WorldWideScience

Sample records for carrier-type magnetic field

  1. Slowing hot-carrier relaxation in graphene using a magnetic field

    Science.gov (United States)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  2. Ballistic charge carrier transmission through graphene multi-barrier structures in uniform magnetic field

    International Nuclear Information System (INIS)

    Zubarev, A; Dragoman, D

    2014-01-01

    We investigate charge carrier transport in graphene multi-barrier structures placed in a uniform magnetic field. The transmission coefficient is found analytically by generalizing the transfer matrix method for the case of graphene regions subjected to a uniform magnetic field. The transmission coefficient through the structure can be modulated by varying the gate voltages, the magnetic field and/or the width of the gated regions. Such a configuration could be used in multiple-valued logic circuits, since it has several output states with discrete and easily selectable transmission/current values. (paper)

  3. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    International Nuclear Information System (INIS)

    Sakai, Masamichi

    2016-01-01

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

  4. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  5. Magnetic Generation due to Mass Difference between Charge Carriers

    OpenAIRE

    Chen, Shi; Dan, JiaKun; Chen, ZiYu; Li, JianFeng

    2013-01-01

    The possibility of spontaneous magnetization due to the "asymmetry in mass" of charge carriers in a system is investigated. Analysis shows that when the masses of positive and negative charge carriers are identical, no magnetization is predicted. However, if the masses of two species are different, spontaneous magnetic field would appear, either due to the equipartition of magnetic energy or due to fluctuations together with a feedback mechanism. The conditions for magnetization to occur are ...

  6. Magnetic fields in starspots on late-type giants

    International Nuclear Information System (INIS)

    Jahn, K.

    1985-01-01

    Computations of models of magnetic starspots on cool active giants show that the value of the magnetic intensity in spots is generally of the order of one kilogauss, although in larger spots the field can be as weak as a few hundred gauss. It is also argued, that spots on giants qualitatively differ from those on late-type dwarfs, since they cannot be too large. The largest individual spots can cover at most about one percent of a stellar hemisphere. This is in a very good agreement with earlier suggestions based on observations of spotted giants. The assumption that spots are the regions of the strongest magnetic field allows to discuss recent attempts of detection of the magnetic field on late-type giants. Polarimetric measurements most probably cannot be successful, due to a small field strength and a complex topology of the field. It is shown that even if a whole surface was covered by spots with relatively strong field, the resulting not longitudinal field would be as weak as a few gauss. Also methods independent of polarimetric measurements, based on the analysis of Zeeman broadening, generally are not sensitive enough to detect the magnetic field on giants, even in spots. λ And is discussed as an example. The comparison of models of spots computed for that stars with photometric observations suggests, that a dark region on λ And consists of hundreds of small spots (each of them smaller than about 0.1% of the hemisphere), in which the magnetic intensity cannot exceed about 900 gauss, and most probably is even smaller. 23 refs., 4 figs., 4 tabs. (author)

  7. Observations of the Earth's magnetic field from the shuttle: Using the Spartan carrier as a magnetic survey tool

    Science.gov (United States)

    Webster, W. J., Jr.

    1986-01-01

    The shuttle-deployed and recovered Spartan shows promise as an inexpensive and simple support module for potential field measurements. The results of a preliminary engineering study on the applications of the Spartan carrier to magnetic measurements shows: (1) Extension of the mission duration to as long as 7 days is feasible but requires more reconfiguration of the internal systems; (2) On-board recording of Global Positioning System signals will provide position determination with an accuracy consistent with the most severe requirements; and (3) Making Spartan a magnetically clean spacecraft is straight forward but requires labor-intensive modifications to both the data and power systems. As a magnetic survey tool, Spartan would allow surveys at regularly spaced intervals and could make quick-reaction surveys at times of instability in the secular variation.

  8. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  9. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  10. Carrier tunneling in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Bruggink, I.E.M.; Maan, J.C.; Vleuten, van der W.C.

    1995-01-01

    Proceedings of the XXIV International School of Semiconducting Coinpounds, Jaszowiec 1995. A magnetic field induced coupling is observed between the Landau levels with different quantum number of two GaAs quantum wells separated by a thin (Ga,Al)As tunnel barrier using

  11. Carrier density control of magnetism and Berry phases in doped EuTiO3

    Science.gov (United States)

    Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne

    2018-05-01

    In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.

  12. Coronal Magnetic Field Lines and Electrons Associated with Type III ...

    Indian Academy of Sciences (India)

    P. Kishore

    2017-06-19

    Jun 19, 2017 ... of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel. Keywords. Sun—corona—magnetic field—flares—radio bursts—polarization. 1. Introduction. Type V bursts are relatively unusual solar radio tran- sients.

  13. Magnetic field evolution in dwarf and Magellanic-type galaxies

    Science.gov (United States)

    Siejkowski, H.; Soida, M.; Chyży, K. T.

    2018-03-01

    Aims: Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods: We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results: The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s-1) and fast (100 km s-1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.

  14. The particle carriers of field-aligned currents in the Earth's magnetotail during a substorm

    Science.gov (United States)

    Cheng, Z. W.; Zhang, J. C.; Shi, J. K.; Kistler, L. M.; Dunlop, M.; Dandouras, I.; Fazakerley, A.

    2016-04-01

    Although the particle carriers of field-aligned currents (FACs) in the Earth's magnetotail play an important role in the transfer of momentum and energy between the solar wind, magnetosphere, and ionosphere, the characteristics of the FAC carriers have been poorly understood. Taking advantage of multiinstrument magnetic field and plasma data collected by the four spacecraft of the Cluster constellation as they traversed the northern plasma sheet boundary layer in the magnetotail on 14 September 2004, we identified the species type and energy range of the FAC carriers for the first time. The results indicate that part of tailward FACs is carried by energetic keV ions, which are probably originated from the ionosphere through outflow, and they are not too small (~2 nA/m2) to be ignored. The earthward (tailward) FACs are mainly carried by the dominant tailward (earthward) motion of electrons, and higher-energy electrons (from ~0.5 to 26 keV) are the main carriers.

  15. Topology optimization of the permanent magnet type MRI considering the magnetic field homogeneity

    International Nuclear Information System (INIS)

    Lee, Junghoon; Yoo, Jeonghoon

    2010-01-01

    This study is to suggest a concept design of the permanent magnet (PM) type magnetic resonance imaging (MRI) device based on the topology optimization method. The pulse currents in the gradient coils in the MRI device will introduce the effect of eddy currents in ferromagnetic material and it may worsen the quality of imaging. To equalize the magnetic flux in the PM type MRI device for good imaging, the eddy current effect in the ferromagnetic material must be reduced. This study attempts to use the topology optimization scheme for equalizing the magnetic flux in the measuring domain of the PM type MRI device using that the magnetic flux can be calculated directly by a commercial finite element analysis package. The density method is adopted for topology optimization and the sensitivity of the objective function is computed according to the density change of each finite element in the design domain. As a result, optimal shapes of the pole of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

  16. Pulsed-Field Magnetization Properties of Bulk Superconductors by Employment of Vortex-Type Coils

    Science.gov (United States)

    Deng, Z.; Shinohara, N.; Miki, M.; Felder, B.; Tsuzuki, K.; Watasaki, M.; Kawabe, S.; Taguchi, R.; Izumi, M.

    Vortex-type magnetizing coils are gaining more and more attention to activate bulk superconductors in pulsed-field magnetization (PFM) studies, compared with solenoid-type ones. Following existing reports, we present experimental results of the different penetration patterns of magnetic flux between the two kinds of coils. It was found that the magnetic flux will primarily penetrate inside the bulk from the upper and lower surfaces by using vortex coils, rather than from the periphery in the case of solenoid coils. Moreover, the bulk submitted to a small pulsed-field excitation exhibits a similar field profile as the excitation field (convex or concave shape); a phenomenon named field memory effect. The use of vortex- or solenoid-type coils in PFM will pose an influence on the initial flux penetration patterns during the flux trapping processes, but both coils can finally excite the best conical trapped field shape of the bulk.

  17. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges

    International Nuclear Information System (INIS)

    Moriyama, N; Ohno, Y; Kitamura, T; Kishimoto, S; Mizutani, T

    2010-01-01

    We study the phenomenon of change in carrier type in carbon nanotube field-effect transistors (CNFETs) caused by the atomic layer deposition (ALD) of a HfO 2 gate insulator. When a HfO 2 layer is deposited on a CNFET, the type of carrier changes from p-type to n-type. The so-obtained n-type device has good performance and stability in air. The conductivity of such a device with a channel length of 0.7 μm is 11% of the quantum conductance 4e 2 /h. The contact resistance for electron current is estimated to be 14 kΩ. The n-type conduction of this CNFET is maintained for more than 100 days. The change in carrier type is attributed to positive fixed charges introduced at the interface between the HfO 2 and SiO 2 layers. We also propose a novel technique to control the type of conduction by utilizing interface fixed charges; this technique is compatible with Si CMOS process technology.

  18. Simple optical measurement of the magnetic moment of magnetically labeled objects

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Alexandra, E-mail: aheidsieck@tum.de [Zentralinstitut für Medizintechnik, Technische Universität München (Germany); Rudigkeit, Sarah [Physics Department, Technische Universität München (Germany); Rümenapp, Christine; Gleich, Bernhard [Zentralinstitut für Medizintechnik, Technische Universität München (Germany)

    2017-04-01

    The magnetic moment of magnetically labeled cells, microbubbles or microspheres is an important optimization parameter for many targeting, delivery or separation applications. The quantification of this property is often difficult, since it depends not only on the type of incorporated nanoparticle, but also on the intake capabilities, surface properties and internal distribution. We describe a method to determine the magnetic moment of those carriers using a microscopic set-up and an image processing algorithm. In contrast to other works, we measure the diversion of superparamagnetic nanoparticles in a static fluid. The set-up is optimized to achieve a homogeneous movement of the magnetic carriers inside the magnetic field. The evaluation is automated with a customized algorithm, utilizing a set of basic algorithms, including blob recognition, feature-based shape recognition and a graph algorithm. We present example measurements for the characteristic properties of different types of carriers in combination with different types of nanoparticles. Those properties include velocity in the magnetic field as well as the magnetic moment. The investigated carriers are adherent and suspension cells, while the used nanoparticles have different sizes and coatings to obtain varying behavior of the carriers. - Highlights: • Determination of the magnetic moment of magnetic carriers. • optimized set-up achieve a homogeneous movement. • Automated evaluation with a customized algorithm. • example measurements for the properties of nanoparticle-loaded cells.

  19. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    Science.gov (United States)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  20. Instability in the magnetic field penetration in type II superconductors

    International Nuclear Information System (INIS)

    Oliveira, Isaías G. de

    2015-01-01

    Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of the magnetic field in the type II superconductors. We show that the single vortices, situated along the borderline, between the normal region channel and the superconducting region, can escape to regions still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex interaction, in addition to the non-homogeneous distribution of the vortices along the normal region channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along this borderline. - Highlights: • TDGL is used to study the magnetic field penetration in type II superconductors. • Instability process is found during the magnetic field penetration. • Vortices along the front of the normal region escape to superconducting region. • We explain the extra-gain of kinetic energy by vortices along the borderline

  1. Magnetization reversal of a type-II superconductor thin disk under the action of a constant magnetic field

    International Nuclear Information System (INIS)

    Koval'chuk, D.G.; Chornomorets', M.P.

    2010-01-01

    The applicability of relations obtained by Clem and Sanchez for the ac magnetic susceptibility of type-II superconductor thin films to the case where an additional constant magnetic field is applied perpendicularly to the film has been analyzed in the framework of the critical state model. The issues concerning the sample 'memory' and the influence of the magnetic field change prehistory on the current sample state have been discussed. It has been shown that the ac component of the magnetic moment and, hence, the amplitudes of ac magnetic susceptibility harmonics are established within one period of the ac magnetic field irrespective of the field prehistory.

  2. Coronal Magnetic Field Lines and Electrons Associated with Type III

    Indian Academy of Sciences (India)

    Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare ... velocities of the electron streams associated with the above two types of bursts indicate ... Journal of Astrophysics and Astronomy | News ...

  3. Magnetic field dependence of the critical superconducting current induced by the proximity effect in silicon

    International Nuclear Information System (INIS)

    Nishino, T.; Kawabe, U.; Yamada, E.

    1986-01-01

    The magnetic field dependence of the critical superconducting current induced by the proximity effect in heavily-boron-doped Si is studied experimentally. It is found that the critical current flowing through the p-type-Si-coupled junction decreases with increasing applied magnetic field. The critical current can be expressed as the product of three factors: the current induced by de Gennes's proximity effect, the exponential decrease due to pair breaking by the magnetic field, and the usual diffraction-pattern-like dependence on the magnetic field due to the Josephson effect. The second factor depends on the carrier concentration in the semiconductor. The local critical current shows a rapid decrease at the edge of the electrodes

  4. Trapped magnetic field in a (NdFeB)–(MgB2) pair-type bulk magnet

    International Nuclear Information System (INIS)

    Aldica, Gheorghe; Burdusel, Mihail; Badica, Petre

    2014-01-01

    Highlights: • Dense MgB 2 discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB 2 pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB 2 . • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB 2 (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B tr , with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB 2 samples. The B tr of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  5. Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements

    Energy Technology Data Exchange (ETDEWEB)

    Aadinath, W.; Ghosh, Triroopa; Anandharamakrishnan, C., E-mail: anandharam@cftri.res.in

    2016-03-01

    Iron oxide nanoparticles (IONPs) have been a propitious topic for cancer treatment in recent years because of its multifunctional theranostic applications under magnetic field. Two such widely used applications in cancer biology are gradient magnetic field guided targeting and alternative magnetic field (AMF) induced local hyperthermia. Gradient magnetic field guided targeting is a mode of active targeting of therapeutics conjugated with iron oxide nanoparticles. These particles also dissipate heat in presence of AMF which causes thermal injury to the cells of interest, for example tumour cells and subsequent death. Clinical trials divulge the feasibility of such magnetic nano-carrier as a promising candidate in cancer biology. However, these techniques need further investigations to curtail certain limitations manifested. Recent progresses in response have shrunken the barricade to certain extent. In this context, principles, challenges associated with these applications and recent efforts made in response will be discussed. - Highlights: • Iron oxide nanoparticles offer various modalities in the field of cancer theranostics. • Magnetic field guided targeting and local hyperthermia are two well known modalities in cancer therapy. • These techniques need further investigations to curtail certain limitations manifested. • This review emphasizes the recent efforts carried out to counteract the drawbacks.

  6. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    Science.gov (United States)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  7. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  8. Trapped magnetic field in a (NdFeB)–(MgB{sub 2}) pair-type bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Aldica, Gheorghe [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Burdusel, Mihail [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Faculty of Materials Science and Engineering, ‘‘Politehnica’’ University of Bucharest, Splaiul Independentei 316, 060042 Bucharest (Romania); Badica, Petre, E-mail: badica2003@yahoo.com [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania)

    2014-10-15

    Highlights: • Dense MgB{sub 2} discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB{sub 2} pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB{sub 2}. • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB{sub 2} (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B{sub tr}, with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB{sub 2} samples. The B{sub tr} of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  9. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  10. EFFECTS OF FOSSIL MAGNETIC FIELDS ON CONVECTIVE CORE DYNAMOS IN A-TYPE STARS

    International Nuclear Information System (INIS)

    Featherstone, Nicholas A.; Toomre, Juri; Browning, Matthew K.; Brun, Allan Sacha

    2009-01-01

    The vigorous magnetic dynamo action achieved within the convective cores of A-type stars may be influenced by fossil magnetic fields within their radiative envelopes. We study such effects through three-dimensional simulations that model the inner 30% by radius of a 2 M sun A-type star, capturing the convective core and a portion of the overlying radiative envelope within our computational domain. We employ the three-dimensional anelastic spherical harmonic code to model turbulent dynamics within a deep rotating spherical shell. The interaction between a fossil field and the core dynamo is examined by introducing a large-scale magnetic field into the radiative envelope of a mature A star dynamo simulation. We find that the inclusion of a twisted toroidal fossil field can lead to a remarkable transition in the core dynamo behavior. Namely, a super-equipartition state can be realized in which the magnetic energy built by dynamo action is 10-fold greater than the kinetic energy of the convection itself. Such strong-field states may suggest that the resulting Lorentz forces should seek to quench the flows, yet we have achieved super-equipartition dynamo action that persists for multiple diffusion times. This is achieved by the relative co-alignment of the flows and magnetic fields in much of the domain, along with some lateral displacements of the fastest flows from the strongest fields. Convection in the presence of such strong magnetic fields typically manifests as 4-6 cylindrical rolls aligned with the rotation axis, each possessing central axial flows that imbue the rolls with a helical nature. The roll system also possesses core-crossing flows that couple distant regions of the core. We find that the magnetic fields exhibit a comparable global topology with broad, continuous swathes of magnetic field linking opposite sides of the convective core. We have explored several poloidal and toroidal fossil field geometries, finding that a poloidal component is essential

  11. Axial magnetic field extraction type microwave ion source with a permanent magnet

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1984-01-01

    A new type of microwave ion source in which a permanent magnet generates an axially directed magnetic field needed for the electron cyclotron resonance was developed. The electron cyclotron resonance produces a high density plasma in the ion source. A mA-order ion beam can be extracted. Compared with usual microwave ion sources, this source has a distinguished feature in that the axially directed magnetic field is formed by use of a permanent magnet. Shape of magnetic force lines near the ion extraction aperture was carefully investigated. The extracted ion current as a function of the ion extraction voltage was measured. The experimental data are in good agreement with the theoretical line. The ion source can be heated up to 500 deg C, and extraction of the alkaline metal ions is possible. The extracted ion current for various elements are shown in the table. The current density normalized by the proton was 350-650 mA/cm 2 which was nearly equal to the upper limit of the extractable positive ion current density. The plasma density was estimated and was 2 - 3 x 10 12 cm -3 . The mass spectrum of a Cesium ion beam was obtained. A negligible amount of impurities was observed. The emittance diagram of the extracted ion beam was measured. The result shows that a low emittance and high brightness ion source is constructed. (Kato, T.)

