Quadrupole collective variables in the natural Cartan-Weyl basis
De Baerdemacker, S.; Heyde, K.; Hellemans, V.
2007-01-01
The matrix elements of the quadrupole collective variables, emerging from collective nuclear models, are calculated in the natural Cartan-Weyl basis of O(5) which is a subgroup of a covering $SU(1,1)\\times O(5)$ structure. Making use of an intermediate set method, explicit expressions of the matrix elements are obtained in a pure algebraic way, fixing the $\\gamma$-rotational structure of collective quadrupole models.
Geometric Computing Based on Computerized Descriptive Geometric
Institute of Scientific and Technical Information of China (English)
YU Hai-yan; HE Yuan-Jun
2011-01-01
Computer-aided Design （CAD）, video games and other computer graphic related technology evolves substantial processing to geometric elements. A novel geometric computing method is proposed with the integration of descriptive geometry, math and computer algorithm. Firstly, geometric elements in general position are transformed to a special position in new coordinate system. Then a 3D problem is projected to new coordinate planes. Finally, according to 2D/3D correspondence principle in descriptive geometry, the solution is constructed computerized drawing process with ruler and compasses. In order to make this method a regular operation, a two-level pattern is established. Basic Layer is a set algebraic packaged function including about ten Primary Geometric Functions （PGF） and one projection transformation. In Application Layer, a proper coordinate is established and a sequence of PGFs is sought for to get the final results. Examples illustrate the advantages of our method on dimension reduction, regulatory and visual computing and robustness.
Rule-based transformations for geometric modelling
Bellet, Thomas; Gall, Pascale Le; 10.4204/EPTCS.48.5
2011-01-01
The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (position, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a biological context). We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes hav...
Rule-based transformations for geometric modelling
Directory of Open Access Journals (Sweden)
Thomas Bellet
2011-02-01
Full Text Available The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc. with relevant data as their geometric shape (position, curve, surface, etc. or application dedicated data (e.g. molecule concentration level in a biological context. We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes have multiple labels.
Model-based vision using geometric hashing
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
Institute of Scientific and Technical Information of China (English)
马利民; 王金星; 蒋向前; 李柱; 徐振高
2004-01-01
Geometrical Product Specification and verification (GPS) is an ISO standard system coveting standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,i.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. PMID:23079285
The quadrupole collective model from a Cartan-Weyl perspective
De Baerdemacker, Stijn; Heyde, Kris; Hellemans, Veerle
2007-01-01
The matrix elements of the quadrupole variables and canonic conjugate momenta, emerging from collective nuclear models are calculated within a $SU(1,1)\\times O(5)$ basis. Using a harmonic oscillator implementation of the SU(1,1) degree of freedom, it can be shown that the matrix elements of the quadrupole phonon creation and annihilation operators can be calculated in a pure algebraic way, making use of an intermediate state method.
Geometric Feature Based Face-Sketch Recognition
Pramanik, Sourav; Bhattacharjee, Debotosh
2013-01-01
This paper presents a novel facial sketch image or face-sketch recognition approach based on facial feature extraction. To recognize a face-sketch, we have concentrated on a set of geometric face features like eyes, nose, eyebrows, lips, etc and their length and width ratio because it is difficult to match photos and sketches because they belong to two different modalities. In this system, first the facial features/components from training images are extracted, then ratios of length, width, a...
Pose measurement method based on geometrical constraints
Institute of Scientific and Technical Information of China (English)
Zimiao Zhang; Changku Sun; Pengfei Sun; Peng Wang
2011-01-01
@@ The pose estimation method based on geometric constraints is studied.The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process,the scaling and orthography projection model is used to approximate the perspective projection model.%The pose estimation method based on geometric constraints is studied. The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process, the scaling and orthography projection model is used to approximate the perspective projection model. The initial values of the coordinates of the five feature points in the camera coordinate system are obtained to ensure the accuracy and convergence rate of the non-linear algorithm. In accordance with the perspective projection characteristics of the circular feature landmarks, we propose an approach that enables the iterative acquisition of accurate target poses through the correction of the perspective projection coordinates of the circular feature landmark centers. Experimental results show that the translation positioning accuracy reaches ±0.05 mm in the measurement range of 0-40 mm, and the rotation positioning accuracy reaches ±0.06° in the measurement range of 4°-60°.
Facial symmetry assessment based on geometric features
Xu, Guoping; Cao, Hanqiang
2015-12-01
Face image symmetry is an important factor affecting the accuracy of automatic face recognition. Selecting high symmetrical face image could improve the performance of the recognition. In this paper, we proposed a novel facial symmetry evaluation scheme based on geometric features, including centroid, singular value, in-plane rotation angle of face and the structural similarity index (SSIM). First, we calculate the value of the four features according to the corresponding formula. Then, we use fuzzy logic algorithm to integrate the value of the four features into a single number which represents the facial symmetry. The proposed method is efficient and can adapt to different recognition methods. Experimental results demonstrate its effectiveness in improving the robustness of face detection and recognition.
GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION
Institute of Scientific and Technical Information of China (English)
Cai Lian; Du Sidan; Gao Duntang
2005-01-01
The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.
Point- and curve-based geometric conflation
López-Vázquez, C.
2013-01-01
Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.
CCH-based geometric algorithms for SVM and applications
Institute of Scientific and Technical Information of China (English)
Xin-jun PENG; Yi-fei WANG
2009-01-01
The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances.
Template-Based Geometric Simulation of Flexible Frameworks
Directory of Open Access Journals (Sweden)
Stephen A. Wells
2012-03-01
Full Text Available Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers.
Geometric Distortion Analysis Using CAD/CAM Based Manufacturing Simulation
Werke, Mats; Hedlind, Mikael; Nicolescu, Mihai
2014-01-01
Machining of components may cause geometric distortions and thereby quality issues and increased costs. This paper presents an engineering approach of CAD/CAM based manufacturing simulation in order to be in control of geometric distortions after machining. The method utilises STEP AP209 for communication of CAD/CAM simulation data. The method improves the ability to optimise process parameters, geometry, and material, in order to fulfil the design requirements. The method supports concurrent...
Entropy based transportation model: A geometric programming approach
Directory of Open Access Journals (Sweden)
Samanta Bablu
2007-01-01
Full Text Available The entropy model has attached a good deal of attention in transportation analysis, urban and regional planning as well as in other areas. This paper shows the equivalence of entropy maximization models to geometric programs. To provide a better understanding of this entropy based transportation model they are analyzed by geometric programming. Dual mathematical programs and algorithms are also obtained and are supported by an illustrative example. .
Geometrically Invariant Watermarking Scheme Based on Local Feature Points
Directory of Open Access Journals (Sweden)
Jing Li
2012-06-01
Full Text Available Based on local invariant feature points and cross ratio principle, this paper presents a feature-point-based image watermarking scheme. It is robust to geometric attacks and some signal processes. It extracts local invariant feature points from the image using the improved scale invariant feature transform algorithm. Utilizing these points as vertexes it constructs some quadrilaterals to be as local feature regions. Watermark is inserted these local feature regions repeatedly. In order to get stable local regions it adjusts the number and distribution of extracted feature points. In every chosen local feature region it decides locations to embed watermark bits based on the cross ratio of four collinear points, the cross ratio is invariant to projective transformation. Watermark bits are embedded by quantization modulation, in which the quantization step value is computed with the given PSNR. Experimental results show that the proposed method can strongly fight more geometrical attacks and the compound attacks of geometrical ones.
Knowledge-based geometric modeling in construction
DEFF Research Database (Denmark)
Bonev, Martin; Hvam, Lars
2012-01-01
a considerably high amount of their recourses is required for designing and specifying the majority of their product assortment. As design decisions are hereby based on knowledge and experience about behaviour and applicability of construction techniques and materials for a predefined design situation, smart...
A Geometrical Transformations Resistant Digital Watermarking Based on Quantization
Institute of Scientific and Technical Information of China (English)
SHI Lei; HONG Fan; LIU Wei-qun; HU Yu-ping; CHEN Zhuo
2005-01-01
A geometrical transformations resistant digital image watermarking based on quantization is described. Taking advantage of the rotation, scale and translation invariants of discrete Fourier transform(DFT), each watermark bit is embedded into each homocentric circles around the zero frequency term in DFT domain by quantizing the magnitude vector of Fourier spectrum. The embedded sequence can be extracted by "majority principles" without restoring to the original unmarked image. The experimental results show that the watermark is invisible and robust to any combination of geometrical transformations or common image processing techniques.
Frame-Based Facial Expression Recognition Using Geometrical Features
Anwar Saeed; Ayoub Al-Hamadi; Robert Niese; Moftah Elzobi
2014-01-01
To improve the human-computer interaction (HCI) to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness), with the help of several geometrical featur...
Image-Based Geometric Modeling and Mesh Generation
2013-01-01
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...
A Geometric Fuzzy-Based Approach for Airport Clustering
Directory of Open Access Journals (Sweden)
Maria Nadia Postorino
2014-01-01
Full Text Available Airport classification is a common need in the air transport field due to several purposes—such as resource allocation, identification of crucial nodes, and real-time identification of substitute nodes—which also depend on the involved actors’ expectations. In this paper a fuzzy-based procedure has been proposed to cluster airports by using a fuzzy geometric point of view according to the concept of unit-hypercube. By representing each airport as a point in the given reference metric space, the geometric distance among airports—which corresponds to a measure of similarity—has in fact an intrinsic fuzzy nature due to the airport specific characteristics. The proposed procedure has been applied to a test case concerning the Italian airport network and the obtained results are in line with expectations.
D Image Based Geometric Documentation of the Tower of Winds
Tryfona, M. S.; Georgopoulos, A.
2016-06-01
This paper describes and investigates the implementation of almost entirely image based contemporary techniques for the three dimensional geometric documentation of the Tower of the Winds in Athens, which is a unique and very special monument of the Roman era. These techniques and related algorithms were implemented using a well-known piece of commercial software with extreme caution in the selection of the various parameters. Problems related to data acquisition and processing, but also to the algorithms and to the software implementation are identified and discussed. The resulting point cloud has been georeferenced, i.e. referenced to a local Cartesian coordinate system through minimum geodetic measurements, and subsequently the surface, i.e. the mesh was created and finally the three dimensional textured model was produced. In this way, the geometric documentation drawings, i.e. the horizontal section plans, the vertical section plans and the elevations, which include orthophotos of the monument, can be produced at will from that 3D model, for the complete geometric documentation. Finally, a 3D tour of the Tower of the Winds has also been created for a more integrated view of the monument. The results are presented and are evaluated for their completeness, efficiency, accuracy and ease of production.
Iris-based medical analysis by geometric deformation features.
Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan
2013-01-01
Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis. PMID:23144041
Connectivity-Based Watermarking Robust to Geometrical Attacks
Institute of Scientific and Technical Information of China (English)
Wang Hongxia; Luo Jian
2006-01-01
A novel robust watermarking scheme based on image connectivity is proposed. In the scheme, the connected objects are obtained according to selected connectivity pattern, and the gravity centers are calculated in several bigger objects as the reference points for watermark embedding. Based on these reference points and the center of the whole image, several sectors are formed, and the same version of watermarks is embedded into these sectors and their opposites. Thanks to the very stable gravity center of the connected objects, watermark detection is synchronized successfully. Simulation results show that the watermark can survive under both local and global geometrical distortions.
Lunar-based Earth observation geometrical characteristics research
Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning
2016-07-01
As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.
Frame-Based Facial Expression Recognition Using Geometrical Features
Directory of Open Access Journals (Sweden)
Anwar Saeed
2014-01-01
Full Text Available To improve the human-computer interaction (HCI to be as good as human-human interaction, building an efficient approach for human emotion recognition is required. These emotions could be fused from several modalities such as facial expression, hand gesture, acoustic data, and biophysiological data. In this paper, we address the frame-based perception of the universal human facial expressions (happiness, surprise, anger, disgust, fear, and sadness, with the help of several geometrical features. Unlike many other geometry-based approaches, the frame-based method does not rely on prior knowledge of a person-specific neutral expression; this knowledge is gained through human intervention and not available in real scenarios. Additionally, we provide a method to investigate the performance of the geometry-based approaches under various facial point localization errors. From an evaluation on two public benchmark datasets, we have found that using eight facial points, we can achieve the state-of-the-art recognition rate. However, this state-of-the-art geometry-based approach exploits features derived from 68 facial points and requires prior knowledge of the person-specific neutral expression. The expression recognition rate using geometrical features is adversely affected by the errors in the facial point localization, especially for the expressions with subtle facial deformations.
NOVEL RADAR SIGNAL SORTING METHOD BASED ON GEOMETRIC COVERING
Institute of Scientific and Technical Information of China (English)
万建; 国强; 宋文明
2013-01-01
With the increase of complexity of electromagnetic environment and continuous appearance of advanced system radars ,signals received by radar reconnaissance receivers become even more intensive and complex .There-fore ,traditional radar sorting methods based on neural network algorithms and support vector machine (SVM ) cannot process them effectively .Aiming at solving this problem ,a novel radar signal sorting method based on the cloud model theory and the geometric covering algorithm is proposed .By applying the geometric covering algo-rithm to divide input signals into different covering domains based on their distribution characteristics ,the method can overcome a typical problem that it is easy for traditional sorting algorithms to fall into the local extrema due to the use of complex nonlinear equation to describe input signals .The method uses the cloud model to describe the membership degree between signals to be sorted and their covering domains ,thus it avoids the disadvantage that traditional sorting methods based on hard clustering cannot deinterleave the signal samples with overlapped param-eters .Experimental results show that the presented method can effectively sort advanced system radar signals with overlapped parameters in complex electromagnetic environment .
Mesh Geometric Editing Approach Based on Gpu Texture
Directory of Open Access Journals (Sweden)
Guiping Qian
2012-09-01
Full Text Available This paper presents a novel interactive mesh editing approach based on GPU texture mapping. The main feature is that it copies 2D surface geometry information to GPU frame buffer. The planar mesh information is transformed into GPU texture and placed on apposite position of target mesh. 3D information is retrieved after stitching two mesh components from the primitive vertex coordinates. When running real-time mesh cloning operator, our mesh editing approach can copy arbitrary irregular geometric features from source mesh to target mesh. Experimental results indicate that our method can outperform previous related mesh editing techniques.
Approach to Weighted Geometric Evaluation Based on Projection Pursuit
Institute of Scientific and Technical Information of China (English)
Yang Shanlin; Wang Shuo; Gong Daning
2006-01-01
Weighted geometric evaluation approach based on Projection pursuit (PP) model is presented in this paper to optimize the choice of schemes. By using PP model, the multi-dimension evaluation index values of schemes can be synthesized into projection value with one dimension. The scheme with a bigger projection value is much better, so the schemes sample can be an optimized choice according to the projection value of each scheme. The modeling of PP based on accelerating genetic algorithm can predigest the realized process of projection pursuit technique, can overcome the shortcomings of large computation amount and the difficulty of computer programming in traditional projection pursuit methods, and can give a new method for application of projection pursuit technique to optimize choice of schemes by using weighted geometric evaluation. The analysis of an applied sample shows that applying PP model driven directly by samples data to optimize choice of schemes is both simple and feasible, that its projection values are relatively decentralized and profit decision-making, that its applicability and maneuverability are high. It can avoid the shortcoming of subjective weighing method, and its results are scientific and objective.
Forward error correction based on algebraic-geometric theory
A Alzubi, Jafar; M Chen, Thomas
2014-01-01
This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.
Geometric Deformations Based on 3D Volume Morphing
Institute of Scientific and Technical Information of China (English)
JIN Xiaogang; WAN Huagen; PENG Qunsheng
2001-01-01
This paper presents a new geometric deformation method based on 3D volume morphing by using a new concept called directional polar coordinate. The user specifies the source control object and the destination control object which act as the embedded spaces.The source and the destination control objects determine a 3D volume morphing which maps the space enclosed in the source control object to that of the destination control object. By embedding the object to be deformed into the source control object, the 3D volume morphing determines the deformed object automatically without the tiring moving of control points.Experiments show that this deformation model is efficient and intuitive, and it can achieve some deformation effects which are difficult to achieve for traditional methods.
A geometric reasoning based algorithm for point pattern matching
Institute of Scientific and Technical Information of China (English)
徐文立; 张立华
2001-01-01
Point pattern matching (PPM) is an important topic in computer vision and pattern recognition. It can be widely used in many areas such as image registration, object recognition, motion detection, target tracking, autonomous navigation, and pose estimation. This paper discusses the incomplete matching problem of two point sets under Euclidean transformation. According to geometric reasoning, some definitions for matching clique, support point pair, support index set, and support index matrix, etc. are given. Based on the properties and theorems of them, a novel reasoning algorithm is presented, which searches for the optimal sOlLtion from top to bottom and could find out as many consistent corresponding point pairs as possible. Theoretical analysis and experimental results show that the new algorithm is very effective, and could be, under some conditions, applied to the PPM problem under other kind of transformations.
NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS
Institute of Scientific and Technical Information of China (English)
Jia Xiaomeng; Wang Guoyu
2003-01-01
This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
Directory of Open Access Journals (Sweden)
Lohel Maiko
2010-06-01
Full Text Available Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS, we have chosen an already existing formalism (BioNetGen for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules. When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial
GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP
Directory of Open Access Journals (Sweden)
A. Sampath
2016-06-01
Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope
Evaluating conducting network based transparent electrodes from geometrical considerations
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ankush [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560064 Bangalore (India); Kulkarni, G. U., E-mail: guk@cens.res.in [Centre for Nano and Soft Matter Sciences, 560013 Bangalore (India)
2016-01-07
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in
Evaluating conducting network based transparent electrodes from geometrical considerations
Kumar, Ankush; Kulkarni, G. U.
2016-01-01
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting
Geometric Lattice Structure of Covering-Based Rough Sets through Matroids
Directory of Open Access Journals (Sweden)
Aiping Huang
2012-01-01
relationship among them. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by a covering. Then its characteristics, such as atoms, modular elements, and modular pairs, are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, we present three sufficient and necessary conditions for two types of covering upper approximation operators to be closure operators of matroids. We also represent two types of matroids through closure axioms and then obtain two geometric lattice structures of covering-based rough sets. Third, we study the relationship among these three geometric lattice structures. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely, geometric lattice, to study covering-based rough sets.
Geometrically robust video watermarking based on wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHAO Yao
2006-01-01
Geometrical attacks can destroy most watermarking systems at present. So how to efficiently resist such kind of attacks remains a challenging direction in watermarking research. In this paper, a novel sequence watermarking scheme, which exploits a geometrical invariant, i.e. average AC energy (AAE) to combat arbitrary geometrical attacks, is presented. The scheme also uses some other measures, such as synchronization and optimal whitening filter to resist other attacks and improve detection performance. The experimental results show that the scheme can efficiently improve the visual quality of the watermarked video and achieve good robustness against random geometrical attacks. The scheme also has good robustness against other attacks, such as low-pass filtering along time axis and frame removal.
Water flow based geometric active deformable model for road network
Leninisha, Shanmugam; Vani, Kaliaperumal
2015-04-01
A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.
Recognition of facial expressions based on salient geometric features and support vector machines
Ghimire, Deepak; Lee, Joonwhoan; Li, Ze-Nian; Jeong, Sunghwan
2016-01-01
Facial expressions convey nonverbal cues which play an important role in interpersonal relations, and are widely used in behavior interpretation of emotions, cognitive science, and social interactions. In this paper we analyze different ways of representing geometric feature and present a fully automatic facial expression recognition (FER) system using salient geometric features. In geometric feature-based FER approach, the first important step is to initialize and track dense set of facial p...
A geometric framework for mixed quantum states based on a Kähler structure
International Nuclear Information System (INIS)
In this paper we introduce a geometric framework for mixed quantum states based on a Kähler structure. The geometric framework includes a symplectic form, an almost complex structure, and a Riemannian metric that characterize the space of mixed quantum states. We argue that the almost complex structure is integrable. We also in detail discuss a visualizing application of this geometric framework by deriving a geometric uncertainty relation for mixed quantum states. The framework is computationally effective and it provides us with a better understanding of general quantum mechanical systems. (paper)
Audio watermarking robust to geometrical distortions based on dyadic wavelet transform
Wang, Yong; Wu, Shaoquan; Huang, Jiwu
2007-02-01
Geometrical transforms such as time-scale modification (TSM), random removal(RR), random duplication(RD), and cropping, are of common operations on audio signals while presents many challenges to robust audio watermarking. The existing algorithms aiming at solving the geometrical distortions have various drawbacks e.g. high false alarm probability, heavy computation load, small data hiding capacity, and low robustness performance. In this paper an audio watermarking algorithm based on dyadic wavelet transform robust to geometrical distortions is proposed. Watermark synchronization is achieved using the geometrical invariant properties of dyadic wavelet transform. A well-designed coding scheme is proposed for lowering the bit error rate of the watermark. The experimental results show that the watermark is robust to geometrical transforms and other common operations. Compared with other existing algorithms the proposed algorithm has several advantages of high robustness, large data hiding capacity and low computation load.
Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation
Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.
2016-06-01
As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.
An Improved Method for the Geometrical Calibration of Parallelogram-based Parallel Robots
Savoure, Ludovic; Maurine, Patrick; Corbel, David; Krut, Sébastien
2006-01-01
International audience This paper presents an improved method for the geometrical calibration of parallel robots for which the structure is based upon some parallelogram mechanisms. Its originality is to identify the complete geometry of the mechanism's parallelograms, and to compensate the positioning error of the TCP (Tool Centre Point), due to the infinitesimal rotation of the traveling plate, induced by the parallelogram geometrical errors. The main difficulties are: (i) to derive the ...
Mezaal, Yaqeen S.; Eyyuboglu, Halil T.
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequenc...
The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer
International Nuclear Information System (INIS)
The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)
METHOD FOR ADAPTIVE MESH GENERATION BASED ON GEOMETRICAL FEATURES OF 3D SOLID
Institute of Scientific and Technical Information of China (English)
HUANG Xiaodong; DU Qungui; YE Bangyan
2006-01-01
In order to provide a guidance to specify the element size dynamically during adaptive finite element mesh generation, adaptive criteria are firstly defined according to the relationships between the geometrical features and the elements of 3D solid. Various modes based on different datum geometrical elements, such as vertex, curve, surface, and so on, are then designed for generating local refmed mesh. With the guidance of the defined criteria, different modes are automatically selected to apply on the appropriate datum objects to program the element size in the local special areas. As a result, the control information of element size is successfully programmed coveting the entire domain based on the geometrical features of 3D solid. A new algorithm based on Delaunay triangulation is then developed for generating 3D adaptive fmite element mesh, in which the element size is dynamically specified to catch the geometrical features and suitable tetrahedron facets are selected to locate interior nodes continuously. As a result, adaptive mesh with good-quality elements is generated. Examples show that the proposed method can be successfully applied to adaptive finite element mesh automatic generation based on the geometrical features of 3D solid.
Geometric Feature Extraction and Model Reconstruction Based on Scattered Data
Institute of Scientific and Technical Information of China (English)
胡鑫; 习俊通; 金烨
2004-01-01
A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.
Managing geometric information with a data base management system
Dube, R. P.
1984-01-01
The strategies for managing computer based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. The research on integrated programs for aerospace-vehicle design (IPAD) focuses on the use of data base management system (DBMS) technology to manage engineering/manufacturing data. The objectives of IPAD is to develop a computer based engineering complex which automates the storage, management, protection, and retrieval of engineering data. In particular, this facility must manage geometry information as well as associated data. The approach taken on the IPAD project to achieve this objective is discussed. Geometry management in current systems and the approach taken in the early IPAD prototypes are examined.
Institute of Scientific and Technical Information of China (English)
TIE Zuo-Xiu; QIN Meng; ZOU Da-Wei; CAO Yi; WANG Wei
2011-01-01
@@ The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels.In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by n - TT stacking among the phenyl groups.Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions.Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous.%The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π - π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive “smart”materials.
MAP: Medial axis based geometric routing in sensor networks
Bruck, Jehoshua; Gao, Jie; Jiang, Anxiao
2007-01-01
One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, quality of communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing...
Rule-based spatial modeling with diffusing, geometrically constrained molecules
Lohel Maiko; Lenser Thorsten; Ibrahim Bashar; Gruenert Gerd; Hinze Thomas; Dittrich Peter
2010-01-01
Abstract Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction net...
Difference Energy Based Blind Image Watermarking Resisting to Geometrical Distortions
Institute of Scientific and Technical Information of China (English)
YU Yanwei; LU Zhengding; LING Hefei
2006-01-01
In this paper a blind image watermarking that can resist to rotation, scaling and translation (RST) attacks is proposed. Based on the spread spectrum, the watermark is modulated before embedding. The log-polar mapped discrete fourier transform (LPM-DFT) magnitude of a disk, a part of the origin image, constitutes the RST-invariant domain, where the origin of the LPM is the center of the disk and the sampling rates of the LPM are constant. After the middle frequency band of LPM-DFT magnitude, namely the watermark-embedding domain, is grouped according to the watermark length, the watermark is embedded by adjusting the difference between the two sub-region energy in each group. To improve the imperceptibility, the watermark-embedding domain is shuffled before embedding and the watermark is not embedded directly into the watermark-embedding domain. In watermark detection procedure, neither the original image nor any knowledge about the distortions is required. Experimental results show that the proposed scheme is very robust against RST distortion and common image processing attacks.
Usha, K.; M. Ezhilarasan
2013-01-01
Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Kn...
MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING
Directory of Open Access Journals (Sweden)
J. Jung
2016-06-01
Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.
Matching Aerial Images to 3d Building Models Based on Context-Based Geometric Hashing
Jung, J.; Bang, K.; Sohn, G.; Armenakis, C.
2016-06-01
In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs) of a single image. This model-to-image matching process consists of three steps: 1) feature extraction, 2) similarity measure and matching, and 3) adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.
Mask synthesis and verification based on geometric model for surface micro-machined MEMS
Institute of Scientific and Technical Information of China (English)
LI Jian-hua; LIU Yu-sheng; GAO Shu-ming
2005-01-01
Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test results are given.
Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk
2016-05-01
In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.
Maximum Matchings of a Digraph Based on the Largest Geometric Multiplicity
Directory of Open Access Journals (Sweden)
Yunyun Yang
2016-01-01
Full Text Available Matching theory is one of the most forefront issues of graph theory. Based on the largest geometric multiplicity, we develop an efficient approach to identify maximum matchings in a digraph. For a given digraph, it has been proved that the number of maximum matched nodes has close relationship with the largest geometric multiplicity of the transpose of the adjacency matrix. Moreover, through fundamental column transformations, we can obtain the matched nodes and related matching edges. In particular, when a digraph contains a cycle factor, the largest geometric multiplicity is equal to one. In this case, the maximum matching is a perfect matching and each node in the digraph is a matched node. The method is validated by an example.
Institute of Scientific and Technical Information of China (English)
ZHAO Pei-dong; XIE Jian-ying
2008-01-01
A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant watermark is adaptively embedded in the discrete wavelet transform(DWT) domain based on the statistical characteristics of the wavelet coefficient block. The coordinate system of watermarked image is reestablished as a calibration system. Regardless of the host image rotated, scaled, or translated(RST), all the geometric attacks are eliminated while the watermarked image is transformed into the standard coordinate system. The proposed watermark detection is a blind detection. Experimental results demonstrate the proposed scheme is robust against common and geometric image processing attacks, particularly its robustness against joint geometric attacks.
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft; Volk, Wolfram
2013-01-01
, the reaction speed may be insufficient compared to the production rate in an industrial application. We propose to design an iterative learning control (ILC) algorithm which can control and update the blank-holder force as well as the distribution of the blank-holder force based on limited geometric data from...
International Nuclear Information System (INIS)
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (cross-disciplinary physics and related areas of science and technology)
Tie, Zuo-Xiu; Qin, Meng; Zou, Da-Wei; Cao, Yi; Wang, Wei
2011-02-01
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive “smart" materials.
International Nuclear Information System (INIS)
The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π-π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (authors)
Arici, Sevil; Aslan-Tutak, Fatma
2015-01-01
This research study examined the effect of origami-based geometry instruction on spatial visualization, geometry achievement, and geometric reasoning of tenth-grade students in Turkey. The sample ("n" = 184) was chosen from a tenth-grade population of a public high school in Turkey. It was a quasi-experimental pretest/posttest design. A…
Shakir, Muhammad
2011-12-01
In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.
Institute of Scientific and Technical Information of China (English)
马利民; 王金星; 蒋向前; 李柱; 徐振高
2004-01-01
Geometrical Product Specification and verification (GPS) is an ISO standard system covering standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,I.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.
Geometric optimization of a neutron detector based on a lithium glass–polymer composite
International Nuclear Information System (INIS)
We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from 252Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10−7 for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection
Geometric optimization of a neutron detector based on a lithium glass–polymer composite
Energy Technology Data Exchange (ETDEWEB)
Mayer, M., E-mail: mike.f.mayer@gmail.com [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Nattress, J. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2015-06-01
We report on the simulation and optimization of a neutron detector based on a glass–polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from {sup 252}Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10{sup −7} for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs. - Highlights: • Composite polymer–lithium glass scintillation detector is simulated. • Polymer is considered to be non-scintillating in the simulation. • Three forms of lithium glass are considered: disks, rods, and spheres. • Glass shape has a small effect on neutron efficiency. • Glass shape has a significant effect on gamma rejection.
