WorldWideScience

Sample records for cartan-weyl based geometrical

  1. The Comparison between the Infinitesimal Operators for SU(3) and Boson Operators in Cartan-Weyl Basis

    OpenAIRE

    Wu, Chin-Sheng

    2003-01-01

    We present the detailed calculation of the infinitesimal operators and the boson operators for SU (3) in Cartan-Weyl basis. They have been used extensively as theoretical models for particle physics. We make a comparison between them, alongside with SL(3,c), which displays the concise appearance.

  2. Geometric Computing Based on Computerized Descriptive Geometric

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yan; HE Yuan-Jun

    2011-01-01

    Computer-aided Design (CAD), video games and other computer graphic related technology evolves substantial processing to geometric elements. A novel geometric computing method is proposed with the integration of descriptive geometry, math and computer algorithm. Firstly, geometric elements in general position are transformed to a special position in new coordinate system. Then a 3D problem is projected to new coordinate planes. Finally, according to 2D/3D correspondence principle in descriptive geometry, the solution is constructed computerized drawing process with ruler and compasses. In order to make this method a regular operation, a two-level pattern is established. Basic Layer is a set algebraic packaged function including about ten Primary Geometric Functions (PGF) and one projection transformation. In Application Layer, a proper coordinate is established and a sequence of PGFs is sought for to get the final results. Examples illustrate the advantages of our method on dimension reduction, regulatory and visual computing and robustness.

  3. Rule-based transformations for geometric modelling

    Directory of Open Access Journals (Sweden)

    Thomas Bellet

    2011-02-01

    Full Text Available The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc. with relevant data as their geometric shape (position, curve, surface, etc. or application dedicated data (e.g. molecule concentration level in a biological context. We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes have multiple labels.

  4. Rule-based transformations for geometric modelling

    CERN Document Server

    Bellet, Thomas; Gall, Pascale Le; 10.4204/EPTCS.48.5

    2011-01-01

    The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (position, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a biological context). We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes hav...

  5. Model-based vision using geometric hashing

    Science.gov (United States)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  6. Analysis of Geometrical Specification Model Based on the New GeometricalProduct Specification Language

    Institute of Scientific and Technical Information of China (English)

    马利民; 王金星; 蒋向前; 李柱; 徐振高

    2004-01-01

    Geometrical Product Specification and verification (GPS) is an ISO standard system coveting standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,i.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.

  7. Pose measurement method based on geometrical constraints

    Institute of Scientific and Technical Information of China (English)

    Zimiao Zhang; Changku Sun; Pengfei Sun; Peng Wang

    2011-01-01

    @@ The pose estimation method based on geometric constraints is studied.The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process,the scaling and orthography projection model is used to approximate the perspective projection model.%The pose estimation method based on geometric constraints is studied. The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process, the scaling and orthography projection model is used to approximate the perspective projection model. The initial values of the coordinates of the five feature points in the camera coordinate system are obtained to ensure the accuracy and convergence rate of the non-linear algorithm. In accordance with the perspective projection characteristics of the circular feature landmarks, we propose an approach that enables the iterative acquisition of accurate target poses through the correction of the perspective projection coordinates of the circular feature landmark centers. Experimental results show that the translation positioning accuracy reaches ±0.05 mm in the measurement range of 0-40 mm, and the rotation positioning accuracy reaches ±0.06° in the measurement range of 4°-60°.

  8. Knowledge-based geometric modeling in construction

    DEFF Research Database (Denmark)

    Bonev, Martin; Hvam, Lars

    2012-01-01

    a considerably high amount of their recourses is required for designing and specifying the majority of their product assortment. As design decisions are hereby based on knowledge and experience about behaviour and applicability of construction techniques and materials for a predefined design situation, smart...... tools need to be developed, to support these activities. In order to achieve a higher degree of design automation, this study proposes a framework for using configuration systems within the CAD environment together with suitable geometric modeling techniques on the example of a Danish manufacturer...

  9. Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases

    Science.gov (United States)

    Zhao, P. Z.; Xu, G. F.; Tong, D. M.

    2016-12-01

    Nonadiabatic geometric quantum computation in decoherence-free subspaces has received increasing attention due to the merits of its high-speed implementation and robustness against both control errors and decoherence. However, all the previous schemes in this direction have been based on the conventional geometric phases, of which the dynamical phases need to be removed. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases, of which the dynamical phases do not need to be removed. Specifically, by using three physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal set of geometric gates nonadiabatically and unconventionally. Our scheme not only maintains all the merits of nonadiabatic geometric quantum computation in decoherence-free subspaces, but also avoids the additional operations required in the conventional schemes to cancel the dynamical phases.

  10. Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling

    Institute of Scientific and Technical Information of China (English)

    高曙明; 彭群生

    1997-01-01

    A new geometric constraint model is described,which is hierarchical and suitable for parametric feature based modeling.In this model,different levels of geometric information are repesented to support various stages of a design process.An efficient approach to parametric feature based modeling is also presented,adopting the high level geometric constraint model.The low level geometric model such as B-reps can be derived automatically from the hig level geometric constraint model,enabling designers to perform their task of detailed design.

  11. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate

    Science.gov (United States)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi

    2015-09-01

    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  12. GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    Cai Lian; Du Sidan; Gao Duntang

    2005-01-01

    The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.

  13. Geometría computacional y bases de datos

    OpenAIRE

    Dorzán, María Gisela; Esquivel, Susana Cecilia; Gagliardi, Edilma Olinda; Palmero, Pablo Rafael; Taranilla, María Teresa

    2016-01-01

    La línea de investigación “Geometría Computacional y Bases de Datos” enmarcada en el proyecto “Tecnologías Avanzadas de Bases de Datos” vincula el estudio de las disciplinas Bases de Datos, Geometría Computacional y Metaheurísticas, utilizando los métodos y las herramientas provistas para la resolución de problemas orientados a optimización.

  14. Point- and curve-based geometric conflation

    KAUST Repository

    López-Vázquez, C.

    2013-01-01

    Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.

  15. CCH-based geometric algorithms for SVM and applications

    Institute of Scientific and Technical Information of China (English)

    Xin-jun PENG; Yi-fei WANG

    2009-01-01

    The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances.

  16. Geometrical Interpretation of Shannon's Entropy Based on the Born Rule

    CERN Document Server

    Jankovic, Marko V

    2009-01-01

    In this paper we will analyze discrete probability distributions in which probabilities of particular outcomes of some experiment (microstates) can be represented by the ratio of natural numbers (in other words, probabilities are represented by digital numbers of finite representation length). We will introduce several results that are based on recently proposed JoyStick Probability Selector, which represents a geometrical interpretation of the probability based on the Born rule. The terms of generic space and generic dimension of the discrete distribution, as well as, effective dimension are going to be introduced. It will be shown how this simple geometric representation can lead to an optimal code length coding of the sequence of signals. Then, we will give a new, geometrical, interpretation of the Shannon entropy of the discrete distribution. We will suggest that the Shannon entropy represents the logarithm of the effective dimension of the distribution. Proposed geometrical interpretation of the Shannon ...

  17. Geometrically Invariant Watermarking Scheme Based on Local Feature Points

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-06-01

    Full Text Available Based on local invariant feature points and cross ratio principle, this paper presents a feature-point-based image watermarking scheme. It is robust to geometric attacks and some signal processes. It extracts local invariant feature points from the image using the improved scale invariant feature transform algorithm. Utilizing these points as vertexes it constructs some quadrilaterals to be as local feature regions. Watermark is inserted these local feature regions repeatedly. In order to get stable local regions it adjusts the number and distribution of extracted feature points. In every chosen local feature region it decides locations to embed watermark bits based on the cross ratio of four collinear points, the cross ratio is invariant to projective transformation. Watermark bits are embedded by quantization modulation, in which the quantization step value is computed with the given PSNR. Experimental results show that the proposed method can strongly fight more geometrical attacks and the compound attacks of geometrical ones.

  18. A Geometrical Transformations Resistant Digital Watermarking Based on Quantization

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; HONG Fan; LIU Wei-qun; HU Yu-ping; CHEN Zhuo

    2005-01-01

    A geometrical transformations resistant digital image watermarking based on quantization is described. Taking advantage of the rotation, scale and translation invariants of discrete Fourier transform(DFT), each watermark bit is embedded into each homocentric circles around the zero frequency term in DFT domain by quantizing the magnitude vector of Fourier spectrum. The embedded sequence can be extracted by "majority principles" without restoring to the original unmarked image. The experimental results show that the watermark is invisible and robust to any combination of geometrical transformations or common image processing techniques.

  19. A geometric transformation to protect minutiae-based fingerprint templates

    Science.gov (United States)

    Sutcu, Yagiz; Sencar, Husrev T.; Memon, Nasir

    2007-04-01

    The increasing use of biometrics in different environments presents new challenges. Most importantly, biometric data are irreplaceable. Therefore, storing biometric templates, which is unique to individual user, entails significant security risks. In this paper, we propose a geometric transformation for securing the minutiae based fingerprint templates. The proposed scheme employs a robust one-way transformation that maps geometrical configuration of the minutiae points into a fixed-length code vector. This representation enables efficient alignment and reliable matching. Experiments are conducted by applying the proposed method on a synthetically generated minutiae point sets. Preliminary results show that the proposed scheme provides a simple and effective solution to the template security problem of the minutiae based fingerprint.

  20. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  1. A Geometric Fuzzy-Based Approach for Airport Clustering

    Directory of Open Access Journals (Sweden)

    Maria Nadia Postorino

    2014-01-01

    Full Text Available Airport classification is a common need in the air transport field due to several purposes—such as resource allocation, identification of crucial nodes, and real-time identification of substitute nodes—which also depend on the involved actors’ expectations. In this paper a fuzzy-based procedure has been proposed to cluster airports by using a fuzzy geometric point of view according to the concept of unit-hypercube. By representing each airport as a point in the given reference metric space, the geometric distance among airports—which corresponds to a measure of similarity—has in fact an intrinsic fuzzy nature due to the airport specific characteristics. The proposed procedure has been applied to a test case concerning the Italian airport network and the obtained results are in line with expectations.

  2. D Image Based Geometric Documentation of the Tower of Winds

    Science.gov (United States)

    Tryfona, M. S.; Georgopoulos, A.

    2016-06-01

    This paper describes and investigates the implementation of almost entirely image based contemporary techniques for the three dimensional geometric documentation of the Tower of the Winds in Athens, which is a unique and very special monument of the Roman era. These techniques and related algorithms were implemented using a well-known piece of commercial software with extreme caution in the selection of the various parameters. Problems related to data acquisition and processing, but also to the algorithms and to the software implementation are identified and discussed. The resulting point cloud has been georeferenced, i.e. referenced to a local Cartesian coordinate system through minimum geodetic measurements, and subsequently the surface, i.e. the mesh was created and finally the three dimensional textured model was produced. In this way, the geometric documentation drawings, i.e. the horizontal section plans, the vertical section plans and the elevations, which include orthophotos of the monument, can be produced at will from that 3D model, for the complete geometric documentation. Finally, a 3D tour of the Tower of the Winds has also been created for a more integrated view of the monument. The results are presented and are evaluated for their completeness, efficiency, accuracy and ease of production.

  3. Iris-based medical analysis by geometric deformation features.

    Science.gov (United States)

    Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan

    2013-01-01

    Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.

  4. Connectivity-Based Watermarking Robust to Geometrical Attacks

    Institute of Scientific and Technical Information of China (English)

    Wang Hongxia; Luo Jian

    2006-01-01

    A novel robust watermarking scheme based on image connectivity is proposed. In the scheme, the connected objects are obtained according to selected connectivity pattern, and the gravity centers are calculated in several bigger objects as the reference points for watermark embedding. Based on these reference points and the center of the whole image, several sectors are formed, and the same version of watermarks is embedded into these sectors and their opposites. Thanks to the very stable gravity center of the connected objects, watermark detection is synchronized successfully. Simulation results show that the watermark can survive under both local and global geometrical distortions.

  5. Lunar-based Earth observation geometrical characteristics research

    Science.gov (United States)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  6. Frame-Based Facial Expression Recognition Using Geometrical Features

    Directory of Open Access Journals (Sweden)

    Anwar Saeed

    2014-01-01

    Full Text Available To improve the human-computer interaction (HCI to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness, with the help of several geometrical features. Unlike many other geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression; this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected by the errors in the facial point localization, especially for the expressions with subtle facial deformations.

  7. NOVEL RADAR SIGNAL SORTING METHOD BASED ON GEOMETRIC COVERING

    Institute of Scientific and Technical Information of China (English)

    万建; 国强; 宋文明

    2013-01-01

    With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars ,signals received by radar reconnaissance receivers become even more intensive and complex .There-fore ,traditional radar sorting methods based on neural network algorithms and support vector machine (SVM ) cannot process them effectively .Aiming at solving this problem ,a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed .By applying the geometric covering algo-rithm to divide input signals into different covering domains based on their distribution characteristics ,the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals .The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains ,thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped param-eters .Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment .

  8. Approach to Weighted Geometric Evaluation Based on Projection Pursuit

    Institute of Scientific and Technical Information of China (English)

    Yang Shanlin; Wang Shuo; Gong Daning

    2006-01-01

    Weighted geometric evaluation approach based on Projection pursuit (PP) model is presented in this paper to optimize the choice of schemes. By using PP model, the multi-dimension evaluation index values of schemes can be synthesized into projection value with one dimension. The scheme with a bigger projection value is much better, so the schemes sample can be an optimized choice according to the projection value of each scheme. The modeling of PP based on accelerating genetic algorithm can predigest the realized process of projection pursuit technique, can overcome the shortcomings of large computation amount and the difficulty of computer programming in traditional projection pursuit methods, and can give a new method for application of projection pursuit technique to optimize choice of schemes by using weighted geometric evaluation. The analysis of an applied sample shows that applying PP model driven directly by samples data to optimize choice of schemes is both simple and feasible, that its projection values are relatively decentralized and profit decision-making, that its applicability and maneuverability are high. It can avoid the shortcoming of subjective weighing method, and its results are scientific and objective.

  9. Geometric correction methods for Timepix based large area detectors

    Science.gov (United States)

    Zemlicka, J.; Dudak, J.; Karch, J.; Krejci, F.

    2017-01-01

    X-ray micro radiography with the hybrid pixel detectors provides versatile tool for the object inspection in various fields of science. It has proven itself especially suitable for the samples with low intrinsic attenuation contrast (e.g. soft tissue in biology, plastics in material sciences, thin paint layers in cultural heritage, etc.). The limited size of single Medipix type detector (1.96 cm2) was recently overcome by the construction of large area detectors WidePIX assembled of Timepix chips equipped with edgeless silicon sensors. The largest already built device consists of 100 chips and provides fully sensitive area of 14.3 × 14.3 cm2 without any physical gaps between sensors. The pixel resolution of this device is 2560 × 2560 pixels (6.5 Mpix). The unique modular detector layout requires special processing of acquired data to avoid occurring image distortions. It is necessary to use several geometric compensations after standard corrections methods typical for this type of pixel detectors (i.e. flat-field, beam hardening correction). The proposed geometric compensations cover both concept features and particular detector assembly misalignment of individual chip rows of large area detectors based on Timepix assemblies. The former deals with larger border pixels in individual edgeless sensors and their behaviour while the latter grapple with shifts, tilts and steps between detector rows. The real position of all pixels is defined in Cartesian coordinate system and together with non-binary reliability mask it is used for the final image interpolation. The results of geometric corrections for test wire phantoms and paleo botanic material are presented in this article.

  10. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  11. Geometric Deformations Based on 3D Volume Morphing

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaogang; WAN Huagen; PENG Qunsheng

    2001-01-01

    This paper presents a new geometric deformation method based on 3D volume morphing by using a new concept called directional polar coordinate. The user specifies the source control object and the destination control object which act as the embedded spaces.The source and the destination control objects determine a 3D volume morphing which maps the space enclosed in the source control object to that of the destination control object. By embedding the object to be deformed into the source control object, the 3D volume morphing determines the deformed object automatically without the tiring moving of control points.Experiments show that this deformation model is efficient and intuitive, and it can achieve some deformation effects which are difficult to achieve for traditional methods.

  12. NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS

    Institute of Scientific and Technical Information of China (English)

    Jia Xiaomeng; Wang Guoyu

    2003-01-01

    This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.

  13. A geometric reasoning based algorithm for point pattern matching

    Institute of Scientific and Technical Information of China (English)

    徐文立; 张立华

    2001-01-01

    Point pattern matching (PPM) is an important topic in computer vision and pattern recognition. It can be widely used in many areas such as image registration, object recognition, motion detection, target tracking, autonomous navigation, and pose estimation. This paper discusses the incomplete matching problem of two point sets under Euclidean transformation. According to geometric reasoning, some definitions for matching clique, support point pair, support index set, and support index matrix, etc. are given. Based on the properties and theorems of them, a novel reasoning algorithm is presented, which searches for the optimal sOlLtion from top to bottom and could find out as many consistent corresponding point pairs as possible. Theoretical analysis and experimental results show that the new algorithm is very effective, and could be, under some conditions, applied to the PPM problem under other kind of transformations.

  14. Rule-based spatial modeling with diffusing, geometrically constrained molecules

    Directory of Open Access Journals (Sweden)

    Lohel Maiko

    2010-06-01

    Full Text Available Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS, we have chosen an already existing formalism (BioNetGen for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules. When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial

  15. GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP

    Directory of Open Access Journals (Sweden)

    A. Sampath

    2016-06-01

    Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5

  16. Geometric Quality Assessment of LIDAR Data Based on Swath Overlap

    Science.gov (United States)

    Sampath, A.; Heidemann, H. K.; Stensaas, G. L.

    2016-06-01

    This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope

  17. Evaluating conducting network based transparent electrodes from geometrical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)

    2016-01-07

    Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in

  18. Geometric Lattice Structure of Covering-Based Rough Sets through Matroids

    Directory of Open Access Journals (Sweden)

    Aiping Huang

    2012-01-01

    relationship among them. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by a covering. Then its characteristics, such as atoms, modular elements, and modular pairs, are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, we present three sufficient and necessary conditions for two types of covering upper approximation operators to be closure operators of matroids. We also represent two types of matroids through closure axioms and then obtain two geometric lattice structures of covering-based rough sets. Third, we study the relationship among these three geometric lattice structures. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely, geometric lattice, to study covering-based rough sets.

  19. Geometrically robust video watermarking based on wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yao

    2006-01-01

    Geometrical attacks can destroy most watermarking systems at present. So how to efficiently resist such kind of attacks remains a challenging direction in watermarking research. In this paper, a novel sequence watermarking scheme, which exploits a geometrical invariant, i.e. average AC energy (AAE) to combat arbitrary geometrical attacks, is presented. The scheme also uses some other measures, such as synchronization and optimal whitening filter to resist other attacks and improve detection performance. The experimental results show that the scheme can efficiently improve the visual quality of the watermarked video and achieve good robustness against random geometrical attacks. The scheme also has good robustness against other attacks, such as low-pass filtering along time axis and frame removal.

  20. Geometric features for voxel-based surface recognition

    OpenAIRE

    Yarotsky, Dmitry

    2017-01-01

    We introduce a library of geometric voxel features for CAD surface recognition/retrieval tasks. Our features include local versions of the intrinsic volumes (the usual 3D volume, surface area, integrated mean and Gaussian curvature) and a few closely related quantities. We also compute Haar wavelet and statistical distribution features by aggregating raw voxel features. We apply our features to object classification on the ESB data set and demonstrate accurate results with a small number of s...

  1. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu

    2016-01-01

    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  2. An Optimized Method for PDEs-Based Geometric Modeling and Reconstruction

    Directory of Open Access Journals (Sweden)

    Chuanjun Wang

    2012-09-01

    Full Text Available This study presents an optimized method for efficient geometric modeling and reconstruction using Partial Differential Equations (PDEs. Based on the identification between the analytic solution of Bloor Wilson PDE and the Fourier series, we transform the problem of model selection for PDEs-based geometric modeling into the problem of significant frequencies selection from Fourier series. With the significance analysis of the Fourier series, a model selection and an iterative surface fitting algorithm are applied to address the problem of overfitting and underfitting in the PDEs-based geometric modeling and reconstruction. Simulations are conducted on both the computer generated geometric surface and the laser scanned 3D face data. Experiment results show the merits of the proposed method.

  3. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    Science.gov (United States)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  4. Robust hash-based image watermarking with resistance to geometric distortions and watermark-estimation attack

    Science.gov (United States)

    Lu, Chun-Shien; Sun, Shih-Wei; Chang, Pao-Chi

    2005-03-01

    Digital watermarking provides a feasible way for copyright protection of multimedia. The major disadvantage of the existing methods is their limited resistance to both extensive geometric distortions and watermark-estimation attack (WEA). In view of this fact, this paper aims to propose a robust image watermarking scheme that can withstand geometric distortions and WEA simultaneously. Our scheme is mainly composed of two components: (i) mesh generation and embedding for resisting geometric distortions; and (ii) construction of hash-based content-dependent watermark (CDW) for resisting WEA. Extensive experimental results obtained from standard benchmark confirm the ability of our method in improving robustness.

  5. Multiple Attribute Decision Making Based on Hesitant Fuzzy Einstein Geometric Aggregation Operators

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhou

    2014-01-01

    Full Text Available We first define an accuracy function of hesitant fuzzy elements (HFEs and develop a new method to compare two HFEs. Then, based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. We also develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWGε operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWGε operator, which are the extensions of the weighted geometric operator and the ordered weighted geometric (OWG operator with hesitant fuzzy information, respectively. Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discuss various properties of the proposed operators. Finally, we apply the HFEWGε operator to solve the hesitant fuzzy decision making problems.

  6. METHOD FOR ADAPTIVE MESH GENERATION BASED ON GEOMETRICAL FEATURES OF 3D SOLID

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaodong; DU Qungui; YE Bangyan

    2006-01-01

    In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refmed mesh. With the guidance of the defined criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed coveting the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delaunay triangulation is then developed for generating 3D adaptive fmite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.

  7. Geometric Feature Extraction and Model Reconstruction Based on Scattered Data

    Institute of Scientific and Technical Information of China (English)

    胡鑫; 习俊通; 金烨

    2004-01-01

    A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.

  8. A Geometric Particle Filter for Template-Based Visual Tracking.

    Science.gov (United States)

    Junghyun Kwon; Hee Seok Lee; Park, Frank C; Kyoung Mu Lee

    2014-04-01

    Existing approaches to template-based visual tracking, in which the objective is to continuously estimate the spatial transformation parameters of an object template over video frames, have primarily been based on deterministic optimization, which as is well-known can result in convergence to local optima. To overcome this limitation of the deterministic optimization approach, in this paper we present a novel particle filtering approach to template-based visual tracking. We formulate the problem as a particle filtering problem on matrix Lie groups, specifically the three-dimensional Special Linear group SL(3) and the two-dimensional affine group Aff(2). Computational performance and robustness are enhanced through a number of features: (i) Gaussian importance functions on the groups are iteratively constructed via local linearization; (ii) the inverse formulation of the Jacobian calculation is used; (iii) template resizing is performed; and (iv) parent-child particles are developed and used. Extensive experimental results using challenging video sequences demonstrate the enhanced performance and robustness of our particle filtering-based approach to template-based visual tracking. We also show that our approach outperforms several state-of-the-art template-based visual tracking methods via experiments using the publicly available benchmark data set.

  9. Managing geometric information with a data base management system

    Science.gov (United States)

    Dube, R. P.

    1984-01-01

    The strategies for managing computer based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. The research on integrated programs for aerospace-vehicle design (IPAD) focuses on the use of data base management system (DBMS) technology to manage engineering/manufacturing data. The objectives of IPAD is to develop a computer based engineering complex which automates the storage, management, protection, and retrieval of engineering data. In particular, this facility must manage geometry information as well as associated data. The approach taken on the IPAD project to achieve this objective is discussed. Geometry management in current systems and the approach taken in the early IPAD prototypes are examined.

  10. Rule-based spatial modeling with diffusing, geometrically constrained molecules

    OpenAIRE

    Lohel Maiko; Lenser Thorsten; Ibrahim Bashar; Gruenert Gerd; Hinze Thomas; Dittrich Peter

    2010-01-01

    Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction net...

  11. Geometrically Consistent Stereoscopic Image Editing Using Patch-Based Synthesis.

    Science.gov (United States)

    Luo, Sheng-Jie; Sun, Ying-Tse; Shen, I-Chao; Chen, Bing-Yu; Chuang, Yung-Yu

    2015-01-01

    This paper presents a patch-based synthesis framework for stereoscopic image editing. The core of the proposed method builds upon a patch-based optimization framework with two key contributions: First, we introduce a depth-dependent patch-pair similarity measure for distinguishing and better utilizing image contents with different depth structures. Second, a joint patch-pair search is proposed for properly handling the correlation between two views. The proposed method successfully overcomes two main challenges of editing stereoscopic 3D media: (1) maintaining the depth interpretation, and (2) providing controllability of the scene depth. The method offers patch-based solutions to a wide variety of stereoscopic image editing problems, including depth-guided texture synthesis, stereoscopic NPR, paint by depth, content adaptation, and 2D to 3D conversion. Several challenging cases are demonstrated to show the effectiveness of the proposed method. The results of user studies also show that the proposed method produces stereoscopic images with good stereoscopics and visual quality.

  12. A robust line matching method based on local appearance descriptor and neighboring geometric attributes

    Science.gov (United States)

    Xing, Jing; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    This paper reports an efficient method for line matching, which utilizes local intensity gradient information and neighboring geometric attributes. Lines are detected in a multi-scale way to make the method robust to scale changes. A descriptor based on local appearance is built to generate candidate matching pairs. The key idea is to accumulate intensity gradient information into histograms based on their intensity orders to overcome the fragmentation problem of lines. Besides, local coordinate system is built for each line to achieve rotation invariance. For each line segment in candidate matching pairs, a histogram is built by aggregating geometric attributes of neighboring line segments. The final matching measure derives from the distance between normalized geometric attributes histograms. Experiments show that the proposed method is robust to large illumination changes and is rotation invariant.

  13. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Science.gov (United States)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  14. Difference Energy Based Blind Image Watermarking Resisting to Geometrical Distortions

    Institute of Scientific and Technical Information of China (English)

    YU Yanwei; LU Zhengding; LING Hefei

    2006-01-01

    In this paper a blind image watermarking that can resist to rotation, scaling and translation (RST) attacks is proposed. Based on the spread spectrum, the watermark is modulated before embedding. The log-polar mapped discrete fourier transform (LPM-DFT) magnitude of a disk, a part of the origin image, constitutes the RST-invariant domain, where the origin of the LPM is the center of the disk and the sampling rates of the LPM are constant. After the middle frequency band of LPM-DFT magnitude, namely the watermark-embedding domain, is grouped according to the watermark length, the watermark is embedded by adjusting the difference between the two sub-region energy in each group. To improve the imperceptibility, the watermark-embedding domain is shuffled before embedding and the watermark is not embedded directly into the watermark-embedding domain. In watermark detection procedure, neither the original image nor any knowledge about the distortions is required. Experimental results show that the proposed scheme is very robust against RST distortion and common image processing attacks.

  15. Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing

    Science.gov (United States)

    Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.

    2016-06-01

    In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  16. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  17. Mask synthesis and verification based on geometric model for surface micro-machined MEMS

    Institute of Scientific and Technical Information of China (English)

    LI Jian-hua; LIU Yu-sheng; GAO Shu-ming

    2005-01-01

    Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test results are given.

  18. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    Science.gov (United States)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  19. Maximum Matchings of a Digraph Based on the Largest Geometric Multiplicity

    Directory of Open Access Journals (Sweden)

    Yunyun Yang

    2016-01-01

    Full Text Available Matching theory is one of the most forefront issues of graph theory. Based on the largest geometric multiplicity, we develop an efficient approach to identify maximum matchings in a digraph. For a given digraph, it has been proved that the number of maximum matched nodes has close relationship with the largest geometric multiplicity of the transpose of the adjacency matrix. Moreover, through fundamental column transformations, we can obtain the matched nodes and related matching edges. In particular, when a digraph contains a cycle factor, the largest geometric multiplicity is equal to one. In this case, the maximum matching is a perfect matching and each node in the digraph is a matched node. The method is validated by an example.

  20. Robust Wavelet-Based Facial Image Watermarking Against Geometric Attacks Using Coordinate System Recovery

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pei-dong; XIE Jian-ying

    2008-01-01

    A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant watermark is adaptively embedded in the discrete wavelet transform(DWT) domain based on the statistical characteristics of the wavelet coefficient block. The coordinate system of watermarked image is reestablished as a calibration system. Regardless of the host image rotated, scaled, or translated(RST), all the geometric attacks are eliminated while the watermarked image is transformed into the standard coordinate system. The proposed watermark detection is a blind detection. Experimental results demonstrate the proposed scheme is robust against common and geometric image processing attacks, particularly its robustness against joint geometric attacks.

  1. The Effect of Origami-Based Instruction on Spatial Visualization, Geometry Achievement, and Geometric Reasoning

    Science.gov (United States)

    Arici, Sevil; Aslan-Tutak, Fatma

    2015-01-01

    This research study examined the effect of origami-based geometry instruction on spatial visualization, geometry achievement, and geometric reasoning of tenth-grade students in Turkey. The sample ("n" = 184) was chosen from a tenth-grade population of a public high school in Turkey. It was a quasi-experimental pretest/posttest design. A…

  2. Collaborative spectrum sensing based on the ratio between largest eigenvalue and Geometric mean of eigenvalues

    KAUST Repository

    Shakir, Muhammad

    2011-12-01

    In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.

  3. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

    OpenAIRE

    Reid, Greg; Wang, Fei; Wu, Wenyuan

    2014-01-01

    Geometric involutive bases for polynomial systems of equations have their origin in the prolongation and projection methods of the geometers Cartan and Kuranishi for systems of PDE. They are useful for numerical ideal membership testing and the solution of polynomial systems. In this paper we further develop our symbolic-numeric methods for such bases. We give methods to explicitly extract and decrease the degree of intermediate systems and the output basis. Algorithms for the numerical compu...

  4. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches.

    Directory of Open Access Journals (Sweden)

    Daniela A Schmieder

    Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

  5. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches.

