WorldWideScience

Sample records for carrier reactors treating

  1. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  2. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    Science.gov (United States)

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-07-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs. PMID:26652186

  3. Design analysis of the upgraded TREAT reactor

    International Nuclear Information System (INIS)

    The TREAT reactor, fueled by a dilute dispersion of fully enriched UO2 in graphite, has been a premier transient testing facility since 1959. A major Upgrade of the reactor is in progress to enhance its transient testing capability in support of the LMFBR safety program. The TREAT Upgrade (TU) reactor features a modified central zone of the core with higher fissile loadings of the same fuel, clad in Inconel to allow operation at higher temperatures. The demanding functional requirements on the reactor necessitated the use of unique features in the core design which, in turn, presented major calculational complexities in the analysis. Special design methods had to be used in many cases to treat these complexities. The addition of an improved Reactor Control System, a safety grade Plant Protection System and an enhanced Coolant/Filtration System produces a reactor that can meet the functional requirements on the reactor in a safe manner

  4. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  5. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    International Nuclear Information System (INIS)

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility

  6. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10-9/demand (independent failures only); (2) an inadvertent shutdown probability of 10-3/experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  7. Experimental capabilities of the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    The TREAT facility was designed and built in the 1950s to provide a transient reactor for conducting safety experiments on reactor fuels. Throughout its almost 40-year history, it has proven to be a safe, reliable, and versatile facility, compiling a distinguished record of successful experiments. Several major improvements to the facility have been made, including an expansion of the building and of equipment handling capability, and enlargement of the access hole above the core, rearrangement of the reactor's control rods to provide more-uniform flux profiles, installation of improved reactor computer-control systems, a feedback system that safely allows real-time changes in power transients depending upon events occurring in the experiment, and several upgrades in the fast neutron hodoscope for improved experiment-fuel-motion diagnostics. The original TREAT fuel is still in use, however, since it appears to have no degradation from its many years of service

  8. Microprocessor tester for the treat upgrade reactor trip system

    International Nuclear Information System (INIS)

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations

  9. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    OpenAIRE

    Erlon Lopes Pereira; Claudio Milton Montenegro Campos; Cristine Serafine Neves; Regina Batista Vilas Boas

    2014-01-01

    The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. T...

  10. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    HUA-JUN FENG; LI-FANG HU; DAN SHAN; CHENG-RAN FANG; DONG-SHENG SHEN

    2008-01-01

    To examine the effect of hydraulic residence time (HRT) on the performance and stability,to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR),and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance,catabolic intermediate,and microcosmic alternation.Methods COD,VFAs,and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR.Results The removal efficiencies declined with the decreases of HRTs and temperatures.However,the COD removal load was still higher at short HRT than at long HRT.Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h.HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures,but the reasons differed from each other.Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃ to 28℃.

  11. Treating and conditioning the radioactive wastes produced in TRIGA Reactor

    International Nuclear Information System (INIS)

    The technologies employed in treating the radioactive waste, applied at INR Pitesti are: - treating by evaporation of the liquid radioactive wastes from the TRIGA reactor and conditioning by concrete casting of the compact radioactive product. The liquid evaporation is achieved with an evaporator of 1.2 m3/h capacity supplied by PEC Engineering, France. The radioactive compact cast in concrete is finally disposed in steel barrels of 220 l capacity; - for treating and conditioning the solid wastes produced by TRIGA reactor and the Laboratory for Post-Irradiation Examination, the technology of concrete casting is used. There are two categories of solid wastes, namely, compressible, which can be compacted to a volume of upmost 5 l, and non-compressible, in which case the material is cut into pieces of 700 x 400 x 400 mm3. In the last case the compacted or broken wastes are introduced in a metallic container which is then conditioned by casting in concrete in view of final disposal in 220 l barrels; - for treating and conditioning waste ion exchangers, produced in TRIGA reactor operation, the technology of casting in bitumen in 80 l barrels which are then conditioned in 220 l barrels for final disposal

  12. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    Science.gov (United States)

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  13. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    International Nuclear Information System (INIS)

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  14. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2014-09-01

    Full Text Available The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. The photo-reactors were designed to act on the liquid surface, as the lamp does not get into contact with the liquid. To increase the efficiency of UV radiation, photo-reactors were coated with aluminum foil. The lamp used in the reactors was germicidal fluorescent, with band wavelength of 230 nm, power of 30 Watts and manufactured by Techlux. In this research, the HRT with the highest removal efficiency was 0.063 days (90.6 minutes, even treating an effluent with veryhigh turbidity due to dissolved solids. It was concluded that the sterilization method using UV has proved to be an effective and appropriate process, among many other procedures.

  15. Common cause analysis of the TREAT upgrade reactor protection system

    International Nuclear Information System (INIS)

    A triply redundant reactor scram system (RSS) has been designed for the upgraded TREAT facility. The independent failures reliability goal for the RSS is -9 failures per demand. An independent failures analysis indicated that this goal would be met. In addition, however, recognizing that in heavily redundant systems common-cause failures dominate, a common cause analysis of the TREAT upgrade RSS was done. The objective was to identify those common-cause initiators which could affect the functioning of the RSS, and to subsequently modify the design of the RSS so that the effect was minimized. A number of common-cause initiators were identified which were capable of defeating the triple redundancy feature of the reactor scram system. By means of a systematic analysis of the effect these initiators could have on the system, it was possible to identify seven necessary design and procedural modifications that would greatly reduce the probability of the reactor being run while the RSS was in a faulted condition

  16. Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine

    OpenAIRE

    Qi, Chunxiao; Yan, Xiaojun; Huang, Chenyu; Melerzanov, Alexander; Du, Yanan

    2015-01-01

    Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, ...

  17. TREAT light water reactor source term experiments program

    International Nuclear Information System (INIS)

    Four experiments are being conducted in the TREAT facility to investigate the behaviour of fission products released from typical LWR fuel overheated to the point of catastrophic cladding degradation. Heatup and steam flow transients are used that simulate the conditions expected in operating power reactors undergoing various types of hypothetical severe accidents. The experiments are integral in nature and are aimed at the physicochemical characterization, near the point of origin, of the biologically important volatile fission products released early in such accidents. Detailed program objectives are discussed, a test matrix is presented, and the test apparatus is described. Pretest analysis and preliminary results are reported for the first test

  18. TREAT light water reactor source term experiments program

    International Nuclear Information System (INIS)

    Four experiments are being conducted in the TREAT facility to investigate the behavior of fission products released from typical LWR fuel overheated to the point of catastrophic cladding degradation. Heatup and steam flow transients are used that simulate the conditions expected in operating power reactors undergoing various types of hypothetical severe accidents. The experiments are integral in nature and are aimed at the physicochemical characterization, near the point of origin, of the biologically important volatile fission products released early in such accidents. Detailed program objectives are discussed, a test matrix is presented, and the test apparatus is described. Pretest analysis and preliminary results are reported for the first test

  19. Photocatalytic reactors for treating water pollution with solar illumination. I: a simplified analysis for batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Usual applications of photocatalytic reactors for treating wastewater exhibit the difficulty of handling fluids having varying composition and/or concentrations; thus, a detailed kinetic representation may not be possible. When the catalyst activation is obtained employing solar illumination an additional complexity always coexists: solar fluxes are permanently changing with time. For comparing different reacting systems under similar operating conditions and to provide approximate estimations for scaling up purposes, simplified models may be useful. For these approximations the model parameters should be restricted as much as possible to initial physical and boundary conditions such as: initial concentrations (expressed as such or as TOC measurements), flow rate or reactor volume, irradiated reactor area, incident radiation fluxes and a fairly simple experimental observation such as the photonic efficiency. A combination of a new concept: the ''actual observed photonic efficiency'' with ideal reactor models and empirical kinetic rate expressions can be used to provide rather simple working equations that can be efficiently used to describe the performance of practical reactors. In this paper, the method has been developed for the case of a photocatalytic batch reactor (PBR). (orig.)

  20. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  1. Methane combustion by moving bed fuel reactor with Fe2O3/Al2O3 oxygen carriers

    International Nuclear Information System (INIS)

    Highlights: • Moving bed reactor employed to methane combustion using iron-based oxygen carrier. • Fe2O3/Al2O3 oxygen carriers was prepared and provided with applicable performance. • Carbon formation was enhanced with increased retention time at 900 °C. • Full CH4 conversion was reached without carbon formation by moving bed operation. • FeO and FeAl2O4 were formed in the reacted oxygen carriers out of the reactor. - Abstract: Fe2O3/Al2O3 composite oxygen carriers were prepared for chemical looping combustion (CLC) with methane in a lab-scale moving bed fuel reactor provided with reasonable crush strength, reactivity and recyclability. Carbon formation was observed during the combustion process in the empty bed at 900 °C through methane decomposition reaction, and was enhanced for experiments conducted with increased retention time. Carbon formation was obviously reduced for experiments conducted in the moving bed fuel reactor with oxygen carrier-to-fuel ratio (ϕ) higher than 1.14. The oxygen carriers that moving out of the moving bed reactor were composed of mainly FeO and FeAl2O4, characterized by X-ray diffraction (XRD) analysis. The formation of FeO and FeAl2O4 indicated that further utilization of oxygen in iron-based oxygen carriers can be achieved by moving bed operation

  2. Process for treating effluent from a supercritical water oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  3. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Science.gov (United States)

    2010-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... destroyed or treated by the transportation or yard company, or other owner thereof, under APHIS...

  4. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rencun [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Environmental Science, Hangzhou Normal University, Hangzhou 310036 (China); Zheng Ping [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: pzheng@zju.edu.cn; Mahmood, Qaisar; Zhang Lei [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-09-15

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h{sup -1} and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min{sup -1}, accurately.

  5. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge

    International Nuclear Information System (INIS)

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h-1 and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min-1, accurately

  6. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...... with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H2/mol glucose consumed) but required longer start up time (1 month), while...

  7. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  8. [Effects of Hydraulic Retention Time and Dissolved Oxygen on a CANON Reactor with Haydite as Carrier].

    Science.gov (United States)

    Wang, Hui-fang; Fu, Kun-ming; Zuo, Zao-rong; Qiu, Fu-guo

    2015-11-01

    One Completely Autotrophic Nitrogen Removal Over Nitrite ( CANON) reactor with haydite as carrier was investigated to study the effects of different hydraulic retention time ( HRT) and dissolved oxygen (DO) on CANON reactors by seeding sludge from another mature CANON reactor and using synthetic inorganic ammonia-rich waste water as influent. During the experiment, the concentration of influent ammonia nitrogen was basically unchanged, the HRT of the reactor were 9, 7, 5 h in turn and the range of DO was 1.16-3.20 mg x L(-1). The results showed that: (1) When DO was 1.20-1.75 mg x L(-1), despite the increase of DO can improve AOB's activity and matrix mass transfer in the system, NH4(+) -N and TN removal efficiency were still fell with the shortening of HRT for the CANON reactor, especially when DO was higher than 2.50 mg x L(-1), TN removal efficiency dropped sharply; (2) Under the condition that DO was 1.20-1.75 mg x L(-1), with the shortening of HRT, partial nitritation tended to be stable in the CANON process, and when DO was higher than 1.75 mg x L(-1), even if HRT was shorter, partial nitritation was still severely damaged; (3) Under the condition that DO was 1.20-1.75 mg x L(-1) and HRT was 7 h, for the CANON reactor, partial nitritation and total nitrogen removal efficiency kept well. Hydraulic retention time and dissolved oxygen both are important operational parameters for biological wastewater treatment process, which could directly affect the effect of biological treatment and effluent quality, so to choose appropriate hydraulic retention time and dissolved oxygen coordinately is very important to improve the effect of treatment of ammonium-rich wastewater by CANON process. PMID:26911004

  9. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  10. The use of ilmenite as oxygen carrier with kerosene in a 300 W CLC laboratory reactor with continuous circulation

    International Nuclear Information System (INIS)

    Graphical abstract: Experiments with sulfur-free and sulfurous kerosene were performed using ilmenite oxygen carrier. Fuel conversion improved significantly and lasting when sulfurous kerosene was used. - Highlights: • Experiments were performed in a 300 W reactor with continuous circulation. • Sulfurous and sulfur-free kerosene were used directly as fuel. • Ilmenite oxygen carrier (Norwegian rock ilmenite) was tested. • Combustion experiments were performed for 50 h (sulfur-free) and 30 h (sulphurous), respectively. • A significant and lasting improvement in the oxygen carrier’s reactivity was achieved by using sulfurous kerosene. - Abstract: An ilmenite oxygen carrier was tested in a laboratory scale chemical-looping reactor with a nominal thermal capacity of 300 Wth. Ilmenite is a mineral iron–titanium oxide, which has been used extensively as an oxygen carrier in chemical-looping combustion. Two different kinds of fuels were used, a sulfur-free kerosene and one kerosene that contained 0.57 mass% sulfur. Both fuels were continuously evaporated and directly fed into the chemical-looping reactor. Experiments were conducted for 50 h with the sulfur-free kerosene and for 30 h with the sulfurous kerosene. CO2 yields above 99% were achieved with both types of fuel. A significant and lasting improvement in the oxygen carrier’s reactivity was observed, presumably an effect of using sulfurous kerosene. No evidence of sulfur was found on the particles’ surface

  11. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR) to Treat Industrial Wastewater

    OpenAIRE

    Laura C. Zuluaga; Luz N. Naranjo; Jan Svojitka; Thomas Wintgens; Manuel Rodriguez; Nicolas Ratkovich

    2015-01-01

    A Computational Fluid Dynamics (CFD) simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR) to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i) reactor and (ii) membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS) concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, wher...

  12. Particulate COD balance of particulate cod in eletrocuagulation/flotation reactor treating tannery effluent

    OpenAIRE

    Rodrigo Babora Borri; Renata Medici Frayne Cuba; Francisco Javier Cuba Teran

    2012-01-01

    Mass balance or particulate organic matter was studied in terms of COD, by means of electrocoagulation/flotation (ECF) reactor treating tannery effluent. Reactor was operated in fill and draw (batch) mode. Operating in hydraulic residence time of 65 minutes, ECF reactor reached 55 % COD removal. Although volatile solids were also removed from liquid phase (removal of 40%), fixed solids concentration, and hence total solids concentration, showed to be higher in withdrawn effluent than in ECF’s...

  13. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  14. Robustness of UASB Reactors Treating Sewage Under Tropical Conditions

    NARCIS (Netherlands)

    Leitao, R.

    2004-01-01

    This PhD thesis presents results and discussions to elucidate the matters of performance and robustness of the Upflow Anaerobic Sludge Blanket (UASB) reactors for the treatment of municipal wastewater in tropical countries. The research focuses on the main operational parameters (hydraulic retention

  15. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  16. The pneumatic carrier facility in Dhruva reactor: commissioning, characterization and utilization

    International Nuclear Information System (INIS)

    The 100 MWt power Dhruva research reactor, BARC is provided with pneumatic carrier facility (PCF) to carry out R and D work using short-lived (seconds to minutes) radioisotopes in the fields like neutron activation analysis (NAA) and nuclear fission. The samples are kept inside a high density polypropylene capsule (rabbit), which is pneumatically sent to the irradiation position in the core and retrieved after a preset time of irradiation. After the irradiation, radioactivity assay is carried out using high resolution gamma ray spectrometry with HPGe detector coupled to PC based MCA. The availability of high neutron flux (∼ 5 x 10 13 cm-2s-1 at 50 MWt power) and shorter retrieval time (∼5 seconds) make it possible to measure short-lived isotopes with enhanced sensitivity. This report describes the salient features of this facility, characterization of the neutron spectrum at this irradiation position and its utilization. The PCF is being extensively utilized for analytical applications using NAA as well as nuclear fission studies. A brief description of analysis of some samples of geological, environmental and biological origin, nuclear materials as well as reference materials is included in this report. Protocol and check list for carrying out PCF irradiations and gamma spectrometric assay are also given at the end of the report. (author)

  17. Robustness of UASB Reactors Treating Sewage Under Tropical Conditions

    OpenAIRE

    Leitao, R

    2004-01-01

    This PhD thesis presents results and discussions to elucidate the matters of performance and robustness of the Upflow Anaerobic Sludge Blanket (UASB) reactors for the treatment of municipal wastewater in tropical countries. The research focuses on the main operational parameters (hydraulic retention time -HRT, influent COD concentration - COD Inf , organic loading rate - OLR, and sludge retention time - SRT) that affect the UASB loading potentials and its performance in "steady state" conditi...

  18. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    OpenAIRE

    España-Gamboa Elda I; Mijangos-Cortés Javier O; Hernández-Zárate Galdy; Maldonado Jorge A Domínguez; Alzate-Gaviria Liliana M

    2012-01-01

    Abstract Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in ag...

  19. Evaluation of adenohypophyseal reserve in patients carrier of hypophyseal adenoma treated by trans-sphenoidal surgery

    International Nuclear Information System (INIS)

    Fifteen patients carrier hypophyseal adenomas, with ages varying between 16 to 53 years were studied. The patients presented sella changes to the conventional plane radiographies and were submited a surgery treatment, with acess to hypophysis by the trans-sphenoidal way. (author)

  20. Hepatitis B surface antigen clearance in inactive hepatitis B surface antigen carriers treated with peginterferon alfa-2a

    Science.gov (United States)

    Li, Ming-Hui; Xie, Yao; Zhang, Lu; Lu, Yao; Shen, Ge; Wu, Shu-Ling; Chang, Min; Mu, Cai-Qin; Hu, Lei-Ping; Hua, Wen-Hao; Song, Shu-Jing; Zhang, Shu-Feng; Cheng, Jun; Xu, Dao-Zhen

    2016-01-01

    AIM: To examine the association between interferon (IFN) therapy and loss of hepatitis B surface antigen (HBsAg) in inactive HBsAg carriers. METHODS: This was a retrospective cohort study in inactive HBsAg carriers, who were treatment-naive, with a serum HBsAg level < 100 IU/mL and an undetectable hepatitis B virus (HBV) DNA level (< 100 IU/mL). All the 20 treated patients received subcutaneous PEG-IFN alfa-2a 180 μg/wk for 72 wk and were then followed for 24 wk. There were 40 untreated controls matched with 96 wk of observation. Serum HBsAg, HBV DNA, and alanine aminotransferases were monitored every 3 mo in the treatment group and every 3-6 mo in the control group. RESULTS: Thirteen (65.0%) of 20 treated patients achieved HBsAg loss, 12 of whom achieved HBsAg seroconversion. Mean HBsAg level in treated patients decreased to 6.69 ± 13.04 IU/mL after 24 wk of treatment from a baseline level of 26.22 ± 33.00 IU/mL. Serum HBV DNA level remained undetectable (< 100 IU/mL) in all treated patients during the study. HBsAg level of the control group decreased from 25.72 ± 25.58 IU/mL at baseline to 17.11 ± 21.62 IU/mL at week 96 (P = 0.108). In the control group, no patient experienced HBsAg loss/seroconversion, and two (5.0%) developed HBV reactivation. CONCLUSION: IFN treatment results in HBsAg loss and seroconversion in a considerable proportion of inactive HBsAg carriers with low HBsAg concentrations. PMID:27239256

  1. Chemical-looping gasification of biomass in a 10k Wth interconnected fluidized bed reactor using Fe2 O3/Al2 O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    HUSEYIN Sozen; WEI Guo-qiang; LI Hai-bin; HE Fang; HUANG Zhen

    2014-01-01

    The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

  2. Particulate COD balance of particulate cod in eletrocuagulation/flotation reactor treating tannery effluent

    Directory of Open Access Journals (Sweden)

    Rodrigo Babora Borri

    2012-04-01

    Full Text Available Mass balance or particulate organic matter was studied in terms of COD, by means of electrocoagulation/flotation (ECF reactor treating tannery effluent. Reactor was operated in fill and draw (batch mode. Operating in hydraulic residence time of 65 minutes, ECF reactor reached 55 % COD removal. Although volatile solids were also removed from liquid phase (removal of 40%, fixed solids concentration, and hence total solids concentration, showed to be higher in withdrawn effluent than in ECF’s influent. This was assigned to NaCl added in order to enhance conductivity in wastewater.

  3. Photocatalytic reactors for treating water pollution with solar illumination. II: a simplified analysis for flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Very frequently outgoing streams of real wastewaters do not have a definite and constant composition. Additionally, when the degradation process makes use of solar irradiation, the photon flux is hardly constant. These two factors strongly militate against the use of very elaborate, exact models for analyzing the performance of the employed reactors. In these cases, approximate methods may be the most practical approach. One possible way is presented in this paper. The observed photonic efficiency concept developed in a previous contribution (sagawe et al., 2002a) is applied to continuous reactors for both steady state and transient operations of photocatalytic reactions applied to wastewaters decontamination processes. For this reactor the local observed photonic efficiency, defined at each reactor longitudinal position, is the convenient property to express the concentration spatial evolution. It is also shown that the description of the reactor performance employing a mass balance can be done in a rather simple way introducing a mass-moving coordinate transformation that remodel the mass inventory and permits working with simpler ordinary differential equations. (orig.)

  4. Reactor production and separation of no-carrier added 32P for medical applications

    International Nuclear Information System (INIS)

    Phosphorous-32 is an attractive and widely used therapeutic radionuclide owing to its favorable nuclear characteristics. The major application of 32P is the treatment option for a distinct subgroup of elderly patients with polycythemia vera and leukemia. The tremendous prospects associated with the use of 32P along with the challenge of providing 32P of acceptable specific activity and purity amenable for in vivo therapy, led to development of a 32P production strategy. The 32S(n,p)32P route of production provide the scope of obtaining high specific activities or no carrier added (NCA) 32P. In a typical batch of 14 nos. of neutron irradiated Al containers, each containing 18 g of sulphur, were processed. In the quest for an effective separation method to isolate micro gram of 32P formed during the neutron irradiation of sulphur, the prospect of using distillation under reduced pressure to achieve complete removal of sulfur seemed to be an effective proposition and motivated us to adopt. The experimental parameters that influence the distillation were identified and a careful control has been exercised to ensure complete removal of sulphur from 32P within reasonable time period. The 32P remained in the distillation flask was quantitatively collected by leaching with 0.05 N HCl with gentle heating at 80℃ for 3 hours. In the light of the perceived need to remove cationic impurities from the 32P leachate, it was passed through an ion-exchange chromatography column containing a cation exchange resin (Dowex 50 x 8 H+, 100-200 mesh) wherein all the cationic impurities get trapped and H332PO4 solution was collected as effluent. Recognizing the fact that H332PO4 produced is to be used for clinical applications, a thorough quality assessment was carried out. Radionuclidic purity was ascertained by a measurement of its half-life. In order to establish the absence of extraneous gamma emitting radionuclide impurities, gamma spectrum of the appropriately diluted samples of 32P

  5. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    Science.gov (United States)

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. PMID:26298401

  6. Aerobic Granulation in Sequencing Batch Reactor (SBR Treating Saline Wastewater

    Directory of Open Access Journals (Sweden)

    Ensieh Taheri

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Aerobic sludge granulation is an advanced phenomenonin which its mechanisms have not been understood. Granulation can be a promising and novel biological wastewater treatment technology to eliminate organic and inorganic materials in future. High salinity is a parameter which leads to plasmolisatian and reduction of the cell activity. This could be a problem for biological treatment of the saline wastewater. Aerobic granule was formed and investigated during this study. Materials and Methods: This study is an intervention study on the treatment of wastewater with 500-10000 mg/L concentration of NaCl by sequencing batch reactor. Asynthesized wastewater including nutrient required for microorganism's growth was prepared. Input and output pH and EC were measured. Range of pH and DO varied between 7-8, and 2-5 mg/L, respectively. SEM technology was used to identify graduals properties.Results: In terms of color, granules divided into two groups of light brown and black. Granule ranged in 3-7mm with the sediment velocity of 0.9-1.35 m/s and density of 32-60 g/L.Properties of granules were varied. Filamentous bacteria and fungi were dominant in some granules. However non filamentous bacteria were dominant in others. EDX analysis indicated the presence of Ca and PO4.Conclusion: Granules with non filamentous bacterial were compact and settled faster. Presence of different concentrations of salinity leaded to plasmolysis of the bacterial cells and increased concentrations of EPS  in the system as a result  of which granulation accelerated. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso

  7. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  8. VITALITY AND MORPHOLOGY OF TUMOR CELLS TREATED WITH 4-TIAZOLIDINONE DERIVATIVES IMMOBILIZED ON NANOSCALE POLYMER CARRIER

    Directory of Open Access Journals (Sweden)

    N. M. Boiko

    2015-02-01

    Full Text Available A nanoscale polymeric carrier was used for delivery of novel anticancer compounds – 4-tiazolidinone derivatives – to tumor cells of different lines. It was found that such way of delivery of the above mentioned compounds to target cells significantly (approximately 10 times decreased acting cytotoxic dose of some of these compounds with preservation of similar level of their antineoplastic effect in vitro towards various mammalian tumor cells. The microscopic investigation of these cells demonstrated that under the action of some immobilized 4-tiazolidonone derivatives, there was an increase (up to 40% of the part of apoptotic cells, as well as an appearance of 10% of cells with morphologically changed nucleus, and up to 35% of cells with an increased intensity of red fluorescence of acridine orange in the lysosomes, compared with such indicators observed under the action of free form of those compounds. Thus, the applied nanoscale carrier is a perspective polymer system for delivery of anticancer drugs to target cells.

  9. Revamping of control and instrumentation and commissioning and operating experience of pneumatic carrier facility of Dhruva Reactor

    International Nuclear Information System (INIS)

    Dhruva is a 100 MWth research reactor, located at BARC Trombay. It has different facilities for medium and long-term irradiation of samples for research, medical and industrial applications. Self serve and tray rod facilities are for medium term and long-term irradiation of samples ranging from few hours to days or years. However for short-term irradiation of samples of the order of few seconds to few minutes Pneumatic Carrier Facility (PCF) is used. In PCF the capsule (carrying sample) is sent into reactor core and retrieved back by pneumatic force to the experiment room, after elapse of required irradiation time. This paper describes the revamping of C and I systems, design, commissioning and operating experiences and different modifications incorporated based on safety committee recommendations and operating feed back. (author)

  10. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  11. Treatment of liver hydatidosis:How to treat an asymptomatic carrier?

    Institute of Scientific and Technical Information of China (English)

    Bernardo; Frider; Edmundo; Larrieu

    2010-01-01

    Liver hydatidosis is the most common clinical presentation of cystic echinococcosis(CE).Ultrasonographic mass surveys have demonstrated the true prevalence,including the asymptomatic characteristic of the majority of cases,providing new insight into the natural history of the disease.This raises the question of whether to treat or not to treat these patients,due to the high and unsuspected prevalence of CE.The high rate of liver/lung frequencies of cyst localization,the autopsy findings,and the involution o...

  12. Study on light water reactor fuel behavior under reactivity initiated accident condition in TREAT

    International Nuclear Information System (INIS)

    This report reviews the results of the fuel failure experiments performed in TREAT in the U.S.A. simulating Reactivity Initiated Accidents. One of the main purposes of the TREAT experiments is the study of the fuel failure behavior, and the other is the study of the molten fuel-water coolant interaction and the consequent hydrogen behavior. This report mainly shows the results of the TREAT experiments studying the fuel failure behavior in Light Water Reactor, and then it describes the fuel failure threshold and the fuel failure mechanism, considering the results of the photographic experiments of the fuel failure behavior with transparent capsules. (author)

  13. Positron annihilation studies of neutron irradiated and thermally treated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Positron annihilation lifetime measurements using the pulsed low energy positron system (PLEPS) were applied for the first time for the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in the microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation thermal treatment can be detected. The samples originated from the Russian 15Kh2MFA and Sv10KhMFT steels, commercially used at WWER-440 reactors, were irradiated near the core at NPP Bohunice (Slovakia) to neutron fluences in the range from 7.8x1023 to 2.5x1024 m-2

  14. Development of a new non-aeration-based sewage treatment technology: Performance evaluation of a full-scale down-flow hanging sponge reactor employing third-generation sponge carriers.