Directory of Open Access Journals (Sweden)
Daniela A Schmieder
Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Surface-based geometric modelling using teaching trees for advanced robots
International Nuclear Information System (INIS)
Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)
A note on geometric method-based procedures to calculate the Hurst exponent
Trinidad Segovia, J. E.; Fernández-Martínez, M.; Sánchez-Granero, M. A.
2012-03-01
Geometric method-based procedures, which we will call GM algorithms hereafter, were introduced in M.A. Sánchez-Granero, J.E. Trinidad Segovia, J. García Pérez, Some comments on Hurst exponent and the long memory processes on capital markets, Phys. A 387 (2008) 5543-5551, to calculate the Hurst exponent of a time series. The authors proved that GM algorithms, based on a geometrical approach, are more accurate than classical algorithms, especially with short length time series. The main contribution of this paper is to provide a mathematical background for the validity of these two algorithms to calculate the Hurst exponent H of random processes with stationary and self-affine increments. In particular, we show that these procedures are valid not only for exploring long memory in classical processes such as (fractional) Brownian motions, but also for estimating the Hurst exponent of (fractional) Lévy stable motions.
Image Retrieval based on Integration between Color and Geometric Moment Features
International Nuclear Information System (INIS)
Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.
Turbulence Dynamics based on Lagrange Mechanics and Geometrical Field Theory of Deformation
Jianhua, Xiao
2009-01-01
The turbulence field is stacked on the laminar flow. In this research, the laminar flow is described as a macro deformation which forms an instant curvature space. On such a curvature space, the turbulence is viewed as a micro deformation. So, the fluid flow is described by the geometrical field theory of finite deformation. Based on the Lagrange mechanics and the deformation energy concept, using the Least Action Principle, the Euler-Lagrange motion equations are obtained. According to A E Green formulation, the stress concept is introduced by deformation tensor. The fluid motion is described by the multiplication of a macro deformation tensor and a micro deformation tensor. By this way, the geometrical field of fluid motion is well constructed. Then, the spatial derivative of deformation energy is expressed by the gradient of deformation tensors. By this way, the deformation energy related items in the Euler-Lagrange motion equations are expressed by the stress tensor and deformation tensor. The obtained Eu...
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
Directory of Open Access Journals (Sweden)
Charistos Leonidas
2014-06-01
Full Text Available Honey bees collected from 32 different localities in Greece were studied based on the geometric morphometrics approach using the coordinates of 19 landmarks located at wing vein intersections. Procrustes analysis, principal component analysis, and Canonical variate analysis (CVA detected population variability among the studied samples. According to the Principal component analysis (PCA of pooled data from each locality, the most differentiated populations were the populations from the Aegean island localities Astypalaia, Chios, and Kythira. However, the populations with the most distant according to the canonical variate analysis performed on all measurements were the populations from Heraklion and Chania (both from Crete island. These results can be used as a starting point for the use of geometric morphometrics in the discrimination of honey bee populations in Greece and the establishment of conservation areas for local honey bee populations.
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826
Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing
Directory of Open Access Journals (Sweden)
S. Balasubramaniam
2015-01-01
Full Text Available Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
DEFF Research Database (Denmark)
Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard;
2012-01-01
Base station antenna downtilt is one of the most important parameters for optimizing a cellular network with tight frequency reuse. By downtilting, inter-site interference is reduced, which leads to an improved performance of the network. In this study we show that a simple geometrical...
Geometric constraint solving with geometric transformation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper proposes two algorithms for solving geometric constraint systems. The first algorithm is for constrained systems without loops and has linear complexity. The second algorithm can solve constraint systems with loops. The latter algorithm is of quadratic complexity and is complete for constraint problems about simple polygons. The key to it is to combine the idea of graph based methods for geometric constraint solving and geometric transformations coming from rule-based methods.
Fu, Zhongtao; Yang, Wenyu; Yang, Zhen
2013-08-01
In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.
Directory of Open Access Journals (Sweden)
J. Del Rio Vera
2009-01-01
Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.
Tunable orbital angular momentum mode filter based on optical geometric transformation.
Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E
2014-03-15
We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB. PMID:24690870
Model-based recognition of 3-D objects by geometric hashing technique
International Nuclear Information System (INIS)
A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs
Geometric-Process-Based Battery Management Optimizing Policy for the Electric Bus
Directory of Open Access Journals (Sweden)
Yan Li
2015-01-01
Full Text Available With the rapid development of the electric vehicle industry and promotive policies worldwide, the electric bus (E-bus has been adopted in many major cities around the world. One of the most important factors that restrain the widespread application of the E-bus is the high operating cost due to the deficient battery management. This paper proposes a geometric-process-based (GP-based battery management optimizing policy which aims to minimize the average cost of the operation on the premise of meeting the required sufficient battery availability. Considering the deterioration of the battery after repeated charging and discharging, this paper constructs the model of the operation of the E-bus battery as a geometric process, and the premaintenance time has been considered with the failure repairment time to enhance the GP-based battery operation model considering the battery cannot be as good as new after the two processes. The computer simulation is carried out by adopting the proposed optimizing policy, and the result verifies the effectiveness of the policy, denoting its significant performance on the application of the E-bus battery management.
Naeimi, M.; Alimoradi, Z.; Razi, M.; Monajjem, S.
2014-01-01
The present article involves in evaluation and engineering judgment of various geometric configurations for highway interchanges by considering substantial parameters over the discretion process. The geometric, economical and architectural criteria as the fundamental indicators are divided into rela
Directory of Open Access Journals (Sweden)
K.Usha
2013-08-01
Full Text Available Biometric based personal recognition is an efficient method for identifying a person. Recently, hand based biometric has become popular due to its various advantages such as high verification accuracy and high user acceptability. This paper proposes a hybrid model using an emerging hand based biometric trait known as Finger Back Knuckle Surface. This model is based on angular geometric analysis which is implemented on two different samples of Finger Back Knuckle Surface such as Finger Bend Knuckle Surface and Finger Intact Knuckle Surface for the extraction of knuckle feature information. The obtained feature information from both the surfaces is fused using feature information level fusion technique to authenticate the individuals. Experiments were conducted using newly created database for both Bend Knuckle and Intact Knuckle Surface. The results were promising in terms of accuracy, speed and computational complexity.
Augmentation of Explicit Spatial Configurations by Knowledge-Based Inference on Geometric Fields
Directory of Open Access Journals (Sweden)
Dan Tappan
2009-04-01
Full Text Available A spatial configuration of a rudimentary, static, realworld scene with known objects (animals and properties (positions and orientations contains a wealth of syntactic and semantic spatial information that can contribute to a computational understanding far beyond what its quantitative details alone convey. This work presents an approach that (1 quantitatively represents what a configuration explicitly states, (2 integrates this information with implicit, commonsense background knowledge of its objects and properties, (3 infers additional, contextually appropriate, commonsense spatial information from and about their interrelationships, and (4 augments the original representation with this combined information. A semantic network represents explicit, quantitative information in a configuration. An inheritance-based knowledge base of relevant concepts supplies implicit, qualitative background knowledge to support semantic interpretation. Together, these structures provide a simple, nondeductive, constraint-based, geometric logical formalism to infer substantial implicit knowledge for intrinsic and deictic frames of spatial reference.
Sampling-based exploration of folded state of a protein under kinematic and geometric constraints
Yao, Peggy
2011-10-04
Flexibility is critical for a folded protein to bind to other molecules (ligands) and achieve its functions. The conformational selection theory suggests that a folded protein deforms continuously and its ligand selects the most favorable conformations to bind to. Therefore, one of the best options to study protein-ligand binding is to sample conformations broadly distributed over the protein-folded state. This article presents a new sampler, called kino-geometric sampler (KGS). This sampler encodes dominant energy terms implicitly by simple kinematic and geometric constraints. Two key technical contributions of KGS are (1) a robotics-inspired Jacobian-based method to simultaneously deform a large number of interdependent kinematic cycles without any significant break-up of the closure constraints, and (2) a diffusive strategy to generate conformation distributions that diffuse quickly throughout the protein folded state. Experiments on four very different test proteins demonstrate that KGS can efficiently compute distributions containing conformations close to target (e.g., functional) conformations. These targets are not given to KGS, hence are not used to bias the sampling process. In particular, for a lysine-binding protein, KGS was able to sample conformations in both the intermediate and functional states without the ligand, while previous work using molecular dynamics simulation had required the ligand to be taken into account in the potential function. Overall, KGS demonstrates that kino-geometric constraints characterize the folded subset of a protein conformation space and that this subset is small enough to be approximated by a relatively small distribution of conformations. © 2011 Wiley Periodicals, Inc.
Ritwik Mondal; Pemola Devi, N.; R.K. Jauhari
2015-01-01
Background & objectives: Insect wing morphology has been used in many studies to describe variations among species and populations using traditional morphometrics, and more recently geometric morphometrics. A landmark-based geometric morphometric analysis of the wings of three species of Aedes (Diptera: Culicidae), viz. Ae. aegypti, Ae. albopictus and Ae. pseudotaeniatus, at District Dehradun was conducted belling on the fact that it can provide insight into the population structure, ecology ...
Institute of Scientific and Technical Information of China (English)
徐国良; 潘青
2005-01-01
We construct discrete three- and four-sided surface patches with specified C0 or C1 boundary conditions, using several geometric intrinsic curvature driven flows. These flow equations are solved numerically based on discretizations of the involved differential-geometry operators, which are derived from parametric approximations. The constructed surface patches satisfy certain geometric partial differential equations, and therefore have desirable shape. These patches are assembled together for constructing complicated geometric models for shape design. Multi-resolution representations of the models are achieved using repeated subdivision and evolution.%使用若干个几何本质的曲率驱动的偏微分方程来构造符合指定C0或C1边界条件的三边曲面片和四边曲面片,这些方程的数值解由所涉及的微分几何算子的离散化来得到,微分几何算子的离散化则源于参数逼近.所构造的曲面片满足某些特定的几何偏微分方程,故具有理想的形状,将这些曲面片组装起来便构造出复杂的几何模型.通过反复的子分和演化,得到几何模型的多尺度表示.
Classifying Data Sets Using Support Vector Machines Based on Geometric Distance
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Support vector machines (SVMs) are not as favored for large-scale data mining as for pattern recognition and machine learning because the training complexity of SVMs is highly dependent on the size of data set. This paper presents a geometric distance-based SVM (GDB-SVM). It takes the distance between a point and classified hyperplane as classification rule,and is designed on the basis of theoretical analysis and geometric intuition. Experimental code is derived from LibSVM with Microsoft Visual C ++ 6.0 as system of translating and editing. Four predicted results of five of GDB-SVM are better than those of the method of one against all (OAA). Three predicted results of five of GDB-SVM are better than those of the method of one against one (OAO). Experiments on real data sets show that GDB-SVM is not only superior to the methods of OAA and OAO,but highly scalable for large data sets while generating high classification accuracy.
Mezaal, Yaqeen S; Eyyuboglu, Halil T
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.
A comparison of geometric- and regression-based mobile gaze-tracking
Directory of Open Access Journals (Sweden)
Björn eBrowatzki
2014-04-01
Full Text Available Video-based gaze-tracking systems are typically restricted in terms of their effective tracking space. This constraint limits the use of eyetrackers in studying mobile human behavior. Here, we compare two possible approaches for estimating the gaze of participants who are free to walk in a large space whilst looking at different regions of a large display. Geometrically, we linearly combined eye-in-head rotations and head-in-world coordinates to derive a gaze vector and its intersection with a planar display, by relying on the use of a head-mounted eyetracker and body-motion tracker. Alternatively, we employed Gaussian process regression to estimate the gaze intersection directly from the input data itself. Our evaluation of both methods indicates that a regression approach can deliver comparable results to a geometric approach. The regression approach is favored, given that it has the potential for further optimization, provides confidence bounds for its gaze estimates and offers greater flexibility in its implementation. Open-source software for the methods reported here is also provided for user implementation.
Mezaal, Yaqeen S; Eyyuboglu, Halil T
2016-01-01
A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered. PMID:27054755
QRS complex detection based on simple robust 2-D pictorial-geometrical feature.
Hoseini Sabzevari, S A; Moavenian, Majid
2014-01-01
In this paper a heuristic method aimed for detecting of QRS complexes without any pre-process was developed. All the methods developed in previous studies were used pre-process, the most novelty of this study was suggesting a simple method which did not need any pre-process. Toward this objective, a new simple 2-D geometrical feature space was extracted from the original electrocardiogram (ECG) signal. In this method, a sliding window was moved sample-by-sample on the pre-processed ECG signal. During each forward slide of the analysis window an artificial image was generated from the excerpted segment allocated in the window. Then, a geometrical feature extraction technique based on curve-length and angle of highest point was applied to each image for establishment of an appropriate feature space. Afterwards the K-Nearest Neighbors (KNN), Artificial Neural Network (ANN) and Adaptive Network Fuzzy Inference Systems (ANFIS) were designed and implemented to the ECG signal. The proposed methods were applied to DAY general hospital high resolution holter data. For detection of QRS complex the average values of sensitivity Se = 99.93% and positive predictivity P+ = 99.92% were obtained. PMID:24144188
Institute of Scientific and Technical Information of China (English)
ZHANG Suying; DENG Zichen
2005-01-01
Based on Magnus or Fer expansion for solving linear differential equation and operator semi-group theory, Lie group integration methods for general nonlinear dynamic equation are studied. Approximate schemes of Magnus type of 4th, 6th and 8th order are constructed which involve only 1, 4 and 10 different commutators, and the time-symmetry properties of the schemes are proved. In the meantime, the integration methods based on Fer expansion are presented. Then by connecting the Fer expansion methods with Magnus expansion methods some techniques are given to simplify the construction of Fer expansion methods. Furthermore time-symmetric integrators of Fer type are constructed. These methods belong to the category of geometric integration methods and can preserve many qualitative properties of the original dynamic system.
New geometric design consistency model based on operating speed profiles for road safety evaluation.
Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo
2013-12-01
To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. PMID:23176754
Automatic registration of geometric distortions in satellite images based on control points
International Nuclear Information System (INIS)
This paper presents an automatic registration scheme to register geometric distortion in satellite images; A novel feature based matching scheme is proposed which establishes correspondence between the corner points in the reference and target images either by correlating the intensity values around a circular neighborhood of these corner points or by exploiting the relative orientation of lines connecting these corner points. Affine transformation model is used to estimate transformation parameters. Re-sampling is carried out by nearest neighborhood interpolation. The registration process is automatic and can efficiently serve as preprocessing stage for multitemporal analysis, image fusion, image mosaicking and change detection. The effectiveness of the algorithm has been verified by an intensive experiment on a large number of real images. Experimental results reveal high supremacy of the proposed registration method. (author)
Crouseilles, Nicolas; Lemou, Mohammed
2016-01-01
We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to captureaccurately the solutions without numerically resolving the high frequency oscillations {\\em in both space and time}.Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and otherhighly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds theoscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties...
Geometric Generalisation of Surrogate Model-Based Optimisation to Combinatorial and Program Spaces
Directory of Open Access Journals (Sweden)
Yong-Hyuk Kim
2014-01-01
Full Text Available Surrogate models (SMs can profitably be employed, often in conjunction with evolutionary algorithms, in optimisation in which it is expensive to test candidate solutions. The spatial intuition behind SMs makes them naturally suited to continuous problems, and the only combinatorial problems that have been previously addressed are those with solutions that can be encoded as integer vectors. We show how radial basis functions can provide a generalised SM for combinatorial problems which have a geometric solution representation, through the conversion of that representation to a different metric space. This approach allows an SM to be cast in a natural way for the problem at hand, without ad hoc adaptation to a specific representation. We test this adaptation process on problems involving binary strings, permutations, and tree-based genetic programs.
A MAP estimator based on geometric Brownian motion for sample distances of laser triangulation data
Herrmann, Markus; Otesteanu, Marius
2016-11-01
The proposed algorithm is designed to enhance the line-detection stability in laser-stripe sensors. Despite their many features and capabilities, these sensors become unstable when measuring in dark or strongly-reflective environments. Ambiguous points within a camera image can appear on dark surfaces and be confused with noise when the laser-reflection intensity approaches noise level. Similar problems arise when strong reflections within the sensor image have intensities comparable to that of the laser. In these circumstances, it is difficult to determine the most probable point for the laser line. Hence, the proposed algorithm introduces a maximum a posteriori estimator, based on geometric Brownian motion, to provide a range estimate for the expected location of the reflected laser line.
Institute of Scientific and Technical Information of China (English)
ZHU Limin; HE Gaiyun; SONG Zhanjie
2016-01-01
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process (MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries
Linares, J.; Nistal, M. C.
2011-01-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…
Samadi, Reza
Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters
Directory of Open Access Journals (Sweden)
Baltzis KonstantinosB
2008-01-01
Full Text Available Abstract A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.
Directory of Open Access Journals (Sweden)
Konstantinos B. Baltzis
2008-10-01
Full Text Available A common assumption in cellular communications is the circular-cell approximation. In this paper, an alternative analysis based on the hexagonal shape of the cells is presented. A geometrical-based stochastic model is proposed to describe the angle of arrival of the interfering signals in the reverse link of a cellular system. Explicit closed form expressions are derived, and simulations performed exhibit the characteristics and validate the accuracy of the proposed model. Applications in the capacity estimation of WCDMA cellular networks are presented. Dependence of system capacity of the sectorization of the cells and the base station antenna radiation pattern is explored. Comparisons with data in literature validate the accuracy of the proposed model. The degree of error of the hexagonal and the circular-cell approaches has been investigated indicating the validity of the proposed model. Results have also shown that, in many cases, the two approaches give similar results when the radius of the circle equals to the hexagon inradius. A brief discussion on how the proposed technique may be applied to broadband access networks is finally made.
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T
2016-05-05
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.
Directory of Open Access Journals (Sweden)
Hong-Jun Yang
2011-12-01
Full Text Available Train wheel sets must be periodically inspected for possible or actual premature failures and it is very significant to record the wear history for the full life of utilization of wheel sets. This means that an online measuring system could be of great benefit to overall process control. An online non-contact method for measuring a wheel set’s geometric parameters based on the opto-electronic measuring technique is presented in this paper. A charge coupled device (CCD camera with a selected optical lens and a frame grabber was used to capture the image of the light profile of the wheel set illuminated by a linear laser. The analogue signals of the image were transformed into corresponding digital grey level values. The ‘mapping function method’ is used to transform an image pixel coordinate to a space coordinate. The images of wheel sets were captured when the train passed through the measuring system. The rim inside thickness and flange thickness were measured and analyzed. The spatial resolution of the whole image capturing system is about 0.33 mm. Theoretic and experimental results show that the online measurement system based on computer vision can meet wheel set measurement requirements.
Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials
International Nuclear Information System (INIS)
This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed. (paper)
Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials
Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.
2016-05-01
This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.
PlantGL: A Python-based geometric library for 3D plant modelling at different scales
Pradal, Christophe; Boudon, Frédéric; Nouguier, Christophe; Chopard, Jérôme; Godin, Christophe
2009-01-01
International audience In this paper, we present PlantGL, an open-source graphic toolkit for the creation, simulation and analysis of 3D virtual plants. This C++ geometric library is embedded in the Python language which makes it a powerful user-interactive platform for plant modeling in various biological application domains. PlantGL makes it possible to build and manipulate geometric models of plants or plant parts, ranging from tissues and organs to plant populations. Based on a scene g...
Content-Based Search on a Database of Geometric Models: Identifying Objects of Similar Shape
Energy Technology Data Exchange (ETDEWEB)
XAVIER, PATRICK G.; HENRY, TYSON R.; LAFARGE, ROBERT A.; MEIRANS, LILITA; RAY, LAWRENCE P.
2001-11-01
The Geometric Search Engine is a software system for storing and searching a database of geometric models. The database maybe searched for modeled objects similar in shape to a target model supplied by the user. The database models are generally from CAD models while the target model may be either a CAD model or a model generated from range data collected from a physical object. This document describes key generation, database layout, and search of the database.
Schmieder, Daniela A.; Hugo A. Benítez; Ivailo M Borissov; Carmelo Fruciano
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horse...
Institute of Scientific and Technical Information of China (English)
CHEN Gui-ming; WANG Han-gong; ZHANG Bao-jun; PAN Wei
2003-01-01
This paper analyzes the potential color formats of ferrograph images, and presents the algorithms of converting the formats to RGB(Red, Green, Blue) color space. Through statistical analysis of wear par-ticles' geometric features of color ferrograph images in the RGB color space, we give the differences of ferro-graph wear panicles' geometric features among RGB color spaces and gray scale space, and calculate their respective distributions.
Geometrical Bioelectrodynamics
Ivancevic, Vladimir G
2008-01-01
This paper proposes rigorous geometrical treatment of bioelectrodynamics, underpinning two fast-growing biomedical research fields: bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism, and bioelectromagnetics, which deals with the effect on life from external electromagnetism. Keywords: Bioelectrodynamics, exterior geometrical machinery, Dirac-Feynman quantum electrodynamics, functional electrical stimulation
A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers
Directory of Open Access Journals (Sweden)
Muhammad Nadeem Iqbal
2014-01-01
Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.
Tang, Xiaoli; Jeong, Yongwon; Radke, Richard J.; Chen, George T. Y.
2004-01-01
We present a computer vision tool to improve the clinical outcome of patients undergoing radiation therapy for prostate cancer by improving irradiation technique. While intensity modulated radiotherapy (IMRT) allows one to irradiate a specific region in the body with high accuracy, it is still difficult to know exactly where to aim the radiation beam on every day of the 30~40 treatments that are necessary. This paper presents a geometric model-based technique to accurately segment the prostate and other surrounding structures in a daily serial CT image, compensating for daily motion and shape variation. We first acquire a collection of serial CT scans of patients undergoing external beam radiotherapy, and manual segmentation of the prostate and other nearby structures by radiation oncologists. Then we train shape and local appearance models for the structures of interest. When new images are available, an iterative algorithm is applied to locate the prostate and surrounding structures automatically. Our experimental results show that excellent matches can be given to the prostate and surrounding structure. Convergence is declared after 10 iterations. For 256 x 256 images, the mean distance between the hand-segmented contour and the automatically estimated contour is about 1.5 pixels (2.44 mm), with variance about 0.6 pixel (1.24 mm).
Budiarto, E.; Keijzer, M.; Storchi, P. R.; Hoogeman, M. S.; Bondar, L.; Mutanga, T. F.; de Boer, H. C. J.; Heemink, A. W.
2011-02-01
Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.
Energy Technology Data Exchange (ETDEWEB)
Budiarto, E; Keijzer, M; Heemink, A W [Delft Institute of Applied Mathematics (DIAM), Technische Universiteit Delft, Mekelweg 4, 2628 CD Delft (Netherlands); Storchi, P R; Hoogeman, M S; Bondar, L; Mutanga, T F [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Centre. Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); De Boer, H C J, E-mail: e.budiarto@tudelft.nl [Department of Radiotherapy, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2011-02-21
Local motions and deformations of organs between treatment fractions introduce geometrical uncertainties into radiotherapy. These uncertainties are generally taken into account in the treatment planning by enlarging the radiation target by a margin around the clinical target volume. However, a practical method to fully include these uncertainties is still lacking. This paper proposes a model based on the principal component analysis to describe the patient-specific local probability distributions of voxel motions so that the average values and variances of the dose distribution can be calculated and fully used later in inverse treatment planning. As usually only a very limited number of data for new patients is available; in this paper the analysis is extended to use population data. A basic assumption (which is justified retrospectively in this paper) is that general movements and deformations of a specific organ are similar despite variations in the shapes of the organ over the population. A proof of principle of the method for deformations of the prostate and the seminal vesicles is presented.
A Location-Based Service Using Geometric Location Methods to Unite Mobile Users
Directory of Open Access Journals (Sweden)
Wen-Chen Hu
2016-02-01
Full Text Available Since the introduction of iPhone in 2007, many location-based services (LBSs have been created and new LBSs are found every day. This research proposes yet another LBS, which is practical and was not found before to the best of authors' knowledge. The problem is described as follows. It happens all the times while several groups of people are traveling towards a destination, they lose contact from each other on the way. This research tries to have the groups travel as closely as possible until they reach the destination. It uses a method of minimum covering ellipses to find whether the groups are separated by more than a threshold/distance. If they are, the system will find a convenient rendezvous for all groups by using a method of geometric median. After meeting at the rendezvous, the groups reset the service and continue their journey. By using this LBS, travelers do not need to worry about losing connections with others. This method can also be applied to the problem of finding a convenient meeting place for mobile users.
Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries
Directory of Open Access Journals (Sweden)
Yan Li
2016-01-01
Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.
Object-Based Analysis of LIDAR Geometric Features for Vegetation Detection in Shaded Areas
Lin, Yu-Ching; Lin, ChinSu; Tsai, Ming-Da; Lin, Chun-Lin
2016-06-01
The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class.
Region-based geometric active contour for classification using hyperspectral remote sensing images
Yan, Lin
2011-12-01
The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model
Evolving nutritional strategies in the presence of competition: a geometric agent-based model.
Directory of Open Access Journals (Sweden)
Alistair M Senior
2015-03-01
Full Text Available Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.
Lindlein, Norbert; Leuchs, Gerd
This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.
A wave-optics approach to paraxial geometrical laws based on continuity at boundaries
Liñares, J.; Nistal, M. C.
2011-09-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for several instructive cases and without using Fresnel diffraction theory. The primary aim is to provide a complementary insight into the standard axiomatic approach of paraxial geometrical optics and likewise to allow the introduction of some wave imaging concepts, such as the transmittance function, with a notable didactic interest for advanced subjects such as Fourier optics. This approach provides a more homogeneous vision of classical optics in which the use of the optical field continuity conditions at a boundary is a usual requirement as is clearly seen, for example, in the case of the derivation of Fresnel formulas. The work is particularly intended for university physics teachers and pregraduate and first year postgraduate students.
Liu, M.; Ma, N; Hua, B.-Z.
2016-01-01
Wing shape variation was investigated between the sexes and among four populations of the scorpionfly Dicerapanorpa magna (Chou, 1981) endemic to the Qin-Ba Mountains area, China through the landmark-based geometric morphometric approach. The results show that sexual dimorphism exists both in wing size and shape in D. magna. Significant differences exist in female wing size and shape among D. magna populations. The possible reasons of the wing variation are discussed based on the divergence t...
Crystal bases and quiver varieties (Geometric construction of crystal bases II)
Saito, Yoshihisa
2001-01-01
We give a crystal structure on the set of all irreducible components of Lagrangian subvarieties of quiver varieties. One con show that, as a crystal, it is isomorphic to the crystal base of an irreducible highest weight representation of a quantized universal enveloping algebra.
A landmark-based method for the geometrical 3D calibration of scanning microscopes
Energy Technology Data Exchange (ETDEWEB)
Ritter, M.
2007-04-27
This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean
Institute of Scientific and Technical Information of China (English)
SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can
2006-01-01
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Geometric moment based nonlocal-means filter for ultrasound image denoising
Dou, Yangchao; Zhang, Xuming; Ding, Mingyue; Chen, Yimin
2011-06-01
It is inevitable that there is speckle noise in ultrasound image. Despeckling is the important process. The original nonlocal means (NLM) filter can remove speckle noise and protect the texture information effectively when the image corruption degree is relatively low. But when the noise in the image is strong, NLM will produce fictitious texture information, which has the disadvantageous influence on its denoising performance. In this paper, a novel nonlocal means (NLM) filter is proposed. We introduce geometric moments into the NLM filter. Though geometric moments are not orthogonal moments, it is popular by its concision, and its restoration ability is not yet proved. Results on synthetic data and real ultrasound image show that the proposed method can get better despeckling performance than other state-of-the-art method.
Birtea, Petre; Cernazanu-Glavan, Cosmin; Sisu, Alexandru
2016-01-01
We propose a new training method for a feedforward neural network having the activation functions with the geometric contraction property. The method consists of constructing a new functional that is less nonlinear in comparison with the classical functional by removing the nonlinearity of the activation functions from the output layer. We validate this new method by a series of experiments that show an improved learning speed and also a better classification error.
Cryptography-Based Chaos via Geometric Undersampling of Ring-Coupled Attractors
Lozi, René
2015-01-01
17 pages, 19 figures International audience We propose a new mechanism for undersampling chaotic numbers obtained by the ringcoupling of one-dimensional maps. In the case of 2 coupled maps this mechanism allows thebuilding of a PRNG which passes all NIST Test.This new geometric undersampling is very effective for generating 2 parallel streams of pseudorandomnumbers, as we show, computing carefully their properties, up to sequences of 10^12consecutives iterates of the ring coupled mappin...
Geometric dilution of precision for GPS single-point positioning based on four satellites
Institute of Scientific and Technical Information of China (English)
Wang Huihui; Zhan Xingqun; Zhang Yanhua
2008-01-01
To improve the positioning accuracy in GPS point positioning,the geometric dilution of precision (GDOP) including HDOP,VDOP,TDOP,PDOP is commonly considered.The properties of the DOP for the GPS satellite navigation system are studied and the coordinate system is improved in order to decrease the amount of variables.In the end,by simulation and discussing the results,the corresponding conclusions are presented.
Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool
Directory of Open Access Journals (Sweden)
Klyachin Vladimir Aleksandrovich
2015-10-01
Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.