    Science.gov (United States)

    Schmieder, Daniela A; Benítez, Hugo A; Borissov, Ivailo M; Fruciano, Carmelo

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera)--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

  6. Enhanced relaxivity of Gd3+-based contrast agents geometrically confined within porous nanoconstructs

    OpenAIRE

    Sethi, Richa; Ananta, Jeyarama S.; Karmonik, Christof; Zhong, Meng; Steve H. Fung; Liu, Xuewu; Li, King; Ferrari, Mauro; Wilson, Lon J.; Decuzzi, Paolo

    2012-01-01

    Gadolinium chelates, which are currently approved for clinical MRI use, provide relaxivities well below their theoretical limit, and they also lack tissue specificity. Recently, the geometrical confinement of Gd3+-based contrast agents (CAs) within porous structures has been proposed as a novel, alternative strategy to improve relaxivity without chemical modification of the CA. Here, we have characterized and optimized the performance of MRI nanoconstructs obtained by loading [Gd(DTPA)(H2O)]2...

  7. Region-based geometric modelling of human airways and arterial vessels.

    Science.gov (United States)

    Ding, Songlin; Ye, Yong; Tu, Jiyuan; Subic, Aleksandar

    2010-03-01

    Anatomically precise geometric models of human airways and arterial vessels play a critical role in the analysis of air and blood flows in human bodies. The established geometric modelling methods become invalid when the model consists of bronchioles or small vessels. This paper presents a new method for reconstructing the entire airway tree and carotid vessels from point clouds obtained from CT or MR images. A novel layer-by-layer searching algorithm has been developed to recognize branches of the airway tree and arterial vessels from the point clouds. Instead of applying uniform accuracy to all branches regardless of the number of available points, the surface patches on each branch are constructed adaptively based on the number of available elemental points, which leads to the elimination of distortions occurring at small bronchi and vessels.

  8. Geometric data perturbation-based personal health record transactions in cloud computing.

    Science.gov (United States)

    Balasubramaniam, S; Kavitha, V

    2015-01-01

    Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.

  9. Morphological Discrimination of Greek Honey Bee Populations Based on Geometric Morphometrics Analysis of Wing Shape

    Directory of Open Access Journals (Sweden)

    Charistos Leonidas

    2014-06-01

    Full Text Available Honey bees collected from 32 different localities in Greece were studied based on the geometric morphometrics approach using the coordinates of 19 landmarks located at wing vein intersections. Procrustes analysis, principal component analysis, and Canonical variate analysis (CVA detected population variability among the studied samples. According to the Principal component analysis (PCA of pooled data from each locality, the most differentiated populations were the populations from the Aegean island localities Astypalaia, Chios, and Kythira. However, the populations with the most distant according to the canonical variate analysis performed on all measurements were the populations from Heraklion and Chania (both from Crete island. These results can be used as a starting point for the use of geometric morphometrics in the discrimination of honey bee populations in Greece and the establishment of conservation areas for local honey bee populations.

  10. Geometric constraint solving with geometric transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes two algorithms for solving geometric constraint systems. The first algorithm is for constrained systems without loops and has linear complexity. The second algorithm can solve constraint systems with loops. The latter algorithm is of quadratic complexity and is complete for constraint problems about simple polygons. The key to it is to combine the idea of graph based methods for geometric constraint solving and geometric transformations coming from rule-based methods.

  11. 3D IMAGE BASED GEOMETRIC DOCUMENTATION OF THE TOWER OF WINDS

    Directory of Open Access Journals (Sweden)

    M. S. Tryfona

    2016-06-01

    Full Text Available This paper describes and investigates the implementation of almost entirely image based contemporary techniques for the three dimensional geometric documentation of the Tower of the Winds in Athens, which is a unique and very special monument of the Roman era. These techniques and related algorithms were implemented using a well-known piece of commercial software with extreme caution in the selection of the various parameters. Problems related to data acquisition and processing, but also to the algorithms and to the software implementation are identified and discussed. The resulting point cloud has been georeferenced, i.e. referenced to a local Cartesian coordinate system through minimum geodetic measurements, and subsequently the surface, i.e. the mesh was created and finally the three dimensional textured model was produced. In this way, the geometric documentation drawings, i.e. the horizontal section plans, the vertical section plans and the elevations, which include orthophotos of the monument, can be produced at will from that 3D model, for the complete geometric documentation. Finally, a 3D tour of the Tower of the Winds has also been created for a more integrated view of the monument. The results are presented and are evaluated for their completeness, efficiency, accuracy and ease of production.

  12. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    Science.gov (United States)

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  13. An Efficient Algorithm for Calculating Aircraft RCS Based on the Geometrical Characteristics

    Institute of Scientific and Technical Information of China (English)

    Gao Zhenghong; Wang Mingliang

    2008-01-01

    Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration.The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.

  14. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  15. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  16. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-01

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy. PMID:28106729

  17. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  18. Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-01-01

    Full Text Available With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based battery management optimizing policy which aims to minimize the average cost of the operation on the premise of meeting the required sufficient battery availability. Considering the deterioration of the battery after repeated charging and discharging, this paper constructs the model of the operation of the E-bus battery as a geometric process, and the premaintenance time has been considered with the failure repairment time to enhance the GP-based battery operation model considering the battery cannot be as good as new after the two processes. The computer simulation is carried out by adopting the proposed optimizing policy, and the result verifies the effectiveness of the policy, denoting its significant performance on the application of the E-bus battery management.

  19. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System

    Directory of Open Access Journals (Sweden)

    Litian Duan

    2016-11-01

    Full Text Available In the multiple-reader environment (MRE of radio frequency identification (RFID system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.

  20. Underwater Matching Correction Navigation Based on Geometric Features Using Sonar Point Cloud Data

    Directory of Open Access Journals (Sweden)

    Mingjie Dong

    2017-01-01

    Full Text Available In order to localize the Remotely Operated Vehicle (ROV accurately in the reactor pool of the nuclear power plant, an underwater matching correction navigation algorithm based on geometric features using sonar point cloud data is proposed. At first, an Extended Kalman Filter (EKF is used to compensate the motion induced distortion after the preprocessing of the sonar point cloud data. Then, the adjacent scanning point cloud data are fitted to be four different straight lines using Hough Transform and least square method. After that, the adjacent straight line is modified based on geometric features to get a standard rectangle. Since the working environment of the ROV is a rectangular shape with all dimensions known, it is used as a priori map. The matching rectangle is then used to compare with the a priori map to calculate the accurate position and orientation of the ROV. The obtained result is then applied as the measurement for the second EKF to obtain better localization accuracy. Experiments have been conducted in man-made water tank which is similar to the reactor pool of the nuclear power plant, and the results successfully verify the effectiveness of the proposed algorithm.

  1. Smoothing Algorithm for Planar and Surface Mesh Based on Element Geometric Deformation

    Directory of Open Access Journals (Sweden)

    Shuli Sun

    2015-01-01

    Full Text Available Smoothing is one of the basic procedures for improvement of mesh quality. In this paper, a novel and efficient smoothing approach for planar and surface mesh based on element geometric deformation is developed. The presented approach involves two main stages. The first stage is geometric deformation of all the individual elements through a specially designed two-step stretching-shrinking operation (SSO, which is performed by moving the vertices of each element according to a certain rule in order to get better shape of the element. The second stage is to determine the position of each node of the mesh by a weighted average strategy according to quality changes of its adjacent elements. The suggested SSO-based smoothing algorithm works efficiently for triangular mesh and can be naturally expanded to quadrilateral mesh, arbitrary polygonal mesh, and mixed mesh. Combined with quadratic error metric (QEM, this approach may be also applied to improve the quality of surface mesh. The proposed method is simple to program and inherently very suitable for parallelization, especially on graphic processing unit (GPU. Results of numerical experiments demonstrate the effectiveness and potential of this method.

  2. Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2016-05-01

    In cortical bone, solid (lamellar and interstitial) matrix occupies space left over by porous microfeatures such as Haversian canals, lacunae, and canaliculi-containing clusters. In this work, pulse-coupled neural networks (PCNN) were used to automatically distinguish the microfeatures present in histology slides of cortical bone. The networks' parameters were optimized using particle swarm optimization (PSO). When forming the fitness functions for the PSO, we considered the microfeatures' geometric attributes-namely, their size (based on measures of elliptical perimeter or area), shape (based on measures of compactness or the ratio of minor axis length to major axis length), and a two-way combination of these two geometric attributes. This hybrid PCNN-PSO method was further enhanced for pulse evaluation by combination with yet another method, adaptive threshold (AT), where the PCNN algorithm is repeated until the best threshold is found corresponding to the maximum variance between two segmented regions. Together, this framework of using PCNN-PSO-AT constitutes, we believe, a novel framework in biomedical imaging. Using this framework and extracting microfeatures from only one training image, we successfully extracted microfeatures from other test images. The high fidelity of all resultant segments was established using quantitative metrics such as precision, specificity, and Dice indices.

  3. Sampling-based exploration of folded state of a protein under kinematic and geometric constraints

    KAUST Repository

    Yao, Peggy

    2011-10-04

    Flexibility is critical for a folded protein to bind to other molecules (ligands) and achieve its functions. The conformational selection theory suggests that a folded protein deforms continuously and its ligand selects the most favorable conformations to bind to. Therefore, one of the best options to study protein-ligand binding is to sample conformations broadly distributed over the protein-folded state. This article presents a new sampler, called kino-geometric sampler (KGS). This sampler encodes dominant energy terms implicitly by simple kinematic and geometric constraints. Two key technical contributions of KGS are (1) a robotics-inspired Jacobian-based method to simultaneously deform a large number of interdependent kinematic cycles without any significant break-up of the closure constraints, and (2) a diffusive strategy to generate conformation distributions that diffuse quickly throughout the protein folded state. Experiments on four very different test proteins demonstrate that KGS can efficiently compute distributions containing conformations close to target (e.g., functional) conformations. These targets are not given to KGS, hence are not used to bias the sampling process. In particular, for a lysine-binding protein, KGS was able to sample conformations in both the intermediate and functional states without the ligand, while previous work using molecular dynamics simulation had required the ligand to be taken into account in the potential function. Overall, KGS demonstrates that kino-geometric constraints characterize the folded subset of a protein conformation space and that this subset is small enough to be approximated by a relatively small distribution of conformations. © 2011 Wiley Periodicals, Inc.

  4. Geometric Modelling by Discrete Surface Patches Based on Geometric Partial Differential Equations%几何偏微分方程和离散曲面设计

    Institute of Scientific and Technical Information of China (English)

    徐国良; 潘青

    2005-01-01

    We construct discrete three- and four-sided surface patches with specified C0 or C1 boundary conditions, using several geometric intrinsic curvature driven flows. These flow equations are solved numerically based on discretizations of the involved differential-geometry operators, which are derived from parametric approximations. The constructed surface patches satisfy certain geometric partial differential equations, and therefore have desirable shape. These patches are assembled together for constructing complicated geometric models for shape design. Multi-resolution representations of the models are achieved using repeated subdivision and evolution.%使用若干个几何本质的曲率驱动的偏微分方程来构造符合指定C0或C1边界条件的三边曲面片和四边曲面片,这些方程的数值解由所涉及的微分几何算子的离散化来得到,微分几何算子的离散化则源于参数逼近.所构造的曲面片满足某些特定的几何偏微分方程,故具有理想的形状,将这些曲面片组装起来便构造出复杂的几何模型.通过反复的子分和演化,得到几何模型的多尺度表示.

  5. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Science.gov (United States)

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  6. Classifying Data Sets Using Support Vector Machines Based on Geometric Distance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Support vector machines (SVMs) are not as favored for large-scale data mining as for pattern recognition and machine learning because the training complexity of SVMs is highly dependent on the size of data set. This paper presents a geometric distance-based SVM (GDB-SVM). It takes the distance between a point and classified hyperplane as classification rule,and is designed on the basis of theoretical analysis and geometric intuition. Experimental code is derived from LibSVM with Microsoft Visual C ++ 6.0 as system of translating and editing. Four predicted results of five of GDB-SVM are better than those of the method of one against all (OAA). Three predicted results of five of GDB-SVM are better than those of the method of one against one (OAO). Experiments on real data sets show that GDB-SVM is not only superior to the methods of OAA and OAO,but highly scalable for large data sets while generating high classification accuracy.

  7. Geometric integration methods for general nonlinear dynamic equation based on Magnus and Fer expansions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suying; DENG Zichen

    2005-01-01

    Based on Magnus or Fer expansion for solving linear differential equation and operator semi-group theory, Lie group integration methods for general nonlinear dynamic equation are studied. Approximate schemes of Magnus type of 4th, 6th and 8th order are constructed which involve only 1, 4 and 10 different commutators, and the time-symmetry properties of the schemes are proved. In the meantime, the integration methods based on Fer expansion are presented. Then by connecting the Fer expansion methods with Magnus expansion methods some techniques are given to simplify the construction of Fer expansion methods. Furthermore time-symmetric integrators of Fer type are constructed. These methods belong to the category of geometric integration methods and can preserve many qualitative properties of the original dynamic system.

  8. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.

  9. A UGV-based laser scanner system for measuring tree geometric characteristics

    Science.gov (United States)

    Wang, Yonghui; Lan, Yubin; Zheng, Yongjun; Lee, Kevin; Cui, Suxia; Lian, Jian-ao

    2013-09-01

    This paper introduces a laser scanner based measurement system for measuring crop/tree geometric characteristics. The measurement system, which is mounted on a Unmanned Ground Vehicle (UGV), contains a SICK LMS511 PRO laser scanner, a GPS, and a computer. The LMS511 PRO scans objects within distance up to 80 meters with a scanning frequency of 25 up to 100Hz and with an angular resolution of 0.1667° up to 1°. With an Ethernet connection, this scanner can output the measured values in real time. The UGV is a WIFI based remotely controlled agricultural robotics system. During field tests, the laser scanner was mounted on the UGV vertically to scan crops or trees. The UGV moved along the row direction with certain average travel speed. The experimental results show that the UGV's travel speed significantly affects the measurement accuracy. A slower speed produces more accurate measuring results. With the developed measurement system, crop/tree canopy height, width, and volume can be accurately measured in a real-time manner. With a higher spatial resolution, the original data set may even provide useful information in predicting crop/tree growth and productivity. In summary, the UGV based measurement system developed in this research can measure the crop/tree geometric characteristics with good accuracy and will work as a step stone for our future UGV based intelligent agriculture system, which will include variable rate spray and crop/tree growth and productivity prediction through analyzing the measured results of the laser scanner system.

  10. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing.

    Science.gov (United States)

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-06-22

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  11. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-06-01

    Full Text Available A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1 feature extraction; (2 similarity measure; and matching, and (3 estimating exterior orientation parameters (EOPs of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  12. Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-16

    Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.

  13. Inclinations of small quiet-Sun magnetic features based on a new geometric approach

    CERN Document Server

    Jafarzadeh, S; Lagg, A; Rubio, L R Bellot; van Noort, M; Feller, A; Danilovic, S

    2014-01-01

    High levels of horizontal magnetic flux have been reported in the quiet-Sun internetwork, often based on Stokes profile inversions. Here we introduce a new method for deducing the inclination of magnetic elements and use it to test magnetic field inclinations from inversions. We determine accurate positions of a set of small, bright magnetic elements in high spatial resolution images sampling different photospheric heights obtained by the Sunrise balloon-borne solar observatory. Together with estimates of the formation heights of the employed spectral bands, these provide us with the inclinations of the magnetic features. We also compute the magnetic inclination angle of the same magnetic features from the inversion of simultaneously recorded Stokes parameters. Our new, geometric method returns nearly vertical fields (average inclination of around 14 deg with a relatively narrow distribution having a standard deviation of 6 deg). In strong contrast to this, the traditionally used inversions give almost horizo...

  14. A Contourlet-Based Image Watermarking Scheme with High Resistance to Removal and Geometrical Attacks

    Science.gov (United States)

    Khalighi, Sirvan; Tirdad, Parisa; Rabiee, HamidR

    2010-12-01

    We propose a new nonblind multiresolution watermarking method for still images based on the contourlet transform (CT). In our approach, the watermark is a grayscale image which is embedded into the highest frequency subband of the host image in its contourlet domain. We demonstrate that in comparison to other methods, this method enables us to embed more amounts of data into the directional subbands of the host image without degrading its perceptibility. The experimental results show robustness against several common watermarking attacks such as compression, adding noise, filtering, and geometrical transformations. Since the proposed approach can embed considerable payload, while providing good perceptual transparency and resistance to many attacks, it is a suitable algorithm for fingerprinting applications.

  15. Designing an Iterative Learning Control Algorithm Based on Process History using limited post process geometrical information

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Volk, Wolfram

    2013-01-01

    preventing successful industrial implementation. Secondly limitation in the current press designs; many of the presses currently used in industry only offer limited opportunities to change the blank-holder force during the punch stroke. Even if the press has the opportunity to change the blank-holder force......, there is a number of obstacles which need to be addressed before an industrial implementation is possible, e.g. the proposed control algorithms are often limited by the ability to sample process data with both sufficient accuracy and robustness - this lack of robust sampling technologies is one of the main barriers......, the reaction speed may be insufficient compared to the production rate in an industrial application. We propose to design an iterative learning control (ILC) algorithm which can control and update the blank-holder force as well as the distribution of the blank-holder force based on limited geometric data from...

  16. Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations

    CERN Document Server

    Crouseilles, Nicolas; Lemou, Mohammed

    2016-01-01

    We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to captureaccurately the solutions without numerically resolving the high frequency oscillations {\\em in both space and time}.Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and otherhighly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds theoscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties...

  17. A MAP estimator based on geometric Brownian motion for sample distances of laser triangulation data

    Science.gov (United States)

    Herrmann, Markus; Otesteanu, Marius

    2016-11-01

    The proposed algorithm is designed to enhance the line-detection stability in laser-stripe sensors. Despite their many features and capabilities, these sensors become unstable when measuring in dark or strongly-reflective environments. Ambiguous points within a camera image can appear on dark surfaces and be confused with noise when the laser-reflection intensity approaches noise level. Similar problems arise when strong reflections within the sensor image have intensities comparable to that of the laser. In these circumstances, it is difficult to determine the most probable point for the laser line. Hence, the proposed algorithm introduces a maximum a posteriori estimator, based on geometric Brownian motion, to provide a range estimate for the expected location of the reflected laser line.

  18. Geometric Generalisation of Surrogate Model-Based Optimisation to Combinatorial and Program Spaces

    Directory of Open Access Journals (Sweden)

    Yong-Hyuk Kim

    2014-01-01

    Full Text Available Surrogate models (SMs can profitably be employed, often in conjunction with evolutionary algorithms, in optimisation in which it is expensive to test candidate solutions. The spatial intuition behind SMs makes them naturally suited to continuous problems, and the only combinatorial problems that have been previously addressed are those with solutions that can be encoded as integer vectors. We show how radial basis functions can provide a generalised SM for combinatorial problems which have a geometric solution representation, through the conversion of that representation to a different metric space. This approach allows an SM to be cast in a natural way for the problem at hand, without ad hoc adaptation to a specific representation. We test this adaptation process on problems involving binary strings, permutations, and tree-based genetic programs.

  19. Improved Quality Prediction Model for Multistage Machining Process Based on Geometric Constraint Equation

    Institute of Scientific and Technical Information of China (English)

    ZHU Limin; HE Gaiyun; SONG Zhanjie

    2016-01-01

    Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.

  20. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    Science.gov (United States)

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  1. A Geometrical-Based Model for Cochannel Interference Analysis and Capacity Estimation of CDMA Cellular Systems

    Directory of Open Access Journals (Sweden)

    Konstantinos B. Baltzis

    2008-10-01

    Full Text Available A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.

  2. A Geometrical-Based Model for Cochannel Interference Analysis and Capacity Estimation of CDMA Cellular Systems

    Directory of Open Access Journals (Sweden)

    Baltzis KonstantinosB

    2008-01-01

    Full Text Available Abstract A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.

  3. Advanced Spacecraft EM Modelling Based on Geometric Simplification Process and Multi-Methods Simulation

    Science.gov (United States)

    Leman, Samuel; Hoeppe, Frederic

    2016-05-01

    This paper is about the first results of a new generation of ElectroMagnetic (EM) methodology applied to spacecraft systems modelling in the low frequency range (system's dimensions are of the same order of magnitude as the wavelength).This innovative approach aims at implementing appropriate simplifications of the real system based on the identification of the dominant electrical and geometrical parameters driving the global EM behaviour. One rigorous but expensive simulation is performed to quantify the error generated by the use of simpler multi-models. If both the speed up of the simulation time and the quality of the EM response are satisfied, uncertainty simulation could be performed based on the simple models library implementing in a flexible and robust Kron's network formalism.This methodology is expected to open up new perspectives concerning fast parametric analysis, and deep understanding of systems behaviour. It will ensure the identification of main radiated and conducted coupling paths and the sensitive EM parameters in order to optimize the protections and to control the disturbance sources in spacecraft design phases.

  4. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    Science.gov (United States)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  5. Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints.

    Science.gov (United States)

    Li, Zhijun; Xia, Yuanqing; Wang, Dehong; Zhai, Di-Hua; Su, Chun-Yi; Zhao, Xingang

    2016-05-01

    Most studies on bilateral teleoperation assume known system kinematics and only consider dynamical uncertainties. However, many practical applications involve tasks with both kinematics and dynamics uncertainties. In this paper, trilateral teleoperation systems with dual-master-single-slave framework are investigated, where a single robotic manipulator constrained by an unknown geometrical environment is controlled by dual masters. The network delay in the teleoperation system is modeled as Markov chain-based stochastic delay, then asymmetric stochastic time-varying delays, kinematics and dynamics uncertainties are all considered in the force-motion control design. First, a unified dynamical model is introduced by incorporating unknown environmental constraints. Then, by exact identification of constraint Jacobian matrix, adaptive neural network approximation method is employed, and the motion/force synchronization with time delays are achieved without persistency of excitation condition. The neural networks and parameter adaptive mechanism are combined to deal with the system uncertainties and unknown kinematics. It is shown that the system is stable with the strict linear matrix inequality-based controllers. Finally, the extensive simulation experiment studies are provided to demonstrate the performance of the proposed approach.

  6. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits.

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T

    2016-05-05

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.

  7. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.

    Science.gov (United States)

    Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon

    2014-08-01

    A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.

  8. Geometrical Bioelectrodynamics

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    This paper proposes rigorous geometrical treatment of bioelectrodynamics, underpinning two fast-growing biomedical research fields: bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism, and bioelectromagnetics, which deals with the effect on life from external electromagnetism. Keywords: Bioelectrodynamics, exterior geometrical machinery, Dirac-Feynman quantum electrodynamics, functional electrical stimulation

  9. Observer-based FDI for Gain Fault Detection in Ship Propulsion Benchmark:a Geometric Approach

    OpenAIRE

    Lootsma, T.F.; Izadi-Zamanabadi, Roozbeh; Nijmeijer, H.

    2001-01-01

    A geometric approach for input-affine nonlinear systems is briefly described and then applied to a ship propulsion benchmark. The obtained results are used to design a diagnostic nonlinear observer for successful FDI of the diesel engine gain fault

  10. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    Science.gov (United States)

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  11. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  12. Study of geometric errors detection method for NC machine tools based on non-contact circular track

    Science.gov (United States)

    Yan, Kejun; Liu, Jun; Gao, Feng; Wang, Huan

    2008-12-01

    This paper presents a non-contact measuring method of geometric errors for NC machine tools based on circular track testing method. Let the machine spindle move along a circular path, the position error of every tested position in the circle can be obtained using two laser interferometers. With a volumetric error model, the 12 components of geometric error apart from angular error components can be derived. It has characteristics of wide detection range and high precision. Being obtained geometric errors respectively, it is of great significance for the error compensation of NC machine tools. This method has been tested on a MCV-510 NC machine tool. The experiment result has been proved to be feasible for this method.

  13. Bat Species Comparisons Based on External Morphology: A Test of Traditional versus Geometric Morphometric Approaches

    OpenAIRE

    2015-01-01

    External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horse...

  14. Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape

    Energy Technology Data Exchange (ETDEWEB)

    XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.

    2001-11-01

    The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.

  15. A population-based model to describe geometrical uncertainties in radiotherapy: applied to prostate cases

    Science.gov (United States)

    Budiarto, E.; Keijzer, M.; Storchi, P. R.; Hoogeman, M. S.; Bondar, L.; Mutanga, T. F.; de Boer, H. C. J.; Heemink, A. W.

    2011-02-01

    Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.

  16. A population-based model to describe geometrical uncertainties in radiotherapy: applied to prostate cases

    Energy Technology Data Exchange (ETDEWEB)

    Budiarto, E; Keijzer, M; Heemink, A W [Delft Institute of Applied Mathematics (DIAM), Technische Universiteit Delft, Mekelweg 4, 2628 CD Delft (Netherlands); Storchi, P R; Hoogeman, M S; Bondar, L; Mutanga, T F [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Centre. Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); De Boer, H C J, E-mail: e.budiarto@tudelft.nl [Department of Radiotherapy, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2011-02-21

    Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.

  17. Geometric-model-based segmentation of the prostate and surrounding structures for image-guided radiotherapy

    Science.gov (United States)

    Tang, Xiaoli; Jeong, Yongwon; Radke, Richard J.; Chen, George T. Y.

    2004-01-01

    We present a computer vision tool to improve the clinical outcome of patients undergoing radiation therapy for prostate cancer by improving irradiation technique. While intensity modulated radiotherapy (IMRT) allows one to irradiate a specific region in the body with high accuracy, it is still difficult to know exactly where to aim the radiation beam on every day of the 30~40 treatments that are necessary. This paper presents a geometric model-based technique to accurately segment the prostate and other surrounding structures in a daily serial CT image, compensating for daily motion and shape variation. We first acquire a collection of serial CT scans of patients undergoing external beam radiotherapy, and manual segmentation of the prostate and other nearby structures by radiation oncologists. Then we train shape and local appearance models for the structures of interest. When new images are available, an iterative algorithm is applied to locate the prostate and surrounding structures automatically. Our experimental results show that excellent matches can be given to the prostate and surrounding structure. Convergence is declared after 10 iterations. For 256 x 256 images, the mean distance between the hand-segmented contour and the automatically estimated contour is about 1.5 pixels (2.44 mm), with variance about 0.6 pixel (1.24 mm).

  18. A Location-Based Service Using Geometric Location Methods to Unite Mobile Users

    Directory of Open Access Journals (Sweden)

    Wen-Chen Hu

    2016-02-01

    Full Text Available Since the introduction of iPhone in 2007, many location-based services (LBSs have been created and new LBSs are found every day. This research proposes yet another LBS, which is practical and was not found before to the best of authors' knowledge. The problem is described as follows. It happens all the times while several groups of people are traveling towards a destination, they lose contact from each other on the way. This research tries to have the groups travel as closely as possible until they reach the destination. It uses a method of minimum covering ellipses to find whether the groups are separated by more than a threshold/distance. If they are, the system will find a convenient rendezvous for all groups by using a method of geometric median. After meeting at the rendezvous, the groups reset the service and continue their journey. By using this LBS, travelers do not need to worry about losing connections with others. This method can also be applied to the problem of finding a convenient meeting place for mobile users.

  19. Object-Based Analysis of LIDAR Geometric Features for Vegetation Detection in Shaded Areas

    Science.gov (United States)

    Lin, Yu-Ching; Lin, ChinSu; Tsai, Ming-Da; Lin, Chun-Lin

    2016-06-01

    The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class.

  20. Investigation of geometrical effects in the carbon allotropes manipulation based on AFM: multiscale approach

    Science.gov (United States)

    Korayem, M. H.; Hefzabad, R. N.; Homayooni, A.; Aslani, H.

    2017-01-01

    Carbon allotropes are used as nanocarriers for drug and cell delivery. To obtain an accurate result in the nanoscale, it is important to use a precise model. In this paper, a multiscale approach is presented to investigate the manipulation process of carbon allotropes based on atomic force microscopy (AFM). For this purpose, the AFM setup is separated into two parts with different sizes as macro field (MF) and nano field (NF). Using Kirchhoff's plate model, the cantilever (the main part of MF) is modeled. The molecular dynamics method is applied to model the NF part, and then the MF and NF are coupled with the multiscale algorithm. With this model, by considering the effect of size and shape, the manipulation of carbon allotropes is carried out. The manipulations of armchair CNTs and fullerenes are performed to study the diameter changing effects. The result shows that the manipulation and friction force increases by increasing the diameter. The result of the indentation depth for the armchair CNTs indicates that decreasing the diameter causes the indentation depth to reduce. Moreover, the manipulations of four kinds of carbon allotropes with the same number of atoms have been studied to investigate the geometrical effects. The shapes of these nanoparticles change from sphere to cylinder. The results illustrate that the manipulation and the friction force decrease as the nanoparticle shape varies from sphere to cylinder. The Von-Mises results demonstrate that by changing the nanoparticle shape from the spherical to the cylindrical form, the stress increases, although the manipulation force reduces.

  1. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  2. A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Iqbal

    2014-01-01

    Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.

  3. Region-based geometric active contour for classification using hyperspectral remote sensing images

    Science.gov (United States)

    Yan, Lin

    2011-12-01

    The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model

  4. Evolving nutritional strategies in the presence of competition: a geometric agent-based model.

    Directory of Open Access Journals (Sweden)

    Alistair M Senior

    2015-03-01

    Full Text Available Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.

  5. Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array.

    Science.gov (United States)

    Wang, Han; Kim, Jeongyun; Jayaraman, Arul; Han, Arum

    2014-12-01

    Microfluidic live cell arrays with integrated concentration gradient or mixture generators have been utilized in screening cellular responses to various biomolecular cues. Microfluidic network-based gradient generators that can create concentration gradients by repeatedly splitting and mixing different solutions using networks of serpentine channels are commonly used. However, in this method the generation of concentration gradients relies on the continuous flow of sample solutions at optimized flow rates, which poses challenges in maintaining the pressure and flow stability throughout the entire assay period. Here we present a microfluidic live cell screening array with an on-demand multi-reagent mixture generator where the mixing ratios, thus generated concentrations, are hard-wired into the chip itself through a geometric metering method. This platform showed significantly improved robustness and repeatability in generating concentration gradients of fluorescent dyes (average coefficient of variance C.V. = 9 %) compared to the conventional network-based gradient generators (average C.V. = 21 %). In studying the concentration dependent effects of the environmental toxicant 3-methylcholanthrene (3MC) on the activation of cytochrome P450 1A1 (Cyp 1A1) enzyme in H4IIE rat hepatoma cells, statistical variation of the Cyp 1A1 response was significantly lower (C.V. = 5 %) when using the developed mixture generator compared to that using the conventional gradient generator (C.V. = 12 %). Reduction in reagent consumption by 12-times was also achieved. This robust, accurate, and scalable multi-reagent mixture generator integrated with a cell culture array as a live cell assay platform can be readily implemented into various screening applications where repeatability, robustness, and low reagent consumptions over long periods of assay time are of importance.

