektiv in 41 Sitzungen mittels MR-gesteuerter LITT therapiert. Zum Einsatz kam ein MR-kompatibles Punktionssystem in direkter Punktionstechnik; die Punktion erfolgte jeweils unter CT-Steuerung in Care-vision-Technik. Acht Patienten wurden mittels MR-tomographischem Monitoring thermoablatiert, 22 Patienten mittels CT-Monitoring. Evaluiert wurden die lokalen Therapieeffekte, Tumorkontrollrate, und die Frage von

  20. 17β-estradiol-linked nitro-L-arginine as simultaneous inducer of apoptosis in melanoma and tumor-angiogenic vascular endothelial cells.

    Science.gov (United States)

    Roy, Sayantani; Reddy, Bathula Surendar; Sudhakar, Godeshala; Kumar, Jerald Mahesh; Banerjee, Rajkumar

    2011-04-04

    Aggressive melanoma is commonly associated with rapid angiogenic growth in tumor mass, tumor cells acquiring apoptosis resistance, inhibition of cellular differentiation etc. Designing a single anticancer molecule which will target all these factors simultaneously is challenging. In the pretext of inciting anticancer effect through inhibiting nitric oxide synthase (NOS) via estrogen receptors (ER) in ER-expressing skin cancer cells, we developed an estrogen-linked L-nitro-arginine molecule (ESAr) for inciting anticancer effect in melanoma cells. ESAr showed specific anticancer effect through diminishing aggressiveness and metastatic behavior in melanoma cells and tumor. In comparison, ESAr showed significantly higher antiproliferative effect than parent molecule L-nitroarginine methyl ester (L-NAME, a NOS inhibitor) through induction of prominent apoptosis in melanoma cells. ESAr-pretreated aggressive melanoma cells could not form tumor possibly because of transformation/differentiation into epithelial-type cells. Furthermore, its antiangiogenic effect was demonstrated through ESAr-induced antiproliferation in HUVEC cells and apoptosis-induction in tumor-associated vascular endothelial cells, thereby significantly restricting severe growth in melanoma tumor. The targeting moiety, estrogen, at the therapeutic concentration of ESAr has apparently no effect in tumor-growth reduction. Albeit, no specific NOS-inhibition was observed, but ESAr could simultaneously induce these three cancer-specific antiaggressiveness factors, which the parent molecule could not induce. Our data rationalize and establish a new use of estrogen as a ligand for potentially targeting multiple cellular factors for treating aggressive cancers.

  1. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  2. MRI of radiation-induced tumors of the head and neck in post-radiation nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Abrigo, Jill M.; King, Ann D.; Wong, Jeffrey K.T.; Ahuja, Anil T. [The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Diagnostic Radiology and Organ Imaging, Faculty of Medicine, Hong Kong S.A.R. (China); Leung, Sing Fai [The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Clinical Oncology, Faculty of Medicine, Hong Kong S.A.R. (China); Vlantis, Alexander C.; Tong, Michael C.F. [The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, Hong Kong S.A.R. (China); Tse, Gary M.K. [The Chinese University of Hong Kong, Prince of Wales Hospital, Department of Anatomical and Cellular Pathology, Faculty of Medicine, Hong Kong S.A.R. (China)

    2009-05-15

    The aim of this study was to document the sites and MRI features of radiation-induced tumors (RITs) in the head and neck following treatment for nasopharyngeal carcinoma (NPC). The MRI examinations and clinical records of 20 patients with 21 RITs were reviewed retrospectively. RITs developed 3-30 years after radiotherapy and included eleven squamous cell carcinomas, six sarcomas, two neuroendocrine carcinomas, one mucoepidermoid carcinoma and one meningioma. RITs arose in the maxillary region (9), oro/hypopharynx and oral cavity (5), external auditory canal (4), nasopharynx and sphenoid sinus (2) and brain (1). Radiation-induced carcinoma and sarcoma had MRI features that were useful to distinguish them from recurrent NPC. To improve early detection of RITs, the check areas on an MRI of a patient with previous NPC treated by radiation should always include the maxillary region, tongue, and external auditory canal/temporal bone. (orig.)