Nikita, Efthymia; Siew, Yun Ysi; Stock, Jay; Mattingly, David; Lahr, Marta Mirazón
2011-11-01
The Garamantian civilization flourished in modern Fezzan, Libya, between 900 BC and 500 AD, during which the aridification of the Sahara was well established. Study of the archaeological remains suggests a population successful at coping with a harsh environment of high and fluctuating temperatures and reduced water and food resources. This study explores the activity patterns of the Garamantes by means of cross-sectional geometric properties. Long bone diaphyseal shape and rigidity are compared between the Garamantes and populations from Egypt and Sudan, namely from the sites of Kerma, el-Badari, and Jebel Moya, to determine whether the Garamantian daily activities were more strenuous than those of other North African populations. Moreover, sexual dimorphism and bilateral asymmetry are assessed at an intra- and inter-population level. The inter-population comparisons showed the Garamantes not to be more robust than the comparative populations, suggesting that the daily Garamantian activities necessary for survival in the Sahara Desert did not generally impose greater loads than those of other North African populations. Sexual dimorphism and bilateral asymmetry in almost all geometric properties of the long limbs were comparatively low among the Garamantes. Only the lower limbs were significantly stronger among males than females, possibly due to higher levels of mobility associated with herding. The lack of systematic bilateral asymmetry in cross-sectional geometric properties may relate to the involvement of the population in bilaterally intensive activities or the lack of regular repetition of unilateral activities.
Quantum computation using geometric algebra
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Institute of Scientific and Technical Information of China (English)
SHU Linsen; CAO Huajun; LI Xianchong; ZHANG Chenglong; LI Yuxia
2015-01-01
The current researches on the tooth surface mathematical equations and the theory of gearing malnly pay attention to the ordinary type worm gear set (e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6´10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is avallable to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
International Nuclear Information System (INIS)
Software aging is characterized by an increasing failure rate, progressive performance degradation and even a sudden crash in a long-running software system. Software rejuvenation is an effective method to counteract software aging. A periodically inspected rejuvenation policy for software systems is studied. The consecutive inspection intervals are assumed to be a decreasing geometric sequence, and upon the inspection times of software system and its failure features, software rejuvenation or system recovery is performed. The system availability function and cost rate function are obtained, and the optimal inspection time and rejuvenation interval are both derived to maximize system availability and minimize cost rate. Then, boundary conditions of the optimal rejuvenation policy are deduced. Finally, the numeric experiment result shows the effectiveness of the proposed policy. Further compared with the existing software rejuvenation policy, the new policy has higher system availability. - Highlights: • A periodically inspected rejuvenation policy for software systems is studied. • A decreasing geometric sequence is used to denote the consecutive inspection intervals. • The optimal inspection times and rejuvenation interval are found. • The new policy is capable of reducing average cost and improving system availability
Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory
Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro
2016-04-01
Nowadays, mobile laser scanning has become a valid technology for infrastructure inspection. This technology permits collecting accurate 3D point clouds of urban and road environments and the geometric and semantic analysis of data became an active research topic in the last years. This paper focuses on the detection of vertical traffic signs in 3D point clouds acquired by a LYNX Mobile Mapper system, comprised of laser scanning and RGB cameras. Each traffic sign is automatically detected in the LiDAR point cloud, and its main geometric parameters can be automatically extracted, therefore aiding the inventory process. Furthermore, the 3D position of traffic signs are reprojected on the 2D images, which are spatially and temporally synced with the point cloud. Image analysis allows for recognizing the traffic sign semantics using machine learning approaches. The presented method was tested in road and urban scenarios in Galicia (Spain). The recall results for traffic sign detection are close to 98%, and existing false positives can be easily filtered after point cloud projection. Finally, the lack of a large, publicly available Spanish traffic sign database is pointed out.
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Fusion of inertial and visual: a geometrical observer-based approach
International Nuclear Information System (INIS)
The problem of combination between inertial sensors and CCD cameras is of paramount importance in various applications in robotics and autonomous navigation. In this paper we develop a totally geometric model for analysis of this problem, independently from a camera model and from the structure of the scene (landmarks etc.). This formulation can be used for data fusion in several inertial navigation problems. The estimation is then decoupled from the structure of the scene. We use it in the particular case of the estimation of the gyroscopes bias and we build a nonlinear observer which is easy to compute, provides an estimation of the biais, filters the image, and is by construction very robust to noise.
Gozzi, E
2004-01-01
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional "supertime", we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schroedinger, the momentum and the coherent states ones.
Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model
Directory of Open Access Journals (Sweden)
Nurilla Avazov
2012-01-01
Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.
Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots
International Nuclear Information System (INIS)
The Poincaré plot emerges as an effective tool for assessing cardiovascular autonomic regulation. It displays nonlinear characteristics of heart rate variability (HRV) from electrocardiographic (ECG) recordings and gives a global view of the long range of ECG signals. In the telemedicine or computer-aided diagnosis system, it would offer significant auxiliary information for diagnosis if the patterns of the Poincaré plots can be automatically classified. Therefore, we developed an automatic classification system to distinguish five geometric patterns of the Poincaré plots from four types of cardiac arrhythmias. The statistics features are designed on measurements and an ensemble classifier of three types of neural networks is proposed. Aiming at the difficulty to set a proper threshold for classifying the multiple categories, the threshold selection strategy is analyzed. 24 h ECG monitoring recordings from 674 patients, which have four types of cardiac arrhythmias, are adopted for recognition. For comparison, Support Vector Machine (SVM) classifiers with linear and Gaussian kernels are also applied. The experiment results demonstrate the effectiveness of the extracted features and the better performance of the designed classifier. Our study can be applied to diagnose the corresponding sinus rhythm and arrhythmia substrates disease automatically in the telemedicine and computer-aided diagnosis system. (paper)
Improved Treatment of the Breast and Supraclavicular Fossa Based on a Simple Geometrical Principle
Energy Technology Data Exchange (ETDEWEB)
Yavetz, Dalia, E-mail: dalia.yavetz@gmail.com [Institute of Radiotherapy, Tel Aviv (Israel); Corn, Benjamin W.; Matceyevsky, Diana; Ben-Josef, Rahamim; Soyfer, Viacheslav [Institute of Radiotherapy, Tel Aviv (Israel); Bershtein, Igal [Diagnostic Imaging, Tel Aviv Medical Center, Tel Aviv (Israel); Inbar, Moshe; Ron, Ilan [Department of Medical Oncology, Tel Aviv (Israel); Jiveliouk, Irena [Institute of Radiotherapy, Tel Aviv (Israel); Department of Medical Oncology, Tel Aviv (Israel); Diagnostic Imaging, Tel Aviv Medical Center, Tel Aviv (Israel); Schifter, Dan [Institute of Radiotherapy, Tel Aviv (Israel)
2011-01-01
In breast cancer, nodal irradiation has become routine, but adds time and creates concerns for field overlap if the 'match' is not accurate. We developed a technique to address these issues by using only one isocenter for both areas. Tangents are designed at simulation. The isocenter is then shifted to the upper border of the breast using a straightforward geometrical calculation. After determining the new isocenter, fields are recreated wherein the tangents are treated with a quarter beam and the supraclavicular field fashioned with a half-beam block. The gantry, collimator, and couch angles of the supraclavicular field are adjusted to achieve an accurate match. Ten patients were evaluated. Doses to the spinal cord and brachial plexus were lowered relative to conventional techniques. The hot spots were not augmented. In comparison with standard arrangements, setup time decreased. Accurate matching was consistently achieved and verified by portal imaging. A new approach for treating the supraclavicular fossa is easily executed. Advantages include negligible doses to the critical neural structures (i.e., spinal cord and brachial plexus), optimized matchline, and reduced setup time.
Structural damage identification based on change in geometric modal strain energy-eigenvalue ratio
Nguyen, Khac-Duy; Chan, Tommy HT; Thambiratnam, David P.
2016-07-01
This study presents a new damage identification method to locate and quantify damage using measured mode shapes and natural frequencies. A new vibration parameter, ratio of geometric modal strain energy to eigenvalue (GMSEE), has been developed and its change due to stiffness reduction has been formulated using a sensitivity matrix. This sensitivity matrix is estimated with measured modal parameters and basic information of the structure. For damage identification, firstly, the locations of damage and the correlative damage extents are identified by maximizing the correlation level between an analytical GMSEE change vector and a measured one. Herein, the genetic algorithm, which is a powerful evolutionary optimization algorithm, is utilized to solve this optimization problem. Secondly, the size of damage can be estimated using the proposed GMSEE technique and compared with a conventional technique using frequency change. A numerical 2D Truss bridge is used to demonstrate the performance of the proposed method in identifying single and multiple damage cases. Also, practicality of the method is tested with a laboratory eight degree-of-freedom system and a real bridge. Results illustrate the high capability of the method to identify structural damage with less modeling efforts.
Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots.
Zhang, Lijuan; Guo, Tianci; Xi, Bin; Fan, Yang; Wang, Kun; Bi, Jiacheng; Wang, Ying
2015-02-01
The Poincaré plot emerges as an effective tool for assessing cardiovascular autonomic regulation. It displays nonlinear characteristics of heart rate variability (HRV) from electrocardiographic (ECG) recordings and gives a global view of the long range of ECG signals. In the telemedicine or computer-aided diagnosis system, it would offer significant auxiliary information for diagnosis if the patterns of the Poincaré plots can be automatically classified. Therefore, we developed an automatic classification system to distinguish five geometric patterns of the Poincaré plots from four types of cardiac arrhythmias. The statistics features are designed on measurements and an ensemble classifier of three types of neural networks is proposed. Aiming at the difficulty to set a proper threshold for classifying the multiple categories, the threshold selection strategy is analyzed. 24 h ECG monitoring recordings from 674 patients, which have four types of cardiac arrhythmias, are adopted for recognition. For comparison, Support Vector Machine (SVM) classifiers with linear and Gaussian kernels are also applied. The experiment results demonstrate the effectiveness of the extracted features and the better performance of the designed classifier. Our study can be applied to diagnose the corresponding sinus rhythm and arrhythmia substrates disease automatically in the telemedicine and computer-aided diagnosis system. PMID:25582837
Directory of Open Access Journals (Sweden)
Xuan Yang
2015-01-01
Full Text Available This paper presents a geometric least square framework for deriving [0,1]-valued interval weights from interval fuzzy preference relations. By analyzing the relationship among [0,1]-valued interval weights, multiplicatively consistent interval judgments, and planes, a geometric least square model is developed to derive a normalized [0,1]-valued interval weight vector from an interval fuzzy preference relation. Based on the difference ratio between two interval fuzzy preference relations, a geometric average difference ratio between one interval fuzzy preference relation and the others is defined and employed to determine the relative importance weights for individual interval fuzzy preference relations. A geometric least square based approach is further put forward for solving group decision making problems. An individual decision numerical example and a group decision making problem with the selection of enterprise resource planning software products are furnished to illustrate the effectiveness and applicability of the proposed models.
A new geometric-based model to accurately estimate arm and leg inertial estimates.
Wicke, Jason; Dumas, Geneviève A
2014-06-01
Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. PMID:24735506
Image Coding Using Generalized Predictors Based on Sparsity and Geometric Transformations.
Lucas, Luis F R; Rodrigues, Nuno M M; da Silva, Eduardo A B; Pagliari, Carla L; de Faria, Sergio M M
2016-09-01
Directional intra prediction plays an important role in current state-of-the-art video coding standards. In directional prediction, neighbouring samples are projected along a specific direction to predict a block of samples. Ultimately, each prediction mode can be regarded as a set of very simple linear predictors, a different one for each pixel of a block. Therefore, a natural question that arises is whether one could use the theory of linear prediction in order to generate intra prediction modes that provide increased coding efficiency. However, such an interpretation of each directional mode as a set of linear predictors is too poor to provide useful insights for their design. In this paper, we introduce an interpretation of directional prediction as a particular case of linear prediction, which uses the first-order linear filters and a set of geometric transformations. This interpretation motivated the proposal of a generalized intra prediction framework, whereby the first-order linear filters are replaced by adaptive linear filters with sparsity constraints. In this context, we investigate the use of efficient sparse linear models, adaptively estimated for each block through the use of different algorithms, such as matching pursuit, least angle regression, least absolute shrinkage and selection operator, or elastic net. The proposed intra prediction framework was implemented and evaluated within the state-of-the-art high efficiency video coding standard. Experiments demonstrated the advantage of this predictive solution, mainly in the presence of images with complex features and textured areas, achieving higher average bitrate savings than other related sparse representation methods proposed in the literature. PMID:27333603
An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms
Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.
2008-07-01
In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving
Geometrical versus semiclassical quantization
International Nuclear Information System (INIS)
The dynamical variational approach based on geometrical quantization is demonstrated to be capable in describing the most important quantum mechanical quantities. In particular, the method appears to be much better under control than the traditional semiclassical methods in treating the systems whose classical counterparts are chaotic. The formal considerations are illustrated using an exactly solvable SU(3)-spin system. (orig.)
International Nuclear Information System (INIS)
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity
Berczynski, P; Kravtsov, Y A; Stateczny, A; Kravtsov, Yu.A.
2005-01-01
A simple and effective method based on the eikonal form of complex geometrical optics is presented to describe scalar Gaussian beams propagation and diffraction in arbitrary 3D smoothly inhomogeneous medium. Similarly to paraxial WKB approach the method reduces the wave problem to a set of ordinary differential equations of Riccati type. This substantially simplifies the solution as compared to full wave or quasy-optics equations. The method assumes the complex eikonal equation to be solved in paraxial approximation in curvilinear coordinate frame, which is associated with the central ray of the beam and performs Levi-Civita parallel transport. In this way the system of Riccati-type equations is obtained for complex parameters, which characterize both the beam cross-section and the shape of the phase front. For Gaussian beam propagating in homogeneous medium or along the symmetry axis in lens-like medium, these equations possess analytical solutions, otherwise they can be readily solved numerically. In contra...
Berczynski, P.; Kravtsov, Yu. A.
2004-10-01
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.
Energy Technology Data Exchange (ETDEWEB)
Berczynski, P. [Institute of Physics, Technical University of Szczecin, Szczecin 70-310 (Poland); Kravtsov, Yu.A. [Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation) and Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)]. E-mail: kravtsov@wsm.szczecin.pl
2004-10-18
A simple and effective method to describe Gaussian beams propagation and diffraction in arbitrary smoothly inhomogeneous 2D medium has been developed based on the eikonal form of complex geometrical optics. The method assumes the eikonal equation can be solved in paraxial approximation in curvilinear frame of references, connected with the central ray. The Riccati-type ordinary differential equation is derived for complex parameter characterizing the Gaussian beam width and phase front curvature. The same parameter was proved to define both the modulus and the argument of the complex amplitude. As a result, the problem of the Gaussian beam diffraction in inhomogeneous media has been reduced to the solution of the ordinary differential equation of the first order, which can be readily calculated numerically for arbitrary profile of dielectric permittivity.
Welch, Bryan W.
2016-01-01
NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.
Abraham, S.; Ghorbaniasl, G.; Raisee, M.; Lacor, C.
2016-06-01
The present paper aims at assessing the effect of manufacturing tolerances on the performance of heat exchangers. To this end, a two-dimensional square rib-roughened cooling channel is considered and uncertainties are introduced along the rib profile, using a Karhunen-Loéve expansion including 20 uncertainties. In order to break the curse of dimensionality and keep the overall computational cost within acceptable limits, an efficient uncertainty quantification strategy is followed. A sensitivity analysis is first performed on a coarse grid, enabling the most important dimension to be identified and to remove the ones which have not any significant effect on the output of interest. Afterwards, an efficient Proper Orthogonal Decomposition based dimension reduction technique is implemented in order to propagate uncertainties through the CFD model. It is shown that heat transfer predictions are strongly affected by geometrical uncertainties while no significant effect was found for the pressure drop.
Geometrical approach to fluid models
Kuvshinov, B. N.; Schep, T. J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notio
Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.
2008-01-01
We use the Li-Strahler geometric-optical model combined with a scaling-based approach to detect forest structural changes in the Three Gorges region of China. The physical-based Li-Strahler model can be inverted to retrieve forest structural properties. One of the main input variables for the invert
Karipidis, Eleftherios; Sidiropoulos, Nicholas; Tassiulas, Leandros
2008-01-01
The joint power control and base station (BS) assignment problem is considered under Quality-of-Service (QoS) constraints. If a feasible solution exists, the problem can be efficiently solved using existing distributed algorithms. Infeasibility is often encountered in practice, however, which brings up the issue of optimal admission control. The joint problem is NP-hard, yet important for QoS provisioning and bandwidth-efficient operation of existing and emerging cellular and overlay/underlay...
Espath, L. F R
2015-02-03
A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.
Can, Tolga; Wang, Yuan-Fang
2003-01-01
We present a new method for conducting protein structure similarity searches, which improves on the accuracy, robustness, and efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. To improve matching accuracy, we smooth the noisy raw atomic coordinate data with spline fitting. To improve matching efficiency, we adopt a hierarchical coarse-to-fine strategy. We use an efficient hashing-based technique to screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to discover new, meaningful motifs that were not reported by other structure alignment methods.
Rajesh, C.; Majumder, C.; Rajan, M. G. R.; Kulshreshtha, S. K.
2005-12-01
The geometric and electronic structure of the Pbn clusters (n=2-15) has been calculated to elucidate its structural evolution and compared with other group-IV elemental clusters. The search for several low-lying isomers was carried out using the ab initio molecular dynamics simulations under the framework of the density functional theory formalism. The results suggest that unlike Si, Ge, and Sn clusters, which favor less compact prolate shape in the small size range, Pb clusters favor compact spherical structures consisting of fivefold or sixfold symmetries. The difference in the growth motif can be attributed to their bulk crystal structure, which is diamond-like for Si, Ge, and Sn but fcc for Pb. The relative stability of Pbn clusters is analyzed based on the calculated binding energies and second difference in energy. The results suggest that n=4 , 7, 10, and 13 clusters are more stable than their respective neighbors, reflecting good agreement with experimental observation. Based on the fragmentation pattern it is seen that small clusters up to n=12 favor monomer evaporation, larger ones fragment into two stable daughter products. The experimental observation of large abundance for n=7 and lowest abundance of n=14 have been demonstrated from their fragmentation pattern. Finally a good agreement of our theoretical results with that of the experimental findings reported earlier implies accurate predictions of the ground state geometries of these clusters.
A quasi-Bohmian approach for a homogeneous spherical solid body based on its geometric structure
Energy Technology Data Exchange (ETDEWEB)
Koupaei, Jalaledin Yousefi [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran 19839 (Iran, Islamic Republic of); Institutes for Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Golshani, Mehdi [Institutes for Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2013-12-15
In this paper we express the space of rotation as a Riemannian space and try to generalize the classical equations of motion of a homogeneous spherical solid body in the domain of quantum mechanics. This is done within Bohm's view of quantum mechanics, but we do not use the Schrödinger equation. Instead, we assume that in addition to the classical potential there is an extra potential and try to obtain it. In doing this, we start from a classical picture based on Hamilton-Jacobi formalism and statistical mechanics but we use an interpretation which is different from the classical one. Then, we introduce a proper action and extremize it. This procedure gives us a mathematical identity for the extra potential that limits its form. The classical mechanics is a trivial solution of this method. In the simplest cases where the extra potential is not a constant, a mathematical identity determines it uniquely. In fact the first nontrivial potential, apart from some constant coefficients which are determined by experiment, is the usual Bohmian quantum potential.
PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats
Energy Technology Data Exchange (ETDEWEB)
Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC
2012-04-06
We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
International Nuclear Information System (INIS)
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets
Alsmadi, Mutasem Khalil Sari; Noah, Shahrul Azman; Almarashdah, Ibrahim
2009-01-01
We presents in this paper a novel fish classification methodology based on a combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task and do not make the combination between the feature selection, image segmentation and geometrical parameter, we propose a general set of features extraction using robust feature selection, image segmentation and geometrical parameter and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a black box and focus our research in the determination of which input information must bring a robust fish discrimination.The main contribution of this paper is enhancement recognize and classify fishes...
Barone, S; Paoli, A; Razionale, A V
2011-02-01
Chronic wounds represent a particular debilitating health care problem, mainly affecting elderly people. A full and correct diagnosis of tissue damage should be carried out considering both dimensional, chromatic, and thermal parameters. A great variety of methods have been proposed with the aim of producing objective assessment of skin lesions, but none of the existing technologies seem to be robust enough to work for all ulcer typologies. This paper describes an innovative and non-invasive system that allows the automatic measurement of non-healing chronic wounds. The methodology involves the integration of a three-dimensional (3D) optical scanner, based on a structured light approach, with a thermal imager. The system enables the acquisition of geometrical data, which are directly related to chromatic and temperature patterns through a mapping procedure. Damaged skin areas are detected by combining visible and thermal imaging. This approach allows for the automatic measurement of extension and depth of ulcers, even in the absence of significant and well-defined chromatic patterns. The proposed technology has been tested in the measurement of ulcers on human legs. Clinical tests have demonstrated the effectiveness of this methodology in supporting medical experts for the assessment of chronic wounds. PMID:21428152
International Nuclear Information System (INIS)
Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc
Energy Technology Data Exchange (ETDEWEB)
Janković, Bojan, E-mail: bojanjan@ffh.bg.ac.rs [Faculty of Physical Chemistry, Department for Dynamics and Matter Structure, University of Belgrade, Studentski trg 12-16, P.O. Box 137, 11001 Belgrade (Serbia); Stopić, Srećko; Güven, Aybars; Friedrich, Bernd [IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen (Germany)
2014-05-01
The stochastic geometric model was applied to kinetic modeling the complex process of thermal decomposition of zinc ferrite from neutral leach residues, at different operating temperatures (600 °C, 750 °C, 950 °C and 1150 °C). Based on functional dependence of Avrami's constant (n) in a function of the effective activation energy (E{sub a}), it was found that at T>950 °C, the crystallization process takes place in autocatalytic stage, under the conditions where the rate of nucleation rapidly increases. It was established that the high nucleation rate can be attributed to formation of both Zn and Fe rich regions which provide a high number of heterogeneous nucleation sites. Based on the obtained final shape of the particles, it was found a strong presence of zinc, iron (present only in the form of Fe{sub 3}O{sub 4} (magnetite)), magnesium (in the form of Mg{sub 2}Si{sub 2}O{sub 6}), and also lead oxides. Thermodynamic analysis showed that the decomposition depends on the introduction of heat, and exerts a positive value of the Gibbs free energy of activation. Such a feature was expected since the ferrite system has been submitted to a forced decomposition and volatilization reactions. - Highlights: • Thermo-chemical investigations. • Autocatalytic stage of process, where the rate of nucleation rapidly increases. • Iron is present in the form of Fe{sub 3}O{sub 4} (magnetite). • The possibility of preparing of the nanosized magnetic particles. • Final product which underwent decomposition has the magnetic properties.
Geometric multipartite entanglement measures
Energy Technology Data Exchange (ETDEWEB)
Paz-Silva, Gerardo A. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)]. E-mail: gerapaz@univalle.edu.co; Reina, John H. [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia) and Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)]. E-mail: j.reina-estupinan@physics.ox.ac.uk
2007-05-21
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive.
Steyerl, A.; Kaufman, C.; Müller, G.; Malik, S. S.; Desai, A. M.; Golub, R.
2014-01-01
Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\textbf{70}$, 032102 (2004)] were the first to investigate the role of geometric phases in searches for an electric dipole moment (EDM) of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in gene...
International Nuclear Information System (INIS)
Vortex lattice motion driven by alternating forces on asymmetric pinning potentials generates a net flow of vortices. This rectifier (ratchet) effect is studied in hybrid samples fabricated with arrays of Fe single-crystal nanotriangles embedded in Nb films. In these samples two different asymmetric potentials generate the ratchet effect: (i) potentials with geometric asymmetry and (ii) potentials with magnetic asymmetry. The asymmetry of the geometric potential cannot be manipulated, but the asymmetry of the magnetic potential can be tailored. In geometric ratchet interstitial vortices play a crucial role and they permit tuning the output voltage polarity. In magnetic ratchet the output voltage amplitude can be controlled by tailoring the magnetic stray field configurations due to different magnetic remanent states of the Fe single-crystal nanostructures. These configurations are modified by changing the direction of the saturating applied field and also by using different orientations of the Fe magnetocrystalline easy axes within the triangles. When both mechanisms coexist, the geometric potential governs the rectifier effect behaviour. (paper)
Directory of Open Access Journals (Sweden)
Ritwik Mondal
2015-01-01
Interpretation & conclusion: It has been marked out that the geometric morphometrics utilizes powerful and comprehensive statistical procedures to analyze the shape differences of a morphological feature, assuming that the studied mosquitoes may represent different genotypes and probably come from one diverse gene pool.
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
Berczynski, P.; Bliokh, K. Yu.; Kravtsov, Yu. A.; Stateczny, A.
2005-01-01
The paper presents an ab initio account of the paraxial complex geometrical optics (CGO) in application to a scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of Riccati type. This substantially simplifies description of Gaussian beams diffraction as compared to full wave or parabolic (quasi-optics) equatio...
Ye, Yuanxin; Shen, Li
2016-06-01
Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.
PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism
Gardner, Jason S.
2011-04-01
Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals
基于几何与数学特征的人脸识别%Face recognition based on geometric and mathematics features
Institute of Scientific and Technical Information of China (English)
梁奔香; 蔡晓东; 朱利伟
2015-01-01
提出了一种新的基于几何与数学特征相融合的人脸识别算法，分别提出了眉毛几何特征、人脸个性几何特征以及数学特征在人脸比对时的比对策略，采用打分的机制记录特征比对的结果。为了融合几何与数学特征，提出了基于权值的几何特征与数学特征的融合策略。实验结果表明，采用几何特征与数学特征相融合进行人脸识别比使用单一人脸特征进行人脸识别时有更高的识别率。%Presents a new face recognition algorithm based on geometry and mathematical characteristics. The contrast strategy of the geometric feature of eyebrows, face personality geometry characteristics and the characteristics of mathematics were put forward. A weight scoring mechanism was used to record the comparison results of characteristics. In order to fusion with the facial geometric features and mathematical characteristics, a fusion strategy of the weights was proposed based on the geometrical characteristics and mathematical characteristics. The experimental results show that the geometric feature and the integration of mathematical characteristics for face recognition has higher recognition rate than using a single face feature for face recognition.
Geometric formula for prism deflection
Indian Academy of Sciences (India)
Apoorva G Wagh; Veer Chand Rakhecha
2004-08-01
While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple `geometric' formula. For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.
Calignano, Flaviana; Vezzetti, Enrico
2010-04-01
To obtain the best surgical results in orthognathic surgery, treatment planning and evaluation of results should be performed. In these operations it is necessary to provide the physician with powerful tools that can underline the behavior of soft tissue. For this reason, considering the improvements provided by the use of 3D scanners in medical diagnosis, we propose a methodology for analyzing facial morphology working with geometrical features. The methodology has been tested on patients with malocclusion in order to analyze the reliability and efficiency of the provided diagnostic results.
Optimizing the geometrical accuracy of curvilinear meshes
Toulorge, Thomas; Remacle, Jean-François
2015-01-01
This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a part...
A Geometric Approach to Noncommutative Principal Bundles
Wagner, Stefan
2011-01-01
From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.
Geometric Algebra for Physicists
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Geometrization of Trace Formulas
Frenkel, Edward
2010-01-01
Following our joint work arXiv:1003.4578 with Robert Langlands, we make the first steps toward developing geometric methods for analyzing trace formulas in the case of the function field of a curve defined over a finite field. We also suggest a conjectural framework of geometric trace formulas for curves defined over the complex field, which exploits the categorical version of the geometric Langlands correspondence.
Geometric Algebras and Extensors
Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.
2007-01-01
This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...
Lectures on Geometric Quantization
Śniatycki, Jędrzej
2016-01-01
These lectures notes are meant as an introduction to geometric quantization. In Section 1, I begin with presentation of the historical background of quantum mechanics. I continue with discoveries in the theory of representations of Lie groups, which lead to emergence of geometric quantization as a part of pure mathematics. This presentation is very subjective, flavored by my own understanding of the role of geometric quantization in quantum mechanics and representation theory. Sectio...
The Geometric Transition Revisited
Gwyn, Rhiannon
2007-01-01
Our intention in this article is to review known facts and to summarise recent advances in the understanding of geometric transitions and the underlying open/closed duality in string theory. We aim to present a pedagogical discussion of the gauge theory underlying the Klebanov--Strassler model and review the Gopakumar--Vafa conjecture based on topological string theory. These models are also compared in the T-dual brane constructions. We then summarise a series of papers verifying both models on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov--Strassler) and resolved (Pando Zayas--Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach th...
08221 Summary -- Geometric Modeling
Farin, Gerald; Hahmann, Stefanie; Peters, Jörg; Wang, Wenping
2008-01-01
Geometric Modeling is an area drawing from computer science, mathematics, engineering, and the life sciences. It is concerned with the computer representation of objects as diverse as - brain scans - mathematical functions - terrains - airplane wings and many more. The seminar succeeded in bringing together leading researchers to present and discuss radically different approaches to the challenge of modeling complex geometric phenomena on the computer. ...
基于链码的人脸表情几何特征提取%Facial Expression Geometrical Feature Extraction Based on Chain Code
Institute of Scientific and Technical Information of China (English)
张庆; 代锐; 朱雪莹; 韦穗
2012-01-01
已有人脸表情特征提取算法的表情识别率较低.为此,提出一种基于链码的人脸表情几何特征提取算法.以主动形状模型特征点定位为基础,对面部目标上定位的特征点位置进行循环链码编码,以提取出人脸表情几何特征.实验结果表明,相比经典的LBP表情特征鉴别方法,该算法的识别率提高约10％.%The existing facial expression recognition rate of facial expression feature extraction algorithm is low. For this, this paper proposes a facial geometric feature extraction algorithm based chain codes. Based on active shape model that locates feature points and outputs the points' coordinates of facial targets the coding method gives a circular codes to extract the facial geometric feature. Experimental results show that, compared with the method of typical LBP expression recognition, the accuracy of the algorithm is increased by nearly 10%.