  6. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  7. A wave-optics approach to paraxial geometrical laws based on continuity at boundaries

    Science.gov (United States)

    Liñares, J.; Nistal, M. C.

    2011-09-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for several instructive cases and without using Fresnel diffraction theory. The primary aim is to provide a complementary insight into the standard axiomatic approach of paraxial geometrical optics and likewise to allow the introduction of some wave imaging concepts, such as the transmittance function, with a notable didactic interest for advanced subjects such as Fourier optics. This approach provides a more homogeneous vision of classical optics in which the use of the optical field continuity conditions at a boundary is a usual requirement as is clearly seen, for example, in the case of the derivation of Fresnel formulas. The work is particularly intended for university physics teachers and pregraduate and first year postgraduate students.

  8. A SVD-based method to assess the uniqueness and accuracy of SPECT geometrical calibration.

    Science.gov (United States)

    Ma, Tianyu; Yao, Rutao; Shao, Yiping; Zhou, Rong

    2009-12-01

    Geometrical calibration is critical to obtaining high resolution and artifact-free reconstructed image for SPECT and CT systems. Most published calibration methods use analytical approach to determine the uniqueness condition for a specific calibration problem, and the calibration accuracy is often evaluated through empirical studies. In this work, we present a general method to assess the characteristics of both the uniqueness and the quantitative accuracy of the calibration. The method uses a singular value decomposition (SVD) based approach to analyze the Jacobian matrix from a least-square cost function for the calibration. With this method, the uniqueness of the calibration can be identified by assessing the nonsingularity of the Jacobian matrix, and the estimation accuracy of the calibration parameters can be quantified by analyzing the SVD components. A direct application of this method is that the efficacy of a calibration configuration can be quantitatively evaluated by choosing a figure-of-merit, e.g., the minimum required number of projection samplings to achieve desired calibration accuracy. The proposed method was validated with a slit-slat SPECT system through numerical simulation studies and experimental measurements with point sources and an ultra-micro hot-rod phantom. The predicted calibration accuracy from the numerical studies was confirmed by the experimental point source calibrations at approximately 0.1 mm for both the center of rotation (COR) estimation of a rotation stage and the slit aperture position (SAP) estimation of a slit-slat collimator by an optimized system calibration protocol. The reconstructed images of a hot rod phantom showed satisfactory spatial resolution with a proper calibration and showed visible resolution degradation with artificially introduced 0.3 mm COR estimation error. The proposed method can be applied to other SPECT and CT imaging systems to analyze calibration method assessment and calibration protocol

  9. Geometrical analysis of registration errors in point-based rigid-body registration using invariants.

    Science.gov (United States)

    Shamir, Reuben R; Joskowicz, Leo

    2011-02-01

    Point-based rigid registration is the method of choice for aligning medical datasets in diagnostic and image-guided surgery systems. The most clinically relevant localization error measure is the Target Registration Error (TRE), which is the distance between the image-defined target and the corresponding target defined on another image or on the physical anatomy after registration. The TRE directly depends on the Fiducial Localization Error (FLE), which is the discrepancy between the selected and the actual (unknown) fiducial locations. Since the actual locations of targets usually cannot be measured after registration, the TRE is often estimated by the Fiducial Registration Error (FRE), which is the RMS distance between the fiducials in both datasets after registration, or with Fitzpatrick's TRE (FTRE) formula. However, low FRE-TRE and FTRE-TRE correlations have been reported in clinical practice and in theoretical studies. In this article, we show that for realistic FLE classes, the TRE and the FRE are uncorrelated, regardless of the target location and the number of fiducials and their configuration, and regardless of the FLE magnitude distribution. We use a geometrical approach and classical invariant theory to model the FLE and derive its relation to the TRE and FRE values. We show that, for these FLE classes, the FTRE and TRE are also uncorrelated. Finally, we show with simulations on clinical data that the FRE-TRE correlation is low also in the neighborhood of the FLE-FRE invariant classes. Consequently, and contrary to common practice, the FRE and FTRE may not always be used as surrogates for the TRE.

  10. Universal set of single-qubit gates based on geometric phase of electron spin in a quantum dot

    Science.gov (United States)

    Malinovsky, Vladimir; Rudin, Sergey

    2012-02-01

    The electron spin in a single quantum dot is one of the perspective realizations of a qubit for the implementation of a quantum computer. During last decade several control schemes to perform single gate operations on a single quantum dot spin have been reported. We propose a scheme that allows performing ultrafast arbitrary unitary operations on a single qubit. We demonstrate how to use the geometric phase, which the Bloch vector gains along the cyclic path, to prepare an arbitrary state of a single qubit. It is shown that, the geometrical phase is fully controllable by the relative phase between the external fields. Using the analytic expression of the evolution operator for the electron spin in a quantum dot, we propose a scheme to design a universal set of single-qubit gates based solely on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses.

  11. On the increase of geometric accuracy with the help of stiffening elements for robot-based incremental sheet metal forming

    Science.gov (United States)

    Thyssen, Lars; Seim, Patrick; Störkle, Denis D.; Kuhlenkötter, Bernd

    2016-10-01

    This paper describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The incremental sheet forming (ISF) offers high geometrical form flexibility without the need of any part-dependent tools. To transfer the ISF to industrial applications, it is necessary to respond to the still existing constraints, e.g. the low geometrical accuracy. Especially the subsequent deformation resulting from the interaction of differently shaped elements causes geometrical deviations, which are limiting the scope of formable parts. The impact of the resulting forming forces will vary according to the shape of the individual elements. For this, the paper proposes and examines a new approach to stabilize the geometrical accuracy without losing the universal approach of Roboforming by inserting stiffening elements. Those elements with varying cross-sections at the initial area of various orientations must be examined on their stabilizing or subsequent distorting impact. Especially the different impacts of the subsequent forming of stiffness features in contrast to the direct forming are studied precisely.

  12. Universal Quantum Gates Based on Both Geometric and Dynamic Phases in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    杨开宇; 朱诗亮; 汪子丹

    2003-01-01

    A large-scalable quantum computer model, whose qubits are represented by the subspace subtended by the ground state and the single exciton state on semiconductor quantum dots, is proposed. A universal set of quantum gates in this system may be achieved by a mixed approach, composed of dynamic evolution and nonadiabatic geometric phase.

  13. A landmark-based method for the geometrical 3D calibration of scanning microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M.

    2007-04-27

    This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean

  14. Identification of geometric deviations inherent to multi-axis machine tools based on the pose measurement principle

    Science.gov (United States)

    Haitao, Li; Junjie, Guo; Yufen, Deng; Jindong, Wang; Xinrong, He

    2016-12-01

    The laser tracker is an effective instrument for measuring 3D relative displacement in a work volume because its attitude can be freely changed. This paper presents a novel principle to realize the precise calibration of a numerical control (NC) machine tool accurately and quickly; this is the ‘pose measurement principle’, for measuring errors. We also introduce an algorithm for identifying geometric deviations. A NC precise table mounted on a motion axis and a laser tracker are used for the coordinate determination of three fixed points to obtain the pose information of each motion axis, then calculate the pose deviations, and finally identify all the errors. For the error identification, first, according to the definition of geometric errors, we extend the concept of pose deviations, and represent the six geometric errors using a position deviation vector and attitude deviation vector. Next, we geometrically identify the three angular errors and linear errors in order; the error mathematical model for the linear axis and rotary axis are developed, respectively. Moreover, the validity of the calibration algorithm for the base station, measuring points and identification of errors are confirmed by simulations. In the end, the proposed method is applied to a three-axis NC milling machine tool and a rotary table, and then the geometric deviations are identified successfully in 3 h and 2.5 h, respectively. Comparative experiments by means of other instruments also agree well with the proposed method. Thus, the proposed method can be applied to the measurement of the multi-axis machine tool.

  15. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  16. Geometric mechanics

    CERN Document Server

    Muniz Oliva, Waldyr

    2002-01-01

    Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.

  17. Geometric and unipotent crystals

    OpenAIRE

    Berenstein, Arkady; Kazhdan, David

    1999-01-01

    In this paper we introduce geometric crystals and unipotent crystals which are algebro-geometric analogues of Kashiwara's crystal bases. Given a reductive group G, let I be the set of vertices of the Dynkin diagram of G and T be the maximal torus of G. The structure of a geometric G-crystal on an algebraic variety X consists of a rational morphism \\gamma:X-->T and a compatible family e_i:G_m\\times X-->X, i\\in I of rational actions of the multiplicative group G_m satisfying certain braid-like ...

  18. Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector.

    Science.gov (United States)

    Cabal, Fatima Padilla; Lopez-Pino, Neivy; Bernal-Castillo, Jose Luis; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D'Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar

    2010-12-01

    A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ((241)Am, (133)Ba, (22)Na, (60)Co, (57)Co, (137)Cs and (152)Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

  19. Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Padilla Cabal, Fatima, E-mail: fpadilla@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba); Lopez-Pino, Neivy; Luis Bernal-Castillo, Jose; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D' Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba)

    2010-12-15

    A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ({sup 241}Am, {sup 133}Ba, {sup 22}Na, {sup 60}Co, {sup 57}Co, {sup 137}Cs and {sup 152}Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

  20. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    Science.gov (United States)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  1. Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool

    Directory of Open Access Journals (Sweden)

    Klyachin Vladimir Aleksandrovich

    2015-10-01

    Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.

  2. Activity patterns in the Sahara Desert: an interpretation based on cross-sectional geometric properties.

    Science.gov (United States)

    Nikita, Efthymia; Siew, Yun Ysi; Stock, Jay; Mattingly, David; Lahr, Marta Mirazón

    2011-11-01

    The Garamantian civilization flourished in modern Fezzan, Libya, between 900 BC and 500 AD, during which the aridification of the Sahara was well established. Study of the archaeological remains suggests a population successful at coping with a harsh environment of high and fluctuating temperatures and reduced water and food resources. This study explores the activity patterns of the Garamantes by means of cross-sectional geometric properties. Long bone diaphyseal shape and rigidity are compared between the Garamantes and populations from Egypt and Sudan, namely from the sites of Kerma, el-Badari, and Jebel Moya, to determine whether the Garamantian daily activities were more strenuous than those of other North African populations. Moreover, sexual dimorphism and bilateral asymmetry are assessed at an intra- and inter-population level. The inter-population comparisons showed the Garamantes not to be more robust than the comparative populations, suggesting that the daily Garamantian activities necessary for survival in the Sahara Desert did not generally impose greater loads than those of other North African populations. Sexual dimorphism and bilateral asymmetry in almost all geometric properties of the long limbs were comparatively low among the Garamantes. Only the lower limbs were significantly stronger among males than females, possibly due to higher levels of mobility associated with herding. The lack of systematic bilateral asymmetry in cross-sectional geometric properties may relate to the involvement of the population in bilaterally intensive activities or the lack of regular repetition of unilateral activities.

  3. Mathematical Model and Geometrical Model of Double Pitch ZN-type Worm Gear Set Based on Generation Mechanism

    Institute of Scientific and Technical Information of China (English)

    SHU Linsen; CAO Huajun; LI Xianchong; ZHANG Chenglong; LI Yuxia

    2015-01-01

    The current researches on the tooth surface mathematical equations and the theory of gearing malnly pay attention to the ordinary type worm gear set (e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6´10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is avallable to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.

  4. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  5. Wall-Corner Classification Using Sonar: A New Approach Based on Geometric Features

    Directory of Open Access Journals (Sweden)

    Ginés Benet

    2010-11-01

    Full Text Available Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances—80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20º to 70º. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.

  6. Wall-corner classification using sonar: a new approach based on geometric features.

    Science.gov (United States)

    Martínez, Milagros; Benet, Ginés

    2010-01-01

    Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances-80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20° to 70°. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.

  7. Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory

    Science.gov (United States)

    Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro

    2016-04-01

    Nowadays, mobile laser scanning has become a valid technology for infrastructure inspection. This technology permits collecting accurate 3D point clouds of urban and road environments and the geometric and semantic analysis of data became an active research topic in the last years. This paper focuses on the detection of vertical traffic signs in 3D point clouds acquired by a LYNX Mobile Mapper system, comprised of laser scanning and RGB cameras. Each traffic sign is automatically detected in the LiDAR point cloud, and its main geometric parameters can be automatically extracted, therefore aiding the inventory process. Furthermore, the 3D position of traffic signs are reprojected on the 2D images, which are spatially and temporally synced with the point cloud. Image analysis allows for recognizing the traffic sign semantics using machine learning approaches. The presented method was tested in road and urban scenarios in Galicia (Spain). The recall results for traffic sign detection are close to 98%, and existing false positives can be easily filtered after point cloud projection. Finally, the lack of a large, publicly available Spanish traffic sign database is pointed out.

  8. A point cloud modeling method based on geometric constraints mixing the robust least squares method

    Science.gov (United States)

    Yue, JIanping; Pan, Yi; Yue, Shun; Liu, Dapeng; Liu, Bin; Huang, Nan

    2016-10-01

    The appearance of 3D laser scanning technology has provided a new method for the acquisition of spatial 3D information. It has been widely used in the field of Surveying and Mapping Engineering with the characteristics of automatic and high precision. 3D laser scanning data processing process mainly includes the external laser data acquisition, the internal industry laser data splicing, the late 3D modeling and data integration system. For the point cloud modeling, domestic and foreign researchers have done a lot of research. Surface reconstruction technology mainly include the point shape, the triangle model, the triangle Bezier surface model, the rectangular surface model and so on, and the neural network and the Alfa shape are also used in the curved surface reconstruction. But in these methods, it is often focused on single surface fitting, automatic or manual block fitting, which ignores the model's integrity. It leads to a serious problems in the model after stitching, that is, the surfaces fitting separately is often not satisfied with the well-known geometric constraints, such as parallel, vertical, a fixed angle, or a fixed distance. However, the research on the special modeling theory such as the dimension constraint and the position constraint is not used widely. One of the traditional modeling methods adding geometric constraints is a method combing the penalty function method and the Levenberg-Marquardt algorithm (L-M algorithm), whose stability is pretty good. But in the research process, it is found that the method is greatly influenced by the initial value. In this paper, we propose an improved method of point cloud model taking into account the geometric constraint. We first apply robust least-squares to enhance the initial value's accuracy, and then use penalty function method to transform constrained optimization problems into unconstrained optimization problems, and finally solve the problems using the L-M algorithm. The experimental results

  9. Cell nucleus architecture in health and medicine: geometrical descriptors and their use in grid based case studies.

    Science.gov (United States)

    Schmitt, Eberhard; Müller, Patrick; Stein, Stefan; Schwarz-Finsterle, Jutta; Hausmann, Michael

    2010-01-01

    Adopting the world wide accessible Grid computing power and data management structures enables usage of large image data bases for individual diagnosis and therapy decisions. Here, we define several descriptors of the genome architecture of cell nuclei which are the basis of a detailed analysis for conclusions on the health state of an individual patient. All these descriptors can be accessed by automatic inspection of microscopic images of fluorescently labelled nuclei, obtained from cells from tissue sections or blood and subjected to standard biochemical protocols. We demonstrate how the combinatorial, geometrical and statistical parameters may be used in diagnosis and therapy monitoring.

  10. Automated registration of freehand B-mode ultrasound and magnetic resonance imaging of the carotid arteries based on geometric features

    DEFF Research Database (Denmark)

    Carvalho, Diego D. B.; Arias Lorza, Andres Mauricio; Niessen, Wiro J.;

    2017-01-01

    An automated method for registering B-mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid arteries is proposed. The registration uses geometric features, namely, lumen centerlines and lumen segmentations, which are extracted fully automatically from the images after manual...... annotation of three seed points in US and MRI. The registration procedure starts with alignment of the lumen centerlines using a point-based registration algorithm. The resulting rigid transformation is used to initialize a rigid and subsequent non-rigid registration procedure that jointly aligns centerlines...

  11. Fast Image Segmentation Based on a Two-Stage Geometrical Active Contour

    Institute of Scientific and Technical Information of China (English)

    肖昌炎; 张素; 陈亚珠

    2005-01-01

    A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.

  12. Linear and support vector regressions based on geometrical correlation of data

    Directory of Open Access Journals (Sweden)

    Kaijun Wang

    2007-10-01

    Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.

  13. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  14. Structural damage identification based on change in geometric modal strain energy-eigenvalue ratio

    Science.gov (United States)

    Nguyen, Khac-Duy; Chan, Tommy HT; Thambiratnam, David P.

    2016-07-01

    This study presents a new damage identification method to locate and quantify damage using measured mode shapes and natural frequencies. A new vibration parameter, ratio of geometric modal strain energy to eigenvalue (GMSEE), has been developed and its change due to stiffness reduction has been formulated using a sensitivity matrix. This sensitivity matrix is estimated with measured modal parameters and basic information of the structure. For damage identification, firstly, the locations of damage and the correlative damage extents are identified by maximizing the correlation level between an analytical GMSEE change vector and a measured one. Herein, the genetic algorithm, which is a powerful evolutionary optimization algorithm, is utilized to solve this optimization problem. Secondly, the size of damage can be estimated using the proposed GMSEE technique and compared with a conventional technique using frequency change. A numerical 2D Truss bridge is used to demonstrate the performance of the proposed method in identifying single and multiple damage cases. Also, practicality of the method is tested with a laboratory eight degree-of-freedom system and a real bridge. Results illustrate the high capability of the method to identify structural damage with less modeling efforts.

  15. Universal geometric error modeling of the CNC machine tools based on the screw theory

    Science.gov (United States)

    Tian, Wenjie; He, Baiyan; Huang, Tian

    2011-05-01

    The methods to improve the precision of the CNC (Computerized Numerical Control) machine tools can be classified into two categories: error prevention and error compensation. Error prevention is to improve the precision via high accuracy in manufacturing and assembly. Error compensation is to analyze the source errors that affect on the machining error, to establish the error model and to reach the ideal position and orientation by modifying the trajectory in real time. Error modeling is the key to compensation, so the error modeling method is of great significance. Many researchers have focused on this topic, and proposed many methods, but we can hardly describe the 6-dimensional configuration error of the machine tools. In this paper, the universal geometric error model of CNC machine tools is obtained utilizing screw theory. The 6-dimensional error vector is expressed with a twist, and the error vector transforms between different frames with the adjoint transformation matrix. This model can describe the overall position and orientation errors of the tool relative to the workpiece entirely. It provides the mathematic model for compensation, and also provides a guideline in the manufacture, assembly and precision synthesis of the machine tools.

  16. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    Modeling of fluid flow in naturally fractured reservoirs is often done through modeling and upscaling of discrete fracture networks (DFNs). The two-dimensional fracture geometry required for DFNs is obtained from subsurface and outcropping analog data. However, these data provide little information...... of fractures with respect to the in situ stress field. Using finite-element simulations, mechanical aperture can be modeled explicitly, but because changes in fracture geometry require renewed meshing and simulating, this approach is not easily integrated into subsurface DFN modeling workflows. We present...... networks, digitized from outcropping pavements. These networks cover a wide range of possible geometries and spatial distributions. The geometrically based method predicts the average hydraulic aperture and equivalent permeability of fractured porous media with error margins of less than 5%....

  17. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  18. Geometrical approach to fluid models

    NARCIS (Netherlands)

    Kuvshinov, B. N.; Schep, T. J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notio

  19. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.

    2008-01-01

    We use the Li-Strahler geometric-optical model combined with a scaling-based approach to detect forest structural changes in the Three Gorges region of China. The physical-based Li-Strahler model can be inverted to retrieve forest structural properties. One of the main input variables for the invert

  20. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.

    Science.gov (United States)

    Sedova, Ada; Banavali, Nilesh K

    2017-03-14

    Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.

  1. Approximate axially symmetric solution of the Weyl-Dirac theory of gravitation and the spiral galactic rotation problem

    CERN Document Server

    Babourova, O V; Kudlaev, P E

    2016-01-01

    On the basis of the Poincare-Weyl gauge theory of gravitation, a new conformal Weyl-Dirac theory of gravitation is proposed, which is a gravitational theory in Cartan-Weyl spacetime with the Dirac scalar field representing the dark matter model. A static approximate axially symmetric solution of the field equations in vacuum is obtained. On the base of this solution in the Newtonian approximation one considers the problem of rotation velocities in spiral components of galaxies.

  2. A geometric correction scheme for spatial leakage effects in MEG/EEG seed-based functional connectivity mapping.

    Science.gov (United States)

    Wens, Vincent; Marty, Brice; Mary, Alison; Bourguignon, Mathieu; Op de Beeck, Marc; Goldman, Serge; Van Bogaert, Patrick; Peigneux, Philippe; De Tiège, Xavier

    2015-11-01

    Spatial leakage effects are particularly confounding for seed-based investigations of brain networks using source-level electroencephalography (EEG) or magnetoencephalography (MEG). Various methods designed to avoid this issue have been introduced but are limited to particular assumptions about its temporal characteristics. Here, we investigate the usefulness of a model-based geometric correction scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its properties theoretically and then assess potential advantages and limitations with simulated and experimental MEG data (resting state and auditory-motor task). To do so, we apply Minimum Norm Estimation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is able to map spatially all types of brain interactions, including linear correlations eliminated after signal orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues arise with signal orthogonalization too, although significantly less extensively, so the two approaches complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correction toolkits for seed-based FC analyses in source-projected MEG/EEG data.

  3. Segmentation of Façades from Urban 3D Point Clouds Using Geometrical and Morphological Attribute-Based Operators

    Directory of Open Access Journals (Sweden)

    Andrés Serna

    2016-01-01

    Full Text Available 3D building segmentation is an important research issue in the remote sensing community with relevant applications to urban modeling, cloud-to-cloud and cloud-to-model registration, 3D cartography, virtual reality, cultural heritage documentation, among others. In this paper, we propose automatic, parametric and robust approaches to segment façades from 3D point clouds. Processing is carried out using elevation images and 3D decomposition, and the final result can be reprojected onto the 3D point cloud for visualization or evaluation purposes. Our methods are based on geometrical and geodesic constraints. Parameters are related to urban and architectural constraints. Thus, they can be set up to manage façades of any height, length and elongation. We propose two methods based on façade marker extraction and a third method without markers based on the maximal elongation image. This work is developed in the framework of TerraMobilita project. The performance of our methods is proved in our experiments on TerraMobilita databases using 2D and 3D ground truth annotations.

  4. A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach

    KAUST Repository

    Espath, L. F R

    2015-02-03

    A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.

  5. Pragmatic geometric model evaluation

    Science.gov (United States)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  6. Geometric Time Delay Interferometry

    OpenAIRE

    Vallisneri, Michele

    2005-01-01

    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new an...

  7. CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features.

    Science.gov (United States)

    Can, Tolga; Wang, Yuan-Fang

    2003-01-01

    We present a new method for conducting protein structure similarity searches, which improves on the accuracy, robustness, and efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. To improve matching accuracy, we smooth the noisy raw atomic coordinate data with spline fitting. To improve matching efficiency, we adopt a hierarchical coarse-to-fine strategy. We use an efficient hashing-based technique to screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to discover new, meaningful motifs that were not reported by other structure alignment methods.

  8. PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC

    2012-04-06

    We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.

  9. Geometrical tradeoffs in graphene-based deeply-scaled electrically reconfigurable metasurfaces

    Science.gov (United States)

    Arezoomandan, Sara; Sensale-Rodriguez, Berardi

    2015-03-01

    In this work we study the terahertz light propagation through deeply-scaled graphene-based reconfigurable metasurfaces, i.e. metasurfaces with unit-cell dimensions much smaller than the terahertz wavelength. These metasurfaces are analyzed as phase modulators for constructing reconfigurable phase gradients along an optical interface for the purpose of beam shaping. Two types of deeply-scaled metacell geometries are analyzed and compared, which consist of: (i) multi split ring resonators, and (ii) multi spiral resonators. Two figures of merit, related to: (a) the loss and (b) the degree of reconfigurability achievable by such metamaterials -when applied in beam shaping applications-, are introduced and discussed. Simulations of these two types of deep-subwavelength geometries, when changing the metal coverage-fraction, show that there is an optimal coverage-fraction that gives the best tradeoff in terms of loss versus degree of reconfigurability. For both types of geometries the best tradeoff occurs when the area covered by the metallic region is around 40% of the metacell total area. From this point of view, reconfigurable deeply-scaled metamaterials can indeed provide a superior performance for beam shaping applications when compared to not deeply-scaled ones; however, counterintuitively, employing very highly-packed structures might not be beneficial for such applications.

  10. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  11. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  12. Evaluation of pixel-wise geometric constraint-based phase-unwrapping method for low signal-to-noise-ratio (SNR) phase

    Science.gov (United States)

    An, Yatong; Liu, Ziping; Zhang, Song

    2016-12-01

    This paper evaluates the robustness of our recently proposed geometric constraint-based phase-unwrapping method to unwrap a low-signal-to-noise ratio (SNR) phase. Instead of capturing additional images for absolute phase unwrapping, the new phase-unwrapping algorithm uses geometric constraints of the digital fringe projection (DFP) system to create a virtual reference phase map to unwrap the phase pixel by pixel. Both simulation and experimental results demonstrate that this new phase-unwrapping method can even successfully unwrap low-SNR phase maps that bring difficulties for conventional multi-frequency phase-unwrapping methods.

  13. Fish recognition based on the combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree

    CERN Document Server

    Alsmadi, Mutasem Khalil Sari; Noah, Shahrul Azman; Almarashdah, Ibrahim

    2009-01-01

    We presents in this paper a novel fish classification methodology based on a combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task and do not make the combination between the feature selection, image segmentation and geometrical parameter, we propose a general set of features extraction using robust feature selection, image segmentation and geometrical parameter and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a black box and focus our research in the determination of which input information must bring a robust fish discrimination.The main contribution of this paper is enhancement recognize and classify fishes...

  14. Brief Announcement: Decentralized Construction of Multicast Trees Embedded into P2P Overlay Networks based on Virtual Geometric Coordinates

    CERN Document Server

    Andreica, Mugurel Ionut; Sambotin, Ana-Delia; Tapus, Nicolae; 10.1145/1835698.1835766

    2010-01-01

    In this paper we consider the problem of efficiently constructing in a fully distributed manner multicast trees which are embedded into P2P overlays using virtual geometric node coordinates. We consider two objectives: to minimize the number of messages required for constructing a multicast tree by using the geometric properties of the P2P overlay, and to construct stable multicast trees when the lifetime durations of the peers are known.

  15. A Measurement Study of BLE iBeacon and Geometric Adjustment Scheme for Indoor Location-Based Mobile Applications

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2016-01-01

    Full Text Available Bluetooth Low Energy (BLE and the iBeacons have recently gained large interest for enabling various proximity-based application services. Given the ubiquitously deployed nature of Bluetooth devices including mobile smartphones, using BLE and iBeacon technologies seemed to be a promising future to come. This work started off with the belief that this was true: iBeacons could provide us with the accuracy in proximity and distance estimation to enable and simplify the development of many previously difficult applications. However, our empirical studies with three different iBeacon devices from various vendors and two types of smartphone platforms prove that this is not the case. Signal strength readings vary significantly over different iBeacon vendors, mobile platforms, environmental or deployment factors, and usage scenarios. This variability in signal strength naturally complicates the process of extracting an accurate location/proximity estimation in real environments. Our lessons on the limitations of iBeacon technique lead us to design a simple class attendance checking application by performing a simple form of geometric adjustments to compensate for the natural variations in beacon signal strength readings. We believe that the negative observations made in this work can provide future researchers with a reference on how well of a performance to expect from iBeacon devices as they enter their system design phases.

  16. Monte carlo method for the uncertainty evaluation of spatial straightness error based on new generation geometrical product specification

    Science.gov (United States)

    Wen, Xiulan; Xu, Youxiong; Li, Hongsheng; Wang, Fenglin; Sheng, Danghong

    2012-09-01

    Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product specification(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.

  17. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  18. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  19. Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in District Dehradun (Uttarakhand, India

    Directory of Open Access Journals (Sweden)

    Ritwik Mondal

    2015-01-01

    Interpretation & conclusion: It has been marked out that the geometric morphometrics utilizes powerful and comprehensive statistical procedures to analyze the shape differences of a morphological feature, assuming that the studied mosquitoes may represent different genotypes and probably come from one diverse gene pool.

  20. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  1. A Geometrical-based Vertical Gain Correction for Signal Strength Prediction of Downtilted Base Station Antennas in Urban Areas

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2012-01-01

    , with electrical antenna downtilt in the range from 0 to 10 degrees, as well as predictions based on ray-tracing and 3D building databases covering the measurement area. Although the calibrated ray-tracing predictions are highly accurate compared with the measured data, the combined LOS/NLOS COST-WI model...

  2. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  3. A Semiautomatic Large-Scale Detection of Simple Geometric Primitives for Detecting Structural Defects from Range-Based Information

    Directory of Open Access Journals (Sweden)

    R. Martínez

    2011-12-01

    Full Text Available Buildings in Cultural Heritage environments exhibit some common structural defects in elements which can be recognized by their differences with respect to the ideal geometric model. The global approach consists of detecting misalignments between elements corresponding to sections perpendicular to an axis, e.g. The local approach consists of detecting lack of verticality or meaningful differences (facades or internal walls in curved elements with typical components (apses or vaults, e.g. appearing in indoor environments. Geometric aspects concern to the basic model which supports successive layers corresponding to materials analysis and mechanical structural behaviour. A common strategy for detecting simple shapes consists of constructing maps of normal which can be extracted by an appropriate sampling of unit normal vectors linked to a points cloud. The most difficult issue concerns to the sampling process. A profusion of decorative details or even the small variations corresponding to small columns which are prolonging the nerves of vaults generate a dispersion of data which can be solved in a manual way by removing notrelevant zones for structural analysis. This method can be appropriate for small churches with a low number of vaults, but it appears as tedious when we are trying to analyse a large cathedral or an urban district. To tackle this problem different strategies for sampling information are designed, where some of them involving geometric aspects have been implemented. We illustrate our approach with several examples concerning to outdoor urban districts and indoor structural elements which display different kinds of pathologies.

  4. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    Science.gov (United States)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  5. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-08-01

    While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple `geometric' formula. For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.

  6. Bidimensionality and Geometric Graphs

    CERN Document Server

    Fomin, Fedor V; Saurabh, Saket

    2011-01-01

    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and...

  7. Soft tissue diagnosis in maxillofacial surgery: a preliminary study on three-dimensional face geometrical features-based analysis.