    Science.gov (United States)

    Okubo, Tsutomu; Kubota, Kengo; Yamaguchi, Takashi; Uemura, Shigeki; Harada, Hideki

    2016-10-01

    A practical-scale down-flow hanging sponge (DHS) reactor using third-generation (G3) sponge carriers was applied for treatment of the effluent from an up-flow anaerobic sludge blanket (UASB) reactor treating municipal sewage. The process performance of the DHS reactor filled with G3 sponge carriers (DHS-G3) was evaluated by conducting an on-site experiment in India over one year. The performance of the DHS-G3 for removal of organic matter and ammonium-nitrogen at a relatively short hydraulic retention time (HRT) of only 0.66 h satisfied the Indian effluent quality standards except for fecal coliform. The removal rate constants for total biochemical oxygen demand (BOD) and fecal coliform determined based on the water quality profiles along the DHS-G3 almost reached equilibrium approximately four months after the start of operation, i.e., 2.45 h(-1) for BOD and 2.30 h(-1) for fecal coliform, respectively. The oxygen utilization activity of retained sludge was determined to assess the distribution of heterotrophic and autotrophic bacteria along the DHS-G3. Nitrification was promoted in the lower portion of the DHS-G3 reactor in the duration with low organic load, while it decreased when the organic load was increased, probably due to proliferation of heterotrophic bacteria. PMID:27340815

  15. Stimulating accumulation of nitrifying bacteria in porous carrier by addition of inorganic carbon in a continuous-flow fluidized bed wastewater treatment reactor.

    Science.gov (United States)

    Jun, B H; Tanji, Y; Unno, H

    2000-01-01

    Porous polyurethane carrier particles have been successfully applied for microbial immobilization to simultaneously remove carbonaceous and nitrogenous substances from wastewater by a fill-and-draw operation. This reactor system was extended to a continuous-flow operation mode, by which inorganic carbon (IC) was supplemented in order to stimulate the growth of autotrophic nitrifying bacteria. By addition of sodium bicarbonate, the ammonia oxidation reaction proceeded remarkably in the porous particle fluidized bed reactor, while a small increase in the nitrification was observed in a reactor with suspended microbes. Dissolved oxygen profile was obtained using an oxygen microelectrode to measure the microbial consumption of oxygen in the porous carrier. The size of ammonia-oxidizing bacterial populations in the carrier was proportional to the volume of the aerobic region of the carrier. The aerobic region decreased with the increase in sodium bicarbonate concentration, which improved the ammonia-oxidizing activity of retained nitrifiers in the carrier. The maximum ammonia oxidation rate was up to 55.6 gN/m3/h within the aerobic region of the carrier under the following feed conditions: 100 mg/l of total organic compound, 55 mg/l of ammonium concentration and 48 mg/l of inorganic carbon. PMID:16232755

  16. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.

    Science.gov (United States)

    Jiang, Yu; Wei, Li; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-10-01

    Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition. PMID:27359064

  17. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    Directory of Open Access Journals (Sweden)

    España-Gamboa Elda I

    2012-11-01

    Full Text Available Abstract Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD removal efficiency was 69% at an optimum organic loading rate (OLR of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  18. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems. PMID:26877027

  19. Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier.

    Science.gov (United States)

    Ruan, Yun-Jie; Deng, Ya-Le; Guo, Xi-Shan; Timmons, Michael B; Lu, Hui-Feng; Han, Zhi-Ying; Ye, Zhang-Ying; Shi, Ming-Ming; Zhu, Song-Ming

    2016-09-01

    In this study, an airlift inner-loop sequencing batch reactor using poly(butylene succinate) as the biofilm carrier and carbon source was operated under an alternant aerobic/anoxic strategy for nitrogen removal in recirculating aquaculture system. The average TAN and nitrate removal rates of 47.35±15.62gNH4-Nm(-3)d(-1) and 0.64±0.14kgNO3-Nm(-3)d(-1) were achieved with no obvious nitrite accumulation (0.70±0.76mg/L) and the dissolved organic carbon in effluents was maintained at 148.38±39.06mg/L. Besides, the activities of dissimilatory nitrate reduction to ammonium and sulfate reduction activities were successfully inhibited. The proteome KEGG analysis illustrated that ammonia might be removed through heterotrophic nitrification, while the activities of nitrate and nitrite reductases were enhanced through aeration treatment. The microbial community analysis revealed that denitrifiers of Azoarcus and Simplicispira occupied the dominate abundance which accounted for the high nitrate removal performance. Overall, this study broadened our understanding of simultaneous nitrification and denitrification using biodegradable material as biofilm carrier. PMID:27343453

  20. Chemical-looping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor

    International Nuclear Information System (INIS)

    Chemical-looping combustion is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. Chemical-looping combustion of methane with calcium sulfate as a novel oxygen carrier was conducted in a laboratory scale fixed bed reactor. The effects of reaction temperature, gas flow rate, sample mass, and particle size on reduction reactions were investigated and an optimum operating condition was determined. The results show that this novel oxygen carrier has a high reduction reactivity and stability in a long-time reduction/oxidation test. The conversions of CH4 increased with a higher temperature, smaller gas flow rate, larger sample mass and smaller particle size. The suitable reaction temperature seems to be around 950 deg. C. Low temperatures lead to a low CH4 conversion, but a significant SO2 formation was observed at a higher temperature. The release of SO2, CO, H2 via a series of side reactions, carbon deposition and agglomeration were also discussed. The formation of SO2, CO, H2, and carbon can be avoided by optimization of the operating conditions

  1. The advanced carrier bundle - comprehensive irradiation of materials in CANDU power reactors

    International Nuclear Information System (INIS)

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  2. Test system carrier for the ultrasonic testing of the area of connecting nozzles in the case of pressure vessels, in particular reactor pressure vessels from nuclear power plants

    International Nuclear Information System (INIS)

    In the invention at hand a system carrier for the ultrasonic testing of a reactor pressure vessel is described which enables a test for nozzle welds, pipe fitting welds and nozzle edges to be conducted with a single telescope arm. (RW)

  3. Performance and dynamic characteristics of microbial communities in an internal circulation reactor for treating brewery wastewater.

    Science.gov (United States)

    Xu, Fu; Miao, Heng-Feng; Huang, Zhen-Xing; Ren, Hong-Yan; Zhao, Ming-Xing; Ruan, Wen-Quan

    2013-01-01

    A laboratory-scale internal circulation (IC) anaerobic reactor fed with brewery wastewater was operated at 35 degrees C + 1 degrees C. The influent was pumped into the bottom of the IC reactor by a pulse pump, whereas the effluent was drawn from the upper outlet and allowed to flow into the effluent tank. The biogas volume was recorded using a gas container connected to a biogas metre. The results indicated that the maximum organic loading rate (OLR) of the IC reactor was 19.5 kg chemical oxygen demand (COD)/m3/day; at which point, the dominant archaeal populations found in the sludge using the polymerase chain reaction with denaturing gradient gel electrophoresis were Methanosaeta species. The COD removal efficiencies of the reactor exceeded 85%, with a maximum specific methane production rate of 210 mL CH4/g volatile suspended solids (VSS)/day and a coenzyme F420 content of 0.16 micromol/g VSS, respectively. The main archaeal species in the sludge samples at different OLRs varied greatly, as compared with the organisms in the inoculated sludge. The dominant archaeal species in the treated sludge at low OLRs were Methanosarcina species, whereas those at high OLRs were Methanosaeta species. PMID:24527653

  4. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals

    DEFF Research Database (Denmark)

    Hu, Z.Q.; Ferraina, R.A.; Ericson, J.F.;

    2005-01-01

    The physical and biochemical characteristics of the biomass in three lab-scale sequencing batch reactors (SBR) treating a synthetic wastewater at a 20-day target solids retention time (SRT) were investigated. The synthetic wastewater feed contained biogenic compounds and 22 organic priming...... compounds, chosen to represent a wide variety of chemical structures with different N, P and S functional groups. At a two-day hydraulic retention time (HRT), the oxidation-reduction potential (ORP) cycled between -100 (anoxic) and 100mV (aerobic) in the anoxic/aerobic SBR, while it remained in a range of...... all reactors. In contrast, effluent 3-nitrobenzoate was recorded when its influent concentration was increased to 5 mg L-1 and dropped only to below 1 mg L-1 after 300 days of operation. The competent (active) biomass fractions for these compounds were between 0.04% and 5.52% of the total biomass...

  5. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  6. A modular diagnosis system based on fuzzy logic for UASB reactors treating sewage.

    Science.gov (United States)

    Borges, R M; Mattedi, A; Munaro, C J; Franci Gonçalves, R

    2016-01-01

    A modular diagnosis system (MDS), based on the framework of fuzzy logic, is proposed for upflow anaerobic sludge blanket (UASB) reactors treating sewage. In module 1, turbidity and rainfall information are used to estimate the influent organic content. In module 2, a dynamic fuzzy model is used to estimate the current biogas production from on-line measured variables, such as daily average temperature and the previous biogas flow rate, as well as the organic load. Finally, in module 3, all the information above and the residual value between the measured and estimated biogas production are used to provide diagnostic information about the operation status of the plant. The MDS was validated through its application to two pilot UASB reactors and the results showed that the tool can provide useful diagnoses to avoid plant failures. PMID:27438234

  7. Fission-product aerosol sampling system for LWR experiments in the TREAT reactor

    International Nuclear Information System (INIS)

    This work summarizes the design and collection characteristics of a fission-product aerosol sampling system that was developed for a series of light water reactor (LWR) source-term experiments under consideration for performance in 1984 at Argonne National Laboratory's TREAT reactor. These tests would be performed using a bundle of four preirradiated, Zircaloy-clad LWR fuel pins. In these tests, fuel pin integrity would be breached under various simulated accident conditions. The aerosol sampling system was designed to efficiently extract and collect these aerosols such that time-averaged aerosol size distributions, number concentrations and mass loadings could be determined accurately for each experiment, using a combination of real-time and time-interval measurements and post-test analytical techniques. The entire system also was designed to be disassembled remotely because of potentially high levels of radioactivity

  8. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    Science.gov (United States)

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  9. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor

    International Nuclear Information System (INIS)

    Biomass gasification using chemical looping (BGCL) is an innovative biomass gasification technology, which utilizes lattice oxygen from oxygen carrier instead of molecular oxygen from air. This work attempted to investigate the BGCL performance with nickel-based oxygen carrier in a 25 kWth reactor. The new prototype is composed of a high velocity fluidized bed as an air reactor, a cyclone, a bubbling fluidized bed as a fuel reactor, and a loop-seal. At first, the major reactions in the process were presented and chemical reaction thermodynamics in the fuel reactor was analyzed. The NiO/Al2O3 oxygen carrier was then applied in the reactor. Different variables, such as gasification temperature, steam-to-biomass (S/B) ratio and NiO content, were analyzed. The carbon conversion efficiency increased smoothly within the temperature range of 650–850 °C, while the syngas yield reached the maximum of 0.33 Nm3kg−1 at 750 °C. Additionally, based on the tradeoff between carbon conversion efficiency and syngas yield, it was concluded that 30 wt.% was the optimal NiO content. Besides, in order to get high quality syngas with low CO2 emission, CaO-decorated NiO/Al2O3 oxygen carrier was investigated. Experimental results showed that the addition of CaO enhanced the biomass gasification process and increased the syngas yield. - Highlights: • A new 25 kWth prototype was made in this study. • NiO was selected as oxygen carrier in the new prototype. • Gasification temperature, steam-to-biomass ratio and NiO content were investigated. • CaO-decorated NiO/Al2O3 was tested to produce high quality syngas

  10. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-11-30

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To support this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.

  11. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    International Nuclear Information System (INIS)

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy's resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To support this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.

  12. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging. PMID:26476614

  13. Physicochemical and Microbial Caracteristics Performency in Wastewater Treated Under Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Asma B. Rajeb

    2011-01-01

    Full Text Available Problem statement: The current work study the efficiency of biological wastewater treatment by an aerobic reactor which could be used in small agglomerations. RBC reduced physicochemical and microbiological load of wastewater but values remain above Tunisian standard. Approach: Experiments were conducted on a sand filled PVC column fed with wastewater treated by Rotating Biological Contactor (RBC at a pulsed rhythm of 8 sequences per day. For performances study process, physicochemical and bacterial analyses effluent at inlet and outlet of column were realized. Results: The results showed that through filter mass (D10 = 0.55 mm, D60 = 1.3 mm and coefficient uniformity = 2.36 96% of suspended solids, 99% of NH4 +-N (during first phase, 92% of COD, 91% of BOD5 and 46% of phosphorus are retained by surface filtration. The microbial abatement results is E. coli. The microbial water quality is slightly higher than Tunisian standards. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N (r = -0.99, with E. coli at 3rd OPD. Conclusion/Recommendation: Results confirmed that the reactor tested is performed as an advanced treatment system for DBO, COD, SS, NH4 +-N and NO3 --N. Despite that 96% of SS efficiency reduction, clogging is not achieved quickly that due to biofilm detachment phenomena. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N. Disinfection performances for the considered reactor reduce microbial load, however chlore, ozone or UV disinfection should be considered.

  14. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    International Nuclear Information System (INIS)

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m3 d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m3 CH4/kg CODremoved. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  15. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sentuerk, E.; Ince, M. [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey); Onkal Engin, G., E-mail: guleda@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey)

    2010-04-15

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m{sup 3} d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m{sup 3} CH{sub 4}/kg COD{sub removed}. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  16. Seismic hazard study for the TREAT Reactor facility at the INEL, Idaho

    International Nuclear Information System (INIS)

    The TREAT Reactor is founded on a thick unfaulted sequence of Plio-Pleistocene basalt on the Snake River Plain. The plain is presently aseismic; however, seismic activity occurs in the mountains around the plain. The Howe Scarp is located 19 miles from TREAT and contains a known capable fault. Evaluation of this and other faults in the region indicate the Howe Scarp is the most significant earthquake fault for TREAT. A maximum credible earthquake on this fault could produce a maximum ground motion of about .22 g at TREAT. A study of three range front fault systems north of the Snake River Plain indicates the fault systems have not ruptured as a unit in the past; and, cross range faults, mountain spurs and reentrants generally bound the definable fault sets in the range front systems. This study indicates future surface fault rupture and earthquake events will follow a similar pattern of contiguous faulting; each individual surface rupture event should only involve a single fault set of the range front fault system. Surface faulting on contiguous fault sets should be separated by significant intervals of geologic time. Certain volcanic hazards have been examined and discussed

  17. Nitrogen and phosphorus removal of domestic sewage using luffa cylindrical sponge carrier sequencing batch biofilm reactor%丝瓜络填料SBBR对生活污水脱氮除磷的试验研究

    Institute of Scientific and Technical Information of China (English)

    王营章; 张尚华; 刘志强; 李洁

    2012-01-01

    利用丝瓜络填料序批式生物膜反应器(LS-SBBR)处理生活污水,研究了反应器对生活污水中NH3-N、TN、TP的去除效果以及生物相的变化情况等.试验结果表明:丝瓜络填料SBBR对生活污水中NH3-N、TN、TP的平均去除率分别为90%、78%、88%.说明丝瓜络填料SBBR适用于生活污水的脱氮除磷.%Luffa cylindrical sponge carrier sequencing batch biofilm reactor(LS-SBBR) has been used for treating domestic wastewater. The removing effects of the reactor on NH3-N, TN, TP in domestic water are studied. The results show that the average removal rates of NH3-N,TN and TP reach 90% ,78% and 88% respectively,indicating that the luffa cylindrical sponge carrier SBBR is very suitable for the removal of nitrogen and phosphorus from domestic sewage.

  18. Applicability of anthraquinone-2,6-disulfonate (AQDS) to enhance colour removal in mesophilic UASB reactors treating textile wastewater

    OpenAIRE

    P. I. M. Firmino; M. E. R. da Silva; F. S. B. Mota; A.B. dos Santos

    2011-01-01

    This work assessed the applicability of the redox mediator anthraquinone-2,6-disulfonate (AQDS) to enhance colour removal in mesophilic UASB reactors treating textile wastewater under different operational conditions, such as different electron donor (ethanol) concentrations and different HRT. The anaerobic reactors were able to remove reasonably well the colour of the textile wastewater (35-63%) even when operated with a relatively short HRT (6 h), being a good option for textile effluents p...

  19. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    Science.gov (United States)

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified. PMID:27088208

  20. Photocatalytic reactors for treating water pollution with solar illumination: a simplified analysis for n-steps flow reactors with recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Universitaet Hannover (Germany). Institut fuer Technische Chemie; Brandi, R.J.; Cassano, A.E. [INTEC Universidad Nacional del Litoral and CONICET, Sante Fe (Argentina)

    2005-09-01

    The concentration of dissolved oxygen in water, in equilibrium with atmospheric air (ca. 8 ppm at 20{sup o}C), defines the limits of all practical oxidizing processes for removing pollutants in photocatalytic reactors. To solve this limitation, an alternative approach to that of a continuously aerated reactor is the use of a recirculating system with aeration performed after every cycle at the reactor entering stream. As defined by the nature of a single recirculating step (the need of a reactor operation at a rather low concentration range), this procedure results in a very low photonic efficiency (thus requiring a large photon collecting area and consequently increasing the capital cost). The design engineer will have to resort to a series of several reactors with recirculation. This solution may then lead to a very high Photonic Efficiency for the entire process (i.e., a reduced light harvesting area) at the price of an increase in the required capital cost (due to the larger number of reactors). This paper provides a very simple analysis and analytical expressions that can be used to estimate, for a desired degree of degradation, a trade-off solution between a high number of reactors and a very large surface area to collect the solar photons. (author)

  1. Photocatalytic reactors for treating water pollution with solar illumination: a simplified analysis for n-steps flow reactors with recirculation

    International Nuclear Information System (INIS)

    The concentration of dissolved oxygen in water, in equilibrium with atmospheric air (ca. 8 ppm at 20oC), defines the limits of all practical oxidizing processes for removing pollutants in photocatalytic reactors. To solve this limitation, an alternative approach to that of a continuously aerated reactor is the use of a recirculating system with aeration performed after every cycle at the reactor entering stream. As defined by the nature of a single recirculating step (the need of a reactor operation at a rather low concentration range), this procedure results in a very low photonic efficiency (thus requiring a large photon collecting area and consequently increasing the capital cost). The design engineer will have to resort to a series of several reactors with recirculation. This solution may then lead to a very high Photonic Efficiency for the entire process (i.e., a reduced light harvesting area) at the price of an increase in the required capital cost (due to the larger number of reactors). This paper provides a very simple analysis and analytical expressions that can be used to estimate, for a desired degree of degradation, a trade-off solution between a high number of reactors and a very large surface area to collect the solar photons. (author)

  2. Performance evaluation of full scale UASB reactor in treating stillage wastewater

    Directory of Open Access Journals (Sweden)

    A.Mirsepasi , H. R. Honary , A. R. Mesdaghinia, A. H. Mahvi , H. Vahid , H. Karyab

    2006-04-01

    Full Text Available Upflow anaerobic sludge blanket (UASB reactors have been widely used for treatment of industrial wastewater. In this study two full-scale UASB reactors were investigated. Volume of each reactor was 420 m3. Conventional parameters such as pH, temperature and efficiency of COD, BOD, TOC removal in each reactor were investigated. Also several initial parameters in designing and operating of UASB reactors, such as upflow velocity, organic loading rate (OLR and hydraulic retention time were investigated. After modifying in operation conditions in UASB-2 reactor, average COD removal efficiency at OLR of 10–11 kg COD / m3 day was 55 percent. In order to prevent solids from settling, upflow velocity was increased to 0.35 m/h. Also to prevent solids from settling, the hydraulic retention time of wastewater in UASB-2 reactor was increased from 200 to 20 hours. This was expected that with good operation of UASB-2 reactor and with expanding of granules in the bed of the reactor, COD removal efficiency will be increased to more than 80 percent. But, because of deficiency on granulation and operation in UASB-2 reactor, this was not achieved. COD removal efficiency in the UASB-1 reactor was little. To enhance COD efficiency of UASB-1 reactor, several parameters were needed to be changed. These changes included enhancing of OLRs and upflow velocity, decreasing hydraulic retention time and operating with new sludge.

  3. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  4. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  5. Photocatalytic reactors for treating water pollution with solar illumination, Part 3: a simplified analysis for recirculating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Brandi, R.J.; Cassano, A.E. [Universidad Nacional de Litoral, Santa Fe (Argentina). Inst. de Desarrollo Tecnologico para la Imdustria Quimica

    2004-11-01

    A solar photoreactor operated in the batch, recirculating mode is analyzed in terms of very simple observable variables such as the impinging photon flux, the incident area, the initial concentration, the flow rate, the reactor volume and a property defined as the Observed Photonic Efficiency. The proposed equipment is made of a tubular reactor, a tank, a pump and the connecting pipes. The analysis is formulated in terms of the photon input corresponding to an equivalent batch system that is derived as a new reaction coordinate for photoreactions. Employing several plausible approximations, the pollutant concentration evolution in the tank is cast in terms of very simple analytical solutions. Process photonic efficiencies are defined for the system operation and calculated with respect to the maximum achievable yield corresponding to the differential operation of the solar recirculating reactor. (Author)

  6. Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on europium: small scale production of no-carrier-added 153Sm in a nuclear reactor

    International Nuclear Information System (INIS)

    Employing the activation technique in combination with radiochemical separations and high-resolution γ-ray spectroscopy fission neutron spectrum averaged cross sections were measured for several (n, 2n), (n, p) and (n, α) reactions on isotopes of europium. Our measurements constitute the first systematic studies. Of special interest was the investigation of 153Eu(n, p)153Sm reaction for the production of no-carrier-added 153Sm in a nuclear reactor. Using 100% enriched 153Eu target, 97.21 MBq 153Sm per batch can be produced which is, however, not sufficient for medical application. (orig.)

  7. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne.

    Science.gov (United States)

    Jain, Ashay; Garg, Neeraj K; Jain, Atul; Kesharwani, Prashant; Jain, Amit Kumar; Nirbhavane, Pradip; Tyagi, Rajeev K

    2016-06-01

    The present study documents the fabrication and characterization of a topically applicable gel loaded with nanostructured lipid carriers (NLCs) of adapalene (ADA) and vitamin C (ascorbyl-6-palmitate [AP]). The NLCs were prepared by high pressure homogenization (HPH) method followed by incorporation into AP loaded gel. The fabricated system was characterized for size, poly dispersity index, entrapment efficiency (EE) and in vitro drug release properties, and was further investigated for skin compliance, skin transport characteristics (skin permeation and bio-distribution), rheological behavior, texture profile analysis and anti-acne therapeutic potential against testosterone-induced acne in male Wistar rats. The NLC-based formulation improved targeting of the skin epidermal layer and reducing systemic penetration. The co-administration of vitamin C led to an adjunct effect in acne therapy in physiological conditions. In brief, the present results suggest the potential of NLCs as a novel carrier for the dermal delivery of ADA and also the synergistic effect of vitamin C in topical therapeutics. PMID:26577703

  8. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater.

    Science.gov (United States)

    Chen, Shuangya; Dong, Xiuzhu

    2005-11-01

    Two proteolytic, strictly anaerobic bacterial strains (TB107(T) and TB6-6) were isolated from the granule sludge of an upflow anaerobic sludge blanket reactor treating brewery wastewater. The strains were Gram-negative, non-spore-forming and motile. Cells were rod-shaped (0.6-0.9x1.9-2.2 microm). Growth of the strains was observed at 20-45 degrees C and pH 6.0-9.7. The strains were proteolytic. Yeast extract, peptone, pyruvate, glycine and l-arginine could be used as carbon and energy sources. Weak growth was also observed with tryptone, l-serine, l-threonine and l-alanine as carbon and energy sources. Both strains did not use any of the tested carbohydrates, alcohols and fatty acids except pyruvate. Acetic acid and NH3 were produced from yeast extract, peptone and l-arginine, and propionic acid was also produced from yeast extract. Pyruvate was converted to acetic acid and CO2. Gelatin was not hydrolysed. Indole and H2S were not produced. The two strains did not grow in medium containing 20 % bile. Addition of strain TB107T to a syntrophic propionate-degrading co-culture accelerated the propionate-degradation rate. The predominant cellular fatty acid was the branched-chain fatty acid anteiso-C(15 : 0) (46.21 %). The genomic DNA G+C contents of strains TB107T and TB6-6 were 46.6 and 48.9 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains represent a new phyletic sublineage within the Cytophaga-Flavobacterium-Bacteroides (CFB) group, with gen. nov., sp. nov., is proposed, with strain TB107T (=JCM 12891T=AS 1.5024T) as the type strain. PMID:16280479

  9. Applicability of anthraquinone-2,6-disulfonate (AQDS to enhance colour removal in mesophilic UASB reactors treating textile wastewater

    Directory of Open Access Journals (Sweden)

    P. I. M. Firmino

    2011-12-01

    Full Text Available This work assessed the applicability of the redox mediator anthraquinone-2,6-disulfonate (AQDS to enhance colour removal in mesophilic UASB reactors treating textile wastewater under different operational conditions, such as different electron donor (ethanol concentrations and different HRT. The anaerobic reactors were able to remove reasonably well the colour of the textile wastewater (35-63% even when operated with a relatively short HRT (6 h, being a good option for textile effluents pre-treatment. Aditionally, colour removal efficiency was positively influenced not only by the addition of ethanol as external electron donor, but also by the initial wastewater absorbance. Although the applicability of AQDS is reported in the literature to enhance remarkably colour removal from synthetic dye-containing wastewaters, especially for recalcitrant azo dyes, the same effect was not evident in the present study with the textile wastewater tested, since the reactors did not show significant differences on decolourisation capacity.

  10. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature.

    Science.gov (United States)

    Luostarinen, Sari; Luste, Sami; Valentín, Lara; Rintala, Jukka

    2006-05-01

    On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWWe; 10 degrees C) and mixture of kitchen waste and black water (BWKWe; 20 degrees C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50-60% of nitrogen and 40-70% of total COD (CODt). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provided similar nitrogen and COD removal, wherefore simpler continuous feeding may be preferred for on-site applications. Combination of pre-treating upflow anaerobic sludge blanket (UASB) -septic tank and MBBR removed over 92% of CODt, 99% of biological oxygen demand (BOD7), and 65-70% of nitrogen. PMID:16647521

  11. Sludge granulation and efficiency of phase separator in UASB reactor treating combined industrial effluent

    Institute of Scientific and Technical Information of China (English)

    Abdullah Yasar; Nasir Ahmad; Muhammad Nawaz Chaudhry; Aamir Amanat Ali Khan

    2007-01-01

    Sludge granulation and the effect of gas-liquid-solid separator (GLSS) design on the efficiency of upflow anaerobic sludge blanket (UASB) and upflow anaerobic sludge filter (UASF) reactors, operating at HRTs ranging from 3 to 12 h was investigated. VSS/TS ratio gradually increased in both the reactors with increasing sludge age (from 0.5 to more than 0.7 for UASB reactor and 0.012 to 0.043 for UASF reactor). X-Ray diffraction analysis of the UASF sludge showed the presence of expanding clays revealing its additional absorption capability. Fuoraphyllite and albite precipitation related to excellular polymers of the microbial shell structure, showed the extended growth of microorganisms during sludge granulation. A gradual decrease (82%-69%) in COD removal with decreasing HRT was apparent in UASF reactor. In case of UASB reactor, this decrease was marginal because addition of GLSS device significantly improved (14%-20%) the overall efficiency of the UASB reactor. GLSS enhanced the efficiency of the UASB reactor by increasing the settleability of suspended particles and accelerating the coagulation of colloidal particles due to the velocity gradient.