  12. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  13. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    International Nuclear Information System (INIS)

    Sternal, O.; Heber, B.; Kopp, A.; Engelbrecht, N. E.; Burger, R. A.; Ferreira, S. E. S.; Potgieter, M. S.; Fichtner, H.; Scherer, K.

    2011-01-01

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and could not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.

  14. Distribution of magnetic field in type II superconductors

    International Nuclear Information System (INIS)

    Castro, J.L. de.

    1986-09-01

    The magnetie field penetration profile, in type II superconductor, has studied in specially designed cylindrical samples. The samples consist of alternated thick layers ( > 30 μm ) of niobium and copper deposited, by electron-beam evaporation or electro-chemical deposition, on cylindric core of either niobium or copper. The magnetization curves, the magnetic susceptibility and the differential susceptibility for small hysteresis loop ( H c1 c2 ) were measured for all the samples between 4. 2 and 9.5 K. These measurements, done with flux pinned and without, show some peculiar descontinuities and inflections which seems to resemble the samples shape. A simple phenonenological extension of Bean's critical state model was applied to these results, giving a resonable qualitative agreement. Also, a more elaborated theoretical model was improve which could give more quantitative fitting. (author) [pt

  15. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-01-01

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H c2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H c2 . This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  16. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  17. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  18. Magnetic fields in the early solar system

    International Nuclear Information System (INIS)

    Strangway, D.W.

    1980-01-01

    Most of the terrestrial planets and the meteorites contain records of early magnetic fields. In the Allende meteorite some of the chondrules were magnetized in fields of about 10 Oe. When assembled into the meteorite, they remained randomly oriented but were partially remagnetized in a field of 1 Oe at temperatures of 200-300 0 C. They present dipole moment of Mercury and the weak dipole moment of Mars may be due to the cooling of a crust in the presence of early magnetic fields. The Earth on the other hand, has had an active dynamo for at least 3 Ga and probably longer, although there is no discernible record of earlier fields due to extensive reheating of the magnetic carriers. Venus has no dynamo field and its surface temperature is too high to carry a crustal remanence. The Moon has no dipole, but local islands of magnetization are believed to be the results of breccias cooling in the presence of an early field, possibly in itself a crustal memory. As we learn about the fields of the planets and the magnetic record contained in their samples we may be able to put sharp constraints on the earliest history of planet formation and evolution. (Auth.)

  19. Development of an extraction type magnetometer under high pressure and high magnetic fields over 200 kOe in the hybrid magnet

    International Nuclear Information System (INIS)

    Koyama, K; Miura, S; Okada, H; Watanabe, K

    2006-01-01

    An extraction-type magnetometer has been developed, which is performed under pressures up to 12 kbar using a miniature high-pressure clamp-cell, in magnetic fields up to 270 kOe using our hybrid magnet and at the temperature range from 1.5 to 300 K. Magnetization curves can be measured for absolute value over 0.04 emu. We confirmed that resolution is about ±0.01 emu under high pressures and high magnetic fields if a sample has the magnetic moment of about 3 emu. For demonstrating the ability of the instrument, high field magnetization curves for SmMn 2 Ge 2 under high pressures are presented

  20. Magnetic susceptibility of free charge carriers in bismuth tellurides (Bi2Te3)

    International Nuclear Information System (INIS)

    Guha Thakurta, S.R.; Dutta, A.K.

    1977-01-01

    Principal magnetic susceptibilities of both p- and n-type Bi 2 Te 3 crystals have been measured over the range of temperature 90 deg K to 650 deg K. The observed susceptibilities are diamagnetic and temperature dependent. This temperature dependence has been attributed to the contribution of the free charge carriers to the susceptibilities. From the observed susceptibilities the carrier-susceptibilities have been separately obtained which are found to be paramagnetic. From the total carrier-susceptibilities, the susceptibilities of the carriers which are thermally liberated in the intrinsic region have been separated. From an analysis of the carrier-susceptibilities the band gap and its temperature coefficient have been found out and these compare favourably with those obtained from electrical measurements. (author)

  1. Quantum transport in topological semimetals under magnetic fields

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  2. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  3. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  4. LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

    Directory of Open Access Journals (Sweden)

    Raj Bali

    2013-01-01

    Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.

  5. Effects of electric field and magnetic induction on spin injection into organic semiconductors

    International Nuclear Information System (INIS)

    Wang, Y.M.; Ren, J.F.; Yuan, X.B.; Dou, Z.T.; Hu, G.C.

    2011-01-01

    Spin-polarized injection and transport into ferromagnetic/organic semiconductor structure are studied theoretically in the presence of the external electric field and magnetic induction. Based on the spin-drift-diffusion theory and Ohm's law, we obtain the charge current polarization, which takes into account the special carriers of organic semiconductors. From the calculation, it is found that the current spin polarization is enhanced by several orders of magnitude by tuning the magnetic induction and electric fields. To get an apparent current spin polarization, the effects of spin-depended interfacial resistances and the special carriers in the organic semiconductor, which are polarons and bipolarons, are also discussed. -- Research highlights: → Current polarization in ferromagnetic/organic semiconductor structure is obtained. → Calculations are based on spin-drift-diffusion theory and Ohm's law. → Current polarization is enhanced by tuning magnetic induction and electric fields. → Effects of interfacial resistances and the special carriers are also discussed.

  6. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Cotoros, Ingrid A. [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we "write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of

  7. ThMn12-type phases for magnets with low rare-earth content: Crystal-field analysis of the full magnetization process.

    Science.gov (United States)

    Tereshina, I S; Kostyuchenko, N V; Tereshina-Chitrova, E A; Skourski, Y; Doerr, M; Pelevin, I A; Zvezdin, A K; Paukov, M; Havela, L; Drulis, H

    2018-02-26

    Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn 12  type of structure came into focus. Functional properties of R(Fe,T) 12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T) 12 -X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe 11 Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.

  8. Single pulsed-field magnetization on Gd-Ba-Cu-O Bulk HTS assembled for axial-gap type rotating machines

    International Nuclear Information System (INIS)

    Morita, E; Matsuzaki, H; Kimura, Y; Ohtani, I; Izumi, M; Nonaka, Y; Murakami, M; Ida, T; Sugimoto, H; Miki, M; Kitano, M

    2006-01-01

    We employed Gd-bulk HTS magnets as rotating poles for a smaller and lighter axial-gap type rotating machine. The bulk was placed between two vortex-type armature coils and cooled down to 77 K under zero-field. Pulsed current was applied to the vortex-type magnetizing coils. The trapped field distribution and transient flux behaviour strongly depend on the radial dimension of the armature vortex-type coil. In the present study, we show that there is an optimal radial dimension of magnetizing coils to the given bulk disk size to give a homogeneously conical distribution of the trapped flux

  9. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  10. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  11. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  12. Formation of photoluminescent n-type macroporous silicon: Effect of magnetic field and lateral electric potential

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.E. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Estevez, J.O. [Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, CP 62580 (Mexico); Basurto-Pensado, M.A. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico)

    2014-11-15

    Metal electrode-free electrochemical etching of low doped n-type silicon substrates, under the combined effect of magnetic and lateral electric field, is used to fabricate photoluminescent n-type porous silicon structures in dark conditions. A lateral gradient in terms of structural characteristics (i.e. thickness and pore dimensions) along the electric field direction is formed. Enhancement of electric and magnetic field resulted in the increase of pore density and a change in the shape of the macropore structure, from circular to square morphology. Broad photoluminescence (PL) emission from 500 to 800 nm, with a PL peak wavelength ranging from 571 to 642 nm, is attributed to the wide range of microporous features present on the porous silicon layer.

  13. THE EFFECT OF MAGNETIC FIELD ON THE EFFICIENCY OF A SILICON SOLAR CELL UNDER AN INTENSE LIGHT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zoungrana Martial

    2017-06-01

    Full Text Available This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage.

  14. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  15. Magnetic suspension and pointing system. [on a carrier vehicle

    Science.gov (United States)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  16. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  17. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    International Nuclear Information System (INIS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient

  18. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Science.gov (United States)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  19. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  20. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad, E-mail: m_amani@sbu.ac.ir [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Amani, Pouria, E-mail: pouria.amani@ut.ac.ir [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh, E-mail: akasa@ut.ac.ir [Department of Renewable Energies, Faculty of New Science & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mahian, Omid, E-mail: omid.mahian@mshdiau.ac.ir [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kasaeian, Fazel, E-mail: f.kasa92@student.sharif.edu [Faculty of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Wongwises, Somchai, E-mail: somchai.won@kmutt.ac.th [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi (KMUTT), Bangmod, Bangkok (Thailand)

    2017-04-15

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe{sub 2}O{sub 4}/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe{sub 2}O{sub 4}/water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  1. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    International Nuclear Information System (INIS)

    Amani, Mohammad; Amani, Pouria; Kasaeian, Alibakhsh; Mahian, Omid; Kasaeian, Fazel; Wongwises, Somchai

    2017-01-01

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe 2 O 4 /water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe 2 O 4 /water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  2. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  3. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  4. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  5. Magnetic field induced enhancement of resistance in polycrystalline ZrTe5

    Science.gov (United States)

    Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.

    2018-04-01

    Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.

  6. Discussions on performance of two types of permanent multipole magnets

    International Nuclear Information System (INIS)

    Xu Jianming; Xu Qing; Yin Zhaosheng

    1987-01-01

    The field distributions of MMD type and MW type multipole permanent magnets are calculated by means of programme POISCR and the results are summarized and discussed in this paper. The resutls show that, considering the nonlinearity of the real demagnetization curve of permanent magnet material, the field distributions of both types of permanent magnets with the same aperature are about the same but the field strength of MW type magnet with soft iron shield is higher than that of MMD type magnet

  7. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  8. Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi

    Science.gov (United States)

    Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia

    2017-10-01

    LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.

  9. Effect of external magnetic effect of external magnetic field annealing on magnetic texture of Mo containing NANOPERM-type alloys

    International Nuclear Information System (INIS)

    Kanuch, T.; Miglierini, M.; Greneche, J.-M.; Skorvanek, I.; Schaaf, P.

    2006-01-01

    External magnetic fields are known to modify microstructure of materials during their solidification and/or crystallisation. In an external magnetic field strong particle to particle interactions lead to a highly anisotropic microstructure. If the alloy is in ferromagnetic state, stronger particle magnetization - external field interactions and also particle-to-particle couplings are expected. To reveal the magnetic texture, originally amorphous precursors of Fe 76 Mo 8 Cu 1 B 15 were annealed at 510 grad C and 550 grad C in an external longitudinal and transverse magnetic field of 0.025 T and 0.8 T, respectively. Magnetic measurements were applied to follow the changes of saturation magnetization and coercive force. Moessbauer experiments were performed at room and liquid nitrogen temperature to provide an information about orientation of with respect to an external magnetic field. The obtained results were compared with those achieved on zero field annealed samples. We can conclude that such a low external magnetic fields applied during crystallisation cause no significant changes in the magnetic microstructural anisotropy. Afterwards, magneto-optical Kerr effect (MOKE) was applied to investigate possible changes at the surface of the ribbon as a function of annealing temperature and applied magnetic field. We observed combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix. We expect more pronounced effects on cobalt substituted (Fe1 -x Co x ) 76 Mo 8 Cu 1 B 15 alloy. (authors)

  10. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  11. Effect of an additional magnetic field on Hanle-type absorption resonances

    International Nuclear Information System (INIS)

    Singh Grewal, Raghwinder; Pattabiraman, M

    2014-01-01

    We computationally compare Hanle-type resonances for a F g =1→F e =0 transition of the 87 RbD 2 line for magnetic field scans parallel (longitudinal scan) and perpendicular (transverse scan) to the direction of propagation of the optical field in the presence of an additional transverse magnetic field (TMF). For a linearly polarized light, the coherent population trapping (CPT) resonances split at line centre and are identical for both longitudinal and transverse scans. When the probe beam ellipticity is varied, the effect of the TMF is found to be opposite for longitudinal and transverse scans. For a longitudinal scan, the splitting observed in the CPT resonance evolves into an enhanced absorption resonance with an increase in ellipticity. For a transverse scan, the splitting vanishes at higher ellipticities. This can be understood in terms of population redistribution in the ground state sublevels and near-neighbor ground state coherences created by the TMF. We also show that the enhanced absorption signal that splits the CPT resonance strongly depends on transit time, and the CPT resonance strength depends on the excited state dephasing rate. (paper)

  12. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  13. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  14. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  15. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  16. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  17. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  18. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  19. Investigation of the stability of polysilicon layers in SOI-structures under irradiation by electrons and hard magnetic field influence

    Directory of Open Access Journals (Sweden)

    Khoverko Yu. N.

    2010-10-01

    Full Text Available The properties of recrystallized polysilicon on insulator layers of p-type conductive SOI-structures with different carrier concentration irradiated with high-energy electrons flow about 1017 сm–2 in temperature range 4,2—300 К and high magnetic fields were investigated. It was found that heavily doped laser recrystallized polysilicon on insulator layers show its radiation resistance under irradiation with high-energy electrons and magnetoresistance of such material remains quite low in magnetic field about 14 T does not exceed 1—2%. Such qulity can be applied in designing of microelectronic sensors of mechanical values operable in hard conditions of exploitation.

  20. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  1. Simulations of magnetic capturing of drug carriers in the brain vascular system

    Energy Technology Data Exchange (ETDEWEB)

    Kenjeres, S., E-mail: S.Kenjeres@tudelft.nl [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands); Righolt, B.W. [Department of Multi-Scale Physics, Faculty of Applied Sciences, J.M. Burgerscentre for Fluid Dynamics, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Blood flow and magnetic particles distributions in the brain vascular system simulated. Black-Right-Pointing-Pointer Numerical mesh generated from raw MRI images. Black-Right-Pointing-Pointer Significant increase in local capturing of magnetic particles obtained. Black-Right-Pointing-Pointer Promising technique for localised non-invasive treatment of brain tumours. - Abstract: The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray's law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.

  2. Regularities of magnetic field penetration into half-space in type-II superconductors

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Krasnyuk, I.B.

    2003-01-01

    The equations, modeling the distributions of the magnetic field induction and current density in the half-space with an account of the exponential volt-ampere characteristics, are obtained. The velocity of the magnetization front propagation by the assigned average rate of the change by the time of the external magnetic field at the sample boundary is determined. The integral condition for the electric resistance, nonlinearly dependent on the magnetic field, by accomplishing whereof the magnetic flux penetrates into the sample with the finite velocity is indicated. The analytical representation of the equation with the exponential boundary mode, which models the change in the magnetic field at the area boundary, is pointed out [ru

  3. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  4. Pure-type superconducting permanent-magnet undulator.

    Science.gov (United States)

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  5. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  6. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  7. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  8. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  9. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.

  10. Spin and energy transfer between magnetic ions and free carriers in diluted-magnetic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Kneip, M.; Bayer, M. [Experimental Physics 2, University of Dortmund, 44227 Dortmund (Germany); Maksimov, A.A.; Tartakovskii, I.I. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Keller, D.; Ossau, W.; Molenkamp, L.W. [Physikalisches Institut der Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Scherbakov, A.V.; Akimov, A.V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, 89081 Ulm (Germany)

    2004-03-01

    In this paper we give a brief overview of our studies on dynamical processes in diluted-magnetic-semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te. Presence of free carriers is an important factor which determines the energy- and spin transfer in a coupled systems of magnetic ions, lattice (the phonon system) and carriers. We report also new data on dynamical response of magnetic ions interacting with photogenerated electron-hole plasma. (Zn,Mn)Se/(Zn,Be)Se structures with relatively high Mn content of 11% provide spin-lattice relaxation time of about 20 ns, which is considerably shorter then the characteristic times of nonequilibrium phonons ranging to 1 {mu}s. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    International Nuclear Information System (INIS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-01-01

    Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  12. Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use

    International Nuclear Information System (INIS)

    Jaermann, Thomas; Suter, Fabian; Osterwalder, Diego; Luechinger, Roger

    2011-01-01

    Recently, pulsed magnetic field therapy (PMFT) systems have become available for private use. Although they may be applied without medical supervision, only a little is known about their field quantities. In this study, the spatial distribution and the temporal characteristics of the magnetic flux densities of three PMFT systems, available in Europe, were analysed. In close proximity to the surface, the maxima of the peak magnetic flux densities were 461 μT, 170 μT and 133 μT, respectively. At a distance of 30 cm above the whole body mat, the peak magnetic flux density was 77 μT. The excitation patterns consisted of repeating bursts with carrier frequencies between 210 and 1667 Hz. In conclusion, magnetic flux densities were far above International Commission on Non-Ionizing Radiation Protection reference levels. Since these systems are supposed to be medical devices as well as wellness devices, risk analysis of PMFT systems and the effectiveness of these devices need to be investigated in future studies.

  13. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  14. High Tc superconducting magnetic multivibrators for fluxgate magnetic-field sensors

    International Nuclear Information System (INIS)

    Mohri, K.; Uchiyama, T.; Ozeki, A.