  3. Transgenerational Glucose Intolerance of Tumor Necrosis Factor with Epigenetic Alteration in Rat Perirenal Adipose Tissue Induced by Intrauterine Hyperglycemia.

    Science.gov (United States)

    Su, Rina; Yan, Jie; Yang, Huixia

    2016-01-01

    Changes in DNA methylation may play a role in the genetic mechanism underlying glucose intolerance in the offspring of mothers with diabetes. Here, we established a rat model of moderate intrauterine hyperglycemia induced by streptozotocin to detect glucose and lipid metabolism of first-generation (F1) and second-generation (F2) offspring. Moderate intrauterine hyperglycemia induced high body weight in F1 and F2 offspring of diabetic mothers. F1 offspring had impaired glucose tolerance and abnormal insulin level. Additionally, F1 and F2 offspring that were exposed to intrauterine hyperglycemia had impaired insulin secretion from the islets. The tumor necrosis factor (Tnf) gene was upregulated in perirenal adipose tissue from F1 offspring and relatively increased in F2 offspring. Both F1 and F2 offspring showed similar hypomethylation level at the -1952 site of Tnf. We confirmed that DNA methylation occurs in offspring exposed to intrauterine hyperglycemia and that the DNA methylation is intergenerational and inherited.

  4. Enhanced tumor cell killing following BNCT with hyperosmotic mannitol-induced blood-brain barrier disruption and intracarotid injection of boronophenylalanine

    International Nuclear Information System (INIS)

    Hsieh, C.H.; Hwang, J.J.; Chen, F.D.; Liu, R.S.; Liu, H.M.; Hsueh, Y.W.; Kai, J.J.

    2006-01-01

    The delivery of boronophenylalanine (BPA) by means of intracarotid injection combined with opening the blood-brain barrier (BBB) have been shown significantly enhanced the tumor boron concentration and the survival time of glioma-bearing rats. However, no direct evidence demonstrates whether this treatment protocol can enhance the cell killing of tumor cells or infiltrating tumor cells and the magnitude of enhanced cell killing. The purpose of the present study was to determine if the tumor cell killing of boron neutron capture therapy could be enhanced by hyperosmotic mannitol-induced BBB disruption using BPA-Fr as the capture agent. F98 glioma-bearing rats were injected intravenously or intracarotidly with BPA at doses of 500 mg/kg body weight (b.w.) and with or without mannitol-induced hyperosmotic BBB disruption. The rats were irradiated with an epithermal neutron beam at the reactor of National Tsing-Hua University (THOR). After neutron beam irradiation, the rats were euthanized and the ipsilateral brains containing intracerebral F98 glioma were removed to perform in vivo/in vitro soft agar clonogenic assay. The results demonstrate BNCT with optimizing the delivery of BPA by means of intracarotid injection combined with opening the BBB by infusing a hyperosmotic solution of mannitol significantly enhanced the cell killing of tumor cells and infiltrating tumor cells, the tumor boron concentration and the boron ratio of tumor to normal brain tissues. (author)

  5. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    International Nuclear Information System (INIS)

    Herzog, Melanie

    2013-01-01

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe x -mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  6. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  7. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  8. Potent tumor tropism of induced pluripotent stem cells and induced pluripotent stem cell-derived neural stem cells in the mouse intracerebral glioma model.

    Science.gov (United States)

    Yamazoe, Tomohiro; Koizumi, Shinichiro; Yamasaki, Tomohiro; Amano, Shinji; Tokuyama, Tsutomu; Namba, Hiroki