  12. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste.

    Science.gov (United States)

    Lopes, Wilton Silva; Leite, Valderi Duarte; Prasad, Shiva

    2004-09-01

    The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVS) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 l capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. PMID:15182832

  13. COMBINING A SEQUENCING BATCH REACTOR WITH HETEROGENEOUS PHOTOCATALYSIS (TiO2/UV) FOR TREATING A PENCIL MANUFACTURER'S WASTEWATER

    OpenAIRE

    R. N. Padovan; E. B. Azevedo

    2015-01-01

    Abstract A Sequencing Batch Reactor (SBR) was combined with heterogeneous photocatalysis (TiO2/UV) as a tertiary treatment for a pencil manufacturer's wastewater. The SBR removed almost all Chemical Oxygen Demand (COD) from the wastewater, although color was barely removed. Photocatalysis was optimized using a factorial design. Final COD, Dissolved Organic Carbon (DOC), and color removals were 95%, 80%, and 93%, respectively. Treated wastewater showed no ecotoxicity towards Lactuca sativa. Co...

  14. Start-up of an anaerobic hybrid (UASB/filter) reactor treating wastewater from a coffee processing plant.

    Science.gov (United States)

    Bello-Mendoza, R; Castillo-Rivera, M F

    1998-10-01

    The ability of an anaerobic hybrid reactor, treating coffee wastewater, to achieve a quick start-up was tested at pilot scale. The unacclimatized seed sludge used showed a low specific methanogenic activity of 26.47 g CH4 as chemical oxygen demand (COD)/kg volatile suspended solids (VSS) x day. This strongly limited the reactor performance. After a few days of operation, a COD removal of 77.2% was obtained at an organic loading rate (OLR) of 1.89 kg COD/m3 x day and a hydraulic retention time (HRT) of 22 h. However, suddenly increasing OLR above 2.4 kg COD/m3 x day resulted in a deterioration in treatment efficiency. The reactor recovered from shock loads after shutdowns of 1 week. The hybrid design of the anaerobic reactor prevented the biomass from washing-out but gas clogging in the packing material was also observed. Wide variations in wastewater strength and flow rates prevented stable reactor operation in the short period of the study. PMID:16887646

  15. Effect of nitrification on phosphorus dissolving in a piggery effluent treated by a sequencing batch reactor

    OpenAIRE

    Daumer, M.L.; Béline, F.; Guiziou, F.; Spérandio, M

    2007-01-01

    The effect of the nitrification on dissolved phosphorus during the treatment of piggery wastewater by a modified sequencing batch reactor has been observed in a previous study. The high solid mineral phosphorus content in the piggery wastewater and the chemical mechanism induced by the fall in pH during the nitrification were proposed to explain this effect. In this work, trials using modified sequencing batch reactors were performed to study the influence of the amount of nitrified nitrogen ...

  16. Sludge Bed Granules’ Growth in the HUASB Reactor Treating High Strength Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Sinan Abood Habeeb

    2014-12-01

    Full Text Available The development of anaerobic sludge granules in a hybrid up-flow anaerobic sludge bed (HUASB reactor in terms of granular size and solids content was observed. After appropriate pre-treatment of the palm oil mill effluent (POME, it was continuously fed to the HUASB reactor under room temperature condition (27°C.  Particle size analysis and solids content examination were conducted for 196 days. A volatile solid ratio was ranging from 0.36 to 0.51 which was quite low, and granules particle size of less than 1 mm diameter was reported during the operating period. Results obtained in this study indicated that sludge bed development based on the sludge particle size distribution and the volatile solid ratio, was quite slow due to the bulk solids that entering the reactor resulting in certain inhibition of the anaerobes’ activity. It has been concluded that anaerobic wastewater treatment process in anaerobic reactors such as the HUASB reactor, can be significantly affected by the organic loading rate, hydraulic retention time applied to the reactor and the wastewater characteristics.

  17. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhiyong, E-mail: bluemanner@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Lu, Mang [School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi Province (China); Huang, Wenhui [School of Energy Resources, China University of Geosciences, Beijing 100083 (China); Xu, Xiaochun [School of Geosciences and Resources, China University of Geosciences, Beijing 100083 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We invented a novel suspended ceramic carrier. Black-Right-Pointing-Pointer The suspended ceramic carrier is modified with sepiolite. Black-Right-Pointing-Pointer The carriers were used in MBBR to remediate wastewater. - Abstract: In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10 h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10 h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  18. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier

    International Nuclear Information System (INIS)

    Highlights: ► We invented a novel suspended ceramic carrier. ► The suspended ceramic carrier is modified with sepiolite. ► The carriers were used in MBBR to remediate wastewater. - Abstract: In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10 h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10 h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  19. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials

    OpenAIRE

    Brányik, Tomáš; Silva, Daniel Pereira da; Vicente, A.A.; Lehnert, Radek; Silva, João B. Almeida e; Dostálek, Pavel; Teixeira, J.A.

    2006-01-01

    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-produc...

  20. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers

    Directory of Open Access Journals (Sweden)

    Clifford E. Starliper

    2015-05-01

    Full Text Available Treatment of ship ballast water with sodium hydroxide (NaOH is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were characterized based on PCR amplification and sequencing of a portion of the 16S rRNA gene. Sequence similarities (99+ % were determined by comparison with the National Center for Biotechnology Information (NCBI GenBank catalog. Flavobacterium spp. were the most prevalent bacteria characterized in 2009, comprising 51.1% (24/47 of the total, and Pseudomonas spp. (62/101; 61.4% and Brevundimonas spp. (22/101; 21.8% were the predominate bacteria recovered in 2010; together, comprising 83.2% (84/101 of the total. Testing was done in tryptic soy broth (TSB medium adjusted with 5 N NaOH. Growth of each strain was evaluated at pH 10.0, pH 11.0 and pH 12.0, and 4 h up to 72 h. The median cell count at 0 h for 148 cultures was 5.20 × 106 cfu/mL with a range 1.02 × 105–1.60 × 108 cfu/mL. The TSB adjusted to pH 10.0 and incubation for less than 24 h was bactericidal to 52 (35.1% strains. Growth in pH 11.0 TSB for less than 4 h was bactericidal to 131 (88.5% strains and pH 11.0 within 12 h was bactericidal to 141 (95.3%. One strain, Bacillus horikoshii, survived the harshest treatment, pH 12.0 for 72 h.

  1. [Single-stage autotrophic nitrogen removal reactor with self-generated granular sludge for treating sludge dewatering effluent].

    Science.gov (United States)

    Cao, Jian-ping; Du, Bing; Liu, Yin; Qin, Yong-sheng

    2009-10-15

    Single-stage autotrophic nitrogen removal (SANR) has been observed in a long-term operated nitrosation air-lift reactor for treating digested sludge dewatering effluent from sewage wastewater treatment plant. A kind of so called self-generated granular sludge which undertake the SANR reaction has oriented formed. The performance of SANR reactor cultivated above sludge for treating sludge dewatering effluent has been tested and better results have been reached. When the influent total nitrogen (TN) was kept about 350 mg/L (mainly ammonium nitrogen), the average TN removal efficiency and nitrogen removal load were 74.8% (maximum 86.92%) and 0.68 kg x (m3 x d)(-1) [maximum 0.9 kg x (m3 x d)(-1)] respectively. The operation stability and nitrogen removal efficiency have been enforced after adding a certain quantity powered activated carbon. The influent ammonium concentration, nitrogen load and aeration rate have a great effect on SANR reactor as well as the influent organic compound, pH, alkalinity have a relatively low effect. The parameters such as the ratios of aeration rate/deltaTN, aeration rate/deltaNH4+ -N, deltaALK/deltaTN can be used for better controlling the reaction. PMID:19968119

  2. Tokamak reactor for treating fertile material or waste nuclear by-products

    Science.gov (United States)

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  3. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate

    NARCIS (Netherlands)

    Calli, B.; Mertoglu, B.; Roest, C.; Inanc, B.

    2006-01-01

    Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD conce

  4. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    Science.gov (United States)

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  5. Effect of temperature on two-phase anaerobic reactors treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    Simone Beux

    2007-11-01

    Full Text Available The effectiveness of the anaerobic treatment of effluent from a swine and bovine slaughterhouse was assessed in two sets of two-phase anaerobic digesters, operated with or without temperature control. Set A, consisting of an acidogenic reactor with recirculation and an upflow biological filter as the methanogenic phase, was operated at room temperature, while set B, consisting of an acidogenic reactor without recirculation and an upflow biological filter as the methanogenic phase, was maintained at 32°C. The methanogenic reactors showed COD (Chemical Demand of Oxygen removal above 60% for HRT (Hydraulic Retention Time values of 20, 15, 10, 8, 6, 4, and 2 days. When the HRT value in those reactors was changed to 1 day, the COD percentage removal decreased to 50%. The temperature variations did not have harmful effects on the performance of reactors in set A.Avaliou-se a eficiência do tratamento anaeróbio de efluente de matadouro de suínos e bovinos em dois conjuntos de biodigestores anaeróbios de duas fases, operados com e sem controle de temperatura. O conjunto A, formado por um reator acidogênico com recirculação e um filtro biológico de fluxo ascendente, foi operado a temperatura ambiente e o conjunto B, formado por um reator de fluxo ascendente e um filtro biológico de fluxo ascendente, foi mantido a 32°C. Os reatores metanogênicos apresentaram remoção de DQO acima de 60 % para os TRHs de 20, 15, 10, oito, seis, quatro e dois dias. Quando o TRH destes reatores foi mudado para um dia observou-se uma queda da porcentagem de remoção de DQO para 50 %. As variações de temperatura parecem não ter prejudicado o desempenho dos reatores do conjunto A.

  6. COMBINING A SEQUENCING BATCH REACTOR WITH HETEROGENEOUS PHOTOCATALYSIS (TiO2/UV FOR TREATING A PENCIL MANUFACTURER'S WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. N. Padovan

    2015-03-01

    Full Text Available Abstract A Sequencing Batch Reactor (SBR was combined with heterogeneous photocatalysis (TiO2/UV as a tertiary treatment for a pencil manufacturer's wastewater. The SBR removed almost all Chemical Oxygen Demand (COD from the wastewater, although color was barely removed. Photocatalysis was optimized using a factorial design. Final COD, Dissolved Organic Carbon (DOC, and color removals were 95%, 80%, and 93%, respectively. Treated wastewater showed no ecotoxicity towards Lactuca sativa. Color removal kinetics (photocatalysis followed a pseudo-first order model. The SBR + AOP (Advanced Oxidation Process, TiO2/UV combination was a feasibility choice for removing both COD and color from this wastewater.

  7. Probe carrier for the inspection of welding seams on nozzles and pipe connections and of nozzle edges on pressure vessels, especially reactor pressure vessels of nuclear power plants, by means of ultrasonics

    International Nuclear Information System (INIS)

    Probe carrier for ultrasonic inspection of pressure vessels, especially reactor pressure vessels of nuclear power plants, permitting inspection of the welding seams on nozzles and pipe connections and of nozzle edges with a single telescopic arm and thus by centering this arm. (orig./RW)

  8. The Microbial Community of a Passive Biochemical Reactor Treating Arsenic, Zinc, and Sulfate-Rich Seepage

    OpenAIRE

    Baldwin, Susan Anne; Khoshnoodi, Maryam; Rezadehbashi, Maryam; Taupp, Marcus; Hallam, Steven; Mattes, Al; Sanei, Hamed

    2015-01-01

    Sulfidogenic biochemical reactors (BCRs) for metal removal that use complex organic carbon have been shown to be effective in laboratory studies, but their performance in the field is highly variable. Successful operation depends on the types of microorganisms supported by the organic matrix, and factors affecting the community composition are unknown. A molecular survey of a field-based BCR that had been removing zinc and arsenic for over 6 years revealed that the microbial community was dom...

  9. [Performance and microbial community dynamic characteristics of an internal circulation reactor treating brewery wastewater].

    Science.gov (United States)

    Zhu, Wen-xiu; Huang, Zhen-xing; Ren, Hong-yan; Ruan, Wen-quan

    2012-08-01

    A lab-scale internal circulation reactor (IC) fed by artificial brewery wastewater was operated with increasing volumetric loading rate under 35 degrees C continuously. The reactor performance and the relationship between microbial community structure and bioactivity in the anaerobic sludge were investigated during the operation. The COD removal efficiency was above 85%, furthermore, the maximum volumetric loading rate (VLR) and the maximum specific methanogenic activity (SMA) of the reactor could be up to 20 kg x (m3 x d)(-1) and 210 mL x (g x d)(-1) respectively. The results from the dehydrogenase and the bacteria DGGE experiments demonstrated that the dehydrogenase variation tendency was positively correlated to total light intensity of the whole bacteria DGGE bands for each sample. The total light intensity of the whole bacteria DGGE bands can use as a referential index for biomass liveweight in anaerobic system. Moreover, the coenzyme F420 content related to the relative abundance of Methanosaeta based on coenzyme F420 and archaebacteria DGGE analysis. As the volumetric loading rate increased, Methanomsaeta became significantly dominant, which was accompanied by the coenzyme F420 content increasing. The content could be up to 0.16 micromol x g(-1), meanwhile, the superiority of Methanosaeta became significantly obvious; UPGAMA analysis and Shannon index also confirmed the dynamic changes of microbial community structure during the operation. PMID:23213895

  10. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; CHI Lina; LONG Xiuhua; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    A bench-scale expanded granular sludge bed (EGSB) reactor was applied to the treatment of palm oil mill ettluent (POME).The reactor had been operated continuously at 35℃ for 514 d,with organic loading rate (OLR) increased from 1.45 to 17.5 kg COD/(m3·d).The results showed that the EGSB reactor had good performance in terms of COD removal on the one hand,high COD removal of 91% Was obtained at two days’ of hydraulic retention time (HRT),and the highest OLR of 17.5 kg COD/(m3·d).On the other hand,only 46% COD in raw POME Was transformed into biogas in which the methane content was about 70% (v/v).A 30-d intermittent experiment indicated that the maximum transformation potential of organic matter in raw POME into methane Was 56%.Volatile fatty acid (VFA) accumulation was observed in the later operation stage,and this Was settled by supplementing trace metal elements.On the whole,the system exhibited good stability in terms of acidity and alkalinity.Finally, the operational problems inherent in the laboratory scale experiment and the corresponding countermeasures were also discussed.

  11. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP

    Directory of Open Access Journals (Sweden)

    Claudio Milton Montenegro Campos

    2014-10-01

    Full Text Available This study evaluated the treatment of wastewater from coffee wet processing (WCWP in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET, a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB, a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters measured during the anaerobic biodegradation of the WCWP, with a minimal concentration of phenolic compounds of 50 mg L - ¹, were: Y = 0.37 mgTVS (mgCODremoved -1 , Kd = 0.0075 d-1 , Ks = 1.504mg L -1 , μmax = 0.2 d -1 . The profile of sludge in the reactor showed total solids (TS values from 22,296 to 55,895 mg L -1 and TVS 11,853 to 41,509 mg L -1 , demonstrating a gradual increase of biomass in the reactor during the treatment, even in the presence of phenolic compounds in the concentration already mentioned.

  12. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    Science.gov (United States)

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  13. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions.

    Science.gov (United States)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-11-01

    Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38°C). The start-up phase of the reactor at 20°C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3g ODML(-1)d(-1), methane production at 28°C was comparable (3% less) with that at 38°C, but the risk of acidification was high at 28°C. At low OLR (1.3g ODML(-1)d(-1)), the biogas process appeared stable at 28°C and gave same methane yields as compared to the reactor operating at 38°C. The estimated sludge yield at 28°C was 0.065g VSSg(-1) CODremoved, which was higher than that at 38°C (0.016g VSSg(-1) CODremoved). PMID:23842452

  14. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    Science.gov (United States)

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. PMID:22033369

  15. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater.

    Science.gov (United States)

    He, Qiang; Kong, Xiang-Juan; Chai, Hong-Xiang; Fan, Ming-Yu; Du, Jun

    2012-01-01

    When treating a composite mustard tuber wastewater with high concentrations of salt (about 20 g Cl(-) L(-1)) and organics (about 8000 mg L(-1) COD) by an anaerobic sequencing batch biofilm reactor (ASBBR) in winter, both high salinity and low temperature will inhibit the activity of anaerobic microorganisms and lead to low treatment efficiency. To solve this problem, betaine was added to the influent to improve the activity of the anaerobic sludge, and an experimental study was carried to investigate the influence of betaine on treating high salinity mustard tuber wastewater by the ASBBR. The results show that, when using anaerobic acclimated sludge in the ASBBR, and controlling biofilm density at 50% and water temperature at 8-12 degrees C, the treatment efficiency of the reactor could be improved by adding the betaine at different concentrations. The efficiency reached the highest when the optimal dosage ofbetaine was 0.5 mmol L(-1). The average effluent COD, after stable acclimation, was 4461 mg L(-1). Relative to ASBBR without adding betaine, the activity of the sludge increased significantly. Meanwhile, the dehydrogenase activity of anaerobic microorganisms and the COD removal efficiency were increased by 18.6% and 18.1%, respectively. PMID:22988630

  16. Fast pyrolysis of creosote treated wood ties in a fluidized bed reactor and analytical characterization of product fractions

    International Nuclear Information System (INIS)

    A fraction of creosote treated wood ties was pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and char-separation system at different temperatures. Analyses of each pyrolysis product, especially the oil, were carried out using a variety of analytical tools. The maximum oil yield was obtained at 458 °C with a value of 69.3 wt%. Oils obtained were easily separated into two phases, a creosote-derived fraction (CDF) and a wood-derived fraction (WDF). Major compounds of the WDF were acetic acid, furfural and levoglucosan, while the CDF was mainly composed of polycyclic aromatic hydrocarbons (PAHs), such as 1-methylnaphthalene, biphenyl, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. HPLC analysis showed that the concentration of PAHs of the CDF obtained at 458 °C constituted about 22.5 wt% of the oil. - Highlights: • Creosote treated wood ties was stably pyrolyzed in a fluidized bed reactor. • Pyrolysis oil contained extremely low metal content due to the char removal system. • Bio-oil components was quantitatively analyzed by relative response factor. • Creosote-derived pyrolysis oil fraction was composed of PHAs and has a high caloric value (39 MJ/kg)

  17. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  18. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  19. Sequencing batch reactor operation for treating wastewater with aerobic granular sludge

    Directory of Open Access Journals (Sweden)

    M. K. Jungles

    2014-03-01

    Full Text Available In this work, the performance of a sequencing batch reactor (SBR on aerobic granular sludge was studied for urban wastewater treatment. The system was inoculated with aerobic activated sludge collected from a wastewater treatment plant and, after 30 days of operation, the first granules observed had an average diameter of 0.1 mm. The biomass concentration reached a maximum value around 4 g VSS L-1, and COD removal and nitrification efficiency achieved stable values of 90%. The predominant oxidizing ammonium bacteria in the granules were identified as Nitrosomonas spp.

  20. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP)

    OpenAIRE

    Claudio Milton Montenegro Campos; Marco Antonio Calil Prado; Erlon Lopes Pereira

    2014-01-01

    This study evaluated the treatment of wastewater from coffee wet processing (WCWP) in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET), a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB), a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR) were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters mea...

  1. Experimental study of hydrodynamic and operation start of a baffled anaerobic reactor treating sewage

    Directory of Open Access Journals (Sweden)

    Ana Carolina Silveira Perico

    2009-12-01

    Full Text Available It is important to provide individual sanitation systems for sewage peri-urban communities or rural areas to minimize impacts on the environment and human health caused by sewage discharge in natura into water resources. In this context, the anaerobic digestion of effluent has been one of the main considered technologies due to easy implementation, material minimization and reduction in waste production. The objective of this work was to study a Baffled Anaerobic Reactor (BAR including its hydrodynamic characteristics, percentile of inoculum to be applied and reactor operation start. It was concluded that the flow is dispersed with 3.84% of dead spaces and that 20% of the cow manure provided best results; however, due to the high fiber content of the manure, its use is not recommended as inoculum. The BAR system, composed of four chambers, presented good performance for sewage treatment of a rural community in terms of organic substance removal (COD, turbidity and solids meeting effluent disposal standards of these parameters considering the Federal and Minas Gerais State legislation, in Brazil, even in a transient phase of operation, at temperatures below 20°C. However, the effluents from the BAR can’t be released into water bodies without other parameters such as nitrogen, phosphorus, fecal coliforms, and others are investigated to be conforming to those standards.

  2. Improvement of inherent safety features in CSR (Coupled Spectrum Reactor) for treating MA

    International Nuclear Information System (INIS)

    Burning and/or transmutation (B/T) of MA is proposed here using a CSR (Coupled Spectrum Reactor) concept. CSR was based on a modified conventional 1150 MWe-PWR system, and consisted of two core regions for thermal and fast neutrons, respectively. The B/T fuel used was supposed such that MA discharged from 1 GWe-LWR were mixed homogeneously in LWR fuel. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio, (Vm/Vf). In order to improve its inherent safety features, several cases of CSR were studied and compared, each case used different fuel type in the inner region. The result of the calculations showed that safety features can be improved by using composite fuel of (235U-Pu-238U) in the inner region. The equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute MA up to 808 kg/stage in a single reactor operated with a reactivity swing of 2.8 % Δk/kk'. (author)

  3. The microbial community of a passive biochemical reactor treating arsenic, zinc and sulfate-rich seepage

    Directory of Open Access Journals (Sweden)

    Susan Anne Baldwin

    2015-03-01

    Full Text Available Sulfidogenic biochemical reactors for metal removal that use complex organic carbon have been shown to be effective in laboratory studies, but their performance in the field is highly variable. Successful operation depends on the types of microorganisms supported by the organic matrix, and factors affecting the community composition are unknown. A molecular survey of a field-based biochemical reactor that had been removing zinc and arsenic for over six years revealed that the microbial community was dominated by methanogens related to Methanocorpusculum sp. and Methanosarcina sp., which co-occurred with Bacteroidetes environmental groups, such as Vadin HA17, in places where the organic matter was more degraded. The metabolic potential for organic matter decomposition by Ruminococcaceae was prevalent in samples with more pyrolysable carbon. Rhodobium- and Hyphomicrobium-related genera within the Rhizobiales Order that have the metabolic potential for dark hydrogen fermentation and methylotrophy, and unclassified Comamonadaceae were the dominant Proteobacteria. The unclassified environmental group Sh765B-TzT-29 was an important Delta-Proteobacteria group in this BCR, that co-occurred with the dominant Rhizobiales OTUs. Organic matter degradation is one driver for shifting the microbial community composition and therefore possibly the performance of these bioreactors over time.

  4. Coating of a stainless steel tube-wall catalytic reactor with thermally treated polysiloxane thick films

    OpenAIRE

    Guillou, L.; Supiot, P.; Le Courtois, V.

    2005-01-01

    Organosilicon films were grafted over stainless steel substrates thanks to a plasma assisted chemical vapor deposition process. Thicknesses up to 10μm were developed. The organosilicon films were then thermally treated under air and the influence of calcinations conditions was investigated by infrared spectroscopy, Raman microscopy and XPS. On all films, it appears that the structure varies according to the thermal treatment parameters. Indeed the surface composition appears to be SiO1.8 whic...

  5. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianbin, E-mail: jianbinguo@gmail.com [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China); Dong, Renjie [College of Engineering, China Agricultural University, P.O. Box 184, Beijing 100083 (China); Clemens, Joachim [Institute of Crop Science and Resource Reservation (INRES), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn (Germany); Wang, Wei [Department of Environmental Engineering, Tsinghua University, Beijing 100084 (China)

    2013-11-15

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})

  6. Flotation technique with coagulant and polymer application applied to the post-treatment of effluents from anaerobic reactor treating sewage.

    Science.gov (United States)

    Reali, A P; Penetra, R G; de Carvalho, M E

    2001-01-01

    This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 and/or cationic polymer) effluent from a pilot-scale expanded bed anaerobic reactor treating domestic sewage. The association between ferric chloride and polymers was studied, aimed at sludge reduction. Ferric chloride dosages ranging from 15 to 65 mg.l-1, and polymer dosages from 0.25 to 7.0 mg.l-1 were investigated. Flocculation conditions were kept constant: 20 min of time (Tf) and 80 s-1 of mean velocity gradient (Gf). Air requirement was kept to 19.0 g of air.m-3 wastewater, using 20% recycle ratio and saturation pressure at 450 kPa. When the anaerobic reactor was operating at steady state conditions, it was possible to reduce the FeCl3 dosage from 65 to 30 mg.l-1 after applying 0.4 mg.l-1 of non-ionic polymer, before the DAF process. For these dosages, 79% COD removal (residual of 23 mg.l-1), 86% total phosphate removal (residual of 0.9 mg.l-1) and 98% turbidity removal (residual of 2.6 NTU) were observed. Furthermore, the use of adequate polymer together with 30 mgFeCl3.l-1 leads to the production of high rising rate flocs. PMID:11575086

  7. Effect of seed sludge on nitrogen removal in a novel upflow microaerobic sludge reactor for treating piggery wastewater.

    Science.gov (United States)

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Wang, Cheng; Deng, Kaiwen; Sun, Kai

    2016-09-01

    Anaerobic activated sludge (AnaS) and aerobic activated sludge (AerS) were used to start up a novel upflow microaerobic sludge reactor (UMSR), respectively, and the nitrogen removal in the two reactors were evaluated when treating low C/N ratio manure-free piggery wastewater with a COD/TN ration of about 0.85. With the same hydraulic retention time 8h and TN loading rate (NLR) 0.42kg/(m(3)d), the UMSR (R2) inoculated with AerS could reach its steady state earlier and obtained a better TN removal than that in the UMSR (R1) inoculated with AnaS. However, the accumulated AnaS made R1 show a better capability in bearing shock load and demonstrated an excellent NH4(+)-N and TN removal with a NLR as high as 1.07kg/(m(3)d). Microbial community structure of the accumulated AerS and AnaS were observable different. The decreased proportion of nitrifiers restricted the ammonium oxidation in R2, and resulting in a decrease in TN removal. PMID:27218438

  8. Start up study of UASB reactor treating press mud for biohydrogen production

    International Nuclear Information System (INIS)

    Anaerobic digestion of press mud mixed with water for biohydrogen production was performed in continuous fed UASB bioreactor for 120 days. Experiment was conducted by maintaining constant HRT of 30 h and the volume of biohydrogen evolved daily was monitored. Various parameters like COD, VFA, Alkalinity, EC, Volatile solids, pH with respect to biohydrogen production were monitored at regular interval of time. SBPR was 10.98 ml g-1 COD reduced d-1 and 12.77 ml g-1 VS reduced d-1 on peak yield of biohydrogen. COD reduction was above 70 ± 7%. Maximum gas yield was on the 78th day to 2240 ml d-1. The aim of the experiment is to study the startup process of UASB reactor for biohydrogen production by anaerobic fermentation of press mud. The inoculum for the process is cow dung and water digested in anaerobic condition for 30 days with municipal sewage sludge. The study explores the viability of biohydrogen production from press mud which is a renewable form of energy to supplement the global energy crisis. -- Highlights: → Feasibility of biohydrogen production from press mud was explored in this study. The gas yield was maximum on the 78th day to 2240 ml d-1 with H2% of 52-59%. Biohydrogen yield was about 890 ml kg-1 press mud added d-1. Press mud is identified as an excellent potential waste to tap energy.