    1989-01-01

    Sensitive and quick-response nonlinear inductance characteristics are found for high Tc superconducting (YBa 2 Cu 3 O 7-chi ) disk cores at 77K in which soft magnetic BH hysteresis loops are observed. Various quick response magnetic devices such as modulators, amplifiers and sensors are built using these cores. The magnetizing frequency can be set to more than 20 MHz, which is difficult for conventional ferromagnetic bulk materials such as Permalloy amorphous alloys and ferrite. New quick-response fluxgate type magnetic-field sensors are made using ac and dc voltage sources. The former is used for second-harmonic type sensors, while the latter is for voltage-output multivibrator type sensors. Stable and quick-response sensor characteristics were obtained for two-core type multivibrators

  15. Mechanism of carrier-induced ferromagnetism in diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Takahashi, M.; Furukawa, N.; Kubo, K.

    2004-01-01

    Using the spin-polarized band obtained by applying the dynamical coherent potential approximation to a simple model, we have calculated the magnetization of Ga x Mn 1-x As as a function of the temperature for various values of carrier density. The result is consistent with the experimental observation, supporting the view previously proposed by us that the ferromagnetism is induced by the carriers in the bandtail through double-exchange-like mechanism

  16. Synthesis of Ferrofluids Made of Iron Oxide Nanoflowers: Interplay between Carrier Fluid and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Federico Spizzo

    2017-11-01

    Full Text Available Ferrofluids are nanomaterials consisting of magnetic nanoparticles that are dispersed in a carrier fluid. Their physical properties, and hence their field of application are determined by intertwined compositional, structural, and magnetic characteristics, including interparticle magnetic interactions. Magnetic nanoparticles were prepared by thermal decomposition of iron(III chloride hexahydrate (FeCl3·6H2O in 2-pyrrolidone, and were then dispersed in two different fluids, water and polyethylene glycol 400 (PEG. A number of experimental techniques (especially, transmission electron microscopy, Mössbauer spectroscopy and superconducting quantum interference device (SQUID magnetometry were employed to study both the as-prepared nanoparticles and the ferrofluids. We show that, with the adopted synthesis parameters of temperature and FeCl3 relative concentration, nanoparticles are obtained that mainly consist of maghemite and present a high degree of structural disorder and strong spin canting, resulting in a low saturation magnetization (~45 emu/g. A remarkable feature is that the nanoparticles, ultimately due to the presence of 2-pyrrolidone at their surface, are arranged in nanoflower-shape structures, which are substantially stable in water and tend to disaggregate in PEG. The different arrangement of the nanoparticles in the two fluids implies a different strength of dipolar magnetic interactions, as revealed by the analysis of their magnetothermal behavior. The comparison between the magnetic heating capacities of the two ferrofluids demonstrates the possibility of tailoring the performances of the produced nanoparticles by exploiting the interplay with the carrier fluid.

  17. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G.; Pernambuco-Wise, P.

    1996-01-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ

  18. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  19. Magnetic-breakdown oscillations of the thermoelectric field in layered conductors

    Energy Technology Data Exchange (ETDEWEB)

    Peschanskii, V. G., E-mail: vpeschansky@ilt.kharkov.ua [Karazin Kharkov National University (Ukraine); Galbova, O. [St. Cyril and Methodium University (Macedonia, The Former Yugoslav Republic of); Hasan, R. [Karazin Kharkov National University (Ukraine)

    2016-12-15

    The response of an electron system to nonuniform heating of layered conductors with an arbitrary quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in the case when cyclotron frequency ω{sub c} is much higher than the frequency 1/τ of collisions between charge carriers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coefficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological transition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conductor. Upon a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magneticbreakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains important information on the distance between individual FS sheets and their corrugation.

  20. Study of a permanent-magnet dipole with variable field strength and polarity

    International Nuclear Information System (INIS)

    Honma, Toshihiro

    1996-01-01

    A proto-type dipole magnet employing permanent-magnet rods has been designed and constructed. The magnet is able to change the magnetic field strength continuously as well as the polarity of the field direction by rotating the rods. The magnet has a special advantage of high-field production within a small open space available. The magnet of this type will be used for beam steering at an extraction channel for a planned negative-ion acceleration in our cyclotron. The first important objective at the exit channel is to steer the beam extracted from the cyclotron by some dipole magnet onto the optical axis of a new beam line to be constructed. This is not a trivial task because available open space is too small to install a coil-type magnet. One of the selections is to use a permanent-magnet dipole because such a magnet is expected to provide a very high field in a small space when compared with a coil-type magnet. A proto-type permanent-magnet dipole (PMD) with variable field strength and polarity has been designed and constructed for such a purpose. (J.P.N.)

  1. Impulsion of nanoparticles as a drug carrier for the theoretical investigation of stenosed arteries with induced magnetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, S.; Ijaz, S., E-mail: shagufta.me2011@yahoo.com

    2016-07-15

    In this paper hemodynamics of stenosis are discussed to predict effect of atherosclerosis by means of mathematical models in the presence of uniform transverse magnetic field. The analysis is carried out using silver and copper nanoparticles as a drug carrier. Exact solution for the fluid temperature, velocity, axial induced magnetic field and current density distribution are obtained under mild stenosis approximation. The results indicate that with an increase in the concentration of nanoparticle hemodynamics effects of stenosis reduces throughout the inclined composite stenosed arteries. The considered analysis also summarizes that the drug silver nanoparticles is more efficient to reduce hemodynamics of stenosis when compare to the drug copper nanoparticle. In future this model could be helpful to predict important properties in some biomedical applications. - Highlights: • The contribution of copper and silver nanoparticles as drug carrier reveals that they are important to reduce hemodynamic of stenosis. • The heat is dissipated throughout the considered inclined artery with an increase in the nanoparticle volume fraction. • The stress on the wall of inclined arteries decreases with an increase in the magnetic Reynolds number and Strommers number.

  2. Correlation connection between the anomalous magnetic and gravitational fields for regions with different types of the Earth's crust

    International Nuclear Information System (INIS)

    Lugovenko, V.N.; Pronin, V.P.; Kosheleva, L.V.

    1989-01-01

    A method for the correlation analysis of anomalous geophysical fields at different survey altitudes is proposed. The joint correlation analysis is performed for anomalous magnetic and gravitational fields for regions with different types of the Earth's crust. (author)

  3. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  4. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  5. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  6. High-field superconducting nested coil magnet

    Science.gov (United States)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  7. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  8. Dependent of electrical resistivity of thin wire on magnetic field and temperature

    International Nuclear Information System (INIS)

    Sadeghi, E.; Zare, M.

    2006-01-01

    Variation of electrical resistivity of Bismuth nano wire versus magnetic field the and temperature are considered. We study the size effect and surface scattering of the carrier in thin wire for systems with ellipsoidal Fermi surfaces. Results are in good agreement with experimental points

  9. Magnetic field calculation of variably polarizing undulator (APPLE-type) for SX beamline in the SPring-8

    International Nuclear Information System (INIS)

    Kobayashi, Hideki; Sasaki, Shigemi; Shimada, Taihei; Takao, Masaru; Yokoya, Akinori; Miyahara, Yoshikazu

    1996-03-01

    This paper describes the design of a variably polarizing undulator (APPLE-type) to be installed in soft X-ray beamline in the SPring-8 facility. The magnetic field distribution and radiation spectrum expected from this undulator were calculated. The magnetic field strength is varied by changing the gap distance of upper and lower jaws, so it changes the photon energy in soft X-ray range. By moving the relative position of pairs of magnet rows (phase shift), the polarization of radiation is varied circularly, elliptically and linearly in the horizontal and vertical direction. We expect that right and left handed circular polarizations are obtained alternately at a rate of 1 Hz by high speed phase shifting. The repulsive and attractive magnetic force working on the magnet rows were calculated which interfere in phase shifting at high speed. The magnetic force changes with gap distance and phase shift position, and the magnetic force working on a row in the direction of phase shift becomes up to 500 kgf. The construction of this undulator is started in 1996, that will be inserted in the storage ring in 1997. (author)

  10. Gd-123 bulk field pole magnets cooled with condensed neon for axial-gap type synchronous motor

    International Nuclear Information System (INIS)

    Sano, T.; Kimura, Y.; Sugyo, D.; Yamaguchi, K.; Izumi, M.; Ida, T.; Sugimoto, H.; Miki, M.

    2008-01-01

    We have conducted to develop an axial-gap type synchronous propulsion motor with Gd-bulk HTS field pole magnets. It has been established on the fundamental technology upon the liquid nitrogen cooling. In the present study, we aimed an output improvement of the motor by the magnetic flux density enhancement of the bulk HTS, in a word, the trapped magnetic flux density on the HTS bulk. The output of the motor depends on the physics of the motor, the magnetic flux density, and the electric current density flowing through the armature. We have employed a condensed neon with a helium GM refrigerator. The bulk HTS placed on the rotor disk inside the motor frame was successfully cooled down with circulating condensed neon. The temperature at the bulk HTS surface reached 38 K. Upon magnetization, we developed controlled magnetic field density distribution coil (CMDC) composed of a couple of pulsed copper armature coil. In the magnetization procedure, with decreasing magnetization temperature, minute by minute, after Sander and Kamijyo that the step cooling magnetization method was used. In addition, the CMDC coil has enabled to control the applied flux distribution. Three parameters as the temperature, the applied magnetic field, and the effective applied flux density distribution were changed within eight times pulsed magnetizations in total. Up to 4th pulsed magnetization, we kept (1st step) high temperature, and subsequent pulsed magnetizations were done at low temperature. As a result, the highest maximum trapped magnetic flux density was reached 1.31 T, about 2.5 times compared to the value obtained upon cooling with liquid nitrogen. Consequently, the output of the motor has been enhanced to 25 kW from 10 kW taken in the previous operation

  11. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  12. Topological study of magnetic field near a neutral point

    International Nuclear Information System (INIS)

    Fukao, Shoichiro; Ugai, Masayuki; Tsuda, Takao.

    1975-01-01

    Configuration of magnetic fields near a neutral point is re-examined by a topological analysis. The so-called X-and 0-type magnetic fields respectively occupy their own seat in our classified table. Then the existence of the spiral and node types of configuration will be shown by the analysis. (auth.)

  13. Isotropic transmission of magnon spin information without a magnetic field.

    Science.gov (United States)

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  14. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  15. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  16. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    Science.gov (United States)

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  17. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  18. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    Science.gov (United States)

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  19. Calculation of induced modes of magnetic field in the geodynamo problem

    International Nuclear Information System (INIS)

    Yokoyama, Yukiko; Yukutake, Takesi

    1989-01-01

    In the dynamo problem, the calculation of induced modes is of vital importance, because the interaction of fluid motions with the magnetic field induces specific types of fields which are, in many cases, different either from the type of velocity field or from the original magnetic field. This special induction relationship, known as 'selection rules', has so far been derived by calculating Adams-Gaunt integrals and Elsasser integrals. In this paper, we calculate the induced modes in a more direct way, expressing the magnetic fields and the velocity in a spherical harmonic series. By linearizing the product terms of spherical harmonic functions, which appear in interaction terms between the velocity and the magnetic field, into a simple spherical harmonic series, we have derived the induced magnetic modes in a simple general form. When the magnetic field and the velocity are expressed by toroidal and poloidal modes, four kinds of interaction are conceivable between the velocity and the magnetic field. By each interaction, two modes, the poloidal and toroidal, are induced, except in the interaction of the toroidal velocity with the toroidal magnetic field, which induces only the toroidal mode. In spite of the diversity of interaction processes, the induced modes have been found to be expressed simply by two types. For a velocity of degree l and order k interacting with a magnetic field of degree n and order m, one type is the mode with degree and order of n+l-2t, |m±k| for an integer t, and the other with n+l-2t-1, |m±k|. (author)

  20. Numerical analyses of magnetic field and force in toroidal superconducting magnetic energy storage using unit coils (abstract)

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Nakayama, T.; Amemiya, Y.

    1997-01-01

    Superconducting magnetic energy storage (SMES) is more useful than other systems of electric energy storage because of its larger amounts of stored energy and its higher efficiency. There are two types of SMES. One is the solenoid type and the other is the toroidal type. Some models of solenoid-type SMES are designed in the U.S. and in Japan. But the large scale SMES causes a high magnetic field in the living environment, and causes the erroneous operation of electronic equipment. The authors studied some suitable designs of magnetic shielding for the solenoidal-type SMES to reduce the magnetic field in the living environment. The toiroidal type SMES is studied in this article. The magnetic leakage flux of the toiroidal-type SMES is generally lower than that of the solenoid-type SMES. The toroidal-type SMES is constructed of unit coils, which are convenient for construction. The magnetic leakage flux occurs between unit coils. The electromagnetic force of the coils is very strong. Therefore analyses of the leakage flux and electromagnetic force are important to the design of SMES. The authors studied the number, radius, and length of unit coils. The storage energy is 5 G Wh. The numerical analyses of magnetic fields in the toroidal type SMES are obtained by analytical solutions. copyright 1997 American Institute of Physics

  1. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  2. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  3. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  4. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  5. Mechanical design of a synchronous rotating machines with Gd-Ba-Cu-O HTS bulk pole-field magnets operated by a pulsed-field magnetization with armature copper coils

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ohtani, I [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ogata, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Izumi, M [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Hiroshima 725-0231 (Japan); Sugimoto, H [Department of Electrical and Electronic Engineering, Fukui University, Fukui 910-8507 (Japan); Miki, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan)

    2006-06-01

    We studied a high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk pole-field magnets. The structure of a HTS motor is an axial gap type with neither brushes/slip rings nor iron core. The specific feature is that the rotor pole-field magnets of bulk are magnetized with pulsed current flow through vortex-type armature copper windings. The rotor pole bulks and armature coils are cooled down with liquid nitrogen. Cooling and magnetization of bulk pole field magnets are performed inside of the rotor. The trapped peak magnetic field of more than 0.5 T of the bulk magnets provided the motor performance of 3.1 kW with 720 rpm. In order to attain high output, single rotor plate with 8 bulks was substituted with a twinned rotor plates with 16 bulks together with triple layer armature units. We report on the test results and performance of the present twinned rotor-type HTS synchronous motor.

  6. High field superconducting magnets for accelerators and particle beams

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Jackson, J.

    1975-01-01

    Experience in designing precision superconducting magnets for fields up to 60 kG is described. Realizable construction tolerances and their impact on field accuracy are discussed. For dipole fields up to 60 kG or more, rectangular coil window frame type magnets are compared with circular or elliptical coil designs. In all cases, the same superconductor current density versus maximum field performance is assumed. The comparison will include field quality and correction required as a function of aperture size, stored energy, ampere turns required, and overall magnet size. In quadrupole design the impact of the allowed superconductor current density being roughly inversely proportional to peak field is severe. For gradients up to one Tesla/cm or greater, similar comparisons for different types of quadrupole construction are made. (U.S.)

  7. Manifestation of π-contacts in magnetic field dependence of I-V characteristics for proximity-type 2D Josephson junction array

    International Nuclear Information System (INIS)

    Rivera, V.A.G.; Sergeenkov, S.; Marega, E.; Araujo-Moreira, F.M.

    2009-01-01

    Results on the temperature and magnetic field dependence of current-voltage characteristics (CVC) are presented for SNS-type 2D ordered array of Nb-Cu 0.95 Al 0.05 -Nb junctions. The critical current I C (T,H) and the power exponent a(T,H)=1+Φ 0 I C (T,H)/2k B T of the nonlinear CVC law V=R[I-I C (T,H)] a(T,H) are found to have a maximum at non-zero value of applied magnetic field H p =225 Oe, which is attributed to manifestation of π-type Josephson contacts in our sample.

  8. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  9. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  10. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  11. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  12. A new type of permanent magnet ondulator and wiggler

    International Nuclear Information System (INIS)

    Jianming, X.; Maosan, L.; Qing, X.

    1987-01-01

    A new type of permanent magnet ondulator and wiggler is discussed. In this new design the magnet is composed of permanent magnet segments with modulated thickness. The magnetization directions of the segments are all perpendicular to the symmetrical plane of the magnet gap. By modulating the thicknesses of the segments, the field distribution is a pure sinusoidal curve in the ideal 2-dimensional case. The spatial expressions of the magnet field in the ideal case and in the real case are given. The methods for reducing the undesirable harmonics in the magnet field in the real case are discussed. Because of the arrangement of the magnetization directions of the magnet segments, soft iron shield can be used to strenghten the magnet field. In some cases, the stregnthening factor is more than two. The strenghtening effect of the soft iron shield is analysed also

  13. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  14. Magnetic field enhancement of organic photovoltaic cells performance.

    Science.gov (United States)

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  15. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  16. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Peixin; Chai, Feng [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bi, Yunlong [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Pei, Yulong, E-mail: peiyulong1@163.com [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Shukang [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.

  17. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    International Nuclear Information System (INIS)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-01-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.

  18. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  19. Discontinuous spring magnet-type magnetostrictive Terfecohan/YFeCo multilayers: A novel nanostructured material principle for excellent magnetic softness

    International Nuclear Information System (INIS)

    Duc, N.H.; Huong Giang, D.T.