    Science.gov (United States)

    Calignano, Flaviana; Vezzetti, Enrico

    2010-04-01

    To obtain the best surgical results in orthognathic surgery, treatment planning and evaluation of results should be performed. In these operations it is necessary to provide the physician with powerful tools that can underline the behavior of soft tissue. For this reason, considering the improvements provided by the use of 3D scanners in medical diagnosis, we propose a methodology for analyzing facial morphology working with geometrical features. The methodology has been tested on patients with malocclusion in order to analyze the reliability and efficiency of the provided diagnostic results.

  8. A Geometric Approach to Noncommutative Principal Bundles

    CERN Document Server

    Wagner, Stefan

    2011-01-01

    From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.

  9. Geometrization of Trace Formulas

    CERN Document Server

    Frenkel, Edward

    2010-01-01

    Following our joint work arXiv:1003.4578 with Robert Langlands, we make the first steps toward developing geometric methods for analyzing trace formulas in the case of the function field of a curve defined over a finite field. We also suggest a conjectural framework of geometric trace formulas for curves defined over the complex field, which exploits the categorical version of the geometric Langlands correspondence.

  10. Localized Geometric Query Problems

    CERN Document Server

    Augustine, John; Maheshwari, Anil; Nandy, Subhas C; Roy, Sasanka; Sarvattomananda, Swami

    2011-01-01

    A new class of geometric query problems are studied in this paper. We are required to preprocess a set of geometric objects $P$ in the plane, so that for any arbitrary query point $q$, the largest circle that contains $q$ but does not contain any member of $P$, can be reported efficiently. The geometric sets that we consider are point sets and boundaries of simple polygons.

  11. Geometric Complexity Theory: Introduction

    CERN Document Server

    Sohoni, Ketan D Mulmuley Milind

    2007-01-01

    These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the spring quarter, 2007. It gives introduction to the basic structure of GCT. Part II consists of the lecture notes for the course given by the second author in the spring quarter, 2003. It gives introduction to invariant theory with a view towards GCT. No background in algebraic geometry or representation theory is assumed. These lecture notes in conjunction with the article \\cite{GCTflip1}, which describes in detail the basic plan of GCT based on the principle called the flip, should provide a high level picture of GCT assuming familiarity with only basic notions of algebra, such as groups, rings, fields etc.

  12. The Geometric Transition Revisited

    CERN Document Server

    Gwyn, Rhiannon

    2007-01-01

    Our intention in this article is to review known facts and to summarise recent advances in the understanding of geometric transitions and the underlying open/closed duality in string theory. We aim to present a pedagogical discussion of the gauge theory underlying the Klebanov--Strassler model and review the Gopakumar--Vafa conjecture based on topological string theory. These models are also compared in the T-dual brane constructions. We then summarise a series of papers verifying both models on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov--Strassler) and resolved (Pando Zayas--Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach th...

  13. Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures

    CERN Document Server

    Meier, Christoph; Wall, Wolfgang A; Popp, Alexander

    2016-01-01

    Recently, the authors have proposed a novel all-angle beam contact (ABC) formulation that combines the advantages of existing point and line contact models in a variationally consistent manner. However, the ABC formulation has so far only been applied in combination with a special torsion-free beam model, which yields a very simple and efficient finite element formulation, but which is restricted to initially straight beams with isotropic cross-sections. In order to abstain from these restrictions, the current work combines the ABC formulation with a geometrically exact Kirchhoff-Love beam element formulation that is capable of treating even the most general cases of slender beam problems in terms of initial geometry and external loads. While the neglect of shear deformation that is inherent to this formulation has been shown to provide considerable numerical advantages in the range of high beam slenderness ratios, alternative shear-deformable beam models are required for examples with thick beams. The curren...

  14. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    Science.gov (United States)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200–250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  15. Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships.

    Directory of Open Access Journals (Sweden)

    Mariusz Belka

    Full Text Available A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers' geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive

  16. 基于几何法的雷达与ESM航迹关联算法%Radar-ESM Track Correlation Based on Geometric Method

    Institute of Scientific and Technical Information of China (English)

    陈中华; 王国宏; 刘德浩; 谭顺成

    2012-01-01

    为解决雷达与ESM航迹关联门限的不确定性,提出了基于几何法的雷达与ESM航迹关联算法.该算法根据雷达与ESM的几何位置建立航迹粗关联函数,并利用航迹的历史信息建立航迹关联代价矩阵,通过代价最小实现航迹关联.仿真结果表明,该算法具有很好的关联性能.%In order to deal with the uncertainty thresholds of Radar-ESM ( Electronic Support Measures) correlation, an Radar-ESM correlation mode based on geometric method was proposed. Firstly, a coarse correlation function was built up based on the geometric position of radar and ESM. Then,a cost correlation matrix was set up by accumulating the historical information of the coarse correlation. Thus the track correlation was realized by finding the minimum cost of cost matrix. Finally, the correlation method proposed was verified by Monte Carlo simulation.

  17. 基于链码的人脸表情几何特征提取%Facial Expression Geometrical Feature Extraction Based on Chain Code

    Institute of Scientific and Technical Information of China (English)

    张庆; 代锐; 朱雪莹; 韦穗

    2012-01-01

    已有人脸表情特征提取算法的表情识别率较低.为此,提出一种基于链码的人脸表情几何特征提取算法.以主动形状模型特征点定位为基础,对面部目标上定位的特征点位置进行循环链码编码,以提取出人脸表情几何特征.实验结果表明,相比经典的LBP表情特征鉴别方法,该算法的识别率提高约10%.%The existing facial expression recognition rate of facial expression feature extraction algorithm is low. For this, this paper proposes a facial geometric feature extraction algorithm based chain codes. Based on active shape model that locates feature points and outputs the points' coordinates of facial targets the coding method gives a circular codes to extract the facial geometric feature. Experimental results show that, compared with the method of typical LBP expression recognition, the accuracy of the algorithm is increased by nearly 10%.

  18. Geometrical and Monte Carlo projectors in 3D PET reconstruction

    OpenAIRE

    Aguiar, Pablo; Rafecas López, Magdalena; Ortuno, Juan Enrique; Kontaxakis, George; Santos, Andrés; Pavía, Javier; Ros, Domènec

    2010-01-01

    Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under c...

  19. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    Science.gov (United States)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  20. 基于CV/CAD的三维物体几何建模%CV/CAD Based 3D Object Geometric Modeling

    Institute of Scientific and Technical Information of China (English)

    邓世伟; 袁保宗

    2001-01-01

    In areas such as virtual reality,it is often needed to establish virtual scene in computer from actual scene in real world.In this paper,a technical approach for realizing geometric modeling of 3D object is proposed,which combines computer vision and CAD geometric modeling.The range images of 3D objects are obtained by using the encoded light stripe patterns,then are segmented by our range image segmentation method based on the basic operations of methematical morphology. The meaningful regions obtained by range image segmentation correspond to the surface patches of 3D object.The 3D surface patches are then reconstructed by the algebraic surface fitting method;the surface parameters are estimated by solving generalized eigenvector problem. The geometric model of 3D object is constructed from reconstructed surface patches by using CAD geometric modeling tool GEOMOD.The primary experimental results of two mechanical parts are presented,which prove the proposed approach is feasible.%在虚拟现实等技术领域中,都涉及到由现实世界中的实际景物建立对应的计算机描述的虚拟景物的问题,为此提出了利用计算机视觉与CAD几何建模技术相结合的三维物体建模途径.首先通过编码光栅方法获取三维物体的深度图象,并采用数学形态学的方法加以分割,然后利用代数曲面拟合手段对分割后的三维曲面片进行重建,并使用CAD几何建模工具由重建的曲面片构成物体的几何模型.该文给出了初步的试验结果,证明所提出的技术途径基本可行.

  1. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory

    Science.gov (United States)

    Askari, Amir R.; Tahani, Masoud

    2017-02-01

    This paper focuses on the size-dependent dynamic pull-in instability in rectangular micro-plates actuated by step-input DC voltage. The present model accounts for the effects of in-plane displacements and their non-classical higher-order boundary conditions, von Kármán geometric non-linearity, non-classical couple stress components and the inherent non-linearity of distributed electrostatic pressure on the micro-plate motion. The governing equations of motion, which are clearly derived using Hamilton's principle, are solved through a novel computationally very efficient Galerkin-based reduced order model (ROM) in which all higher-order non-classical boundary conditions are completely satisfied. The present findings are compared and successfully validated by available results in the literature as well as those obtained by three-dimensional finite element simulations carried out using COMSOL Multyphysics. A detailed parametric study is also conducted to illustrate the effects of in-plane displacements, plate aspect ratio, couple stress components and geometric non-linearity on the dynamic instability threshold of the system.

  2. Computerized analysis of interstitial lung diseases on chest radiographs based on lung texture, geometric-pattern features, and artificial neural networks

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Nakamura, Katsumi; Ashizawa, Kazuto; MacMahon, Heber; Doi, Kunio

    2002-05-01

    For computerized detection of interstitial lung disease on chest radiographs, we developed three different methods: texture analysis based on the Fourier transform, geometric- pattern feature analysis, and artificial neural network (ANN) analysis of image data. With these computer-aided diagnostic methods, quantitative measures can be obtained. To improve the diagnostic accuracy, we investigated combined classification schemes by using the results obtained with the three methods for distinction between normal and abnormal chest radiographs with interstitial opacities. The sensitivities of texture analysis, geometric analysis, and ANN analysis were 88.0+/- 1.6%, 91.0+/- 2.6%, and 87.5+/- 1.9%, respectively, at a specificity of 90.0%, whereas the sensitivity of a combined classification scheme with the logical OR operation was improved to 97.1%+/- 1.5% at the same specificity of 90.0%. The combined scheme can achieve higher accuracy than the individual methods for distinction between normal and abnormal cases with interstitial opacities.

  3. LAN Shishuang, SUN Jinguang. Geometrical attack digital watermarking based on improved SIFT.%基于改进SIFT的抗几何攻击的数字水印

    Institute of Scientific and Technical Information of China (English)

    兰世爽; 孙劲光

    2011-01-01

    An effective against geometric attack robustness of digital watermarking algorithm based on improved SIFT(Scale Invariant Feature Transform) is presented. It achieves watermark synchronization using improved Scale-Invariant Feature Transform; watermark is embedded in cirque,using odd-even quantization in spatial domain and is extracted from an odd-even detector. Simulation results show that improved SIFT can reduce the matching dimension of feature point, improve the matching rate. And the proposed scheme achieves good image quality and it is robust to geometric attacks as well as traditional signal operations.%通过改进的SIFT(尺度不变特征变换)算法提出了一种可有效抵抗几何攻击的鲁棒数字水印算法.此算法利用改进的SIFT进行水印信号的同步;水印嵌入采用圆环的嵌入模式,在空域以奇偶量化形式嵌入;通过奇偶检测器提取水印.实验结果表明,改进的SIFT大大降低特征点匹配的维数,提高匹配速率,同时该算法能获得很好的图像质量,能有效抵抗几何攻击和常规的信号处理攻击.

  4. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    Science.gov (United States)

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  5. A common geometric data-base approach for computer-aided manufacturing of wind-tunnel models and theoretical aerodynamic analysis

    Science.gov (United States)

    See, M. J.; Cozzolongo, J. V.

    1983-01-01

    A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.

  6. Differential geometric structures

    CERN Document Server

    Poor, Walter A

    2007-01-01

    This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

  7. Geometric and engineering drawing

    CERN Document Server

    Morling, K

    2010-01-01

    The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.

  8. Guessing Geometric Shapes.

    Science.gov (United States)

    Bledsoe, Gloria J

    1987-01-01

    The game of "Guess What" is described as a stimulating vehicle for students to consider the unifying or distinguishing features of geometric figures. Teaching suggestions as well as the gameboard are provided. (MNS)

  9. Stability criteria for T-S fuzzy systems with interval time-varying delays and nonlinear perturbations based on geometric progression delay partitioning method.

    Science.gov (United States)

    Chen, Hao; Zhong, Shouming; Li, Min; Liu, Xingwen; Adu-Gyamfi, Fehrs

    2016-07-01

    In this paper, a novel delay partitioning method is proposed by introducing the theory of geometric progression for the stability analysis of T-S fuzzy systems with interval time-varying delays and nonlinear perturbations. Based on the common ratio α, the delay interval is unequally separated into multiple subintervals. A newly modified Lyapunov-Krasovskii functional (LKF) is established which includes triple-integral terms and augmented factors with respect to the length of every related proportional subintervals. In addition, a recently developed free-matrix-based integral inequality is employed to avoid the overabundance of the enlargement when dealing with the derivative of the LKF. This innovative development can dramatically enhance the efficiency of obtaining the maximum upper bound of the time delay. Finally, much less conservative stability criteria are presented. Numerical examples are conducted to demonstrate the significant improvements of this proposed approach.

  10. Solving geometrically nonlinear tasks of the statics of hinged-rod systems basing on finite element method in the form of classical mixed method

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2016-02-01

    Full Text Available The most widely used numerical method used in linear calculation of building structures is finite element method in traditional form of displacements. Different software is developed on its basis. Though it is only possible to check the certainty of these numerical solutions, especially of non-linear tasks of engineering structures’ deformation by the coincidence of the results obtained by two different methods. The authors solved geometrically nonlinear task of the static deformation of a flat hinged-rod system consisting of five linear elastic rods undergoing great tension-compression strains. The solution was obtained basing on the finite element method in the form of classical mixed method developed by the authors. The set of all equilibrium states of the system, both stable and unstable, and all the limit points were found. The certainty of the solution was approved by the coincidence of the results obtained by other authors basing on traditional finite element method in displacements.

  11. Calculation of geometric phases in electric dipole searches with trapped spin-1/2 particles based on direct solution of the Schr\\"odinger equation

    CERN Document Server

    Steyerl, A; Müller, G; Malik, S S; Desai, A M; Golub, R

    2014-01-01

    Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\textbf{70}$, 032102 (2004)] were the first to investigate the role of geometric phases in searches for an electric dipole moment of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in general fields and in bounded geometries. We solve the Schr\\"odinger equation directly for cylindrical trap geometry and obtain a full description of EDM-relevant spin behavior in general fields, including the short-time transients and vertical spin oscillation in the entire range of particle velocities. We apply this method to general macroscopic fields and to the field of a microscopic magnetic dipole.

  12. Saturation and geometrical scaling

    CERN Document Server

    Praszalowicz, Michal

    2016-01-01

    We discuss emergence of geometrical scaling as a consequence of the nonlinear evolution equations of QCD, which generate a new dynamical scale, known as the saturation momentum: Qs. In the kinematical region where no other energy scales exist, particle spectra exhibit geometrical scaling (GS), i.e. they depend on the ratio pT=Qs, and the energy dependence enters solely through the energy dependence of the saturation momentum. We confront the hypothesis of GS in different systems with experimental data.

  13. Identification of stair climbing ability levels in community-dwelling older adults based on the geometric mean of stair ascent and descent speed: The GeMSS classifier.

    Science.gov (United States)

    Mayagoitia, Ruth E; Harding, John; Kitchen, Sheila

    2017-01-01

    The aim was to develop a quantitative approach to identify three stair-climbing ability levels of older adults: no, somewhat and considerable difficulty. Timed-up-and-go test, six-minute-walk test, and Berg balance scale were used for statistical comparison to a new stair climbing ability classifier based on the geometric mean of stair speeds (GeMSS) in ascent and descent on a flight of eight stairs with a 28° pitch in the housing unit where the participants, 28 (16 women) urban older adults (62-94 years), lived. Ordinal logistic regression revealed the thresholds between the three ability levels for each functional test were more stringent than thresholds found in the literature to classify walking ability levels. Though a small study, the intermediate classifier shows promise of early identification of difficulties with stairs, in order to make timely preventative interventions. Further studies are necessary to obtain scaling factors for stairs with other pitches.

  14. Analysis of pull-in instability of geometrically nonlinear microbeam using radial basis artificial neural network based on couple stress theory.

    Science.gov (United States)

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

  15. Geometric isomerism in coordination cages based on tris-chelate vertices: a tool to control both assembly and host/guest chemistry.

    Science.gov (United States)

    Metherell, Alexander J; Ward, Michael D

    2016-10-18

    This 'Perspective' article summarises recent work from the authors' research group on the exploitation of the simple fac/mer geometric isomerism of octahedral metal tris-chelates as a tool to control the chemistry of coordination cages based on bis(pyrazolyl-pyridine) ligands, in two different respects. Firstly this geometric isomerism plays a major role in controlling the guest binding properties of cages because a fac tris-chelate arrangement of pyrazolyl-pyridine chelates around a metal ion vertex results in formation of a convergent set of inwardly-directed C-H protons in a region of high positive electrostatic potential close to a metal cation. This collection of δ+ protons therefore provides a charge-assisted hydrogen-bond donor site, which interacts with the electron-rich regions of guest molecules that are of the correct size and shape to occupy the cage cavity, and the strength of this hydrogen-bonding interaction plays a major role in guest recognition in non-aqueous solvents. Secondly the ability to prepare mononuclear complexes with either a fac or mer arrangement of ligands provides an entry into the controlled, stepwise assembly of heterometallic cages based on a combination of kinetically inert and kinetically labile metal ions at different sites. This has allowed introduction of useful physical properties such as redox activity or luminescence, commonly associated with inert metal ions which are not amenable to participation in thermodynamic self-assembly processes, to be incorporated in a predictable way into the superstructures of coordination cages at specific sites.

  16. Guiding light via geometric phases

    CERN Document Server

    Slussarenko, Sergei; Jisha, Chandroth P; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo

    2015-01-01

    Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely on changes of the refractive index, that is on scalar properties of light. Recently, processes based on "geometric Berry phases", such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretic...

  17. Polar metals by geometric design

    Science.gov (United States)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  18. 基于SIFT的抗几何攻击水印研究与实现%Watermark Research and Implementation Against Geometric Distortion Based on SIFT

    Institute of Scientific and Technical Information of China (English)

    张斌; 王嘉祯; 文家福; 常雷

    2011-01-01

    数字水印算法面临几何攻击时,往往丢失了水印嵌入与水印检测的同步性,造成水印算法的彻底失效,而基于特征点的水印算法能够较好地抵抗几何扭曲的攻击,特别是基于最新的旋转、缩放、平移不变的SIFT特征点的数字水印算法,在抵抗几何攻击的同时,能够较好地抵抗光照,视角等变化.在分析SIFT特征点选取原理的基础上,指出了该方法的优势及能够抵抗RST攻击的本质原因,对其算法进行了matlab优化实现,并提出了基于SIFT的抗几何攻击的数字水印方案,此外,给出了图像特征点的一般定义,讨论了水印特征点选取一般和理想要求.%When digital watermark meets geometric attack, generally the synchronization between the embedding and extraction of the watermark is lost, which means the watermark algorithm is useless. The algorithm based image features can better resist geometric distortion, especially the algorithm based on SIFT. SIFT is not only can resist PST, but also can resist the change of the illumination and viewpoint. Based on the principle analysis of SIFT, introduce the key reasons that SIFT can endure RST distortion, then give out the implementation using Matlab program, and propose a digital watermark scheme which can endure PST attack based on SIFT, by the way,propose a general definition for image special points, and discuss the general and idle requirement for digital watermark special points.

  19. Mahavira's Geometrical Problems

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2004-01-01

    Analysis of the geometrical chapters Mahavira's 9th-century Ganita-sara-sangraha reveals inspiration from several chronological levels of Near-Eastern and Mediterranean mathematics: (1)that known from Old Babylonian tablets, c. 1800-1600 BCE; (2)a Late Babylonian but pre-Seleucid Stratum, probably...

  20. A Measurement Study of BLE iBeacon and Geometric Adjustment Scheme for Indoor Location-Based Mobile Applications

    OpenAIRE

    2016-01-01

    Bluetooth Low Energy (BLE) and the iBeacons have recently gained large interest for enabling various proximity-based application services. Given the ubiquitously deployed nature of Bluetooth devices including mobile smartphones, using BLE and iBeacon technologies seemed to be a promising future to come. This work started off with the belief that this was true: iBeacons could provide us with the accuracy in proximity and distance estimation to enable and simplify the development of many previo...

  1. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  2. Conceptual aspects of geometric quantum computation

    Science.gov (United States)

    Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.

    2016-10-01

    Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

  3. a Geometric Processing Workflow for Transforming Reality-Based 3d Models in Volumetric Meshes Suitable for Fea

    Science.gov (United States)

    Gonizzi Barsanti, S.; Guidi, G.

    2017-02-01

    Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this paper is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshers typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion.

  4. A Dugdale model based geometrical amplifier enables the measurement of separation-to-failure for a cohesive interface

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) are the primary parameters which control the interfacial fracture behaviors. Experimentally,it is hard to determine those quantities,especially forδ_0,which occurs in a very localized region with possibly complicated geometries by material failure.Based on the Dugdale model,we show that the sepa...

  5. EFFECTS OF GEOMETRICAL STRUCTURE ON MICROWAVE AND OPTICAL PROPERTIES OF TRAVELING WAVE ELECTROABSORPTION MODULATORS BASED ON ASYMMETRIC COUPLED STRAINED QUANTUM WELLS ACTIVE LAYER

    Directory of Open Access Journals (Sweden)

    KAMBIZ ABEDI

    2011-08-01

    Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.

  6. Charge transport and glassy dynamics of poly(ethylene oxide)-based single-ion conductors under geometrical confinement

    Science.gov (United States)

    Runt, James; Iacob, Ciprian

    2015-03-01

    Segmental and local dynamics as well as charge transport are investigated in a series of poly(ethylene oxide)-based single-ion conductors (ionomers) with varying counterions (Li +, Na +) confined in uni-directional nanoporous silica membranes. The dynamics are explored over a wide frequency and temperature range by broadband dielectric relaxation spectroscopy. Slowing of segmental dynamics and a decrease in dc conductivity (strongly coupled with segmental relaxation) of the confined ionomers are associated with surface effects - resulting from interfacial hydrogen bonding between the host nanoporous silica membrane and the guest ionomers. These effects are significantly reduced or eliminated upon pore surface modification through silanization. The primary transport properties for the confined ionomers decrease by about one decade compared to the bulk ionomer. A model assuming reduced mobility of an adsorbed layer at the pore wall/ionomer interface is shown to provide a quantitative explanation for the decrease in effective transport quantities in non-silanized porous silica membranes. Additionally, the effect of confinement on ion aggregation in ionomers by using X-ray scattering will also be discussed. Supported by the National Science Foundation, Polymers Program.

  7. An Automated Grass-Based Procedure to Assess the Geometrical Accuracy of the Openstreetmap Paris Road Network

    Science.gov (United States)

    Brovelli, M. A.; Minghini, M.; Molinari, M. E.

    2016-06-01

    OpenStreetMap (OSM) is the largest spatial database of the world. One of the most frequently occurring geospatial elements within this database is the road network, whose quality is crucial for applications such as routing and navigation. Several methods have been proposed for the assessment of OSM road network quality, however they are often tightly coupled to the characteristics of the authoritative dataset involved in the comparison. This makes it hard to replicate and extend these methods. This study relies on an automated procedure which was recently developed for comparing OSM with any road network dataset. It is based on three Python modules for the open source GRASS GIS software and provides measures of OSM road network spatial accuracy and completeness. Provided that the user is familiar with the authoritative dataset used, he can adjust the values of the parameters involved thanks to the flexibility of the procedure. The method is applied to assess the quality of the Paris OSM road network dataset through a comparison against the French official dataset provided by the French National Institute of Geographic and Forest Information (IGN). The results show that the Paris OSM road network has both a high completeness and spatial accuracy. It has a greater length than the IGN road network, and is found to be suitable for applications requiring spatial accuracies up to 5-6 m. Also, the results confirm the flexibility of the procedure for supporting users in carrying out their own comparisons between OSM and reference road datasets.

  8. Match method of straight line based on geometric invariance%基于几何不变量的直线匹配方法

    Institute of Scientific and Technical Information of China (English)

    林意; 李进明

    2011-01-01

    针对目前直线匹配算法大多基于直线段支持区域的几何特性、灰度特性,但这些特性又极易受外界因素干扰造成匹配失败的情况,提出了基于直线几何不变量的匹配方法,该方法在无任何已知条件的情况下,运用叉积符号、点的线束交比不变量进行直线匹配.对于各个视点图像,采用Hough变换提取直线间交点集,再采用Graham扫描法构造一个最小的凸包,并通过匹配凸包顶点的交比序列来建立点与点的对应关系,选取其中一个对应关系完成直线的匹配.实验结果表明,该方法鲁棒性较好,具有广泛的应用性.%Aimed at features of the current Line matching algorithm, such as geometric properties and gray properties of support region of straight line are used to match straight line. But they are easy to be interfered by the environment and lead to failure of match. A method for matching straight line based on geometric invariance is proposed. Without any constraint and the given conditions, straight Line based on invariant of cross product symbol and harness cross ratio can be matched perfectly. For each view images, firstly, crossing point set of lines are extracted by Hough transform, the least convex hull is constructed by Graham scan method. Then, the correspondence relationship between points is set up by matching sequences of vertex cross ratio of convex hull, finally, matching is implemented via one of the correspondence relationship is selected. Experiment results show that the method has better robustness and has a wide range of application.

  9. 5th Dagstuhl Seminar on Geometric Modelling

    CERN Document Server

    Brunnett, Guido; Farin, Gerald; Goldman, Ron

    2004-01-01

    In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications

  10. Geometric continuum mechanics and induced beam theories

    CERN Document Server

    R Eugster, Simon

    2015-01-01

    This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

  11. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  12. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    ‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  13. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  14. Geometric Stochastic Resonance

    CERN Document Server

    Ghosh, Pulak Kumar; Savel'ev, Sergey E; Nori, Franco

    2015-01-01

    A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.

  15. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  16. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  17. The quantum geometric limit

    CERN Document Server

    Lloyd, Seth

    2012-01-01

    This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...

  18. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  19. 基于车载CCD影像的物方几何参数量算%DETERMINATION OF OBJECT GEOMETRIC PARAME- TERS WITH VEHICLE-BASED CCD IMAGERY

    Institute of Scientific and Technical Information of China (English)

    王树根; 李宾; 王海涛; 仲思东

    2001-01-01

    介绍了用车载CCD相机所获得的影像测求物方空间目标 几何参数的原理和方法,通过试验得出了一些有益的结论和建议。%In the last decade, mobile mapping system has be en one of the hot research spots in the field of survey and mapping, and also th e typical represents of 3S integration technology. A mobile mapping system consi sts mainly of a moving platform, navigation sensors, and mapping sensors. The mo bile platform may be a land vehicle, a vessel, or an aircraft. The navigation se nsors mainly are Global Positioning System (GPS) receivers and Inertial Naviga tion System (INS). Objects to be surveyed are sensed directly by mapping sensors , for instance, Charge Coupled Devices (CCD), laser rangers, and radar sensors. Because the orientation parameters of the mapping sensors are estimated directly by the navigation sensors, complicated computations such as photogrammetric tr iangulation are greatly simplified or avoided. Spatial information of the objec ts can be extracted directly from the geo-referenced mapping sensor data by int egrating navigation sensor data.   This paper presents the principle and method for the determination of the objec t-oriented geometric parameters with imagery obtained by vehicle-based CCD cam eras. Some useful conclusions and suggestions are gained after the experiment.

  20. Morphological affinities of the proximal humerus of Epipliopithecus vindobonensis and Pliopithecus antiquus: suspensory inferences based on a 3D geometric morphometrics approach.

    Science.gov (United States)

    Arias-Martorell, Julia; Alba, David M; Potau, Josep M; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro

    2015-03-01

    Suspension plays a major adaptive role in shaping primate postcranial morphology, which therefore enables this positional behavior to be inferred in extinct taxa. The proximal humerus stands as a key region for inferring forelimb suspensory capabilities because its morphology can be effectively linked, from a functional viewpoint, to differences in suspension use between primate taxa. Here we provide an assessment of the suspensory capabilities of two pliopithecoids (Epipliopithecus vindobonensis and Pliopithecus antiquus) by means of a 3D geometric morphometric analysis of proximal humeral shape. The comparative sample includes proximal humeri from eight extant anthropoid genera, as well as other extinct catarrhines (the propliopithecoid Aegyptopithecus zeuxis, the stem hominoid Nyanzapithecus vancouveringorum, and an unascribed small catarrhine, GSP 28062, from the Middle Miocene of Pakistan). Body mass estimates based on allometric regressions of humeral head superoinferior diameter are also provided. Our results support some degree of forelimb suspensory behaviors for Epipliopithecus and GSP 28062. In contrast, and unlike previous qualitative assessments, our analysis shows that P. antiquus has a distinct glenohumeral morphology, much closer to that displayed by generalized arboreal quadrupeds with no evidence of suspensory adaptations (as in Aegyptopithecus and stem hominoids from Africa).

  1. Describing head shapes of white stem borers (Schirpophaga innotata Walker that are able to survive on different rice types using Landmark based geometric morphometrics

    Directory of Open Access Journals (Sweden)

    Queenilyn B. Albutra

    2012-06-01

    Full Text Available Rice stem borers are considered as the most serious insect pest of rice in Asia. It infects itsplant host by burrowing into the stem using its mandible. However, apart from the mandible, the head ofrice stem borers is also associated in the incursion process since it facilitates the entry of larvae to the riceplant. Differences in the head capsules have a direct effect on the ability of the insects to ingest hardfoods rapidly. Different rice varieties in the Philippines serve as plant host for this pest and infestationoccurred in different geographical location. Variations in habitat and plant host were thought to generateenvironmental variation in morphometric traits and host adapted herbivore phenotype respectively.Landmark based geometric morphometric analysis was used to assess the hypothesis that the head shapeof white stem borer differ between populations with respect to different rice varieties and geographicallocation where it was obtained. Relative warp analysis showed variation in the head shape betweendifferent white stem borer (Schirpophaga innotata Walker populations infesting different varieties of rice.Non-significant head shape variations were obtained between geographically separated populations. Theseresults indicate that the rice host varieties play an important role in the selection of individuals that areable to counteract the resistance factors in plants.

  2. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  3. Geometric Rationalization for Freeform Architecture

    KAUST Repository

    Jiang, Caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  4. Image coding with geometric wavelets.

    Science.gov (United States)

    Alani, Dror; Averbuch, Amir; Dekel, Shai

    2007-01-01

    This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image.

  5. IsoCleft Finder - a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities.

    Science.gov (United States)

    Kurbatova, Natalja; Chartier, Matthieu; Zylber, María Inés; Najmanovich, Rafael

    2013-01-01

    IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code) combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity) and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder.