基于几何法的雷达与ESM航迹关联算法%Radar-ESM Track Correlation Based on Geometric Method
Institute of Scientific and Technical Information of China (English)
陈中华; 王国宏; 刘德浩; 谭顺成
2012-01-01
为解决雷达与ESM航迹关联门限的不确定性,提出了基于几何法的雷达与ESM航迹关联算法.该算法根据雷达与ESM的几何位置建立航迹粗关联函数,并利用航迹的历史信息建立航迹关联代价矩阵,通过代价最小实现航迹关联.仿真结果表明,该算法具有很好的关联性能.%In order to deal with the uncertainty thresholds of Radar-ESM ( Electronic Support Measures) correlation, an Radar-ESM correlation mode based on geometric method was proposed. Firstly, a coarse correlation function was built up based on the geometric position of radar and ESM. Then,a cost correlation matrix was set up by accumulating the historical information of the coarse correlation. Thus the track correlation was realized by finding the minimum cost of cost matrix. Finally, the correlation method proposed was verified by Monte Carlo simulation.
International Nuclear Information System (INIS)
The goal of this study is to develop a matching algorithm that can handle large geometric changes in x-ray computed tomography (CT)-derived lung geometry occurring during deep breath maneuvers. These geometric relationships are further utilized to build a dynamic lung airway model for computational fluid dynamics (CFD) studies of pulmonary air flow. The proposed algorithm is based on a cubic B-spline-based hybrid registration framework that incorporates anatomic landmark information with intensity patterns. A sequence of invertible B-splines is composed in a multiresolution framework to ensure local invertibility of the large deformation transformation and a physiologically meaningful similarity measure is adopted to compensate for changes in voxel intensity due to inflation. Registrations are performed using the proposed approach to match six pairs of 3D CT human lung datasets. Results show that the proposed approach has the ability to match the intensity pattern and the anatomical landmarks, and ensure local invertibility for large deformation transformations. Statistical results also show that the proposed hybrid approach yields significantly improved results as compared with approaches using either landmarks or intensity alone.
Energy Technology Data Exchange (ETDEWEB)
Yin Youbing; Lin, Ching-Long [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A [Department of Radiology, University of Iowa, Iowa City, IA 52242 (United States); Ding Kai; Reinhardt, Joseph M, E-mail: ching-long-lin@uiowa.edu [Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242 (United States)
2011-01-07
The goal of this study is to develop a matching algorithm that can handle large geometric changes in x-ray computed tomography (CT)-derived lung geometry occurring during deep breath maneuvers. These geometric relationships are further utilized to build a dynamic lung airway model for computational fluid dynamics (CFD) studies of pulmonary air flow. The proposed algorithm is based on a cubic B-spline-based hybrid registration framework that incorporates anatomic landmark information with intensity patterns. A sequence of invertible B-splines is composed in a multiresolution framework to ensure local invertibility of the large deformation transformation and a physiologically meaningful similarity measure is adopted to compensate for changes in voxel intensity due to inflation. Registrations are performed using the proposed approach to match six pairs of 3D CT human lung datasets. Results show that the proposed approach has the ability to match the intensity pattern and the anatomical landmarks, and ensure local invertibility for large deformation transformations. Statistical results also show that the proposed hybrid approach yields significantly improved results as compared with approaches using either landmarks or intensity alone.
Yan, Yun-an
2009-01-01
Hybrid QM(DFT)/MM molecular dynamics simulations have been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. Trajectories are analyzed putting special attention to the geometric correlations of the $\\NHN$ and $\\NHO$ hydrogen bonds in the base pair. Further, based on empirical correlations between the hydrogen bond bond length and the fundamental NH stretching frequency its fluctuations are obtained along the trajectory. Using the time dependent frequencies the infrared lineshape is determined assuming the validity of a second order cumulant expansion. The deviations for the fundamental transition frequencies are calculated to amount to less than 2% as compared with experiment. The width of the spectrum for the $\\NHN$ bond is in reasonable agreement with experiment while that for the $\\NHO$ case is underestimated by the present model. Comparing the performance of different pseudopotentials it is found that the Troulli...
The Parametric Geometric Modeling Method for Lettuce Based-template%基于模板的生菜参数化几何建模方法
Institute of Scientific and Technical Information of China (English)
温维亮; 郭新宇; 肖伯祥; 陆声链; 杜建军
2011-01-01
为了对生菜进行快速三维重构,将逆向工程的思想引入到生菜几何建模中来,提出了一种基于参数模板的生菜几何建模方法.借助三维扫描设备构造具有多分辨率的生菜器官模板,分析生菜植株形态结构特征,提取特征参数,进而通过形态参数对模板进行控制,并最终组装成为参数化的生菜几何模型.试验结果表明,该方法可以快速、便捷地重构出具有较高真实感的生菜几何模型,对曲面难以构造的植物器官及植株几何建模具有一定的参考意义.%In order to reconstruct the three-dimensional model of lettuce rapidly, the idea of reverse engineering was introduced to the lettuce geometric modeling and a template based on parameters method is proposed.Firstly, with the help of three-dimensional scanning device, multi-resolution lettuce organ template was constructed.Then, the morphological characteristics of lettuce plants were analyzed to extract characteristic parameters.Finally, parametric geometric model of lettuce plant was assembled through controlling the morphological parametric and the templates.The results showed that this method could reconstruct high realistic geometric model of lettuce quickly and easily, and have reference value for complicated structure plants.
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Is supergravity the fundamental supergeometrodynamic theory of the hadron
Energy Technology Data Exchange (ETDEWEB)
Baaklini, N.S.
1979-02-01
The Einstein-Cartan-Weyl theory of gravity as well as supergravity are described respectively as local Poincare and super-Poincare symmetric generalizations of the bag action. They are proposed as fundamental supergeometrodynamic theories of a microscopic hadronic manifold embedded in Minkowski space-time. The exterior 1-forms on this manifold are considered as the fundamental quarks which are used in constructing the quantum states. This provides a geometric origin for the color degree of freedom and the mechanism of saturation. The description of the flavor charges and interactions, the question of confinement and other matters are discussed.
Ishida, Takayuki; Katsuragawa, Shigehiko; Nakamura, Katsumi; Ashizawa, Kazuto; MacMahon, Heber; Doi, Kunio
2002-05-01
For computerized detection of interstitial lung disease on chest radiographs, we developed three different methods: texture analysis based on the Fourier transform, geometric- pattern feature analysis, and artificial neural network (ANN) analysis of image data. With these computer-aided diagnostic methods, quantitative measures can be obtained. To improve the diagnostic accuracy, we investigated combined classification schemes by using the results obtained with the three methods for distinction between normal and abnormal chest radiographs with interstitial opacities. The sensitivities of texture analysis, geometric analysis, and ANN analysis were 88.0+/- 1.6%, 91.0+/- 2.6%, and 87.5+/- 1.9%, respectively, at a specificity of 90.0%, whereas the sensitivity of a combined classification scheme with the logical OR operation was improved to 97.1%+/- 1.5% at the same specificity of 90.0%. The combined scheme can achieve higher accuracy than the individual methods for distinction between normal and abnormal cases with interstitial opacities.
Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long
2015-05-01
This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.
Chen, Hao; Zhong, Shouming; Li, Min; Liu, Xingwen; Adu-Gyamfi, Fehrs
2016-07-01
In this paper, a novel delay partitioning method is proposed by introducing the theory of geometric progression for the stability analysis of T-S fuzzy systems with interval time-varying delays and nonlinear perturbations. Based on the common ratio α, the delay interval is unequally separated into multiple subintervals. A newly modified Lyapunov-Krasovskii functional (LKF) is established which includes triple-integral terms and augmented factors with respect to the length of every related proportional subintervals. In addition, a recently developed free-matrix-based integral inequality is employed to avoid the overabundance of the enlargement when dealing with the derivative of the LKF. This innovative development can dramatically enhance the efficiency of obtaining the maximum upper bound of the time delay. Finally, much less conservative stability criteria are presented. Numerical examples are conducted to demonstrate the significant improvements of this proposed approach. PMID:27138648
Steyerl, A; Müller, G; Malik, S S; Desai, A M; Golub, R
2014-01-01
Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\textbf{70}$, 032102 (2004)] were the first to investigate the role of geometric phases in searches for an electric dipole moment of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in general fields and in bounded geometries. We solve the Schr\\"odinger equation directly for cylindrical trap geometry and obtain a full description of EDM-relevant spin behavior in general fields, including the short-time transients and vertical spin oscillation in the entire range of particle velocities. We apply this method to general macroscopic fields and to the field of a microscopic magnetic dipole.
Steyerl, A.; Kaufman, C.; Müller, G.; Malik, S. S.; Desai, A. M.; Golub, R.
2014-05-01
Pendlebury etal . [Phys. Rev. A 70, 032102 (2004), 10.1103/PhysRevA.70.032102] were the first to investigate the role of geometric phases in searches for an electric dipole moment (EDM) of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in general fields and in bounded geometries. We solve the Schrödinger equation directly for cylindrical trap geometry and obtain a full description of EDM-relevant spin behavior in general fields, including the short-time transients and vertical spin oscillation in the entire range of particle velocities. We apply this method to general macroscopic fields and to the field of a microscopic magnetic dipole.
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Nonuniform Markov Geometric Measures
Neunhäuserer, J.
2015-01-01
We generalize results of Fan and Zhang [6] on absolute continuity and singularity of the golden Markov geometric series to nonuniform stochastic series given by arbitrary Markov process. In addition we describe an application of these results in fractal geometry.
Mayagoitia, Ruth E; Harding, John; Kitchen, Sheila
2017-01-01
The aim was to develop a quantitative approach to identify three stair-climbing ability levels of older adults: no, somewhat and considerable difficulty. Timed-up-and-go test, six-minute-walk test, and Berg balance scale were used for statistical comparison to a new stair climbing ability classifier based on the geometric mean of stair speeds (GeMSS) in ascent and descent on a flight of eight stairs with a 28° pitch in the housing unit where the participants, 28 (16 women) urban older adults (62-94 years), lived. Ordinal logistic regression revealed the thresholds between the three ability levels for each functional test were more stringent than thresholds found in the literature to classify walking ability levels. Though a small study, the intermediate classifier shows promise of early identification of difficulties with stairs, in order to make timely preventative interventions. Further studies are necessary to obtain scaling factors for stairs with other pitches. PMID:27633200
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.
Guiding light via geometric phases
Slussarenko, Sergei; Jisha, Chandroth P; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo
2015-01-01
Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely on changes of the refractive index, that is on scalar properties of light. Recently, processes based on "geometric Berry phases", such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretic...
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions. PMID:19110492
Institute of Scientific and Technical Information of China (English)
Kun Zhou; Hu-Jun Bao; Jiao-Ying Shi; Qun-Sheng Peng
2004-01-01
Compression of mesh attributes becomes a challenging problem due to the great need for efficient storage and fast transmission. This paper presents a novel geometric signal compression framework for all mesh attributes, including position coordinates, normal, color, texture, etc. Within this framework, mesh attributes are regarded as geometric signals defined on mesh surfaces. A planar parameterization algorithm is first proposed to map 3D meshes to 2D parametric meshes. Geometric signals are then transformed into 2D signals, which are sampled into 2D regular signals using an adaptive sampling method. The JPEG2000 standard for still image compression is employed to effectively encode these regular signals into compact bit-streams with high rate/distortion ratios. Experimental results demonstrate the great application potentials of this framework.
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities:(i) in nanometer thin layers or self supporting films (1-dimensional confinement)(ii) in pores or tubes with nanometric diameters (2-dimensional confinement)(iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two
Wei, Hui; Ren, Yuan; Wang, Zi Yan
2013-10-01
The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips. PMID:24427212
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Regardless of all kinds of different formulae used for the traction-separation relationship in cohesive zone modeling,the peak tractionσ_m and the separation-to-failureδ_0(or equivalently the work-to-separationΓ) are the primary parameters which control the interfacial fracture behaviors. Experimentally,it is hard to determine those quantities,especially forδ_0,which occurs in a very localized region with possibly complicated geometries by material failure.Based on the Dugdale model,we show that the sepa...
Polar metals by geometric design
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-01
Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Mahavira's Geometrical Problems
DEFF Research Database (Denmark)
Høyrup, Jens
2004-01-01
Analysis of the geometrical chapters Mahavira's 9th-century Ganita-sara-sangraha reveals inspiration from several chronological levels of Near-Eastern and Mediterranean mathematics: (1)that known from Old Babylonian tablets, c. 1800-1600 BCE; (2)a Late Babylonian but pre-Seleucid Stratum, probabl...
Geometric Series via Probability
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Time and Geometric Quantization
Abrikosov, A A; Mauro, D
2003-01-01
In this paper we briefly review the functional version of the Koopman-von Neumann operatorial approach to classical mechanics. We then show that its quantization can be achieved by freezing to zero two Grassmannian partners of time. This method of quantization presents many similarities with the one known as Geometric Quantization.
Conceptual aspects of geometric quantum computation
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-07-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
Conceptual aspects of geometric quantum computation
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-10-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
Directory of Open Access Journals (Sweden)
A. Castellano
2014-07-01
Full Text Available We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.
FACIAL GEOMETRIC BEAUTY SCORE BASED ON SEMI-SUPERVISED REGRESSION LEARNING%基于半监督回归学习的人脸几何美丽分数
Institute of Scientific and Technical Information of China (English)
戴礼青; 金忠; 孙明明
2015-01-01
基于人脸美学的迅速发展，对人脸的几何特征定义、几何特征规范化以及几何特征对判断人脸美与否的贡献进行研究。首先定义人脸几何美丽分数函数，然后将流形学习与半监督学习相结合，用流形上的半监督回归方法学习人脸几何美丽分数。为了突出几何特征，还验证了人脸表情与几何美丽分数之间的关系。与 K 近邻（KNN）、支持向量机（SVM）、C4．5决策树分类方法相比，通过实验验证，证明了所提方法的有效性和可行性。%Based on rapid development of facial aesthetics,we mainly study the definition of facial geometric feature,the normalisation of geometric features and the contribution of geometric features to judging whether the face is beauty or not.First,we define the facial geometric beauty score function,and then combine the manifold learning with semi-supervised learning,use semi-supervised regression on manifolds to learn geometric beauty score of faces.In order to highlight the geometric features,we also verify the relationship between facial expression and geometric beauty scores.Compared with KNN,SVM and C4.5 decision tree classification methods,the validity and the feasibility of the proposed methods are proved by experiment.
MM Algorithms for Geometric and Signomial Programming
Lange, Kenneth; Zhou, Hua
2010-01-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate ...
Rational trigonometry via projective geometric algebra
Gunn, Charles
2014-01-01
We show that main results of rational trigonometry (as developed by NJ Wildberger, "Divine Proportions", 2005) can be succinctly expressed using projective (aka homogeneous) geometric algebra (PGA). In fact, the PGA representation exhibits distinct advantages over the original vector-based approach. These include the advantages intrinsic to geometric algebra: it is coordinate-free, treats lines and points in a unified framework, and handles many special cases in a uniform and seamless fashion...
The Geometric Grids of the Hieratic Numeral.
Aboulfotouh, Hossam M. K.
The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.
Institute of Scientific and Technical Information of China (English)
史永胜; 林天翼
2015-01-01
To overcome problems of traditional feature recognition methods of airport road crater image including low precision and speed and the lack of crater diameter and other geometric features after measuring ,a detecting algorithm based on Harris algo‐rithm was proposed .Results of simulation based on MATLAB show that this method not only identifies the craters exactly and quickly , but also detects the size of crater and evaluates the level of damage .It provides ideas for damage assessment and quantities calculation .%为克服传统方法机场跑道弹坑识别精度低、运算速度慢，得到的信息无法测量弹坑直径等几何特征的问题，提出一种基于Harris算子的弹坑检测算法，构建机场道面弹坑几何图像特征识别模型。MATLAB平台仿真结果表明，采用该算法构建的识别模型检测弹坑更加快速准确，获取的信息可以测量弹坑直径等几何特征、确定弹坑规模、评估毁伤程度。该研究成果为毁伤评估和工程量计算提供了思路。
基于图像的番茄识别与几何尺寸测量%The Tomato Identification and Geometric Size Measurement Based on Image
Institute of Scientific and Technical Information of China (English)
纪平; 王俊; 陈鹤碧
2012-01-01
A tomato-based image recognition algorithm was presented in this paper. Based on research of several edge extraction algorithms we choice Canny operator edge extraction. The parameters of area, centroid, radius, etc. of the tomato were calculated in pixels and the tomato was fitted to a circle. This identification algorithm can identify the tomato in a variety of lighting conditions, and the tomato foliage obscured live part can be recovered in some extent. Finally, the completed recognition algorithm can achieve geometric size measurement of the tomato in Matlab.%介绍了一种基于图像的番茄识别算法,比较了几种常用的边缘提取算法的效果,最终选择Canny算子进行边缘提取,在对番茄进行轮廓提取的基础上,以像素为单位,对番茄的面积、形心、半径等参数进行统计,然后用一个圆来完成对番茄的拟合.这种识别算法可以识别各种光照条件下的果实,并且可以在一定程度上恢复番茄被枝叶遮挡住的部分.最后在Matlab上进行了算法设计和几何尺寸测量.
Directory of Open Access Journals (Sweden)
KAMBIZ ABEDI
2011-08-01
Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.
Brovelli, M. A.; Minghini, M.; Molinari, M. E.
2016-06-01
OpenStreetMap (OSM) is the largest spatial database of the world. One of the most frequently occurring geospatial elements within this database is the road network, whose quality is crucial for applications such as routing and navigation. Several methods have been proposed for the assessment of OSM road network quality, however they are often tightly coupled to the characteristics of the authoritative dataset involved in the comparison. This makes it hard to replicate and extend these methods. This study relies on an automated procedure which was recently developed for comparing OSM with any road network dataset. It is based on three Python modules for the open source GRASS GIS software and provides measures of OSM road network spatial accuracy and completeness. Provided that the user is familiar with the authoritative dataset used, he can adjust the values of the parameters involved thanks to the flexibility of the procedure. The method is applied to assess the quality of the Paris OSM road network dataset through a comparison against the French official dataset provided by the French National Institute of Geographic and Forest Information (IGN). The results show that the Paris OSM road network has both a high completeness and spatial accuracy. It has a greater length than the IGN road network, and is found to be suitable for applications requiring spatial accuracies up to 5-6 m. Also, the results confirm the flexibility of the procedure for supporting users in carrying out their own comparisons between OSM and reference road datasets.
Czirják, Gábor
2015-11-01
Grooves and pockets on the surface, channels through the protein, the chambers or cavities, and the tunnels connecting the internal points to each other or to the external fluid environment are fundamental determinants of a wide range of biological functions. PrinCCes (Protein internal Channel & Cavity estimation) is a computer program supporting the visualization of voids. It includes a novel algorithm for the decomposition of the entire void volume of the protein or protein complex to individual entities. The decomposition is based on continuity. An individual void is defined by uninterrupted extension in space: a spherical probe can freely move between any two internal locations of a continuous void. Continuous voids are detected irrespective of their topological complexity, they may contain any number of holes and bifurcations. The voids of a protein can be visualized one by one or in combinations as triangulated surfaces. The output is automatically exported to free VMD (Visual Molecular Dynamics) or Chimera software, allowing the 3D rotation of the surfaces and the production of publication quality images. PrinCCes with graphic user interface and command line versions are available for MS Windows and Linux. The source code and executable can be downloaded at any of the following links: http://scholar.semmelweis.hu/czirjakgabor/s/princces/#t1 https://github.com/CzirjakGabor/PrinCCes http://1drv.ms/1bP9iJ3. PMID:26409191
Directory of Open Access Journals (Sweden)
Qiangui Zhang
2015-02-01
Full Text Available The failure of a tailing dam occurs due to damage to the particles’ micro-structure. Understanding the deformation characteristics of the particle’ micro-structure is important for understanding the mechanics of instability in tailing dams. In our study, a series of experiments was conducted using a testing apparatus for micro-mechanics and the deformation of tailings from the Huangcaoping tailing pond, Sichuan Province, China to investigate the loading capacity, micro-structure and deformation features of tailing particles. The latter two were analyzed quantitatively using concepts from fractal geometry. The results demonstrate that: (1 the structural loading capacity of tailings increases first and then decreases slightly with increasing particle size; (2 the particle micro-structure of the four tailing samples from the Huangcaoping tailing pond is described in terms of the fractal dimension based on the perimeter and area (D-value, which is between 1.288 and 1.533; (3 as the axial stress increases, the D-value gradually decreases along a wavy line with a decreasing rate of change; (4 under the same axial strain, the D-value first decreases and later increases slightly as the particle size increases; and (5 the number of fractured particles increases with the particle size.
Match method of straight line based on geometric invariance%基于几何不变量的直线匹配方法
Institute of Scientific and Technical Information of China (English)
林意; 李进明
2011-01-01
针对目前直线匹配算法大多基于直线段支持区域的几何特性、灰度特性,但这些特性又极易受外界因素干扰造成匹配失败的情况,提出了基于直线几何不变量的匹配方法,该方法在无任何已知条件的情况下,运用叉积符号、点的线束交比不变量进行直线匹配.对于各个视点图像,采用Hough变换提取直线间交点集,再采用Graham扫描法构造一个最小的凸包,并通过匹配凸包顶点的交比序列来建立点与点的对应关系,选取其中一个对应关系完成直线的匹配.实验结果表明,该方法鲁棒性较好,具有广泛的应用性.%Aimed at features of the current Line matching algorithm, such as geometric properties and gray properties of support region of straight line are used to match straight line. But they are easy to be interfered by the environment and lead to failure of match. A method for matching straight line based on geometric invariance is proposed. Without any constraint and the given conditions, straight Line based on invariant of cross product symbol and harness cross ratio can be matched perfectly. For each view images, firstly, crossing point set of lines are extracted by Hough transform, the least convex hull is constructed by Graham scan method. Then, the correspondence relationship between points is set up by matching sequences of vertex cross ratio of convex hull, finally, matching is implemented via one of the correspondence relationship is selected. Experiment results show that the method has better robustness and has a wide range of application.
5th Dagstuhl Seminar on Geometric Modelling
Brunnett, Guido; Farin, Gerald; Goldman, Ron
2004-01-01
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2009-01-01
Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Multispectral Image Correction for Geometric Measurements
International Nuclear Information System (INIS)
Multispectral- and hyperspectral imaging technologies enable new possibilities in industrial measurement applications. Based on the knowledge of remote sensing a lot of investigations were made in the last decades of years. Nevertheless the demands on remote sensing versus technical multi spectral image processing are quite different. In the field of precise geometric measurement technics it is necessary to correct the image data between different spectral channels with a high accuracy, normally in the micron range. Otherwise the geometric absolute value of fail detection on edges can be become very large. State of the art in industrial imaging and detection of geometric features is the calibration of only one imaging channel. In this paper, the studies on a twelve channel multi spectral imager were presented. For the applied filter wheel system, investigations on the improvement of lens aberration as well as for the defocus problem were made. Therefore a calibrated high precision geometric test chart was used to calibrate the system geometrically. To correct the geometric errors on the image plane a special moving filter approach, based on linear convolution, was developed. For every channel a calibration matrix were calculated and applied on the image system output
Directory of Open Access Journals (Sweden)
Queenilyn B. Albutra
2012-06-01
Full Text Available Rice stem borers are considered as the most serious insect pest of rice in Asia. It infects itsplant host by burrowing into the stem using its mandible. However, apart from the mandible, the head ofrice stem borers is also associated in the incursion process since it facilitates the entry of larvae to the riceplant. Differences in the head capsules have a direct effect on the ability of the insects to ingest hardfoods rapidly. Different rice varieties in the Philippines serve as plant host for this pest and infestationoccurred in different geographical location. Variations in habitat and plant host were thought to generateenvironmental variation in morphometric traits and host adapted herbivore phenotype respectively.Landmark based geometric morphometric analysis was used to assess the hypothesis that the head shapeof white stem borer differ between populations with respect to different rice varieties and geographicallocation where it was obtained. Relative warp analysis showed variation in the head shape betweendifferent white stem borer (Schirpophaga innotata Walker populations infesting different varieties of rice.Non-significant head shape variations were obtained between geographically separated populations. Theseresults indicate that the rice host varieties play an important role in the selection of individuals that areable to counteract the resistance factors in plants.
基于车载CCD影像的物方几何参数量算%DETERMINATION OF OBJECT GEOMETRIC PARAME- TERS WITH VEHICLE-BASED CCD IMAGERY
Institute of Scientific and Technical Information of China (English)
王树根; 李宾; 王海涛; 仲思东
2001-01-01
介绍了用车载CCD相机所获得的影像测求物方空间目标 几何参数的原理和方法，通过试验得出了一些有益的结论和建议。%In the last decade, mobile mapping system has be en one of the hot research spots in the field of survey and mapping, and also th e typical represents of 3S integration technology. A mobile mapping system consi sts mainly of a moving platform, navigation sensors, and mapping sensors. The mo bile platform may be a land vehicle, a vessel, or an aircraft. The navigation se nsors mainly are Global Positioning System (GPS) receivers and Inertial Naviga tion System (INS). Objects to be surveyed are sensed directly by mapping sensors , for instance, Charge Coupled Devices (CCD), laser rangers, and radar sensors. Because the orientation parameters of the mapping sensors are estimated directly by the navigation sensors, complicated computations such as photogrammetric tr iangulation are greatly simplified or avoided. Spatial information of the objec ts can be extracted directly from the geo-referenced mapping sensor data by int egrating navigation sensor data. This paper presents the principle and method for the determination of the objec t-oriented geometric parameters with imagery obtained by vehicle-based CCD cam eras. Some useful conclusions and suggestions are gained after the experiment.
Geometric unsharpness calculations
Energy Technology Data Exchange (ETDEWEB)
Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)
2008-07-15
The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Computer Graphics & Geometric Modeling
Zsombor-Murray, Paul; O'Leary, Paul
2006-01-01
Least squares fitting of point sets to lines, planes, curves and surfaces is carried out using eigenvalues and eigenvectors to find the major principal moment of inertia axis of a point set taken as representing the mass distribution of a rigid body. This engineering geometric approach produces identical results when compared to methods of conventional minimization using partial derivatives with respect to linear equation coefficients. Extending the approach to the fitting of conics and quadr...
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometric Stochastic Resonance
Ghosh, Pulak Kumar; Savel'ev, Sergey E; Nori, Franco
2015-01-01
A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.
Studies in geometric quantization
International Nuclear Information System (INIS)
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Lloyd, Seth
2012-01-01
This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...
Perspective: Geometrically frustrated assemblies
Grason, Gregory M.
2016-09-01
This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.
Algebraic geometric codes with applications
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2007-01-01
The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.
Kurbatova, Natalja; Chartier, Matthieu; Zylber, María Inés; Najmanovich, Rafael
2013-01-01
IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code) combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity) and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder.
Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M
2016-03-01
Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a
多尺度几何分析的图像去噪方法综述%Overview on image denoising based on multi-scale geometric analysis
Institute of Scientific and Technical Information of China (English)
李彦; 汪胜前; 邓承志
2011-01-01
Wavelet image denoising has become the most widely classical method in image denoising area, and the concomitant emergence of multi-scale denoising method makes it as a hot spot in the current method of image denoising.This paper gives a overall summary on the current status of image denoising and wavelet denoising, also gives a brief description of the multi-scale geometric analysis and its development.And further more,it takes the detailed analysis and summary of image denoising methods based on multi-scale transform.Based on the understanding of the wavelet transform denoising and multi-scale image denoising,it puts forward on some prospects in the multi-scale image denoising.%小波图像去噪已经成为图像去噪中应用最广泛的经典方法,而随之出现的多尺度变换去噪方法也已是当前图像去噪研究的一个热点.在对目前图像去噪的现状以及小波去噪总体概括的基础上,简要介绍了多尺度几何分析的产生和发展,进一步详细分析和总结了基于多尺度变换的图像去噪方法.基于对小波去噪以及多尺度变换图像去噪问题的理解,提出了对多尺度变换图像去噪方法的一些展望.
Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M
2016-03-01
Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a
Sudan-decoding generalized geometric Goppa codes
DEFF Research Database (Denmark)
Heydtmann, Agnes Eileen
2003-01-01
for these codes based on Sudan's improved algorithm is presented and its error-correcting capacity is analyzed. For the implementation of the algorithm it is necessary that the so-called increasing zero bases of certain spaces of functions are available. A method to obtain such bases is developed.......Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...