  9. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  10. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    International Nuclear Information System (INIS)

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g−1 and settling velocity of 37.2 ± 2.7 m h−1, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (Vmax) varied between 1164.5 mg L−1 h−1 and 1867.4 mg L−1 h−1. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule

  11. Evaluation of Anaerobic Fluidized Bed Reactor for treating Sugar mill effluent - a Case Study

    Directory of Open Access Journals (Sweden)

    R. Mathiyazhagan

    2014-07-01

    Full Text Available Anaerobic treatment processes are credible options for providing sustainable treatment to biodegradable waste streams. The Anaerobic Fluidized Bed Reactor (AFBR is an evolving process that requires waste specific design methodologies based on kinetics of the specific process. The research was precisely an experimental study on AFBR having23.56 litres of effective volume to evaluate its treatment performance and gas recovery in terms of Chemical Oxygen Demand (COD, Hydraulic Retention Time(HRTand Organic Loading Rate (OLR. The synthetic sugar influent COD was variedfrom 1500 to 4000 mg/lit. The OLR for the operating flow rates were ranged from 1.36 to 28.8 Kg COD/m3 .day for HRT varied from 3.2 to 24 hrs. The maximum COD removal efficiency is 90.06 at an operating OLR of 3.42 Kg COD/m3 .day. The maximum biogas yield was observed at 0.28 m 3 /kg COD removed.

  12. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  13. The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage.

    Science.gov (United States)

    Baldwin, Susan Anne; Khoshnoodi, Maryam; Rezadehbashi, Maryam; Taupp, Marcus; Hallam, Steven; Mattes, Al; Sanei, Hamed

    2015-01-01

    Sulfidogenic biochemical reactors (BCRs) for metal removal that use complex organic carbon have been shown to be effective in laboratory studies, but their performance in the field is highly variable. Successful operation depends on the types of microorganisms supported by the organic matrix, and factors affecting the community composition are unknown. A molecular survey of a field-based BCR that had been removing zinc and arsenic for over 6 years revealed that the microbial community was dominated by methanogens related to Methanocorpusculum sp. and Methanosarcina sp., which co-occurred with Bacteroidetes environmental groups, such as Vadin HA17, in places where the organic matter was more degraded. The metabolic potential for organic matter decomposition by Ruminococcaceae was prevalent in samples with more pyrolyzable carbon. Rhodobium- and Hyphomicrobium-related genera within the Rhizobiales order that have the metabolic potential for dark hydrogen fermentation and methylotrophy, and unclassified Comamonadaceae were the dominant Proteobacteria. The unclassified environmental group Sh765B-TzT-29 was an important Delta-Proteobacteria group in this BCR that co-occurred with the dominant Rhizobiales operational taxonomic units. Organic matter degradation is one driver for shifting the microbial community composition and therefore possibly the performance of these bioreactors over time. PMID:25798439

  14. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5–1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  15. Influence of the Ratio IA/PA and Volatile Acids in the Monitoring of UASB Reactor in the Treating of Swine Waste Water

    OpenAIRE

    Luciano S. Rodrigues; Silva, Israel J.; Paulo R. Oliveira; Ana C. A. Pinto; Camila A. Lima

    2014-01-01

    This paper presents the influence of the ratio IA/PA and concentration of volatile acids (TVA) in the operational stability of a UASB reactor treating swine waste water. The treatment system in real scale was constituted of decanter, followed by the UASB reactor with volume of 7.4 m3 and 11.5 m3, respectively. It has been observed a large oscillation of the ratio IA/IP in the UASB reactor with an average value of 0.39, and average efficiency of removal of BOD and COD...

  16. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  17. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Lemire, Joe A.; Marc A Demeter; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  18. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR to Treat the Antibiotic Cefradine.

    Directory of Open Access Journals (Sweden)

    Jianqiu Chen

    Full Text Available Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%. In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02% was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  19. Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters.

    Science.gov (United States)

    Dong, Qirong; Dagnew, Martha; Cumin, Jeff; Parker, Wayne

    2015-01-01

    This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60-82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria. PMID:26465317

  20. On-site evaluation of the performance of a full-scale down-flow hanging sponge reactor as a post-treatment process of an up-flow anaerobic sludge blanket reactor for treating sewage in India.

    Science.gov (United States)

    Okubo, Tsutomu; Onodera, Takashi; Uemura, Shigeki; Yamaguchi, Takashi; Ohashi, Akiyoshi; Harada, Hideki

    2015-10-01

    A down-flow hanging sponge (DHS) reactor is a novel, unaerated, aerobic, biofilm reactor that is used to polish effluent received from an up-flow anaerobic sludge blanket (UASB) reactor for treating municipal sewage. A full-scale DHS reactor was constructed for post-treatment of a full-scale UASB reactor at a municipal sewage treatment plant in India. Performance of the DHS reactor was evaluated with respect to organic removal over 1800 days of continuous operation. The UASB+DHS system consistently produced effluent with chemical oxygen demand (COD), biochemical oxygen demand (BOD), and suspended solids (SS) values of 37, 6.0 and 19 mg L(-1), on average, respectively. The sludge yield of the DHS reactor was estimated to be 0.04 kg SS kg(-1) COD removed or 0.12 kg SS kg(-1) BOD removed, which is considerably lower than other aerobic treatment methods that have been employed for polishing UASB effluent. PMID:26188558

  1. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  2. An Investigation on Cocombustion Behaviors of Hydrothermally Treated Municipal Solid Waste with Coal Using a Drop-Tube Reactor

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2012-01-01

    Full Text Available This work aims at demonstrating the feasibility of replacing Indonesian coal (INC with hydrothermally treated municipal solid waste (MSWH in cocombustion with high ash Indian coal (IC. The combustion efficiencies and emissions (CO, NO of MSWH, INC and their blends with IC for a series of tests performed under a range of temperatures and air conditions were tested in a drop-tube reactor (DTR. The results showed the following. The combustion efficiency of IC was increased by blending both MSWH and INC and CO emission was reduced with increasing temperature. For NO emission, the blending of MSWH led to the increase of NO concentration whereas the effects of INC depended on the temperature. The combustion behaviors of IC-MSWH blend were comparable to those of the IC-INC blend indicating it is possible for MSWH to become a good substitute for INC supporting IC combustion. Moreover, the CO emission fell while the NO emission rose with increasing excess air for IC-MSWH blend at 900°C and the highest combustion efficiency was obtained at the excess air of 1.9. The existence of moisture in the cocombustion system of IC-MSWH blend could slightly improve the combustion efficiency, reduce CO, and increase NO.

  3. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    Science.gov (United States)

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge. PMID:26854088

  4. Effect of carrier fill ratio on biofilm properties and performance of a hybrid fixed-film bioreactor treating coal gasification wastewater for the removal of COD, phenols and ammonia-nitrogen.

    Science.gov (United States)

    Rava, E; Chirwa, E

    2016-01-01

    The purpose of this study was to determine the effect different biofilm carrier filling ratios would have on biofilm morphology and activity and bacterial diversity in a hybrid fixed-film bioreactor treating high strength coal gasification wastewater (CGWW) for the removal of chemical oxygen demand (COD), phenols and ammonia-nitrogen. Results showed that a carrier fill of 70% formed a 'compact' biofilm, a 50% fill formed a 'rippling' biofilm and a 30% fill formed a 'porous' biofilm. The highest microbial activity was obtained with a 50% carrier fill supporting a relatively thin biofilm. The highest level of biofilm bound metals were aluminium, silicon, calcium and iron in the 'compact' biofilm; nitrogen, magnesium, chloride, sodium and potassium in the 'rippling' biofilm, and copper in the 'porous' biofilm. The bioreactor improved the quality of the CGWW by removing 49% and 78% of the COD and phenols, respectively. However, no significant amount of ammonia-nitrogen was removed since nitrification did not take place due to heterotrophic bacteria out-competing autotrophic nitrifying bacteria in the biofilm. The dominant heterotrophic genera identified for all three carrier filling ratios were Thauera, Pseudaminobacter, Pseudomonas and Diaphorobacter. PMID:27191568

  5. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  6. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    International Nuclear Information System (INIS)

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH4/g VSadded in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste

  7. Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater.

    Science.gov (United States)

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Herrero, María; Tejero, Iñaki

    2016-06-01

    A novel anaerobic-anoxic sludge blanket reactor, AnoxAn, unifies the non-aerated zones of the biological nutrient removal treatment train in a single upflow reactor, aimed at achieving high compactness and efficiency. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. This contribution presents the performance evaluation of the novel reactor in the removal of organic matter and nutrients from municipal wastewater, coupled with an aerobic hybrid MBR. The overall system achieved total nitrogen and phosphorus removal with average efficiencies of 75% and 89%, respectively. Separate anoxic and anaerobic conditions were maintained in AnoxAn, allowing anaerobic phosphate release and nearly complete anoxic denitrification in the single reactor operating with an HRT of 4.2h. Biomass was retained in the reactor achieving TSS concentration up to 10gL(-1) and partial hydrolysis of influent particulate organic matter. PMID:26970922

  8. Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Ahring, Birgitte Kiær

    2006-01-01

    had been exposed to oleate both reactors showed a lower VFA concentration along with a higher methane production than before the pulses. This indicates that oleate had a stimulating effect on the overall process. The improved acetogenic and methanogenic activity in the reactors was confirmed in batch......The effect of oleate on the anaerobic digestion process was investigated. Two thermophilic continuously stirred tank reactors (CSTR) were fed with mixtures of cattle and pig manure with different total solid (TS) and volatile solid (VS) content. The reactors were subjected to increasing pulses of...... oleate. Following pulses of 0.5 and 1.0 g oleate/L, the most distinct increase in volatile fatty acid (VFA) concentrations were observed in the reactor with the lowest TS/VS content. This suggests a higher adsorption of oleate on the surfaces of biofibers in the reactor with the highest TS/VS and a less...

  9. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Andrade Lima

    2005-09-01

    Full Text Available This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.Este trabalho apresenta um estudo morfológico de microrganismos aderidos à espuma de poliuretano em reator anaeróbio horizontal de leito fixo (RAHLF, aplicado ao tratamento de esgoto sanitário. O processo de colonização do suporte pela biomassa anaeróbia e as características morfológicas das células aderidas foram monitorados durante o período de partida do reator. Bacilos e cocos não fluorescentes foram predominantes no processo de aderência direta à espuma de poliuretano. Aumento na diversidade biológica foi observado a partir da 10ª semana de operação do reator, com predominância de bacilos, cocos e arqueas metanogênicas semelhantes a Methanosaeta. Problemas hidrodinâmicos, tais como formação de

  10. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  11. Kinetic modeling and microbial assessment by fluorescent in situ hybridization in anaerobic sequencing batch biofilm reactors treating sulfate-rich wastewater

    Directory of Open Access Journals (Sweden)

    A. J. Silva

    2011-06-01

    Full Text Available This paper reports the results of applying anaerobic sequencing batch biofilm reactors (AnSBBR for treating sulfate-rich wastewater. The reactor was filled with polyurethane foam matrices or with eucalyptus charcoal, used as the support for biomass attachment. Synthetic wastewater was prepared with two ratios between chemical oxygen demand (COD and sulfate concentration (COD/SO4(2- of 0.4 and 3.2. For a COD/SO4(2- ratio of 3.2, the AnSBBR performance was influenced by the support material used; the average levels of organic matter removal were 67% and 81% in the reactors filled with polyurethane foam and charcoal, respectively, and both support materials were associated with similar levels of sulfate reduction (above 90%. In both reactors, sulfate-reducing bacteria (SRB represented more than 65% of the bacterial community. The kinetic model indicated equilibrium between complete- and incomplete-oxidizing SRB in the reactor filled with polyurethane foam and predominantly incomplete-oxidizing SRB in the reactor filled with charcoal. Methanogenic activity seems to have been the determining factor to explain the better performance of the reactor filled with charcoal to remove organic matter at a COD/SO4(2- ratio of 3.2. For a COD/SO4(2- ratio of 0.4, low values of sulfate reduction (around 32% and low reaction rates were observed as a result of the small SRB population (about 20% of the bacterial community. Although the support material did not affect overall performance for this condition, different degradation pathways were observed; incomplete oxidation of organic matter by SRB was the main kinetic pathway and methanogenesis was negligible in both reactors.

  12. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mizzouri, Nashwan Sh., E-mail: nashwan_mizzouri@yahoo.com [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Department of Civil Engineering, University of Duhok, Kurdistan (Iraq); Shaaban, Md Ghazaly [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-04-15

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.

  13. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    International Nuclear Information System (INIS)

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value

  14. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Partial nitrification to nitrite has been frequently obtained at high temperatures, but has proved difficult to achieve at low temperatures when treating low strength domestic wastewater. In this study, the long-term effects of temperature on partial nitrification were investigated by operating a sequencing bath reactor with the use of aeration duration control. The specific ammonia oxidation rate decreased by 1.5 times with the temperature decreasing from 25 to 15 deg. C. However, low temperature did not deteriorate the stable partial nitrification performance. Nitrite accumulation ratio was always above 90%, even slightly higher (above 95%) at low temperatures. The nitrifying sludge accumulated with ammonia-oxidizing bacteria (AOB), but washout of nitrite-oxidizing bacteria (NOB) was used to determine the short-term effects of temperature on ammonia oxidation process. The ammonia oxidation rate depended more sensitively on lower temperatures; correspondingly the temperature coefficient θ was 1.172 from 5 to 20 deg. C, while θ was 1.062 from 20 to 35 deg. C. Moreover, the larger activation energy (111.5 kJ mol-1) was found at lower temperatures of 5-20 deg. C, whereas the smaller value (42.0 kJ mol-1) was observed at higher temperatures of 20-35 deg. C. These findings might be contributed to extend the applicability of the partial nitrification process in wastewater treatment plants operated under cold weather conditions. It is suggested that the selective enrichment of AOB as well as the washout of NOB be obtained by process control before making the biomass slowly adapt to low temperatures for achieving partial nitrification to nitrite at low temperatures.

  15. Effect of tryptone and ammonia on the biogas process in continuously stirred tank reactors treating cattle manure

    DEFF Research Database (Denmark)

    Nielsen, Hanne Bjerg; Ahring, Birgitte Kiær

    2007-01-01

    Two themophilic continuously stirred tank reactors, R1 and Two thermophilic continuously stirred tank reactors, R1 and R2, were subject to pulses of tryptone and ammonia. R1 was operated at an ammonia-N concentration of 3.0 g l(-1) and R2 was operated at an ammonia-N concentration of 1.7 g l(-1)....

  16. Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Ahring, Birgitte Kiær

    2006-01-01

    The effect of oleate on the anaerobic digestion process was investigated. Two thermophilic continuously stirred tank reactors (CSTR) were fed with mixtures of cattle and pig manure with different total solid (TS) and volatile solid (VS) content. The reactors were subjected to increasing pulses of...

  17. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program

    Directory of Open Access Journals (Sweden)

    Rodrigues J. A. D.

    2004-01-01

    Full Text Available This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30ºC and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance.

  18. Radionuclide carriers

    International Nuclear Information System (INIS)

    A new carrier for radionuclide technetium 99m has been prepared for scintiscanning purposes. The new preparate consists of physiologically acceptable water-insoluble Tcsup(99m)-carrier containing from 0.2 to 0.8 weight percent of stannic ion as reductor, bound to an anionic starch derivative with about 1-20% of phosphate substituents. (EG)

  19. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    the majority of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status...... information is pieced together, then a picture is created of a Chinese aircraft carrier program, where Varyag will be made operational for training purposes. With this as the model, China will build a similar sized carrier themselves. If this project does become a reality, then it will take many years for...... Kuznetsov carrier. The SU-33 is, in its modernized version, technologically at the same level as western combat aircraft in both the offensive as well as the defensive roles. But Russia and China currently have an arms trade 6 dispute that is likely to prevent a deal, unless the dispute is resolved. As an...

  20. Process and device for treating a liquid effluent coming from an industrial facility such as nuclear power reactor

    International Nuclear Information System (INIS)

    The liquid effluent from a nuclear power reactor is heated in a heat exchanger to boil off some of its water content and the remaining liquid is fed into the top of a reactor together with gaseous or liquid fuel which is burned therein, producing a mixture of hot gas and dry oxidized solid particles which are separated in a cyclone. The hot gas is fed from the top of cyclone through the heat exchanger and discharged via a filter. The upper part of the heat exchanger is connected to the top of the reactor to recycle any non condensable gases and combust any organic fraction in the liquid effluent

  1. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage.

    Science.gov (United States)

    Gong, Lingxiao; Jun, Li; Yang, Qing; Wang, Shuying; Ma, Bin; Peng, Yongzhen

    2012-09-01

    In this work, a novel integrated reactor incorporating anoxic fixed bed biofilm reactor (FBBR), oxic moving bed biofilm reactor (MBBR) and settler sequentially was proposed for nitrogen removal from rural domestic sewage. For purposes of achieving high efficiency, low costs and easy maintenance, biomass characteristics and simultaneous nitrification-denitrification (SND) were investigated under long sludge retention time during a 149-day period. The results showed that enhanced SND with proportions of 37.7-42.2% tapped the reactor potentials of efficiency and economy both, despite of C/N ratio of 2.5-4.0 in influent. TN was removed averagely by 69.3% at least, even under internal recycling ratio of 200% and less proportions of biomass assimilation (anoxic stir. Furthermore, biomass with low observed heterotrophic yields (0.053 ± 0.035 g VSS/g COD) and VSS/TSS ratio (MBBR, simplified wasted sludge disposal. PMID:22750493

  2. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    OpenAIRE

    L. H. P. Garbossa; K. R. Lapa; ZAIAT M.; E. Foresti

    2005-01-01

    The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB) reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to ...

  3. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as a great power in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with...... offensive capabilities, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy...... to a more assertive strategy, with potentially far-reaching consequences for the countries of the region. The Chinese have bought several retired carriers, which they have studied in great detail. The largest is the Russian-built carrier Varyag of the Kuznetsov class, which today is anchored in the...

  4. Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, N. [Renewable Energy Technology Center (CETER), ' ' Jose Antonio Echeverria' ' Polytechnical University, Calle 127 s/n, CP 19390, Apdo. 6028, Habana 6 Marianao, Ciudad de La Habana (Cuba); Montalvo, S. [Department of Chemical Engineering, Santiago de Chile University, Ave. Lib. Bernardo O' Higgins 3363, Santiago de Chile (Chile); Borja, R.; Travieso, L.; Raposo, F. [Instituto de la Grasa (CSIC), Avenida Padre Garcia Tejero 4, 41012 Sevilla (Spain); Guerrero, L. [Department of Chemical, Biotechnological and Environmental Processes, Federico Santa Maria Technical University, Casilla 110-V, Valparaiso (Chile); Sanchez, E.; Colmenarejo, M.F. [Centro de Ciencias Medioambientales (CSIC), C/Serrano, 115-Duplicado, 28006 Madrid (Spain); Cortes, I. [Environment Nacional Center, Chile University, Ave. Larrain 9975, La Reina, Santiago de Chile (Chile)

    2008-11-15

    The performance of two laboratory-scale fluidized bed reactors with natural zeolite as support material when treating high-strength distillery wastewater was assessed. Two sets of experiments were carried out. In the first experimental set, the influences of the organic loading rate (OLR), the fluidization level (FL) and the particle diameter of the natural zeolite (D{sub P}) were evaluated. This experimental set was carried out at an OLR from 2 to 5 g COD (chemical oxygen demand)/l d, at FL 20% and 40% and with D{sub P} in the range of 0.2-0.5 mm (reactor 1) and of 0.5-0.8 mm (reactor 2). It was demonstrated that OLR and FL had a slight influence on COD removal, whereas they had a strong influence on the methane production rate. The COD removal was slightly higher for the highest particle diameter used. The second experimental set was carried out at an OLR from 3 to 20 g COD/l d with 25% of fluidization and D{sub P} in the above-mentioned ranges for reactors 1 and 2. The performance of the two reactors was similar; no significant differences were found. The COD removal efficiency correlated with the OLR based on a straight line. COD removal efficiencies higher than 80% were achieved in both reactors without significant differences. In addition, a straight line equation with a slope of 1.74 d{sup -1} and an intercept on the y-axis equal to zero described satisfactorily the effect of the influent COD on the COD removal rate. It was also observed that both COD removal rate and methane production (Q{sub M}) increased linearly with the OLR, independently of the D{sub P} used. (author)

  5. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez

    2005-09-01

    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  6. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  7. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    Directory of Open Access Journals (Sweden)

    L. H. P. Garbossa

    2005-12-01

    Full Text Available The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to its characteristics and the fixed polyurethane foam bed arrangement in concentric chambers. Partial denitrification of the liquid also took place in the RAAIB. The reactor achieved an organic matter removal efficiency of 84%, expressed as chemical oxygen demand (COD, and a total Kjeldahl nitrogen (TKN removal efficiency of 96%. Average COD, nitrite and nitrate values for the final effluent were 54 mg.L-1, 0.3 mg.L-1 and 22.1 mg.L-1, respectively.

  8. Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions

    International Nuclear Information System (INIS)

    Inocula play an important role in anaerobic reactor startup by balancing the populations of Syntrophobacter and methanogens. Such balances make syntrophic metabolism thermodynamically feasible in anaerobic digestion. In this study, the effect of inocula on the performance of dairy manure digestion was investigated by analyzing the change in volatile fatty acids (VFA), total solids (TS), volatile solids (VS), specific biogas production (SGPR), and specific methane production (SPMP) as well as scanning and transmission electron micrographs. The study was performed at four treatments. Treatment one was granular sludge (GM); treatment two was non-granular sludge (SM); treatment three was mixed culture from an anaerobic lagoon (LM); while the fourth treatment (the control denoted MM) did not receive any exogenous inocula. In addition, stirred and unstirred conditions were maintained in the reactors to determine their effect on reactor startup. Performance ranking based on the SGPR and SPMP of treatments (in descending order) was: GM, SM, LM and MM under stirred conditions. Under unstirred conditions, performance ranking (also in descending order) was: SM, GM, LM, and MM. Results of the examination of microcolonies in the granular, non-granular sludge, and dairy manure suggest that syntrophic juxtaposition of methanogens and Syntrophobacter in granular inoculum was common while it was less visible in non-granular sludge, and completely absent in dairy manure. -- Highlights: → We investigated impacts of inocula on anaerobic reactor startup period. → Reactor performance was evaluated under stirred and unstirred conditions at 35 oC. → In stirred conditions, granular sludge performance was better than other inocula. → In unstirred conditions, municipal sludge performance was better than other inocula. → Anaerobic lagoon's slurry did not improve reactor performance significantly.

  9. Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage.

    Science.gov (United States)

    Langer, Susanne G; Ahmed, Sharif; Einfalt, Daniel; Bengelsdorf, Frank R; Kazda, Marian

    2015-09-01

    Numerous observations indicate a high flexibility of microbial communities in different biogas reactors during anaerobic digestion. Here, we describe the functional redundancy and structural changes of involved microbial communities in four lab-scale continuously stirred tank reactors (CSTRs, 39°C, 12 L volume) supplied with different mixtures of maize silage (MS) and sugar beet silage (SBS) over 80 days. Continuously stirred tank reactors were fed with mixtures of MS and SBS in volatile solid ratios of 1:0 (Continuous Fermenter (CF) 1), 6:1 (CF2), 3:1 (CF3), 1:3 (CF4) with equal organic loading rates (OLR 1.25 kgVS m(-3)  d(-1) ) and showed similar biogas production rates in all reactors. The compositions of bacterial and archaeal communities were analysed by 454 amplicon sequencing approach based on 16S rRNA genes. Both bacterial and archaeal communities shifted with increasing amounts of SBS. Especially pronounced were changes in the archaeal composition towards Methanosarcina with increasing proportion of SBS, while Methanosaeta declined simultaneously. Compositional shifts within the microbial communities did not influence the respective biogas production rates indicating that these communities adapted to environmental conditions induced by different feedstock mixtures. The diverse microbial communities optimized their metabolism in a way that ensured efficient biogas production. PMID:26200922

  10. Effect of tryptone and ammonia on the biogas process in continuously stirred tank reactors treating cattle manure

    DEFF Research Database (Denmark)

    Nielsen, Hanne Bjerg; Ahring, Birgitte Kiær

    2007-01-01

    ). Shock loads of tryptone (10 g l(-1),10 g l(-1), 15 g l(-1)) had an immediate stimulating effect on methanogenesis for both reactors illustrated by significant peaks in methane production but also led to an organic overloading illustrated by a steep increase in volatile fatty acids (VFA) concentration...

  11. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests.

    Science.gov (United States)

    Hinken, L; Huber, M; Weichgrebe, D; Rosenwinkel, K-H

    2014-11-01

    A laboratory plant consisting of two UASB reactors was used for the treatment of industrial wastewater from the wheat starch industry. Several load tests were carried out with starch wastewater and the synthetic substrates glucose, acetate, cellulose, butyrate and propionate to observe the impact of changing loads on gas yield and effluent quality. The measurement data sets were used for calibration and validation of the Anaerobic Digestion Model No. 1 (ADM1). For a precise simulation of the detected glucose degradation during load tests with starch wastewater and glucose, it was necessary to incorporate the complete lactic acid fermentation into the ADM1, which contains the formation and degradation of lactate and a non-competitive inhibition function. The modelling results of both reactors based on the modified ADM1 confirm an accurate calculation of the produced gas and the effluent concentrations. Especially, the modelled lactate effluent concentrations for the load cases are similar to the measurements and justified by literature. PMID:25043796

  12. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    OpenAIRE

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. ...

  13. REMOVAL OF ORGANIC MATTER AND TOXICITY IN AN UPFLOW IMMOBILIZED BIOMASS ANAEROBIC REACTOR TREATING HOSPITAL WASTEWATER: PRELIMINARY EVALUATION

    Directory of Open Access Journals (Sweden)

    MÓNICA PORRAS TORRES

    2013-01-01

    Full Text Available El objetivo de esta investigación consistió en evaluar el desempeño de un reactor anaerobio de flujo ascendente de biomasa inmovilizada (RAFABI tratando un efluente hospitalario real. Se estudió la remoción de materia orgánica y toxicidad, por medio de análisis como UV254, DQOfiltrada y determinación del porcentaje de inhibición en el crecimiento de la raíz de la cebolla. Los resultados mostraron que el proceso biológico estuvo estable durante los 287 días de operación continua, el valor medio de la relación AI/AP fue de 1.21±0.08, indicando que no hubo acumulación de ácidos en el sistema. Sin embargo, los valores de la eficiencia de remoción de DQOfiltrada, 56±15% y UV254, 21±36%, no fueron representativos. La toxicidad se redujo en 50%. Con base en lo anterior, es necesario utilizar el reactor anaerobio en combinación con otros procesos como por ejemplo los procesos de oxidación avanzada, para continuar reduciendo la materia orgánica recalcitrante al proceso anaerobio. Se comprobó la capacidad que tienen los reactores anaerobios de biomasa inmovilizada para remover la toxicidad.

  14. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    Science.gov (United States)

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  15. To the question of mass transfer of steams of a lead heat-carrier in the BREST-OD-300 reactor

    International Nuclear Information System (INIS)

    Lead vapor mass transfer from the coolant surface into gas cavities of the BREST-OD-300 reactor coolant circuits is investigated. The formula for evaluating the mass flow during lead evaporation from a free surface is derived. The benchmark design used for experimental investigation of lead evaporation processes from a free surface at coolant temperature and argon pressure above it typical for the BREST-OD-300 reactor is described. Basing on the analysis of obtained experimental and calculational data it is shown that amount of lead evaporating from the BREST-OD-300 reactor primary coolant circuit free surfaces is not great, and is not higher than 100 g or 10 cm3 per year. The processes of lead vapor mass exchange in the circuit should be taken into account as referred to the conditions of protective coating formations on structural materials surfaces. The conclusion is made that lead evaporation products can be transferred in any point of the gas system. Their depositions are not desirable

  16. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism are...... worked out with respect to net transport rate, initial rate, unidirectional fluxes including back-flow through the pump, maximum accumulation ratio, competitive inhibition and acceleration, counter transport, and metabolic poisoning. The energetics of the system are treated. The fact that the system...