  6. Cryptic Species or Inadequate Taxonomy? Implementation of 2D Geometric Morphometrics Based on Integumental Organs as Landmarks for Delimitation and Description of Copepod Taxa.

    Science.gov (United States)

    Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M

    2016-03-01

    Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a

  7. Polar Metals by Geometric Design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J. -W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-05

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  8. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  9. Geometric analysis and PDEs

    CERN Document Server

    Ambrosetti, Antonio; Malchiodi, Andrea

    2009-01-01

    This volume contains lecture notes on some topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics. The presentation of the material should be rather accessible to non-experts in the field, since the presentation is didactic in nature. The reader will be provided with a survey containing some of the most exciting topics in the field, with a series of techniques used to treat such problems.

  10. Robust Geometric Spanners

    CERN Document Server

    Bose, Prosenjit; Morin, Pat; Smid, Michiel

    2012-01-01

    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.

  11. Geometric phases in physics

    CERN Document Server

    Shapere, Alfred D

    1989-01-01

    During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as 'Berry's phase') in addition to the usual dynamical phase derived from Schrödinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified

  12. Geometric Number Systems and Spinors

    CERN Document Server

    Sobczyk, Garret

    2015-01-01

    The real number system is geometrically extended to include three new anticommuting square roots of plus one, each such root representing the direction of a unit vector along the orthonormal coordinate axes of Euclidean 3-space. The resulting geometric (Clifford) algebra provides a geometric basis for the famous Pauli matrices which, in turn, proves the consistency of the rules of geometric algebra. The flexibility of the concept of geometric numbers opens the door to new understanding of the nature of space-time, and of Pauli and Dirac spinors as points on the Riemann sphere, including Lorentz boosts.

  13. Geometric Decision Tree

    CERN Document Server

    Manwani, Naresh

    2010-01-01

    In this paper we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in a top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node, are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.

  14. Finite elements/Taguchi method based procedure for the identification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc.

    Science.gov (United States)

    Cappetti, N; Naddeo, A; Naddeo, F; Solitro, G F

    2016-09-01

    The aim of this work is to show a quick and simple procedure able to identify the geometrical parameters of the intervertebral disc that strongly affect the behavior of the FEM model. First, we allocated a selection criterion for the minimum number of geometrical parameters that describe, with a good degree of approximation, a healthy human vertebra. Next, we carried out a sensitivity analysis using the 'Taguchi orthogonal array' to arrive at a quick identification of the parameters that strongly affect the behavior of the Fem model.

  15. SU-C-BRE-05: PTV Margin Determination Based On Tumor Radiobiological Characteristics and Geometric Uncertainties Derived From Daily Cone- Beam CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, J [Inlaks and Budhrani Hospital (India)

    2014-06-15

    Purpose: To determine required PTV margins for ≤1% loss in mean population TCP using systematic (Σ) and random (σ) errors calculated from daily cone-beam CT (CBCT) images of head and neck patients. Methods: Daily CBCT images were acquired for 50 head and neck patients. The CBCT image sets acquired at each fraction were registered with planning CT to obtain positional errors for each patient for each fraction. Systematic and random errors were calculated from data collected for 50 patients as described in IPEM On Target report. CTV delineation uncertainty of 2mm is added quadratically to systematic error. Assuming a spherical target volume, the dose in each voxel of target volume is summed for each fraction in the treatment by shifting the dose grid to calculate mean population TCP inclusive of geometric uncertainties using a Monte Carlo method. These simulations were repeated for the set of Σ and σ in each axis for different PTV margins and drop in TCP for each margin are obtained. In order to study the effect of dose-response curve on PTV margins, two different σα of 0.048 Gy-1 and 0.218 Gy-1 representing steep and shallow dose-response curves are studied. Σ were 2.5, 2.5, 2.1 mm and σ were 0.3, 0.3 0.2 mm respectively in x, y and z axis respectively. Results: PTV margins based on tumor radiobiological characteristics are 4.8, 4.8 and 4 mm in x, y and z axis assuming 25 treatment fractions for σα 0.048 Gy-1 (steep) and 4.2,4.2 and 2.2 for σα of 0.218 Gy-1 (shallow). While the TCP-based margins did not differ much in x and y axis, it is considerably smaller in z axis for shallow DRC. Conclusion: TCP based margins are substantially smaller than physical dose-based margin recipes. This study also demonstrates the importance of considering tumor radiobiological characteristics while deriving margins.

  16. Phenomenological modeling of Geometric Metasurfaces

    CERN Document Server

    Ye, Weimin; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang

    2015-01-01

    Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.

  17. An ECG waveform recognition algorithm based on geometric characteristics%一种基于几何特征的 ECG 波形识别算法

    Institute of Scientific and Technical Information of China (English)

    李锋; 陈美丽

    2015-01-01

    目的:ECG自动分析系统由两部分组成:波形识别和智能诊断。在实际应用中,心电波形识别是该系统的关键。波形识别的精确性和可靠性决定了心脏病诊断的可靠性。为提高波形识别的速率及准确度,本文提出一种基于几何特征的ECG波形识别算法。方法首先利用数字滤波算法对信号进行预处理,提高信号的信噪比,然后通过改进的二阶导数计算出数据的几何特征:点的斜率和运动趋势,并在此基础上,结合ECG波形的实际物理特征,利用算法实现T波、P波、QRS波群的起点、终点以及波峰波谷的自动识别。结果统计分析结果表明,本算法能够快速高效地识别ECG波形。同时将该算法与其他当前各种ECG波形识别算法进行对比,该识别算法在识别的精确性与阳性预测值方面具有更好的性能。结论本文提出的基于几何特征的ECG波形识别算法可以进一步提高当前ECG波形识别算法的性能。%Objective ECG analysis diagnosis system mainly consists of two phases: waveform recognition and intelligent diagnosis .Accuracy and reliability of ECG waveform recognition determine the diagnosis and treatment of heart disease .A waveform recognition algorithm based on geometric characteristics is proposed in this paper to improve the detection rate and accuracy of waveform recognition .Methods Firstly, signals are preprocessed to improve noise ratio by digital filtering algorithm .Secondly , we calculate certain geometric characteristics such as the slope and the movement tendency of points with improved second derivative.Finally, we can automatically recognize the onset , the offset, the peak and the trough of T wave , P wave, QRS complex with the actual physical characteristics of ECG waveform on the basis of the previous results.Results Statistical analysis shows that our method can recognize the ECG wave fast and effectively .We also compare this

  18. Geometrical Destabilization of Inflation

    Science.gov (United States)

    Renaux-Petel, Sébastien; Turzyński, Krzysztof

    2016-09-01

    We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.

  19. Random geometric complexes

    CERN Document Server

    Kahle, Matthew

    2009-01-01

    We study the expected topological properties of Cech and Vietoris-Rips complexes built on randomly sampled points in R^d. These are, in some cases, analogues of known results for connectivity and component counts for random geometric graphs. However, an important difference in this setting is that homology is not monotone in the underlying parameter. In the sparse range, we compute the expectation and variance of the Betti numbers, and establish Central Limit Theorems and concentration of measure. In the dense range, we introduce Morse theoretic arguments to bound the expectation of the Betti numbers, which is the main technical contribution of this article. These results provide a detailed probabilistic picture to compare with the topological statistics of point cloud data.

  20. 3D facial geometric features for constrained local model

    NARCIS (Netherlands)

    Cheng, Shiyang; Zafeiriou, Stefanos; Asthana, Akshay; Pantic, Maja

    2014-01-01

    We propose a 3D Constrained Local Model framework for deformable face alignment in depth image. Our framework exploits the intrinsic 3D geometric information in depth data by utilizing robust histogram-based 3D geometric features that are based on normal vectors. In addition, we demonstrate the fusi

  1. Geometric Properties of AR(q) Nonlinear Regression Models

    Institute of Scientific and Technical Information of China (English)

    LIUYing-ar; WEIBo-cheng

    2004-01-01

    This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].

  2. Satellite Video Stabilization with Geometric Distortion

    Directory of Open Access Journals (Sweden)

    WANG Xia

    2016-02-01

    Full Text Available There is an exterior orientation difference in each satellite video frame, and the corresponding points have different image locations in adjacent frames images which has geometric distortion. So the projection model, affine model and other classical image stabilization registration model cannot accurately describe the relationship between adjacent frames. This paper proposes a new satellite video image stabilization method with geometric distortion to solve the problem, based on the simulated satellite video, we verify the feasibility and accuracy of proposed satellite video stabilization method.

  3. MM Algorithms for Geometric and Signomial Programming.

    Science.gov (United States)

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  4. Connexions for the nuclear geometrical collective model

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  5. Modern Geometric Algebra: A (Very Incomplete!) Survey

    Science.gov (United States)

    Suzuki, Jeff

    2009-01-01

    Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…

  6. Geometric model of robotic arc welding for automatic programming

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.

  7. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  8. Homological Type of Geometric Transitions

    CERN Document Server

    Rossi, Michele

    2010-01-01

    The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \\emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.

  9. In Defence of Geometrical Algebra

    OpenAIRE

    Blasjo, V.N.E.

    2016-01-01

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.

  10. A Protocol for the Creation of Useful Geometric Shape Metrics Illustrated with a Newly Derived Geometric Measure of Leaf Circularity

    Directory of Open Access Journals (Sweden)

    Jonathan D. Krieger

    2014-08-01

    Full Text Available Premise of the study: I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. Methods and Results: To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. Conclusions: The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.

  11. On an Assumption of Geometric Foundation of Numbers

    Science.gov (United States)

    Anatriello, Giuseppina; Tortoriello, Francesco Saverio; Vincenzi, Giovanni

    2016-01-01

    In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the "Elements" of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in…

  12. Geometrical method of decoupling

    Science.gov (United States)

    Baumgarten, C.

    2012-12-01

    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E→, B→, and P→, which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of) transformations must be symplectic and hence canonical. When used iteratively, the decoupling

  13. Noncommutative Geometric Gauge Theory from Superconnections

    OpenAIRE

    Lee, Chang-Yeong

    1996-01-01

    Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...

  14. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  15. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  16. Geometric Reasoning for Automated Planning

    Science.gov (United States)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  17. Generalized Geometric Quantum Speed Limits

    Science.gov (United States)

    Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.

    2016-04-01

    The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  18. Geometric Correction of Remote Sensing Images Based on Graphic Processing Unit%基于GPU大规模遥感图像的几何校正

    Institute of Scientific and Technical Information of China (English)

    陈超; 陈彬; 孟剑萍

    2012-01-01

    A method for achieving the fusion of remote sensing image with two-dimensional (2D) maps in different scales is introduced. The method includes some technologies, such as geometric correction and resampling, etc. In addition, an approach to achieve the geometric correction of the remote sensing image and the fusion of remote sensing image with 2D map are introduced through graphic processing unit (GPU) in Linux environment, thus improving the displaying ef- fects of traditional topographical maps on computer.%针对二维平面地形图与遥感图像之间同一地区不同比例的融合问题,研究了遥感地形图的几何校正和重采样等技术实现。基于图像处理器(GPU)实现了Linux环境下遥感图像的几何校正,以及带有纹理信息的遥感图像与平面地形图的融合,扩展了传统二维平面地形图的表现形式。

  19. Geometric structure of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, L.; Modugno, M.

    1985-06-01

    In the framework of the adjoint forms over the jet spaces of connections and using a canonical jet shift differential, we give a geometrical interpretation of the Yang--Mills equations both in a direct and Lagrangian formulation.

  20. Geometric phases in graphitic cones

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Claudio [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil)], E-mail: furtado@fisica.ufpb.br; Moraes, Fernando [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil); Carvalho, A.M. de M [Departamento de Fisica, Universidade Estadual de Feira de Santana, BR116-Norte, Km 3, 44031-460 Feira de Santana, BA (Brazil)

    2008-08-04

    In this Letter we use a geometric approach to study geometric phases in graphitic cones. The spinor that describes the low energy states near the Fermi energy acquires a phase when transported around the apex of the cone, as found by a holonomy transformation. This topological result can be viewed as an analogue of the Aharonov-Bohm effect. The topological analysis is extended to a system with n cones, whose resulting configuration is described by an effective defect00.

  1. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  2. Determining Geometric Accuracy in Turning

    Institute of Scientific and Technical Information of China (English)

    Kwong; Chi; Kit; A; Geddam

    2002-01-01

    Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are infl...

  3. Antenna with Dielectric Having Geometric Patterns

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  4. Relationship of college student characteristics and inquiry-based geometrical optics instruction to knowledge of image formation with light-ray tracing

    Science.gov (United States)

    Isik, Hakan

    This study is premised on the fact that student conceptions of optics appear to be unrelated to student characteristics of gender, age, years since high school graduation, or previous academic experiences. This study investigated the relationships between student characteristics and student performance on image formation test items and the changes in student conceptions of optics after an introductory inquiry-based physics course. Data was collected from 39 college students who were involved in an inquiry-based physics course teaching topics of geometrical optics. Student data concerning characteristics and previous experiences with optics and mathematics were collected. Assessment of student understanding of optics knowledge for pinholes, plane mirrors, refraction, and convex lenses was collected with, the Test of Image Formation with Light-Ray Tracing instrument. Total scale and subscale scores representing the optics instrument content were derived from student pretest and posttest responses. The types of knowledge, needed to answer each optics item correctly, were categorized as situational, conceptual, procedural, and strategic knowledge. These types of knowledge were associated with student correct and incorrect responses to each item to explain the existences and changes in student scientific and naive conceptions. Correlation and stepwise multiple regression analyses were conducted to identify the student characteristics and academic experiences that significantly predicted scores on the subscales of the test. The results showed that student experience with calculus was a significant predictor of student performance on the total scale as well as on the refraction subscale of the Test of Image Formation with Light-Ray Tracing. A combination of student age and previous academic experience with precalculus was a significant predictor of student performance on the pretest pinhole subscale. Student characteristic of years since high school graduation

  5. The bouncing ball through a geometrical series

    Science.gov (United States)

    Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin

    2008-10-01

    The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.

  6. Diffraction of a Gaussian beam in a three-dimensional smoothly inhomogeneous medium: an eikonal-based complex geometrical-optics approach.

    Science.gov (United States)

    Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej

    2006-06-01

    We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.

  7. Integrated computer-aided design in automotive development development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management

    CERN Document Server

    Mario, Hirz; Gfrerrer, Anton; Lang, Johann

    2013-01-01

    The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...

  8. Geometric phase and Pancharatnam phase induced by light wave polarization

    CERN Document Server

    Lages, J; Vigoureux, J -M

    2013-01-01

    We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a non zero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and can not be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.

  9. A geometrical approach to structural change modeling

    OpenAIRE

    Stijepic, Denis

    2013-01-01

    We propose a model for studying the dynamics of economic structures. The model is based on qualitative information regarding structural dynamics, in particular, (a) the information on the geometrical properties of trajectories (and their domains) which are studied in structural change theory and (b) the empirical information from stylized facts of structural change. We show that structural change is path-dependent in this model and use this fact to restrict the number of future structural cha...

  10. Geometric problems in molecular biology and robotics.

    Science.gov (United States)

    Parsons, D; Canny, J

    1994-01-01

    Some of the geometric problems of interest to molecular biologists have macroscopic analogues in the field of robotics. Two examples of such analogies are those between protein docking and model-based perception, and between ring closure and inverse kinematics. Molecular dynamics simulation, too, has much in common with the study of robot dynamics. In this paper we give a brief survey of recent work on these and related problems.

  11. Geometric treatment of the gravitomagnetic clock effect

    CERN Document Server

    Tartaglia, A

    2000-01-01

    We have developed a general geometric treatment of the GCE valid for any stationary axisymmetric metric. The method is based on the remark that the world lines of objects rotating along spacely circular trajectories are in any case, for those kind of metrics, helices drawn on the flat bidimensional surface of a cylinder. Applying the obtained formulas to the special cases of the Kerr and weak field metric for a spinning body, known results for time delays and synchrony defects are recovered.

  12. Geometrical Methods for Power Network Analysis

    CERN Document Server

    Bellucci, Stefano; Gupta, Neeraj

    2013-01-01

    This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.

  13. Optimal Design for Analog Integrated Circuits Based on Short-Channel Models via Geometric Programming%短沟道模型模拟集成电路的几何规划优化设计

    Institute of Scientific and Technical Information of China (English)

    李丹; 戎蒙恬; 殳国华

    2011-01-01

    探讨了几何规划在基于短沟道模型的互补金属氧化物半导体(CMOS)电路中的应用.首先采用Level 1模型得到电路的初始规划,然后将所得元件值代入Hspice仿真程序,再从仿真输出的列表文件中取出各CMOS管的静态电压电流变量和等效小信号模型参数.将它们代入以修正因子为规划变量的几何规划算法,在前一次工作点附近搜索本次的最优设计.修正后的电路再次进行Hspice仿真.几何规划和仿真反复交替进行,直到最优化的目标值稳定.模拟集成电路的仿真实例表明,算法对短沟道模型电路是有效的.%A method of applying geometric programming to complementary metal oxide semiconductor (CMOS) based on short-channel models is described. An original solution based on Level 1 model via geometric programming is obtained first. Then simulate the original circuit by Hspice and acquire important parameters of all CMOS transistors from the output list file. These parameters are used in adjusting software to search the adjusting factors and achieve a new solution near the previous one. Simulating and geometric programming iteratively until the objective of optimization keeps stable. A simulation example proves the algorithm is effective in short-channel techniques.

  14. The arithmetico-geometric sequence: an application of linear algebra

    Science.gov (United States)

    Orosi, Greg

    2016-07-01

    In this paper, we present a linear algebra-based derivation of the analytic formula for the sum of the first nth terms of the arithmetico-geometric sequence. Furthermore, the advantage of the derivation is briefly discussed.

  15. Integration of geometric modeling and advanced finite element preprocessing

    Science.gov (United States)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  16. Toward Geometric Visual Servoing

    Science.gov (United States)

    2002-09-26

    IEEE Transactions on Robotics and Automation, 17(4):507–515, 2001. [3] Noah Cowan...and Robert Mahony. Visual servong of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Transactions on Robotics and...Automation, 18(2):187–198, April 2002. [7] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE Transactions on Robotics

  17. Geometric dynamical observables in rare gas crystals

    CERN Document Server

    Casetti, L; Casetti, Lapo; Macchi, Alessandro

    1996-01-01

    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.

  18. Geometric dynamical observables in rare gas crystals

    Energy Technology Data Exchange (ETDEWEB)

    Casetti, L. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Macchi, A. [Istituto Nazionale di Fisica della Materia (INFM), Unita di Firenze, Largo Enrico Fermi 2, 50125 Firenze (Italy)

    1997-03-01

    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard methods of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations. {copyright} {ital 1997} {ital The American Physical Society}

  19. Geometrical multiresolution adaptive transforms theory and applications

    CERN Document Server

    Lisowska, Agnieszka

    2014-01-01

    Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply ‘X-lets’, and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and com...

  20. Geometrical geodesy techniques in Goddard earth models

    Science.gov (United States)

    Lerch, F. J.

    1974-01-01

    The method for combining geometrical data with satellite dynamical and gravimetry data for the solution of geopotential and station location parameters is discussed. Geometrical tracking data (simultaneous events) from the global network of BC-4 stations are currently being processed in a solution that will greatly enhance of geodetic world system of stations. Previously the stations in Goddard earth models have been derived only from dynamical tracking data. A linear regression model is formulated from combining the data, based upon the statistical technique of weighted least squares. Reduced normal equations, independent of satellite and instrumental parameters, are derived for the solution of the geodetic parameters. Exterior standards for the evaluation of the solution and for the scale of the earth's figure are discussed.

  1. New computation methods for geometrical optics

    CERN Document Server

    Lin, Psang Dain

    2014-01-01

    This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

  2. Geometric Correction for Braille Document Images

    Directory of Open Access Journals (Sweden)

    Padmavathi.S

    2016-04-01

    Full Text Available Braille system has been used by the visually impair ed people for reading.The shortage of Braille books has caused a need for conversion of Braille t o text. This paper addresses the geometric correction of a Braille document images. Due to the standard measurement of the Braille cells, identification of Braille characters could be achie ved by simple cell overlapping procedure. The standard measurement varies in a scaled document an d fitting of the cells become difficult if the document is tilted. This paper proposes a line fitt ing algorithm for identifying the tilt (skew angle. The horizontal and vertical scale factor is identified based on the ratio of distance between characters to the distance between dots. Th ese are used in geometric transformation matrix for correction. Rotation correction is done prior to scale correction. This process aids in increased accuracy. The results for various Braille documents are tabulated.

  3. Bootstrap Percolation on Random Geometric Graphs

    CERN Document Server

    Bradonjić, Milan

    2012-01-01

    Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap percolation starts by random and independent "activation" of nodes with a fixed probability $p$, followed by a deterministic process for additional activations based on the density of active nodes in each neighborhood ($\\th$ activated nodes). Here, we study bootstrap percolation on random geometric graphs in the regime when the latter are (almost surely) connected. Random geometric graphs provide an appropriate model in settings where the neighborhood structure of each node is determined by geographical distance, as in wireless {\\it ad hoc} ...

  4. a Geometrical Similarity Pattern as AN Experimental Model for Shapes in Architectural Heritage: a Case Study of the Base of the Pillars in the Cathedral of Seville and the Church of Santiago in Jerez, Spain

    Science.gov (United States)

    Moyano, J. J.; Barrera, J. A.; Nieto, J. E.; Marín, D.; Antón, D.

    2017-02-01

    This paper proposes a procedure for the search of a geometrical similarity pattern in architectural heritage by means of calculating probability indexes to support hypotheses initially endorsed by documentary sources. The buildings analysed are the Cathedral of Seville and the Church of Santiago, in Jerez, Spain. The 3D models of their selected pillars are obtained by means of Terrestrial Laser Scanning (TLS), Optical Scanning (OS) and photogrammetry through image-based modelling software (SFM-IBM). To this end, a procedure for the comparison of shapes is established. It is based on similarity statistics, the determination of homologous points and the agreement of characteristic sections. Here, two key aspects are considered: on the one hand, the metric standpoint; on the other hand, historical-graphical features of the 3D models: composition, techniques, styles, and historical-graphical documentary sources. Thus, putting aside the mere dimensional analysis, the sections are compared with graphical patterns and models of which the same authorship - stonemasons working in that age - is accurately known. As a result, the outcomes of this research reveal the geometrical similarity between the elements of the pillars of the Cathedral of Seville and the Church of Santiago.

  5. A GEOMETRICAL SIMILARITY PATTERN AS AN EXPERIMENTAL MODEL FOR SHAPES IN ARCHITECTURAL HERITAGE: A CASE STUDY OF THE BASE OF THE PILLARS IN THE CATHEDRAL OF SEVILLE AND THE CHURCH OF SANTIAGO IN JEREZ, SPAIN

    Directory of Open Access Journals (Sweden)

    J. J. Moyano

    2017-02-01

    Full Text Available This paper proposes a procedure for the search of a geometrical similarity pattern in architectural heritage by means of calculating probability indexes to support hypotheses initially endorsed by documentary sources. The buildings analysed are the Cathedral of Seville and the Church of Santiago, in Jerez, Spain. The 3D models of their selected pillars are obtained by means of Terrestrial Laser Scanning (TLS, Optical Scanning (OS and photogrammetry through image-based modelling software (SFM-IBM. To this end, a procedure for the comparison of shapes is established. It is based on similarity statistics, the determination of homologous points and the agreement of characteristic sections. Here, two key aspects are considered: on the one hand, the metric standpoint; on the other hand, historical-graphical features of the 3D models: composition, techniques, styles, and historical-graphical documentary sources. Thus, putting aside the mere dimensional analysis, the sections are compared with graphical patterns and models of which the same authorship – stonemasons working in that age – is accurately known. As a result, the outcomes of this research reveal the geometrical similarity between the elements of the pillars of the Cathedral of Seville and the Church of Santiago.

  6. Geometric scalar theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  7. Geometric procedures for civil engineers

    CERN Document Server

    Tonias, Elias C

    2016-01-01

    This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice.  A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.

  8. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  9. 基于几何意义的线性代数教学研究%Study on Teaching of Linear Algebra Based on Geometric Background

    Institute of Scientific and Technical Information of China (English)

    张敏

    2016-01-01

    This paper discusses that Geometric intuition is very important for linear algebra teaching. The re-search on the knowledge points of the linear algebra teaching is carried out, by showing several examples of teaching cases, it is clear that the theorems and methods in linear algebra are shown in the corresponding space, so that students can grasp the essence of the problem.%讨论了线性代数中几何直观在线性代数教学中的重要性。对线性代数教学中重点的几个抽象的知识点进行的研究,通过展示数形结合教学案例,能清楚的认识抽象代数问题在对应空间中位置关系,从而帮助学生抓住相关问题的本质。

  10. DEVELOPMENT OF A 3D WEBGIS SYSTEM FOR RETRIEVING AND VISUALIZING CITYGML DATA BASED ON THEIR GEOMETRIC AND SEMANTIC CHARACTERISTICS BY USING FREE AND OPEN SOURCE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. Pispidikis

    2016-10-01

    Full Text Available CityGML is considered as an optimal standard for representing 3D city models. However, international experience has shown that visualization of the latter is quite difficult to be implemented on the web, due to the large size of data and the complexity of CityGML. As a result, in the context of this paper, a 3D WebGIS application is developed in order to successfully retrieve and visualize CityGML data in accordance with their respective geometric and semantic characteristics. Furthermore, the available web technologies and the architecture of WebGIS systems are investigated, as provided by international experience, in order to be utilized in the most appropriate way for the purposes of this paper. Specifically, a PostgreSQL/ PostGIS Database is used, in compliance with the 3DCityDB schema. At Server tier, Apache HTTP Server and GeoServer are utilized, while a Server Side programming language PHP is used. At Client tier, which implemented the interface of the application, the following technologies were used: JQuery, AJAX, JavaScript, HTML5, WebGL and Ol3-Cesium. Finally, it is worth mentioning that the application’s primary objectives are a user-friendly interface and a fully open source development.

  11. Outline and landmark based geometric morphometric analysis in describing sexual dimorphism in wings of the white stem borer (Schirpophaga innotata Walker

    Directory of Open Access Journals (Sweden)

    Queenilyn B. Albutra

    2012-06-01

    Full Text Available Many studies about wing morphology have been conducted in the field of entomology that aims to clarify the relationship in closelyrelated taxa and to identify different population within and between species. However, less has been reported that exploit wing shape morphologyto discriminate female and male population within species. Differences in wing morphology between sexes of the same species of insectsoften reflect disparity in flight performance and flight range which might be of considerable significance in the monitoring and control of pestspecies. This study was conducted to determine differences in flight morphology between sexes of the white stem borer (Schirpophaga innotaWalker by looking at variation in the shapes of the entire wing and its compartments using the method of geometric morphometrics. The resultsshowed considerable variation in the forewings and hindwings between female and male specimen as shown in relative warp analysis.Discriminant function analysis and MANOVA also showed statistically significant wing shape variation between sexes demonstrating the presenceof sexual dimorphism within the species of white stem borers.

  12. An introduction to geometrical physics

    CERN Document Server

    Aldrovandi, R

    1995-01-01

    This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o

  13. Geometric integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-05-12

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  14. Geometric pumping in autophoretic channels

    CERN Document Server

    Michelin, Sebastien; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-01-01

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

  15. A Geometric Formulation of Supersymmetry

    CERN Document Server

    Freedman, Daniel Z; Van Proeyen, Antoine

    2016-01-01

    The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.

  16. An Identification Approach for Key Geometric Error Sources of Machine Tool Based on Sensitivity Analysis%基于敏感度分析的机床关键性几何误差源识别方法

    Institute of Scientific and Technical Information of China (English)

    程强; 刘广博; 刘志峰; 玄东升; 常文芬

    2012-01-01

    The volumetric error coupled by geometric errors of parts is the main reason affecting the machining accuracy. How to determine the influence degree on the processing precision generated by the geometric errors of parts, thus distribute the geometric errors of parts economically and reasonably, is currently a difficult problem of machine tool design. Based on the theory of multi-body system and sensitivity analysis, a new method of identifying the key geometric error sources parameters is proposed. Taking a four-axis precision horizontal machining center as example, the precision model of the machine center is built up with the theory of multi-body system, thus a mathematical model for error sensitivity analysis of four-axis computer numerical control machine tools is established with matrix differential method, finally the key geometric error sources which affect the machining precision are identified after sensitivity coefficient of error are calculated and analyzed. Calculation and example show that geometric error factors of major parts that have relatively significant influence on comprehensive spatial error of the machine tools can be identified effectively, thus important theoretical basis is provided for improving precision of machine tools reasonably and economically.%零部件几何误差耦合而成的机床空间误差是影响其加工精度的主要原因,如何确定各零部件几何误差对加工精度的影响程度从而经济合理地分配机床零部件的几何精度是目前机床设计所面临的一个难题.基于多体系统理论,在敏感度分析的基础上提出一种识别关键性几何误差源参数的新方法.以一台四轴精密卧式加工中心为例,基于多体系统理论构建加工中心的精度模型,并利用矩阵微分法建立四轴数控机床误差敏感度分析的数学模型,通过计算与分析误差敏感度系数,最终识别出影响机床加工精度的关键性几何误差.计算和试验分析表

  17. Coordinate Geometric Generalization of the Spherometer and Cylindrometer

    CERN Document Server

    Khan, Sameen Ahmed

    2013-01-01

    Spherometer is an instrument widely used for measuring the radius of curvature of a spherical surface. Cylindrometer is a modified spherometer, which can measure the radii of both spherical and cylindrical surfaces. Both of these instruments are based on a geometric relation unique to circles and spheres, from Euclidean geometry. A more general understanding is obtained using coordinate geometry. The coordinate geometric approach also enables a generalization of the spherometer and cylindrometer to devices, which can handle aspherical surfaces. Here, we present the newly developed coordinate geometric approach and its applications.

  18. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  19. Geometric covering arguments and ergodic theorems for free groups

    CERN Document Server

    Bowen, Lewis

    2009-01-01

    We present a new approach to the proof of ergodic theorems for actions of free groups based on geometric covering and asymptotic invariance arguments. Our approach can be viewed as a direct generalization of the classical geometric covering and asymptotic invariance arguments used in the ergodic theory of amenable groups. We use this approach to generalize the existing maximal and pointwise ergodic theorems for free group actions to a large class of geometric averages which were not accessible by previous techniques. Some applications of our approach to other groups and other problems in ergodic theory are also briefly discussed.