    2007-01-01

    Novel physics and reversal mechanisms of the whole system switching (WS) and individual switching (IS) type are reported for hard/soft TbFeCo/YFeCo exchange-spring multilayers. The WS type usually occurs in multilayered systems, in which the magnetic anisotropy of hard TbFeCo layers is neglectable. For such a system, the ferrimagnetically coupled hard/soft multilayered state is recovered after removing applied fields from the magnetized state. At low negative fields, the magnetization switching occurs collectively for all magnetic moments in the whole system. In this case, the low-coercivity mechanism is discussed on the basis of a hard/soft interfacial point contact. This configuration is realized for TbFeCo/YFeCo discontinuous exchange-spring multilayers, in which the magnetic (Fe,Co) nanograins coexist with non-magnetic amorphous phase in the soft layers. In this state, a magnetic coercivity as small as 0.4 mT is achieved. It is considered as an excellent magnetic softness of rare-earth-based systems. Enhancing the magnetic anisotropy in the hard TbFeCo layers, the magnetization switching follows the IS type at low temperatures. Starting to decrease the applied magnetic field from the high-field state, one observes the first reversal of the magnetic moments in the soft high-magnetization YFeCo-layers in positive magnetic fields. This is the reason for the observation of the negative coercivity as well as negative-biasing phenomena

  20. Magnetic field-induced cluster formation and variation of magneto-optical signals in zinc-substituted ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S.S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: swapna@cusat.ac.in; Rajesh, S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Abraham, V.S. [School of Engineering and Sciences, International University of Bremen, 28759 (Germany); Anantharaman, M.R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: mraiyer@yahoo.com; Nampoori, V.P.N. [International School of Photonics, Cochin University of Science and Technology, Cochin-22 (India)

    2006-10-15

    Fine magnetic particles (size{approx_equal}100 A) belonging to the series Zn {sub x} Fe{sub 1-} {sub x} Fe{sub 2}O{sub 4} were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

  1. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  2. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  3. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions

    Science.gov (United States)

    Fang, Yu; Yang, Junyi; Yang, Yong; Wu, Xingzhi; Xiao, Zhengguo; Zhou, Feng; Song, Yinglin

    2016-02-01

    The dependence of the carrier distribution on photoexcited carrier dynamics in a p-type Mg-doped GaN (GaN:Mg) wafer were systematically measured by femtosecond transient absorption (TA) spectroscopy. The homogeneity of the carrier distribution was modified by tuning the wavelength of the UV pulse excitation around the band gap of GaN:Mg. The TA kinetics appeared to be biexponential for all carrier distributions, and only the slower component decayed faster as the inhomogeneity of the carrier distribution increased. It was concluded that the faster component (50-70 ps) corresponded to the trap process of holes by the Mg acceptors, and the slower component (150-600 ps) corresponded to the combination of non-radiative surface recombination and intrinsic carrier recombination via dislocations. Moreover, the slower component increased gradually with the incident fluence due to the saturation of surface states.

  4. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  5. A search for magnetic fields in Lambda Bootis stars

    International Nuclear Information System (INIS)

    Bohlender, D.A.; Landstreet, J.D.

    1990-01-01

    We have searched a sample of λ Boo stars for magnetic fields similar to those observed in the magnetic Ap and Bp stars, using a Balmer-line Zeeman analyser. Apart from one dubious measurement, no fields are detected in our sample. It appears that magnetic fields of the λ Boo stars, if they exist, are significantly smaller than those found in magnetic upper main-sequence stars of similar spectral type; this conclusion is supported at about the 90 or 95 per cent confidence level by the present data. (author)

  6. Field driven magnetic racetrack memory accompanied with the interfacial Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol

    2018-06-01

    The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.

  7. Thermal quantum discord of spins in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan

    2011-01-01

    In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.

  8. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  9. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  10. MAGNETIC FIELD IN ATYPICAL PROMINENCE STRUCTURES: BUBBLE, TORNADO, AND ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); López Ariste, A. [IRAP—CNRS UMR 5277, 14, Av. E. Belin, F-31400 Toulouse (France); Dalmasse, K. [CISL/HAO, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gelly, B., E-mail: p.levens.1@research.gla.ac.uk, E-mail: brigitte.schmieder@obspm.fr [CNRS UMR 3718 THEMIS, La Laguna, Tenerife (Spain)

    2016-08-01

    Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in “atypical” prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in “typical” prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of “atypical” prominences (tornadoes, bubbles, and jet-like prominence eruptions) that have all been observed by THEMIS in the He i D{sub 3} line, from which the Stokes parameters can be derived. The magnetic field strength, inclination, and azimuth in each pixel are obtained by using the inversion method of principal component analysis on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more or less horizontal, whereas for the eruptive prominence it is mostly vertical. We estimate a tendency toward higher values of magnetic field strength inside the bubbles than outside in the surrounding prominence. In all of the models in our database, only one magnetic field orientation is considered for each pixel. While sufficient for most of the main prominence body, this assumption appears to be oversimplified in atypical prominence structures. We should consider these observations as the result of superposition of multiple magnetic fields, possibly even with a turbulent field component.

  11. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  12. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  13. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  14. Quantum oscillations of thermomagnetic coefficients of layered conductors in a strong magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Kozlov, I.V.; Peschansky, V.G.; Krstovska, D.

    2008-01-01

    The linear response of the electronic system of a conductor to a perturbation in the form of an electric field and a temperature gradient in a quantizing magnetic field B is investigated theoretically. The thermoelectric effect in a layered conductor is analyzed and it is shown that the quasi-two-dimensional character of the dispersion law of the charge carriers results in gigantic oscillations of the thermo-emf

  15. Dependence of electrical property on the applied magnetic fields in spin coated Fe(III)-Phorphyrin films

    International Nuclear Information System (INIS)

    Utari; Kusumandari; Purnama, B.; Mudasir; Abraha, K.

    2016-01-01

    We report here on the experimental results of the effect of external magnetic field on the current flow in plane surface of Fe(III)-porphyrin thin layer. The deposition of the Fe(III)- porphyrin thin layer was done by spin coating method. The I-V characteristics of film were measured by means of two point probes. The sample of layer number N = 4 was used to evaluate the magnetic effect on the electrical currents. The ohmic characteristics of the I-V film measurement were obtained. The current decreases when magnetic field is applied to the system and saturated current is obtained at a given magnetic field. Here, the decrease in the current can be attributed to the recombination of carrier charge under the magnetic field. In addition, the magnitude of the saturated current is found to increase with the increase in the voltage used. (paper)

  16. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  17. Magnetophoretic transistors in a tri-axial magnetic field.

    Science.gov (United States)

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-10-18

    The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.

  18. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  19. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  20. Magnetic field measurements and data acquisition of a model magnet for the B-factory

    International Nuclear Information System (INIS)

    Zhou Wenming; Endo, Kuninori

    1994-01-01

    In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)

  1. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  2. Magnetic-field-dependent optical properties and interdot correlations in coupled quantum dots

    International Nuclear Information System (INIS)

    Bellucci, Devis; Troiani, Filippo; Goldoni, Guido; Molinari, Elisa

    2005-01-01

    We theoretically investigate the properties of neutral and charged excitons in vertically coupled quantum dots, as a function of the in-plane magnetic field. The single-particle states are computed by numerically solving the 3D effective-mass equation, while the neutral- and charged-exciton states are obtained by means of a configuration interaction approach. We show that the field determines an enhancement of the interdot correlations, resulting in unexpected carrier localization. The field effect on the excitonic binding energies is also discussed, and is shown to strongly depend on the charging

  3. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hun

    1996-02-15

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10{sup -7} m {center_dot} rad and 7.87 x 10{sup -9}A {center_dot} V{sup -3/2}, respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics.

  4. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    International Nuclear Information System (INIS)

    Kim, Su Hun

    1996-02-01

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10 -7 m · rad and 7.87 x 10 -9 A · V -3/2 , respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics

  5. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  6. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  7. Contradictory results on the effects of magnetic fields

    International Nuclear Information System (INIS)

    Jokela, K.

    1994-01-01

    Magnetic fields are becoming a new problem for the authorities, because some studies indicate that they increase the risk of cancer. On the other hand, experimental studies with animals and cell cultures have not proved that magnetic fields can definitively cause cancer. The results of studies may, in fact, be misleading. The cancer risk seems to increase randomly, because there are usually no more than twenty or thirty people with cancer among the study population. Often the types of cancer vary even though the exposure conditions have been similar. It is also possible that some unknown factor associated with power lines and equipment increases the cancer risk. People are usually exposed to magnetic fields induced by the electricity network and electrical appliances in buildings. Magnetic fields can be reduced during the design of electrical installations and appliances; this is much easier than the reduction of existing fields. It is also relatively easy to limit magnetic fields caused by VDU's and many electrical appliances during the design phase. (orig.)

  8. Possible influence of the polarity reversal of the solar magnetic field on the various types of arrhythmias

    International Nuclear Information System (INIS)

    Giannaropoulou, E; Papailiou, M; Mavromichalaki, H; Preka-Papadema, P; Gigolashvili, M; Tvildiani, L; Janashia, K; Papadima, Th

    2013-01-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data concerning the number of incidents of different types of cardiac arrhythmias for the time period 1983 – 1992 which refer to 1902 patients in Tbilisi, Georgia were used. The smoothing method and the Pearson r-coefficients were used to examine the possible effect of different solar and geomagnetic activity parameters and cosmic ray intensity variations on the different types of arrhythmias. The time interval under examination was separated into two different time periods which coincided with the polarity reversal of the solar magnetic field that occurred in the years 1989-1990 and as a result a different behavior of all the above mentioned parameters as well as of the different types of arrhythmias was noticed during the two time intervals. In addition, changing of polarity sign of the solar magnetic field was found to affect the sign of correlation between the incidence of arrhythmias and the aforementioned parameters. The primary and secondary maxima observed in the solar parameters during the solar cycle 22, also appeared in several types of arrhythmias with a time lag of about five months.

  9. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  10. A comparison of the heating effect of magnetic fluid between the alternating and rotating magnetic field

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Hamler, Anton

    2014-01-01

    Magnetic fluids are distinct magnetic materials that have recently been the subject of extensive research precisely because of their unique properties. One of them is the heating effect when exposed to alternating magnetic fields, wherein the objective is to use this property in medicine as an alternative method for the treatment of tumors in the body. In this paper, we focus on two methods of magnetizing magnetic fluids, firstly using the alternating magnetic field (AMF), and secondly with the rotational magnetic field (RMF). The effects of the first are scientifically well-established, whilst the impact of RMF has not as yet been investigated as presented in this article. So far the effects of RMF have only been studied at low frequencies and high amplitudes, or vice versa. This article presents the results of heating at high frequencies and high magnetic field amplitudes, and the results compared with AMF. This paper presents the construction and implementation of a measuring system which is suitable both types of magnetic field. - Highlights: • Development of a new measurement system for the characterization of magnetic fluids. • System enables pulsed magnetic field, or a rotary magnetic field. • Analysis of the conditions to create a rotational magnetic field by means of a double power supply. • Good agreement between the analytical and numerical calculation of magnetic field and measurements. • Increase of the heating power when sample is exposed to rotating field compared to pulsating field

  11. Computation of magnetic field in DC brushless linear motors built with NdFeB magnets

    International Nuclear Information System (INIS)

    Basak, A.; Shirkoohi, G.H.

    1990-01-01

    A software package based on finite element technique has been used to compute three-dimensional magnetic fields and static forces developed in brushless d.c. linear motors. As the field flux-source two different types of permanent magnets, one of them being the high energy neodymium- iron-boron type, has been used in computer models. Motors with the same specifications as the computer models were built and experimental results obtained from them are compared with the computed results

  12. Jumps of the local magnetic field near CICC during external magnetic field ramp and their connection with the ramp rate limitation

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Takayasu, M.; Minervini, J.V.

    1997-01-01

    A new method has been developed to study Ramp Rate Limitation (RRL) phenomena. Samples of ITER-type cable-in-conduit (CICC) subcable were instrumented with local field sensors such as Hall probes and pick-up coils and then subjected to rapidly changing external magnetic field. The authors found that during fast field sweeps some discontinuous changes, or jumps occur in the local field. They believe that these jumps indicate a fast current redistribution processes inside CICC. Detailed information about local magnetic field jumps during changing field is presented. Possible origin of the jumps and their connection with RRL are discussed

  13. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  14. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Science.gov (United States)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization.

  15. New type of fluxgate magnetometer for the heart’s magnetic fields detection

    Directory of Open Access Journals (Sweden)

    Rybalko Ruslan

    2015-09-01

    Full Text Available The application area of fluxgate sensors is limited by their sensitivity. Medical researches create high demand on the magnetometers with the characteristics of high accuracy and sensibility for measuring weak magnetic fields produced by the human body, such as the heart‘s magnetic field. Due to the insufficient sensitivity of fluxgate sensors, superconducting magnetometers (SQUID take the dominant position for the cardiomagnetic measurements. They have to be cooled by liquefied gases and it leads to high service costs. Therefore an idea of creating a high sensitive sensor based on fluxgate principles and known methods of measurement is attractive and up to date. This paper is dedicated to the modified flux-gate sensors based on Racetrack technology with a new approach of signal demodulation. The improved fluxgate sensor system provides detection of the heart‘s magnetic field without additional expenditures for use.

  16. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  17. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  18. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  19. The effects of pseudo magnetic fields in molecular spectra and scattering

    International Nuclear Information System (INIS)

    Kendrick, B.K.

    1996-01-01

    Pseudo magnetic fields appear in the Born-Oppenheimer method for molecules when conical intersections or electronic angular momenta are taken into account. These fields are not real magnetic fields but they have the same mathematical properties and can lead to real observable effects in the dynamics of molecules. A general vector potential (gauge theory) approach for including these field effects in the Born-Oppenheimer method is introduced and applied to H + O 2 scattering and the vibrational spectrum of Na 3 (X) for zero total angular momentum (J = 0). The scattering results for HO 2 show significant shifts in the resonance energies and lifetimes due to a magnetic solenoid type field originating from the C 2v conical intersection in HO 2 . Significant changes in the state-to-state transition probabilities are also observed. The non-degenerate A 1 and A 2 vibrational spectra of Na 3 (X) show significant shifts in the energy levels due to a magnetic solenoid type field originating from the D 3h conical intersection in Na 3 . These two examples show that the effects of pseudo magnetic fields can be significant and in many cases they must be included in order to obtain agreement between theory and experiment. The newly developed gauge theory techniques for treating pseudo magnetic fields are also relevant for including the effects of real magnetic fields

  20. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  1. Exciton in vertically coupled type II quantum dots in threading magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Cantillo, J., E-mail: jhofry@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Universidad de la Guajira, Riohacha (Colombia); Escorcia-Salas, G. Elizabeth, E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia)

    2014-11-15

    We analyze the energy spectrum of a neutral exciton confined in a semiconductor heterostructure formed by two vertically coupled axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside dots tunneling between them while the hole generally is placed in the exterior region close to the symmetry axis. Solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are presented for the energies of bonding and anti-bonding lowest-lying of the exciton states and for the density of states for different InP/GaInP quantum dots' morphologies and the magnetic field strength values.

  2. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A. [Tabuk Univ. (Saudi Arabia). Faculty of Science

    2015-10-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  3. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    International Nuclear Information System (INIS)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A.

    2015-01-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  4. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianqiao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Kaminski, Michael D. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Riffle, Judy S. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Chen Haitao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Torno, Michael [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Finck, Martha R. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Taylor, LaToyia [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Rosengart, Axel J. [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States)]. E-mail: arosenga@uchicago.edu

    2007-04-15

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 {mu}m) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  5. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    International Nuclear Information System (INIS)

    Liu Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-01-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres

  6. Extremely high magnetic-field sensitivity of charge transport in the Mn/SiO2/p-Si hybrid structure

    Directory of Open Access Journals (Sweden)

    N. V. Volkov

    2017-01-01

    Full Text Available We report on abrupt changes in dc resistance and impedance of a diode with the Schottky barrier based on the Mn/SiO2/p-Si structure in a magnetic field. It was observed that at low temperatures the dc and ac resistances of the device change by a factor of more than 106 with an increase in a magnetic field to 200 mT. The strong effect of the magnetic field is observed only above the threshold forward bias across the diode. The ratios between ac and dc magnetoresistances can be tuned from almost zero to 108% by varying the bias. To explain the diversity of magnetotransport phenomena observed in the Mn/SiO2/p-Si structure, it is necessary to attract several mechanisms, which possibly work in different regions of the structure. The anomalously strong magnetotransport effects are attributed to the magnetic-field-dependent impact ionization in the bulk of a Si substrate. At the same time, the conditions for this process are specified by structure composition, which, in turn, affects the current through each structure region. The effect of magnetic field attributed to suppression of impact ionization via two mechanisms leads to an increase in the carrier energy required for initiation of impact ionization. The first mechanism is related to displacement of acceptor levels toward higher energies relative to the top of the valence band and the other mechanism is associated with the Lorentz forces affecting carrier trajectories between scatterings events. The estimated contributions of these two mechanisms are similar. The proposed structure is a good candidate for application in CMOS technology-compatible magnetic- and electric-field sensors and switching devices.

  7. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  8. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    Science.gov (United States)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  9. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  10. Distribution of local magnetic field of vortex lattice near anisotropic superconductor surface in inclined external fields

    International Nuclear Information System (INIS)

    Efremova, S.A.; Tsarevskij, S.L.

    1997-01-01

    Magnetic field distribution in a unit cell of the Abrikosov vortex lattice near the surface of monoaxial anisotropic type-ii superconductors in inclined external magnetic field has been found in the framework of London model for the cases when the symmetry axis is perpendicular and parallel to the superconductor surface interface. Distribution of local magnetic field as a function of the distance from the superconductor interface surface and external field inclination angle has been obtained. Using high-Tc superconductor Y-Ba-Cu-O by way of examples, it has been shown that the study of local magnetic field distribution function, depending on external magnetic field inclination angle towards the superconductor symmetry axis and towards the superconductor surface, can provide important data on anisotropic properties of the superconductor [ru

  11. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  12. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  13. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  14. Beta-spectrometer with magnetic filter of mini orange type

    International Nuclear Information System (INIS)

    Gorozhankin, V.M.; Gromov, K.Ya.; Kalinnikov, V.G.; Sereeter, Z.; Fominykh, V.I.; Malikov, Sh.R.; Yuldashev, M.B.