Geometric Rationalization for Freeform Architecture
jiang, caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
Multiple missiles cooperative tracking algorithm base on geometric relation%基于几何关系的多导弹协同跟踪算法
Institute of Scientific and Technical Information of China (English)
叶继坤; 雷虎民; 薛东风; 李炯; 邵雷
2012-01-01
多武器平台同时探测、处理机动目标信息,一定程度上可以提高目标的跟踪精度,特别是对于多导弹协同作战而言,协同跟踪目标即可以为作战系统提供全面的协同控制情报,也可以为每枚导弹提供精确的制导信息.论文基于交互多模与几何关系思想,设计了多导弹协同跟踪目标算法.首先,建立了目标运动学模型,给出了多导弹和目标之间的几何关系,并以此为基础,建立了多导弹协同跟踪目标模型；其次,基于交互多模思想,将多导弹获取的目标信息进行交互,通过协同滤波算法计算出目标滤波状态值；最后,对协同滤波算法进行仿真验证.研究表明:相对于信息不共享的情况,多导弹协同跟踪目标能够取得更好的跟踪效果,对多导弹协同作战具有重要的参考意义.%Multiple weapon platforms can detect and deal with the target information at the same time, so the guidance precision can be greatly advanced, especially in the multiple missile cooperative engagement, cooperative-tracking will provide more target information for the engagement system, also the single missile can be obtained the accurate guidance information. Based on the idea of information sharing and geometric relation among missiles, the new algorithm of the multiple missiles cooperative tracking target is derived. Firstly, the model of target kinematic was built, based on the geometric relation between the missiles and the target, the measurement model of the target tracking by multiple missiles was given. Secondly, based on the idea of interacting multiple model algorithm, the target information measured by different missile was fused, so the target state was calculated, also the cooperative filter algorithm step was given. At last, the simulation results shown that, compared to the information non-sharing mode, the multiple missiles cooperative tracking target has a better performance, this will have great meaning in
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Polar Metals by Geometric Design
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P.J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-05
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Ambrosetti, Antonio; Malchiodi, Andrea
2009-01-01
This volume contains lecture notes on some topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics. The presentation of the material should be rather accessible to non-experts in the field, since the presentation is didactic in nature. The reader will be provided with a survey containing some of the most exciting topics in the field, with a series of techniques used to treat such problems.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Geometric Number Systems and Spinors
Sobczyk, Garret
2015-01-01
The real number system is geometrically extended to include three new anticommuting square roots of plus one, each such root representing the direction of a unit vector along the orthonormal coordinate axes of Euclidean 3-space. The resulting geometric (Clifford) algebra provides a geometric basis for the famous Pauli matrices which, in turn, proves the consistency of the rules of geometric algebra. The flexibility of the concept of geometric numbers opens the door to new understanding of the nature of space-time, and of Pauli and Dirac spinors as points on the Riemann sphere, including Lorentz boosts.
Cappetti, N; Naddeo, A; Naddeo, F; Solitro, G F
2016-09-01
The aim of this work is to show a quick and simple procedure able to identify the geometrical parameters of the intervertebral disc that strongly affect the behavior of the FEM model. First, we allocated a selection criterion for the minimum number of geometrical parameters that describe, with a good degree of approximation, a healthy human vertebra. Next, we carried out a sensitivity analysis using the 'Taguchi orthogonal array' to arrive at a quick identification of the parameters that strongly affect the behavior of the Fem model. PMID:26693883
Manwani, Naresh
2010-01-01
In this paper we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in a top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node, are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.
Geometrical deployment for braided stent.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes
2016-05-01
The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065
Measurement error in geometric morphometrics.
Fruciano, Carmelo
2016-06-01
Geometric morphometrics-a set of methods for the statistical analysis of shape once saluted as a revolutionary advancement in the analysis of morphology -is now mature and routinely used in ecology and evolution. However, a factor often disregarded in empirical studies is the presence and the extent of measurement error. This is potentially a very serious issue because random measurement error can inflate the amount of variance and, since many statistical analyses are based on the amount of "explained" relative to "residual" variance, can result in loss of statistical power. On the other hand, systematic bias can affect statistical analyses by biasing the results (i.e. variation due to bias is incorporated in the analysis and treated as biologically-meaningful variation). Here, I briefly review common sources of error in geometric morphometrics. I then review the most commonly used methods to measure and account for both random and non-random measurement error, providing a worked example using a real dataset. PMID:27038025
Phenomenological modeling of Geometric Metasurfaces
Ye, Weimin; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2015-01-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.
Geometrical Destabilization of Inflation
Renaux-Petel, Sébastien; Turzyński, Krzysztof
2016-09-01
We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.
Current Concept of Geometrical Accuracy
Görög Augustín; Görögová Ingrid
2014-01-01
Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutter´s geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners). During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the fiel...
Directory of Open Access Journals (Sweden)
Guk Dae-Seon
2016-01-01
Full Text Available Interests in an overlay coating technology, so called hardfacing technology, have steadily increased to improve the service life of hot-working tools through the reduction of the wear of tool surfaces. Characteristics of the overlay coated layer are dependent on geometrical parameters and material properties of sub-layers. The aims of the paper is to examine the effects of geometrical parameters of the overlay coated layer on thermal stress-strain distributions of Co-based super-alloy deposited layer on hot-working tool steel using finite element analysis (FEA. The overlay coated layer is designed as two sub-layers including the wear resistance layer with Co-based super-alloy and the thermal stress control layer (TSCL. The material of the TSCL is composed of 50 % of Co-based super-alloy and 50 % of hot-working tool steel. The protruded height and the inclined angle are chosen as geometrical parameters. The influence of the protruded height and the inclined angle on thermal stress-strain distributions in the vicinity of the overlay coated layer and the strain deviation in joined regions is quantitatively investigated. From the results of the investigation, an appropriate design methodology of the overlay coated layer is discussed.
Geometric calibration of ERS satellite SAR images
DEFF Research Database (Denmark)
Mohr, Johan Jacob; Madsen, Søren Nørvang
2001-01-01
Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...... and calibrated by using the European Space Agency (ESA) transponders at Flevoland. The resulting accuracy of the slant range images corresponds to 10 m horizontally on the ground. The results are verified by using runway intersections and corner reflectors surveyed with differential GPS techniques. Based......, is described to allow other researchers to geometrically calibrate their processing systems...
Geometric programming for communication systems
Chiang, Mung
2014-01-01
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. ""Geometric Programming for Communication Systems"" begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
Connexions for the nuclear geometrical collective model
Rosensteel, G.; Sparks, N.
2015-11-01
The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.
Geometric model of robotic arc welding for automatic programming
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Directory of Open Access Journals (Sweden)
Jonathan D. Krieger
2014-08-01
Full Text Available Premise of the study: I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. Methods and Results: To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. Conclusions: The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.
Isik, Hakan
This study is premised on the fact that student conceptions of optics appear to be unrelated to student characteristics of gender, age, years since high school graduation, or previous academic experiences. This study investigated the relationships between student characteristics and student performance on image formation test items and the changes in student conceptions of optics after an introductory inquiry-based physics course. Data was collected from 39 college students who were involved in an inquiry-based physics course teaching topics of geometrical optics. Student data concerning characteristics and previous experiences with optics and mathematics were collected. Assessment of student understanding of optics knowledge for pinholes, plane mirrors, refraction, and convex lenses was collected with, the Test of Image Formation with Light-Ray Tracing instrument. Total scale and subscale scores representing the optics instrument content were derived from student pretest and posttest responses. The types of knowledge, needed to answer each optics item correctly, were categorized as situational, conceptual, procedural, and strategic knowledge. These types of knowledge were associated with student correct and incorrect responses to each item to explain the existences and changes in student scientific and naive conceptions. Correlation and stepwise multiple regression analyses were conducted to identify the student characteristics and academic experiences that significantly predicted scores on the subscales of the test. The results showed that student experience with calculus was a significant predictor of student performance on the total scale as well as on the refraction subscale of the Test of Image Formation with Light-Ray Tracing. A combination of student age and previous academic experience with precalculus was a significant predictor of student performance on the pretest pinhole subscale. Student characteristic of years since high school graduation
On an Assumption of Geometric Foundation of Numbers
Anatriello, Giuseppina; Tortoriello, Francesco Saverio; Vincenzi, Giovanni
2016-01-01
In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the "Elements" of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in…
Institute of Scientific and Technical Information of China (English)
谷宗运; 吕皖丽; 罗斌; 韩成美
2012-01-01
针对同幅图像的区域复制篡改问题,提出一种基于SIFT特征点的抗几何变换数字图像被动认证算法.在利用SIFT算法提取出图像中的SIFT特征点后,对特征点进行匹配.根据同一幅自然图像不会存在互相匹配特征点的这一特性,可以检测出篡改图像中平移、旋转、缩放等几何变换的区域.实验结果证明,该算法能够对抗区域复制篡改的几何变换.%For the type of problem of region duplication forgery in the digital image, a passive algorithm of digital image, based on its own SIFT feature point, is put forward, which can resist geometric transformation. It extracts the image feature points with SIFT algorithm, and matches them. According to the feature that the feature point does not match one another in the same natural image, it can detect the tampered region which is translation, rotation, scaling and other geometric transformations. Experiment verifies the effectiveness of the algorithm of digital image region duplication forgery, which can resist geometric transformation with SIFT feature point.
Noncommutative Geometric Gauge Theory from Superconnections
Lee, Chang-Yeong
1996-01-01
Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...
Geometric algorithms for sensor networks.
Gao, Jie; Guibas, Leonidas
2012-01-13
This paper surveys the use of geometric methods for wireless sensor networks. The close relationship of sensor nodes with their embedded physical space imposes a unique geometric character on such systems. The physical locations of the sensor nodes greatly impact on system design in all aspects, from low-level networking and organization to high-level information processing and applications. This paper reviews work in the past 10 years on topics such as network localization, geometric routing, information discovery, data-centric routing and topology discovery. PMID:22124080
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
Phenomenological modeling of geometric metasurfaces.
Ye, Weimin; Guo, Qinghua; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2016-04-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, focusing on achiral meta-atoms only with electric polarizability and thickness far less than the wavelength of light, and ignoring the coupling between meta-atoms, we propose a general phenomenological method to analytically model the metasurfaces based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces constituted by identical meta-atoms with different orientations, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces. PMID:27137005
Geometric Reasoning for Automated Planning
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Generalized Geometric Quantum Speed Limits
Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.
2016-04-01
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
基于多尺度几何分析的SAR图像融合%An SAR Image Fusion Method Based on Multiscale Geometrical Analysis
Institute of Scientific and Technical Information of China (English)
李志希; 孔令讲; 贾勇; 柯晓东; 赵中兴
2014-01-01
For through-wall-radar imaging,the image of building layout is conducive to implementing target localization and multi-path suppression.The current access to the building image is obtained by multi-channel and multi-view image fusion.In this paper,an image fusion method based on multiscale geometric analysis,namely wavelet transform(WT)is proposed to form a panorama image of building layout.The method is divided into two stages.The first stage refers to the multi-channel image fusion.The purpose of this stage is to enhance image details and improve image definition.Hence the fusion method of high frequency of the sub-images after WT is based on average gradient improvement.For the low frequency sub-image,average coefficient is adopted, then several single view images is obtained through inverse wavelet transform.The second stage refers to the multi-view image fusion.The purpose of this stage is to enhance the contrast of image.Given that the image contrast of high frequency of multi-view sub-images differs from one another,the fusion method of high frequency of the sub-image is based on image contrast improvement.For the low frequency sub-image,average coefficient is adopted.Then,the final image is obtained through inverse wavelet transform by the low frequency image and the high frequency images.Simulation results show that the proposed algorithm can enhance the peak signal to noise ratio(PSNR),leading to noticeable improvement in visual quality.%在穿墙雷达成像技术中，建筑布局成像对确定墙后人体目标的空间相对位置以及多径虚假目标的提取有重要意义。目前的建筑布局成像一般采用多通道多视角图像融合方法，对此提出一种基于多尺度分析，即基于小波分解下的多通道多视角图像融合算法。该算法分为两个阶段，第一阶段涉及到单视角下的多通道图像融合，该阶段的融合目的主要是为增强图像细节信息和提高图像清晰度。因此对其
Guitars, Violins, and Geometric Sequences
Barger, Rita; Haehl, Martha
2007-01-01
This article describes middle school mathematics activities that relate measurement, ratios, and geometric sequences to finger positions or the placement of frets on stringed musical instruments. (Contains 2 figures and 2 tables.)
Wonderful Varieties: A geometrical realization
Cupit-Foutou, S
2009-01-01
We give a geometrical realization of wonderful varieties by means of a suitable class of invariant Hilbert schemes. Consequently, we prove Luna's conjecture asserting that wonderful varieties can be classified by some triples of combinatorial invariants: the spherical systems.
Current Concept of Geometrical Accuracy
Directory of Open Access Journals (Sweden)
Görög Augustín
2014-06-01
Full Text Available Within the solving VEGA 1/0615/12 research project "Influence of 5-axis grinding parameters on the shank cutter´s geometric accuracy", the research team will measure and evaluate geometrical accuracy of the produced parts. They will use the contemporary measurement technology (for example the optical 3D scanners. During the past few years, significant changes have occurred in the field of geometrical accuracy. The objective of this contribution is to analyse the current standards in the field of geometric tolerance. It is necessary to bring an overview of the basic concepts and definitions in the field. It will prevent the use of outdated and invalidated terms and definitions in the field. The knowledge presented in the contribution will provide the new perspective of the measurement that will be evaluated according to the current standards.
The Geometric Gravitational Internal Problem
González-Martin, G R
2000-01-01
In a geometric unified theory there is an energy momentum equation, apart from the field equations and equations of motion. The general relativity Einstein equation with cosmological constant follows from this energy momentum equation for empty space. For non empty space we obtain a generalized Einstein equation, relating the Einstein tensor to a geometric stress energy tensor. The matching exterior solution is in agreement with the standard relativity tests. Furthermore, there is a Newtonian limit where we obtain Poisson's equation.
Spinors in Quantum Geometrical Theory
Galehouse, Daniel C.
2002-01-01
Spinors have played an essential but enigmatic role in modern physics since their discovery. Now that quantum-gravitational theories have started to become available, the inclusion of a description of spin in the development is natural and may bring about a profound understanding of the mathematical structure of fundamental physics. A program to attempt this is laid out here. Concepts from a known quantum-geometrical theory are reviewed: (1) Classical physics is replaced by a suitable geometr...
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
The Geometric Gravitational Internal Problem
Gonzalez-Martin, Gustavo R.
2000-01-01
In a geometric unified theory there is an energy momentum equation, apart from the field equations and equations of motion. The general relativity Einstein equation with cosmological constant follows from this energy momentum equation for empty space. For non empty space we obtain a generalized Einstein equation, relating the Einstein tensor to a geometric stress energy tensor. The matching exterior solution is in agreement with the standard relativity tests. Furthermore, there is a Newtonian...
Determining Geometric Accuracy in Turning
Institute of Scientific and Technical Information of China (English)
Kwong; Chi; Kit; A; Geddam
2002-01-01
Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are infl...
Mario, Hirz; Gfrerrer, Anton; Lang, Johann
2013-01-01
The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...
Berczynski, Pawel; Bliokh, Konstantin Yu.; Kravtsov, Yuri A.; Stateczny, Andrzej
2006-06-01
We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.
Shegaonkar, Ajit C.; Salapaka, Srinivasa M.
2007-10-01
This paper presents a feedback scheme that simultaneously corrects, in real time, for the imaging artifacts caused by cantilever and photosensor misalignments as well as misinterpretations in relative lateral position of the tip with respect to the sample due to the tip-sample stick in atomic force microscopy (AFM). The optical beam bounce method, typically used in AFM for imaging, is sensitive to inaccuracies of cantilever geometry and the relative misalignment of the laser source, cantilever, and the laser sensitive diode from the intended design. These inaccuracies, which contribute to the geometrical cross-talk between the normal and the lateral signals, become prominent at the atomic and subnanometer scales, and thereby impede high resolution imaging studies. The feedback scheme accounts for these artifacts and makes imaging insensitive to, in fact, practically independent of these inaccuracies. This scheme counteracts the lateral twisting dynamics of the cantilever, and as a result, it avoids the misinterpretation problem of the relative lateral position of the cantilever tip from the sample and thereby avoids the corresponding imaging artifacts that are typically prominent in contact mode friction force microscopy (FFM). The feedback scheme consists of simultaneously regulating the normal as well as the lateral cantilever deflection signal at their respective set points. This not only removes the imaging artifacts due to geometrical misalignments, mechanical cross-talk, and irregular sliding but also the corresponding compensatory control signal gives a more accurate real time measure of the lateral interaction force between the sample and the cantilever as compared to the lateral deflection signal used in FFM. Experimental results show significant improvement, and in some cases, practical elimination of the artifacts. The design and implementation of a split piezoassembly needed for the lateral actuation for the feedback scheme are also presented.
Antenna with Dielectric Having Geometric Patterns
Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)
2013-01-01
An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
The bouncing ball through a geometrical series
Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin
2008-10-01
The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.
Geometric interpretations for resonances of plasmonic nanoparticles
Liu, Wei; Kivshar, Yuri S
2014-01-01
The rapidly developing field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in plasmonic waveguides and localized surface plasmons (LSPs) supported by scattering plasmonic particles. Investigations along these two directions usually employ quite different approaches and techniques, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have b...
Geometric phase and Pancharatnam phase induced by light wave polarization
Lages, J; Vigoureux, J -M
2013-01-01
We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a non zero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and can not be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.
Entanglement dynamics via geometric phases in quantum spin chains
Castro, C S
2011-01-01
We introduce a connection between entanglement induced by interaction and geometric phases acquired by a composite quantum spin system. We begin by analyzing the evaluation of cyclic (Aharonov-Anandan) and non-cyclic (Mukunda-Simon) geometric phases for general spin chains evolving in the presence of time-independent magnetic fields. Then, by considering Heisenberg chains, we show that the interaction geometric phase, namely, the total geometric phase with subtraction of free spin contributions, is directly related to the global (Meyer-Wallach) entanglement exhibited by an initially separable state during its evolution in Hilbert space. This is analytically shown for N=2 spins and numerically illustrated for larger chains. This relationship promotes the interaction geometric phase to an indicator of global entanglement in the system, which may constitute a useful tool to quantum tasks based on entanglement as a resource to their performance.
Combining geometric edge detectors for feature detection
Heyvaert, Michaël; Van Hamme, David; Coppens, Jonas; Veelaert, Peter
2010-01-01
We propose a novel framework for the analysis and modeling of discrete edge filters, based on the notion of signed rays. This framework will allow us to easily deduce the geometric and localization properties of a family of first-order filters, and use this information to design custom filter banks for specific applications. As an example, a set of angle-selective corner detectors is constructed for the detection of buildings in video sequences. This clearly illustrates the merit of the theor...
Geometric morphometric footprint analysis of young women
Domjanic, Jacqueline; Fieder, Martin; Seidler, Horst; Mitteroecker, Philipp
2013-01-01
Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented t...
Geometric treatment of the gravitomagnetic clock effect
Tartaglia, A
2000-01-01
We have developed a general geometric treatment of the GCE valid for any stationary axisymmetric metric. The method is based on the remark that the world lines of objects rotating along spacely circular trajectories are in any case, for those kind of metrics, helices drawn on the flat bidimensional surface of a cylinder. Applying the obtained formulas to the special cases of the Kerr and weak field metric for a spinning body, known results for time delays and synchrony defects are recovered.
Geometrical Methods for Power Network Analysis
Bellucci, Stefano; Gupta, Neeraj
2013-01-01
This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.
The arithmetico-geometric sequence: an application of linear algebra
Orosi, Greg
2016-07-01
In this paper, we present a linear algebra-based derivation of the analytic formula for the sum of the first nth terms of the arithmetico-geometric sequence. Furthermore, the advantage of the derivation is briefly discussed.
基于几何线形的立交噪声计算方法%Calculation method on noise pollution of interchange based on geometric alignment
Institute of Scientific and Technical Information of China (English)
王晓宁; 杨龙海; 李霏
2012-01-01
The method of calculating interchange noise was studied according to geometric alignment.By using vehicle speed as starting point,the relationship was fitted between noise levels and vehicle speed.For the calculation of ramp noise,the thesis defined the concepts and calculation method of relative equivalent sound energy according to the definition of equivalent sound level,determined the total noise energy by using the method of adding noise energy in uniform motion segment to the one in variable motion segment,and established the functional relationship between relative equivalent energy and the length of ramps.Under the definition of equivalent sound level,the noise level of left-turn ramp and right-turn ramp were deduced by the method of ramp length integral operation.For the calculation of the main line noise,the formula of the main line noise level was deduced according to the relationship among the mainline design speed,noise level and vehicle speed.The total interchange noise was obtained by the superposition of noise level in each main line and ramp.Heda interchange in Heilongjiang province was taken for example.The result shows that this method can solve the calculation problem of noise pollution in interchange ramp variable motion segment,and can connect the noise pollution produced by traveling vehicles with the interchange geometric alignment.When the interchange geometric alignment design conditions are known,the noise pollution can be calculated and the results can be used to quantitatively evaluate the degree of interchange noise pollution.%为定量评价道路几何线形对立交噪声的影响,研究了基于几何线形计算立交噪声的方法,以车辆行驶速度为切入点,拟合噪声级和车速之间的关系.对于匝道噪声的计算,根据等效声级的定义给出了相对等效声能量的含义及计算方法,采用将匀速运动段与变速运动段噪声能量相加的方法求出总的噪声能量,建立了相对等效声
Testing the geometric clutch hypothesis.
Lindemann, Charles B
2004-12-01
The Geometric Clutch hypothesis is based on the premise that transverse forces (t-forces) acting on the outer doublets of the eukaryotic axoneme coordinate the action of the dynein motors to produce flagellar and ciliary beating. T-forces result from tension and compression on the outer doublets when a bend is present on the flagellum or cilium. The t-force acts to pry the doublets apart in an active bend, and push the doublets together when the flagellum is passively bent and thus could engage and disengage the dynein motors. Computed simulations of this working mechanism have reproduced the beating pattern of simple cilia and flagella, and of mammalian sperm. Cilia-like beating, with a clearly defined effective and recovery stroke, can be generated using one uniformly applied switching algorithm. When the mechanical properties and dimensions appropriate to a specific flagellum are incorporated into the model the same algorithm can simulate a sea urchin or bull sperm-like beat. The computed model reproduces many of the observed behaviors of real flagella and cilia. The model can duplicate the results of outer arm extraction experiments in cilia and predicted two types of arrest behavior that were verified experimentally in bull sperm. It also successfully predicted the experimentally determined nexin elasticity. Calculations based on live and reactivated sea urchin and bull sperm yielded a value of 0.5 nN/microm for the t-force at the switch-point. This is a force sufficient to overcome the shearing force generated by all the dyneins on one micron of outer doublet. A t-force of this magnitude should produce substantial distortion of the axoneme at the switch-point, especially in spoke or spoke-head deficient motile flagella. This concrete and verifiable prediction is within the grasp of recent advances in imaging technology, specifically cryoelectron microscopy and atomic force microscopy. PMID:15567522
Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach
Ana Rosa Gómez Cano; Manuel Hernández Fernández; M Ángeles Alvarez-Sierra
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach base...
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
基于几何意义的线性代数教学研究%Study on Teaching of Linear Algebra Based on Geometric Background
Institute of Scientific and Technical Information of China (English)
张敏
2016-01-01
This paper discusses that Geometric intuition is very important for linear algebra teaching. The re-search on the knowledge points of the linear algebra teaching is carried out, by showing several examples of teaching cases, it is clear that the theorems and methods in linear algebra are shown in the corresponding space, so that students can grasp the essence of the problem.%讨论了线性代数中几何直观在线性代数教学中的重要性。对线性代数教学中重点的几个抽象的知识点进行的研究，通过展示数形结合教学案例，能清楚的认识抽象代数问题在对应空间中位置关系，从而帮助学生抓住相关问题的本质。
Energy Technology Data Exchange (ETDEWEB)
Lee, M; Hu, E; Yi, B [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)
2015-06-15
Purpose: Raven QA (JPLC, MD) is a unified and comprehensive quality assurance system for QA of TG-142, which use a phosphor screen, a mirror system and a camera. It is to test if this device can be used for IMRT QA dosimetry. Methods: A lung IMRT case is used deliver dose to Raven QA. Accuracy of dose distribution of 5cm slab phantom using Eclipse planning system (Varian) has been confirmed both from a Monte Carlo Simulation and from a MapCheck (SunNuclear) measurement. Geometric distortion and variation of spatial dose response are corrected after background subtraction. A pin-hole grid plate is designed and used to determine the light scatter in the Raven QA box and the spatial dose response. Optic scatter model was not applied in this preliminary study. Dose is normalized to the response of the 10×10 field and the TMR of 5cm depth was considered. Results: Time to setup the device for IMRT QA takes less than 5 minutes as other commercially available devices. It shows excellent dose linearity and dose rate independent, less than 1 %. Background signal, however, changes for different field sizes. It is believed to be due to inaccurate correction of optic scatter. Absolute gamma (5%, 5mm) passing rate was higher than 95%. Conclusion: This study proves that the Raven QA can be used for a patient specific IMRT verification. Part of this study is supported by the Maryland Industrial Partnership Grant.
Geometrical multiresolution adaptive transforms theory and applications
Lisowska, Agnieszka
2014-01-01
Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply ‘X-lets’, and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and com...
Geometric Correction for Braille Document Images
Directory of Open Access Journals (Sweden)
Padmavathi.S
2016-04-01
Full Text Available Braille system has been used by the visually impair ed people for reading.The shortage of Braille books has caused a need for conversion of Braille t o text. This paper addresses the geometric correction of a Braille document images. Due to the standard measurement of the Braille cells, identification of Braille characters could be achie ved by simple cell overlapping procedure. The standard measurement varies in a scaled document an d fitting of the cells become difficult if the document is tilted. This paper proposes a line fitt ing algorithm for identifying the tilt (skew angle. The horizontal and vertical scale factor is identified based on the ratio of distance between characters to the distance between dots. Th ese are used in geometric transformation matrix for correction. Rotation correction is done prior to scale correction. This process aids in increased accuracy. The results for various Braille documents are tabulated.
Bootstrap Percolation on Random Geometric Graphs
Bradonjić, Milan
2012-01-01
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap percolation starts by random and independent "activation" of nodes with a fixed probability $p$, followed by a deterministic process for additional activations based on the density of active nodes in each neighborhood ($\\th$ activated nodes). Here, we study bootstrap percolation on random geometric graphs in the regime when the latter are (almost surely) connected. Random geometric graphs provide an appropriate model in settings where the neighborhood structure of each node is determined by geographical distance, as in wireless {\\it ad hoc} ...
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
Geometric scalar theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Guiding light via geometric phases
Slussarenko, Sergei; Alberucci, Alessandro; Jisha, Chandroth P.; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo
2016-09-01
All known methods for transverse confinement and guidance of light rely on modification of the refractive index, that is, on the scalar properties of electromagnetic radiation. Here, we disclose the concept of a dielectric waveguide that exploits vectorial spin–orbit interactions of light and the resulting geometric phases. The approach relies on the use of anisotropic media with an optic axis that lies orthogonal to the propagation direction but is spatially modulated, so that the refractive index remains constant everywhere. A spin-controlled cumulative phase distortion is imposed on the beam, balancing diffraction for a specific polarization. As well as theoretical analysis, we present an experimental demonstration of the guidance using a series of discrete geometric-phase lenses made from liquid crystal. Our findings show that geometric phases may determine the optical guiding behaviour well beyond a Rayleigh length, paving the way to a new class of photonic devices. The concept is applicable to the whole electromagnetic spectrum.
Institute of Scientific and Technical Information of China (English)
武奕楠; 张然峰; 韩双丽
2016-01-01
The attitude variation and image orientation change of aerospace remote sensing camera in agile imaging mode and the curvature of the earth cause the mapping shape of space geometry on focal plane to be distorted in different degree. Firstly, the mode and characteristics of agile imaging are analysed. Then, according to the imaging characteristics of TDICCD remote sensing camera, a geometric registration model based on collinearity equation is established. The space imaging geometrical mathematics in any attitude is described accurately through tracking ground points. The ground resolution corresponding to pixels of the whole field of view is calculated in various kinds of working situations. The geometric distortion is analysed in differents status of agile imaging. Finally, the result shows everage error is less than 0.009m in comparison with actual image. The method can also be applied to geometric distortion analysis for any other kinds of aerospace remote sensing camera in different attitudes.%由于航天遥感相机在敏捷成像过程中姿态和成像方位的变化，以及地球曲率的影响，会导致像面空间几何映射形状发生不同程度的形变。文章分析了遥感相机的敏捷成像模式及特点；根据时间延迟积分（TDICCD）遥感相机的成像特点，建立了基于共线方程的几何配准模型，通过追迹地面点精确地描述任意姿态下的空间成像几何数学关系；通过样例计算各种工况下的整个视场对应的像元地面分辨率，分析了在各种敏捷成像状态下的几何形变情况。以在轨实际图像进行数据比对，结果表明平均误差小于0.009m。该方法同样可应用于其它类型航天遥感相机在不同姿态下的几何形变分析。
Geometric orbit datum and orbit covers
Institute of Scientific and Technical Information of China (English)
梁科; 侯自新
2001-01-01
Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.
González-Martin, G R
2000-01-01
A previously proposed geometric definition of mass in terms of energy, in a geometrical unified theory, is used to obtain a numerical expression for a ratio of masses of geometrical excitations. The resultant geometric ratio is approximately equal the ratio of the proton to electron physical masses.
Geometric pumping in autophoretic channels
Michelin, Sebastien; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric
2015-01-01
Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.
A Geometric Formulation of Supersymmetry
Freedman, Daniel Z; Van Proeyen, Antoine
2016-01-01
The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.