  20. Edit propagation using geometric relationship functions

    KAUST Repository

    Guerrero, Paul

    2014-03-01

    We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.

  1. On an assumption of geometric foundation of numbers

    Science.gov (United States)

    Anatriello, Giuseppina; Saverio Tortoriello, Francesco; Vincenzi, Giovanni

    2016-04-01

    In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the Elements of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in Ausdehnungslehre in 1844. Assuming as axioms, the cognitive contents of the theorems of Pappus and Desargues, through their configurations, in an Euclidean plane a natural field structure can be identified that reveals the purely geometric nature of complex numbers. Reasoning based on figures is becoming a growing interdisciplinary field in logic, philosophy and cognitive sciences, and is also of considerable interest in the field of education, moreover, recently, it has been emphasized that the mutual assistance that geometry and complex numbers give is poorly pointed out in teaching and that a unitary vision of geometrical aspects and calculation can be clarifying.

  2. Non-Markovian effect on the geometric phase of a dissipative qubit

    CERN Document Server

    Chen, Juan-Juan; Tong, Qing-Jun; Luo, Hong-Gang; Oh, C H

    2010-01-01

    We study the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit the lowest-order correction to the geometric phase is derived analytically and the general case is calculated numerically. It is found that the correction to the geometric phase is significantly large if the spectral width is small and in this case the non-Markovian dynamics has a significant impact to the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  3. In Defence of Geometrical Algebra

    NARCIS (Netherlands)

    Blasjo, V.N.E.

    2016-01-01

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that

  4. Metastable vacua and geometric deformations

    CERN Document Server

    Amariti, A; Girardello, L; Mariotti, A

    2008-01-01

    We study the geometric interpretation of metastable vacua for systems of D3 branes at non isolated toric deformable singularities. Using the L^{aba} examples, we investigate the relations between the field theoretic susy breaking and restoration and the complex deformations of the CY singularities.

  5. Integrating geometric activity images in ANN classification

    Science.gov (United States)

    De Genst, William; Gautama, Sidharta; Bellens, Rik; Canters, Frank

    2005-10-01

    In this paper we demonstrate how the interaction between innovative methods in the field of computer vision and methods for multi-spectral image classification can help in extracting detailed land-cover / land-use information from Very High Resolution (VHR) satellite imagery. We introduce the novel concept of "geometric activity images", which we define as images encoding the strength of the relationship between a pixel and surrounding features detected through dedicated computer vision methods. These geometric activity images are used as alternatives to more traditional texture images that better describe the geometry of man-made structures and that can be included as additional information in a non-parametric supervised classification framework. We present a number of findings resulting from the integration of geometric activity images and multi-spectral bands in an artificial neural network classification. The geometric activity images we use result from the use of a ridge detector for straight line detection, calculated for different window sizes and for all multi-spectral bands and band-ratio images in a VHR scene. A selection of the most relevant bands to use for classification is carried out using band selection based on a genetic algorithm. Sensitivity analysis is used to assess the importance of each input variable. An application of the proposed methods to part of a Quickbird image taken over the suburban fringe of the city of Ghent (Belgium) shows that we are able to identify roads with much higher accuracy than when using more traditional multi-spectral image classification techniques.

  6. Geometric hashing and object recognition

    Science.gov (United States)

    Stiller, Peter F.; Huber, Birkett

    1999-09-01

    We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.

  7. Geometric constrained variational calculus. II: The second variation (Part I)

    Science.gov (United States)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  8. Non-critical string, Liouville theory and geometric bootstrap hypothesis

    CERN Document Server

    Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew

    2003-01-01

    Basing on the standard construction of critical string amplitudes we analyze properties of the longitudinal sector of the non-critical Nambu-Goto string. We demonstrate that it cannot be described by standard (in the sense of BPZ) conformal field theory. As an alternative we propose a new version of the geometric approach to Liouville theory and formulate its basic consistency condition - the geometric bootstrap equation.

  9. Capability of geometric features to classify ships in SAR imagery

    Science.gov (United States)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  10. 基于成像几何模型的火星探测器定位研究%Positioning of Mars probes based on imaging geometric models

    Institute of Scientific and Technical Information of China (English)

    盛庆红; 刘微微; 赵华

    2012-01-01

    对数亿千米之外的火星探测器进行跟踪导航定位,是火星探测的关键技术之一.目前,我国深空网尚未建成,利用中国VLBI网对火星探测器“火星快车”的定位精度仅约0.1as,难以为火星探测器的精密定轨提供数据保障.提出以遥感影像进行火星探测器几何定位的全新技术方法,利用严密传感器成像几何模型,通过地面控制点在物方空间坐标系中的坐标与其对应像点在像方坐标系中坐标之间的几何关系,解算探测器空间位置.对美国奥德赛号(Odyssey)火星探测器进行定位试验,精度达到了2.93mas,为我国火星探测器定位提供了理论和技术支持.%Tracking and locating of Mars probes for hundreds of millions kilometers away is one of the key technologies of the Mars exploration. Now China's deep space network hasn't been constructed and the location accuracy of MEX by Chinese VLBI Network is only 0. 1 as, which is difficult to provide security for precise orbit determination of Mars probes. A new method of locating mars probes by using remote sensing images is proposed, which adopts strict sensor imaging geometric model through matching of ground control points and the corresponding image points. Result of positioning experiments on Odyssey shows that the new method makes the accuracy up to 2. 93 mas, providing theory and technical support for the location of Mars probes.

  11. REAL-TIME URBAN ROAD DETECTION BASED ON GEOMETRIC CONSTRAINTS%基于几何约束的实时城市道路检测

    Institute of Scientific and Technical Information of China (English)

    昝新

    2012-01-01

    Road detection is a most important component in autonomous driving system of intelligent car. This paper proposes a novel method for urban road detection. First, it applies the "sobel" operator and the "tukey" weight function to road pictures captured by the camera on intelligent car to fit out the basic lines for follow-up processing, then it utilises three geometric constrains including the distance, the relation with the vanished points and the slope to these lines to determine the left and right sideline and the middle line, all are possibly existed on the road. This method diminishes to a great extent the interference arose from other interference lines such as shadow boundary and building boundary, etc. , thus the fast precise detection of the road ahead for intelligent care is achieved. A great deal of experiments and the intelligent car competition all demonstrate that is the method has good stability against the illumination, shadow and the interferences of the objects outside the road at the speed of l00km/hr.%道路检测是智能车自动驾驶系统中非常重要的部分.提出一种检测城市道路的新方法:首先在智能车上摄像头获得的道路图片中利用Sobel算子和Tukey权值函数拟合出用于后续处理的基本直线,然后对这些线采取距离、与消失点关系、斜率三项几何约束确定道路可能存在的左右边线以及中线,很大程度上减少了阴影边界、建筑边界等其他干扰线的干扰,从而实现对智能车行驶前方道路的快速精确检测.经过大量实验和智能车比赛证明,在100km/h速度下该算法对光照,阴影,以及非道路物体干扰有良好的稳定性.

  12. Geometrical Phases in Quantum Mechanics

    Science.gov (United States)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  13. A Geometrical Method of Decoupling

    CERN Document Server

    Baumgarten, Christian

    2012-01-01

    In a preceeding paper the real Dirac matrices have been introduced to coupled linear optics and a recipe to decouple positive definite Hamiltonians has been given. In this article a geometrical method is presented which allows to decouple regular {\\it and} irregular systems with the same straightforward method and to compute the eigenvalues and eigenvectors of Hamiltonian matrices with both, real and imaginary eigenvalues. It is shown that the algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors $\\vec E$, $\\vec B$ and $\\vec p$, that were introduced with the so-called "electromechanical equivalence" (EMEQ). When used iteratively, the decoupling algorithm can also be applied to n-dimensional non-dissipative systems.

  14. Approaches to Multiple Attribute Group Decision Making Based on Triangular Fuzzy Number Intuitionistic Fuzzy Power Geometric Operator%基于模糊数直觉模糊PG算子的多属性决策方法

    Institute of Scientific and Technical Information of China (English)

    周晓辉; 姚俭; 袁清华

    2014-01-01

    针对决策信息为三角模糊数直觉模糊数(TFNIFN)且属性间存在相互关联的多属性群决策(MAGDM)问题,提出了一种基于三角模糊数直觉模糊 PG(TFNIFPG)算子的决策方法。首先,基于TFNIFN的运算法则和PG(Power Geometric)算子,定义了TFNIFPG算子。然后,研究了该算子的一些性质,建立基于TFNIFPG算子的 MAGDM模型,结合排序方法进行决策。最后通过某项目投资算例验证了该算子的有效性与可行性。%With respect to the multiple attribute group decision-making(MAGDM)problem,a method based on triangu-lar fuzzy number intuitionistic fuzzy powergeometric (TFNIFPG)operator was presented.The attribute values of MAGDM are in the form of triangular fuzzy number intuitionistic fuzzy numbers (TFNIFN),and the attributes are associated with each oth-er.Firstly,according to the TFNIFN’s operational laws and power geometric (PG)operator,TFNIFPG operator was defined. Then the related properties were researched and a multiple attribute decision group model was constructed based on TFNIFPG operator.The model used sort methods to make decision.Finally,an illustrative example of proj ect investment was proposed to demonstrate the effectiveness and feasibility of the proposed operator.

  15. 基于几何画板在高中数学教学中的运用%Based on the Geometric Sketchpad in the High School Mathematics Classroom Use

    Institute of Scientific and Technical Information of China (English)

    郑鹏程; 郑潇潇

    2015-01-01

    Based on long-term high school mathematics education, often found in the high school mathematics teaching to use several form combining way to explain. In the process of explaining the number form combining teachers to make a sketch on the blackboard, but often make sketches don't have solid and intuitive, etc., this will seriously affect the students' mastery of knowledge. Based on this, strongly recommended to ifrst-line teaching of mathematics education a teaching software, the software is the geometric sketchpad, this software not only can let the teacher quickly show students the three-dimensional graphics, and the geometric sketchpad can also be used in physics teaching.%通过对高中数学长期的教育实践,发现在高中数学教学中经常要用到数形结合的方式来讲解。在讲解数形结合的过程中教师要在黑板上作出草图,但往往作出的草图不具有立体性和直观性等,这样会严重影响到学生对知识点的把握。基于此,文章向一线教学的数学老师推荐一款教学软件,该软件是几何画板,这款软件不仅能让老师迅速的向学生展示立体图形,而且几何画板还可以运用于物理教学中。

  16. Geometric Algebra Model of Distributed Representations

    CERN Document Server

    Patyk, Agnieszka

    2010-01-01

    Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.

  17. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...... on numerical optimization studies, we have discovered some surprisingly simple geometric properties of optimal planar band gap structures. We conjecture that optimal structures for gaps between bands n and n+1 correspond to n elliptic rods with centers defined by the generators of an optimal centroidal Voronoi...

  18. Aerospace plane guidance using geometric control theory

    Science.gov (United States)

    Van Buren, Mark A.; Mease, Kenneth D.

    1990-01-01

    A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.

  19. Geometric Hyperplanes: Desargues Encodes Doily

    CERN Document Server

    Saniga, Metod

    2011-01-01

    It is shown that the structure of the generalized quadrangle of order two is fully encoded in the properties of the Desargues configuration. A point of the quadrangle is represented by a geometric hyperplane of the Desargues configuration and its line by a set of three hyperplanes such that one of them is the complement of the symmetric difference of the remaining two and they all share a pair of non-collinear points.

  20. Geometrical Aspects of Venus Transit

    CERN Document Server

    Bertuola, Alberto C; Magalhães, N S; Filho, Victo S

    2016-01-01

    We obtained two astronomical values, the Earth-Venus distance and Venus diameter, by means of a geometrical treatment of photos taken of Venus transit in June of 2012. Here we presented the static and translational modelsthat were elaborated taking into account the Earth and Venus orbital movements. An additional correction was also added by considering the Earth rotation movement. The results obtained were compared with the values of reference from literature, showing very good concordance.

  1. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  2. Some geometrical iteration methods for nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LU Xing-jiang; QIAN Chun

    2008-01-01

    This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.

  3. Adiabatic geometric phases in hydrogenlike atoms

    OpenAIRE

    Sjöqvist, Erik; Yi, X. X.; Åberg, J.

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be det...

  4. 基于MATLAB的水稻种子几何特征提取的程序实现%The Realization of the MATLAB-based Program of the Geometrical Characteristics' collection of Rice Seeds

    Institute of Scientific and Technical Information of China (English)

    周南; 郭光靖; 唐先亮; 陈强

    2012-01-01

    基于MATLAB编写的程序能够对水稻种子图像进行分析,提取出种子的几何特征。将拍摄的水稻种子图像,读入程序以后,进行类型转换、顶帽变换、灰度开运算等方法对图像进行预处理,接着用最大类间方差法分割图像、标注连通区、画出最小外接矩、提取几何特征、输出数据等。实现了数据自动化检测统计,为自动化考种、品质分析等提供参考,丰富了国内相关领域的研究内容。%The MATLAB-based GUI(Graphical User Interface) program can be used to analysis the picture of rice seeds to achieve geometrical characteristics.After the readin of the digital picture,the program preprocess the photo with type conversion,hat transforming,gray open operation,and then split it with OTSU method,line the minimum external moment,collect geometrical characteristics,display data,etc.The program automaticly fulfill the task of collection data and,in this way,the inspection of rice seeds,qualitative analysis,correlational researches inland and so forth can get services.

  5. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    Institute of Scientific and Technical Information of China (English)

    HE Chun-Lei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.

  6. Geometrically invariant color image watermarking scheme using feature points

    Institute of Scientific and Technical Information of China (English)

    WANG XiangYang; MENG Lan; YANG HongYing

    2009-01-01

    Geometric distortion is known as one of the most difficult attacks to resist.Geometric distortion desynchronizes the location of the watermark and hence causes incorrect watermark detection.In this paper,we propose a geometrically invariant digital watermarking method for color images.In order to synchronize the location for watermark insertion and detection,we use a multi-scale Harris-Laplace detector,by which feature points of a color image can be extracted that are invariant to geometric distortions.Then,the self-adaptive local image region (LIR) detection based on the feature scale theory was considered for watermarking.At each local image region,the watermark is embedded after image normalization.By binding digital watermark with invariant image regions,resilience against geometric distortion can be readily obtained.Our method belongs to the category of blind watermarking techniques,because we do not need the original image during detection.Experimental results show that the proposed color image watermarking is not only invisible and robust against common signal processing such as sharpening,noise adding,and JPEG compression,but also robust against the geometric distortions such as rotation,translation,scaling,row or column removal,shearing,and local random bend.

  7. Layer-specific radiofrequency ultrasound-based strain analysis in a porcine model of ischemic cardiomyopathy validated by a geometric model

    NARCIS (Netherlands)

    Slochteren, F.J. van; Spoel, T.I. van der; Hansen, H.H.G.; Bovendeerd, P.H.; Doevendans, P.A.; Sluijter, J.P.; Chamuleau, S.A.; Korte, C.L. de

    2014-01-01

    Local layer-specific myocardial deformation after myocardial infarction (MI) has not been studied extensively although the sub-endocardium is more vulnerable to ischemia and interstitial fibrosis deposition. Radiofrequency (RF) ultrasound-based analysis could provide superior layer-specific radial s

  8. Buildings, spiders, and geometric Satake

    CERN Document Server

    Fontaine, Bruce; Kuperberg, Greg

    2011-01-01

    Let G be a simple algebraic group. Labelled trivalent graphs called webs can be used to product invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case G = SL(3), non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is CAT(0), is explained by the fact that affine buildings are CAT(0).

  9. A history of geometrical methods

    CERN Document Server

    Coolidge, Julian Lowell

    2013-01-01

    Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe

  10. Hubbard model with geometrical frustration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hunpyo

    2009-10-15

    At first we present the details of the dual fermion (DF), the cluster extension of dynamical mean field theory (CDMFT) and continuous-time quantum Monte Carlo (CT QMC) methods. Using a panoply of these methods we explore the Hubbard model on the triangular and hyperkagome lattice. We find a first-order transition and continuous transition on the triangular and hyper-kagome lattice, respectively. Moreover, we find the reentrant behavior due to competition between the magnetic correlation and itinerancy of electrons by source of geometrical frustration on both lattices. (orig.)

  11. Field guide to geometrical optics

    CERN Document Server

    Greivenkamp, John E

    2004-01-01

    This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

  12. Geometric Topology and Shape Theory

    CERN Document Server

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  13. Science, Art and Geometrical Imagination

    CERN Document Server

    Luminet, J -P

    2009-01-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental role of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Durer, Kepler, Escher, Grisey or the present author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as beauty, conciseness and emotional approach of the world.

  14. Science, art and geometrical imagination

    Science.gov (United States)

    Luminet, Jean-Pierre

    2011-06-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.

  15. Measurement and Geometric Modelling of Human Spine Posture for Medical Rehabilitation Purposes Using a Wearable Monitoring System Based on Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Gheorghe-Daniel Voinea

    2016-12-01

    Full Text Available This paper presents a mathematical model that can be used to virtually reconstruct the posture of the human spine. By using orientation angles from a wearable monitoring system based on inertial sensors, the model calculates and represents the curvature of the spine. Several hypotheses are taken into consideration to increase the model precision. An estimation of the postures that can be calculated is also presented. A non-invasive solution to identify the human back shape can help reducing the time needed for medical rehabilitation sessions. Moreover, it prevents future problems caused by poor posture.

  16. A Geometric Model for the Dynamics of Microchannel Emulsification

    NARCIS (Netherlands)

    Zwan, van der E.A.; Schroën, C.G.P.H.; Boom, R.M.

    2009-01-01

    Microchannel emulsification is an interfacial tension driven method to produce monodisperse microdroplets, or microspheres. In this paper we introduce a model for describing the dynamics of microchannel emulsification based on simple time dependent geometric shape analysis. The model is based on mec

  17. 一种基于压缩感知的二维几何信号压缩方法%A 2-D Geometric Signal Compression Method Based on Compressed Sensing

    Institute of Scientific and Technical Information of China (English)

    杜卓明; 耿国华; 贺毅岳

    2012-01-01

    本文给出的压缩方法属于谱压缩方法.谱压缩方法是一种常用的二维轮廓线模型压缩方法.文章从压缩感知的角度解释了谱压缩方法,并提出了基于压缩感知的二维轮廓线模型压缩方法.首先利用二维轮廓线模型Laplace算子的特征向量构造了一组基.二维轮廓线模型的几何结构在这组基下可以被稀疏表达.利用随机矩阵对-二维轮廓线模型的几何结构抽样,完成压缩.恢复过程中,通过最优化1-范数,实现几何信号的恢复.实验结果表明,该方法压缩速度快,比例高,恢复效果好,适合对大型数据以及远距离数据进行压缩.%Spectral compression method is a commonly used compression method in the field of two-dimensional contour model compression. This paper explains the spectral compression method from the perspective of compressed sensing and provides a compression method of two-dimensional contour model based on compressed sensing. Constructing a basis using Laplace operator of the two-dimensional contour model, we get the sparse representation of the 2-D geometric signal based on this basis. We complete compressing the two-dimensional contour model by sampling the two-dimensional contour model geometry information based on a random matrix. In the recovery process, we reconstruct the 2-D geometric signal through optimizing 1-norm of the sparse signal. Experimental results show that the compression ratio of this method is high, the restore effect is good, and it is suitable for large-scale data compression.

  18. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, S., E-mail: Simon.Vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300B, B-3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300C, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Kerckhofs, G., E-mail: Greet.Kerckhofs@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Moesen, M., E-mail: Maarten.Moesen@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Pyka, G., E-mail: Gregory.Pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); Schrooten, J., E-mail: Jan.Schrooten@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Minderbroedersstraat 8A, B-3000 Leuven (Belgium); and others

    2011-09-15

    Highlights: {yields} Selective laser melting as a production tool for porous Ti6Al4V structures. {yields} Significant mismatch between designed and as-produced properties. {yields} Decreasing mismatch using a micro-CT-based protocol. {yields} Mismatch of pore size decreased from 45% to 5%. {yields} Increased morphological controllability increases mechanical controllability. - Abstract: Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.

  19. Mechanisms of geometrical seismic attenuation

    Directory of Open Access Journals (Sweden)

    Igor B. Morozov

    2011-07-01

    Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.

  1. Geometric and Radiometric Evaluation of Rasat Images

    Science.gov (United States)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  2. Geometric reconstruction methods for electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)

    2013-05-15

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.

  3. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  4. Anomalous Hall Effect in Geometrically Frustrated Magnets

    Directory of Open Access Journals (Sweden)

    D. Boldrin

    2012-01-01

    space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.

  5. Geometric Feature-Based Facial Expression Recognition in Image Sequences Using Multi-Class AdaBoost and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Joonwhoan Lee

    2013-06-01

    Full Text Available Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pairs of landmarks tracking results are extracted, and normalized, with respect to the first frame in the sequence. The prototypical expression sequence for each class of facial expression is formed, by taking the median of the landmark tracking results from the training facial expression sequences. Multi-class AdaBoost with dynamic time warping similarity distance between the feature vector of input facial expression and prototypical facial expression, is used as a weak classifier to select the subset of discriminative feature vectors. Finally, two methods for facial expression recognition are presented, either by using multi-class AdaBoost with dynamic time warping, or by using support vector machine on the boosted feature vectors. The results on the Cohn-Kanade (CK+ facial expression database show a recognition accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector machines, respectively.

  6. Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach.

    Science.gov (United States)

    Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Alvarez-Sierra, M Ángeles

    2013-01-01

    Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.

  7. Dietary ecology of Murinae (Muridae, Rodentia: a geometric morphometric approach.

    Directory of Open Access Journals (Sweden)

    Ana Rosa Gómez Cano

    Full Text Available Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.

  8. Fuzzy Clustering Using the Convex Hull as Geometrical Model

    Directory of Open Access Journals (Sweden)

    Luca Liparulo

    2015-01-01

    Full Text Available A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms.

  9. 基于对象的抗几何攻击的视频水印算法%Object Based Watermarking Algorithm Robust to Geometric Transformation Attacks

    Institute of Scientific and Technical Information of China (English)

    谌志鹏; 邹建成

    2012-01-01

    MPEG-4标准中基于对象的编码方法具有较好的交互性、可存取性,同时也带来了版权保护的问题.为此,提出一种基于对象的水印算法,该算法使得视频对象从一个视频序列被移动到另一个序列中,仍然能正确提取出水印.该算法通过Radon变换校正视频对象的旋转角度和缩放尺度,将水印嵌入到SA -DCT域中的部分系数中.实验结果表明,该算法能够和MPEG-4编码器有机整合、失真小,能抵抗旋转、缩放等几何攻击.%One of the key points of the MPEG-4 standard is the possibility to access and manipulate objects within a video sequence, but it increases the demand for information security protection and multimedia authentication technologies. An object based watermarking algorithm is proposed, which can correctly access the data embedded in the object. To resist against scaling and rotation attacks, two generalized Radon transformations are used. The watermark is embedded in the quantized SA-DCT coefficients. Experiments show that the algorithm is low-distortion, robust to geometry transformation attacks. And the algorithm can integrate with the MPEG-4 codec very well.

  10. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    Science.gov (United States)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  11. High capacity image watermarking scheme robust to geometric attacks based on local feature regions%基于LFRs的大容量抗几何攻击水印算法

    Institute of Scientific and Technical Information of China (English)

    赵文娴; 王玲; 王美珍

    2011-01-01

    如何有效抵抗几何攻击是目前水印技术研究的难点之一,且已有抗几何攻击水印算法的嵌入容量有限.提出了一种利用尺度不变特征变换(SIFT)特征点确定的局部特征区域(LFRs)嵌入水印的大容量抗几何攻击的水印算法.算法首先从图像的非抽样的Contourlet域(NSCT)低频分量中提取出SIFT中等尺度的稳定特征点,并通过最小生成树聚类算法的选择策略获得一组分布均匀且彼此独立的圆形特征区域;然后对每个圆形区域进行等角度的扇形分割和等面积的同心圆环分割,划分成等面积的子块;最后采用奇偶量化将经过混沌加密的水印嵌入到子块的NSCT低频分量中.水印检测时,利用SIFT匹配算法获得同步的水印嵌入区域,再进行水印的盲提取.仿真实验表明,该算法采用的圆形区域分割方法显著地提高了水印的嵌入容量,对于噪声、滤波、压缩以及各类几何攻击都具有较好的鲁棒性.%Image watermarking resistant to geometric attacks is the hotspot and challenging task in the state of the research on watermarking, and the capacity of these watermarking schemes existed usually is limited. This article presented an image watermarking scheme robust to geometric attacks based on local feature regions ( LFRs) , which were selected by scale-invariant feature transform (SIFT) keypoints. Firstly,it extracted the stable keypoints in medium scale from the non-subsampled Cont-ourlet transform ( NSCT) low-frequency of the host image by the SIFT algorithm, and got a set of widely-distributed and non-overlapped circle feature regions via selection criterion based on the minimum spanning tree clustering algorithm. Then every circle region was partitioned to sub-blocks with the same area in a sector pattern with the same angle and a homocentric cirque pattern with the same area. Finally, using odd-even quantization, the watermark, which had been encrypted by chaos system, could be

  12. SU-E-J-257: A PCA Model to Predict Adaptive Changes for Head&neck Patients Based On Extraction of Geometric Features From Daily CBCT Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkov, M [Wayne State University, Detroit, MI (United States); Henry Ford Health System, Detroit, MI (United States); Siddiqui, F; Chetty, I; Kim, J; Kumarasiri, A; Liu, C; Gordon, J [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: Using daily cone beam CTs (CBCTs) to develop principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients and to assess the possibility of using these prospectively in adaptive radiation therapy (ART). Methods: Planning CT (pCT) images of 4 H&N patients were deformed to model several different systematic changes in patient anatomy during the course of the radiation therapy (RT). A Pinnacle plugin was used to linearly interpolate the systematic change in patient for the 35 fraction RT course and to generate a set of 35 synthetic CBCTs. Each synthetic CBCT represents the systematic change in patient anatomy for each fraction. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CBCTs with random fraction-to-fraction changes were superimposed on the DVFs. A patient-specific PCA model was built using these DVFs containing systematic plus random changes. It was hypothesized that resulting eigenDVFs (EDVFs) with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: For all 4 patients, the PCA model provided different results depending on the type and size of systematic change in patient’s body. PCA was more successful in capturing the systematic changes early in the treatment course when these were of a larger scale with respect to the random fraction-to-fraction changes in patient’s anatomy. For smaller scale systematic changes, random changes in patient could completely “hide” the systematic change. Conclusion: The leading EDVF from the patientspecific PCA models could tentatively be identified as a major systematic change during treatment if the systematic change is large enough with respect to random fraction-to-fraction changes. Otherwise, leading EDVF could not represent systematic changes reliably. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant

  13. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald H

    2009-01-01

    This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.

  14. LUNGEOMETRY- GEOMETRICAL INVESTIGATION OF LUNGE

    Directory of Open Access Journals (Sweden)

    R.Vinodh Rajkumar

    2015-02-01

    Full Text Available Physiotherapists must learn the biomechanics of lunge in detail to clearly understand its significance in human life and implement effective training measures to overcome the limiting factors of proper lunge of their clientele. To understand the biomechanical value of every movement, interesting experimental learning methods must be employed to kindle the Physiotherapists to actively take part in research activities from the under-graduate level onwards. Lungeometry is a novel, simple and inexpensive experimental investigation of lunge, applying basic geometrical methods taking near normal lower limb length dimensions and rationale approaches into consideration. Lungeometry can give a foundation to learn other forms of lunges like forward lunge, weighted lunges, lateral lunges. This model of learning biomechanics of movements using fundamental geometry techniques is expected to strongly connect with any futuristic Physiotherapy curricular structure.

  15. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...

  16. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  17. Elastic scattering in geometrical model

    Science.gov (United States)

    Plebaniak, Zbigniew; Wibig, Tadeusz

    2016-10-01

    The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.

  18. A Fascinating Application of Steiner's Theorem for Trapezium: Geometric Constructions Using Straightedge Alone

    Science.gov (United States)

    Stupel, Moshe; Ben-Chaim, David

    2013-01-01

    Based on Steiner's fascinating theorem for trapezium, seven geometrical constructions using straight-edge alone are described. These constructions provide an excellent base for teaching theorems and the properties of geometrical shapes, as well as challenging thought and inspiring deeper insight into the world of geometry. In particular, this…

  19. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej;

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  20. Based on the CAD Variable Geometric Method for Solving Kinematics Analysis of Harvesting Robot%基于 CAD 变量几何法的采摘机器人运动学分析

    Institute of Scientific and Technical Information of China (English)

    靳龙; 邱敏敏; 胡迎春

    2013-01-01

    Harvesting robot has great potential on agricultural robot .The kinematics analysis is carried out in order to control the accurately for apple picking robot .Most scholars have studied the kinematics analysis of the harvesting robot by using the method of Denavit-Hartenberg , but which has low efficiency and complex counting process , for the mechaFTnical engineer is not a very good choice .This paper introduce the CAD variable geometric method by the exam-ple of the harvesting robot .Firstly he method of Denavit-Hartenberg is introduced , then based on the CAD variable geo-metric method for solving kinematics analysis of Harvesting Robot , which makes people knows the advantages and disad-vantages of those method .%采摘机器人作为农业机器人的重要类型,具有很大的发展潜力。为了实现对苹果采摘机器人的精确控制,对机构进行了运动学分析。多数学者对采摘机器人进行运动学分析都是基于Denavit-Hartenberg方法,该方法效率较低,计算较复杂,对于广大的机械工程师来说不是一个很好的选择。为此,以苹果采摘机器人为例,介绍了CAD变量几何法的应用。首先,给出了传统的Denavit-Hartenberg(D-H)对苹果采摘机器人的运动学分析,然后用CAD变量几何法对采摘机器人进行了运动学分析。通过两种方法的直观对比,可以明显地看出各自的优缺点。

  1. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  2. 基于 C和 gnuplot 的渐开线齿轮辅助几何设计程序开发%Development of auxiliary geometric design software for involute gear based on the C and gnuplot

    Institute of Scientific and Technical Information of China (English)

    梁松; 李海波; 张义民

    2014-01-01

    以渐开线齿廓几何模型为基础,结合开源程序和类库,在Windows平台上开发了齿轮辅助几何设计程序。简要介绍了国内外学者针对齿轮几何模型的建立和基于g nuplo t的数据可视化模块设计的研究概况。针对计算模块的程序实现,推导并给出全齿廓的曲线参数方程。用C编写计算模块,在g nuplo t的基础上编写数据可视化模块。两模块以纯文本方式传递数据,通过管道传递指令。以Windows API的方式建立窗口程序过程,并为程序设计了图形用户界面。用CxImage库替代picture控件,解决png格式设计结果图片的显示问题。这里将计算机程序设计技术融入传统机械设计理论,并借鉴众多开源软件和函数库,开发的辅助机械设计软件提升了机械设计效率和水平。%Based on the geometric model of involute tooth profile ,the geometric design software for gears was developed on the platform of Windows .The software was written in C program-ming language ,including open source programs and libraries such as gnuplot and CxImage .Many geometric modeling approaches for gears were proposed .Gnuplot had been regarded as the mod-ule of graphical output in many application software ,in which the proposed approaches were used .For the implementation of the calculation module ,the curve parameter equations for tooth profile were proposed .The module of computing kernel was written in C language .Gnuplot was the kernel of data visualization module . Data was transmitted by plain text and commands through pipes .The process of windows was established on the the method of Windows Applica-tion Programming Interface (API) .Graphical User Interface (GUI) had been used in the soft-ware .The display problem of png format pictures was solved by using CxImage library in stand of picture control .Modern computer program design technique is involved in traditional mechani-cal design theory .Drawing on the

  3. Multiscale geometric modeling of macromolecules I: Cartesian representation.

    Science.gov (United States)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  4. A Triangle Filter Method for Reducing Noise Error of Points Clouds Data Based on Geometric Relations%一种基于几何关系的数据点云去噪算法

    Institute of Scientific and Technical Information of China (English)

    樊宇; 王宇楠; 王俊杰; 曹奇

    2011-01-01

    Reducing noise error is an important link for point cloud data processing in reverse engineering, which has a great impact on the precision of the ultimate ideal model.For the point cloud data from laser scanning, this paper puts forward a new triangle filter method for reducing noise error of points clouds data based on geometric relations.Research shows that the triangle filter method can be better to reducing noise error.%点云去噪是逆向工程中点云数据处理中的一个重要环节,其对最终理想模型的精度将产生很大的影响.针对激光扫描光刀法扫描的点云数据,本文提出了一种基于几何关系的三角形滤波法则,能够较好的进行去噪处理.