    1997-01-01

    At the ISOL facility YASNAPP-2 a β-spectrometer with a magnetic filter of the miniorange type is constructed to measure γ-ray internal conversion coefficients. The magnetic filter of the mini orange type is an assemblage of permanent magnets creating a toroidal magnetic field perpendicular to the electron trajectories from the source to the Si(Li) detector. The chosen profile of the permanent magnets allowed electron registration in the defined energy energy interval with some transmission increase. There are two sets of permanent magnets of the different thickness. Varying the type and number of permanent magnets one can set the detected electron energy intervals in a 50-2500 keV range. The efficiency of the spectrometer was investigated for different assemblages of the mini orange magnet. The facility can be used for the e-γ coincidence investigation. (A.A.D.)

  15. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  16. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  17. Interaction of tricyclic drugs with copper phthalocyanine dye immobilized on magnetic carriers

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Šafařík, Ivo

    3(Suppl.2), - (2002), s. 188-191 ISSN 1473-2262. [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /4./. Tallahassee, 09.05.2002-11.05.2002] R&D Projects: GA MŠk OC 523.80; GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : magnetic * tricyclic drugs * phthalocyanine Subject RIV: CE - Biochemistry

  18. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  19. Efficient Analysis of Simulations of the Sun's Magnetic Field

    Science.gov (United States)

    Scarborough, C. W.; Martínez-Sykora, J.

    2014-12-01

    Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.

  20. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  1. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  2. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2018-01-01

    Full Text Available Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs (11–13 nm capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8 separately and in combination with two pulsed magnetic field protocols: (1 high dB/dt 3.3 T × 50 and (2 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  3. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  4. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  5. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  6. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  7. Magnetic-field dependence of electrothermal conductivity in YBCO

    Energy Technology Data Exchange (ETDEWEB)

    Marino, A.; Uribe, R. [Universidad del Tolima, Ibague (Colombia); Grupo de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogota (Colombia)

    2008-11-15

    Experimental measurements of the electrothermal conductivity (P) near T{sub c}, as a function of external magnetic field were carried out in undoped YBCO (123) superconducting samples. The electrothermal conductivity which relates electrical and thermal currents, depends on the applied magnetic field in high T{sub c} materials, contrary to conventional low T{sub c} superconductors where P is nearly independent of the magnetic field. The experimental P(B,T) data determined from resistivity and thermopower measurements were analyzed in terms of theoretical models and showed a behavior consistent with an order-parameter symmetry (OPS) of d{sub x{sup 2}-y{sup 2}}-wave type. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  9. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  10. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  11. Tornado type closed magnetic trap for an ECR source

    CERN Document Server

    Abramova, K B; Voronin, A V; Zorin, V G

    1999-01-01

    We propose to use a Tornado type closed magnetic trap for creation of a source of mul-ticharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is deter-mined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap [1]. We propose to extract ions with the aid of additional coils which partially destroy the closed structure of the magnetic lines in the trap, but don not influence the total confinement time. This allows for producing a controlled plasma flux that depends on the magnetic field of the additional coil. The Tornado trap also possesses merits such as an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; plasma stability to magneto-hydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carrie...

  12. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  13. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  14. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  15. Dynamic magnetic behavior of the mixed-spin bilayer system in an oscillating field within the mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-23

    The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.

  16. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  17. Anisotropic mobility and carrier dynamics in the β-type BEDT-TTF salts as studied by inter-layer transverse magnetoresistance

    Directory of Open Access Journals (Sweden)

    Shigeharu Sugawara and Masafumi Tamura

    2013-01-01

    Full Text Available A new method to estimate an in-plane conduction anisotropy in a quasi-two-dimensional (q2D layered conductor by measuring the inter-layer transverse magnetoresistance is proposed. We applied this method to layered organic conductors β-(BEDT-TTF2X (BEDT-TTF = bis(ethylenedithiotetrathiafulvalene, C10H8S8; X = IBr2, I2Br by applying magnetic field rotating within the basal plane at 4.2 K. We found the anisotropic behaviour of carrier mobility μ. From this, anomalous distribution of carrier lifetime τ on the Fermi surface is derived, by the use of Fermi surface data reported for the materials. Calculations of the non-uniform susceptibility χ0(q suggest that carrier scattering is enhanced at specific k-points related to partial nesting of the Fermi surface. The present method is thus demonstrated to be an efficient experimental tool to elucidate anisotropic carrier dynamics in q2D conductors.

  18. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  19. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  20. Determination of Hot-Carrier Distribution Functions in Uniaxially Stressed p-Type Germanium

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    This paper gives a description of an experimental determination of distribution functions in k→ space of hot holes in uniaxially compressed germanium. The hot-carrier studies were made at 85°K at fields up to 1000 V/cm and uniaxial stresses up to 11 800 kg/cm2. The field and stress were always in...... probabilities with stress. A model based on the nonparabolicity of the upper p3 / 2 level is proposed for the negative differential conductivity in stressed p-type Ge....... function has been assumed. The parameters of the distribution function are then fitted to the experimental modulation. The calculation of absorption was performed numerically, using a four-band k→·p→ model. This model was checked for consistency by comparing with piezoabsorption measurements performed...... in thermal equilibrium. The average carrier energy calculated from the distribution function shows a fast increase with stress and almost saturates when the strain splitting of the two p3 / 2 levels reaches the optical-phonon energy. This saturation is interpreted in terms of the change in scattering...

  1. Parallel magnetic field suppresses dissipation in superconducting nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.; Aranson, Igor S.; Thoutam, Laxman R.; Xiao, Zhi-Li; Berdiyorov, Golibjon R.; Peeters, François M.; Crabtree, George W.; Kwok, Wai-Kwong

    2017-11-13

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  2. Parallel magnetic field suppresses dissipation in superconducting nanostrips.

    Science.gov (United States)

    Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J; Aranson, Igor S; Thoutam, Laxman R; Xiao, Zhi-Li; Berdiyorov, Golibjon R; Peeters, François M; Crabtree, George W; Kwok, Wai-Kwong

    2017-11-28

    The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo 0.79 Ge 0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

  3. Levitation performance of YBCO bulk in different applied magnetic fields

    International Nuclear Information System (INIS)

    Liu, W.; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S.

    2008-01-01

    The maglev performance of bulk high-T c superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B z ), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems

  4. Levitation performance of YBCO bulk in different applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-07-01

    The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.

  5. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  6. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Kenichi [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamamoto, Yohei, E-mail: yamamoto@ims.tsukuba.ac.jp [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Center for Integrated Research in Fundamental Science and Technology (CiRfSE), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2016-03-31

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films.

  7. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    International Nuclear Information System (INIS)

    Tabata, Kenichi; Yamamoto, Yohei

    2016-01-01

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films

  8. Field measurement of dipole magnets for TARN

    International Nuclear Information System (INIS)

    Hori, T.; Noda, A.; Hattori, T.; Fujino, T.; Yoshizawa, M.

    1980-05-01

    Eight dipole magnets of window-frame type with zero field gradient have been fabricated for TARN. Various characteristics of the field were examined by a measuring system with a Hall and an NMR probes. The accuracy of the measurement was better than 1 x 10 -4 at the maximum field strength of --9 kG, and the uniformity of the field in the radial direction was better than +-2 x 10 -4 over the whole useful aperture. The deviations both of the field strengths and of the effective lengths among the eight magnets are smaller than +-2 x 10 -3 . The sextupole component of the field and the variation of the effective length over the beam orbits contribute to chromaticities of the ring as the amount of -1.59 and 0.93 in the horizontal and vertical directions, respectively. (author)

  9. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  10. Magnetic field effect in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Ulrich

    2009-12-14

    The discovery of a magnetic field dependent resistance change of organic light emitting diodes (OLEDs) in the year 2003 has attracted considerable scientific and industrial research interest. However, despite previous progress in the field of organic spin-electronics, the phenomenon of the ''organic magnetoresistance (OMR) effect'' is not yet completely understood. In order to improve the understanding of the microscopic mechanisms which ultimately cause the OMR effect, experimental investigations as well as theoretical considerations concerning the OMR are addressed in this thesis. In polymer-based OLED devices the functional dependencies of the OMR effect on relevant parameters like magnetic field, operating voltage, operating current and temperature are investigated. Based on these results, previously published models for potential OMR mechanisms are critically analyzed and evaluated. Finally, a concept for the OMR effect is favored which suggests magnetic field dependent changes of the spin state of electron-hole pairs as being responsible for changes in current flow and light emission in OLEDs. In the framework of this concept it is possible to explain all results from own measurements as well as results from literature. Another important finding made in this thesis is the fact that the value of the OMR signal in the investigated OLED devices can be enhanced by appropriate electrical and optical conditioning processes. In particular, electrical conditioning causes a significant enhancement of the OMR values, while at the same time it has a negative effect on charge carrier transport and optical device characteristics. These results can be explained by additional results from charge carrier extraction measurements which suggest that electrical conditioning leads to an increase in the number of electronic trap states inside the emission layer of the investigated OLED devices. The positive influence of trap states on the OMR effect is

  11. Modeling of carrier dynamics in quantum-well electroabsorption modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    We present a comprehensive drift-diffusion-type electroabsorption modulator (EAM) model. The model allows us to investigate both steady-state properties and to follow the sweep-out of carriers after pulsed optical excitation. Furthermore, it allows for the investigation of the influence that vari...... in the field near each well affect the escape of carriers from that well. Finally, we look at the influence that the separate-confinement heterostructure barriers have on the carrier sweep-out....... that various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate......-confinement heterobarriers. We then move on to look at carrier sweep-out upon short-pulse optical excitation. For a structure with one well, we analyze how the well position affects the carrier sweep-out and the absorption recovery. We calculate the field dynamics in a multiquantum-well structure and discuss how the changes...

  12. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion

    Science.gov (United States)

    Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi

    2018-05-01

    Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).

  13. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  14. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  15. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  16. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  17. Influence of a magnetic field on microstructure formation in L1{sub 0}-type ferromagnetic intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Farjami, Sahar; Fukuda, Takashi; Kakeshita, Tomoyuki [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: farjami@mat.eng.osaka-u.ac.jp

    2009-05-01

    The influence of a magnetic field on microstructure formation through a disorder-order transformation has been investigated in Co-Pt and Fe-Pd alloys. Single crystals of disordered Co-50Pt(at%) and Fe-55Pd(at%) were subjected to an ordering heat-treatment under a magnetic field. When the ordering heat-treatment is performed without applying a magnetic field, three equivalent variants are formed. On the other hand, when the ordering heat-treatment is performed under a magnetic field of 0.5 T (in CoPt) - 4 T (in Fe-55Pd) and higher as applied along the [001] direction of the disordered phase, a single variant with an easy axis along the field direction is obtained. The induced anisotropy energy of the ordered phase under a magnetic field of 1 T was 4.1 kJ|m{sup -3} at 773 K for CoPt and 45.3 kJ|m{sup -3} at 673 K for Fe-55Pd.

  18. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  19. Environmental pollution by magnetic field associated with power transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Abdel-Salam H. A.; Ghania, Samy M. [Faculty of Engineering, Zagazig University (Banha Branch), 9-EI-Hakim Be-Amr EI-Ahh Str, EI- Khalafawy, Shoubra, Cairo (Egypt); Mohmoudh, Shaher A. [Ministry of Electricity and Energy (Egypt)

    2002-11-01

    Environmental pollution has a major effect on human health and other life types. A source of environmental pollution is the magnetic field produced near high and extra high voltage (EHV) transmission lines. Magnetic fields from AC EHV lines have been discussed in this paper. The field profiles and their contribution to environmental pollution are studied, these being under transmission lines with different line system configurations, using the three dimensional approaches. These line system configurations are more commonly used in Egypt and other countries. The obtained results are found to be useful for discussing the comparison of the field densities on the human body and other life types at the ground level under or near the lines. (Author)

  20. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  1. Strain-Induced Pseudo--Magnetic Fields in Graphene: MegaGauss in Nanobubbles

    Science.gov (United States)

    Levy, Niv

    2011-03-01

    Recent theoretical proposals suggest that strain can be used to modify graphene electronic states through the creation of a pseudo--magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Scanning tunneling microscopy shows that graphene grown on a platinum (111) surface forms nanobubbles, which are highly strained due to thermal expansion mismatch between the film and the substrate. We find that scanning tunneling spectroscopy measurements of these nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo--magnetic fields greater than 300 Tesla. This demonstration of enormous pseudo--magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called ``strain engineering''. In collaboration with S. A. Burke ,2 , K. L. Meaker 2 , M. Panlasigui 2 , A. Zettl 2,3 , F. Guinea 4 , A. H. Castro Neto 5 and M. F. Crommie 2,3 . 1. Present address: Department of Physics and Astronomy and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 121, Canada. 2. Department of Physics, University of California, Berkeley, CA 94720, USA. 3. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4. Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid 28049, Spain. 5. Department of Physics, Boston University, Boston, MA 02215, USA.

  2. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Energy Technology Data Exchange (ETDEWEB)

    Smolkova, Ilona S. [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G. Masaryk Sq. 275, 762 72 Zlin (Czech Republic); Kazantseva, Natalia E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Schneeweiss, Oldrich; Pizurova, Nadezda [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2015-01-15

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g{sup −1} to 48 emu g{sup −1}) but does not affect the heating ability of nanoparticles. A 2–7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g{sup −1}. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy. - Highlights: • Mixed phase iron oxide magnetic nanoparticles were obtained by coprecipitation. • A part of nanoparticles was annealed at 300 °C to achieve the single-phase γ-Fe{sub 2}O{sub 3}. • Nanoparticles revealed ferromagnetic-like behavior due to interparticle interactions. • Nanoparticles glycerol

  3. Sudden flux change studies in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Feher, S.; Bordini, B.; Carcagno, R.; Makulski, A.; Orris, D.F.; Pischalnikov, Y.M.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet Program at Fermilab many magnets have been tested which utilize multi strand Rutherford type cable made of state-of-the art Nb 3 Sn strands. During these magnet tests we observed sudden flux changes by monitoring coil voltages and the magnetic field close to the magnets. These flux changes might be linked to magnet instabilities. The voltage spike signals were correlated with quench antenna signals, a strong indication that these are magnet phenomena. With a new high resolution voltage spike detection system, we were able to observe the detailed structure of the spikes. Two fundamentally different signal shapes were distinguished, most likely generated by different mechanisms

  4. Effect of magnetic field on the physical properties of water

    Science.gov (United States)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  5. Novel attempt to create uniform magnetic-field space generated by face-to-face settled HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Ichiju, Kana; Higa, Kazuya; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Yokoyama, Kazuya; Nakamura, Takashi

    2017-01-01

    Various experimental attempts have been made to obtain a uniform magnetic field in the space between face-to-face HTS bulk magnets that could possibly be utilized as NMR magnets. In general, the magnetic fields emitted from the magnetic pole surfaces containing HTS bulk magnets are characterized as non-uniform field distributions. Since the NMR magnets require highly uniform magnetic-field spaces, it has been assumed to be difficult to form uniform magnetic-field spaces between magnetic poles placed face-to-face. The authors modified the shapes of the magnetic-field distribution from convex to concave by attaching ferromagnetic iron plates to the pole surfaces. The magnets were then set face-to-face with various gaps of 30-70 mm, and the experimental data on magnetic-field uniformity was precisely measured in the space. In order to detect the NMR signals, the target performance for uniformity was set as 1,500 ppm throughout the 4-mm span on the x-axis, which is equivalent to performance in the past when the world's first detection of NMR signals was observed in the bore of hollow-type HTS bulk magnets. When we combined the concave and convex field distributions to compensate the uneven field distributions, the data of the best uniformity reached 358 ppm and 493 ppm in the 30 mm and 50 mm gaps, respectively, which exceeded the target value for the purpose of detecting the NMR signals within the space. Furthermore, it was shown that the field distributions change from concave to convex shape without any change at 1.1 T in the range from 7 to 11 mm in the 30-mm gap, indicating that the distributions are uniform. This suggests the possibility that the uniform magnetic-field space between the HTS bulk magnets set face-to-face expands. (author)

  6. Improvement of open-type magnetically shielded room composed of magnetic square cylinders by controlling flux path

    International Nuclear Information System (INIS)

    Hirosato, S.; Yamazaki, K.; Tsuruta, T.; Haraguchi, Y.; Kosaka, M.; Gao, Y.; Muramatsu, K.; Kobayashi, K.