    2015-01-01

    Although neural and mesenchymal stem cells have been well-known to have a strong glioma tropism, this activity in induced pluripotent stem cells (iPSCs) has not yet been fully studied. In the present study, we tested tumor tropic activity of mouse iPSCs and neural stem cells derived from the iPSC (iPS-NSCs) using in vitro Matrigel invasion chamber assay and in vivo mouse intracranial tumor model. Both iPSC and iPS-NSC had a similar potent in vitro tropism for glioma conditioned media. The migrated iPSCs to the gliomas kept expressing Nanog-GFP gene, suggesting no neuronal or glial differentiation. iPSCs or iPS-NSCs labeled with 5-bromo-2-deoxyuridine were intracranially implanted in the contralateral hemisphere to the GL261 glioma cell implantation in the allogeneic C57BL/6 mouse. Active migration of both stem cells was observed 7 days after implantation. Again, the iPSCs located in the tumor area expressed Nanog-GFP gene, suggesting that the migrated cells were still iPSCs. These findings demonstrated that both iPSCs and iPS-NSCs had potent glioma tropism and could be candidates as vehicles in stem cell-based glioma therapy.

  9. Estradiol-induced regression in T47D:A18/PKCalpha tumors requires the estrogen receptor and interaction with the extracellular matrix.

    Science.gov (United States)

    Zhang, Yiyun; Zhao, Huiping; Asztalos, Szilard; Chisamore, Michael; Sitabkhan, Yasmin; Tonetti, Debra A

    2009-04-01

    Several breast cancer tumor models respond to estradiol (E(2)) by undergoing apoptosis, a phenomenon known to occur in clinical breast cancer. Before the application of tamoxifen as an endocrine therapy, high-dose E(2) or diethystilbesterol treatment was successfully used, albeit with unfavorable side effects. It is now recognized that such an approach may be a potential endocrine therapy option. We have explored the mechanism of E(2)-induced tumor regression in our T47D:A18/PKCalpha tumor model that exhibits autonomous growth, tamoxifen resistance, and E(2)-induced tumor regression. Fulvestrant, a selective estrogen receptor (ER) down-regulator, prevents T47D:A18/PKCalpha E(2)-induced tumor growth inhibition and regression when given before or after tumor establishment, respectively. Interestingly, E(2)-induced growth inhibition is only observed in vivo or when cells are grown in Matrigel but not in two-dimensional tissue culture, suggesting the requirement of the extracellular matrix. Tumor regression is accompanied by increased expression of the proapoptotic FasL/FasL ligand proteins and down-regulation of the prosurvival Akt pathway. Inhibition of colony formation in Matrigel by E(2) is accompanied by increased expression of FasL and short hairpin RNA knockdown partially reverses colony formation inhibition. Classic estrogen-responsive element-regulated transcription of pS2, PR, transforming growth factor-alpha, C3, and cathepsin D is independent of the inhibitory effects of E(2). A membrane-impermeable E(2)-BSA conjugate is capable of mediating growth inhibition, suggesting the involvement of a plasma membrane ER. We conclude that E(2)-induced T47D:A18/PKCalpha tumor regression requires participation of ER-alpha, the extracellular matrix, FasL/FasL ligand, and Akt pathways, allowing the opportunity to explore new predictive markers and therapeutic targets.

  10. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    Science.gov (United States)

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens.

    Science.gov (United States)

    Zhang, Xinheng; Yan, Yiming; Lei, Xiaoya; Li, Aijun; Zhang, Huanmin; Dai, Zhenkai; Li, Xinjian; Chen, Weiguo; Lin, Wencheng; Chen, Feng; Ma, Jingyun; Xie, Qingmei

    2017-05-23

    Avian leukosis virus subgroup (ALV-J) is an oncogenic neoplasm-inducing retrovirus that causes significant economic losses in the poultry industry. Recent studies have demonstrated circular RNAs (circRNAs) are implicated in pathogenic processes; however, no research has indicated circRNAs are involved in resistance to disease. In this study, over 1800 circRNAs were detected by circRNA sequencing of liver tissues from ALV-J-resistant (n = 3) and ALV-J-susceptible chickens (n = 3). 32 differentially expressed circRNAs were selected for analyzing including 12 upregulated in ALV-J-resistant chickens and 20 upregulated in ALV-J-susceptible chickens, besides, the top five microRNAs (miRNAs) for 12 upregulated circRNAs in ALV-J-resistant chickens were analyzed. Gene ontology and KEGG pathway analyses were performed for miRNA target genes, the predicted genes were mainly involved in immune pathways. This study provides the first evidence that circRNA alterations are involved in resistance to ALV-J-induced tumor formation. We propose circRNAs may help to mediate tumor induction and development in chickens.