  5. Geometric Photonic Spin Hall Effect with Metapolarization

    OpenAIRE

    2014-01-01

    We develop a geometric photonic spin Hall effect (PSHE) which manifests as spin-dependent shift in momentum space. It originates from an effective space-variant Pancharatnam-Berry (PB) phase created by artificially engineering the polarization distribution of the incident light. Unlikely the previously reported PSHE involving the light-matter interaction, the resulting spin-dependent splitting in the geometric PSHE is purely geometrically depend upon the polarization distribution of light whi...

  6. Guide to Geometric Algebra in Practice

    CERN Document Server

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  7. A geometrical perspective for the bargaining problem.

    Directory of Open Access Journals (Sweden)

    Kelvin Kian Loong Wong

    Full Text Available A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently.

  8. A geometrical perspective for the bargaining problem.

    Science.gov (United States)

    Wong, Kelvin Kian Loong

    2010-04-26

    A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently.

  9. Hydrodynamic Nambu Brackets derived by Geometric Constraints

    CERN Document Server

    Blender, Richard

    2015-01-01

    A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...

  10. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  11. Adiabatic geometric phases in hydrogenlike atoms

    Science.gov (United States)

    Sjöqvist, Erik; Yi, X. X.; Åberg, Johan

    2005-11-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limits are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  12. Adiabatic geometric phases in hydrogenlike atoms

    CERN Document Server

    Sjöqvist, E; Sj\\"{o}qvist, Erik

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  13. Higher-Dimensional Geometric $\\sigma$-Models

    CERN Document Server

    Vasilic, M

    1999-01-01

    Geometric $\\sigma$-models have been defined as purely geometric theories of scalar fields coupled to gravity. By construction, these theories possess arbitrarily chosen vacuum solutions. Using this fact, one can build a Kaluza--Klein geometric $\\sigma$-model by specifying the vacuum metric of the form $M^4\\times B^d$. The obtained higher dimensional theory has vanishing cosmological constant but fails to give massless gauge fields after the dimensional reduction. In this paper, a modified geometric $\\sigma$-model is suggested, which solves the above problem.

  14. Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions

    Directory of Open Access Journals (Sweden)

    Samuel Livingstone

    2014-06-01

    Full Text Available Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this, geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of the appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.

  15. Geometrical frustration in an element solid: (beta)-rhombohedral boron

    Energy Technology Data Exchange (ETDEWEB)

    Ogitsu, T; Gygi, F; Reed, J; Udagawa, M; Motome, Y; Schwegler, E; Galli, G

    2009-05-19

    Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration.

  16. A Geometrical Model for Non-Zero $\\theta_{13}$

    CERN Document Server

    Chen, Jun-Mou; Li, Xue-Qian

    2011-01-01

    Based on Friedberg and Lee's geometric picture by which the tribimaximal PMNS leptonic mixing matrix is constructed, namely corresponding mixing angles correspond to the geometric angles among the sides of a cube. We suggest that the three realistic mixing angles which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best fitted results of $\\theta_{12}$ and $\\theta_{23}$ as inputs, we determine the central value of $\\sin^22\\theta_{13}$ should be 0.0238 with a relatively large error tolerance, this value lies in the range of measurement precision of the Daya Bay experiment.

  17. Optimal control of underactuated mechanical systems: A geometric approach

    Science.gov (United States)

    Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela

    2010-08-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  18. Optimal Control of Underactuated Mechanical Systems: A Geometric Approach

    CERN Document Server

    Colombo, L; Zuccalli, M

    2009-01-01

    In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.

  19. Hadronic and elementary multiplicity distributions in a geometrical approach

    CERN Document Server

    Valin, P; Menon, M J

    2000-01-01

    We construct the hadronic multiplicity distribution in terms of an elementary distribution (at given impact parameter) and the inelastic overlap function characterized by the observed BEL (Blacker-Edgier-Larger) behaviour. With suitable parametrizations for the elementary quantities, based on some geometrical arguments and the most recent data on e+e- annihilation, an excellent description of pp and p(bar)p inelastic multiplicity distributions at the highest energies is obtained. With this approach, we quantitatively correlate the violations of scalings in multiplicity distributions (Koba-Nielsen-Olesen) and elastic scattering (Geometrical) at high energies.

  20. Geometrical rectification of spin-scan images from Pioneer 11

    Science.gov (United States)

    Strickland, R. N.; Burke, J. J.

    1980-01-01

    Images of Saturn received from Pioneer 11 suffer from geometrical distortions due to the curvilinear scan lines and the unequal sampling intervals in orthogonal directions, which are inherent in spin-scan imaging. In this paper geometrical image rectification by polynomial transformation based on control points is discussed. Factors that affect the accuracy of reconstruction are shown to include the spatial distribution and spatial density of control points, and the order of the polynomial distortion model. A computer implementation of the technique is described.

  1. Geometric registration and rectification of spaceborne SAR imagery

    Science.gov (United States)

    Curlander, J. C.; Pang, S. N.

    1982-01-01

    This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.

  2. Geometric phase gradient and spin Hall effect of light

    Science.gov (United States)

    Ling, Xiaohui; Zhou, Xinxing; Qiu, Cheng-Wei

    2016-10-01

    The spin Hall effect (SHE) of light originates from the spin-orbit interaction, which can be explained in terms of two geometric phases: the Rytov-Vladimirskii-Berry phase and the Pancharatnam-Berry phase. Here we present a unified theoretical description of the SHE based on the two types of geometric phase gradients, and observe experimentally the SHE in structured dielectric metasurfaces induced by the PB phase. Unlike the weak real-space spin-Hall shift induced by the SRB phase occurring at interfacial reflection/refraction, the observed SHE occurs in momentum space is large enough to be measured directly.

  3. GEOMETRIC METHOD OF SEQUENTIAL ESTIMATION RELATED TO MULTINOMIAL DISTRIBUTION MODELS

    Institute of Scientific and Technical Information of China (English)

    WEIBOCHENG; LISHOUYE

    1995-01-01

    In 1980's differential geometric methods are successfully used to study curved expomential families and normal nonlinear regression models.This paper presents a new geometric structure to study multinomial distribution models which contain a set of nonlinear parameters.Based on this geometric structure,the suthors study several asymptotic properties for sequential estimation.The bias,the variance and the information loss of the sequential estimates are given from geomentric viewpoint,and a limit theorem connected with the observed and expected Fisher information is obtained in terms of curvatvre measures.The results show that the sequential estimation procednce has some better properties which are generally impossible for nonsequential estimation procedures.

  4. A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    CERN Document Server

    Yoon, Yourim; Moraglio, Alberto; Moon, Byung-Ro

    2009-01-01

    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is motivated by the fact that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. In this paper, we study a metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many example applications of the quotient geometric crossover.

  5. The Double Cone: A Mechanical Paradox or a Geometrical Constraint?

    Science.gov (United States)

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    In the framework of the Italian National Plan "Lauree Scientifiche" (PLS) in collaboration with secondary schools, we have investigated the mechanical paradox of the double cone. We have calculated the geometric condition for obtaining an upward movement. Based on this result, we have built a mechanical model with a double cone made of aluminum…

  6. Discrete geometric structures for architecture

    KAUST Repository

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  7. Doing Socrates experiment right: controlled rearing studies of geometrical knowledge in animals.

    Science.gov (United States)

    Vallortigara, Giorgio; Sovrano, Valeria Anna; Chiandetti, Cinzia

    2009-02-01

    The issue of whether encoding of geometric information for navigational purposes crucially depends on environmental experience or whether it is innately predisposed in the brain has been recently addressed in controlled rearing studies. Non-human animals can make use of the geometric shape of an environment for spatial reorientation and in some circumstances reliance on purely geometric information (metric properties and sense) can overcome use of local featural information. Animals reared in home cages of different geometric shapes proved to be equally capable of learning and performing navigational tasks based on geometric information. The findings suggest that effective use of geometric information for spatial reorientation does not require experience in environments with right angles and metrically distinct surfaces.

  8. Research on HJ-1A/B satellite data automatic geometric precision correction design

    Institute of Scientific and Technical Information of China (English)

    Xiong Wencheng; Shen Wenming; Wang Qiao; Shi Yuanli; Xiao Rulin; Fu Zhuo

    2014-01-01

    Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data. The realization of the observation data geometric precision correction is of great significance for macro and dynamic ecological environment monitoring. The pa-per analyzed the parameter characteristics of HJ-1 satellite and geometric features of HJ-1 satellite level 2 data (systematic geo-corrected data). Based on this,the overall HJ-1 multi-sensor geometric correction flow and charge-coupled device (CCD) automatic geometric precision correction method were designed. Actual operating data showed that the method could achieve good result for automatic geometric precision correction of HJ-1 sat-ellite data,automatic HJ-1 CCD image geometric precision correction accuracy could be achieved within two pixels and automatic matching accuracy between the images of same satellite could be obtained less than one pixel.

  9. Optimization of Geometric Parameters of Focusing Tube for Water Jet Based on FLUENT%基于FLUENT的水射流聚焦管几何参数优化研究

    Institute of Scientific and Technical Information of China (English)

    王荣娟; 雷玉勇; 蒋代君; 戴良博; 卫排锋

    2011-01-01

    Based on the physic model of water jet cutting head, the two-dimensional mathematical model of flow field inside the cutting head was built using turbulent jet basic equation.The internal flow field of focusing tube was simulated using standard k-ε turbulence model based on FLUENT.The influence of the geometric parameters of focusing tube on distribution of water jet velocity field was researched.The results show that the contraction angle α, the ratio of length and diameter l/d, as well as the outlet diameter d of the focusing tube have a significant effects on the internal velocity field of water jet.When α = 20°, l/d = 70, the outlet jet velocity of the focusing tube is maximum.%基于水射流切割头的物理模型,根据湍流射流的基本方程建立了喷头内部流场的二维数学模型.采用标准k-ε湍流模型并应用FLUENT软件对聚焦管内部流场进行数值模拟,研究聚焦管几何参数对纯水射流速度流场的影响.研究结果表明:聚焦管人口收缩角α、长径比l/d和出口直径d对聚焦管内部速度流场有显著影响,当α=20°、l/d=70时,聚焦管出口射流速度最大.

  10. IsoCleft Finder – a web-based tool for the detection and analysis of protein binding-site geometric and chemical similarities [v2; ref status: indexed, http://f1000r.es/13y

    Directory of Open Access Journals (Sweden)

    Natalja Kurbatova

    2013-05-01

    Full Text Available IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder.

  11. Simulating geometrically complex blast scenarios

    Institute of Scientific and Technical Information of China (English)

    Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD

    2016-01-01

    The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  12. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  13. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  14. Geometrical aspects of quantum spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P.M. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group

    1996-05-11

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S{sub 1}{sup 2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S{sub q}{sup 2} and CP{sub q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP{sub q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.

  15. On geometric Langlands theory and stacks

    NARCIS (Netherlands)

    Poirier, Cécile Florence Christine

    2008-01-01

    R.Langlands conjectured the existence of a bridge between two parts of number theory. This correspondence, called 'Langlands conjecture' was proved by L. Lafforgue who obtained a Fields medal for his work. G. Laumon gave a geometric translation of a part of the theorem, called 'geometric Langlands c

  16. Geometrical optics and the diffraction phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2005-06-30

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  17. Some technical issues in geometric modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.P.

    1983-01-01

    The full impact of CAD/CAM will not be felt until geometric modeling systems support dimensioning and tolerancing, have sophisticated user interfaces, and are capable of routinely handling many representation conversions. The attainment of these capabilities requires a joint effort among users, implementors, and theoreticians of geometric modeling.

  18. Variance optimal stopping for geometric Levy processes

    DEFF Research Database (Denmark)

    Gad, Kamille Sofie Tågholt; Pedersen, Jesper Lund

    2015-01-01

    The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore...

  19. Geometrical description of denormalized thermodynamic manifold

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Ping; Sun Hua-Fei; Cao Li-Mei

    2009-01-01

    In view of differential geometry,the state space of thermodynamic parameters is investigated. Here the geometrical structures of the denormalized thermodynamic manifold are considered. The relation of their geometrical metrics is obtained. Moreover an example is used to illustrate our conclusions.

  20. Geometrical splitting and reduction of Feynman diagrams

    Science.gov (United States)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  1. The geometric semantics of algebraic quantum mechanics.

    Science.gov (United States)

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  2. 并联机器人基坐标系的精确定位几何算法*%A Geometrical Precise Positioning Method of a Parallel Robot Base Frame

    Institute of Scientific and Technical Information of China (English)

    曾奇; 刘冠峰; 陈新; 李毫亮; 念龙生

    2013-01-01

    In this paper we propose a geometric method for computing the transformation between the coordinate frame of a laser tracker and the base frame of a DELTA parallel robot. We first use a laser tracker to measure the coordinates of a given point on each driving link at different driving angles,which allows us to calculate the coordinates of the center point of the driving hinge (called hinge center point). The origin of the robot base frame is simply the center of the circle through the three hinge center points. The origin plus the three hinge center points yields the robot base frame, and thereby the transformation between the laser tracker frame and the robot base frame. This paves the way for measuring the testing points with reference to the robot base frame (instead of the laser tracker frame), which is very important for robot calibration.%基于激光跟踪仪的测量方法,测量Delta并联机器人主动臂在激光跟踪仪坐标系下的实际坐标值,利用该测量值,运用空间解析几何法求得Delta并联机器人静平台3个主动臂铰链转动中心坐标,再利用该3点坐标求得Delta并联机器人基坐标系的原点坐标在测量坐标系下的表示。再利用得到的4个点建立起Delta机器人的基坐标系。此时便可求得激光跟踪仪测量坐标系与Delta并联机器人基坐标系之间的转换关系。利用得到的转换关系,将激光跟踪仪测得的Delta机器人末端的坐标直接快速地转换为Delta机器人基坐标系下的表示。从而得到Delta机器人末端位置实际坐标与理想坐标之间的误差,为Delta机器人绝对精度标定的实现打下基础。

  3. Geometric Control of Patterned Linear Systems

    CERN Document Server

    Hamilton, Sarah C

    2012-01-01

    This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable.  Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.

  4. Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity.

    Directory of Open Access Journals (Sweden)

    Carly C Ginter

    Full Text Available Vibrissae (whiskers are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC, which

  5. 一种基于几何特征的表情相似性度量方法%A Similarity Measurement Method of Facial Expression Based on Geometric Features

    Institute of Scientific and Technical Information of China (English)

    黄忠; 胡敏; 王晓华

    2015-01-01

    在表演驱动、表情克隆等人脸动画中,需要寻找最相似表情以提高动画真实感和逼真度。基于面部表情几何特征提出一种特征加权的表情相似性度量方法。首先,在主动外观模型上,利用链码描述各区域的形状特征以刻画局部表情细节,并根据区域特征点间的拓扑关系构建形变特征以反映整体表情信息。然后,采用特征加权方式对融合的几何特征进行相似性度量,并将权重的求解过程转化为加权目标函数最小化。最后,利用求解的权重以及特征加权函数度量表情间的相似性,寻找与之最相似的表情图像。在BU-3DFE数据库和FEEDTUM数据库上的实验结果表明,该方法在寻找相似表情的正确率方面明显高于现有的度量方法,并且对不同类型、不同强度的表情描述保持较好鲁棒性,尤其在嘴型、脸颊收缩、嘴开合幅度等表情细节维持较高相似度。%In facial animations such as performance-driven and expression cloning, it needs to find the most similar expression to enhance the reality and fidelity of animations. A feature-weighted expression similarity measurement method is proposed based on facial geometric features. Firstly, chain code is used to characterize shape features for local expression regions, meanwhile deformation features are built based on topological relations among regional feature points to reflect holistic expression information. Then, feature-weighted method is adopted to measure the similarities of fused geometric features, and the solving process of feature weights is transformed to minimizing process of the weighted objective function. Finally, the solved weights as well as feature weighting functions are performed to measure similarities between two expressions and seek the most similar image with a input expression image. The experimental results on BU-3 DFE database and FEEDTUM database show that the proposed method

  6. Geometric phase of neutrinos in matter and in magnetic field: differences between Dirac and Majorana neutrinos

    CERN Document Server

    Capolupo, A; Hiesmayr, B C; Vitiello, G

    2016-01-01

    We analize the non-cyclic geometric phase for neutrinos propagating in the matter and through a magnetic field. We find that the geometric phase and the total phase associated to the mixing phenomenon and to the neutrino spin rotation can represent a tool to distinguish between Dirac and Majorana neutrinos. Future experiments, based on interferometry, therefore could reveal the nature of neutrinos.

  7. A perturbation approach for geometrically nonlinear structural analysis using a general purpose finite element code

    NARCIS (Netherlands)

    Rahman, T.

    2009-01-01

    In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft

  8. 一种基于Snell定理反演二维斜界面的几何方法%A geometric algorithm based on Snell theorem for the inclined interface inversion in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    张义德; 关威

    2011-01-01

    在二维情况下,如果地质结构的分界面为一条有固定斜率的斜线,则反演该界面时所需要确定的参数可以归结为两个:一个是界面上的反射点,另一个是界面的斜率.依据Snell定理,利用源点与反射波最短路径点之间的几何关系,导出一种快速反演斜界面的方法.作为算例,首先利用时域有限差分法对一个二维倾斜界面模型进行了数值模拟,而后利用该方法进行反演,界面位置误差在1%以内.%In two-dimensional space, if an interface of geologic structure has one fixed slope, then only two parameters needs to determined for the inversion of the interface. One is a reflect point in it, and another is the slope. Using the geometrical relationship between the source point and the fastest travel point of the reflect wave, a quick inversion algorithm was gained based on Snell theorem. At last, some examples of numerical simulation were given and it is very good. The inversion data was got from a two-dimensional model with a slope interface using FDTD.

  9. Mobility in geometrically confined membranes.

    Science.gov (United States)

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  10. Geometric characterization of polymeric macrofibers

    Directory of Open Access Journals (Sweden)

    A. R. E. Cáceres

    Full Text Available ABSTRACTThe geometric characteristics of synthetic macrofibers are important because they affect the behavior of fiber-reinforced concrete (FRC. Because there is a lack of specific, relevant publications in Brazil, the European standard EN14889-2:2006 was adopted as a reference to perform the characterization. Thus, an experimental plan was developed to assess the adequacy of testing procedures for the qualification of synthetic macrofibers for use in FRC. Two types of macrofibers were evaluated. The length measurement was performed using two methods: the caliper method, which is a manual measurement, and the digital image analysis method using the ImageJ software for image processing. These aforementioned methods were used to determine the diameter together with the density method, which is an indirect method that uses the developed length obtained by one of the previous methods. The statistical analyses revealed that the length results are similar regardless of the method used. However, the macrofibers must be pre-stretched to maximize the accuracy of caliper measurements. The caliper method for diameter determination has the disadvantage of underestimating the macrofiber cross-section because of the pressure applied by the load claws. In contrast, the digital image analysis method obtains the projected diameter in a single plane, which overestimate the diameter because the macrofibers are oriented with the pressure of the scanner cover. Thus, these techniques may result in false projections of the diameters that will depend on the level of torsion in the macrofibers. It was concluded that both the caliper method using previously stretched macrofibers and the digital imaging method can be used to measure length. The density method presented the best results for the diameter determination because these results were not affected by the method chosen to determine the length.

  11. Robust image watermarking scheme against geometric attacks using a computer-generated hologram.

    Science.gov (United States)

    Li, Jianzhong

    2010-11-10

    Robustness against geometric attacks is one of the most important issues in digital watermarking. A novel geometric robust watermarking scheme that uses computer-generated holograms as the watermark is presented. To maintain imperceptibility and robustness, a quantization embedding algorithm is adopted to embed the mark hologram into the low-frequency subband of the wavelet-transformed host image. In the detection process, the geometric distorted watermarked images are recovered first by the proposed improved geometric correction method, which is based on the scale invariant feature transform, the invariant centroid, and the pulse coupled neural network. Then the mark holograms are extracted from the recovered images. In comparison with the traditional geometric estimation method, the suggested improved geometric correction method can estimate the geometric distortion parameters more accurately and needs less auxiliary information. Compared with other watermark schemes using digital holograms, the proposed method has the distinct advantage of robustness to geometric attacks. The experimental results demonstrate that the proposed method has good robustness to resist geometric attacks and common attacks including rotation, scaling, translation, image flipping, combined attacks, filtering, occlusion, cropping, and JPEG compression.

  12. 基于数字近景摄影测量的岩体结构面几何信息解算模型%Solution Models of Geometrical Information of Rock Mass Discontinuities Based on Digital Close Range Photogrammetry

    Institute of Scientific and Technical Information of China (English)

    王凤艳; 陈剑平; 杨国东; 孙丰月; 姜琦刚

    2012-01-01

    In order to obtain geometric information of rock mass discontinuities rapidly and comprehensively to improve stability evaluation quality, a series of solution models,3D trace model, 2D trace model of random projection plane and the orientation solution model with detailed criterion were put forward and established under the theories of spatial geometry, azimuth conception and projection transformation on the basis of obtaining spatial coordinates of discontinuities through digital close range photogrammetric technology. In the first place, more detailed information about trace distribution status could be displayed through 3D trace model, and in the second place, trace information of any important projection plane could be obtained through 2D trace model, therefore, its physical significance was highlighted. In addition, orientation obtaining precision based on orientation solution, model was discussed through the theory of error. The experimental results demonstrated that the problem of orientation obtaining of approximate linear discontinuities could be solved when position measurement error was less than 2 cm on slope 3D model established by digital close range photogrammetry. On the whole, more abundant, detailed and comprehensive discontinuity information could be obtained and applied to the stability analysis and evaluation with the combination of digital close range photogrammetry and geometric information solution models of rock mass discontinuities.%为了快速、全面地获取岩体随机结构面信息而提高稳定性评价工作,在数字近景摄影测量测取结构面空间坐标的基础上,应用立体几何、方位概念和投影变换理论,提出并建立了基于空间坐标的结构面迹线三维模型、任一投影展示面的迹线二维模型和详细判据的产状解算模型.迹线三维模型数据更加详实展示迹线分布状况,迹线二维模型数据又能获得任一重要投影面的迹线信息并突显迹线物理

  13. Process for computing geometric perturbations for probabilistic analysis

    Science.gov (United States)

    Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX

    2012-04-10

    A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.

  14. A Geometric Characterization of Arithmetic Varieties

    Indian Academy of Sciences (India)

    Kapil Hari Paranjape

    2002-08-01

    A result of Belyi can be stated as follows. Every curve defined over a number field can be expressed as a cover of the projective line with branch locus contained in a rigid divisor. We define the notion of geometrically rigid divisors in surfaces and then show that every surface defined over a number field can be expressed as a cover of the projective plane with branch locus contained in a geometrically rigid divisor in the plane. The main result is the characterization of arithmetically defined divisors in the plane as geometrically rigid divisors in the plane.

  15. The Geometric Field at a Josephson Junction

    CERN Document Server

    Atanasov, Victor

    2016-01-01

    A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  16. A physics perspective on geometric Langlands duality

    CERN Document Server

    Schlesinger, Karl-Georg

    2009-01-01

    We review the approach to the geometric Langlands program for algebraic curves via S-duality of an N=4 supersymmetric four dimensional gauge theory, initiated by Kapustin and Witten in 2006. We sketch some of the central further developments. Placing this four dimensional gauge theory into a six dimensional framework, as advocated by Witten, holds the promise to lead to a formulation which makes geometric Langlands duality a manifest symmetry (like coavariance in differential geometry). Furthermore, it leads to an approach toward geometric Langlands duality for algebraic surfaces, reproducing and extending the recent results of Braverman and Finkelberg.

  17. 基于几何矩预分类的无人机遥感图像自动配准方法%Automatic Unmanned Aerial Vehicle(UAV) Image Registration Based on Geometric Moment For Pre-classifying

    Institute of Scientific and Technical Information of China (English)

    鲁云飞; 赵红颖; 刘大平; 晏磊

    2011-01-01

    Recently, image registration technology is one of the rapid development field in image processing area. In remote sensing field, it is a significant step for image fusion, moving detection, image correction, image mosaic and so on. Although there are many methods for image registration in the world, different methods apply to different kinds of images, most time the methods are selected by human intervening but not automatically. It becomes a key issue that how to combine the advantages of different methods to achieve automatic image registration, especially for UAV images. In this paper, a pre-classifying method based on geometric moment is proposed after the comparison of image registration methods based on SIFT and SURF feature extraction, in order to decide which image registration method is the best one, thereby, achieve the whole automatic process. The experiments show that this automatic image registration method makes sure a good matching effect and at the same time it broaden the types of applicative images.%图像配准技术是近些年来图像处理领域发展迅速的研究方向之一.在遥感领域内,图像配准更是实现图像融合、运动检测、图像校正、图像拼接等应用的一个关键步骤.尽管国内外目前在图像配准方面提出了很多方法,但不同方法适用的图像范围不同,很多时候需要人工干预进行方法的选择.尤其对于无人机这种快速、实时获取图像的新型遥感平台,如何集合不同方法的优点以实现图像自动配准成为了关键性问题.本文在比较分析了基于SIFT和SURF特征提取图像配准方法的各自优势后,提出基于几何矩的方法对图像进行预先分类,从而决定将其分配给何种方法进行配准,实现全程自动化.实验证明,这种图像自动配准方法在拓宽了图像应用范围的同时保证了良好的配准效果.

  18. 基于Frenet标架的涡旋始端型线重构与几何特性分析%Reconstruction and Geometrical Property of Top Scroll Profile Based on Frenet Frame

    Institute of Scientific and Technical Information of China (English)

    刘涛; 邬再新; 芮执元

    2011-01-01

    针对当前型线研究中尚未建立表征修正型线和主体型线固有特性统一模型的问题,建立了基于Frenet标架曲率半径函数的涡旋型线通用方程,分别采用零次曲线和一次曲线对涡旋始端型线进行重构.定量分析了型线参数对涡旋始端齿厚的影响,构建了基于母线曲率半径函数方程的涡旋压缩腔面积几何模型,研究了曲率半径函数参数对面积特性的影响.结果表明:以曲率半径函数构成涡旋母线的连续性方程,在设计阶段即能得到完全啮合型线和完整涡旋齿廓,无需再进行齿端修正;一次曲线重构较大的设计自由度可以使其兼顾涡旋端部齿厚和内容积比要求,获得较零次曲线重构综合性能更为优越的涡旋齿.%According to the situation that there is no general model to express both main profile and modified top profile, a general integration equation expressed in tangential angle series was established for scroll profile. The start part of profile was reconstructed with zeroth-order curve and first-order curve, respectively. The influence of parameters of top profile on thickness of scroll tooth was analyzed quantitatively. Furthermore, the geometrical models of area of compression chamber were set up based on curvature radius function of base line. The effect of curvature radius parameters on area property was explored. This study showed that first-order curve construction of top scroll could achieve higher performance by improving volume ratio while maintain reasonable tooth strength. With continuity equation of scroll baseline in form of radius of curvature, a fully-meshed profile and complete tooth profile could be obtained in the stage of machine design, so that there was no need to modify top scroll in later stages. The results could be applied in the scroll profile design.

  19. Geometric phase mediated topological transport of sound vortices

    CERN Document Server

    Wang, Shubo; Chan, C T

    2016-01-01

    When a physical system undergoes a cyclic evolution, a non-integrable phase can arise in addition to the normal dynamical phase. This phase, depending only on the geometry of the path traversed in the parameter space and hence named geometric phase, has profound impact in both classical and quantum physics, leading to exotic phenomena such as electron weak anti-localization and light spin-Hall effect. Experimental observations of the geometric phase effect in classical system are typically realized using vector waves such as light characterized by a polarization. We show here that such an effect can also be realized in scalar wave systems such as sound wave. Using a helical hollow waveguide, we show that the geometric phase effect associated with the transportation of sound vortices, i.e. sound wave carrying intrinsic orbital angular momentum, can serve as a potential mechanism to control the flow of sound vortices with different topological charges, resulting in geometric phase-based sound vortex filters.

  20. Control of the spin geometric phase in semiconductor quantum rings

    Science.gov (United States)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-09-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  1. Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns

    Science.gov (United States)

    Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team

    Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.

  2. A geometric approach to acyclic orientations

    CERN Document Server

    Ehrenborg, Richard

    2009-01-01

    The set of acyclic orientations of a connected graph with a given sink has a natural poset structure. We give a geometric proof of a result of Jim Propp: this poset is the disjoint union of distributive lattices.