Geometric integration for particle accelerators
International Nuclear Information System (INIS)
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction
Reverse geometric engineering of singularities
International Nuclear Information System (INIS)
One can geometrically engineer supersymmetric field theories theories by placing D-branes at or near singularities. The opposite process is described, where one can reconstruct the singularities from quiver theories. The description is in terms of a noncommutative quiver algebra which is constructed from the quiver diagram and the superpotential. The center of this noncommutative algebra is a commutative algebra, which is the ring of holomorphic functions on a variety V. If certain algebraic conditions are met, then the reverse geometric engineering produces V as the geometry that D-branes probe. It is also argued that the identification of V is invariant under Seiberg dualities. (author)
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Star products and geometric algebra
International Nuclear Information System (INIS)
The formalism of geometric algebra can be described as deformed super analysis. The deformation is done with a fermionic star product, that arises from deformation quantization of pseudoclassical mechanics. If one then extends the deformation to the bosonic coefficients of superanalysis one obtains quantum mechanics for systems with spin. This approach clarifies on the one hand the relation between Grassmann and Clifford structures in geometric algebra and on the other hand the relation between classical mechanics and quantum mechanics. Moreover it gives a formalism that allows to handle classical and quantum mechanics in a consistent manner
Estimation of spreading fire geometrical characteristics using near infrared stereovision
Rossi, L.; Toulouse, T.; Akhloufi, M.; Pieri, A.; Tison, Y.
2013-03-01
In fire research and forest firefighting, there is a need of robust metrological systems able to estimate the geometrical characteristics of outdoor spreading fires. In recent years, we assist to an increased interest in wildfire research to develop non destructive techniques based on computer vision. This paper presents a new approach for the estimation of fire geometrical characteristics using near infrared stereovision. Spreading fire information like position, rate of spread, height and surface, are estimated from the computed 3D fire points. The proposed system permits to track fire spreading on a ground area of 5mx10m. Keywords: near infrared, stereovision, spreading fire, geometrical characteristics
Geometric calibration for a SPECT system dedicated to breast imaging
Institute of Scientific and Technical Information of China (English)
WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci
2012-01-01
Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.
The synthetical application based on the geometric distributed lag model%基于几何分布滞后模型消费与收入的综合应用
Institute of Scientific and Technical Information of China (English)
沈卉卉
2011-01-01
This paper is discussed the adaptive anticipation model and the partial adjustment model based on the geometric distributed lag model. Whereas their different premises that the models are educed the economic hypothesis,and results in the difference of the resid framework. They bring the difference on the estimation of the models, we construct the synthetical model of the partial adjustment and the adaptive anticipation. Using the synthetical model's estimation advantage overcome the impact on the first-order auto-pertinence when we directly estimate the geometric distributed lag model.%在几何分布滞后模型的基础之上,讨论了自适应预期模型和局部调整模型,鉴于它们各自导出模型的经济假设前提不同,导致随机误差项的结构有所不同,从而给模型的估计带来一定的不同.通过建立一个局部调整-自适应预期综合模型,利用它估计模型的优势,克服了几何分布滞后模型直接估计所带来的一阶自相关性的影响.
Edit propagation using geometric relationship functions
Guerrero, Paul
2014-03-01
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
On an assumption of geometric foundation of numbers
Anatriello, Giuseppina; Saverio Tortoriello, Francesco; Vincenzi, Giovanni
2016-04-01
In line with the latest positions of Gottlob Frege, this article puts forward the hypothesis that the cognitive bases of mathematics are geometric in nature. Starting from the geometry axioms of the Elements of Euclid, we introduce a geometric theory of proportions along the lines of the one introduced by Grassmann in Ausdehnungslehre in 1844. Assuming as axioms, the cognitive contents of the theorems of Pappus and Desargues, through their configurations, in an Euclidean plane a natural field structure can be identified that reveals the purely geometric nature of complex numbers. Reasoning based on figures is becoming a growing interdisciplinary field in logic, philosophy and cognitive sciences, and is also of considerable interest in the field of education, moreover, recently, it has been emphasized that the mutual assistance that geometry and complex numbers give is poorly pointed out in teaching and that a unitary vision of geometrical aspects and calculation can be clarifying.
Trace Anomaly in Geometric Discretization
Czech, Bartlomiej
2007-01-01
I develop the simplest geometric-discretized analogue of two dimensional scalar field theory, which qualitatively reproduces the trace anomaly of the continuous theory. The discrete analogue provides an interpretation of the trace anomaly in terms of a non-trivial transformation of electric-magnetic duality-invariant modes of resistor networks that accommodate both electric and magnetic charge currents.
Celestial mechanics with geometric algebra
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Geometric hashing and object recognition
Stiller, Peter F.; Huber, Birkett
1999-09-01
We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.
REAL-TIME URBAN ROAD DETECTION BASED ON GEOMETRIC CONSTRAINTS%基于几何约束的实时城市道路检测
Institute of Scientific and Technical Information of China (English)
昝新
2012-01-01
Road detection is a most important component in autonomous driving system of intelligent car. This paper proposes a novel method for urban road detection. First, it applies the "sobel" operator and the "tukey" weight function to road pictures captured by the camera on intelligent car to fit out the basic lines for follow-up processing, then it utilises three geometric constrains including the distance, the relation with the vanished points and the slope to these lines to determine the left and right sideline and the middle line, all are possibly existed on the road. This method diminishes to a great extent the interference arose from other interference lines such as shadow boundary and building boundary, etc. , thus the fast precise detection of the road ahead for intelligent care is achieved. A great deal of experiments and the intelligent car competition all demonstrate that is the method has good stability against the illumination, shadow and the interferences of the objects outside the road at the speed of l00km/hr.%道路检测是智能车自动驾驶系统中非常重要的部分.提出一种检测城市道路的新方法:首先在智能车上摄像头获得的道路图片中利用Sobel算子和Tukey权值函数拟合出用于后续处理的基本直线,然后对这些线采取距离、与消失点关系、斜率三项几何约束确定道路可能存在的左右边线以及中线,很大程度上减少了阴影边界、建筑边界等其他干扰线的干扰,从而实现对智能车行驶前方道路的快速精确检测.经过大量实验和智能车比赛证明,在100km/h速度下该算法对光照,阴影,以及非道路物体干扰有良好的稳定性.
Non-critical string, Liouville theory and geometric bootstrap hypothesis
Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew
2003-01-01
Basing on the standard construction of critical string amplitudes we analyze properties of the longitudinal sector of the non-critical Nambu-Goto string. We demonstrate that it cannot be described by standard (in the sense of BPZ) conformal field theory. As an alternative we propose a new version of the geometric approach to Liouville theory and formulate its basic consistency condition - the geometric bootstrap equation.
Geometric constrained variational calculus. II: The second variation (Part I)
Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico
2016-10-01
Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.
Topological defects, geometric phases, and the angular momentum of light
Tiwari, S C
2007-01-01
Recent reports on the intriguing features of vector vortex bearing beams are analyzed using geometric phases in optics. It is argued that the spin redirection phase induced circular birefringence is the origin of topological phase singularities arising in the inhomogeneous polarization patterns. A unified picture of recent results is presented based on this proposition. Angular momentum shift within the light beam (OAM) has exact equivalence with the angular momentum holonomy associated with the geometric phase consistent with our conjecture.
Institute of Scientific and Technical Information of China (English)
周晓辉; 姚俭; 袁清华
2014-01-01
针对决策信息为三角模糊数直觉模糊数(TFNIFN)且属性间存在相互关联的多属性群决策(MAGDM)问题，提出了一种基于三角模糊数直觉模糊 PG(TFNIFPG)算子的决策方法。首先，基于TFNIFN的运算法则和PG(Power Geometric)算子，定义了TFNIFPG算子。然后，研究了该算子的一些性质，建立基于TFNIFPG算子的 MAGDM模型，结合排序方法进行决策。最后通过某项目投资算例验证了该算子的有效性与可行性。%With respect to the multiple attribute group decision-making(MAGDM)problem,a method based on triangu-lar fuzzy number intuitionistic fuzzy powergeometric (TFNIFPG)operator was presented.The attribute values of MAGDM are in the form of triangular fuzzy number intuitionistic fuzzy numbers (TFNIFN),and the attributes are associated with each oth-er.Firstly,according to the TFNIFN’s operational laws and power geometric (PG)operator,TFNIFPG operator was defined. Then the related properties were researched and a multiple attribute decision group model was constructed based on TFNIFPG operator.The model used sort methods to make decision.Finally,an illustrative example of proj ect investment was proposed to demonstrate the effectiveness and feasibility of the proposed operator.
The verdict geometric quality library.
Energy Technology Data Exchange (ETDEWEB)
Knupp, Patrick Michael; Ernst, C.D. (Elemental Technologies, Inc., American Fork, UT); Thompson, David C. (Sandia National Laboratories, Livermore, CA); Stimpson, C.J. (Elemental Technologies, Inc., American Fork, UT); Pebay, Philippe Pierre
2006-03-01
Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.
Geometric view on noneikonal waves
Dodin, I Y
2013-01-01
A geometric formulation of classical nondissipative waves is proposed that exhibits one-to-one correspondence with the mathematical framework of quantum mechanics and thus allows application of the well-developed quantum-mechanical machinery "as is". Classical oscillations are represented as abstract vectors, $| \\psi >$, governed by a Schrodinger equation, where the Hamiltonian is a Hermitian operator in a Hilbert space with an appropriately defined (and generally signed) metric. The wave action is naturally defined as the density matrix, $| \\psi > < \\psi |$. The previously known action conservation theorems for noneikonal waves and the conventional Wigner-Weyl-Moyal formalism are generalized and subsumed under a unifying invariant theory. Whitham's equations are recovered as the corresponding fluid limit in the geometrical-optics approximation. The Liouville equation is also yielded as a special case, yet in a somewhat different limit; thus ray tracing (and especially nonlinear ray tracing) is found to b...
Geometric Algebra Model of Distributed Representations
Patyk, Agnieszka
2010-01-01
Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.
Geometric Hyperplanes: Desargues Encodes Doily
Saniga, Metod
2011-01-01
It is shown that the structure of the generalized quadrangle of order two is fully encoded in the properties of the Desargues configuration. A point of the quadrangle is represented by a geometric hyperplane of the Desargues configuration and its line by a set of three hyperplanes such that one of them is the complement of the symmetric difference of the remaining two and they all share a pair of non-collinear points.
Geometrical formalism in gauge theories
Kubyshin, Yuri A.
2003-01-01
We review the basic elements of the geometrical formalism for description of gauge fields and the theory of invariant connections, and their applications to the coset space dimensional reduction of Yang-Mills theories. We also discuss the problem of classification of principal fibre bundles, which is important for the quantization of gauge theories. Some results for bundles over two-dimensional spaces are presented.
Geometric Results for Compressible Magnetohydrodynamics
Arter, Wayne
2013-01-01
Recently, compressible magnetohydrodynamics (MHD) has been elegantly formulated in terms of Lie derivatives. This paper exploits the geometrical properties of the Lie bracket to give new insights into the properties of compressible MHD behaviour, both with and without feedback of the magnetic field on the flow. These results are expected to be useful for the solution of MHD equations in both tokamak fusion experiments and space plasmas.
Constrained ballistics and geometrical optics
Epstein, Marcelo
2014-01-01
The problem of constant-speed ballistics is studied under the umbrella of non-linear non-holonomic constrained systems. The Newtonian approach is shown to be equivalent to the use of Chetaev's rule to incorporate the constraint within the initially unconstrained formulation. Although the resulting equations are not, in principle, obtained from a variational statement, it is shown that the trajectories coincide with those of geometrical optics in a medium with a suitably chosen refractive inde...
Institute of Scientific and Technical Information of China (English)
雷雨; 冯新喜; 朱灿彬; 李彬彬
2012-01-01
To solve the problems of estimation and accuracy for target location in 2D sensor network with multi-sensors, the actual models of equivalent earth and geometric sensor observation were built considering the influence of the actual earth curvature on the observation model. In order to make full use of the measurements, a geometric location algorithm for multi-sensor networking based on 2D data fusion was presented, and the location equations were calculated. This algorithm combined the methods of geometric location and data fusion, and carried out two times of data fusion to utilize all the measurements. In order to analyze the performance of the proposed algorithm, some computing cases were illustrated. The efficiency and superiority of the proposed algorithm can be confirmed by simulation results. It can be seen from the results that the algorithm can improve locating accuracy greatly in 3D space, and the accuracy tends to Cramer-Rao lower bound(CRLB). Although there are two times of data fusion, it does not increase the complexity of calculation, and the proposed algorithm has practical value and validity.%为解决多部(3部及以上)2D传感器网络对三维空间目标的定位估计和定位精度问题,克服地球曲率对观测模型的影响,建立了考虑实际地球曲率的等效地球模型和传感器观测模型,提出了此模型中基于二次数据融合的多传感器组网几何定位算法,该方法将几何定位与数据融合理论相结合,并对融合数据进行二次融合,充分利用了各传感器的量测数据.仿真实验证明了方法的有效性和实用性,在多部2D传感器组网的情况下可对三维空间内目标实现精确定位,定位误差趋近于克拉美-罗下界(CRLB),具有工程实用价值.
Institute of Scientific and Technical Information of China (English)
高君; 高鑫; 孙显
2015-01-01
A new method based on geometrical features is proposed for aircraft target interpretation to make full use of the characteristics of high‐resolution SAR (synthetic aperture radar) images .Our method consists of three steps .First ,the local self‐similarity and DBSCAN (density‐based spatial clustering of application with noise ) algorithm are used to extract the ROI (region of interest) .Second ,the geometrical structure ,especially the “T” shape consisting of the aircraft’s swings and fuselage ,is extracted based on Hough transform .Third ,fine components segmentation based on level set and prior knowledge such as collinearity and symmetry are combined together to identify the components of the target such as the engines and the prow of the aircraft .We get the key parameters of the aircraft from above steps for target recognition and interpretation .The experiments based on the images from miniSAR demonstrate that our method is effective in high‐resolution SAR images .%针对高分辨率SAR（synthetic aperture radar）图像特性，提出了一种基于几何特征的飞机目标解译方法。首先，局部自相似性及DBSCAN（density‐based spatial clustering of application with noise ）算法用于提取感兴趣的目标区域；其次，机翼和机身形成的“T”型结构采用霍夫变换进行提取；最后，结合基于水平集的精细部件分割和共线性、对称性等先验知识，飞机目标的发动机和机头等部件得以提取。得到飞机目标的关键几何参数以用于目标识别和解译。基于miniSAR图像的实验验证了方法的实用性和有效性。
Optimization of biotechnological systems through geometric programming
Directory of Open Access Journals (Sweden)
Torres Nestor V
2007-09-01
Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into
Some geometrical iteration methods for nonlinear equations
Institute of Scientific and Technical Information of China (English)
LU Xing-jiang; QIAN Chun
2008-01-01
This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.
Slochteren, F.J. van; Spoel, T.I. van der; Hansen, H.H.G.; Bovendeerd, P.H.; Doevendans, P.A.; Sluijter, J.P.; Chamuleau, S.A.; Korte, C.L. de
2014-01-01
Local layer-specific myocardial deformation after myocardial infarction (MI) has not been studied extensively although the sub-endocardium is more vulnerable to ischemia and interstitial fibrosis deposition. Radiofrequency (RF) ultrasound-based analysis could provide superior layer-specific radial s
Exact Solutions for Einstein's Hyperbolic Geometric Flow
Institute of Scientific and Technical Information of China (English)
HE Chun-Lei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.
Geometrically invariant color image watermarking scheme using feature points
Institute of Scientific and Technical Information of China (English)
WANG XiangYang; MENG Lan; YANG HongYing
2009-01-01
Geometric distortion is known as one of the most difficult attacks to resist.Geometric distortion desynchronizes the location of the watermark and hence causes incorrect watermark detection.In this paper,we propose a geometrically invariant digital watermarking method for color images.In order to synchronize the location for watermark insertion and detection,we use a multi-scale Harris-Laplace detector,by which feature points of a color image can be extracted that are invariant to geometric distortions.Then,the self-adaptive local image region (LIR) detection based on the feature scale theory was considered for watermarking.At each local image region,the watermark is embedded after image normalization.By binding digital watermark with invariant image regions,resilience against geometric distortion can be readily obtained.Our method belongs to the category of blind watermarking techniques,because we do not need the original image during detection.Experimental results show that the proposed color image watermarking is not only invisible and robust against common signal processing such as sharpening,noise adding,and JPEG compression,but also robust against the geometric distortions such as rotation,translation,scaling,row or column removal,shearing,and local random bend.
Joonwhoan Lee; Deepak Ghimire
2013-01-01
Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pa...
Energy Technology Data Exchange (ETDEWEB)
Battmann, A. [Marburg Univ. (Germany). Abt. fuer Strahlendiagnostik; Dieckmann, K.; Resch, A.; Poetter, R. [Allgemeines Krankenhaus, Wien (Austria). Universitaetsklinik Strahlentherapie und Strahlenbiologie; Battmann, A. [Giessen Univ. (Germany). Zentrum fuer Pathologie
2001-03-01
Background: The importance of the size of the primary tumor in lymphomas and its size after treatment is still uncertain. Assuming a prognostic relevance, an assessment of tumor volume before and after induction of chemotherapy has been performed in the pediatric Hodgkin's disease study (HD-90). Since an exact CT-scan-based volumetric tumor assessment is time-consuming and in some centers not possible, the tumor volume is often estimated based on simple geometric approximations. Aim of this study was the development of an easy to apply and nearly exact model of volume estimation compared to CT-scan-based tumor volume measurements. Material and Methods: thirty computed tomographies (CT) of mediastinal Hodgkin lymphomas of children aged 5 to 16 years have been examined. The CT scans were digitalized using a CCD camera combined with a frame grabber. Applying the Global Lab image software, the true tumor volume was determined excluding local organs, which did not belong to the lymphoma. Subsequently, volumes were assessed using simple geometric models (block, ellipsoid, octaeder) by using the maximum diameters of the tumor. The differences between the volume of the geometric models and the true volume, based on the CT scan evaluation, were compared. Results: the maximum diameters of a tumor can be used to calculate its volume based on simple geometric models. The model 'block' overestimates the volume by 89 to 268%. The model 'ellipsoid' overestimates the volume on average by 29%. The model 'octaeder' underestimates the volume on average by 18%. A division of the block volume by 2.3 approximated the geometric closest to the true volume: the average volume was overestimated by 2% in tumors with a volume larger than 20 ml. No model was sufficient to approximate tumors with a volume of less than 20 ml. Conclusions: for the estimation of tumor volumes in mediastinal Hodgkin lumphomas exceeding 20 ml, the formula 'block /2.3&apos
Rahman Ziaur; Rehman Shakeel Ur.; Mirza Sikander M.; Arshed Waheed; Mirza Nasir M.
2013-01-01
The Geant4-based comprehensive model has been developed to predict absorbed fraction values for both electrons and gamma photons in spherical, ellipsoidal, and cylindrical geometries. Simulations have been carried out for water, ICRP soft-, brain-, lung-, and ICRU bone tissue for electrons in 0.1 MeV-4 MeV and g-photons in the 0.02 MeV-2.75 MeV energy range. Consistent with experimental observations, the Geant4-simulated values of absorbed fractions show a ...
Hubbard model with geometrical frustration
Energy Technology Data Exchange (ETDEWEB)
Lee, Hunpyo
2009-10-15
At first we present the details of the dual fermion (DF), the cluster extension of dynamical mean field theory (CDMFT) and continuous-time quantum Monte Carlo (CT QMC) methods. Using a panoply of these methods we explore the Hubbard model on the triangular and hyperkagome lattice. We find a first-order transition and continuous transition on the triangular and hyper-kagome lattice, respectively. Moreover, we find the reentrant behavior due to competition between the magnetic correlation and itinerancy of electrons by source of geometrical frustration on both lattices. (orig.)
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
A history of geometrical methods
Coolidge, Julian Lowell
2013-01-01
Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe
International Nuclear Information System (INIS)
Highlights: → Selective laser melting as a production tool for porous Ti6Al4V structures. → Significant mismatch between designed and as-produced properties. → Decreasing mismatch using a micro-CT-based protocol. → Mismatch of pore size decreased from 45% to 5%. → Increased morphological controllability increases mechanical controllability. - Abstract: Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
Kudoh, H; Kudoh, Hideaki; Taruya, Atsushi
2005-01-01
We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the un-resolved Galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extra-galactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h_{eff}\\sim 10^{-20} Hz^{-1/2} may reach $\\ell \\sim $ 8 - 10 a...
International Nuclear Information System (INIS)
We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity heff∼10-20 Hz-1/2 may reach l∼8-10 at f∼f*=10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band
一种基于压缩感知的二维几何信号压缩方法%A 2-D Geometric Signal Compression Method Based on Compressed Sensing
Institute of Scientific and Technical Information of China (English)
杜卓明; 耿国华; 贺毅岳
2012-01-01
本文给出的压缩方法属于谱压缩方法.谱压缩方法是一种常用的二维轮廓线模型压缩方法.文章从压缩感知的角度解释了谱压缩方法,并提出了基于压缩感知的二维轮廓线模型压缩方法.首先利用二维轮廓线模型Laplace算子的特征向量构造了一组基.二维轮廓线模型的几何结构在这组基下可以被稀疏表达.利用随机矩阵对-二维轮廓线模型的几何结构抽样,完成压缩.恢复过程中,通过最优化1-范数,实现几何信号的恢复.实验结果表明,该方法压缩速度快,比例高,恢复效果好,适合对大型数据以及远距离数据进行压缩.%Spectral compression method is a commonly used compression method in the field of two-dimensional contour model compression. This paper explains the spectral compression method from the perspective of compressed sensing and provides a compression method of two-dimensional contour model based on compressed sensing. Constructing a basis using Laplace operator of the two-dimensional contour model, we get the sparse representation of the 2-D geometric signal based on this basis. We complete compressing the two-dimensional contour model by sampling the two-dimensional contour model geometry information based on a random matrix. In the recovery process, we reconstruct the 2-D geometric signal through optimizing 1-norm of the sparse signal. Experimental results show that the compression ratio of this method is high, the restore effect is good, and it is suitable for large-scale data compression.
Geometric pumping in autophoretic channels
Michelin, Sebastien; Montenegro Johnson, Thomas; de Canio, Gabriele; Lobatto-Dauzier, Nicolas; Lauga, Eric
2015-11-01
Pumping at the microscale has important applications from biological fluid handling to lab-on-a-chip systems. It can be achieved either from a global (e.g. imposed pressure gradient) or local forcing (e.g. ciliary pumping). Phoretic slip flows generated from concentration or temperature gradients are examples of such local flow forcing. Autophoresis is currently receiving much attention for the design of self-propelled particles achieving force- and torque-free locomotion by combining two essential surface properties: (i) an activity that modifies the solute content of the particle's environment (e.g. catalytic reaction or solute release), and (ii) a mobility that generates a slip flow from the resulting local concentration gradients. Recent work showed that geometric asymmetry is sufficient for a chemically-homogeneous particle to self-propel. Here we extend this idea to micro-pumping in active channels whose walls possess both chemical activity and phoretic mobility. Using a combination of theoretical analysis and numerical simulations, we show that geometrically-asymmetric but chemically-homogeneous channels can generate pumping and analyze the resulting flow patterns.
Geometrically focused neutral beam accelerators
International Nuclear Information System (INIS)
A more reliable 40 kV, 65 A power supply drain at 0.4 A/cm2, neutral-beam accelerator was developed for the Tandem Mirror Experiment (TMX). Multiple slotted aperture grids of 60% transparency are fabricated from refractory metal wires mounted to form a spherical surface. This geometrically focuses the beam by aiming individual beamlets at the center of curvature of the spherical grid (r = 3.2 m). We attain greater reliability and faster conditioning with geometrical focusing than with the previous technique of electrostatically steering beamlets to a common point. Electrostatic steering, accomplished by offsetting grid wires, is satisfactory if the offset of a beamlet is much less than the distance from the beamlet to the grids. It was found that Pierce Angle entrance grids performed better if sharper edged. A redesigned accelerator grid support structure reduced the number of ceramic-to-metal vacuum joints, and eliminated O rings between precisely aligned parts. The suppressor grid feedthrough is required to withstand a maximum voltage of 15 kV occurring during breakdown, greatly exceeding the operating voltage of 1.5 kV. Convenient fabrication and assembly techniques have been developed. Assembly of accelerators and plasma sources in a clean room appears to reduce the conditioning time. Following the successful testing of the prototype, eight 40 kV accelerators were built for TMX. Furthermore, ten 20 kV versions were built that are modifiable to 40 kV by exchanging the entrance grid
Mechanisms of geometrical seismic attenuation
Directory of Open Access Journals (Sweden)
Igor B. Morozov
2011-07-01
Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.
Geometric realization for substitution tilings
Barge, Marcy
2011-01-01
Given an n-dimensional substitution whose associated linear expansion is unimodular and hyperbolic, we use elements of the one-dimensional integer \\v{C}ech cohomology of the associated tiling space to construct a finite-to-one semi-conjugacy, called geometric realization, between the substitution induced dynamics and an invariant set of a hyperbolic toral automorphism. If the linear expansion satisfies a Pisot family condition and the rank of the module of generalized return vectors equals the generalized degree of the linear expansion, the image of geometric realization is the entire torus and coincides with the map onto the maximal equicontinuous factor of the translation action on the tiling space. We are led to formulate a higher-dimensional generalization of the Pisot Substitution Conjecture: If the linear expansion satisfies the Pisot family condition and the rank of the one-dimensional cohomology of the tiling space equals the generalized degree of the linear expansion, then the translation action on t...
Directory of Open Access Journals (Sweden)
Joonwhoan Lee
2013-06-01
Full Text Available Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pairs of landmarks tracking results are extracted, and normalized, with respect to the first frame in the sequence. The prototypical expression sequence for each class of facial expression is formed, by taking the median of the landmark tracking results from the training facial expression sequences. Multi-class AdaBoost with dynamic time warping similarity distance between the feature vector of input facial expression and prototypical facial expression, is used as a weak classifier to select the subset of discriminative feature vectors. Finally, two methods for facial expression recognition are presented, either by using multi-class AdaBoost with dynamic time warping, or by using support vector machine on the boosted feature vectors. The results on the Cohn-Kanade (CK+ facial expression database show a recognition accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector machines, respectively.
Institute of Scientific and Technical Information of China (English)
陈莹; 沈宋衍
2016-01-01
针对目标跟踪中目标框发生偏移、消失等问题，于在线学习机制下提出一种基于几何模糊的跟踪检测学习的目标跟踪方法。以跟踪-检测-学习为框架，利用Lucas-Kanade算法，获得目标的初步跟踪结果。运用几何模糊的匹配思想代替传统检测手法，有效校正跟踪偏移，避免误差累计。整合器比较跟踪、检测结果与上一帧结果的相似度，通过计算正负样本与检测子区域的归一化相关系数比求得置信度，得到目标的精准定位。其结果通过学习器进行在线学习，从而进行下一帧的跟踪。实验结果表明，将该检测思想应用于快速移动目标跟踪时，在背景相似度较高的条件下，表现出了良好的性能，与其他新的方法比较也有较高的定位精度。%To solve the problem of tracking drifts or fail, a robust objects tracking algorithm based on geometric blur is proposed within the framework of online learning. Under the tracking-detection-learning mechanism, Lucas-Kanade algorithm is used to obtain the rough tracking estimation of the target. Based on the idea of geometric blur matching instead of traditional detection methods, the tracking drift is efficiently corrected. Then integrator is designed to compare the similarities between the previous frame and the results of the tracker and the detector. Their confidences are obtained by calculating normalized correlative coefficients between positive and negative samples and the detected region. An online learning is then developed to use the current result to update the tracker and the detector. Experimental results show that when applied to the fact moving target tracking under the condition of high background similarity, the proposed method performs well and outperforms other state-of-the-art methods with higher position accuracy.
Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.
2011-01-01
The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3
Geometric reconstruction methods for electron tomography
Energy Technology Data Exchange (ETDEWEB)
Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)
2013-05-15
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.
Geometric and Radiometric Evaluation of Rasat Images
Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar
2016-06-01
RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.
Anomalous Hall Effect in Geometrically Frustrated Magnets
Directory of Open Access Journals (Sweden)
D. Boldrin
2012-01-01
space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.
Geometric invariance of compressible turbulent boundary layers
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
基于几何结构的2.5D卡通建模%2 . 5 D Cartoon Modeling Based on Geometric Structure
Institute of Scientific and Technical Information of China (English)
刘艳; 胡艳宏; 孙战利
2015-01-01
二维卡通制作技术大致分为计算机辅助2D卡通动画制作和利用3D建模技术渲染生成动画。将两者结合，提出一种2.5D卡通制作模型，通过几何结构的旋转进行纹理贴图，并构造卡通的旋转过程。在2D动画中，一个卡通形象本身隐含几何结构，将卡通形象定义为由只含一个典型几何结构卡通元素构成的卡通对象，利用典型几何结构二维投影变化规律，构建相应结构卡通元素的变形算法，分析长方体和球体卡通元素在转动时投影的变化规律，给出基于这些规律实现相应结构卡通元素伪3D转动效果的算法。通过长方体、球体、圆柱体进行旋转的实验结果证明了算法的有效性。%Technologies of 2 D cartoon animation can be roughly categorized into two types:one is computer-aided 2 D cartoon animation,and the other is rendering 3D models. These two both have their own pros and cons. So this paper proposes a way which combines both of them,that is 2. 5D cartoon modelling method which constructs the rotation of the cartoon by texture mapping. In 2D animation,a character has an implicit geometry structure. So in this paper,it defines a character as a cartoon object composed of only one typical geometry structure. This paper builds the deformation algorithm of corresponding structure through the two dimensional projection transformation of typical geometries. Detailed analysis of projection transformation patterns of rectangular and sphere are provided. Based on patterns founded,this paper provides algorithm for implementing pseudo-3D rotation effects for the corresponding carton elements, and gives the results of cuboid,sphere and cylinder to support the validity of the algorithm.