    2011-01-01

    We have developed an open-type magnetically shielded room composed of magnetic square cylinders that has been used for an actual MRI in a hospital. To improve shielding performance, we propose here a method to control the path of the magnetic flux in the wall composed of the magnetic square cylinders by changing the magnetic permeability in each direction of the square cylinders spatially. First, we discuss a method to control the magnetic permeability in each direction of the square cylinders independently by inserting slits without changing the outside dimensions of the square cylinders, by using 3-D magnetic field analysis. Then, the effectiveness of the design of controlling the flux pass was shown by magnetic field analysis and experiments. (author)

  7. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  8. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Directory of Open Access Journals (Sweden)

    GhoshMitra Somesree

    2009-01-01

    Full Text Available Abstract Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol ethyl ether methacrylate-co-poly(ethylene glycol methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth even at high iron concentrations (6 mM, indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  9. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  10. Two-functional sensor of magnetic field and deformation based on Si microcrystals

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-06-01

    Full Text Available This research investigates complex studies of electrical conductivity and magnetoresistance of both strain and non-strain samples of p-type Si whiskers with different degrees of doping with boron and nickel in a wide temperature range from 4.2 to 300 K. It is established that the greatest manifestation of the piezoresistive effect is observed in the vicinity of concentrations which correspond to the metal-insulator transition. Investigation of the magnetoresistance of crystals was carried out in the range of fields with induction up to 14 T. Whiskers of silicon with a doping concentration of boron of 5·1018 cm-3 can be used as a sensitive element for two-functional deformation and magnetic field sensors in difficult operating conditions. Microwires for research were grown by chemical transport reactions with the crystallographic orientation and with the concentration of charge carriers, which corresponds to the vicinity of metal-insulator transition (5·1018 см-3. The nickel doping was conducted by the low-temperature diffusion from the precipitated film on the surface of the crystal. The uniaxial strain of Si microcrystals was carried out by fixing them on substrates with the different coefficient of thermal. The metallic-type temperature dependence on the resistivity is typical for heavily doped silicon microcrystals (with the bor concenctation >5·1018 сm-3 for both deformed and non deformed samples. Significant influence of the deformation on characteristics of microcrystals wasn't found. The maximum magnetoresistance of such samples doesn't exceed 4% in magnetic fields with induction of 14 T at the temperature of liquefied helium. The resistivity of Si crystals with ρ300К = 0.012 Оhm·сm (which corresponds to the dielectric side of MIT is reduced in several times at the the temperature of liquefied helium and under the uniaxial deformation. Decreasing of boron concentration reduces this effect. This is also confirmed by the

  11. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  12. Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core

    Science.gov (United States)

    Knezek, Nicholas; Buffett, Bruce

    2018-04-01

    We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.

  13. Ultrafast nonlinear carrier dynamics in doped semiconductors in high THz fields

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2011-01-01

    THz frequency saturable absorption and intervalley carrier scattering in n-type semiconductors were observed using intensity-dependent transmission experiments as well as THz-pump—THz probe spectroscopy with ultrabroadband probe pulses.......THz frequency saturable absorption and intervalley carrier scattering in n-type semiconductors were observed using intensity-dependent transmission experiments as well as THz-pump—THz probe spectroscopy with ultrabroadband probe pulses....

  14. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  15. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  16. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  17. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  18. Image-optimized Coronal Magnetic Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  19. Image-Optimized Coronal Magnetic Field Models

    Science.gov (United States)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  20. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  1. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  2. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  3. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  4. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  5. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  6. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  7. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  8. Analysis of levitation characteristics of radial-type superconducting magnetic bearings; Rajiarugata chodendojikijikuju no fujotokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, H.; Takizawa, T. [NSK Ltd., Kanagawa (Japan)

    1999-11-25

    In the design of a large-scale flywheel. load capacity and bearing constants (i.e. spring and damping constants) should be accurately calculated. In this report, a newly developed analysis method for radial-type superconducting magnetic bearings (SMBs) composed of several couples of magnet rings and magnetic material spacers is described. The analysis based both on electromagnetic FEM of the magnetic field and the 2-dimensional Bean model for analysis of the magnetization of type-2 superconductors. To obtain accurate magnetization hysteresis that reflects the complex magnetic fields, a superconductor is meshed into cells and then the electromagnetic force between the magnetic fields of magnetics and the magnetization of the superconductor are calculated. Recently, computer programs which can calculate the axial load capacity of radial-type SMBs have been developed. Furthermore, programs which can calculate bearing constants are close to being completed. Calculated results on axial load capacity showed good agreement with the experimental results. (author)

  9. Development of varying magnetic field analysis technology caused by vibration of MRI apparatus

    International Nuclear Information System (INIS)

    Imamura, Yukinobu; Motoshiromizu, Hirofumi; Abe, Mitsushi; Watanabe, Hiroyuki; Takeuchi, Hiroyuki

    2015-01-01

    In Magnetic Resonance Imaging (MRI) apparatus, pulse current is energized to the gradient coils in a strong static magnetic field generated by the static magnetic poles. Since electromagnetic force (i.e. Lorentz force) is generated in the gradient coils, the MRI magnet system vibrates. On the other hand, vibration of the MRI magnet system is affected by electromagnetic force caused by static magnetic poles vibration. As the vibration of MRI magnet system causes magnetic field disturbance (so-called 'error magnetic field') and affect image quality, it is important to evaluate them in the design process. In this study, a varying magnetic field evaluation method for MRI magnet system was developed. Vibration and electromagnetic force is considered in the weak coupling formation using the Modal Magnetic Dumping (MMD) method. In the eddy current analysis by vibration, the displacement was considered in the magnetic field changes in the finite elements. Error magnetic field caused by equipment vibration was obtained by superposition of the static magnetic field fluctuation and the eddy current magnetic field. Then open type MRI magnet was evaluated by the proposed methodology. A a result, vibration of static magnet poles were suppressed by magnetic dumping at 50 Hz or less and eddy current magnetic field was dominant at 50 Hz or more. (author)

  10. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  11. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  12. Stochastic field-line wandering in magnetic turbulence with shear. II. Decorrelation trajectory method

    Science.gov (United States)

    Negrea, M.; Petrisor, I.; Shalchi, A.

    2017-11-01

    We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .

  13. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  14. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  15. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  16. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  17. Genotoxicity and ELF-magnetic fields: a review through the micronucleus assay

    International Nuclear Information System (INIS)

    Alcaraz, M.; Andreu-Galvez, M.; Sanchez-Villalobos, J. M.; Achel, D. G.; Olmos, E.; Martinez-Hernandez, C. M.

    2012-01-01

    Thirty for (34) published studies, conducted from 1994 to the present to evaluate the genotoxic effect of magnetic fields using ELF-EMF and diagnostic resonance on humans by the micronucleus assay have been reviewed. some characteristics of the assay methods, their significance to genotoxicity and basic interpretations of the results of these assays are discussed. of the studies analysed 70.5% implicated genotoxic effects induced by these magnetic fields: 52.9% were due to exposure to magnetic fields only and 17,6% by exposure to magnetic fields in combination with some treatment types, resulting in additive or synergistic effect. Evidence exist to support the notion that exposure of humans to magnetic fields stimulates genotoxic effects, although the actual mechanisms of action or even the true human health consequences resulting from these exposure still remain unclear. (Author) 80 refs.

  18. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  19. Impact of interplay between magnetic field, transformation strain, and coarsening on variant selection in L10-type FePd

    International Nuclear Information System (INIS)

    Ueshima, N.; Yasuda, H.; Yoshiya, M.; Fukuda, T.; Kakeshita, T.

    2014-01-01

    Variant selection of L1 0 -type ferromagnetic alloys has been numerically investigated using the phase-field modeling, to clarify the phenomena at greater temporal and spatial resolution and to reveal the underlying mechanism. The duration for which the external magnetic field is effective is found to be very short, and variant selection is significantly affected by not only direct response to the external magnetic field but also their interplay between the field, intrinsic transformation strain, and various thermodynamic energy components involved in the course of microstructure evolution. The detailed mechanism of the interplay was quantitatively analyzed in terms of the driving force for the variant selection, by partitioning it into the various energy components. Careful examination of the variant selection at the very early stage revealed that the slight difference in size and configuration of variants during disorder-to-order transition realized by the interplay between transformation strain and external field is essentially needed before proceeding to the latter stage of the variant selection driven by interface energy

  20. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  1. Radical polarization in double switching of external magnetic field

    International Nuclear Information System (INIS)

    Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.

    1999-01-01

    Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession

    CERN Multimedia

    2002-01-01

    Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...

  3. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  4. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  5. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  6. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  7. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  8. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  9. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  10. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  11. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  12. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  13. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  14. Synthesis and characterization of robust magnetic carriers for bioprocess applications

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Willian, E-mail: willkopp@gmail.com [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Silva, Felipe A., E-mail: eq.felipe.silva@gmail.com [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Lima, Lionete N., E-mail: lionetenunes@yahoo.com.br [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Masunaga, Sueli H., E-mail: sueli.masunaga@gmail.com [Department of Physics, Montana State University-MSU, 173840, Bozeman, MT 59717-3840 (United States); Tardioli, Paulo W., E-mail: pwtardioli@ufscar.br [Department of Chemical Engineering, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Giordano, Roberto C., E-mail: roberto@ufscar.br [Department of Chemical Engineering, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Araújo-Moreira, Fernando M., E-mail: faraujo@df.ufscar.br [Department of Physics, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); and others

    2015-03-15

    Highlights: • Silica magnetic microparticles were synthesized for applications in bioprocesses. • The process to produce magnetic microparticles is inexpensive and easily scalable. • Microparticles with very high saturation magnetization were obtained. • The structure of the silica magnetic microparticles could be controlled. - Abstract: Magnetic carriers are an effective option to withdraw selected target molecules from complex mixtures or to immobilize enzymes. This paper describes the synthesis of robust silica magnetic microparticles (SMMps), particularly designed for applications in bioprocesses. SMMps were synthesized in a micro-emulsion, using sodium silicate as the silica source and superparamagnetic iron oxide nanoparticles as the magnetic core. Thermally resistant particles, with high and accessible surface area, narrow particle size distribution, high saturation magnetization, and with superparamagnetic properties were obtained. Several reaction conditions were tested, yielding materials with saturation magnetization between 45 and 63 emu g{sup −1}, particle size between 2 and 200 μm and average diameter between 11.2 and 15.9 μm, surface area between 49 and 103 m{sup 2} g{sup −1} and pore diameter between 2 and 60 nm. The performance of SMMps in a bioprocess was evaluated by the immobilization of Pseudomonas fluorescens lipase on to octyl modified SMMp, the biocatalyst obtained was used in the production of butyl butyrate with good results.

  15. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  16. Magnetic fields in beta Cep, SPB, and Be stars

    OpenAIRE

    Schoeller, M.; Hubrig, S.; Briquet, M.; Ilyin, I.

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic fi...

  17. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  18. Magnetic field calculations for the technical proposal of the TESLA spectrometer magnet

    International Nuclear Information System (INIS)

    Morozov, N.A.; Schreiber, H.J.

    2003-01-01

    The TESLA electron-positron linear collider is under consideration at DESY (Hamburg). The realization of the physical program at this collider requires the knowledge of the beam energy of both beams (e + and e - ) with a precision of ΔE/E ≤ 10 -4 . The magnetic spectrometer was proposed as an energy measuring device. The report describes calculations for the preliminary conceptual design of this type of the spectrometer. The 2D calculations of the magnetic field for the spectrometer magnet have been performed by POISSON SUPERFISH computer code. The basic technical parameters of the magnet have been determined. These data will serve as a basis for the technical design of the spectrometer magnet and discuss its integration in the spectrometer

  19. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  20. Mounting an ISR intersection chamber in the Split Field Magnet(SFM)

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton.Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In the course of the years different types of vacu...

  1. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  3. Large-scale Organized Magnetic Fields in O, B and A Stars

    Science.gov (United States)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  4. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  5. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field

    KAUST Repository

    Nappini, Silvia

    2010-01-01

    In this work we have studied the effect of a low-frequency alternating magnetic field (LF-AMF) on the permeability of magnetoliposomes, i.e. liposomes including magnetic nanoparticles within their water pool. Large unilamellar liposomes loaded with magnetic cobalt ferrite nanoparticles (CoFe 2O4) have been prepared and characterized. Structural characterization of the liposomal dispersion has been performed by dynamic light scattering (DLS). The enhancement of liposome permeability upon exposure to LF-AMF has been measured as the self-quenching decrease of a fluorescent hydrophilic molecule (carboxyfluorescein, CF) entrapped in the liposome pool. Liposome leakage has been monitored as a function of field frequency, time of exposure and concentration, charge and size of the embedded nanoparticles. The results show that CF release from magnetoliposomes is strongly promoted by LF-AMF, reasonably as a consequence of nanoparticle motions in the liposome pool at the applied frequency. CF release as a function of time in magnetoliposomes unexposed to magnetic field follows Fickian diffusion, while samples exposed to LF-AMF show zero-order kinetics, consistently with an anomalous transport, due to an alteration of the bilayer permeability. These preliminary results open up new perspectives in the use of these systems as carriers in targeted and controlled release of drugs. © The Royal Society of Chemistry 2010.

  6. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  7. Drift of nonequilibrium charge carriers in GaAs-crystals with traps in ultrasonic fields

    International Nuclear Information System (INIS)

    Zaveryukhina, N.N.; Zaveryukhin, B.N.; Zaveryukhina, E.B.

    2007-01-01

    Full text: The drift of nonequilibrium charge carriers in a semiconductor is one of the basic processes determining the efficiency of semiconductor photodetectors. Gallium arsenide possesses certain advantages to other semiconductors in this respect, which allow GaAs-photodetectors to be obtained which possess the maximum efficiency in comparison with all other systems. The purpose of this study was to deepen and expand our knowledge about the acoustic-drift processes in GaAs- crystals. As is known, the drift of nonequilibrium charge carriers in a semiconductor is determined either by external electric fields and/or by internal (built-in) electrostatic fields related to an impurity concentration gradient in the semiconductor. Gallium arsenide is a piezoelectric semiconductor with a structure possessing no center of symmetry. An electric field applied to such a crystal produces deformation of the crystal, and vice versa, any deformation of the crystal leads to the appearance of an induced electric field. Therefore, investigation of the effect of deformation on the drift of nonequilibrium charge carriers is a very important task. One of the possible straining factors is ultrasonic wave. Interaction of the charge carriers with ultrasonic waves in piezo-semiconductors is mediated by piezo exertion. Straining a semiconductor by an ultrasonic wave field gives rise to a force acting upon the charge carriers, which is proportional to the wave vector and the piezoelectric constant of the crystal. The physics of interaction between an ultrasonic wave and nonequilibrium charge carriers in GaAs, as well as in non-polar semiconductors (Si, Ge), consists in the energy and momentum exchange between the wave and the carriers. Besides the ultrasonic waves interact with the traps of carriers and devastate them. These both acoustic effects lead to rise of amplitude of signal of GaAs-photodetectors. (authors)

  8. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  9. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  10. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  11. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  12. Satellite-borne study of seismic phenomena by low frequency magnetic field observations

    Science.gov (United States)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Prattes, Gustav; Eichelberger, Hans-Ulrich; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong

    2015-04-01

    A combined scalar-vector magnetic field experiment will be flown on the upcoming CSES mission (China Seismo-Electromagnetic Satellite). Magnetic field data from DC to 30 Hz will be measured with an accuracy of about 10 pT. A fluxgate instrument will provide the 3 magnetic field components and a new type of an optically pumped magnetometer [see Pollinger, 2010] will measure the magnitude of the ambient magnetic field. The satellite will operate in a Sun synchronous polar orbit at an altitude of about 500 km and with an inclination of 97°. We present a model of magnetic field fluctuations in the upper ionosphere based on previous satellite observations and on a model of the lithospheric-atmospheric-ionospheric coupling. Pollinger et al., CDSM-a new scalar magnetometer, EGU General Assembly 2010

  13. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  14. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  15. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  16. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields

    Science.gov (United States)

    Leonov, A. O.; Kézsmárki, I.

    2017-12-01

    We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cn v symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2 d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3 v symmetry, GaV4S8 and GaV4Se8 , and Mn1.4Pt0.9Pd0.1Sn with D2 d symmetry.

  17. Ballooning modes on open magnetic field lines

    International Nuclear Information System (INIS)

    Hameiri, E.

    1999-01-01

    The ballooning instability on open magnetic field lines is given a thorough mathematical analysis. It is shown that resistive bounding ends (endplates) induce the same stability properties as insulating ends. When unstable, the maximal growth rate increases monotonically with boundary resistivity. An interchange instability may be present, and one necessary condition for its stability is that ∫dl/B be constant on pressure surfaces. (This is an equilibrium existence condition for systems with closed magnetic field lines.) Another necessary condition for interchange stability has the same form as in the closed line case. Precise necessary and sufficient stability criteria are given for various types of bounding ends, including insulating, resistive, and perfectly conducting. copyright 1999 American Institute of Physics

  18. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  19. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  20. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    Science.gov (United States)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  1. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  2. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  3. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    Science.gov (United States)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  4. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  5. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  6. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  7. Magnetically modified spent grain as a low-cost, biocompatible and smart carrier for enzyme immobilisation

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2013-01-01

    Roč. 93, č. 7 (2013), s. 1598-1602 ISSN 0022-5142 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic fluid * spent grain * lipase * magnetic carrier * immobilisation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.879, year: 2013

  8. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  9. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  10. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  11. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  12. New performance in harmonic analysis device generation used for magnetic fields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Evesque, C.; Tkatchenko, M.

    1996-12-31

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10{sup -4}, we have to know the field quality to 10{sup -5} through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10{sup -5} and a sensitivity up to 10{sup -8} Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 {mu}m. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors).

  13. New performance in harmonic analysis device generation used for magnetic fields measurements

    International Nuclear Information System (INIS)

    Evesque, C.; Tkatchenko, M.

    1996-01-01

    In particle accelerator, correcting high multipole components of magnets are of high importance for quality magnet: to get a pure quadrupole to within 10 -4 , we have to know the field quality to 10 -5 through the 30. order. Our laboratory needed such a very sharp device to find small harmonic components of magnetic field. For harmonic analysis of magnetic field, we adopted the standard method, i.e. a rotating coil connected to a flux integrator. Nowadays, coils measuring azimuthal component of magnetic field are used. In order to obtain correct and accurate measurements, we were guided by two imperatives: first, optimisation of construction constraints and second, comparison of azimuthal and radial component measurements. With this background, this article describes both new technological solutions adopted and new performance obtained. We also discuss the most suitable geometric structure for the coils. We obtained a noiseless signal, a repeatability of 10 -5 and a sensitivity up to 10 -8 Weber for both types of coils. Our device is able to find and measure main component, normal and skew multipole components up to the 32. order, when simulating local defects. The magnetic axis is located within 5 μm. The central gradient is also measured and magnetic length deduced. Complementary functions of two types of coils were noticed in detecting local defects of magnetic structure. (authors)

  14. Relation of twist of magnetic force tube and flare magnetic field

    International Nuclear Information System (INIS)

    Tanaka, H.