  3. Exotic geometric structures on Kodaira surfaces

    CERN Document Server

    McKay, Benjamin

    2012-01-01

    On all compact complex surfaces (modulo finite unramified coverings), we classify all of the locally homogeneous geometric structures which are locally isomorphic to the exotic homogeneous surfaces of Lie.

  4. Geometric Photonic Spin Hall Effect with Metapolarization

    CERN Document Server

    Ling, Xiaohui; Yi, Xunong; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    We develop a geometric photonic spin Hall effect (PSHE) which manifests as spin-dependent shift in momentum space. It originates from an effective space-variant Pancharatnam-Berry (PB) phase created by artificially engineering the polarization distribution of the incident light. Unlikely the previously reported PSHE involving the light-matter interaction, the resulting spin-dependent splitting in the geometric PSHE is purely geometrically depend upon the polarization distribution of light which can be tailored by assembling its circular polarization basis with suitably magnitude and phase. This metapolarization idea enables us to manipulate the geometric PSHE by suitably tailoring the polarization geometry of light. Our scheme provides great flexibility in the design of various polarization geometry and polarization-dependent application, and can be extrapolated to other physical system, such as electron beam or atom beam, with the similar spin-orbit coupling underlying.

  5. Study on the Grey Polynomial Geometric Programming

    Institute of Scientific and Technical Information of China (English)

    LUODang

    2005-01-01

    In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory,and using some analysis strategies, a model of grey polynomial geometric programming, a model of 8 positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem.This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.

  6. Hidden geometric correlations in real multiplex networks

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián; Ángeles Serrano, M.; Papadopoulos, Fragkiskos

    2016-11-01

    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.

  7. Transition curves for highway geometric design

    CERN Document Server

    Kobryń, Andrzej

    2017-01-01

    This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .

  8. Concepts and Figures in Geometric Reasoning.

    Science.gov (United States)

    Fischbein, Efraim; Nachlieli, Talli

    1998-01-01

    Opens with the theoretical construct of figural concepts. Argues that geometrical figures are characterized by both conceptual and sensorial properties. Investigates the effects of interaction between conceptual and figural components. Contains 19 references. (DDR)

  9. Geometric Modelling by Recursively Cutting Vertices

    Institute of Scientific and Technical Information of China (English)

    吕伟; 梁友栋; 等

    1989-01-01

    In this paper,a new method for curve and surface modelling is introduced which generates curves and surfaces by recursively cutting and grinding polygons and polyhedra.It is a generalization of the existing corner-cutting methods.A lot of properties,such as geometric continuity,representation,shape-preserving,and the algorithm are studied which show that such curves and surfaces are suitable for geometric designs in CAD,computer graphics and their application fields.

  10. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  11. Study of the Geometric Stiffening Effect: Comparison of Different Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Juana M., E-mail: juana@us.es; Garcia-Vallejo, Daniel; Dominguez, Jaime [Universidad de Sevilla, Departamento de Ingenieria Mecanica y de los Materiales (Spain)

    2004-05-15

    This paper reviews different formulations to account for the stress stiffening or geometric stiffening effect arising from deflections large enough to cause significant changes in the configuration of the system The importance of such effect on many engineering applications, such as the dynamic behavior of helicopter blades, flexible rotor arms, turbine blades, etc., is well known. The analysis is carried out only for one-dimensional elements in 2D.Formulations based on the floating frame of reference approach are computationally very efficient, as the use of the component synthesis method allows for a reduced number of coordinates. However, something must be done for them to account for the geometric stiffening effect. The easiest method is the application of the substructuring technique, because the formulation is not modified. This, however, is not the most efficient approach. In problems where deformation is moderated, the simple inclusion of the geometric stiffness matrix is enough. On the other hand, if the deformation is large, higher-order terms must be included in the strain energy. In order to achieve an efficient and stable formulation, an explicit geometrically nonlinear beam element was developed. The formulations that use absolute coordinates are, generally, computationally more costly than the previous ones, as they must use a large number of degrees of freedom. However, the geometric stiffening effect can be automatically accounted for with these formulations. The aim of this work is to investigate the applicability of the different existing formulations in order to help the user select the right one for his particular application.

  12. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    Science.gov (United States)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  13. Geometric morphometrics of hominoid infraspinous fossa shape.

    Science.gov (United States)

    Green, David J; Serrins, Jesse D; Seitelman, Brielle; Martiny, Amy R; Gunz, Philipp

    2015-01-01

    Recent discoveries of early hominin scapulae from Ethiopia (Dikika, Woranso-Mille) and South Africa (Malapa) have motivated new examinations of the relationship between scapular morphology and locomotor function. In particular, infraspinous fossa shape has been shown to significantly differ among hominoids. However, this region presents relatively few homologous landmarks, such that traditional distance and angle-based methods may oversimplify this three-dimensional structure. To more thoroughly assess infraspinous fossa shape variation as it relates to function among adult hominoid representatives, we considered two geometric morphometric (GM) approaches--one employing five homologous landmarks ("wireframe") and another with 83 sliding semilandmarks along the border of the infraspinous fossa. We identified several differences in infraspinous fossa shape with traditional approaches, particularly in superoinferior fossa breadth and scapular spine orientation. The wireframe analysis reliably captured the range of shape variation in the sample, which reflects the relatively straightforward geometry of the infraspinous fossa. Building on the traditional approach, the GM results highlighted how the orientation of the medial portion of the infraspinous fossa differed relative to both the axillary border and spine. These features distinguished Pan from Gorilla in a way that traditional analyses had not been able to discern. Relative to the wireframe method, the semilandmark approach further distinguished Pongo from Homo, highlighting aspects of infraspinous fossa morphology that may be associated with climbing behaviors in hominoid taxa. These results highlight the ways that GM methods can enhance our ability to evaluate complex aspects of shape for refining and testing hypotheses about functional morphology.

  14. Geometric investigation of a gaming active device

    Science.gov (United States)

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  15. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  16. Geometric Methods in Physics : XXXIII Workshop

    CERN Document Server

    Bieliavsky, Pierre; Odzijewicz, Anatol; Schlichenmaier, Martin; Voronov, Theodore

    2015-01-01

    This book presents a selection of papers based on the XXXIII Białowieża Workshop on Geometric Methods in Physics, 2014. The Białowieża Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Białowieża Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Białowieża forest in eastern Poland. The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and m...

  17. Geometric characterization of the Arjuna orbital domain

    CERN Document Server

    Marcos, C de la Fuente

    2014-01-01

    Arjuna-type orbits are characterized by being Earth-like, having both low-eccentricity and low-inclination. Objects following these trajectories experience repeated trappings in the 1:1 commensurability with the Earth and can become temporary Trojans, horseshoe librators, quasi-satellites, and even transient natural satellites. Here, we review what we know about this peculiar dynamical group and use a Monte Carlo simulation to characterize geometrically the Arjuna orbital domain, studying its visibility both from the ground and with the European Space Agency Gaia spacecraft. The visibility analysis from the ground together with the discovery circumstances of known objects are used as proxies to estimate the current size of this population. The impact cross-section of the Earth for minor bodies in this resonant group is also investigated. We find that, for ground-based observations, the solar elongation at perigee of nearly half of these objects is less than 90 degrees. They are best observed by space-borne te...

  18. Electronic Geometry Textbook: A Geometric Textbook Knowledge Management System

    CERN Document Server

    Chen, Xiaoyu

    2010-01-01

    Electronic Geometry Textbook is a knowledge management system that manages geometric textbook knowledge to enable users to construct and share dynamic geometry textbooks interactively and efficiently. Based on a knowledge base organizing and storing the knowledge represented in specific languages, the system implements interfaces for maintaining the data representing that knowledge as well as relations among those data, for automatically generating readable documents for viewing or printing, and for automatically discovering the relations among knowledge data. An interface has been developed for users to create geometry textbooks with automatic checking, in real time, of the consistency of the structure of each resulting textbook. By integrating an external geometric theorem prover and an external dynamic geometry software package, the system offers the facilities for automatically proving theorems and generating dynamic figures in the created textbooks. This paper provides a comprehensive account of the curr...

  19. Geometric Filtering Effect of Vertical Vibrations in Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Mădălina Dumitriu

    2012-09-01

    Full Text Available The paper herein examines the geometric filtering effect coming from the axle base of a railway vehicle upon the vertical vibrations behavior, due to the random irregularities of the track. For this purpose, the complete model of a two-level suspension and flexible carbody vehicle has been taken into account. Following the modal analysis, the movement equations have been treated in an original manner and brought to a structure that points out at the symmetrical and anti-symmetrical decoupled movements of vehicle and their excitation modes. There has been shown that the geometric filtering has a selective behavior in decreasing the level of vibrations, and its contribution is affected by the axle base magnitude, rolling speed and frequency range.

  20. CIME course on Ricci Flow and Geometric Applications

    CERN Document Server

    Mantegazza, Carlo

    2016-01-01

    Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.

  1. Coherent cancellation of geometric phase for the OH molecule in external fields

    CERN Document Server

    Marin, M Bhattacharya S

    2014-01-01

    The OH molecule in its ground state presents a versatile platform for precision measurement and quantum information processing. These applications depend vitally on the accurate measurement of transition energies between the OH levels. Significant sources of systematic errors in these measurements are shifts based on the geometric phase arising from the magnetic and electric fields used for manipulating OH. In this article, we present these geometric phases for fields that vary harmonically in time, as in the Ramsey technique. Our calculation of the phases is exact within the description provided by our recent analytic solution of an effective Stark-Zeeman Hamiltonian for the OH ground state. This Hamiltonian has earlier been shown to model experimental data accurately. We find that the OH geometric phases exhibit rich structure as a function of the field rotation rate. Remarkably, we find rotation rates where the geometric phase accumulated by a specific state is zero, or where the relative geometric phase b...

  2. Free-form geometric modeling by integrating parametric and implicit PDEs.

    Science.gov (United States)

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  3. MINIMUM DISCRIMINATION INFORMATION PROBLEMS VIA GENERALIZED GEOMETRIC PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    ZhuDetong

    2003-01-01

    In this paper,the quadratic program problm and minimum discrimiation in formation (MDI) problem with a set of quadratic inequality constraints and entropy constraints of density are considered.Based on the properties of the generalized geometric programming,the dual programs of thses two problems are derived.Furthermore,the duality theorms and related Kuhn-Tucker conditions for two pairs of the prime-dual programs are also established by the duality theory.

  4. A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    OpenAIRE

    Yoon, Yourim; Kim, Yong-Hyuk; Moraglio, Alberto; Moon, Byung-Ro

    2009-01-01

    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is...

  5. Experiments with Geometric Non-Linear Coupling for Analytical Validation

    Science.gov (United States)

    2010-03-01

    beam using the geometrically exact beam theory. Hodges [12] was one of the first to coalesce the various mathematical components that make up the...Nonlinear Response. Ph.D. thesis, Air Force Institute of Technologies, Dec 2008. 4. Boston, Jonathan, Nicholas S. Green, and Nick Keller. “Mech 542...1952. 12. Hodges , D. H. “A Mixed Variational Formulation Base on Exact Intrinsic Equations for Dynamics of Moving Beams”. International Journal of

  6. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  7. Geometric characteristics of clouds from ceilometer measurements and radiosounding methods

    OpenAIRE

    Costa Surós, Montse

    2014-01-01

    Improving methods for automatic and continuous description of cloud has a huge importance in order to determine the role of clouds in climate and their contribution to climate change. The geometric characteristics of clouds, such as the cloud cover and the cloud vertical structure (CVS), including the cloud base height (CBH) which is linked to cloud type, are very important for describing the impact clouds have on the atmosphere. It is presented a complete study of the cloud cover and the...

  8. Designing for Geometrical Symmetry Exploitation

    Directory of Open Access Journals (Sweden)

    André Yamba Yamba

    2006-01-01

    Full Text Available Symmetry-exploiting software based on the generalized Fourier transform (GFT is presented from a practical design point of view. The algorithms and data structures map closely to the relevant mathematical abstractions, which primarily are based upon representation theory for groups. Particular care has been taken in the design of the data layout of the performance-sensitive numerical data structures. The use of a vanilla strategy is advocated for the design of flexible mathematical software libraries: An efficient general-purpose routine should be supplied, to obtain a practical and useful system, while the possibility to extend the library and replace the default routine with a special-purpose – even more optimized – routine should be supported. Compared with a direct approach, the performance results show the superiority of the GFT-based approach for so-called dense equivariant systems. The GFT application is found to be well suited for parallelism.

  9. STUDY ON NEW METHOD OF IDENTIFYING GEOMETRIC ERROR PARAMETERS FOR NC MACHINE TOOLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.

  10. Geometric U-folds in four dimensions

    CERN Document Server

    Lazaroiu, C I

    2016-01-01

    We describe a general construction of geometric U-folds compatible with the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain fiber bundles which encode how supergravity fields are globally glued together. Smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the configuration of scalar fields of the solution is homotopically non-trivial. Nonetheless, certain geometric U-folds extend to simply-connected backgrounds containing localized sources. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of N=2 supergravity c...

  11. Linearization: Geometric, Complex, and Conditional

    Directory of Open Access Journals (Sweden)

    Asghar Qadir

    2012-01-01

    Full Text Available Lie symmetry analysis provides a systematic method of obtaining exact solutions of nonlinear (systems of differential equations, whether partial or ordinary. Of special interest is the procedure that Lie developed to transform scalar nonlinear second-order ordinary differential equations to linear form. Not much work was done in this direction to start with, but recently there have been various developments. Here, first the original work of Lie (and the early developments on it, and then more recent developments based on geometry and complex analysis, apart from Lie’s own method of algebra (namely, Lie group theory, are reviewed. It is relevant to mention that much of the work is not linearization but uses the base of linearization.

  12. Finsler-Geometric Continuum Mechanics

    Science.gov (United States)

    2016-05-01

    into coupling of microscopic dilatation with fracture or slip. continuum physics, solid mechanics, differential geometry, nonlinear elasticity...microscopic dilatation , which is commonplace in the fracture of crystalline rocks and minerals44–46 as well as in the vicinity of dis- location cores in...a novel theory of thermal stresses based on Riemannian geometry, a similar rescaling of a metric tensor on the material manifold was invoked to study

  13. Young Children's Understanding of Geometric Shapes: The Role of Geometric Models

    Science.gov (United States)

    Elia, Iliada; Gagatsis, Athanasios; Kyriakides, Leonidas

    2003-01-01

    In this paper, we explore the role of polygonal shapes as geometrical models in teaching mathematics, so as to elicit and interpret children's geometric conceptions and understanding about shapes. Primary pupils were asked to draw a stairway of figures (triangles, squares and rectangles) each one bigger than the preceding one. Pupils use two…

  14. Modeling Steady Acoustic Fields Bounded in Cavities with Geometrical Imperfections

    Science.gov (United States)

    Albo, P. A. Giuliano; Gavioso, R. M.; Benedetto, G.

    2010-07-01

    A mathematical method is derived within the framework of classical Lagrangian field theory, which is suitable for the determination of the eigenstates of acoustic resonators of nearly spherical shape. The method is based on the expansion of the Helmholtz differential operator and the boundary condition in a power series of a small geometrical perturbation parameter {ɛ} . The method extends to orders higher than {ɛ^2} the calculation of the perturbed acoustic eigenvalues, which was previously limited by the use of variational formalism and the methods of Morse and Ingard. A specific example is worked out for radial modes of a prolate spheroid, with the frequency perturbation calculated to order {ɛ^3} . A possible strategy to tackle the problem of calculating the acoustic eigenvalues for cavities presenting non-smooth geometrical imperfections is also described.

  15. Edge anisotropy and the geometric perspective on flow networks

    CERN Document Server

    Molkenthin, Nora; Tupikina, Liubov; Marwan, Norbert; Donges, Jonathan F; Feudel, Ulrike; Kurths, Jürgen; Donner, Reik V

    2016-01-01

    Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar v...

  16. Geometric feature extraction by a multimarked point process.

    Science.gov (United States)

    Lafarge, Florent; Gimel'farb, Georgy; Descombes, Xavier

    2010-09-01

    This paper presents a new stochastic marked point process for describing images in terms of a finite library of geometric objects. Image analysis based on conventional marked point processes has already produced convincing results but at the expense of parameter tuning, computing time, and model specificity. Our more general multimarked point process has simpler parametric setting, yields notably shorter computing times, and can be applied to a variety of applications. Both linear and areal primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model, and a Jump-Diffusion process is performed to search for the optimal object configuration. Experiments with remotely sensed images and natural textures show that the proposed approach has good potential. We conclude with a discussion about the insertion of more complex object interactions in the model by studying the compromise between model complexity and efficiency.

  17. Geometrical Field Formulation of Thermomechanics in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2010-01-01

    In modern science, the thermo mechanics motion can be traced back to quantum motion in micro viewpoint. On the other hand, the thermo mechanics is definitely related with geometrical configuration motion (phase) in macro viewpoint. On this sense, the thermomechanics should be formulated by two kinds of motion: quantum motion and configuration motion. Its principle goal ought to be bridge the gap between atomic physics and engineering practice. In this research, the configuration motion is formulated by deformation geometrical field (motion transformation tensor). The quantum motion is formulated by the wave function of quantum state. Based on these two fields, the thermo stress is formulated as the coupling of quantum motion and configuration motion. Along this line, the entropy is interpreted and formulated according to thermodynamics rules. For scalar entropy, the traditional meaning of entropy is reserved. For infinitesimal configuration variation, the formulation is degenerated to the traditional elastici...

  18. Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure

    Science.gov (United States)

    Sadhukhan, Debasis; Roy, Sudipto Singha; Pal, Amit Kumar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-02-01

    Multiparty quantum states are useful for a variety of quantum information and computation protocols. We define a multiparty entanglement measure based on local measurements on a multiparty quantum state and an entanglement measure averaged on the postmeasurement ensemble. Using the generalized geometric measure as the measure of multipartite entanglement for the ensemble, we demonstrate, in the case of several well-known classes of multipartite pure states, that the localized multipartite entanglement can exceed the entanglement present in the original state. We also show that measurement over multiple parties may be beneficial in enhancing localizable multipartite entanglement. We point out that localizable generalized geometric measure faithfully signals quantum critical phenomena in well-known quantum spin models even when considerable finite-size effect is present in the system.

  19. A Geometric Approach For Fully Automatic Chromosome Segmentation

    CERN Document Server

    Minaee, Shervin; Khalaj, Babak Hossein

    2011-01-01

    Chromosome segmentation is a fundamental task in human chromosome analysis. Most of previous methods for separation between touching chromosomes require human intervention. In this paper, a geometry based method is used for automatic chromosome segmentation. This method can be divided into two phases. In the first phase, chromosome clusters are detected using three geometric criteria and in the second phase chromosome clusters are separated using a proper cut line. However, most earlier methods do not work well with chromosome clusters that contain more than two chromosomes. Our method, on the other hand, has a high efficiency in separation of chromosome clusters in such scenarios. Another advantage of the proposed method is that it can easily apply to any type of images such as binary images. This is due to the fact that the proposed scheme uses the geometric features of chromosomes which are independent of the type of images. The performance of the proposed scheme is demonstrated on a database containing to...

  20. Edge anisotropy and the geometric perspective on flow networks

    Science.gov (United States)

    Molkenthin, Nora; Kutza, Hannes; Tupikina, Liubov; Marwan, Norbert; Donges, Jonathan F.; Feudel, Ulrike; Kurths, Jürgen; Donner, Reik V.

    2017-03-01

    Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding the existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar variables.

  1. Multiple structural alignment and core detection by geometric hashing.

    Science.gov (United States)

    Leibowitz, N; Fligelman, Z Y; Nussinov, R; Wolfson, H J

    1999-01-01

    A Multiple Structural Alignment algorithm is presented. The algorithm accepts an ensemble of protein structures and finds the largest substructure (core) of C alpha atoms whose geometric configuration appear in all the molecules of the ensemble (core). Both the detection of this core and the resulting structural alignment are done simultaneously. Other large enough multistructural superimpositions are detected as well. Our method is based on the Geometric Hashing paradigm and a superimposition clustering technique which represents superimpositions by sets of matching atoms. The algorithm proved to be efficient on real data in a series of experiments. The same method can be applied to any ensemble of molecules (not necessarily proteins) since our basic technique is sequence order independent.

  2. Solving Topological and Geometrical Constraints in Bridge Feature Model

    Institute of Scientific and Technical Information of China (English)

    PENG Weibing; SONG Liangliang; PAN Guoshuai

    2008-01-01

    The capacity that computer can solve more complex design problem was gradually increased.Bridge designs need a breakthrough in the current development limitations, and then become more intelli-gent and integrated. This paper proposes a new parametric and feature-based computer aided design (CAD) models which can represent families of bridge objects, includes knowledge representation, three-dimensional geometric topology relationships. The realization of a family member is found by solving first the geometdc constraints, and then the topological constraints. From the geometric solution, constraint equations are constructed. Topology solution is developed by feature dependencies graph between bridge objects. Finally, feature parameters are proposed to drive bridge design with feature parameters. Results from our implementation show that the method can help to facilitate bridge design.

  3. Dynamics and Control of Humanoid Robots: A Geometrical Approach

    CERN Document Server

    Ivancevic, Vladimir G

    2011-01-01

    his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics

  4. Geometric and Meshing Properties of Conjugate Curves for Gear Transmission

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2014-01-01

    Full Text Available Conjugate curves have been put forward previously by authors for gear transmission. Compared with traditional conjugate surfaces, the conjugate curves have more flexibility and diversity in aspects of gear design and generation. To further extend its application in power transmission, the geometric and meshing properties of conjugate curves are discussed in this paper. Firstly, general principle descriptions of conjugate curves for arbitrary axial position are introduced. Secondly, geometric analysis of conjugate curves is carried out based on differential geometry including tangent and normal in arbitrary contact direction, characteristic point, and curvature relationships. Then, meshing properties of conjugate curves are further revealed. According to a given plane or spatial curve, the uniqueness of conjugated curve under different contact angle conditions is discussed. Meshing commonality of conjugate curves is also demonstrated in terms of a class of spiral curves contacting in the given direction for various gear axes. Finally, a conclusive summary of this study is given.

  5. Geometric and material nonlinear analysis of tensegrity structures

    Institute of Scientific and Technical Information of China (English)

    Hoang Chi Tran; Jaehong Lee

    2011-01-01

    A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stressstrain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.

  6. Deformed Spacetime Geometrizing Interactions in Four and Five Dimensions

    CERN Document Server

    Cardone, Fabio

    2007-01-01

    This volume provides a detailed discussion of the mathematical aspects and the physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. Such a formalism (Deformed Special Relativity, DSR) allows one to account for breakdown of local Lorentz invariance in the usual, special-relativistic meaning (however, Lorentz invariance is recovered in a generalized sense) to provide an effective geometrical description of the four fundamental interactions (electromagnetic, weak, strong and gravitational) Moreover, the four-dimensional energy-dependent space-time is just a manifestation of a larger, five-dimensional space in which energy plays the role of a fifth (non-compactified) dimension. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism. The mathematical pr...

  7. Strange metals from quantum geometric fluctuations of interfaces

    Science.gov (United States)

    She, Jian-Huang; Bishop, A. R.; Balatsky, Alexander V.

    2016-05-01

    Our current understanding of strongly correlated electron systems is based on a homogeneous framework. Here we take a step going beyond this paradigm by incorporating inhomogeneity from the beginning. Specifying to systems near the Mott metal-insulator transition, we propose a real-space picture of itinerant electrons functioning in the fluctuating geometries bounded by interfaces between metallic and insulating regions. In 2+1 dimensions, the interfaces are closed bosonic strings, and we have a system of strings coupled to itinerant electrons. When the interface tension vanishes, the geometric fluctuations become critical, which gives rise to non-Fermi-liquid behavior for the itinerant electrons. In particular, the poles of the fermion Green's function can be converted to zeros, indicating the absence of propagating quasiparticles. Furthermore, the quantum geometric fluctuations mediate Cooper pairing among the itinerant electrons, indicating the intrinsic instability of electronic systems near the Mott transition.

  8. Geometric entropy and edge modes of the electromagnetic field

    CERN Document Server

    Donnelly, William

    2015-01-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a longstanding puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  9. Shuttle entry guidance revisited using nonlinear geometric methods

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1994-11-01

    The entry guidance law for the space shuttle orbiter is revisited using nonlinear geometric methods. The shuttle guidance concept is to track a reference drag trajectory that has been designed to lead a specified range and velocity. It is shown that the approach taken in the original derivation of the shuttle entry guidance has much in common with the more recently developed feedback linearization method of differential geometric control. Using the feedback linearization method, however, an alternative, potentially superior, guidance law was formulated. Comparing the two guidance laws based performance domains in state space, taking into account the nonlinear dynamics, the alternative guidance law achieves the desired performance over larger domains in state space; the stability domain of the laws are similar. With larger operating domain for the shuttle or some other entry vehicle, the alternative guidance law should be considered.

  10. Geometric Associative Memories and Their Applications to Pattern Classification

    Science.gov (United States)

    Cruz, Benjamin; Barron, Ricardo; Sossa, Humberto

    Associative memories (AMs) were proposed as tools usually used in the restoration and classification of distorted patterns. Many interesting models have emerged in the last years with this aim. In this chapter a novel associative memory model (Geometric Associative Memory, GAM) based on Conformal Geometric Algebra (CGA) principles is described. At a low level, CGA provides a new coordinate-free framework for numeric processing in problem solving. The proposed model makes use of CGA and quadratic programming to store associations among patterns and their respective class. To classify an unknown pattern, an inner product is applied between it and the obtained GAM. Numerical and real examples to test the proposal are given. Formal conditions are also provided that assure the correct functioning of the proposal.

  11. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... independent of representation such that we no longer need to be much concerned with the form of the Boolean functions. Knowing that the operators can easily be implemented (as they have been in array-based logic), shows the advantage they give with respect to automated reasoning....

  12. Understanding geometric algebra for electromagnetic theory

    CERN Document Server

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  13. Singularity Analysis of Geometric Constraint Systems

    Institute of Scientific and Technical Information of China (English)

    彭小波; 陈立平; 周凡利; 周济

    2002-01-01

    Singularity analysis is an important subject of the geometric constraint sat-isfaction problem. In this paper, three kinds of singularities are described and corresponding identification methods are presented for both under-constrained systems and over-constrained systems. Another special but common singularity for under-constrained geometric systems, pseudo-singularity, is analyzed. Pseudo-singularity is caused by a variety of constraint match ing of under-constrained systems and can be removed by improving constraint distribution. To avoid pseudo-singularity and decide redundant constraints adaptively, a differentiation algo rithm is proposed in the paper. Its correctness and efficiency have been validated through its practical applications in a 2D/3D geometric constraint solver CBA.

  14. Duality orbits of non-geometric fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, G.; Roest, D. [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Fernandez-Melgarejo, J.J. [Grupo de Fisica Teorica y Cosmologia, Dept. de Fisica, University of Murcia, Campus de Espinardo, 30100-Murcia (Spain); Marques, D. [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2012-11-15

    Compactifications in duality covariant constructions such as generalised geometry and double field theory have proven to be suitable frameworks to reproduce gauged supergravities containing non-geometric fluxes. However, it is a priori unclear whether these approaches only provide a reformulation of old results, or also contain new physics. To address this question, we classify the T- and U-duality orbits of gaugings of (half-)maximal supergravities in dimensions seven and higher. It turns out that all orbits have a geometric supergravity origin in the maximal case, while there are non-geometric orbits in the half-maximal case. We show how the latter are obtained from compactifications of double field theory. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Geometric optimization and sums of algebraic functions

    KAUST Repository

    Vigneron, Antoine E.

    2014-01-01

    We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.

  16. Problemas de geometría

    OpenAIRE

    2012-01-01

    Este libro, Problemas de Geometría, junto con otros dos, Problemas de Matemáticas y Problemas de Geometría Analítica y Diferencial, están dedicados a la presentación y resolución de problemas que se planteaban hace unas décadas, en la preparación para ingreso en las carreras de ingeniería técnica superior. Incluye 744 problemas que se presentan en dos grandes grupos: • Geometría del plano, con 523 problemas referentes a lugares geométricos, rectas, ángulos, triángulos y su construcción, cuadr...

  17. The Geometric Phase of Stock Trading.

    Science.gov (United States)

    Altafini, Claudio

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.

  18. An Underlying Geometrical Manifold for Hamiltonian Mechanics

    CERN Document Server

    Horwitz, L P; Levitan, J; Lewkowicz, M

    2015-01-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...

  19. Primary School Teacher Candidates' Geometric Habits of Mind

    Science.gov (United States)

    Köse, Nilu¨fer Y.; Tanisli, Dilek

    2014-01-01

    Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school teachers' geometric…

  20. 多投影仪自由立体显示的GPU几何及亮度校正技术%GPU-Based Geometric and Photometric Corrections for Multi-projector Autostereoscopic Display

    Institute of Scientific and Technical Information of China (English)

    周艳霞; 秦开怀; 罗建利

    2011-01-01

    Tiled multi-projector autostereoscopic display systems can provide preferable 3D effects with larger display area. There are the location restrictions of the projectors and the special optical characteristics of the autostereoscopic display screens in scalable high-resolution multi-projector autostereoscopic systems. Thus it is infeasible to apply the traditional geometric and photometric corrections to tiled multi-projector autostereoscopic display systems. In this paper, the pretransformation geometric calibration is proposed to solve the problem of the feature points out of the screen. Then the adaptive multiple-mask photometric correction is adopted to address the problem of the special optical characteristics of the autostereoscopic display screen. The geometric calibrations and photometric corrections are merged and implemented on GPU, which greatly facilitate the calibration procedure. The experimental results show that our approach can generate satisfying geometric and photometric corrections for the scalable high-resolution multi-projector autostereoscopic display.%由多个投影仪拼接显示的自由立体显示系统有很大的显示区域,能够产生更好的立体显示效果.针对可伸缩高分辨率多投影仪自由立体显示的系统特性和屏幕特性,通过分析各种几何校正和亮度校正算法,采用二次几何校正方法解决了自由立体显示中斜投影造成的部分特征点不在屏幕上的问题;提出了基于GPU的亮度自适应多模板校正方法,并通过GPU程序将几何校正和亮度校正合并为一个渲染过程,显著地提高了几何校正和亮度校正的速度.实验结果证明,采用文中方法能够有效地解决自由立体投影显示系统中的几何校正和亮度校正问题,且校正速度快、显示效果好.