International Nuclear Information System (INIS)
Purpose: Using daily cone beam CTs (CBCTs) to develop principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients and to assess the possibility of using these prospectively in adaptive radiation therapy (ART). Methods: Planning CT (pCT) images of 4 H&N patients were deformed to model several different systematic changes in patient anatomy during the course of the radiation therapy (RT). A Pinnacle plugin was used to linearly interpolate the systematic change in patient for the 35 fraction RT course and to generate a set of 35 synthetic CBCTs. Each synthetic CBCT represents the systematic change in patient anatomy for each fraction. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CBCTs with random fraction-to-fraction changes were superimposed on the DVFs. A patient-specific PCA model was built using these DVFs containing systematic plus random changes. It was hypothesized that resulting eigenDVFs (EDVFs) with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: For all 4 patients, the PCA model provided different results depending on the type and size of systematic change in patient’s body. PCA was more successful in capturing the systematic changes early in the treatment course when these were of a larger scale with respect to the random fraction-to-fraction changes in patient’s anatomy. For smaller scale systematic changes, random changes in patient could completely “hide” the systematic change. Conclusion: The leading EDVF from the patientspecific PCA models could tentatively be identified as a major systematic change during treatment if the systematic change is large enough with respect to random fraction-to-fraction changes. Otherwise, leading EDVF could not represent systematic changes reliably. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant
Fuzzy Clustering Using the Convex Hull as Geometrical Model
Directory of Open Access Journals (Sweden)
Luca Liparulo
2015-01-01
Full Text Available A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms.
Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach.
Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Alvarez-Sierra, M Ángeles
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.
Dietary ecology of Murinae (Muridae, Rodentia: a geometric morphometric approach.
Directory of Open Access Journals (Sweden)
Ana Rosa Gómez Cano
Full Text Available Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.
An outlier detection algorithm based 0n hyper-geometric feature%基于高维几何特征的孤立点检测算法
Institute of Scientific and Technical Information of China (English)
朱玉全; 刘晟; 孙金津
2011-01-01
To solve the problem that the manual inspection process was badly simulated and the issues were not fully considered in the outlier detection, such as the distribution of the samples surrounding the data to be tested, an outlier detection algorithm called DD-SVDD was proposed. In this algorithm, the distance between the test samples and the target samples and the distribution information of the test sample region were all considered. The distance and the average density were taken into account to determine the type of data tested near the decision-making boundary in high-dimensional feature space. In the training stage, the distribution of the target training samples near the decision-making boundary was considered, and part of the target samples near the concentrated boundary of training sample were set aside,whose average densities were calculated. In the forecasting stage, the attribution of test samples was estimated by using distance and average density synthetically. The algorithmic derivation was carried out,and the codes of training stage and checking stage were given. The experiment based on UCI data was done. The results show that DD-SVDD is effective, and the recognition rate is high.%针对孤立点检测算法不能较好地模拟人工检测过程、未充分考虑待测数据周围样本分布的问题,提出了一种孤立点检测算法DD-SVDD.该算法综合考虑待测样本与目标样本之间的距离,以及待测样本所在区域样本的分布信息,结合距离和平均密度来确定高维特征空间中决策边界附近待测数据的类别.在训练阶段,考虑了决策边界附近目标训练样本的分布,预留训练样本集中边界的部分目标样本并计算其平均密度;在预测阶段,综合使用距离与平均密度对待测样本的归属进行判断.进行了算法的推导,给出了训练阶段、检测阶段的伪代码,并基于UCI机器学习库中的数据进行试验.结果表明,DD-SVDD算法具有有效性,并能达到较高的识别率.
Geometrical charged-particle optics
Rose, Harald
2012-01-01
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...
Autophoretic locomotion from geometric asymmetry
Michelin, Sebastien
2015-01-01
Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically-homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.
Geometric interpretation of phyllotaxis transition
Okabe, Takuya
2012-01-01
The original problem of phyllotaxis was focused on the regular arrangements of leaves on mature stems represented by common fractions such as 1/2, 1/3, 2/5, 3/8, 5/13, etc. The phyllotaxis fraction is not fixed for each plant but it may undergo stepwise transitions during ontogeny, despite contrasting observation that the arrangement of leaf primordia at shoot apical meristems changes continuously. No explanation has been given so far for the mechanism of the phyllotaxis transition, excepting suggestion resorting to genetic programs operating at some specific stages. Here it is pointed out that varying length of the leaf trace acts as an important factor to control the transition by analyzing Larson's diagram of the procambial system of young cottonwood plants. The transition is interpreted as a necessary consequence of geometric constraints that the leaf traces cannot be fitted into a fractional pattern unless their length is shorter than the denominator times the internode.
On chromatic and geometrical calibration
DEFF Research Database (Denmark)
Folm-Hansen, Jørgen
1999-01-01
we present the implementation of a complete calibration method for an accurate colour texture measurement device called VMX2000, the calibration for uneven laser sheet illumination in a flow measuring system and the use of automatic detection of calibration targets for a DLT/warping in a 3D PIV......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...
LUNGEOMETRY- GEOMETRICAL INVESTIGATION OF LUNGE
Directory of Open Access Journals (Sweden)
R.Vinodh Rajkumar
2015-02-01
Full Text Available Physiotherapists must learn the biomechanics of lunge in detail to clearly understand its significance in human life and implement effective training measures to overcome the limiting factors of proper lunge of their clientele. To understand the biomechanical value of every movement, interesting experimental learning methods must be employed to kindle the Physiotherapists to actively take part in research activities from the under-graduate level onwards. Lungeometry is a novel, simple and inexpensive experimental investigation of lunge, applying basic geometrical methods taking near normal lower limb length dimensions and rationale approaches into consideration. Lungeometry can give a foundation to learn other forms of lunges like forward lunge, weighted lunges, lateral lunges. This model of learning biomechanics of movements using fundamental geometry techniques is expected to strongly connect with any futuristic Physiotherapy curricular structure.
Geometric Mean Neutrino Mass Relation
He, Xiao-Gang; Zee, A.
Present experimental data from neutrino oscillations have provided much information about the neutrino mixing angles. Since neutrino oscillations only determine the mass squared differences Δ m2ij = m2i - m2j, the absolute values for neutrino masses mi, can not be determined using data just from oscillations. In this work we study implications on neutrino masses from a geometric mean mass relation m2 = √ {m1m_3} which enables one to determined the absolute masses of the neutrinos. We find that the central values of the three neutrino masses and their 2σ errors to be m1 = (1.58 ± 0.18)meV, m2 = (9.04 ± 0.42)meV, and m3 = (51.8 ± 3.5)meV. Implications for cosmological observation, beta decay and neutrinoless double beta decays are discussed.
Elastic scattering in geometrical model
Plebaniak, Zbigniew; Wibig, Tadeusz
2016-10-01
The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.
Geometric solitons of Hamiltonian flows on manifolds
International Nuclear Information System (INIS)
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution
Geometric Parameter Identification of a 6-DOF Space Robot Using a Laser-Ranger
Wenfu Xu; Hong Liu; Zainan Jiang; Yu Liu
2012-01-01
The geometric parameters of a space robot change with the terrible temperature change in orbit, which will cause the end-effector pose (position and orientation) error of a space robot, and so weakens its operability. With this in consideration, a new geometric parameter identification method is presented based on a laser-ranger attached to the end-effector. Then, independence of the geometric parameters is analyzed, and their identification equations are derived. With the derived identificat...
Experimental Realization of Universal Geometric Quantum Gates with Solid-State Spins
Zu, C.; Wang, W. -B.; L. He; Zhang, W. -G.; Dai, C. -Y.; Wang, F.; Duan, L. -M.
2014-01-01
Experimental realization of a universal set of quantum logic gates is the central requirement for implementation of a quantum computer. An all-geometric approach to quantum computation offered a paradigm for implementation where all the quantum gates are achieved based on the Berry phases and their non-abelian extensions, the holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric appr...
Taoufik Ghabara; Faouzi Ghmari; M. S. Sifaoui
2007-01-01
Geometric optics approximation for emissivity from triangular surfaces was compared with exact scattering predictions from electromagnetic theory. Rigorous electromagnetic scattering theory was numerically formulated based on the differential method. We have used a numerical simulation of the emissivity of gold and tungsten for a wavelength equal 0.55 micron to explore the validity of the geometric optics. Surface parameter domains for the regions of accuracy of the geometric optics approxima...
Guide to Geometric Algebra in Practice
Dorst, Leo
2011-01-01
This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d
Geometric Mathematical Framework for Multibody System Dynamics
Terze, Zdravko; Vrdoljak, Milan; Zlatar, Dario
2010-09-01
The paper surveys geometric mathematical framework for computational modeling of multibody system dynamics. Starting with the configuration space of rigid body motion and analysis of it's Lie group structure, the elements of respective Lie algebra are addressed and basic relations pertinent to geometrical formulations of multibody system dynamics are surveyed. Dynamical model of multibody system on manifold introduced, along with the outline of geometric characteristics of holonomic and non-holonomic kinematical constraints.
3D geometric modelling of hand-woven textile
Shidanshidi, H.; Naghdy, F.; Naghdy, G.; Conroy, D. Wood
2008-02-01
Geometric modeling and haptic rendering of textile has attracted significant interest over the last decade. A haptic representation is created by adding the physical properties of an object to its geometric configuration. While research has been conducted into geometric modeling of fabric, current systems require time-consuming manual recognition of textile specifications and data entry. The development of a generic approach for construction of the 3D geometric model of a woven textile is pursued in this work. The geometric model would be superimposed by a haptic model in the future work. The focus at this stage is on hand-woven textile artifacts for display in museums. A fuzzy rule based algorithm is applied to the still images of the artifacts to generate the 3D model. The derived model is exported as a 3D VRML model of the textile for visual representation and haptic rendering. An overview of the approach is provided and the developed algorithm is described. The approach is validated by applying the algorithm to different textile samples and comparing the produced models with the actual structure and pattern of the samples.
Geometric morphometric analysis reveals sexual dimorphism in the distal femur.
Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert
2016-02-01
An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. PMID:26743712
Geometric methods for estimation of structured covariances
Ning, Lipeng; Georgiou, Tryphon
2011-01-01
We consider problems of estimation of structured covariance matrices, and in particular of matrices with a Toeplitz structure. We follow a geometric viewpoint that is based on some suitable notion of distance. To this end, we overview and compare several alternatives metrics and divergence measures. We advocate a specific one which represents the Wasserstein distance between the corresponding Gaussians distributions and show that it coincides with the so-called Bures/Hellinger distance between covariance matrices as well. Most importantly, besides the physically appealing interpretation, computation of the metric requires solving a linear matrix inequality (LMI). As a consequence, computations scale nicely for problems involving large covariance matrices, and linear prior constraints on the covariance structure are easy to handle. We compare this transportation/Bures/Hellinger metric with the maximum likelihood and the Burg methods as to their performance with regard to estimation of power spectra with spectr...
Hydrodynamic Nambu Brackets derived by Geometric Constraints
Blender, Richard
2015-01-01
A geometric approach to derive the Nambu brackets for ideal two-dimensional (2D) hydrodynamics is suggested. The derivation is based on two-forms with vanishing integrals in a periodic domain, and with resulting dynamics constrained by an orthogonality condition. As a result, 2D hydrodynamics with vorticity as dynamic variable emerges as a generic model, with conservation laws which can be interpreted as enstrophy and energy functionals. Generalized forms like surface quasi-geostrophy and fractional Poisson equations for the stream-function are also included as results from the derivation. The formalism is extended to a hydrodynamic system coupled to a second degree of freedom, with the Rayleigh-B\\'{e}nard convection as an example. This system is reformulated in terms of constitutive conservation laws with two additive brackets which represent individual processes: a first representing inviscid 2D hydrodynamics, and a second representing the coupling between hydrodynamics and thermodynamics. The results can b...
Oscillating Filaments: I - Oscillation and Geometrical Fragmentation
Gritschneder, Matthias; Burkert, Andreas
2016-01-01
We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...
Geometrical rectification of spin-scan images from Pioneer 11
Strickland, R. N.; Burke, J. J.
1980-01-01
Images of Saturn received from Pioneer 11 suffer from geometrical distortions due to the curvilinear scan lines and the unequal sampling intervals in orthogonal directions, which are inherent in spin-scan imaging. In this paper geometrical image rectification by polynomial transformation based on control points is discussed. Factors that affect the accuracy of reconstruction are shown to include the spatial distribution and spatial density of control points, and the order of the polynomial distortion model. A computer implementation of the technique is described.
Geometric registration and rectification of spaceborne SAR imagery
Curlander, J. C.; Pang, S. N.
1982-01-01
This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.
Hadronic and elementary multiplicity distributions in a geometrical approach
Valin, P; Menon, M J
2000-01-01
We construct the hadronic multiplicity distribution in terms of an elementary distribution (at given impact parameter) and the inelastic overlap function characterized by the observed BEL (Blacker-Edgier-Larger) behaviour. With suitable parametrizations for the elementary quantities, based on some geometrical arguments and the most recent data on e+e- annihilation, an excellent description of pp and p(bar)p inelastic multiplicity distributions at the highest energies is obtained. With this approach, we quantitatively correlate the violations of scalings in multiplicity distributions (Koba-Nielsen-Olesen) and elastic scattering (Geometrical) at high energies.
Geometrical frustration in an element solid: (beta)-rhombohedral boron
Energy Technology Data Exchange (ETDEWEB)
Ogitsu, T; Gygi, F; Reed, J; Udagawa, M; Motome, Y; Schwegler, E; Galli, G
2009-05-19
Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration.
An Improved Method of Geometric Hashing Pattern Recognition
Ling Ma; Yumin Liu; Huiqin Jiang; Zhongyong Wang; Haofei Zhou
2011-01-01
Geometric hashing (GH) is a general model-based recognition scheme. GH is widely used in the industrial products assembly and inspection tasks. The aim of this study is to speed up the geometric hashing pattern recognition method for the purpose of real-time object detection applications. In our method, a pattern is decomposed into some sub-patterns to reduce the data number in hash table bins. In addition, the sub-patterns are recorded in a plurality of hash tables. Finally we improve the re...
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Report on Workshop on Geometric Scattering
DEFF Research Database (Denmark)
As part of the activities of MaPhySto a workshop on geometric scattering was organized at University of Aarhus, November 5-7, 1998. The workshop was narrowly focused on geometric scattering, and in particular the use of geometric scattering in understanding the structure of the scattering operator...... for the quantum mechanical many-body problem. A number of other questions were also discussed in detail, including the resonances and various geometric questions. This report includes the program of the workshop, a collection of previews, abstracts, and reports on the lectures, with extensive...
Numerical and experimental investigation of geometric parameters in projection welding
DEFF Research Database (Denmark)
Kristensen, Lars; Zhang, Wenqi; Bay, Niels
2000-01-01
to show the temperature distribution using the different geometric parameters. The numerical simulations with SORPAS can explain the differences in the welding lobes and bond strength. This shows SORPAS as a strong tool in the product development of workpieces for resistance projection welding. Based......Resistance projection welding is widely used for joining of workpieces with almost any geometric combination. This makes standardization of projection welding impossible. In order to facilitate industrial applications of projection welding, systematic investigations are carried out on the geometric...... parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...
GEOMETRIC METHOD OF SEQUENTIAL ESTIMATION RELATED TO MULTINOMIAL DISTRIBUTION MODELS
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG; LISHOUYE
1995-01-01
In 1980's differential geometric methods are successfully used to study curved expomential families and normal nonlinear regression models.This paper presents a new geometric structure to study multinomial distribution models which contain a set of nonlinear parameters.Based on this geometric structure,the suthors study several asymptotic properties for sequential estimation.The bias,the variance and the information loss of the sequential estimates are given from geomentric viewpoint,and a limit theorem connected with the observed and expected Fisher information is obtained in terms of curvatvre measures.The results show that the sequential estimation procednce has some better properties which are generally impossible for nonsequential estimation procedures.
The Kustaanheimo-Stiefel transformation in geometric algebra
Bartsch, T
2003-01-01
The Kustaanheimo-Stiefel (KS) transformation maps the non-linear and singular equations of motion of the three-dimensional Kepler problem to the linear and regular equations of a four-dimensional harmonic oscillator. It is used extensively in studies of the perturbed Kepler problem in celestial mechanics and atomic physics. In contrast to the conventional matrix-based approach, the formulation of the KS transformation in the language of geometric Clifford algebra offers the advantages of a clearer geometrical interpretation and greater computational simplicity. It is demonstrated that the geometric algebra formalism can readily be used to derive a Lagrangian and Hamiltonian description of the KS dynamics in arbitrary static electromagnetic fields. For orbits starting at the Coulomb centre, initial conditions are derived and a framework is set up that allows a discussion of the stability of these orbits.
Geometric descriptions of entangled states by auxiliary varieties
International Nuclear Information System (INIS)
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n+ 1), for n⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
Gaussian geometric discord in terms of Hellinger distance
Energy Technology Data Exchange (ETDEWEB)
Suciu, Serban, E-mail: serban.suciu@theory.nipne.ro; Isar, Aurelian [National Institute of Physics and Nuclear Engineering, P.O.Box MG-6, Bucharest-Magurele (Romania)
2015-12-07
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptotically to zero in time under the effect of the thermal bath.
A geometric crescent model for black hole images
Kamruddin, Ayman Bin
2013-01-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimetre wavelengths, is spatially resolving the immediate environments of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), and M87 have been interpreted in terms of either geometric models (e.g., a symmetric Gaussian) or detailed calculations of the appearance of black hole accretion flows. The former are not physically motivated, while the latter are subject to large systematic uncertainties. Motivated by the dominant relativistic effects of Doppler beaming and gravitational lensing in many calculations, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A* and M87, superior to other geometric models for Sgr A*. It also qualitatively matches physically predicted models, bridging accretion theory and observation. Based on our r...
Geometrical Constructions in Dynamic and Interactive Mathematics Learning Environment
Kondratieva, Margo
2013-01-01
This paper concerns teaching Euclidean geometry at the university level. It is based on the authors' personal experience. It describes a sequence of learning activities that combine geometrical constructions with explorations, observations, and explanations of facts related to the geometry of triangle. Within this approach, a discussion of the…
The Double Cone: A Mechanical Paradox or a Geometrical Constraint?
Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2011-01-01
In the framework of the Italian National Plan "Lauree Scientifiche" (PLS) in collaboration with secondary schools, we have investigated the mechanical paradox of the double cone. We have calculated the geometric condition for obtaining an upward movement. Based on this result, we have built a mechanical model with a double cone made of aluminum…
Experimental Data and Geometric Analysis Repository-EDGAR
Aras, K.; Good, W.; Tate, J.; Burton, B.; Brooks, D.; Coll-Font, J.; Doessel, O.; Schulze, W.; Potyagaylo, D.; Wang, L.; Dam, P.M. van; MacLeod, R.
2015-01-01
INTRODUCTION: The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project i
Directory of Open Access Journals (Sweden)
Natalja Kurbatova
2013-05-01
Full Text Available IsoCleft Finder is a web-based tool for the detection of local geometric and chemical similarities between potential small-molecule binding cavities and a non-redundant dataset of ligand-bound known small-molecule binding-sites. The non-redundant dataset developed as part of this study is composed of 7339 entries representing unique Pfam/PDB-ligand (hetero group code combinations with known levels of cognate ligand similarity. The query cavity can be uploaded by the user or detected automatically by the system using existing PDB entries as well as user-provided structures in PDB format. In all cases, the user can refine the definition of the cavity interactively via a browser-based Jmol 3D molecular visualization interface. Furthermore, users can restrict the search to a subset of the dataset using a cognate-similarity threshold. Local structural similarities are detected using the IsoCleft software and ranked according to two criteria (number of atoms in common and Tanimoto score of local structural similarity and the associated Z-score and p-value measures of statistical significance. The results, including predicted ligands, target proteins, similarity scores, number of atoms in common, etc., are shown in a powerful interactive graphical interface. This interface permits the visualization of target ligands superimposed on the query cavity and additionally provides a table of pairwise ligand topological similarities. Similarities between top scoring ligands serve as an additional tool to judge the quality of the results obtained. We present several examples where IsoCleft Finder provides useful functional information. IsoCleft Finder results are complementary to existing approaches for the prediction of protein function from structure, rational drug design and x-ray crystallography. IsoCleft Finder can be found at: http://bcb.med.usherbrooke.ca/isocleftfinder.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Geometric picture of quantum discord for two-qubit quantum states
Shi, Mingjun; Sun, Chunxiao; Du, Jiangfeng
2011-01-01
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship wit...
Doing Socrates experiment right: controlled rearing studies of geometrical knowledge in animals.
Vallortigara, Giorgio; Sovrano, Valeria Anna; Chiandetti, Cinzia
2009-02-01
The issue of whether encoding of geometric information for navigational purposes crucially depends on environmental experience or whether it is innately predisposed in the brain has been recently addressed in controlled rearing studies. Non-human animals can make use of the geometric shape of an environment for spatial reorientation and in some circumstances reliance on purely geometric information (metric properties and sense) can overcome use of local featural information. Animals reared in home cages of different geometric shapes proved to be equally capable of learning and performing navigational tasks based on geometric information. The findings suggest that effective use of geometric information for spatial reorientation does not require experience in environments with right angles and metrically distinct surfaces.
Research on HJ-1A/B satellite data automatic geometric precision correction design
Institute of Scientific and Technical Information of China (English)
Xiong Wencheng; Shen Wenming; Wang Qiao; Shi Yuanli; Xiao Rulin; Fu Zhuo
2014-01-01
Developed independently by China,HJ-1A/B satellites have operated well on-orbit for five years and acquired a large number of high-quality observation data. The realization of the observation data geometric precision correction is of great significance for macro and dynamic ecological environment monitoring. The pa-per analyzed the parameter characteristics of HJ-1 satellite and geometric features of HJ-1 satellite level 2 data (systematic geo-corrected data). Based on this,the overall HJ-1 multi-sensor geometric correction flow and charge-coupled device (CCD) automatic geometric precision correction method were designed. Actual operating data showed that the method could achieve good result for automatic geometric precision correction of HJ-1 sat-ellite data,automatic HJ-1 CCD image geometric precision correction accuracy could be achieved within two pixels and automatic matching accuracy between the images of same satellite could be obtained less than one pixel.
Geometrical aspects of quantum spaces
Energy Technology Data Exchange (ETDEWEB)
Ho, P.M. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group
1996-05-11
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S{sub 1}{sup 2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S{sub q}{sup 2} and CP{sub q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP{sub q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.
Geometric aspects of dibaryon operators
Beil, Charlie
2008-01-01
The AdS/CFT correspondence for N=1 Super conformal field theories suggests that dibaryon operators are dual to D-brane states that are point like in AdS and that wrap various cycles in a Sasaki-Einstein manifold. It also suggests that the volume of the D-brane gives the R-charge of the corresponding operator. We elucidate various aspects of this correspondence, paying particular care to study the case of branes at the tip of three different Calabi Yau cones. We show that the arrows in the quiver diagram describing the conformal field theory can be thought of as global sections of a non-trivial holomorphic vector bundle over the Calabi-Yau geometry. We suggest that the zero locus of these sections gives the geometric map that lets us tie a particular dibaryon to a holomorphic cycle, by intersecting the corresponding cycle with the Sasaki-Einstein locus at fixed distance from the origin. We show that this can be compared with the corresponding volumes of the Sasaki-Einstein space and that one gets exact agreeme...
Geometric reasoning about assembly tools
Energy Technology Data Exchange (ETDEWEB)
Wilson, R.H.
1997-01-01
Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.
Simulating geometrically complex blast scenarios
Directory of Open Access Journals (Sweden)
Ian G. Cullis
2016-04-01
Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.
Simulating geometrically complex blast scenarios
Institute of Scientific and Technical Information of China (English)
Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD
2016-01-01
The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.
On the Geometric Transformations and Auxetic Materials
Directory of Open Access Journals (Sweden)
Veturia Chiroiu
2011-09-01
Full Text Available A new approach to obtain various architectures for auxetic foams by using the property of Helmholtz equation to be invariant under geometric transformations is described in this paper. The versatility of the geometric transformations is illustrated in order to obtain the auxetic version from the conventional foam.
Some technical issues in geometric modeling
Energy Technology Data Exchange (ETDEWEB)
Peterson, D.P.
1983-01-01
The full impact of CAD/CAM will not be felt until geometric modeling systems support dimensioning and tolerancing, have sophisticated user interfaces, and are capable of routinely handling many representation conversions. The attainment of these capabilities requires a joint effort among users, implementors, and theoreticians of geometric modeling.
Geometrical description of denormalized thermodynamic manifold
Institute of Scientific and Technical Information of China (English)
Wu Li-Ping; Sun Hua-Fei; Cao Li-Mei
2009-01-01
In view of differential geometry,the state space of thermodynamic parameters is investigated. Here the geometrical structures of the denormalized thermodynamic manifold are considered. The relation of their geometrical metrics is obtained. Moreover an example is used to illustrate our conclusions.
Gaining Insights into Children's Geometric Knowledge
Mack, Nancy K.
2007-01-01
This article describes how research on children's geometric thinking was used in conjunction with the picture book "The Greedy Triangle" to gain valuable insights into children's prior geometric knowledge of polygons. Exercises focused on the names, visual appearance, and properties of polygons, as well as real-world connections for each, are…
On geometric Langlands theory and stacks
Poirier, Cécile Florence Christine
2008-01-01
R.Langlands conjectured the existence of a bridge between two parts of number theory. This correspondence, called 'Langlands conjecture' was proved by L. Lafforgue who obtained a Fields medal for his work. G. Laumon gave a geometric translation of a part of the theorem, called 'geometric Langlands c
Geometric configuration in robot kinematic design
Rooney, Joe
2006-01-01
A lattice of geometries is presented and compared for representing some geometrical aspects of the kinematic design of robot systems and subsystems. Three geometries (set theory, topology and projective geometry) are briefly explored in more detail in the context of three geometric configurations in robotics (robot groupings, robot connectivities and robot motion sensor patterns).
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Variance optimal stopping for geometric Levy processes
DEFF Research Database (Denmark)
Gad, Kamille Sofie Tågholt; Pedersen, Jesper Lund
2015-01-01
The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore...
Geometrical splitting and reduction of Feynman diagrams
Davydychev, Andrei I
2016-01-01
A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.
一种基于几何特征的表情相似性度量方法%A Similarity Measurement Method of Facial Expression Based on Geometric Features
Institute of Scientific and Technical Information of China (English)
黄忠; 胡敏; 王晓华
2015-01-01
在表演驱动、表情克隆等人脸动画中，需要寻找最相似表情以提高动画真实感和逼真度。基于面部表情几何特征提出一种特征加权的表情相似性度量方法。首先，在主动外观模型上，利用链码描述各区域的形状特征以刻画局部表情细节，并根据区域特征点间的拓扑关系构建形变特征以反映整体表情信息。然后，采用特征加权方式对融合的几何特征进行相似性度量，并将权重的求解过程转化为加权目标函数最小化。最后，利用求解的权重以及特征加权函数度量表情间的相似性，寻找与之最相似的表情图像。在BU-3DFE数据库和FEEDTUM数据库上的实验结果表明，该方法在寻找相似表情的正确率方面明显高于现有的度量方法，并且对不同类型、不同强度的表情描述保持较好鲁棒性，尤其在嘴型、脸颊收缩、嘴开合幅度等表情细节维持较高相似度。%In facial animations such as performance-driven and expression cloning, it needs to find the most similar expression to enhance the reality and fidelity of animations. A feature-weighted expression similarity measurement method is proposed based on facial geometric features. Firstly, chain code is used to characterize shape features for local expression regions, meanwhile deformation features are built based on topological relations among regional feature points to reflect holistic expression information. Then, feature-weighted method is adopted to measure the similarities of fused geometric features, and the solving process of feature weights is transformed to minimizing process of the weighted objective function. Finally, the solved weights as well as feature weighting functions are performed to measure similarities between two expressions and seek the most similar image with a input expression image. The experimental results on BU-3 DFE database and FEEDTUM database show that the proposed method
Institute of Scientific and Technical Information of China (English)
张义德; 关威
2011-01-01
在二维情况下,如果地质结构的分界面为一条有固定斜率的斜线,则反演该界面时所需要确定的参数可以归结为两个:一个是界面上的反射点,另一个是界面的斜率.依据Snell定理,利用源点与反射波最短路径点之间的几何关系,导出一种快速反演斜界面的方法.作为算例,首先利用时域有限差分法对一个二维倾斜界面模型进行了数值模拟,而后利用该方法进行反演,界面位置误差在1％以内.%In two-dimensional space, if an interface of geologic structure has one fixed slope, then only two parameters needs to determined for the inversion of the interface. One is a reflect point in it, and another is the slope. Using the geometrical relationship between the source point and the fastest travel point of the reflect wave, a quick inversion algorithm was gained based on Snell theorem. At last, some examples of numerical simulation were given and it is very good. The inversion data was got from a two-dimensional model with a slope interface using FDTD.
Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity.