  17. Preconception Carrier Screening

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preconception Carrier Screening Home For Patients Search FAQs Preconception Carrier Screening ... Screening FAQ179, August 2012 PDF Format Preconception Carrier Screening Pregnancy What is preconception carrier screening? What is ...

  18. Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater.

    Science.gov (United States)

    Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei

    2014-01-01

    The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption. PMID:24677060

  19. Development of biofilm in anaerobic reactors treating wastewater from coffee grain processing Desenvolvimento de biofilme em reatores anaeróbios tratando água residuária do processamento dos frutos do cafeeiro

    OpenAIRE

    Fátima R. L. Fia; Alisson C. Borges; Antonio T. de Matos; Iolanda C. S. Duarte; Ronaldo Fia; Lidiane C. de Campos

    2010-01-01

    In recent decades the use of anaerobic fixed bed reactors has been established in Brazil for the treatment of different effluents. As the capability of retaining microorganisms by support media (fixed bed) is a factor influencing the performance of these reactors, the present study aims at evaluating the influence of three fixed bed on the effectiveness of treating an effluent with high pollution potential: wastewater from coffee grain processing (WCP), with organic matter concentrations vary...

  20. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Estrada, Adriana Ledezma; Chen, Mo; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2015-03-01

    Long-term performance of a lab-scale UASB reactor treating starch wastewater was investigated under different hydraulic retention times (HRT). Successful start-up could be achieved after 15days' operation. The optimal HRT was 6h with organic loading rate (OLR) 4g COD/Ld at COD concentration 1000mg/L, attaining 81.1-98.7% total COD removal with methane production rate of 0.33L CH4/g CODremoved. Specific methane activity tests demonstrated that methane formation via H2-CO2 and acetate were the principal degradation pathways. Vertical characterizations revealed that main reactions including starch hydrolysis, acidification and methanogenesis occurred at the lower part of reactor ("main reaction zone"); comparatively, at the up converting acetate into methane predominated ("substrate-shortage zone"). Further reducing HRT to 3h caused volatile fatty acids accumulation, sludge floating and performance deterioration. Sludge floating was ascribed to the excess polysaccharides in extracellular polymeric substances (EPS). More efforts are required to overcome sludge floating-related issues. PMID:25617619

  1. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater

    International Nuclear Information System (INIS)

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (RV), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (±3)% and an average volumetric TCOD removal rate of 6.87 (±3.93) kg TCODremoved/m3-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  2. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  3. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    Science.gov (United States)

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. PMID:20609515

  4. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENPFe-surf) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENPFe-surf applied were present in the effluent stream. The stable presence of ENPFe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENPFe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENPFe-surf) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENPFe-surf. → ∼8.7% of ENPFe-surf applied was present in the effluent. → ENPFe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  5. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate.

    Science.gov (United States)

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Xue, Tonglai; Peng, Yongzhen

    2015-09-01

    A modified sequencing batch reactor (SBR) operated at the anaerobic-aerobic-anoxic mode was developed in this study to fully utilize the organics in landfill leachate (ammonia concentration of 1000 ± 50 mg N/L and COD/total nitrogen (TN) ratio of 1-4). The unique feature of modified SBR process was the addition of an anaerobic stage after feeding stage, so that microorganisms could store the organics during anaerobic stage and supply the carbon source for endogenous denitritation after aeration stage. The 70-day operational tests showed the effluent TN was below 10 mg N/L at C/N ratio of 4. The intracellular stored polymers were analyzed and the microorganisms were capable of storing the carbon source as polyhydroxybutyrate (PHB) and glycogen in anaerobic stage, which were the electron donors for endogenous denitritation. Fluorescence in situ hybridization (FISH) analysis showed that glycogen accumulating organisms (GAOs) account for 39.8% of microorganisms in SBR, and carried out advanced nitrogen removal. PMID:26056776

  6. Study on the conversion of H2 and CO from the helium carrier gas of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The conversions of hydrogen and carbon monoxide into water vapor and carbon dioxide on CuO-ZnO-Al2O3 catalyst are studied. The effects of different temperature, system atmospheric pressure, impurity gas concentration, flow and dew point on properties of cupric oxide bed are investigated. The conversion characteristics curves of H2 and CO are given. Experimental data of conversion capacity, action period and conversion efficiency of CuO-ZnO-Al2O3 are obtained and the optimal parameters are determined. The results show that the concentration of H2 and CO of the effluent gas after purification can reach below 2 x 10-6, respectively. So it can meet the demands of high temperature gas-cooled reactor and also provide optimal design parameters and reliable data for conversion of H2 and CO on CuO-ZnO-Al2O3 catalyst

  7. Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors.

    Science.gov (United States)

    Zhao, Jianguo; Chen, Xiurong; Bao, Linlin; Bao, Zheng; He, Yixuan; Zhang, Yuying; Li, Jiahui

    2016-06-01

    The relationship between microbial diversity and sludge toxicity in the biotreatment of refractory wastewater was investigated. Synthetic wastewater containing 4-chlorophenol (4-CP) was treated by an activated sludge using a sequencing batch bioreactor (SBR). At the end of a single SBR cycle, a stable operation stage was reached when the 4-CP was not detected both in aqueous and sludge phases and the effluent COD was maintained at approximately 70 mg L(-1) for the blank and control sludge groups. Then, the diversity of the microorganisms and the sludge toxicity were measured. The results showed that the Microtox acute toxicity of the control sludge was higher than those of the blank sludge. The difference analysis of the microbial diversity between the blank and control sludge indicated that the sludge toxicity was closely related to microbial diversity. PMID:27016808

  8. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Fast pyrolysis of ACQ (alkaline copper quaternary)-treated wood was carried out in a bench-scale pyrolysis plant equipped with a fluidized bed reactor and char separation system. This study focused on the production of a bio-oil with low copper and chlorine contents, especially by adopting the fractional condensation of bio-oil using water condensers, an impact separator and an electrostatic precipitator. In addition, various analytical tools were applied to investigate the physicochemical properties of the pyrolysis products and the behavior of the preservative during pyrolysis. The bio-oil yield was maximized at 63.7 wt% at a pyrolysis temperature of 411 °C. Highly water-soluble holocellulose-derived components such as acetic acid and hydroxyacetone were mainly collected by the condensers, while lignin-derived components and levoglucosan were mainly observed in the oils collected by the impact separator and electrostatic precipitator. All the bio-oils produced in the experiments were almost free of copper and chlorine. Most copper in ACQ was transferred into the char. - Highlights: • ACQ(alkaline copper quaternary)-treated wood was successfully pyrolyzed in a bench-scale fluidized bed. • Bio-oils separately collected were different in their characteristics. • Bio-oils were free of didecyldimethylammonium chloride. • Bio oils were almost free of copper and chlorine. • The concentration of levoglucosan in a bio-oil was 24–31 wt%

  9. Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials - A landfill reactor study

    International Nuclear Information System (INIS)

    Due to their broad industrial production and use as PVC-stabilisers, agro-chemicals and anti-fouling agents, organo-metal compounds are widely distributed throughout the terrestrial and marine biogeosphere. Here, we focused on the emission dynamics of various organo-metal compounds (e.g., di,- tri-, tetra-methyl tin, di-methyl mercury, tetra-methyl lead) from two different kinds of pre-treated mass waste, namely mechanically-biologically pre-treated municipal solid waste (MBP MSW) and municipal waste incineration ash (MWIA). In landfill simulation reactors, the emission of the organo-metal compounds via the leachate and gas pathway was observed over a period of 5 months simulating different environmental conditions (anaerobic with underlying soil layer/aerated/anaerobic). Both waste materials differ significantly in their initial amounts of organo-metal compounds and their environmental behaviour with regard to the accumulation and depletion rates within the solid material during incubation. For tri-methyl tin, the highest release rates in leachates were found in the incineration ash treatments, where anaerobic conditions in combination with underlying soil material significantly promoted its formation. Concerning the gas pathway, anaerobic conditions considerably favour the emission of organo-metal compounds (tetra-methyl tin, di-methyl mercury, tetra-methyl lead) in both the MBP material and especially in the incineration ash

  10. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  11. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  12. Treating Tannin Substances Treatment with ABR Reactor%ABR反应器对单宁类物质的处理效果研究

    Institute of Scientific and Technical Information of China (English)

    丁绍兰; 蔡丽; 董凌霄; 贾文颖

    2013-01-01

    采用单宁废水驯化厌氧折流板反应器(ABR),然后用驯化后的ABR预处理栲胶废水,研究ABR反应器对BA浅色栲胶和荆树皮栲胶的处理效果.结果表明:驯化过程中,VFA、pH以及碱度都保持在一个比较稳定的水平.驯化结束后,污泥产甲烷活性更高.驯化后的ABR反应器对栲胶废水有较高的去除作用,COD为2000mg/L的BA浅色栲胶废水和荆树皮栲胶废水的去除率分别达80%以上和70%以上,表明荆树皮栲胶废水比BA浅色栲胶废水更难降解.%Tanning extracts were domesticated by tannin with anaerobic baffled reactor (ABR) and the tannin waste water was pre-treated.It shows that the values of VFA,pH and alkalinity are kept at a relatively stable level during the process of domestication.When domestication ended,ABR reactor has higher sludge activity of producing methane.It has higher removal rate for tanning extracts when ABR was domesticated by tannin.When COD of wastewater,which was simulated with BA light color vegetable wastewater and the thorns bark tannin extracts,is 2000 mg/L,removal rate of COD is more than 80% and 70%,respectively.It shows that the thorns bark tannin extracts wastewater is more difficult for degradation than BA light color tanning extracts.

  13. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Uluköy, Ayşen

    2008-01-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP) was evaluated at different hydraulic retention times (HRTs) using synthetic wastewater in order to obtain the growth substrate (glucose-COD) and 2,4 DCP removal kinetics. Treatment efficiencies of the UASB reactor were investigated at different hydraulic retention times (2-20 h) corresponding to a food to mass (F/M) ratio of 1.2-1.92 g-COD g(-1) VSS day(-1). A total of 65-83% COD removal efficiencies were obtained at HRTs of 2-20 h. In all, 83% and 99% 2,4 DCP removals were achieved at the same HRTs in the UASB reactor. Conventional Monod, Grau Second-order and Modified Stover-Kincannon models were applied to determine the substrate removal kinetics of the UASB reactor. The experimental data obtained from the kinetic models showed that the Monod kinetic model is more appropriate for correlating the substrate removals compared to the other models for the UASB reactor. The maximum specific substrate utilization rate (k) (mg-COD mg(-1) SS day(-1)), half-velocity concentration (K(s)) (mg COD l(-1)), growth yield coefficient (Y) (mg mg(-1)) and bacterial decay coefficient (b) (day(-1)) were 0.954 mg-COD mg(-1) SS day(-1), 560.29 mg-COD l(-1), 0.78 mg-SS g(-1)-COD, 0.093 day(-1) in the Conventional Monod kinetic model. The second-order kinetic coefficient (k(2)) was calculated as 0.26 day(-1) in the Grau reaction kinetic model. The maximum COD removal rate constant (U(max)) and saturation value (K(B)) were calculated as 7.502 mg CODl(-1)day(-1) and 34.56 mg l(-1)day(-1) in the Modified Stover-Kincannon Model. The (k)(mg-2,4 DCP mg(-1) SS day(-1)), (K(s)) (mg 2,4 DCPl(-1)), (Y) (mg SS mg(-1) 2,4 DCP) and (k(d)) (day(-1)) were 0.0041 mg-2,4 DCP mg(-1) SS day(-1), 2.06 mg-COD l(-1), 0.0017 mg-SS mg(-1) 2,4 DCP and 3.1 x 10(-5) day(-1) in the Conventional Monod kinetic model for 2,4 DCP degradation. The second-order kinetic coefficient (k(2)) was calculated as 0.30 day

  14. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Chen, Guocai; Gu, Jingjing;

    2014-01-01

    Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose...... as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8......-72 h in the UAF reactor and 2-18 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l super(-1) to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h...

  15. What Is Carrier Screening?

    Science.gov (United States)

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  16. Intraoral radiation carrier for edentulous patients

    International Nuclear Information System (INIS)

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location

  17. Intraoral radiation carrier for edentulous patients

    Energy Technology Data Exchange (ETDEWEB)

    Sela, M.; Taicher, S.

    1983-12-01

    The principles of fabricating an intraoral radioactive carrier have been described to treat malignant diseases of the oral cavity. The prosthesis provides consistent direction and fixation of the radioactive source into the same location.

  18. TREATING CHINESE CATERPILLAR FUNGUS PHARMACEUTICAL WASTEWATER BY COMBINED PROCESS OF IC AND AEROBIC OXIC REACTOR%IC+A/O处理冬虫夏草制药废水

    Institute of Scientific and Technical Information of China (English)

    熊卿; 凌晓

    2012-01-01

    The components of Chinese caterpillar fungus pharmaceutical wastewater are stable. The quality of the wastewater changes largely and has good biodegradability. The pharmaceutical wastewater is treated by the combined process of IC and A/O reactor. The operation results show that the removal rate of the COD, BOD5 , NH3-N and SS reaches 99% ,98.9% ,74% and 96% respectively. The effluent quality meets the first-order of "Integrated Wastewater Discharge Standard" (GB 8978-- 1996 ).%冬虫夏草制药废水成分稳定,水质变化大,可生化性较好。采用高效内循环厌氧反应器IC+A/O工艺处理冬虫夏草制药废水。运行结果表明:COD、BOD5、NH3-N、及SS平均去除率分别达99%、98.9%、74%和96%,出水水质达GB8978--1996(污水综合排放标准》一级标准。

  19. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR

    Directory of Open Access Journals (Sweden)

    Y Dadban Shahamat

    2016-01-01

    Full Text Available Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP and sequencing batch reactor (SBR were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewater was investigated. To determine the acute toxicity of effluents and identification of intermediate compounds produced in COP, bioassay using Daphnia Magna and GC / MS were used, respectively. Then, phenol and COD removal of pretreated wastewater was investigated in SBR. Results: It was found that under optimal conditions in COP (time = 60 min, the concentrations of phenol and COD reduced from 500 and 1162 to 7.5 and 351 mg/L respectively and pretreated effluent toxicity (TU = 36, after rising in the initial stage of reaction, effectively reduced at the end of process (TU=2.3. the integration of this process with SBR could decreased the COD and phenol concentration less than the detectable range by HPLC.  Conclusion: Results showed that COP has a high effect on biodegradability, detoxification, and mineralization of phenol and combination of COP with SBR process can effectively treat wastewaters containing phenol.

  20. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease.

    Science.gov (United States)

    Yang, Zhao-Hui; Xu, Rui; Zheng, Yue; Chen, Ting; Zhao, Li-Jun; Li, Min

    2016-07-01

    Performance of co-digesters, treated of sewage sludge (SS) with fat, oil and grease (FOG), were conducted semi-continuously in two mesophilic reactors over 180days. Compared with SS mono-digestion, biogas production and TS removal efficiency of co-digestion were significantly enhanced up to 35% and 26% by adding upper limit FOG (60% on VS). Enhancement in co-digestion performance was also stimulated by the release of extracellular polymeric substances (EPS), which was increased 40% in both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) than that of mono-digester. Based on high-throughput sequencing (HTS), analysis of microbial 16S rRNA gene comprehensively revealed the dynamic change of microbial community. Results showed that both bacterial and archaeal undergone an apparent succession with FOG addition, and large amount of consortium like Methanosaeta and N09 were involved in the process. Redundancy analysis showed the acetoclastic genera Methanosaeta distinctly related with biogas production and EPS degradation. PMID:27099941

  1. Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: ► Proper MSW disposal and mitigation of coal consumption can be achieved through co-combustion. ► The hydrothermal treatment (HT) was utilized to convert raw MSW to solid fuel. ► A coal-fired combustor was studied aiming at less major modifying when used for co-combustion. ► Synergic reactions between coal and MSW were identified in terms of emissions. ► It is possible to increase the blending ratio of HT treated MSW up to 30 %. -- Abstract: Experiments on co-combustion of municipal solid waste (MSW) and coal were conducted in a bubbling fluidized bed (BFB). The MSW sample was pretreated through hydrothermal treatment (HT) for obtaining uniform characteristics. MSW blending ratios as 10%, 20%, 30% and 50% were selected and tested at 700, 800, 900 °C to verify to which extent coal can be substituted with HT MSW in terms of emissions and unburnt carbon (UC) in fly ash (FA). The results obtained in this study showed that the lowest CO and NO emissions were found at 20% and 30% HT MSW blending respectively. Moreover, the SO2 emissions decreased with the HT MSW addition and the HCl emissions were below 5 ppm. Furthermore, the UC contents decreased at the mixing ratio below 30% at low temperature. Positive synergistic relationships were identified and it is possible to accept 30% MSW combustion in a coal-fired BFB reactor.

  2. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed. PMID:22720416

  3. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  4. High temperature reactors

    International Nuclear Information System (INIS)

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements

  5. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+and Ni2+

    International Nuclear Information System (INIS)

    The removal efficiency of sequencing batch reactor (SBR) system with synthetic industrial estate wastewater (SIEWW) containing Ni2+ or Pb2+ was increased with the increase of mixed liquor suspended solids (MLSS). But, the sludge volume index (SVI) of the system was increased up to higher than 100 mL/g under MLSS of up to 4000 mg/L. Also, the effluent NO3- was decreased with the increase of MLSS. The heavy metals (Ni2+ or Pb2+), BOD5, COD and TKN removal efficiencies of SBR system with SIEWW containing 5 mg/L heavy metal (Ni2+ or Pb2+) under MLSS of 3000 mg/L were 83-85%, 96-97%, 95-96% and 83-94%, respectively. The increase of heavy metal (Ni2+ or Pb2+) concentrations of SIEWW from 5 to 50 mg/L were not significantly effected to both COD and BOD5 removal efficiencies (they were reduced by only 4-5%), but they were strongly effected to both TKN and heavy metals removal efficiencies (they were reduced by 15 and 20-30%, respectively). Both Ni2+ and Pb2+ could repress the growth of both nitrification and denitrification bacteria. And Ni2+ was more effective than Pb2+ to reduce the heavy metals removal efficiency. The SBR system could be applied to treat the industrial estate wastewater (IEWW) containing both Pb2+ and Ni2+ even the heavy metals concentrations was up to 5 mg/L, but the removal efficiency was quite low and excess bio-sludge did not produce. However, the system efficiency could be increased with the increase of BOD5 concentration of the wastewater. The Pb2+, Ni2+, COD, BOD5 and TKN removal efficiencies of the system with IEWW containing 500 mg/L BOD5, 5 mg/L Ni2+ and 5 mg/L Pb2+ under HRT of 3 days were 85.68 ± 0.31%, 87.03 ± 0.21%, 86.0 ± 0.5%, 94.04 ± 0.4% and 90.5 ± 0.9%, respectively. And the effluent SRT, SS and SVI of the system were 44.7 ± 0.6 days, 150 ± 6 mg/L and 100 mL/g, respectively.

  6. Evaluation of the microbial diversity in sequencing batch reactor treating linear alkylbenzene sulfonate under denitrifying and mesophilic conditions using swine sludge as inoculum

    OpenAIRE

    Iolanda Cristina Silveira Duarte; Lorena Lima de Oliveira; Dagoberto Yukio Okada; Pierre Ferreira do Prado; Maria Bernadete Amâncio Varesche

    2015-01-01

    The objective of this study was to evaluate the degradation of Linear Alkylbenzene Sulfonate (LAS) in anaerobic sequencing batch reactor (ASBR) under denitrifying conditions using swine sludge as inoculum. The reactor was operated for 104 days with synthetic substrate containing nitrate, and LAS was added later (22 mg/L). Considering the added mass of the LAS, the adsorbed mass in the sludge and discarded along with the effluent, degradation of the surfactant at the end of operation was 87%, ...

  7. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Ibrahim, Ashraf; Mladenovska, Zuzana

    2001-01-01

    The effect of a temperature increase from 55 to 65 degreesC on process performance and microbial population dynamics were investigated in thermophilic, lab-scale, continuously stirred tank reactors. The reactors had a working volume of 3 l and were fed with cattle manure at an organic loading rate...... of 3 g VS/l reactor volume/d. The hydraulic retention time in the reactors was 15 days. A stable reactor performance was obtained for periods of three retention times both at 55 degreesC and 65 degreesC. At 65 degreesC methane yield stabilized at approximately 165 ml/g VS/d compared to 200 ml/g VS....../d at 55 degreesC. Simultaneously, Ibe level of total volatile fatty acids, VFA, increased from being below 0.3g/l to 1.8-2.4g acetate/l. The specific methanogenic activities (SMA) of biomass from the reactors were measured with acetate, propionate, butyrate, hydrogen, formate and glucose. At 65 degrees...

  8. Determination of research reactor safety parameters by reactor calculations

    International Nuclear Information System (INIS)

    Main research reactor safety parameters such as power density peaking factors, shutdown margin and temperature reactivity coefficients are treated. Reactor physics explanation of the parameters is given together with their application in safety evaluation performed as part of research reactor operation. Reactor calculations are presented as a method for their determination assuming use of widely available computer codes. (author)

  9. Battling malaria in rural Zambia with modern technology: a qualitative study on the value of cell phones, geographical information systems, asymptomatic carriers and rapid diagnostic tests to identify, treat and control malaria

    Directory of Open Access Journals (Sweden)

    David Nygren

    2014-02-01

    Full Text Available During the last decade much progress has been made in reducing malaria transmission in Macha, Southern Province, Zambia. Introduction of artemisinin combination therapies as well as mass screenings of asymptomatic carriers is believed to have contributed the most. When an endemic malaria situation is moving towards a non-endemic situation the resident population loses acquired immunity and therefore active case detection and efficient surveillance is crucial to prevent epidemic outbreaks. Our purpose was to evaluate the impact of cell phone surveillance and geographical information systems on malaria control in Macha. Furthermore, it evaluates what screening and treatment of asymptomatic carriers and implementation of rapid diagnostic tests in rural health care has led to. Ten in-depth semistructured interviews, field observations and data collection were performed at the Macha Research Trust and at surrounding rural health centers. This qualitative method was inspired by rapid assessment procedure. The cell phone surveillance has been easily integrated in health care, and its integration with Geographical Information Systems has provided the ability to follow malaria transmission on a weekly basis. In addition, active case detection of asymptomatic carriers has been fruitful, which is reflected in it soon being applied nationwide. Furthermore, rapid diagnostic tests have provided rural health centers with reliable malaria diagnostics, thereby decreasing excessive malaria treatments and selection for drug resistance. This report reflects the importance of asymptomatic carriers in targeting malaria elimination, as well as development of effective surveillance systems when transmission decreases. Such an approach would be cost-efficient in the long run through positive effects in reduced child mortality and relief in health care.

  10. Evaluation of the microbial diversity in sequencing batch reactor treating linear alkylbenzene sulfonate under denitrifying and mesophilic conditions using swine sludge as inoculum

    Directory of Open Access Journals (Sweden)

    Iolanda Cristina Silveira Duarte

    2015-06-01

    Full Text Available The objective of this study was to evaluate the degradation of Linear Alkylbenzene Sulfonate (LAS in anaerobic sequencing batch reactor (ASBR under denitrifying conditions using swine sludge as inoculum. The reactor was operated for 104 days with synthetic substrate containing nitrate, and LAS was added later (22 mg/L. Considering the added mass of the LAS, the adsorbed mass in the sludge and discarded along with the effluent, degradation of the surfactant at the end of operation was 87%, removal of chemical oxygen demand was 86% and nitrate was 98%. The bacterial community was evaluated by cutting the bands and sequencing of polymerase chain reaction (PCR fragments and denaturing gradient gel electrophoresis (DGGE. The sequences obtained were related to the phylum Proteobacteria and the alpha-and beta-proteobacteria classes, these bacteria were probably involved in the degradation of LAS. The efficiently degraded LAS in the reactor was operated in batch sequences in denitrifying conditions.

  11. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  12. Effect of the temperature and of the organic load in two-stage up flow anaerobic sludge blanket reactors treating of swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bichuette, Alexandre Abud; Duda, Rose Maria; Oliveira, Roberto Alves de [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural], E-mail: oliveira@fcav.unesp.br

    2008-07-01

    In this work the acting of two-stage up flow anaerobic sludge blanket reactors (UASB) was evaluated, installed in series, in pilot scale (volumes of 908 L and 350 L, respectively) in the treatment swine wastewater, with concentrations of total solids suspended (TSS) around 10000 mg L{sup -1}. The organic loading rates (OLR) applied in first UASB were of 5,2 and of 8,6 g total COD (Ld){sup -1}. The medium efficiencies of removal of the chemical demand of total oxygen (total COD), TSS and TKN were higher than 89; 80 and 55%, respectively, for the system of anaerobic treatment composed by the reactors UASB in two apprenticeships. The rate of volumetric methane production in the system of anaerobic treatment with the reactors UASB were 0,08 and 0,16 m{sup 3}CH{sub 4} (m{sup 3} CH{sub 4} reactor d){sup -1}. The number of total coliforms was reduced to 2,6x10{sup 4} NMP/100 mL. (author)

  13. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  14. Investigating the role of co-substrate-substrate ratio and filter media on the performance of anammox hybrid reactor treating nitrogen rich wastewater.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2016-03-01

    This study explored the feasibility of using the anammox hybrid reactor (AHR), which combines suspended and attached growth media, for the biodegradation of ammonical nitrogen in wastewater. The study was performed in four laboratory-scale AHRs, inoculated with mixed seed culture (1:1). The anammox process was established by feeding the AHR with synthetic wastewater, containing NH(4)-N and NO(2)-N (1:1), at hydraulic retention time (HRT) of 1 day. The reactors were gradually acclimated to a higher ammonium concentration (1200 mg/l) until the pseudo-steady state was attained. Subsequently, the reactors were operated at various HRTs (0.25-3.0 days) to optimize the HRT and nitrogen loading rate (NLR). The study demonstrated that HRT of 1 day, corresponding to 95.1% of nitrogen removal was optimal. Pearson correlation analysis indicated the strong and positive correlation of HRT and sludge retention time (SRT), whereas the NLR and biomass yield correlated negatively with the nitrogen removal efficiency (NRE). The mass balance of nitrogen showed that a major fraction (79.1%) of the input nitrogen was converted into N2 gas, and 11.25% was utilized in synthesizing the biomass. The filter media in the AHR contributed to an additional 15.4% of ammonium removal and a reduction of 29% in the sludge washout rate. The nitrogen removal kinetics in the AHR followed the modified Stover-Kincannon model, whereas the Lawrence-McCarty model best described the bacterial growth kinetics. The study concludes that the hybrid configuration of the reactor demonstrated promising results and could be suitably applied for industrial applications. PMID:26277220

  15. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  16. Effect of hydraulic retention time on inorganic nutrient recovery and biodegradable organics removal in a biofilm reactor treating plant biomass leachate

    Energy Technology Data Exchange (ETDEWEB)

    Krumins, V.; Hummerick, M.; Levine, L.; Strayer, R.; Adams, J.L.; Bauer, J. [Dynamac Corporation, Kennedy Space Center, FL (United States)

    2002-12-01

    A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO{sub 2}) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production. (author)

  17. Effect of hydraulic retention time on inorganic nutrient recovery and biodegradable organics removal in a biofilm reactor treating plant biomass leachate

    Science.gov (United States)

    Krumins, Valdis; Hummerick, Mary; Levine, Lanfang; Strayer, Richard; Adams, Jennifer L.; Bauer, Jan

    2002-01-01

    A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO2) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production.