  12. Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development.

    Science.gov (United States)

    Shen, Jieli; Yao, Lijing; Lin, Yvonne G; DeMayo, Francesco J; Lydon, John P; Dubeau, Louis; Lee, Amy S

    2016-03-22

    Endometrial carcinoma is the most prevalent gynecologic cancer in the United States. The tumor suppressor gene Pten (phosphatase and tensin homolog) is commonly mutated in the more common type 1 (endometrioid) subtype. The glucose-regulated protein 94 (GRP94) is emerging as a novel regulator for cancer development. Here we report that expression profiles from the Cancer Genome Atlas (TCGA) showed significantly increased Grp94 mRNA levels in endometrial tumor versus normal tissues, correlating with highly elevated GRP94 protein expression in patient samples and the requirement of GRP94 for maintaining viability of human endometrioid adenocarcinoma (EAC) cell lines. Through generation of uterus-specific knockout mouse models with deletion of Grp94 alone (c94f/f) or in combination with Pten (cPf/f94f/f), we discovered that c94f/f uteri induced squamous cell metaplasia (SCM) and reduced active nuclear β-catenin. The cPf/f94f/f uteri showed accelerated SCM and suppression of PTEN-null driven EAC, with reduced cellular proliferation, attenuated β-catenin signaling and decreased AKT/S6 activation in the SCM. In contrast to single PTEN knockout uteri (cPf/f), cPf/f94f/f uteri showed no decrease in E-cadherin level and no invasive lesion. Collectively, our study implies that GRP94 downregulation induces SCM in EAC and suppresses AKT/S6 signaling, providing a novel mechanism for suppressing EAC progression.

  13. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  14. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716 (China); Huang, Zhenping, E-mail: huangzhenping19633@163.com [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China)

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  15. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    International Nuclear Information System (INIS)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue; Cui, Hongjuan; Huang, Zhenping

    2016-01-01

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  16. Tumors induced in mice by N-methyl-N-formylhydrazine of the false morel Gyromitra esculenta.

    Science.gov (United States)

    Toth, B; Nagel, D

    1978-01-01

    Continuous administration of 0.0078% N-methyl-N-formylhydrazine (MFH) in drinking water to 6-week-old outbred Swiss mice for life produced tumors of the liver, lung, gallbladder, and bile duct. The incidences of tumors in these four tissues were 33, 50, 9, and 7%, whereas in the untreated controls they were 1, 18, 0, and 0%, respectively. The higher dose (0.0156% MFH) given under identical conditions had no tumorigenic effect, since it proved too toxic for the animals. Histopathologically, the lesions were classified as benign hepatomas, liver cell carcinomas, adenomas and adenocarcinomas of the lungs, adenomas of the gallbladder, cholangiomas, and cholangiocarcinomas. Since the edible false morel Gyromitra esculenta contains a high amount of MFH, the human population should be dissuaded from consumption of this dangerous mushroom.

  17. Treatment of nitrosamine-induced pancreatic tumors in hamsters with analogs of somatostatin and luteinizing hormone-releasing hormone

    Energy Technology Data Exchange (ETDEWEB)

    Paz-Bouza, J.I.; Redding, T.W.; Schally, A.V.

    1987-02-01

    Pancreatic ductal adenocarcinoma was induced in female Syrian golden hamsters by injecting N-nitrosobis(2-oxopropyl)amine (BOP) once a week at a dose of 10 mg per kg of body weight for 18 weeks. Hamsters were then treated with somatostatin analog (RC-160) or with (6-D-tryptophan)luteinizing hormone-releasing hormone ((D-Trp/sup 6/)LH-RH) delayed delivery systems. After 18 weeks of BOP administration, the hamsters were divided into three groups of 10-20 animals each. Group I consisted of untreated controls, group II was injected with RC-160, and group III was injected with (D-Trp/sub 2/)LH-RH. A striking decrease in tumor weight and volume was obtained in animals treated with (D-Trp/sup 6/)LH-RH or with the somatostati