Directory of Open Access Journals (Sweden)
Carly C Ginter
Full Text Available Vibrissae (whiskers are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC, which
Evans, Michael A.; Feenstra, Eliot; Ryon, Emily; McNeill, David
2011-01-01
Our research aims to identify children's communicative strategies when faced with the task of solving a geometric puzzle in CSCL contexts. We investigated how to identify and trace "distributed cognition" in problem-solving interactions based on discursive cohesion to objects, participants, and prior discursive content, and geometric and…
Capolupo, A; Hiesmayr, B C; Vitiello, G
2016-01-01
We analize the non-cyclic geometric phase for neutrinos propagating in the matter and through a magnetic field. We find that the geometric phase and the total phase associated to the mixing phenomenon and to the neutrino spin rotation can represent a tool to distinguish between Dirac and Majorana neutrinos. Future experiments, based on interferometry, therefore could reveal the nature of neutrinos.
Characterizations of the Extended Geometric, Harris, Negative Binomial and Gamma Distributions
Sandhya, E.; Sherly, S; Jos, M K; N. Raju
2005-01-01
Extended geometric distribution is defined and its mixture is characterized by the property of having completely monotone probability sequence. Also, convolution equations and probability generating functions are used to characterize extended geometric distributions. Further, some characterizations of Harris and negative binomial distributions based on probability generating functions are obtained. Relations between these distributions are derived and finally a gamma distribution is character...
Rahman, T.
2009-01-01
In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft
Institute of Scientific and Technical Information of China (English)
纪娟; 秦珂; 杨若瑜
2016-01-01
随着人们对服装产品多元化需求的增强，无论是对于经营者还是消费者，服装分类都显得十分必要。现有方法大都基于服装整体做出处理，而忽略了服装细节要素的特征。提出针对服装细节，如衣领类型、袖子和下装长度等进行识别分类方法。在轮廓提取的基础上，针对衣领位置不确定、领口形状受周边花纹干扰等难点，设计了在多尺度 HOG 结果上进行投票的方法，并结合基于角点检测的几何特征提取如关键尺寸比例计算等，用 SVM 完成训练分类。最后利用多个特征搭配系数矩阵给出服装搭配建议。实验表明，该方法能够有效地完成上述服装细节要素分类，对自动搭配推荐也有一定实用价值。%Due to the increased demand for the diversification of clothing products, clothes classification is very necessary, no matter for operators or consumers. Existing methods usually solve the problem based on the whole clothes, paying little attention to the detail features on the clothes. Therefore, identifying and classifying the detail features of clothes are emphasized in this paper such as the type of collar, the length of sleeves and the trousers or the dresses. Based on the contour extraction, the paper proposes the voting strategy for the results gained from multi-scale HOG features. Also the geometric features are used based on corner detection, solving problems like collar position uncertainty, neckline shape interference caused by surrounding patterns and so on. Then, SVM classifier is used to get the final results. After that, some advice is also provided on costume matching using multiple coefficient matrixes of features matching. Experiments show that our method is effective for classifying some mentioned detail features. Also, it shows some practical value for the automatic matching recommendation.
Online measurement for geometrical parameters of locomotive wheel set
Wu, Kaihua; Li, Zhengjie; Ban, Tao
2009-11-01
Locomotive is the most important parts of a train. Wheel set is the major running components of a locomotive. Wheel set tread is the contacting part with the rail and tread will be worn down gradually. The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. The measurement of wheel set wear is usually static and by handwork, which limits the accuracy and reliability. An automatic measurement method for geometrical parameters of locomotive wheel set based on optoelectronic technique was proposed. Geometrical parameters include flange thickness, flange height and rim inside distance. Linear structured laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD. Precision hardware time-delay and asynchronous reset pulse generation circuits were designed. The entire time sequence of asynchronous reset was researched. Images were acquired only when wheel sets moved into the designed position. The image acquisition was fulfilled by hardware interrupt mode. The measuring system was installed along the straight railway section. When the locomotive was running in a limited speed, the devices placed alone railway line can measure the geometrical parameters automatically.
Wide-area Power System Stabilizer Design Based on Joint Geometric Index%基于综合几何指标的广域电力系统稳定器设计
Institute of Scientific and Technical Information of China (English)
陈刚; 程林; 孙元章; Anjan BOSE
2013-01-01
选择适当的控制器落点和反馈信号是广域电力系统稳定器(WPSS)设计的一个关键步骤.而作为应用最为广泛的留数法,在面对多种不同类型备选信号时会因为不同类型信号幅值比例问题而失效.文中采用基于系统可观性和可控性的综合几何指标来选择控制器的落点和反馈信号,能够有效克服留数法的缺陷.重点讨论了在考虑实际电网量测和通信要求条件下的广域反馈信号选择问题,把反馈输入备选信号范围扩大到线路功率、母线频率偏差、区域惯性中心角差、机端功率及发电机角频率等.研究表明,联络线有功功率最适合作为WPSS的反馈输入信号.最后,结合设计控制器参数的留数相位补偿法完成WPSS的设计.2区4机系统算例详细说明了WPSS的设计过程,表明所提出的方法能够从不同类型的反馈信号中选择最优的信号.数值仿真结果表明,按照该方法设计的WPSS能够有效提高电网稳定性,抑制区间模式低频振荡.%The selection of control locations and feedback signals is a key step in designing wide-area power system stabilizers (WPSSs). The residue method, which is the most commonly used method to select locations and feedback signals, suffers a scaling problem when comparing different signals. The joint observability/controllability geometric index is used to select the most effective stabilizing signals and control locations. The observability of different types of signals such as tieline active power flows, bus voltage angle differences, center-of-inertia (COI) difference between areas, generator output powers and generator rotor speeds are considered in this method. The tie-line active powers are found to be the most effective input signals, considering the requirement of measurement devices and communication channels in actual power systems. Taking a 2-area power system as case study, the joint geometric index based WPSS design procedure is
Robust image watermarking scheme against geometric attacks using a computer-generated hologram.
Li, Jianzhong
2010-11-10
Robustness against geometric attacks is one of the most important issues in digital watermarking. A novel geometric robust watermarking scheme that uses computer-generated holograms as the watermark is presented. To maintain imperceptibility and robustness, a quantization embedding algorithm is adopted to embed the mark hologram into the low-frequency subband of the wavelet-transformed host image. In the detection process, the geometric distorted watermarked images are recovered first by the proposed improved geometric correction method, which is based on the scale invariant feature transform, the invariant centroid, and the pulse coupled neural network. Then the mark holograms are extracted from the recovered images. In comparison with the traditional geometric estimation method, the suggested improved geometric correction method can estimate the geometric distortion parameters more accurately and needs less auxiliary information. Compared with other watermark schemes using digital holograms, the proposed method has the distinct advantage of robustness to geometric attacks. The experimental results demonstrate that the proposed method has good robustness to resist geometric attacks and common attacks including rotation, scaling, translation, image flipping, combined attacks, filtering, occlusion, cropping, and JPEG compression.
Process for computing geometric perturbations for probabilistic analysis
Energy Technology Data Exchange (ETDEWEB)
Fitch, Simeon H. K. (Charlottesville, VA); Riha, David S. (San Antonio, TX); Thacker, Ben H. (San Antonio, TX)
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach
Kandemir, Irfan; Özkan, Ayça; FUCHS, Stefan
2011-01-01
International audience In the present study, the microtaxonomy of honeybee (Apis mellifera L.) subspecies was reevaluated based on a geometric morphometric method. Wing images of honeybee subspecies, obtained from the Morphometric Bee Data Bank in Oberursel, Germany, were assigned to four honeybee lineages from the indivudial images, and 40 Cartesian coordinates were obtained. Honeybee lineages were significantly different based on individual and colony consensus average wing shapes of hon...
Noncyclic geometric phase for neutrino oscillation
Wang, X B; Liu, Y; Oh, C H; Wang, Xiang-Bin; Liu, Yong
2001-01-01
We provide explicit formulae for the noncyclic geometric phases or Pancharatnam phases of neutrino oscillations. Since Pancharatnam phase is a generalization of the Berry phase, our results generalize the previous findings for Berry phase in a recent paper [Phys. Lett. B, 466 (1999) 262]. Unlike the Berry phase, the noncyclic geometric phase offers distinctive advantage in terms of measurement and prediction. In particular, for three-flavor mixing, our explicit formula offers an alternative means of determining the CP-violating phase. Our results can also be extended easily to explore geometric phase associated with neutron-antineutron oscillations.
A Geometric Characterization of Arithmetic Varieties
Indian Academy of Sciences (India)
Kapil Hari Paranjape
2002-08-01
A result of Belyi can be stated as follows. Every curve defined over a number field can be expressed as a cover of the projective line with branch locus contained in a rigid divisor. We define the notion of geometrically rigid divisors in surfaces and then show that every surface defined over a number field can be expressed as a cover of the projective plane with branch locus contained in a geometrically rigid divisor in the plane. The main result is the characterization of arithmetically defined divisors in the plane as geometrically rigid divisors in the plane.
The Geometric Field at a Josephson Junction
Atanasov, Victor
2016-01-01
A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.
Geometric phase mediated topological transport of sound vortices
Wang, Shubo; Chan, C T
2016-01-01
When a physical system undergoes a cyclic evolution, a non-integrable phase can arise in addition to the normal dynamical phase. This phase, depending only on the geometry of the path traversed in the parameter space and hence named geometric phase, has profound impact in both classical and quantum physics, leading to exotic phenomena such as electron weak anti-localization and light spin-Hall effect. Experimental observations of the geometric phase effect in classical system are typically realized using vector waves such as light characterized by a polarization. We show here that such an effect can also be realized in scalar wave systems such as sound wave. Using a helical hollow waveguide, we show that the geometric phase effect associated with the transportation of sound vortices, i.e. sound wave carrying intrinsic orbital angular momentum, can serve as a potential mechanism to control the flow of sound vortices with different topological charges, resulting in geometric phase-based sound vortex filters.
Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns
Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team
Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.
Exotic geometric structures on Kodaira surfaces
McKay, Benjamin
2012-01-01
On all compact complex surfaces (modulo finite unramified coverings), we classify all of the locally homogeneous geometric structures which are locally isomorphic to the exotic homogeneous surfaces of Lie.
Study on the Grey Polynomial Geometric Programming
Institute of Scientific and Technical Information of China (English)
LUODang
2005-01-01
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory,and using some analysis strategies, a model of grey polynomial geometric programming, a model of 8 positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem.This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.
Machine Learning and Geometric Technique for SLAM
Bernal-Marin, Miguel; Bayro-Corrochano, Eduardo
This paper describes a new approach for building 3D geometric maps using a laser rangefinder, a stereo camera system and a mathematical system the Conformal Geometric Algebra. The use of a known visual landmarks in the map helps to carry out a good localization of the robot. A machine learning technique is used for recognition of objects in the environment. These landmarks are found using the Viola and Jones algorithm and are represented with their position in the 3D virtual map.
Geometrical expression of excess entropy production.
Sagawa, Takahiro; Hayakawa, Hisao
2011-11-01
We derive a geometrical expression of the excess entropy production for quasistatic transitions between nonequilibrium steady states of Markovian jump processes, which can be exactly applied to nonlinear and nonequilibrium situations. The obtained expression is geometrical; the excess entropy production depends only on a trajectory in the parameter space, analogous to the Berry phase in quantum mechanics. Our results imply that vector potentials are needed to construct the thermodynamics of nonequilibrium steady states. PMID:22181372
Geometric Algorithms for Cleanability in Manufacturing
Yasui, Yusuke
2011-01-01
This thesis describes geometric algorithms to check the cleanability of a design during the manufacturing process. The automotive industry needs a computational tool to determine how to clean their products due to the trend of miniaturization and increased geometric complexity of mechanical parts. A newly emerging concept in a product design, Design-for-Cleanability, necessitates algorithms to help designers to design parts that are easy to clean during the manufacturing process. In this thes...
Visually Guided Robotics Using Conformal Geometric Computing
Bayro-Corrochano, Eduardo; Falcon-Morales, Luis Eduardo; Zamora-Esquivel, Julio
2007-01-01
In this chapter the authors have used a single non?standard mathematical framework, the Conformal Geometric Algebra, in order to simplify the set of data structures that we usually use with the traditional methods. The key idea is to define and use a set of products in CGA that will be enough to generate conformal transformations, manifolds as ruled surfaces and develop incidence algebra operations, as well as solve equations and obtain directed distances between different kinds of geometric ...
Institute of Scientific and Technical Information of China (English)
徐辉; 李济顺; 雷贤卿
2011-01-01
According to operation and operator technology in new generation GPS (Geometrical Product Specification and Verification), fast geometric approximation algorithm is introduced to evaluate the spatial straightness error as a new method. Under the principle of minimum zone, the mathematical model of spatial straightness error and the optimal objective function are given. The method is simple, no complicated math, easy to program on computer and can obtain precise ideal centerline which meet the definition of GPS.%基于新一代产品几何技术规范(Geometrical Product Specification and Verification,GPS)的操作及操作算子技术提出了一种新的空间直线度评定方法--快速几何逼近算法.按照最小区域的原则,给出了空间直线度快速几何逼近算法的数学模型及优化目标.该算法原理简单,没有复杂的数学运算,易于计算机编程实现,可精确求解符合GPS定义的理想中心线位置.
Geometric investigation of a gaming active device
Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica
2011-07-01
3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.
Geometric Methods in Physics : XXXIII Workshop
Bieliavsky, Pierre; Odzijewicz, Anatol; Schlichenmaier, Martin; Voronov, Theodore
2015-01-01
This book presents a selection of papers based on the XXXIII Białowieża Workshop on Geometric Methods in Physics, 2014. The Białowieża Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Białowieża Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Białowieża forest in eastern Poland. The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and m...
Geometric characterization of the Arjuna orbital domain
Marcos, C de la Fuente
2014-01-01
Arjuna-type orbits are characterized by being Earth-like, having both low-eccentricity and low-inclination. Objects following these trajectories experience repeated trappings in the 1:1 commensurability with the Earth and can become temporary Trojans, horseshoe librators, quasi-satellites, and even transient natural satellites. Here, we review what we know about this peculiar dynamical group and use a Monte Carlo simulation to characterize geometrically the Arjuna orbital domain, studying its visibility both from the ground and with the European Space Agency Gaia spacecraft. The visibility analysis from the ground together with the discovery circumstances of known objects are used as proxies to estimate the current size of this population. The impact cross-section of the Earth for minor bodies in this resonant group is also investigated. We find that, for ground-based observations, the solar elongation at perigee of nearly half of these objects is less than 90 degrees. They are best observed by space-borne te...
Studying avian encephalization with geometric morphometrics.
Marugán-Lobón, Jesús; Watanabe, Akinobu; Kawabe, Soichiro
2016-08-01
Encephalization is a core concept in comparative neurobiology, aiming to quantify the neurological capacity of organisms. For measuring encephalization, many studies have employed relative brain sizes corrected for expected allometric scaling to body size. Here we highlight the utility of a multivariate geometric morphometric (GM) approach for visualizing and analyzing neuroanatomical shape variation associated with encephalization. GM readily allows the statistical evaluation of covariates, such as size, and many software tools exist for visualizing their effects on shape. Thus far, however, studies using GM have not attempted to translate the meaning of encephalization to shape data. As such, we tested the statistical relationship between size and encephalization quotients (EQs) to brain shape utilizing a broad interspecific sample of avian endocranial data. Although statistically significant, the analyses indicate that allometry accounts for <10% of total neuroanatomical shape variation. Notably, we find that EQs, despite being corrected for allometric scaling based on size, contain size-related neuroanatomical shape changes. In addition, much of what is traditionally considered encephalization comprises clade-specific trends in relative forebrain expansion, particularly driven by landbirds. EQs, therefore, fail to capture 90% of the total neuroanatomical variation after correcting for allometry and shared phylogenetic history. Moving forward, GM techniques provide crucial tools for investigating key drivers of this vast, largely unexplored aspect of avian brain morphology. PMID:27112986
Geometric morphometrics of hominoid infraspinous fossa shape.
Green, David J; Serrins, Jesse D; Seitelman, Brielle; Martiny, Amy R; Gunz, Philipp
2015-01-01
Recent discoveries of early hominin scapulae from Ethiopia (Dikika, Woranso-Mille) and South Africa (Malapa) have motivated new examinations of the relationship between scapular morphology and locomotor function. In particular, infraspinous fossa shape has been shown to significantly differ among hominoids. However, this region presents relatively few homologous landmarks, such that traditional distance and angle-based methods may oversimplify this three-dimensional structure. To more thoroughly assess infraspinous fossa shape variation as it relates to function among adult hominoid representatives, we considered two geometric morphometric (GM) approaches--one employing five homologous landmarks ("wireframe") and another with 83 sliding semilandmarks along the border of the infraspinous fossa. We identified several differences in infraspinous fossa shape with traditional approaches, particularly in superoinferior fossa breadth and scapular spine orientation. The wireframe analysis reliably captured the range of shape variation in the sample, which reflects the relatively straightforward geometry of the infraspinous fossa. Building on the traditional approach, the GM results highlighted how the orientation of the medial portion of the infraspinous fossa differed relative to both the axillary border and spine. These features distinguished Pan from Gorilla in a way that traditional analyses had not been able to discern. Relative to the wireframe method, the semilandmark approach further distinguished Pongo from Homo, highlighting aspects of infraspinous fossa morphology that may be associated with climbing behaviors in hominoid taxa. These results highlight the ways that GM methods can enhance our ability to evaluate complex aspects of shape for refining and testing hypotheses about functional morphology.
Study of the Geometric Stiffening Effect: Comparison of Different Formulations
Energy Technology Data Exchange (ETDEWEB)
Mayo, Juana M., E-mail: juana@us.es; Garcia-Vallejo, Daniel; Dominguez, Jaime [Universidad de Sevilla, Departamento de Ingenieria Mecanica y de los Materiales (Spain)
2004-05-15
This paper reviews different formulations to account for the stress stiffening or geometric stiffening effect arising from deflections large enough to cause significant changes in the configuration of the system The importance of such effect on many engineering applications, such as the dynamic behavior of helicopter blades, flexible rotor arms, turbine blades, etc., is well known. The analysis is carried out only for one-dimensional elements in 2D.Formulations based on the floating frame of reference approach are computationally very efficient, as the use of the component synthesis method allows for a reduced number of coordinates. However, something must be done for them to account for the geometric stiffening effect. The easiest method is the application of the substructuring technique, because the formulation is not modified. This, however, is not the most efficient approach. In problems where deformation is moderated, the simple inclusion of the geometric stiffness matrix is enough. On the other hand, if the deformation is large, higher-order terms must be included in the strain energy. In order to achieve an efficient and stable formulation, an explicit geometrically nonlinear beam element was developed. The formulations that use absolute coordinates are, generally, computationally more costly than the previous ones, as they must use a large number of degrees of freedom. However, the geometric stiffening effect can be automatically accounted for with these formulations. The aim of this work is to investigate the applicability of the different existing formulations in order to help the user select the right one for his particular application.
Geometric Filtering Effect of Vertical Vibrations in Railway Vehicles
Directory of Open Access Journals (Sweden)
Mădălina Dumitriu
2012-09-01
Full Text Available The paper herein examines the geometric filtering effect coming from the axle base of a railway vehicle upon the vertical vibrations behavior, due to the random irregularities of the track. For this purpose, the complete model of a two-level suspension and flexible carbody vehicle has been taken into account. Following the modal analysis, the movement equations have been treated in an original manner and brought to a structure that points out at the symmetrical and anti-symmetrical decoupled movements of vehicle and their excitation modes. There has been shown that the geometric filtering has a selective behavior in decreasing the level of vibrations, and its contribution is affected by the axle base magnitude, rolling speed and frequency range.
Electronic Geometry Textbook: A Geometric Textbook Knowledge Management System
Chen, Xiaoyu
2010-01-01
Electronic Geometry Textbook is a knowledge management system that manages geometric textbook knowledge to enable users to construct and share dynamic geometry textbooks interactively and efficiently. Based on a knowledge base organizing and storing the knowledge represented in specific languages, the system implements interfaces for maintaining the data representing that knowledge as well as relations among those data, for automatically generating readable documents for viewing or printing, and for automatically discovering the relations among knowledge data. An interface has been developed for users to create geometry textbooks with automatic checking, in real time, of the consistency of the structure of each resulting textbook. By integrating an external geometric theorem prover and an external dynamic geometry software package, the system offers the facilities for automatically proving theorems and generating dynamic figures in the created textbooks. This paper provides a comprehensive account of the curr...
CIME course on Ricci Flow and Geometric Applications
Mantegazza, Carlo
2016-01-01
Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.
Coherent cancellation of geometric phase for the OH molecule in external fields
Marin, M Bhattacharya S
2014-01-01
The OH molecule in its ground state presents a versatile platform for precision measurement and quantum information processing. These applications depend vitally on the accurate measurement of transition energies between the OH levels. Significant sources of systematic errors in these measurements are shifts based on the geometric phase arising from the magnetic and electric fields used for manipulating OH. In this article, we present these geometric phases for fields that vary harmonically in time, as in the Ramsey technique. Our calculation of the phases is exact within the description provided by our recent analytic solution of an effective Stark-Zeeman Hamiltonian for the OH ground state. This Hamiltonian has earlier been shown to model experimental data accurately. We find that the OH geometric phases exhibit rich structure as a function of the field rotation rate. Remarkably, we find rotation rates where the geometric phase accumulated by a specific state is zero, or where the relative geometric phase b...
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Dynamics and Control of Humanoid Robots: A Geometrical Approach
Ivancevic, Vladimir G.; Ivancevic, Tijana T.
2011-01-01
his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on th...
Studying Developmental Variation with Geometric Morphometric Image Analysis (GMIA)
Christine Mayer; Brian D. Metscher; Gerd B Müller; Philipp Mitteroecker
2014-01-01
The ways in which embryo development can vary across individuals of a population determine how genetic variation translates into adult phenotypic variation. The study of developmental variation has been hampered by the lack of quantitative methods for the joint analysis of embryo shape and the spatial distribution of cellular activity within the developing embryo geometry. By drawing from the strength of geometric morphometrics and pixel/voxel-based image analysis, we present a new approach f...
A geometric interpretation of prolongation by means of connections
Bracken, Paul
2010-11-01
A geometric interpretation of prolongation can be formulated by using the theory of connections. A fiber bundle can be established which is composed of a base manifold and variables which span a prolongation space. A particular connection is introduced in terms of these coordinates. This provides a very different way of viewing the technique and for introducing prolongation algebras as well as generating integrable equations in a novel way.
Availability analysis of resilient geometric routing on Internet topology
Sahhaf, Seyedeh Sahel; Tavernier, Wouter; Colle, Didier; Pickavet, Mario; Demeester, Piet
2014-01-01
Scalable routing schemes for large-scale networks, especially future Internet, are required. Geometric routing scheme is a promising candidate to solve the scalability issue of routing tables in conventional IP routing based on longest prefix matching. In this scheme, network nodes are assigned virtual coordinates and packets are forwarded towards their intended destination following a distance-decreasing policy. Dynamics in the network such as node/link failures might affect this forwarding ...
Effect of Geometric Configuration on Tractor Stability Characteristics
LI, ZHEN; Mitsuoka, Muneshi; Inoue, Eiji; Okayasu, Takashi; Hirai, Yasumaru
2016-01-01
In this study, tractor stability was discussed from the aspects of rollover initiation, vertical and lateral vibration characteristics considering tractor dynamics in Phase I overturn. As two of the key geometric parameters of a tractor, track width ratio and wheel base ratio were intro–duced into the mathematical model developed earlier as the independent variables. Results showed that both factors greatly reduced the risk of initializing tractor rollover with their in–creasing values. Highe...
MINIMUM DISCRIMINATION INFORMATION PROBLEMS VIA GENERALIZED GEOMETRIC PROGRAMMING
Institute of Scientific and Technical Information of China (English)
ZhuDetong
2003-01-01
In this paper,the quadratic program problm and minimum discrimiation in formation (MDI) problem with a set of quadratic inequality constraints and entropy constraints of density are considered.Based on the properties of the generalized geometric programming,the dual programs of thses two problems are derived.Furthermore,the duality theorms and related Kuhn-Tucker conditions for two pairs of the prime-dual programs are also established by the duality theory.
Designing for Geometrical Symmetry Exploitation
Directory of Open Access Journals (Sweden)
André Yamba Yamba
2006-01-01
Full Text Available Symmetry-exploiting software based on the generalized Fourier transform (GFT is presented from a practical design point of view. The algorithms and data structures map closely to the relevant mathematical abstractions, which primarily are based upon representation theory for groups. Particular care has been taken in the design of the data layout of the performance-sensitive numerical data structures. The use of a vanilla strategy is advocated for the design of flexible mathematical software libraries: An efficient general-purpose routine should be supplied, to obtain a practical and useful system, while the possibility to extend the library and replace the default routine with a special-purpose – even more optimized – routine should be supported. Compared with a direct approach, the performance results show the superiority of the GFT-based approach for so-called dense equivariant systems. The GFT application is found to be well suited for parallelism.
STUDY ON NEW METHOD OF IDENTIFYING GEOMETRIC ERROR PARAMETERS FOR NC MACHINE TOOLS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.
Geometric U-folds in four dimensions
Lazaroiu, C I
2016-01-01
We describe a general construction of geometric U-folds compatible with the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain fiber bundles which encode how supergravity fields are globally glued together. Smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the configuration of scalar fields of the solution is homotopically non-trivial. Nonetheless, certain geometric U-folds extend to simply-connected backgrounds containing localized sources. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of N=2 supergravity c...
Linearization: Geometric, Complex, and Conditional
Directory of Open Access Journals (Sweden)
Asghar Qadir
2012-01-01
Full Text Available Lie symmetry analysis provides a systematic method of obtaining exact solutions of nonlinear (systems of differential equations, whether partial or ordinary. Of special interest is the procedure that Lie developed to transform scalar nonlinear second-order ordinary differential equations to linear form. Not much work was done in this direction to start with, but recently there have been various developments. Here, first the original work of Lie (and the early developments on it, and then more recent developments based on geometry and complex analysis, apart from Lie’s own method of algebra (namely, Lie group theory, are reviewed. It is relevant to mention that much of the work is not linearization but uses the base of linearization.
Geometric Operators on Boolean Functions
Frisvad, Jeppe Revall; Falster, Peter
2007-01-01
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propo...
Multiple structural alignment and core detection by geometric hashing.
Leibowitz, N; Fligelman, Z Y; Nussinov, R; Wolfson, H J
1999-01-01
A Multiple Structural Alignment algorithm is presented. The algorithm accepts an ensemble of protein structures and finds the largest substructure (core) of C alpha atoms whose geometric configuration appear in all the molecules of the ensemble (core). Both the detection of this core and the resulting structural alignment are done simultaneously. Other large enough multistructural superimpositions are detected as well. Our method is based on the Geometric Hashing paradigm and a superimposition clustering technique which represents superimpositions by sets of matching atoms. The algorithm proved to be efficient on real data in a series of experiments. The same method can be applied to any ensemble of molecules (not necessarily proteins) since our basic technique is sequence order independent.
Geometric entropy and edge modes of the electromagnetic field
Donnelly, William
2015-01-01
We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a longstanding puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.
Network Decomposition and Complexity Measures: An Information Geometrical Approach
Directory of Open Access Journals (Sweden)
Masatoshi Funabashi
2014-07-01
Full Text Available We consider the graph representation of the stochastic model with n binary variables, and develop an information theoretical framework to measure the degree of statistical association existing between subsystems as well as the ones represented by each edge of the graph representation. Besides, we consider the novel measures of complexity with respect to the system decompositionability, by introducing the geometric product of Kullback–Leibler (KL- divergence. The novel complexity measures satisfy the boundary condition of vanishing at the limit of completely random and ordered state, and also with the existence of independent subsystem of any size. Such complexity measures based on the geometric means are relevant to the heterogeneity of dependencies between subsystems, and the amount of information propagation shared entirely in the system.
Deformed Spacetime Geometrizing Interactions in Four and Five Dimensions
Cardone, Fabio
2007-01-01
This volume provides a detailed discussion of the mathematical aspects and the physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. Such a formalism (Deformed Special Relativity, DSR) allows one to account for breakdown of local Lorentz invariance in the usual, special-relativistic meaning (however, Lorentz invariance is recovered in a generalized sense) to provide an effective geometrical description of the four fundamental interactions (electromagnetic, weak, strong and gravitational) Moreover, the four-dimensional energy-dependent space-time is just a manifestation of a larger, five-dimensional space in which energy plays the role of a fifth (non-compactified) dimension. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism. The mathematical pr...
Dynamics and Control of Humanoid Robots: A Geometrical Approach
Ivancevic, Vladimir G
2011-01-01
his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics
An Improved Method of Geometric Hashing Pattern Recognition
Directory of Open Access Journals (Sweden)
Ling Ma
2011-06-01
Full Text Available Geometric hashing (GH is a general model-based recognition scheme. GH is widely used in the industrial products assembly and inspection tasks. The aim of this study is to speed up the geometric hashing pattern recognition method for the purpose of real-time object detection applications. In our method, a pattern is decomposed into some sub-patterns to reduce the data number in hash table bins. In addition, the sub-patterns are recorded in a plurality of hash tables. Finally we improve the recognition performance by combining with image pyramid and edge direction information. To confirm the validity of our proposed method, we make a complexity analysis, and apply our method to some images. Both complexity analysis and experiment evaluations have demonstrated the efficiency of this technique.