  18. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP.

    Science.gov (United States)

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-06-01

    This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the

  19. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...

  20. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  1. The Maple reactor project

    International Nuclear Information System (INIS)

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  2. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    Science.gov (United States)

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule

  3. Long-term performance and stability of a continuous granular airlift reactor treating a high-strength wastewater containing a mixture of aromatic compounds.

    Science.gov (United States)

    Ramos, Carlos; Suárez-Ojeda, María Eugenia; Carrera, Julián

    2016-02-13

    Continuous feeding operation of an airlift reactor and its inoculation with mature aerobic granules allowed the successful treatment of a mixture of aromatic compounds (p-nitrophenol, o-cresol and phenol). Complete biodegradation of p-nitrophenol, o-cresol, phenol and their metabolic intermediates was achieved at an organic loading rate of 0.61 g COD L(-1)d(-1). Stable granulation was obtained throughout the long-term operation (400 days) achieving an average granule size of 2.0 ± 1 mm and a sludge volumetric index of 26 ± 1 mL g(-1) TSS. The identified genera in the aerobic granular biomass were heterotrophic bacteria able to consume aromatic compounds. Therefore, the continuous feeding regimen and the exposure of aerobic granules to a mixture of aromatic compounds make possible to obtain good granulation and high removal efficiency. PMID:26530892

  4. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  5. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  6. Physical-chemical and operational performance of an anaerobic baffled reactor (ABR treating swine wastewater - 10.4025/actascitechnol.v32i4.7203

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2010-12-01

    Full Text Available Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR, working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD5, total solids (TS, fix (TFS and volatiles (TVS, temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD5, with a hydraulic retention time (HRT about 15 hours. The results for volumetric organic loading rate (VOLR, organic loading rate (OLR and hydraulic loading rate (HLR were: 4.46 kg BOD m-3 day-1; 1.81 kg BOD5 kg TVS-1 day-1 and 1.57 m3 m-3 day-1, respectively. The average efficiency of the whole treatment system for total COD and BOD5 removal were 66.5 and 77.8%, showing an adequate performance in removing the organic matter from swine wastewater.

  7. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  8. BIODEGRADATION OF AROMATIC AMINE COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    M. Delnavaz ، B. Ayati ، H. Ganjidoust

    2008-10-01

    Full Text Available Three moving bed biofilm reactors were used to treat synthesized wastewater of aromatic amine compounds including aniline, para-diaminobenzene and para-aminophenol that are found in many industrial wastewaters. The reactors with cylindrical shape had an internal diameter and an effective depth of 10 and 60 cm, respectively. The reactors were filled with light expanded clay aggregate as carriers and operated in an aerobic batch and continuous conditions. Evaluation of the reactors' efficiency was done at different retention time of 8, 24, 48 and 72 h with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. The maximum obtained removal efficiencies were 90% (influent COD=2000 mg/L, 87% (influent COD=1000 mg/L and 75% (influent COD=750 mg/L for aniline, para-diaminobenzene and para-aminophenol, respectively. In the study of decrease in filling ratio from 50 to 30 percent, 6% decrease for both para-diaminobenzene and para-aminophenol and 7% increase for aniline degradation were obtained. The removal efficiency was decreased to about 10% after 15 days of continuous loading for each of the above three substrates. In the shock loading test, initially the COD removal rate was decreased in all reactors, but after about 10 days, it has been approached to the previous values. Finally, biodegradability of aromatic amines has been proved by nuclear magnetic resonance system.

  9. STUDY OF A SEQUENCING BATCH REACTOR TREATING WASTEWATER FROM AN INDUSTRY OF SOFT DRINKS = ESTUDO DE UM REATOR DE LODOS ATIVADOS POR BATELADA PARA O TRATAMENTO DOS EFLUENTES DE UMA INDÚSTRIA DE REFRIGERANTE

    Directory of Open Access Journals (Sweden)

    Rafael Brito de Moura

    2009-01-01

    Full Text Available This work aimed to study a pilot scale sequencing batch reactor in order to enhance its performance treating wastewater from a soft drink industry. Initially, 5 liters of anaerobic sludge from an UASB (Upflow Anaerobic Sludge Blanket reactor were inoculated in the reactor, which was acclimatized to the new conditions during two months. Conducted microscopy examination was developed to observe the microorganisms present in the sludge. After this stage, experimental procedure was divided in six phases with different times of cycles ranging from 8 to 18 hours, divided in aeration, stir and settle. As a result, higher removal percentages of COD were obtained in the 10 hours cycle, reaching an average of 89.8%. The cycle that had higher nitrogen removals was of 14 hours, with mean removal of 78.8%. In all cycles tested, the presence of nitrate in treated effluent was not detected, characterizing biological denitrification. = Esse trabalho teve como objetivo estudar o funcionamento de um reator sequencial por batelada em escala piloto, de forma a aumentar seu rendimento no tratamento de águas residuárias provenientes de uma indústria de refrigerantes. Inicialmente, foram inoculados 5 litros de lodo anaeróbio proveniente de um reator UASB (Upflow Anaerobic Sludge Blanket, sendo este aclimatado para o novo sistema durante dois meses. Foram realizados exames microscópicos do lodo para observar os microrganismos presentes nele. Após essa etapa, o período experimental foi dividido em seis fases de operação com tempos de ciclo variando entre 8 e 18 horas, divididos em aeração, agitação e sedimentação. Como resultado, obteve-se uma maior remoção de DQO para o ciclo de 10 horas, alcançando um percentual médio de 89,8%. O ciclo que apresentou maior remoção de nitrogênio foi o de 14 horas, com remoção de 78,8%. Em todos os ciclos testados, não houve a presença de nitrato no efluente tratado, caracterizando a desnitrificação.

  10. 磁性多孔陶粒生物膜反应器处理焦化废水的试验研究%Pilot Scale Study on Coking Wastewater Treatment Using a Magnetic Carrier Biofilm Reactor

    Institute of Scientific and Technical Information of China (English)

    郭磊; 成岳; 朱华清; 鲁莽

    2013-01-01

    Porous ceramisite was modified by appropriate process using magnetic material as raw material. The modified porous ceramisite was applied to the treatment of coking wastewater in a biofilm reactor. Results of comparative experiment showed that removal efficiencies for COD and NH3-N in porous ceramisite biofilm reactor were 25%~30% higher than that in activated sludge reactor, and 15%~20% higher than in biofilm reactor without biocarrier. Under conditions of aeration flow 1.5 L/h, aeration duration 10 h/d, temperature 25~30℃, removal efficiencies for both COD and NH3-N in porous ceramisite biofilm reactor were about 90% , with the effluent satisfactory to Grade II of national emission standard of industrial wastewater GB 18918-2002.%以磁性材料为原料,经过特定的工艺处理,对多孔陶瓷进行磁化改性获得磁性多孔载体,并将该载体应用于生物膜反应器中进行焦化废水处理试验.对不同类型的多孔陶粒载体进行对比试验,结果表明:磁性载体生物膜反应器对COD、NH3-N的去除率比普通活性污泥法高出25%~30%,比非载体生物膜反应器高出15%~20%左右.反应器的曝气量为1.5 L/h,曝气时间为10 h/d,温度为25~30℃.焦化废水经磁性载体生物膜反应器处理后,上清液中COD,NH3-N的去除率均在90%左右.出水浓度达到国家工业废水排放二级标准(GB18918-2002).

  11. Study on Synthesis of a Hydrophilic Porous Carrier and its Properties for Biofilm Formation in Three -phase Fluidized Bed Reactor%亲水性聚合物多孔载体制备及其三相流化床生物挂膜特性研究

    Institute of Scientific and Technical Information of China (English)

    韦朝海; 李磊; 邓志毅; 吴小付

    2007-01-01

    针对目前流化床载体在生物挂膜过程中存在密度大、流态化能耗高、孔隙率低、亲水性及生物亲和性差、挂膜周期长等缺点,采用界面聚合发泡法制得亲水性聚合物多孔载体,通过接枝葡萄糖、掺杂粉末活性炭改善载体的亲水性及热稳定性能,研究了单体组成、催化剂、发泡剂用量与载体密度、孔隙率、吸水率的关系,并利用BET、FT-IR、TG分析表征了亲水性多孔载体孔结构及物化性能;并通过4种不同载体的生物流化床挂膜实验考察了载体表面特性对生物挂膜量、生物活性的影响,同时揭示亲水性聚合物多孔载体生物挂膜性能的机理.结果表明,制备体积1 L的亲水性多孔载体最佳组分为:聚醚三元醇用量50 g、TDI 20 g、葡萄糖7g、粉末活性炭6 g、辛酸亚锡0.2 g、三亚乙基二胺0.4 g、发泡剂1.5g;所制备的载体具有表面亲水性及丰富的大、中孔结构,吸水率达到315.2%,孔隙率为91.7%;通过葡萄糖接枝、粉末活性炭掺杂增加了亲水性基团羟基及载体的吸附性能,附着的生物量达到4.65gVSS/L、生物活性SOUR值为103 mgO2/(gVSS·h),均高于其它3种载体.证明亲水性多孔载体的高孔隙率、高亲水性及引入的强吸附剂均有助于载体表面微生物的生长,是一种适合于三相流化床反应器的载体.%The current carriers for biofilm formation in three - phase fluidized bed reactor have some disadvantage such as high density, smooth surface and hydrophobicity etc. A new style hydrophilic porous (GPUC) carriers addition of glucose and absorbent - power activated carbon was prepared by foaming method. The effects of monomer composition, catalyses and foaming agent on the structure character of the GPUC carriers were studied.The structure of GPUC carriers was characterized by BET, IR spectra and thermal analysis (TG) and the mechanism was further explored. Four kinds of contrast test were made using the

  12. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  13. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater.

    Science.gov (United States)

    Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan

    2016-08-01

    The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia. PMID:26896313

  14. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger; Eriksson, André Huss; Andersen, Rikke; Frokjaer, Sven

    2004-01-01

    A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and...

  15. Glycosylation of solute carriers

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Carlsson, Michael C; Pedersen, Stine Helene Falsig

    2016-01-01

    Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well as...

  16. Information and Its Carriers.

    Science.gov (United States)

    Herrmann, F.; And Others

    1985-01-01

    Describes: (1) the structure of a data transmission source, carrier, and receiver; (2) a quantitative measure for the amount of data, followed by some quantitative examples of data transmission processes; (3) the concept of data current; (4) data containers; and (5) how this information can be used to structure physics courses. (JN)

  17. Archaeosome: As New Drug Carrier for Delivery of Paclitaxel to Breast Cancer

    OpenAIRE

    Alavi, Seyed Ebrahim; Mansouri, Hamidreza; Esfahani, Maedeh Koohi Moftakhari; Movahedi, Fatemeh; Akbarzadeh, Azim; Chiani, Mohsen

    2013-01-01

    In the present study, paclitaxel was archaeosomed to reduce side effects and improve its therapeutic index. Carriers have made a big evolution in treatment of many diseases in recent years. Lipid carriers are of special importance among carriers. Archaeosome is one of the lipid carriers. Paclitaxel is one of the drugs used to treat breast cancer which has some unwanted side effects despite its therapeutic effects. Archaeosomes were extracted from methanogenic archi bacteria and synthesized wi...

  18. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced...... Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation...... enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  19. Nuclear reactor fuel elements charging tool

    International Nuclear Information System (INIS)

    To assist the loading of nuclear reactor fuel elements in a reactor core, positioning blocks with a pyramidal upper face charged to guide the fuel element leg are placed on the lower core plate. A carrier equipped with means of controlled displacement permits movement of the blocks over the lower core plate

  20. Alternativas para o controle de emissões odorantes em reatores anaeróbios tratando esgoto doméstico Alternatives for the control of odorous emissions in anaerobic reactors treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Carlos Augusto de Lemos Chernicharo

    2010-09-01

    Full Text Available Esta nota técnica busca consolidar as principais características, vantagens e desvantagens dos métodos usualmente empregados para o controle de emissões odorantes, discorrendo criticamente acerca da aplicabilidade de cada um dos métodos para o tratamento de odores em estações de tratamento de esgoto doméstico. Verificou-se que vários métodos são sofisticados, de elevado custo e, muitas vezes, não aplicáveis ao tratamento de odores emitidos em reatores anaeróbios tratando esgoto doméstico. Uma análise qualitativa dos vários métodos indica que a combustão direta e os processos bioquímicos são os que reúnem o maior conjunto de vantagens para o tratamento de gases residuais emitidos em reatores anaeróbios.This technical note aims at consolidating the main characteristics, advantages and disadvantages of the methods usually applied to the control of odorous emissions, with a critical analysis upon the applicability of each method to the treatment of odours in treatment plants of domestic wastewater. It was verified that several methods are sophisticated, present high cost, and are often non-applicable to the treatment of odour emissions from anaerobic reactors treating domestic wastewater. The qualitative analysis of the various methods points out that direct combustion and biochemical processes gather more advantages for the treatment of waste gases produced in anaerobic reactors.

  1. Development of an attached growth reactor for NH₄-N removal at a drinking water supply system in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Khanitchaidecha, Wilawan; Shakya, Maneesha; Nakano, Yuichi; Tanaka, Yasuhiro; Kazama, Futaba

    2012-01-01

    Higher concentrations of ammonium (NH(4)-N) and iron (Fe) than a standard for drinking are typical characteristics of groundwater in the study area. To remove NH(4)-N and Fe, the drinking water supply system in this study consists of a series of treatment units (i.e., aeration and sedimentation, filtration, and chlorination); however, NH(4)-N in treated water is higher than a standard for drinking (i.e., reactor. It made the system simple operation and energy efficient. Effects of reactor design (reactor length and carrier area) were studied to achieve a high NH(4)-N removal efficiency. In accordance with raw groundwater characteristics in the area, effects of low inorganic carbon (IC) and phosphate (PO(4)-P) and high Fe on the removal efficiency were also investigated. The results showed a significant increase in NH(4)-N removal efficiency with reactor length and carrier area. A low IC and PO(4)-P had no effect on NH(4)-N removal, whereas a high Fe decreased the efficiency significantly. The first 550 days operation of a pilot-scale reactor installed in the drinking water supply system showed a gradual increase in the efficiency, reaching to 95-100%, and stability in the performance even with increased flow rate from 210 to 860 L/day. The high efficiency of the present work was indicated because only less than 1 mg of NH(4)-N/L was left over in the treated water. PMID:22416868

  2. Hungarian students’ carrier aspirations

    Directory of Open Access Journals (Sweden)

    A.S. Gubik

    2014-06-01

    Full Text Available The article analyzes the students’ carrier aspiration, right after their graduation and five years after their studies. It examines the differences arising from the students’ family business background and their most important social variables (gender, age. Then the study highlights the effects of study field on the students’ intention. The direct effect of education on starting an enterprise is undiscovered in the literature, the paper deals with the influence of availability and services use, offered by higher institutions.

  3. Comparison of human solute carriers

    OpenAIRE

    Schlessinger, Avner; Matsson, Pär; Shima, James E.; Pieper, Ursula; Yee, Sook Wah; Kelly, Libusha; Apeltsin, Leonard; Stroud, Robert M.; Ferrin, Thomas E; Giacomini, Kathleen M.; Sali, Andrej

    2010-01-01

    Solute carriers are eukaryotic membrane proteins that control the uptake and efflux of solutes, including essential cellular compounds, environmental toxins, and therapeutic drugs. Solute carriers can share similar structural features despite weak sequence similarities. Identification of sequence relationships among solute carriers is needed to enhance our ability to model individual carriers and to elucidate the molecular mechanisms of their substrate specificity and transport. Here, we desc...

  4. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  5. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism are...

  6. Partida de um reator anaeróbio horizontal para tratamento de efluentes do processamento dos frutos do cafeeiro Start-up of an anaerobic horizontal-flow reactor for treating wastewater from a coffee fruits processing

    Directory of Open Access Journals (Sweden)

    Alisson C. Borges

    2009-01-01

    Full Text Available O presente estudo teve o objetivo de avaliar a partida e a adaptação de um reator anaeróbio horizontal de leito fixo (RAHLF no tratamento de águas residuárias do processamento primário dos frutos do cafeeiro (ARC. O reator foi construído com tubos de PVC de 0,2 m de diâmetro e 3,2 m de comprimento. O sistema foi preenchido com cubos de espuma de poliuretano para imobilização de biomassa ativa. O reator apresentou volume total de 0,1 m³ e volume útil equivalente a 0,04 m³. Em média, houve remoção de 49% da matéria orgânica, com o reator trabalhando sob carga orgânica volumétrica média de 2,66 kg m-3 d-1, medida como DQO. A suplementação de alcalinidade, somada à inoculação prévia de biomassa, proporcionou partida estável do RAHLF, confirmada pelo consumo de ácidos voláteis e adaptação da microbiota ao resíduo. O sistema apresentou resistência às variações de vazão e de carga orgânica observadas, e os teores de fenol e potássio monitorados não causaram inibição da atividade biológica no RAHLF. O maior controle sobre as variações de carga é fator importante na continuidade dos estudos.This study aimed to evaluate the start-up and the adaptation of an anaerobic horizontal-flow immobilized biomass (HAIB reactor in order to treat wastewater from a primary processing of coffee fruits. The reactor was built with PVC tubes of 0.2 m in diameter and 3.2 m in length. The system was filled with cubes of polyurethane foam for immobilization of active biomass. The reactor presented a total capacity of 0.1 m³ and reaction volume equal to 0.04 m³. 49% of organic matter. Removal efficiency was observed, with medium organic volumetric loads equal to 2.66 kg m-3 d-1 (as chemical oxygen demand. The supplementary addition of alkalinity and the previous biomass inoculation provided a stable start-up of the reactor, as confirmed by the reduction of volatile acids and an adaptation of the present microbiology community

  7. Avaliação da eficiência do reator UASB tratando efluente de laticínio sob diferentes cargas orgânicas The efficiency of UASB reactor treating dairy effluent at diferent organic loading rates

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2004-12-01

    Full Text Available Avaliou-se o desempenho de um reator anaeróbio de manta de lodo (UASB em escala laboratorial quanto à eficiência na remoção da carga poluidora, utilizando como substrato leite tipo B, diluído com concentração média de 2.500 mg.L-1, similar aos efluentes de laticínios quando descartado o soro. Durante os 205 dias de operação, o reator foi avaliado em relação à eficiência, de acordo com a carga orgânica volumétrica (COV aplicada. O incremento da COV aplicada foi realizado com a redução do tempo de detenção hidráulica; com isso, os TDH(s médios aplicados no reator foram de 12, 20, 18 e 16 horas. A carga orgânica biológica (COB inicial, ou seja, de partida, foi de 0,054 kgDBO.kgSVT-1.dia-1. O reator apresentou eficiências de 24, 43, 52 e 39%, na remoção de DQOT, e 22, 22, 17 e 17% na remoção de sólidos totais para os respectivos TDH(s aplicados. Os melhores resultados do reator UASB na remoção de matéria orgânica foram obtidos com os TDH (s de 20 e 18 horas. Nas condições de temperatura, carga orgânica volumétrica (COV e tempo de detenção hidráulica (TDH aplicados, o reator demonstrou boas condições de tamponamento, sendo desnecessária a correção do pH, o que significa minimização de custos.In this research it was evaluated the performance of a laboratory scale UASB reactor (Upflow Anaerobic Sludge Blanket treating a simulated dairy wastewater. In order to obtain the same concentration of an ordinary dairy, in terms of COD substrate, it was carried out the dilution of type B pasteurized milk with drinking water at a mean concentration of 2,500 mg.L-1, similar to a dairy wastewater without milk serum. During 205 days of operation the reactor was evaluated considering the efficiency related to the organic loading rate, which varied according to the hydraulic detention time applied. The UASB reactor was operated at different hydraulic retention times, of about 12, 20, 18 and 16 hours. The initial (start

  8. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  9. Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure

    International Nuclear Information System (INIS)

    Selection and evaluation of biofilm carrier represent the two significant ways for improving the anaerobic digesters. This study investigated the performances of the AD (anaerobic digestion) reactors using three types of fibrous biofilm carriers, including the ACF (activated carbon fiber), the PVAF (polyvinyl alcohol fiber) and the GF (glass fiber). The biogas and methane production, pH, COD (chemical oxygen demand), TS (total solids), VS (volatile solids), residual coenzyme F420 as well as the residual amount of methanogen were measured periodically during the experimental run. Also, the SEM (scanning electron microscopy) was used to identify the microbial consortium and their attachments onto the surface of ACF carrier. The ACF carrier performed better than the other two types of carriers in achieving higher amount of biogas and methane production and pollutants' removal. The experimental results also demonstrated that the ACF carrier could make the reactor keep higher biogas and methane productions than the control blank reactor during the long run. -- Highlights: → ACF as biofilm carrier is superior to PVAF and GF in AD treatment of cattle manure. → ACF makes the reactor keep higher biogas and methane productions. → ACF enhances microorganism's immobilization.

  10. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...

  11. Effect of different carriers and operating parameters on degradation of flax wastewater by fluidized-bed Fenton process.

    Science.gov (United States)

    Chen, Mengtian; Ren, Hongqiang; Ding, Lili; Gao, Baotian

    2015-01-01

    This investigation evaluates the effectiveness of a fluidized-bed Fenton process in treating flax wastewater. Flax wastewater was taken from a paper-making factory in a secondary sedimentation tank effluent of a paper-making factory in Hebei. The performance of three carriers (SiO2, Al2O3, Fe2O3) used in the reactor was compared, and the effects of different operational conditions, and Fenton reagent concentrations were studied. Experimental results indicated that SiO2 was the most appropriate carrier in the system. The dose of Fe2+ and H2O2 was a significant operating factor in the degradation progress. The bed expansion was considered to be another factor influencing the treatment effect. Under the appropriate conditions (300 mg/L Fe2+, 600 mg/L H2O2, and 74.07 g/L SiO2 as the carrier, at pH=3, 50% bed expansion), the highest removal rate of total organic carbon (TOC) and color was 89% and 94%, respectively. The article also discussed the process of the colority removal of flax wastewater and the kinetics of TOC removal. PMID:26067494

  12. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    International Nuclear Information System (INIS)

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  13. Development of biofilm in anaerobic reactors treating wastewater from coffee grain processing Desenvolvimento de biofilme em reatores anaeróbios tratando água residuária do processamento dos frutos do cafeeiro

    Directory of Open Access Journals (Sweden)

    Fátima R. L. Fia

    2010-02-01

    Full Text Available In recent decades the use of anaerobic fixed bed reactors has been established in Brazil for the treatment of different effluents. As the capability of retaining microorganisms by support media (fixed bed is a factor influencing the performance of these reactors, the present study aims at evaluating the influence of three fixed bed on the effectiveness of treating an effluent with high pollution potential: wastewater from coffee grain processing (WCP, with organic matter concentrations varying from 812 to 5320 mg L-1 in the form of chemical oxygen demand (COD. Support media used for the immobilization of biomass were: blast furnace slag, polyurethane foam and #2 crushed stone with porosities of 53, 95 and 48%, respectively. The mean efficiency of COD removal in the reactor filled with polyurethane foam was 80%, attributed to its higher porosity index, which also provided greater retention and fixation of biomass which, when quantified as total volatile solids, was found to be 1301 mg g-1 of foam. The biofilm was made up of various microorganisms, including rod, curved rods, cocci, filaments and morphologies similar to Methanosaeta sp. and Methanosarcina sp.Nas últimas décadas tem-se registrado, no Brasil, o uso de reatores anaeróbios de leito fixo para o tratamento de diversos tipos de efluentes. Uma vez que a capacidade de retenção de micro-organismos pelo meio suporte (leito fixo é fator de influência no desempenho desses reatores, buscou-se, com a realização do presente estudo, avaliar a influência do leito fixo na eficiência de três unidades tratando um efluente com elevado potencial poluidor: água residuária do processamento dos frutos do cafeeiro (ARC, com concentração de matéria orgânica variando entre 812 e 5.320 mg L-1 na forma de DQO. Os tipos de suporte utilizados na imobilização da biomassa foram: escória de alto-forno, espuma de poliuretano e brita nº 2, com índice de vazios de 53, 95 e 48%, respectivamente. A

  14. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    The NNSA organized mainly in 1999 to complete the verification loop in core of the high flux experimental reactor with the 2000 kW fuel elements, the re-starting of China Pulsed Reactor, review and assessment on nuclear safety for the restarting of the Uranium-water critical Facility and treat the fracture event with the fuel tubes in the HWRR

  15. 三维电极体系电催化氧化效率的研究%Efficiency of the Electrocatalytic Oxidation Treating Wastewater by Using Three Dimensional Electrode Reactor

    Institute of Scientific and Technical Information of China (English)

    胡云龙; 王立章; 李鹏; 张延乐

    2013-01-01

    The simulative oxalic acid wastewater with different electrolyte concentrations was treated by a three-dimensional electrode reactor. Experiment was done with IrO2-Ta2O5/Ti as anode and 5 mm size granular activated carbon (GAC) as filling material under operation conditions of constant current density 100 A/m2 and inter-electrode gap 50 mm, COD removal rate, average current efficiency (ACE) and energy consumption were compared in different conditions. High electrolyte concentrations bring about low COD removal but high ACE and low energy consumption at the end of oxidation due to energy storage of double electric layer capacitor. It was demonstrated that electrocatalytic oxidation process has strong oxidation ability and can treat non -biodegradable organics wastewater with high concentration by comparing the electrocatalytic oxidations between phenol and oxalate.%使用三维电极反应器处理不同盐量的草酸模拟废水,以IrO2-Ta2O5/Ti为阳极、5 mm的球状活性炭(granular activated carbon,GAC)为填料,在电流密度100 A/m2,极板间距50 mm的条件下,进行电催化氧化过程中化学需氧量(Chemical oxygen demand,COD)、电流效率(Average current efficiency)以及能耗(Energy consumption)的对比,实验结果表明在盐量为0.50%~3.00%的范围内,由于双电层电容的储能作用,提高盐量造成COD去除率有所下降,但能够提高反应末期电流效率,同时由于操作电压的降低可减少反应能耗.通过对比苯酚和草酸的电催化氧化过程证明电催化氧化过程具有较强的氧化有机物的能力.

  16. Reactor Physics

    International Nuclear Information System (INIS)

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  17. Reactor Physics

    International Nuclear Information System (INIS)

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  18. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  19. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  20. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  1. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  2. Recent advancements in the cardiovascular drug carriers.

    Science.gov (United States)

    Singh, Baljeet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Cardiovascular disease is the disease that affects the cardiovascular system, vascular diseases of the brain and kidney, and peripheral arterial disease. Despite of all advances in pharmacological and clinical treatment, heart failure is a leading cause of morbidness and mortality worldwide. Many new therapeutic advance strategies, including cell transplantation, gene delivery or therapy, and cytokines or other small molecules, have been research to treat heart failure. The main aim of this review article is to focus on nano carriers advancement and addressing the problems associated with old and modern therapeutics such as nonspecific effects and poor stability. PMID:25046615

  3. Stud bolt handling equipment for reactor vessel

    International Nuclear Information System (INIS)

    Reactor vessel stud bolt handling equipment includes means for transferring a stud bolt to a carrier from a parking station, or vice versa. Preferably a number of stud bolts are handled simultaneously. The transfer means may include cross arms rotatable about extendable columns, and the equipment is mounted on a mobile base for movement into and out of position. Each carrier comprises a tubular socket and an expandable sleeve to grip a stud bolt. (author)

  4. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  5. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  6. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  7. Treating Meningitis

    Science.gov (United States)

    ... David C. Spencer, MD Steven Karceski, MD Treating meningitis Steven Karceski, MD WHAT DID THE AUTHORS STUDY? ... study, “ Dexamethasone and long-term survival in bacterial meningitis, ” Dr. Fritz and his colleagues carefully evaluated 2 ...