    1978-01-01

    The configuration of magnetic field and its development in the regions of big flare were investigated to study the features of magnetic force tubes. The photographs of delta type solar spots taken at Mt. Wilson Observatory were selected. 94 percent of the delta type spots belong to the class B activity or more active class. The features of delta type spots are the reverse configuration and the shear motion. The reverse configuration is divided into the p/f configuration and the f/p configuration. The shear motion is divided into the normal motion, the reverse motion, and the indefinite motion. Vortex structures appeared around the solar spots of reverse configuration showing normal motion. The relation among the direction of twist, reverse configuration and the direction of shear motion was deduced. In the region of normal motion, the p/f configuration corresponds to the reverse S type vortices and the f/p configuration to S type. In the region of reverse motion, the p/f configuration corresponds to the S type vortices and the f/p corresponds to the reverse S type vortices. The mechanism of development of delta type solar spots is discussed. (Kato, T.)

  15. Dipole-magnet field models based on a conformal map

    Directory of Open Access Journals (Sweden)

    P. L. Walstrom

    2012-10-01

    algorithm for computing the midplane field derivatives with the model is described. The model has been incorporated in the particle beam code Marylie/Impact as a special dipole-magnet type along with a tanh model with exponential falloff of the fringe field. Comparison of maps from the tanh model and the new model shows that significant differences in 3rd-order geometric terms can occur, apparently due to the extended fringe field in the new model.

  16. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  17. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  18. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  19. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  20. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  1. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  2. RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Ramishvili, Giorgi; Shergelashvili, Bidzina [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Hanslmeier, Arnold [IGAM, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Poedts, Stefaan, E-mail: teimuraz.zaqarashvili@uni-graz.at [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001, Leuven (Belgium)

    2016-07-20

    Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195 days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.

  3. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  4. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    International Nuclear Information System (INIS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-01-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  5. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Katebi, Samira; Esmaeili, Abolghasem, E-mail: aesmaeili@sci.ui.ac.ir; Ghaedi, Kamran

    2016-03-15

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  6. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  7. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  8. Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite

    Science.gov (United States)

    Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.

    2018-05-01

    The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.

  9. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  10. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  11. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  12. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  13. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  14. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  15. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  16. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions.

    Science.gov (United States)

    Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu

    2014-07-24

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.

  17. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  18. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  19. Magnetism and thermodynamic properties of a spin-1/2 ferrimagnetic diamond XY chain in magnetic fields at finite temperatures

    International Nuclear Information System (INIS)

    Cheng, Tai-Min; Ma, Yan-Ming; Ge, Chong-Yuan; Sun, Shu-Sheng; Jia, Wei-Ye; Li, Qing-Yun; Shi, Xiao-Fei; Li, Lin; Zhu, Lin

    2013-01-01

    The elementary excitation spectra of a one-dimensional ferrimagnetic diamond chain in the spin-1/2 XY model at low temperatures have been calculated by using an invariant eigen-operator (IEO) method, the energies of elementary excitations in different specific cases are discussed, and the analytic solutions of three critical magnetic field intensities (H C1 , H C2 , and H peak ) are given. The magnetization versus external magnetic field curve displays a 1/3 magnetization plateau at low temperatures, in which H C1 is the critical magnetic field intensity from the disappearance of the 1/3 magnetization plateau to spin-flop states, H C2 is the critical magnetic field intensity from spin-flop states to the saturation magnetization, and H peak is the critical magnetic field intensity when the temperature magnetization shows a peak in the external magnetic field. The temperature dependences of the magnetic susceptibility and the specific heat show a double peak structure. The entropy and the magnetic susceptibility versus external magnetic field curves also exhibit a double peak structure, and the positions of the two peaks correspond to H C1 and H C2 , respectively. This derives from the competition among different types of energies: the temperature-dependent thermal disorder energy, the potential energy of the spin magnetic moment, the ferromagnetic exchange interaction energy, and the anti-ferromagnetic exchange interaction energy. However at low temperatures, the specific heat as a function of external magnetic field curve exhibits minima at the above two critical points (H C1 and H C2 ). The origins of the above phenomena are discussed in detail.

  20. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    International Nuclear Information System (INIS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-01-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect. (paper)

  1. Alternating magnetic field losses in ATLAS type aluminium stabilized NbTi superconductors

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    During ramping up- and down of the current in large-scale magnets the ramp losses are an important factor affecting the thermal and electro-magnetic stability of the system. The calculation of the losses is not straightforward due to the large dimensions of the conductor (~600 mm/sup 2/) implying that diffusion effects have to be taken into account. The AC-losses of the Al stabilized NbTi cable conductors used in the ATLAS magnet system were measured in 0.5 m long samples, using an inductive method with pick-up coils as well as the calorimetric method. External varying magnetic fields up to 2 tesla amplitude were applied parallel and perpendicular to the conductor wide surface. The results are compared to theory. It is found that hysteresis loss, eddy current loss in the Aluminum cladding and cable-to-cladding coupling loss contribute most to the AC loss. (5 refs).

  2. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  3. Self running actuators moving in the same direction as the exciting magnetic field

    International Nuclear Information System (INIS)

    Enokizono, M.; Todaka, T.; Goto, K.

    1998-01-01

    This paper presents two kinds of drive units whose rotation axes are parallel to the exciting outer magnetic field. One is a hard-material-type that uses permanent magnets and silicon steel sheets to obtain the radial components of the field strength, and the other is a soft-material-type that uses the vibration of an amorphous ribbon to induce a rotational force. These drive units were developed to improve the freedom of movement of sensing devices. By combining the developed units with conventional ones, it will be possible to control the movement of devices freely by means of the outer magnetic field. In this paper, the basic characteristics of the drive units and their applicability are discussed. (author)

  4. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  5. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  6. Inflating Kahler moduli and primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis, E-mail: laparici@ictp.it [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Maharana, Anshuman, E-mail: anshumanmaharana@hri.res.in [Harish Chandra Research Institute, HBNI, Chattnag Road, Jhunsi, Allahabad 211019 (India)

    2017-05-10

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  7. Inflating Kahler moduli and primordial magnetic fields

    Directory of Open Access Journals (Sweden)

    Luis Aparicio

    2017-05-01

    Full Text Available We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  8. Inflating Kahler moduli and primordial magnetic fields

    International Nuclear Information System (INIS)

    Aparicio, Luis; Maharana, Anshuman

    2017-01-01

    We study the production of primordial magnetic fields in inflationary models in type IIB string theory where the role of the inflaton is played by a Kahler modulus. We consider various possibilities to realise the Standard Model degrees of freedom in this setting and explicitly determine the time dependence of the inflaton coupling to the Maxwell term in the models. Using this we determine the strength and scale dependence of the magnetic fields generated during inflation. The usual “strong coupling problem” for primordial magnetogenesis manifests itself by cycle sizes approaching the string scale; this appears in a certain class of fibre inflation models where the standard model is realised by wrapping D7-branes on cycles in the geometric regime.

  9. Design of the magnetic system of an ECR type ion source

    International Nuclear Information System (INIS)

    Camps C, E.; Munoz C, A.

    1990-05-01

    A computer program written with the purpose of studying the magnetic field produced by a linear system of n coils is shown. Based on this a four coils system is designed that was used in an ion source of Resonance Electron-cyclotron type (REC) that is sought to build. In turn, structure characteristics of the magnetic field proper for such purpose are discussed. (Author)

  10. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  11. Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh; Ahmadi, Eghbal

    2012-04-01

    We have investigated the electronic properties of zigzag CNTs and BNNTs under the external transverse electric field and axial magnetic field, using tight binding approximation. It was found that after switching on the electric and magnetic fields, the band modification such as distortion of the degeneracy, change in energy dispersion, subband spacing and band gap size reduction occurs. The band gap of zigzag BNNTs decreases linearly with increasing the electric field strength but the band gap variation for CNTs increases first and later decreases (Metallic) or first hold constant and then decreases (semiconductor). For type (II) CNTs, at a weak magnetic field, by increasing the electric field strength, the band gap remains constant first and then decreases and in a stronger magnetic field the band gap reduction becomes parabolic. For type (III) CNTs, in any magnetic field, the band gap increases slowly until reaches a maximum value and then decreases linearly. Unlike to CNTs, the magnetic field has less effects on the BNNTs band gap variation.

  12. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  13. Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM

    Directory of Open Access Journals (Sweden)

    MOSALLANEJAD, A.

    2010-11-01

    Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.

  14. PIC simulations of magnetic field production by cosmic rays drifting upstream of SNR shocks

    International Nuclear Information System (INIS)

    Pohl, M.

    2008-01-01

    Turbulent magnetic-field amplification appears to operate near the forward shocks of young shell-type SNR. I review the observational constraints on the spatial distribution and amplitude of amplified magnetic field in this environment. I also present new PIC simulations of magnetic-field growth due to streaming cosmic rays. While the nature of the initial linear instability is largely determined by the choice of simulation parameters, the saturation always involves changing the bulk motion of cosmic rays and background plasma, which limits the field growth to amplitudes of a few times that of the homogeneous magnetic field. (author)

  15. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  16. Green's function of compressible Petschek-type magnetic reconnection

    International Nuclear Information System (INIS)

    Penz, Thomas; Semenov, V.S.; Ivanova, V.V.; Heyn, M.F.; Ivanov, I.B.; Biernat, H.K.

    2006-01-01

    We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection. Based on a time-dependent analytical approach developed by Heyn and Semenov [Phys. Plasmas 3, 2725 (1996)] and Semenov et al. [Phys. Plasmas 11, 62 (2004)], we calculate the perturbations caused by a delta function-shaped reconnection electric field, which allows us to achieve a representation of the plasma variables in the form of Green's functions. Different configurations for the initial conditions are considered. In the case of symmetric, antiparallel magnetic fields and symmetric plasma density, the well-known structure of an Alfven discontinuity, a fast body wave, a slow shock, a slow wave, and a tube wave occurs. In the case of asymmetric, antiparallel magnetic fields, additionally surface waves are found. We also discuss the case of symmetric, antiparallel magnetic fields and asymmetric densities, which leads to a faster propagation in the lower half plane, causing side waves forming a Mach cone in the upper half plane. Complex effects like anisotropic propagation characteristics, intrinsic wave coupling, and the generation of different nonlinear and linear wave modes in a finite β plasma are retained. The temporal evolution of these wave and shock structures is shown

  17. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  18. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  19. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  20. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  1. New type of vortex pinning structure effective at very high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Sakai, N.; Chikumoto, N.; Jirsa, Miloš; Machi, T.; Nishiyama, M.; Wu, Y.; Murakami, M.

    2002-01-01

    Roč. 89, č. 32 (2002), s. 237001-1 - 237001-4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA1010919 Institutional research plan: CEZ:AV0Z1010914 Keywords : nanometer-scale pinning * NEG/Ba-rich clusters * Nd 0.33 Eu 0.38 Gd 0.28 )Ba 2 Cu 3 O y * irreversibility field * high-field applications Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  2. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  3. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  4. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xiaojie Xu

    2014-12-01

    Full Text Available Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors’ disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted.

  5. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  6. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  7. Accurate calculation of field and carrier distributions in doped semiconductors

    Directory of Open Access Journals (Sweden)

    Wenji Yang

    2012-06-01

    Full Text Available We use the numerical squeezing algorithm(NSA combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  8. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  9. Vector Magnetometer Application with Moving Carriers

    Directory of Open Access Journals (Sweden)

    Andrii Prystai

    2016-12-01

    Full Text Available In magnetic prospecting the aeromagnetic survey is a widespread method used for research in large territories or in the areas with difficult access (forests, swamps, shallow waters. At present, a new type of mobile carriers – remotely piloted vehicles or drones – is becoming very common. The drones supplied by magnetometer can be also used for underground utility location (for example, steel and concrete constructions, buried power cables, to name a few. For aeromagnetic survey, obtaining of 3-component magnetic field data gives higher processing precision, so the fluxgate magnetometers (FGM seem to be the most preferable by reason of low weight, noise, power consumption and costs. During movement of FGM fixed to a drone practically permanent attitude changes in the Earth’s magnetic field arises with corresponding changes of its projection at FGM axes. Also the electromagnetic interference from the drone motor and uncontrolled oscillations of drone and suspension are the factors which limit the magnetometer sensitivity level. Aroused because of this, signals significantly exceed the expected signals from a studied object and so should be removed by proper interference filtration and use of stabilized towed construction, as well as at data processing. To find the necessary resolution threshold of a drone-portable FGM, the modeling was made to estimate magnetic field value from a small sphere about 1 cm radius at the minimal altitude of drone flight and it was shown that such a small object can be reliably detected if the FGM noise level is less than 0.15 nT. Next requirement is the necessity to decrease as much as possible the FGM power consumption with retention of low noise level. Finally, because of drone movement, the broadening of a frequency range should be done. The LEMI-026 magnetometer was developed satisfying all requirements to the drone-mounted device. The field tests were successfully performed using two of LEMI-026

  10. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  11. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  12. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  13. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  14. EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts

    Science.gov (United States)

    Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.

    2017-06-01

    Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).

  15. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  16. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer

    Science.gov (United States)

    Chan, Chunkai; Zhang, Xiaodong; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Zhang, Jingzhao; Zhu, Junyi

    2018-01-01

    The long-range magnetism observed in group-V tellurides quintuple layers is the only working example of carrier-free dilute magnetic semiconductors (DMS), whereas the physical mechanism is unclear, except the speculation on the band topology enhanced van Vleck paramagnetism. Based on DFT calculations, we find a stable long-range ferromagnetic order in a single quintuple layer of Cr-doped Bi2Te3 or Sb2Te3, with the dopant separation more than 9 Å. This configuration is the global energy minimum among all configurations. Different from the conventional super exchange theory, the magnetism is facilitated by the lone pair derived anti-bonding states near the cations. Such anti-bonding states work as stepping stones merged in the electron sea and conduct magnetism. Further, spin orbit coupling induced band inversion is found to be insignificant in the magnetism. Therefore, our findings directly dismiss the common misbelief that band topology is the only factor that enhances the magnetism. We further demonstrate that removal of the lone pair derived states destroys the long-range magnetism. This novel mechanism sheds light on the fundamental understanding of long-range magnetism and may lead to discoveries of new classes of DMS. Supported by Chinese University of Hong Kong (CUHK) under Grant No 4053084, University Grants Committee of Hong Kong under Grant No 24300814, and the Start-up Funding of CUHK.

  17. Simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using vector Preisach-type models

    International Nuclear Information System (INIS)

    Adly, A.A.; Davino, D.; Visone, C.

    2006-01-01

    Materials exhibiting gigantic magnetostriction and magnetic shape memory are currently being widely used in various applications. Recently, an approach based on simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models has been introduced. The purpose of this paper is to present a detailed formulation and quantitative assessment for the simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using this recently proposed model. Details of the model formulation, identification procedure and experimental testing are given in the paper

  18. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minaif, Karine; Ajzen, Sergio [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis]. E-mail: kminaif@uol.com.br; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis. Unit of Abdomen; Ruano, Jose Maria Cordeiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology. Sector of Videlaparoscopy; Noguti, Alberto Sinhiti [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology

    2008-11-15

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  20. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Minaif, Karine; Ajzen, Sergio; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob; Ruano, Jose Maria Cordeiro; Noguti, Alberto Sinhiti

    2008-01-01

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  1. Magnetoresistance of magnetically doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A J; Mokhtari, A; Blythe, H J; Fox, A M; Gehring, G A [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M, E-mail: G.A.Gehring@sheffield.ac.u [Division of Superconductivity and Magnetism, University of Leipzig, D-04103, Leipzig (Germany)

    2009-08-26

    Magnetoresistance measurements have been made at 5 K on doped ZnO thin films grown by pulsed laser deposition. ZnCoO, ZnCoAlO and ZnMnAlO samples have been investigated and compared to similar films containing no transition metal dopants. It is found that the Co-doped samples with a high carrier concentration have a small negative magnetoresistance, irrespective of their magnetic moment. On decreasing the carrier concentration, a positive contribution to the magnetoresistance appears and a further negative contribution. This second, negative contribution, which occurs at very low carrier densities, correlates with the onset of ferromagnetism due to bound magnetic polarons suggesting that the negative magnetoresistance results from the destruction of polarons by a magnetic field. An investigation of the anisotropic magnetoresistance showed that the orientation of the applied magnetic field, relative to the sample, had a large effect. The results for the ZnMnAlO samples showed less consistent trends.

  2. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    International Nuclear Information System (INIS)

    Ohtsuka, H.; Wada, H.; Ghosh, G.

    2000-01-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  3. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  4. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  5. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  6. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  7. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  8. investigation of Y-Ba-Cu-O type superconductors in pulsed ultrahigh magnetic fields

    International Nuclear Information System (INIS)

    Pavlovskii, A.I.; Tatsenko, O.M.; Platonov, V.V.; Voronov, S.A.; Kolokolchikov, N.P.; Markevtsev, I.M.; Deryugin, Y.N.; Druzhinin, V.V.; Shcherbak, Y.P.