  8. On the mass of elementary carriers of gravitational interaction

    CERN Document Server

    Krasnoholovets, V

    2001-01-01

    Based on the theory of submicroscopic quantum mechanics recently constructed by the author the mass of elementary spatial excitations called inertons, which accompany a moving particle, is estimated herein. These excitations are treated as carriers of both inertial and gravitational properties of the particle.

  9. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  10. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  11. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-07-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.

  12. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  13. Reactor container

    International Nuclear Information System (INIS)

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  14. Reactor safety engineering

    International Nuclear Information System (INIS)

    The concept of the work is such that the basic safety philosophy for nuclear power plants as well as the safety features of both types of light water reactors, pressurized and boiling water reactors, and of the fast breeder reactor are dealt with. With the pressurized and boiling water reactors also variations, due to different supplies are mentioned. The state of development considered is characterized by the results of the American reactor safety study having very much influenced the way of presentation and the validity of the information contained. In the introduction the attentive reader is made familiar with the basic traits of safety engineering, the traditional deterministic way of proceeding being supplemented by a detailed illustration of probabilistic means used in the safety analysis. Added to this are comparative descriptions of the individual safety features, their design and mode of operation. There are, e.g., detailed discussion of the emergency core cooling systems, the power supply systems, the reactor protection system, and the containment. Special chapters are attributed to transients with and without the fast shutdown system working and to loss of coolant. The so-called external events are treated somewhat shortly whereas much space is given to core melting problems. The treatment of important events from the safety point of view, including the section on Harrisburg added for reasons of immediate interest, is limited to phenomenological description. (orig.)

  15. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  16. Tricky Treats

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Tricky Treats shows children the difference between healthy snacks and sweet treats.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  17. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  18. Content Distribution for Telecom Carriers

    Directory of Open Access Journals (Sweden)

    Ben Falchuk

    2006-08-01

    Full Text Available Distribution of digital content is a key revenue opportunity for telecommunications carriers. As media content moves from analog and physical media-based distribution to digital on-line distribution, a great opportunity exists for carriers to claim their role in the media value chain and grow revenue by enhancing their broadband “all you can eat” high speed Internet access offer to incorporate delivery of a variety of paid content. By offering a distributed peer to peer content delivery capability with authentication, personalization and payment functions, carriers can gain a larger portion of the revenue paid for content both within and beyond their traditional service domains. This paper describes an approach to digital content distribution that leverages existing Intelligent Network infrastructure that many carriers already possess, as well as Web Services.

  19. Thermal Analysis and Investigation of NiO-Based Oxygen Carriers for Chemical-Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jerndal, Erik, e-mail: erik.jerndal@chalmers.se

    2009-03-15

    Capture and storage of CO{sub 2} can be used to reduce greenhouse gas emissions from combustion of fossil fuels. Chemical-looping combustion is a two-step combustion process where CO{sub 2} is obtained in a separate stream, ready for compression and storage. The technology uses circulating oxygen carriers to transfer oxygen from an air reactor to a fuel reactor, thus avoiding an energy consuming gas separation unit. A thermal analysis of the process using a large number of possible oxygen carriers was performed by simulating chemical reactions. Based on the ability of the oxygen carriers to convert different gaseous fuels, stability in air and melting temperature some metal oxides based on Ni, Cu, Fe, Mn, Co, W and sulphates of Ba, Sr and Ca showed good thermodynamic properties and could be feasible as oxygen carriers. The promising systems were investigated further with respect to temperature changes in the fuel reactor as well as possible formation of carbon, sulphides and sulphates which may deactivate the oxygen carriers. Oxygen carriers of NiO, supported by NiAl{sub 2}O{sub 4}, were prepared and investigated experimentally with respect to parameters important for chemical-looping combustion. These oxygen carriers were based on commercially available raw materials in contrast to most of the previously tested oxygen carriers, which have been prepared from pure chemicals. Further, it was investigated if spray-drying, which is a production method suitable for large-scale particle preparation, can be used to produce high performing oxygen carriers instead of the small-scale freeze-granulation method. Generally, materials prepared from commercially available raw material showed high reactivity with methane and oxygen. Oxygen carriers prepared by spray-drying, displayed a remarkable similarity when compared to oxygen carriers prepared from the same starting material by freeze-granulation, both regarding physical properties and reactivity. Further, the up-scaling of

  20. Sustainable bioenergy carriers from wastes

    OpenAIRE

    Pereira, M.A.; Cavaleiro, A. J.; Abreu, A. A.; Costa, J.C.; Sousa, D. Z.; Alves, M.M.

    2012-01-01

    The development of new technologies for renewable energy production is crucial for decreasing the reliance in fossil fuels and improving global sustainability. Waste materials are valuable resources that can be used for the production of energy carriers. Organic wastes can be anaerobically digested to ultimately produce methane. Hydrogen can be recovered from this process, if methanogenesis is inhibited. These energy carriers can also be derived from recalcitrant materials in a two step-proce...

  1. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  2. Reactor safety equipments

    International Nuclear Information System (INIS)

    Purpose: To positively recover radioactive substances discharged in a dry well at the time of failure of a reactor. Constitution: In addition to the emergency gas treating system fitted to a reactor building, a purification system connected through a pipeline to the dry well is arranged in the reactor building. This purification system is connected through pipes fitted to the dry well to forced circulation device, heat exchanger, and purification device. The atmosphere of high pressure steam gases in the dry well is derived to the heat exchanger for cooling, and then radioactive substances which are contained in the gases are removed by filter sets charged with the HEPA filters and the HECA filters. At last, there gases are returned to dry well by circulation pump, repeat this process. (Kamimura, M.)

  3. Biodegradation of pharmaceuticals from hospital wastewater in staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola, Monica; Kumar Chhetri, Ravi; Ooi, Gordon;

    2015-01-01

    Hospital wastewater may represent an important source of pharmaceuticals into wastewater treatment plants, which are usually inefficient for complete pharmaceuticals removal. Consequently, on-site treatment of hospital wastewater has been suggested. MBBRs (Moving Bed Biofilm Reactors) rely on...... pharmaceuticals from hospital wastewater. A pilot MBBR line consisting of three tanks in series containing AnoxKaldnes™ K5 carriers was installed to treat a fraction of the wastewater from the oncology department of Aarhus University Hospital. Two sampling campaigns were conducted to study the removal of...... wastewater treatment. In both experiments, the first tank was observed to conduct the main part of the pharmaceuticals removal, matching the general parameters data. Overall, the MBBR was shown to treat hospital wastewater efficiently. However, for removal of recalcitrant pharmaceuticals, a polishing...

  4. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  5. Heterogeneous reactors

    International Nuclear Information System (INIS)

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author)

  6. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  7. Plasma reactor

    OpenAIRE

    Molina Mansilla, Ricardo; Erra Serrabasa, Pilar; Bertrán Serra, Enric

    2008-01-01

    [EN] A plasma reactor that can operate in a wide pressure range, from vacuum and low pressures to atmospheric pressure and higher pressures. The plasma reactor is also able to regulate other important settings and can be used for processing a wide range of different samples, such as relatively large samples or samples with rough surfaces.

  8. Reactor physics

    International Nuclear Information System (INIS)

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  9. Motor Carrier Evaluation Program procedure

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Transportation Management Division (DOE-TMD) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned material. In the performance of these duties, the DOE-TMD has established an exemplary safety record in the transportation of hazardous materials. The DOE recognizes that its responsibility for hazardous material does not end when the shipments leave the DOE sites. A special partnership is needed between the DOE, the DOE contractors, and the carriers chosen to transport hazardous materials. As in any partnership, it is critical that DOE know essential information about its partner in this joint venture. In fulfillment of its responsibility for the safe transportation of radioactive materials as well as other hazardous commodities and wastes routinely shipped from many DOE locations nationwide, the DOE-TMD has developed this policy for a motor carrier evaluation program. It is the intent of the DOE-TMD that this Motor Carrier Evaluation Program be implemented at all DOE locations to the fullest extent practicable. This program will assist in the evaluation of carriers transporting Highway Route Controlled Quantities (HRCQ) of radioactive material, because these shipments frequently are in the ''public eye.'' The program will also evaluate truckload (TL) quantity transporters of hazardous materials, including radioactive material and chemical wastes. The program has also recently been expanded to include motor carriers transporting less-than-truckload (LTL) quantities of these materials

  10. Carrier sense data highway system

    Science.gov (United States)

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  11. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  12. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  13. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  14. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  15. A micro-scale hot-surface device based on non-radiative carrier recombination

    NARCIS (Netherlands)

    Kovalgin, A.Y.; Holleman, J.; Iordache, G.

    2004-01-01

    This work employs the idea of making micro-scale hot-surface devices (e.g. sensors, flow meters, micro reactors, etc) based on generation of heat due to nonradiative recombination of carriers in a thin (13 nm) poly silicon surface layer. An important part of the device is a nano-scale (10-100 nm) co

  16. Oxygen Carriers for Chemical Looping Combustion - 4 000 h of Operational Experience

    International Nuclear Information System (INIS)

    Chemical Looping Combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two interconnected fluidized beds, a fuel reactor and an air reactor, are used in the process. The outlet gas from the fuel reactor consists of CO2 and H2O, and the latter is easily removed by condensation. Considerable research has been conducted on CLC in the last years with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. Today, more than 700 materials have been tested and the technology has been successfully demonstrated in chemical looping combustors in the size range 0.3-140 kW, using different types of oxygen carriers based on oxides of the metals Ni, Co, Fe, Cu and Mn. The total time of operational experience is more than 4 000 hours. From these tests, it can be established that almost complete conversion of the fuel can be obtained and 100% CO2 capture is possible. Most work so far has been focused on gaseous fuels, but the direct application to solid fuels is also being studied. This paper presents an overview of operational experience with oxygen carriers in chemical looping combustors. (author)

  17. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  18. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  20. Nuclear reactors

    International Nuclear Information System (INIS)

    This draft chart contains graphical symbols from which the type of (nuclear) reactor can be seen. They will serve as illustrations for graphical sketches. Important features of the individual reactor types are marked out graphically. The user can combine these symbols to characterize a specific reactor type. The basic graphical symbol is a square with a point in the centre. Functional groups can be depicted for closer specification. If two functional groups are not clearly separated, this is symbolized by a dotted line or a channel. Supply and discharge lines for coolant, moderator and fuel are specified in accordance with DIN 2481 and can be further specified by additional symbols if necessary. The examples in the paper show several different reactor types. (orig./AK)

  1. Philosophy of future ready thorium reactor designs

    International Nuclear Information System (INIS)

    Due to modest uranium reserves and abundant thorium resources, thorium fuel cycle and thorium based reactors are very important to India. Over a period of time India has developed expertise in all aspects of thorium utilisation starting from mining, metal extraction, fuel fabrication, irradiation in reactors, reprocessing, and recycling the recovered 233U. In-line with the maturing of these technologies, development of innovative and advanced reactors is being pursued. India is developing technologies for thorium based reactors in many configurations, from light water cooled designs to high temperature liquid metal and molten salt cooled options. A research reactor, KAMINI, based on 233U was commissioned at Indira Gandhi Centre for Atomic Research (IGCAR) in Kalpakkam in 1996. This is the only reactor in the world currently operating with 233U based fuel. Advanced Heavy Water Reactor (AHWR) aims at technology development for industrial scale thorium utilisation. Thorium is also planned to be used in the High Temperature Reactors, which hold promise of producing hydrogen as an alternate energy carrier for transport applications, thus ensuring long term energy security. For long-term sustainability, it is envisaged to take full advantage of the unique characteristics of 233U - thorium fuel cycle, through development and deployment of advanced nuclear energy systems, such as molten salt breeder reactors and accelerator-driven sub-critical systems

  2. Multifunctional reactors

    OpenAIRE

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much emphasis in research in the last decade. A survey is given of modern developments and the first successful applications on a large scale. It is explained why their application in many instances is ...

  3. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  5. Breeder reactors

    International Nuclear Information System (INIS)

    The reasons for the development of fast reactors are briefly reviewed (a propitious neutron balance oriented towards a maximum uranium burnup) and its special requirements (cooling, fissile material density and reprocessing) discussed. The three stages in the French program of fast reactor development are outlined with Rapsodie at Cadarache, Phenix at Marcoule, and Super Phenix at Creys-Malville. The more specific features of the program of research and development are emphasized: kinetics and the core, the fuel and the components

  6. Eficiência de um sistema de reatores anaeróbios no tratamento de efluentes líquidos de suinocultura =The efficiency of a sistem of anaerobic reactors treating swine wastewater.

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2011-07-01

    Full Text Available Grande atenção tem sido dada pelos órgãos de fiscalização ambiental à produção confinada de suínos, pelo elevado potencial poluidor desse tipo de atividade. O grande desafio do suinocultor brasileiro é produzir, de forma intensiva, alimento com qualidade e ao mesmo tempo, ambientalmente sustentável. Por isso, sistemas anaeróbios de tratamento, como os que foram pesquisados neste trabalho, vêm se tornando merecedores de atenção na suinocultura em grande escala. Neste trabalho, as unidades de tratamento instaladas foram: caixa de retenção de sólidos (CRS, peneira estática (PE, tanque de acidificação e equalização (TAE, reator anaeróbio compartimentado (RAC, reator de manta de lodo (UASB e decantador. O sistema de tratamento apresentou os seguintes valores de eficiência: 91,50; 85,24; 80,46; 81,34; 79,15; 23,20 e 70,28% na remoção de DBO5, DQOtotal, sólidos totais, sólidos fixos, sólidos voláteis, fósforo total e óleos & graxas, respectivamente. Os reatores RAC e UASB operaram com tempo de detenção hidráulica de 15,4 e 9,7h, respectivamente; carga hidráulica de 1,57 m3 m-3 dia-1 para o RAC e 2,5 m3 m-3 dia-1 para o UASB; carga orgânica volumétrica de 4,46 kg m3 m-3 dia-1 para o RAC e 1,77 kg m3 m-3 dia-1 para o UASB. A produção média de biogás referente ao reator UASB, medida por meio de um gasômetro, foi de 437,08 L dia-1.Great attention has been given by environmental agencies concerning swine raising, due to the high pollutant potential of this type of activity. The challenge of Brazilian farmers is to produce, in an intensive form, high quality meat that is environmentally sustainable at the same time. Therefore, anaerobic treatment systems, such as those surveyed in this work, have gained attention in large-scale production. In this research, the installed units were: static screen (SS, equalization acidification tank (EAT, anaerobic baffled reactor (ABR, an upflow anaerobic sludge blanket reactor

  7. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  8. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors; Determinacion espectrografica de impurezas metalicas en refrigerantes organicos para reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-07-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs.

  9. COD biological removal and biogas production in anaerobic reactor treating cassava wastewater industry; Remocao biologica de DQO e producao de biogas em reator anaerobio tratando efluente de fecularia de madioca

    Energy Technology Data Exchange (ETDEWEB)

    Watthier, Elisangela [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Curso de Mestrado em Engenharia Agricola; Andreani, Cristiane Lurdes [Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, DF (Brazil); Gomes, Simone Damasceno [Universidade Estadual do Oeste do Parana (PGEAGRI/UNIOESTE), Cascavel, PR (Brazil). Programa de Pos-Graduacao em Engenharia Agricola; Moreschi, Roberson; Rufino, Mauricio de Oliveira [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Curso de Engenharia Agricola

    2010-07-01

    The effluent from the cassava industry cause damage to the environment if released without treatment. One alternative is the implementation of anaerobic reactors, which also add value through the production of biogas. The support means increases the contact surface of micro-organisms and enhance their setting. The purpose of this study was to evaluate the reduction of organic matter (DQO) and biogas production in a reactor of PVC with 90 cm long and 15 cm in diameter, through support rings of bamboo, 10 cm in length and diameter ranged from 1.7 to 2.5 cm, with a volume of 6 L. The organic loading used were 4,357, 4,708, 5,601 and 6,126 g DQO.L-1.day-1, corresponding to hydraulic retention time (TRH) of 3,5, 2,8, 3,25 and 2,7 days, respectively. It was observed that with the increase of organic load was increased production of biogas, the largest observed for a load of 6.126 g DQO.L-1.day-1 with an average of 9.146 L.day-1. Regarding the removal of organic matter were achieved values of 98.35, 99.09, 99.33 and 98.55% respectively for each load applied, with the highest efficiency observed in charge of 5.601 g COD. L-1. day-1, but without significant differences. (author)

  10. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  11. Technique of nuclear reactors controls

    International Nuclear Information System (INIS)

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author)

  12. Carrier Deformability in Drug Delivery.

    Science.gov (United States)

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  13. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  14. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  15. Recursive SDN for Carrier Networks

    OpenAIRE

    McCauley, James; Liu, Zhi; Panda, Aurojit; Koponen, Teemu; Raghavan, Barath; Rexford, Jennifer; Shenker, Scott

    2016-01-01

    Control planes for global carrier networks should be programmable (so that new functionality can be easily introduced) and scalable (so they can handle the numerical scale and geographic scope of these networks). Neither traditional control planes nor new SDN-based control planes meet both of these goals. In this paper, we propose a framework for recursive routing computations that combines the best of SDN (programmability) and traditional networks (scalability through hierarchy) to achieve t...

  16. Biocheese: A Food Probiotic Carrier

    OpenAIRE

    J. M. Castro; M. E. Tornadijo; Fresno, J. M.; H. Sandoval

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The ph...

  17. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-02-01

    Full Text Available Background: Robotic vehicles such as straddle carriers represent a popular form of cargo handling amongst container terminal operators.Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers.Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier.Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles.Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  18. Fertility preservation in BRCA mutation carriers.

    Science.gov (United States)

    Revelli, Alberto; Salvagno, Francesca; Delle Piane, Luisa; Casano, Simona; Evangelista, Francesca; Pittatore, Giulia; Razzano, Alessandra; Marchino, Gian L; Gennarelli, Gianluca; Benedetto, Chiara

    2016-10-01

    According to enhanced long-term survival rates of these patients, interest in fertility preservation for young women facing gonadotoxic therapies is increasing. Women who carry a mutation in the BRCA1 or BRCA2 gene have a specifically increased lifetime risk of developing breast and tubo-ovarian cancer. Moreover, they are at high risk of undergoing premature infertility due to the medical interventions that are often performed in order to reduce cancer risk or treat an already existing malignancy. Fertility issues are relevant for healthy BRCA mutation carriers, whose family-planning decisions are often influenced by the need of prophylactic bilateral salpingo-oophorectomy at young age. In BRCA mutation carriers who have a breast cancer at young age, the oncostatic treatment is associated with a significant ovarian toxicity linked to chemotherapy as well as to the long lasting hormonotherapy and to the need of delaying pregnancy for several years. Prompt counselling about different fertility preservation options should be offered to all young girls and women at high risk of ovarian insufficiency and infertility. Validated techniques to preserve fertility include oocyte and embryo cryopreservation, while experimental techniques include ovarian suppression with GnRH-analogs during chemotherapy and ovarian tissue cryopreservation. The choice of the best strategy depends on age, type of chemotherapy, partner status, cancer type, time available for fertility preservation intervention and the risk of ovarian metastasis. All available options should be offered and can be performed alone or in combination. A crucial point is to avoid a significant delay to cancer treatment. PMID:26997146

  19. Reactor utilization

    International Nuclear Information System (INIS)

    In 1962, the RA reactor was operated almost three times more than in 1961, producing total of 25 555 MWh. Diagram containing comparative data about reactor operation for 1960, 1961, and 1962, percent of fuel used and U-235 burnup shows increase in reactor operation. Number of samples irradiated was 659, number of experiments done was 16. mean powered level was 5.93 MW. Fuel was added into the core twice during the reporting year. In fact the core was increased from 56 to 68 fuel channels and later to 84 fuel channels. Fuel was added to the core when the reactivity worth decreased to the minimum operation level due to burnup. In addition to this 5 central fuel channels were exchanged with fresh fuel in february for the purpose of irradiation in the VISA-2 channel

  20. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  1. Responsible implementation of expanded carrier screening.

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-06-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  2. Nuclear reactors

    International Nuclear Information System (INIS)

    A nuclear reactor has a large prompt negative temperature coefficient of reactivity. A reactor core assembly of a plurality of fluid-tight fuel elements is located within a water-filled tank. Each fuel element contains a solid homogeneous mixture of 50-79 w/o zirconium hydride, 20-50 w/o uranium and 0.5-1.5 W erbium. The uranium is not more than 20 percent enriched, and the ratio of hydrogen atoms to zirconium atoms is between 1.5:1 and 7:1. The core has a long lifetime, E.G., at least about 1200 days

  3. Nuclear reactors

    International Nuclear Information System (INIS)

    In a liquid cooled nuclear reactor, the combination is described for a single-walled vessel containing liquid coolant in which the reactor core is submerged, and a containment structure, primarily of material for shielding against radioactivity, surrounding at least the liquid-containing part of the vessel with clearance therebetween and having that surface thereof which faces the vessel make compatible with the liquid, thereby providing a leak jacket for the vessel. The structure is preferably a metal-lined concrete vault, and cooling means are provided for protecting the concrete against reaching a temperature at which damage would occur. (U.S.)

  4. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  5. Ultrafast dynamics of carrier LO phonon system in high electric field in polar semiconductors

    Science.gov (United States)

    Iida, M.; Katayama, S.

    2001-03-01

    The dynamics of carriers excited by an ultrashort laser pulse is simulated numerically in the presence of a strong electric field. The carrier density matrices (DMs) are treated within the equation of motion method by taking interaction with longitudinal optical (LO) phonons into account. It is shown that the temporal evolution of an electron DM exhibits a strong modification owing to LO phonon emissions in addition to interferences between the interband polarization and the optical pulse field in the external strong electric field.

  6. Monte Carlo simulation of hot-carrier phenomena in open quantum devices: A kinetic approach

    OpenAIRE

    Rossi, Fausto; Proietti Zaccaria, Remo; Iotti, Rita Claudia

    2004-01-01

    An alternative simulation strategy for the study of nonequilibrium carrier dynamics in quantum devices with open boundaries is presented. In particular, we propose replacing the usual modeling of open quantum systems based on phenomenological injection/loss rates with a kinetic description of the system-reservoir thermalization process. More specifically, in this simulation scheme the partial carrier thermalization induced by the device spatial boundaries is treated within the standard Monte ...

  7. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  8. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Science.gov (United States)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  9. Low-cost carriers fare competition effect

    OpenAIRE

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should be operated by a low-cost carrier with better possibilities to subsist. The proposed model in this paper was set up by analyzing The United States domestic air transport market 2005 year database fr...

  10. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén;

    2011-01-01

    This work is a continuation of a previous paper by the authors [1] which analyzed the suitability of the Chemical Looping technology in biomass tar reforming. Four different oxygen carriers were tested with toluene as tar model compound: 60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg......–ZrO2 (Mn40) and FeTiO3 (Fe) and their tendency to carbon deposition was analyzed in the temperature range 873–1073K. In the present paper, the reactivity of these carriers to other compounds in the gasification gas is studied, also with special emphasis on the tendency to carbon deposition. Experiments...... were carried out in a TGA apparatus and a fixed bed reactor. Ni-based carriers showed a tendency to form carbon in the reaction with CH4, especially Ni60. The addition of water in H2O/CH4 molar ratios of 0.4–2.3 could decrease the carbon deposited, but not in the case of Ni60. Mn-based sample reacted...

  11. Nuclear reactor

    International Nuclear Information System (INIS)

    In an improved reactor core for a high conversion BWR reactor, Pu-breeding type BWR type reactor, Pu-breeding type BWR type rector, FEBR type reactor, etc., two types of fuel assemblies are loaded such that fuel assemblies using a channel box of a smaller irradiation deformation ratio are loaded in a high conversion region, while other fuel assemblies are loaded in a burner region. This enables to suppress the irradiation deformation within an allowable limit in the high conversion region where the fast neutron flux is high and the load weight from the inside of the channel box due to the pressure loss is large. At the same time, the irradiation deformation can be restricted within an allowable limit without deteriorating the neutron economy in the burner region in which fast neutron flux is low and the load weight from the inside of the channel box is small since a channel box with smaller neutron absorption cross section or reduced wall thickness is charged. As a result, it is possible to prevent structural deformations such as swelling of the channel box, bending of the entire assemblies, bending of fuel rods, etc. (K.M.)

  12. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    OpenAIRE

    A Mohseni-Bandpi, H Bazari

    2004-01-01

    A bench scale aerobic Sequencing Batch Reactor (SBR) was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optim...

  13. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans; Steffansen, Bente

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...... with K(m) 44microM and 38microM, respectively. BCRP inhibition affected both absorptive an exsorptive P(EPA) and P(APP) for ES. Glipizide apical P(UP) and absorptive P(APP) were not inhibitable. Basolateral P(UP) for glipizide was inhibitable, its P(EPA) prevented, and P(UP) was saturable with K(m) 56......microM, but exsorptive P(APP) was not affected. Carrier mediated exsorption kinetics for ES are seen at both apical and basolateral membranes, resulting in predominant exsorption despite presence of absorptive carrier(s). Carrier mediated basolateral P(UP) for glipizide was observed, but glipizide P...

  14. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors

    International Nuclear Information System (INIS)

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs

  15. Neural nets and chaotic carriers

    CERN Document Server

    Whittle, Peter

    2010-01-01

    ""Neural Nets and Chaotic Carriers"" develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels. Design is based on the criterion that an associative memory must be able to cope with 'fading data', i.e., to form an inference from the data even as its memory of that data degrades. The resultant net shows striking biological parallels. When these principles are combined with the Freeman speci

  16. Carrier frequencies, holomorphy and unwinding

    CERN Document Server

    Coifman, Ronald R; Wu, Hau-tieng

    2016-01-01

    We prove that functions of intrinsic-mode type (a classical models for signals) behave essentially like holomorphic functions: adding a pure carrier frequency $e^{int}$ ensures that the anti-holomorphic part is much smaller than the holomorphic part $ \\| P_{-}(f)\\|_{L^2} \\ll \\|P_{+}(f)\\|_{L^2}.$ This enables us to use techniques from complex analysis, in particular the \\textit{unwinding series}. We study its stability and convergence properties and show that the unwinding series can stabilize and show that the unwinding series can provide a high resolution time-frequency representation, which is robust to noise.