    1990-01-01

    In this paper a possibility of microelectronic technique devices creation based on high-temperature superconductors (HTS) as well as HTS using in heavy-current electronic and, in particular, in electrical energy storage, radio-frequency accelerators and transmission lines, superconducting solenoids is considered. Critical current I c and upper critical magnetic field H c2 are key parameters defining engineering feasibility of HTS. H c2 measurement near the temperature of a superconducting transition doesn't present any difficulties, but extrapolation of H c2 (T) dependence to a low-temperature region owing to thermal activation processes gives uncertainties in H c2 (OK) value equal to 150-300 T. Prediction of H c2 (OK) values from H c1 data hindered, since the first critical field is greatly defined by the samples inhomogeneous macrostructure. It has been shown that H c2 (4.2 K) > 60 T, this is a threshold magnetic field obtained in undestructable pulsed solenoids

  9. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  10. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  11. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  12. Magnetic fields in O-, B- and A-type stars on the main sequence

    Directory of Open Access Journals (Sweden)

    Briquet Maryline

    2015-01-01

    Full Text Available In this review, the latest observational results on magnetic fields in main-sequence stars with radiative envelopes are summarised together with the theoretical works aimed at explaining them.

  13. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  14. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  15. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  16. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  17. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  18. 3D study in modelling in static regime of a bi facial polycrystalline solar cell under intense light and under a constant magnetic field

    International Nuclear Information System (INIS)

    ZOUNGRANA Martial

    2010-01-01

    In this work we propose a three-dimensional (3D) study of magnetic field, light concentration and electron gradient concentration electric field respective influences on bi facial polycrystalline silicon solar cell behaviour. The hold account of these parameters in our study leads to the new expressions of continuity equations, electric and electronic parameters. On the basis of these equations, grain size, grain boundary recombination velocity, magnetic field and light intensity effects on carriers density, photocurrent, photovoltage, electric and electronic parameters are analysed. We finally propose an equivalent electric model of bi facial polycrystalline silicon solar cell under magnetic field. According to this model, electric parameters expressions was established (shunt and series resistances, space charge zone capacity ) and we study magnetic field, grain size, grain boundary recombination velocity and light concentration influences on these parameters.(Author) [fr

  19. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  20. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  1. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  2. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  3. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  4. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  5. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  6. Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2011-09-22

    Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.

  7. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  8. New classical inversion formulas for centrosymmetric electric and magnetic fields; focusing potentials

    International Nuclear Information System (INIS)

    Bogdanov, I.V.; Demkov, Y.N.

    1982-01-01

    New inversion formulas are obtained for the classical scattering of a charged particle by a spherical or axisymmetric electric or magnetic field at a fixed impact parameter or angular momentum. For different cases, focusing fields are obtained similar to those previously considered for scattering by an electric field at a given energy, viz., of the backscattering (cat's eye), Maxwell fish eye, or Luneberg lens type. A magnetoelectric analogy is formulated, namely the existence of equivalent axisymmetric electric and magnetic fields that scatter charged particles in identical fashion

  9. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  10. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  11. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  12. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    Science.gov (United States)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  13. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  14. Combined tangential-normal vector elements for computing electric and magnetic fields

    International Nuclear Information System (INIS)

    Sachdev, S.; Cendes, Z.J.

    1993-01-01

    A direct method for computing electric and magnetic fields in two dimensions is developed. This method determines both the fields and fluxes directly from Maxwell's curl and divergence equations without introducing potential functions. This allows both the curl and the divergence of the field to be set independently in all elements. The technique is based on a new type of vector finite element that simultaneously interpolates to the tangential component of the electric or the magnetic field and the normal component of the electric or magnetic flux. Continuity conditions are imposed across element edges simply by setting like variables to be the same across element edges. This guarantees the continuity of the field and flux at the mid-point of each edge and that for all edges the average value of the tangential component of the field and of the normal component of the flux is identical

  15. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  16. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  17. Initial magnetic field decay of the superconducting magnet in persistent current mode

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yanada, T.

    1988-01-01

    The initial magnetic field decay in the persistent current mode of a magnetic resonance imaging magnet has been studied experimentally. The field decay is greater than the steady field decay due to joint resistances of conductors. Imaging experiments cannot be carried out during the periods, which last ten or more hours. The current distribution in the multifilamentory conductor is non-uniform just after the energization. It is suggested that the change of the current distribution causes the initial magnetic field decay. A 6th order superconducting magnet was prepared for experiments (central field = 0.35 T, inner diameters = 1 m, length = 1.86 m). The steady state magnetic field decay was 7*10/sup -8//hr. The initial magnetic field decay was 3*10/sup -6//hr. Overshoot currents (101 and 105 percent of the rated current) were applied to the magnet and the current reduced to the rated current to improve the initial decay. The energizing and de-energizing rate of the field was 1.8 gauss/second. No initial decay was observed when 105 percent current pattern was applied to the magnet

  18. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    Science.gov (United States)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  19. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  20. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  1. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  2. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  3. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  5. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  6. Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids

    Directory of Open Access Journals (Sweden)

    Elgiz Baskaya

    2017-07-01

    Full Text Available Dispersion of super-paramagnetic nanoparticles in nonmagnetic carrier fluids, known as ferrofluids, offers the advantages of tunable thermo-physical properties and eliminate the need for moving parts to induce flow. This study investigates ferrofluid flow characteristics in an inclined channel under inclined magnetic field and constant pressure gradient. The ferrofluid considered in this work is comprised of Cu particles as the nanoparticles and water as the base fluid. The governing differential equations including viscous dissipation are non-dimensionalised and discretized with Generalized Differential Quadrature Method. The resulting algebraic set of equations are solved via Newton-Raphson Method. The work done here contributes to the literature by searching the effects of magnetic field angle and channel inclination separately on the entropy generation of the ferrofluid filled inclined channel system in order to achieve best design parameter values so called entropy generation minimization is implemented. Furthermore, the effect of magnetic field, inclination angle of the channel and volume fraction of nanoparticles on velocity and temperature profiles are examined and represented by figures to give a thorough understanding of the system behavior.

  7. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    Science.gov (United States)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  8. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Liu Hongwei; Wang Runsheng; Huang Ru; Zhang Xing

    2010-01-01

    This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ 0 ) and the low-field mean free path (λ 0 ), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ 0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ 0 is nearly a constant, and λ 0 can be used as the 'entry criterion' to determine whether the device begins to operate under quasi-ballistic transport to some extent. (semiconductor devices)

  9. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  11. Effects of magnetic fields in white dwarfs

    International Nuclear Information System (INIS)

    Franzon, Bruno; Schramm, Stefan

    2017-01-01

    We perform calculations of white dwarfs endowed with strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ∼ 1.4 M⊙. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ∼ 2.0 M⊙. (paper)

  12. Faraday diamagnetism under slowly oscillating magnetic fields

    Science.gov (United States)

    Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke

    2018-04-01

    Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.

  13. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  14. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  15. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  16. Operation of cold-cathode gauges in high magnetic fields

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests

  17. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  18. Assessment of magnetic fluid stability in non-homogeneous magnetic field of a single-tooth magnetic fluid sealer

    Energy Technology Data Exchange (ETDEWEB)

    Arefyev, I.M.; Demidenko, O.V.; Saikin, M.S.

    2017-06-01

    A special experimental stand has been developed and made to test magnetic fluid. It represents a single-tooth magnetic fluid sealer. The type of dependence of the pressure differential on magnetic fluid sealer operation time is used as a criterion to determine magnetic fluid stability and magnetic fluid sealer service life under such conditions. The siloxane-based magnetic fluid was used as the test sample. The colloidal stability as well as stability of the synthesized magnetic fluid in magnetic fields in static mode were determined. It has been found that the obtained magnetic fluid is stable in static mode and, consequently, can be used to conduct necessary tests on stand. Short-term and life tests on stand have shown that MF remains stable and efficient for at least 360 days of continuous utilization. - Highlights: • An experimental single-tooth magnetic fluid sealer has been developed and made. • The magnetic fluid based on siloxane liquid was used as the test sample. • Short-term and life tests of the magnetic fluid were conducted. • The magnetic fluid stability was determined by necessary tests on stand.

  19. Transport properties of finite carbon nanotubes under electric and magnetic fields

    International Nuclear Information System (INIS)

    Li, T S; Lin, M F

    2006-01-01

    Electronic and transport properties of finite carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are studied by the tight-binding model. The external fields will modify the state energies, destroy the state degeneracy, and modulate the energy gap. Both the state energy and the energy gap exhibit rich dependence on the field strength, the magnetic field direction, and the types of carbon nanotubes. The semiconductor-metal transition would be allowed for certain field strengths and magnetic field directions. The variations of state energies with the external fields will also be reflected in the electrical and thermal conductance. The number, the heights, and the positions of the conductance peaks are strongly dependent on the external fields. The heights of the electrical and thermal conductance peaks display a quantized behaviour, while that of the Peltier coefficient does not. Finally, it is found that the validity of the Wiedemann-Franz law depends upon the temperature, the field strength, the electronic structure, and the chemical potential

  20. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  1. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  2. Effects of magnetic fields during high voltage live-line maintenance

    Science.gov (United States)

    Göcsei, Gábor; Kiss, István, Dr; Németh, Bálint

    2015-10-01

    In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic.

  3. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  4. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  5. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  6. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  7. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  8. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  9. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  10. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  11. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    Science.gov (United States)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  12. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  13. Estimate of an environmental magnetic field of fast radio bursts

    International Nuclear Information System (INIS)

    Lin, Wei-Li; Dai, Zi-Gao

    2016-01-01

    Fast radio bursts (FRBs) are a type of newly-discovered transient astronomical phenomenon. They have short durations, high dispersion measures and a high event rate. However, due to unknown distances and undetected electromagnetic counterparts at other wavebands, it is difficult to further investigate FRBs. Here we propose a method to study their environmental magnetic field using an indirect method. Starting with dispersion measures and rotation measures (RMs), we try to obtain the parallel magnetic field component B-bar ‖ which is the average value along the line of sight in the host galaxy. Because both RMs and redshifts are now unavailable, we demonstrate the dependence of B-bar ‖ on these two separate quantities. This result, if the RM and redshift of an FRB are measured, would be expected to provide a clue towards understanding an environmental magnetic field of an FRB. (paper)

  14. Diamagnetic (cyclotron) resonance in semiconductors using strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sosniak, J

    1962-07-01

    Diamagnetic (cyclotron) resonance experiments have been carried out in the semiconductors indium-antimonide (InSb), the indium-arsenide (InAs). Pulsed magnetic fields up to 300,000 gauss and monochromatic infrared radiation of 9 to 13.5 microns wavelength were used to measure the effective mass of the conduction electrons in those materials. The samples were n-type single crystals, with a room temperature electron concentration of 1.9 x 10{sup 16} and 6 x 10{sup 16} per cm{sup 3} in InSb and InAs respectively. Both the InSb and InAs samples showed a strong dependence of the effective mass on the magnetic field. The results show that the conduction bands in those solids are highly non-parabolic. Measurements were also made of the resonance absorption coefficients, which were found to be considerably smaller than the values obtained from simple theory. The effect is explained by assuming that the magnetic field reduces the intrinsic electron density, and that the absorption coefficient depends on the shape of the conduction band. It is postulated as a consequence that the relaxation time of diamagnetic energy levels at high magnetic fields does not differ appreciably from the relaxation time used in the description of conduction processes. (author)

  15. Magnetic islands at the field reversal surface in reversed field pinches

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Reiman, A.H.

    1985-09-01

    In the reversed field pinch (RFP), magnetic field perturbations having zero poloidal mode number and any toroidal mode number are resonant at the field reversal surface. Such perturbations are a particular threat to the RFP because of their weak radial dependence at low toroidal mode number, and because the toroidal field ripple is essentially of this type. The widths of the resulting islands are calculated in this paper. The self-consistent plasma response is included through the assumption that the plasma relaxes to a Taylor force-free state. The connection with linear tearing mode theory is established for those limits where arbitrarily large islands result from infinitesimal perturbations. Toroidal effects are considered, and application of the theory to RFP experiments is discussed

  16. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  17. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions

    OpenAIRE

    Takashi Ichimura; Kohei Fujiwara; Hidekazu Tanaka

    2014-01-01

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the ...

  18. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  19. Analysis of magnetic electron lens with secant hyperbolic field distribution

    International Nuclear Information System (INIS)

    Pany, S.S.; Ahmed, Z.; Dubey, B.P.

    2014-01-01

    Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of the electron beam. Indicators of imaging performance of these instruments, like spatial resolution, have a strong correlation with the focal characteristics of the magnetic lenses, which in turn have been shown to be sensitive to the details of the spatial distribution of the axial magnetic field. Owing to the complexity of designing practical lenses, empirical mathematical expressions are important to obtain the desired focal properties. Thus the degree of accuracy of such models in representing the actual field distribution determines accuracy of the calculations and ultimately the performance of the lens. Historically, the mathematical models proposed by Glaser [1] and Ramberg [2] have been extensively used. In this paper the authors discuss another model with a secant-hyperbolic type magnetic field distribution function, and present a comparison between models, utilizing results from finite element-based field simulations as the reference for evaluating performance

  20. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  1. Strength-limited magnetic field intensity of toroidal magnet systems fabricated or the base of layer-by-layer shrouded solenoids

    International Nuclear Information System (INIS)

    Litvinnko, Yu.A.

    1982-01-01

    The possibilities, as to the ultimate magnetic field strength, of tokamak magnet systems made on the base of layer-by-laeyer shrouded coils are considered numerically. The toroidal magnet system is considered which consists of N skewe, layer-by-layer shrouded, equistrong coils in the ideal torus approximation. The dependences of the ragnetic field strength on the internal- and external torus radii, pulse duration and aspect ratio for copper coils shrouded with fiberglass are calculated as an example. The analysis of the obtained results shows that using of the layer-by-layer shrouding scheme for toroidal solenoid coils leads to a considerable growth of the ultimate magnetic field strengths in a wide duration range. For example, the limiting field strength along the toroidal solenoid axis of the considered type inside the ''FT'' installation toroidal solenoid at equivalent field pulse duration of approximately 0.3 s reaches H 0 =1.3zx10 7 A/m

  2. Radio wave propagation in the inhomogeneous magnetic field of the solar corona

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.; Zlotnik, E.Ya.

    1977-01-01

    Various types of linear coupling between ordinary and extra-ordinary waves in the coronal plasma with the inhomogeneous magnetic field and the effect of this phenomenon upon the polarization characteristics of solar radio emission are considered. A qualitative analysis of the wave equation indicates that in a rarefied plasma the coupling effects can be displayed in a sufficiently weak magnetic field or at the angles between the magnetic field and the direction of wave propagation close enough to zero or π/2. The wave coupling parameter are found for these three cases. The radio wave propagation through the region with a quasi-transverse magnetic field and through the neutral current sheet is discussed more in detail. A qualitative picture of coupling in such a layer is supported by a numerical solution of the ''quasi-isotropic approximation'' equations. The role of the coupling effects in formation of polarization characteristics of different components of solar radio emission has been investigated. For cm wave range, the polarization is essentially dependent on the conditions in the region of the transverse magnetic field

  3. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  4. Electron Gas Dynamic Conductivity Tensor on the Nanotube Surface in Magnetic Field

    Directory of Open Access Journals (Sweden)

    A. M. Ermolaev

    2011-01-01

    Full Text Available Kubo formula was derived for the electron gas conductivity tensor on the nanotube surface in longitudinal magnetic field considering spatial and time dispersion. Components of the degenerate and nondegenerate electron gas conductivity tensor were calculated. The study has showed that under high electron density, the conductivity undergoes oscillations of de Haas-van Alphen and Aharonov-Bohm types with the density of electrons and magnetic field changes.

  5. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  6. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  7. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  8. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  9. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    International Nuclear Information System (INIS)

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-01-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet (∼1.8 × 10 6 K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet (∼10 4 K), which is similar to the observational Hα/Ca surges. However, there is only a Hα/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  10. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  11. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  12. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  13. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    Science.gov (United States)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  14. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  15. Magnetic field control of fluorescent polymer nanorods

    International Nuclear Information System (INIS)

    Kim, Taehyung; He, Le; Bardeen, Christopher J; Morales, Jason R; Beyermann, W P

    2011-01-01

    Nanoscale objects that combine high luminescence output with a magnetic response may be useful for probing local environments or manipulating objects on small scales. Ideally, these two properties would not interfere with each other. In this paper, we show that a fluorescent polymer host material can be doped with high concentrations of 20–30 nm diameter magnetic γ-Fe 2 O 3 particles and then formed into 200 nm diameter nanorods using porous anodic alumina oxide templates. Two different polymer hosts are used: the conjugated polymer polydioctylfluorene and also polystyrene doped with the fluorescent dye Lumogen Red. Fluorescence decay measurements show that 14% by weight loading of the γ-Fe 2 O 3 nanoparticles quenches the fluorescence of the polydioctylfluorene by approximately 33%, but the polystyrene/Lumogen Red fluorescence is almost unaffected. The three-dimensional orientation of both types of nanorods can be precisely controlled by the application of a moderate strength (∼0.1 T) external field with sub-second response times. Transmission electron microscope images reveal that the nanoparticles cluster in the polymer matrix, and these clusters may serve both to prevent fluorescence quenching and to generate the magnetic moment that rotates in response to the applied magnetic field.

  16. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  17. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  18. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  19. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  20. Flux pinning and critical current in layered type-II superconductors in parallel magnetic fields

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We have shown, within the Ginzburg-Landau theory, that the interaction between vortices and normal-metal layers in high-T c superconductor--normal-metal superlattices can cause high critical-current densities j c . The interaction is primarily magnetic, except at very low temperatures T, where the core interaction is dominant. For a lattice of vortices commensurate with an array of normal-metal layers in a parallel magnetic field H, strong magnetic pinning is obtained, with a nonmonotonic critical-current dependence on H, and with j c of the order of 10 7 --10 8 A/cm 2