  17. Technetium diagnostic agent and carrier

    International Nuclear Information System (INIS)

    A stable sup(99m)Tc-labelled radioactive diagnostic agent is produced by contacting sup(99m)Tc-containing pertechnetate with a non-radioactive carrier comprising a chelating agent, a water-soluble reducing agent and a stabilizer. The stabilizer is chosen from ascorbic acid and erythorbic acid and their pharmaceutically acceptable salts and esters. A mole ratio of more than 100 moles ascorbic or erythorbic acid to 1 mole of reducing agent provides a stable composition at high levels of radioactivity

  18. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  19. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  20. Decontamination of radioactive waste fission products by treated natural clays

    International Nuclear Information System (INIS)

    The removal of carrier free long living fission products such as iodine-131, strontium-90 and cesium-137 by treated local clays is successfully achieved with large capacity. Iodine-131 which is difficultly adsorbed has been removed completely by silver treated phosphate clay. Strontium-90 and cesium-137 have been almost removed by adequate heat treating of the clays. The results of column experiments agree well with the authors' batch experiments. (author)

  1. Use of carriers for to electrodeposited radium 226

    International Nuclear Information System (INIS)

    The form of the energy distribution of a monoenergetic alpha particle starting from some emitting source of these particles, it depends on the quantity of material that its cross before being detected. Some authors deposit to the radium-226 by means of direct evaporation of the solution on metallic supports, on millipore paper and by electrodeposition. Some other ones place the radium solution in scintillation liquid, to quantify it by this technique. The objective of the present work is using carriers with the same oxidation state of the radium, that is to say of 2+, for treating to be electrodeposited to the radium-226 with the biggest possible percentage for later use the alpha spectroscopy technique to quantify it. The carriers that have been used until its they are barium and zinc in form of barium chloride, zinc nitrate and zinc sulfate. The first results indicate that with the zinc solution a yield of 40% of electrodeposited radium has been reached. (Author)

  2. production of carrier -free 131 cesium from neutron irradiated barium targets

    International Nuclear Information System (INIS)

    this work describes the production of carrier-free radioactive 131 Cs from bulk amounts of Ba CO3 (1g each) as target material irradiated at ETRR-1, ETRR-2 and IRI research reactors. Cesium-131 was prepared according to the thermal neutron reaction 130Ba (n,γ ) 131 Ba (β- decay)131 Cs. Carrier-free 131Cs is separated from the irradiated barium target, by precipitation of Ba2+ cations with addition of SO42- anions in excess and filtration of the formed precipitate . quality control investigations including radionuclidic, radiochemical and chemical purity of 131 Cs product has proved its suitability for nuclear medicine use

  3. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    Science.gov (United States)

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  4. Carrier detection in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    We were able to detect clinically normal carriers of xeroderma pigmentosum (XP) genes with coded samples of either peripheral blood lymphocytes or skin fibroblasts, using a cytogenetic assay shown previously to detect individuals with cancer-prone genetic disorders. Metaphase cells of phytohemagglutinin-stimulated T-lymphocytes from eight individuals who are obligate heterozygotes for XP were compared with those from nine normal controls at 1.3, 2.3, and 3.3 h after x-irradiation (58 R) during the G2 phase of the cell cycle. Lymphocytes from the XP heterozygotes had twofold higher frequencies of chromatid breaks or chromatid gaps than normal (P less than 10(-5)) when fixed at 2.3 or 3.3 h after irradiation. Lymphocytes from six XP homozygotes had frequencies of breaks and gaps threefold higher than normal. Skin fibroblasts from an additional obligate XP heterozygote, when fixed approximately 2 h after x-irradiation (68 R), had a twofold higher frequency of chromatid breaks and a fourfold higher frequency of gaps than fibroblasts from a normal control. This frequency of aberrations in cells from the XP heterozygote was approximately half that observed in the XP homozygote. The elevated frequencies of chromatid breaks and gaps after G2 phase x-irradiation may provide the basis of a test for identifying carriers of the XP gene(s) within known XP families

  5. Carrier localization in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, C. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States); Walukiewicz, W. [Lawrence Berkeley National Lab., CA (United States); Haller, E.E. [Lawrence Berkeley National Lab., CA (United States)][California Univ., Berkeley, CA (United States)] [and others

    1996-09-01

    In wide bandgap GaN, a large number of interesting and important scientific questions remain to be answered. For example, the large free electron concentration reaching 10{sup 19} to 10{sup 20} cm{sup - 3} in nominally undoped material are ascribed to intrinsic defects because no chemical impurity has been found at such high concentrations. According to theoretical models, a nitrogen vacancy acts as a donor but its formation energy is very large in n-type materials, making this suggestion controversial. We have investigated the nature of this yet unidentified donor at large hydrostatic pressure. Results from infrared reflection and Raman scattering indicate strong evidence for localization of free carriers by large pressures. The carrier density is drastically decreased by two orders of magnitude between 20 and 30 GPa. Several techniques provide independent evidence for results in earlier reports and present the first quantitative analysis. A possible interpretation of this effect in terms of the resonant donor level is presented.

  6. Reactor container

    International Nuclear Information System (INIS)

    A reactor container has a suppression chamber partitioned by concrete side walls, a reactor pedestal and a diaphragm floor. A plurality of partitioning walls are disposed in circumferential direction each at an interval inside the suppression chamber, so that independent chambers in a state being divided into plurality are formed inside the suppression chamber. The partition walls are formed from the bottom portion of the suppression chamber up to the diaphragm floor to isolate pool water in a divided state. Operation platforms are formed above the suppression chamber and connected to an access port. Upon conducting maintenance, inspection or repairing, a pump is disposed in the independent chamber to transfer pool water therein to one or a plurality of other independent chambers to make it vacant. (I.N.)

  7. Reactor building

    International Nuclear Information System (INIS)

    The present invention concerns a structure of ABWR-type reactor buildings, which can increase the capacity of a spent fuel storage area at a low cost and improved earthquake proofness. In the reactor building, the floor of a spent fuel pool is made flat, and a depth of the pool water satisfying requirement for shielding is ensured. In addition, a depth of pool water is also maintained for a equipment provisionally storing pool for storing spent fuels, and a capacity for a spent fuel storage area is increased by utilizing surplus space of the equipment provisionally storing pool. Since the flattened floor of the spent fuel pool is flushed with the floor of the equipment provisionally storing pool, transfer of horizontal loads applied to the building upon occurrence of earthquakes is made smooth, to improve earthquake proofness of the building. (T.M.)

  8. Nuclear reactors

    International Nuclear Information System (INIS)

    Disclosed is a nuclear reactor cooled by a freezable liquid has a vessel for containing said liquid and comprising a structure shaped as a container, and cooling means in the region of the surface of said structure for effecting freezing of said liquid coolant at and for a finite distance from said surface for providing a layer of frozen coolant on and supported by said surface for containing said liquid coolant. In a specific example, where the reactor is sodium-cooled, the said structure is a metal-lined concrete vault, cooling is effected by closed cooling loops containing NaK, the loops extending over the lined surface of the concrete vault with outward and reverse pipe runs of each loop separated by thermal insulation, and air is flowed through cooling pipes embedded in the concrete behind the metal lining. 7 claims, 3 figures

  9. Chinese medicinal herbs for asymptomatic carriers of hepatitis B virus infection

    DEFF Research Database (Denmark)

    Liu, J P; McIntosh, H; Lin, Haili

    2001-01-01

    About 350 million people are chronically infected carriers of hepatitis B virus and are at a higher risk of serious illness and death from cirrhosis of the liver and liver cancer. Chinese medicinal herbs have been used widely for more than 2000 years to treat chronic liver disease.......About 350 million people are chronically infected carriers of hepatitis B virus and are at a higher risk of serious illness and death from cirrhosis of the liver and liver cancer. Chinese medicinal herbs have been used widely for more than 2000 years to treat chronic liver disease....

  10. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR followed by an upflow sludge blanket reactor (UASB treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Gracie F. R. Fernandes

    2006-04-01

    Full Text Available Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1 no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 56 a 18 h no primeiro reator e de 13 a 4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 71,1 a 87,5% no reator ABR e de 41,5 a 50,1% no reator UASB, resultando em valores médios de 86,8 a 94,9% para o sistema de tratamento anaeróbio em dois estágios com carga orgânica volumétrica (COV, na faixa de 5,05 a 10,12 kg DQOtotal (m³ d-1, no reator ABR, e de 2,83 a 9,63 kg DQOtotal (m³ d-1, no reator UASB. As eficiências de remoção de SST e SSV foram da ordem de 95,6%. O teor de metano no biogás manteve-se acima de 70% para os dois reatores. A produção volumétrica de metano máxima de 0,755 m³ CH4 (m³ d-1 ocorreu no reator 1, com COV de 10,12 kg DQOtotal (m³ d-1 e TDH de 18 h. Os valores médios de pH variaram na faixa de 7,2 a 8,0 para os efluentes dos reatores 1 e 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações abaixo de 200 mg L-1. Com variações abruptas e acentuadas de concentrações de SST e DQOtotal do afluente, os reatores mantiveram as eficiências de remoção de DQO e sólidos suspensos, em torno de 70%, e a qualidade do biogás, com 80% de CH4.In this work it was evaluated the effect of swine wastewater with total suspended solid (TSS concentration around 6000 mg L-1 (CODtotal from 7557 to 11640 mg L-1 on the performance of two stage anaerobic process constituted of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB installed in series, in pilot scale testing (volumes of 530 L and

  11. NEUTRONIC REACTORS

    Science.gov (United States)

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    The liquid metal (sodium) cooled fast breeder reactor has got fuel subassemblies which are bundled and enclosed by a common can. In order to reduce bending of the sides of the can because of the load caused by the coolant pressure the can has got a dodecagon-shaped crosssection. The surfaces of the can may be of equal width. One out of two surfaces may also be convex towards the center. (RW)

  13. CARBOHYDRATE ENHANCED BIOFILM GROWTH IN ANAEROBIC FLUIDIZED BED REACTOR TREATING SYNTHETIC WASTEWATER = EFEITO DA ADIÇÃO DE CARBOIDRATOS NO CRESCIMENTO DE BIOFILME EM REATOR ANAERÓBIO DE LEITO FLUIDIFICADO

    Directory of Open Access Journals (Sweden)

    Renata Medici Frayne Cuba

    2010-01-01

    Full Text Available Biofilm dynamics in anaerobic fluidized bed reactor was studied since start-up during a 600-day operation time. Specific methanogenic activity tests revealed gas production by the anaerobic biomass since 30th operation day. Scanning Electron Microscopy (SEM micrographs permitted to verify three bacterial development stages depending on the organic loading imposed to the system. Increasing of organic loading caused methanogenic specific activity depletion due to diffusion resistance through anaerobic biofilm. With maximum organic loading of 28.5 kg COD.m-3.day-1, almost 10% of the volatile solids fixed in inert particle surface were detected as polymeric extracellular material. = A dinâmica do biofilme em um reator anaeróbio de leito fluidificado foi estudada durante 600 dias desde a partida do sistema. Testes de atividade metanogênica específica revelaram produção de gás pela biomassa anaeróbia desde o trigésimo dia de operação. Microfotografias obtidas com microscópio eletrônico de varredura (MEV permitiram verificar três estágios no desenvolvimento das bactérias, dependendo da carga orgânica imposta ao sistema. O aumento de carga orgânica causou a diminuição da atividade metanogênica específica devido à resistência à difusividade ao longo do biofilme anaeróbio. Com carga orgânica máxima de 28,5 kg COD. m-3.dia-1, aproximadamente 10% dos sólidos voláteis aderidos na superfície das partículas inertes foi identificado como material polimérico extracelular.

  14. Biological activated carbon fluidized-bed system to treat gasoline-contaminated groundwater

    International Nuclear Information System (INIS)

    An integrated biological granular activated carbon fluidized-bed reactor (GAC-FBR) and a biological fluidized-bed reactor (FBR) charged with nonactivated carbon were evaluated for treating groundwater contaminated with the gasoline constituents benzene, toluene, and xylenes (BTX). The systems were studied under several conditions including startup, steady-state, and step-load increase conditions. Development of bioactivity in the GAC-FBR was faster than in the FBR using a nonactivated carbon biomass carrier. Under two steady-state conditions, organic loading rates of 3 and 6 kg-chemical oxygen demand (COD)/m3-day, BTX removal was similar in the two systems with more than 90% of applied BTX removed. The GAC-FBR produced superior effluent quality during step organic load rate (OLR) increases compared to the FBR. The results from an extremely high step OLR increase show the formation of partial oxidization products from the degradation of BTX. Significant adsorption capacity was still observed after the biofilm developed, although capacity gradually decreased over a 6-month period of operation to approximately 50% of its original value

  15. Nuclear reactor

    International Nuclear Information System (INIS)

    A detector having high sensitivity to fast neutrons and having low sensitivity to thermal neutrons is disposed for reducing influences of neutron detector signals on detection values of neutron fluxes when the upper end of control rod pass in the vicinity of the neutron flux detector. Namely, the change of the neutron fluxes is greater in the thermal neutron energy region while it is smaller in the fast neutron energy region. This is because the neutron absorbing cross section of B-10 used as neutron absorbers of control rods is greater in the thermal neutron region and it is smaller in the fast neutron region. As a result, increase of the neutron detection signals along with the local neutron flux change can be reduced, and detection signals corresponding to the reactor power can be obtained. Even when gang withdrawal of operating a plurality of control rods at the same time is performed, the reactor operation cycle can be measured accurately, thereby enabling to shorten the reactor startup time. (N.H.)

  16. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  17. Recent Advances in Subunit Vaccine Carriers.

    Science.gov (United States)

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  18. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al2O3) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  19. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    International Nuclear Information System (INIS)

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe2+ concentration of 40 mmol/L and H2O2 dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH)2 was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD5) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m2 carrier day)

  20. Hepatic or splenic targeting of carrier erythrocytes: a murine model

    International Nuclear Information System (INIS)

    Carrier mouse erythrocytes, i.e., red cells, subjected to a dialysis technique involving transient hypotonic hemolysis and isotonic resealing were treated in vitro in three different ways: (a) energy depletion by exposure for 90 min at 42 degrees C; (b) desialylation by incubation with neuroaminidase; and (c) oxidative stress by incubation with H2O2 and NaN3. Procedure (c) afforded maximal damage, as shown by analysis of biochemical properties of the treated erythrocytes. Reinfusion in mice of the variously manipulated erythrocytes following their 51Cr labeling showed extensive fragilization as indicated by rapid clearance of radioactivity from the circulation. Moreover, both the energy-depleted and the neuraminidase-treated erythrocytes showed a preferential liver uptake, reaching 50 and 75%, respectively, within 2 h. On the other hand, exposure of erythrocytes to the oxidant stress triggered a largely splenic removal, accounting for almost 40% of the reinjected cells within 4 h. Transmission electron microscopy of liver from mice receiving energy-depleted erythrocytes demonstrated remarkable erythrocyte congestion within the sinusoids, followed by hyperactivity of Kupffer cells and by subsequent thickening of the perisinusoidal Disse space. Concomitantly, levels of serum transaminase activities were moderately increased. Each of the three procedures of manipulation of carrier erythrocytes may prove applicable under conditions where selective targeting of erythrocyte-encapsulated chemicals and drugs to either the liver or the spleen has to be achieved

  1. Global Telecommunications Services: Strategies of Major Carriers

    OpenAIRE

    Jerry Mccreary; William R. Boulton; Chetan Sankar

    1993-01-01

    The globalization of telecommunications markets is of primary concern for today’s large telecommunications carriers. International business telecommunications is growing at a rate twice that of domestic traffic. Multi-national customers with offices around the world are demanding integrated solutions to their telecommunications needs. As telecommunication carriers respond to these customers’ needs, the carriers are beginning to expand outside their national boundaries. This paper identifi...

  2. Free carrier absorption in quantum cascade structures

    OpenAIRE

    Carosella, F.; Ndebeka-Bandou, C.; Ferreira, R.; Dupont, E; K. Unterrainer; Strasser, G.; Wacker, Andreas; Bastard, G.

    2011-01-01

    We show that the free carrier absorption in Quantum Cascade Lasers is very small and radically different from the classical Drude result on account of the orthogonality between the direction of the carrier free motion and the electric field of the laser emission. A quantum mechanical calculation of the free carrier absorption and inter-subband oblique absorption induced by interface defects, coulombic impurities and optical phonon absorption/emission is presented for QCL's with a double quant...

  3. Secure quantum carriers for quantum state sharing

    OpenAIRE

    Karimipour, Vahid; Marvian, Milad

    2010-01-01

    We develop the concept of quantum carrier and show that messages can be uploaded and downloaded from this carrier and while in transit, these messages are hidden from external agents. We explain in detail the working of the quantum carrier for different communication tasks, including quantum key distribution, classical secret and quantum state sharing among a set of $n$ players according to general threshold schemes. The security of the protocol is discussed and it is shown that only the legi...

  4. Heterozygote advantage in Tay-Sachs carriers?

    OpenAIRE

    Spyropoulos, B; Moens, P B; Davidson, J.; Lowden, J. A.

    1981-01-01

    Chi-square analyses of new data as well as data previously reported by Myrianthopoulos have shown that grandparents of Tay-Sachs carriers die from proportionally the same causes as grandparents of noncarriers. It is unlikely that there is any advantage to being a Tay-Sachs carrier insofar as resistance to tuberculosis is concerned. Our results are further evidence to support Fraikor's claim that the high carrier frequency of the allele in Ashkenazi Jews is probably caused by a combination of ...

  5. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    In a BWR type nuclear reactor, the number of first fuel assemblies (uranium) loaded in a reactor core is smaller than that of second fuel assemblies (mixed oxide), the average burnup degree upon take-out of the first fuel assemblies is reduced to less than that of the second fuel assemblies, and the number of the kinds of the fuel rods constituting the first fuel assemblies is made smaller than that of the fuel rods constituting the second fuel assemblies. As a result, the variety of the plutonium enrichment degree is reduced to make the distribution of the axial enrichment degree uniform, thereby enabling to simplify the distribution of the enrichment degree. Then the number of molding fabrication steps for MOX fuel assemblies can be reduced, thereby enabling to reduce the cost for molding and fabrication. (N.H.)

  6. Multi-carrier technologies for wireless communication

    CERN Document Server

    Nassar, Carl R; Wu, Zhiqiang; Wiegandt, David A; Zekavat, S Alireza; Shattil, Steve

    2006-01-01

    1. Introduction. 2. Overview of Multi-Carrier Technologies. 3. High-Performance High-Capacity MC-CDMA for Future Generations: The CI Approach. 4. High Performance, High Throughput TDMA via Multi-Carrier Implementations. 5. High-Performance, High-Capacity DS-CDMA via Multicarrier Implementation. 6. High-Performance, High-Throughput OFDM with Low PAPR via Carrier Interferometry Phase Coding. 7. The Marriage of Smart Antenna Arrays and Multi-Carrier Systems: Spatial Sweeping, Transmit Diversity, and Directionality. Index.

  7. Separation and purification of carrier-free cobalt-58 from neutron irradiated nickel foil for electrochemical studies

    International Nuclear Information System (INIS)

    Full text: Cobalt-58 will be used for tracer studies of the behaviour of cobalt radionuclides in no- carrier-added form during electrochemical deposition on metal backing. The 58Co can be produced by using 58Ni(n,p) 58Co nuclear reaction in nuclear reactor. 58Co (T1/2=71 days) decays by positron emitting (15%) and electron capture (85%) with simultaneous γ -irradiation. In this study, we have developed the simple method for separation and purification of 58Co in no- carrier-added form from neutron irradiated nickel foil. Previously, we have studied the dissolution of nickel foil in various media to find best conditions for rapid dissolution of nickel target. It was found that nickel foil dissolved completely without heating in 6.3 M hydrobromic acid with addition a few drops of hydrogen peroxide. After dissolution of the target material, the cobalt-58 is separated from nickel, copper, iron and other elements by extraction chromatography. The solution in 6.3 M hydrobromic acid is passed through a column containing suspension of polytetrafluoroethylene powder with 0.5 M trioctylamine in xylene, equilibrated with the same acid. Nickel is not extracted and passed through column. Cobalt is retained and finally eluted with 3 M HBr in the one free column volume. The cobalt fraction is percolated through a column filled with suspension of pure polytetrafluoroethylene powder to purify from the admixture of extractant. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with aqua regia. After treatment the damp residue is dissolved in electrolyte and the obtained solution is used to study of 58Co electrochemical deposition procedure. The yield of cobalt-58 was higher than 93% and the radiochemical purity was more than 99%. This method will be used for separation and purification of cobalt-57 to make of sealed sources for X-ray fluorescence analysis

  8. Types of Nuclear Reactors

    International Nuclear Information System (INIS)

    The presentation is based on the following areas: Types of Nuclear Reactors, coolant, moderator, neutron spectrum, fuel type, pressurized water reactor (PWR), boiling water reactor (BWR) reactor pressurized heavy water (PHWR), gas-cooled reactor, RBMK , Nuclear Electricity Generation,Challenges in Nuclear Technology Deployment,EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR.

  9. Nuclear reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assemblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters in the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters in the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance

  10. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Electronically Filed Tariffs § 221.204... carrier, the effective and prospective fares of the adopted carrier shall be changed to reflect the...

  11. Nuclear research reactors

    International Nuclear Information System (INIS)

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.)

  12. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  13. Production of carrier-free radioactive copper from neutron irradiated zinc targets

    International Nuclear Information System (INIS)

    The present study describes the production of carrier-free radioactive copper from natural zinc metal as target material irradiated at ETRR-2 and ETRR+1 research reactors, Egypt. Radioactive copper-64 and 67 were prepared according to the fast neutron reaction 64 Zn (n,p)64 Cu and 67 Zn (n,p)67 Cu. The zinc chloride radiotracer in 8 M HCl acid solutions was loaded onto the anion exchanger resin (Dowex 1 x 8, Cl - ion form, 200-400 mesh, i.d. 0.9 x 10 cm) at flow rate of 0.8 ml/min. Carrier-free radioactive Cu was eluted from the resin by 2.5 M HCl leaving zinc chloride retained on the resin. Quality control investigations including radionuclidic, radiochemical and chemical purity of carrier-free radioactive Cu product has proved its suitability for nuclear medicine use

  14. The IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors

    International Nuclear Information System (INIS)

    The Reactor Institute Delft was inaugurated in May 2009 as a new IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (i) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (ii) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques; and, as a cross-cutting activity, (iii) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. (author)

  15. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    International Nuclear Information System (INIS)

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction

  16. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail: lucie.korecka@upce.cz; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)

    2005-05-15

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  17. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Science.gov (United States)

    Korecká, Lucie; Ježová, Jana; Bílková, Zuzana; Beneš, Milan; Horák, Daniel; Hradcová, Olga; Slováková, Marcela; Viovy, Jean-Louis

    2005-05-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  18. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  19. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  20. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen; Annette L. Schafer

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Cover gas spaces for primary coolant vessel, such as a reactor container, a pump vessel and an intermediate heat exchanger vessel are in communication with each other by an inverted U-shaped pressure conduit. A transmitter and a receiver are disposed to the pressure conduit at appropriate positions. If vibration frequencies (pressure vibration) from low frequency to high frequency are generated continuously from the transmitter to the inside of the communication pipe, a resonance phenomenon (air-column resonance oscillation) is caused by the inherent frequency or the like of the communication pipe. The frequency of the air-column resonance oscillation is changed by the inner diameter and the clogged state of the pipelines. Accordingly, by detecting the change of the air-column oscillation characteristics by the receiver, the clogged state of the flow channels in the pipelines can be detected even during the reactor operation. With such procedures, steams of coolants flowing entrained by the cover gases can be prevented from condensation and coagulation at a low temperature portion of the pipelines, otherwise it would lead clogging in the pipelines. (I.N.)

  2. EBR-II and TREAT Digitization Project

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  3. Structure and Dynamics of Anaerobic Bacterial Aggregates in a Gas-Lift Reactor

    OpenAIRE

    Beeftink, H.H.; Staugaard, P

    1986-01-01

    Anaerobic mixed-culture aggregates, which converted glucose to acetic, propionic, butyric, and valeric acids, were formed under controlled conditions of substrate feed (carbon limitation) and hydraulic regimen. The continuous-flow system used (anaerobic gas-lift reactor) was designed to retain bacterial aggregates in a well-mixed reactor. Carrier availability (i.e., liquid-suspended sand grains) proved necessary for bacterial aggregate formation from individual cells during reactor start-up. ...

  4. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    Science.gov (United States)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  5. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  6. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang; Manolova, Anna Vasileva; Rasmussen, Anders; Dittmann, Lars; Berger, Michael Stübert

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...

  7. Towards 100 gigabit carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2010-01-01

    OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  8. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...... that the availability of a multicast connection can be significantly increased by applying relevant resilience techniques....

  9. Elements of reactor system design

    International Nuclear Information System (INIS)

    When the first commercial nuclear power plants were designed, each plant was treated as a new design problem. However, it became apparent that the full design effort was far too lengthy and costly to be undertaken for each order. The reactor system vendors have therefore developed a series of essentially standard reactor designs. A utility customer is offered that standard design which most closely meets his requirements. Only minor modification are made in order to meet particular local requirements. The reactor design effort for such a plant is generally limited to (a) a verification that the standard system proposed will meet the required specifications and (b) a revision of the safety analysis to take into consideration the features of the particular site. Standard system designs are usually revised on a regular basis to take advantage of new developments and operational experience. It has become customary to refer to the reactor core and entire primary system as the ''nuclear steam supply system''. In the United States, when a reactor vendor supplies a system to a public utility, it is generally only the ''nuclear steam supply system'' and specific auxiliaries which are supplied. The reactor vendor will specify the general requirements of the steam cycle, vapor container and auxiliary systems and safety systems which are not vendor supplied. The detailed design of these systems, as well as the complete structural and electrical design, is normally handled by the utility or an architect-engineer engaged by the utility. The safety analysis is usually conducted by the reactor vendor. As more experience with nuclear systems is gained, it is likely that the larger utilities will assume an expanded role in the design process

  10. The Intelligent Properties of Micro-reactors for Preparating Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Gang WEI; Hai Yan HUANG; Rong Chun XIONG

    2003-01-01

    TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigated on transmission electron microscopy (TEM) by using the original sample, freeze prepared sample, and dyeing treated sample, respectively. UV-VIS spectrometry was used to study the growth process of TiO2 nanoparticles in main reactors. The results showed that micro-reactors with nanometer magnitude had spherical or oval structures, and could restore to their original structure after they were destroyed. The products prepared in the original micro-reactors were similar to that in the micro-reactors recycled for many times, suggesting that the micro-reactors had memory function.

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. MULTI-FLUX FORMULATION OF THE BOLTZMANN EQUATION FOR CARRIER TRANSPORT IN SEMICONDUCTORS

    OpenAIRE

    Banoo, Kausar; Lundstrom, Mark

    1998-01-01

    This report describes how the Boltzmann Transport Equation for carrier transport in s~~miconductocrasn be formulated in a manner suit able for numerical simulation. It arose from an effort to generalise earlier work which used pre-computed scattering matrices to solve the Boltzmann Transport Equation. It also generalises the formulation used to treat neutron transport so that energy band-structure, scattering in semiconductors and electric fields can be treated. We present two different, but ...

  14. Selection of Carrier Waveforms for PWM Inverter

    Institute of Scientific and Technical Information of China (English)

    陈国呈; 屈克庆; 许春雨; 孙承波

    2003-01-01

    In this paper the influence of different carrier waveforms upon the output characteristics of PWM inverter is described in detail. When a triangular carrier waveform is used in hard-switching PWM inverters, harmonics exist in the neighborhood of the output frequency of the inverter output voltage and current due to the dead time. The triangular carrier waveform used in soft-switching PWM inverter will cause difficulties in controlling resonance-trigger time, higher loss in the resonant circuit, and less utilization of the DC bus voltage. If a sawtooth carrier is used in hard-switching PWM inverter, there will be severe distortion in the current waveform. When sawtooth carriers with alternate positive and negative slopes are used in soft-switching PWM inverters, the resonancetrigger time is easy to control, and distortion in the output voltage and current caused by the dead time will not appear.

  15. Vapor transport of fission products in postulated severe light water reactor accidents

    International Nuclear Information System (INIS)

    A methodology based on chemical thermodynamics has been developed to treat the transport of volatile fission products (FPs) through the core and the primary system. The FPs considered are cesium, iodine, tellurium, strontium, and ruthenium, which may pose the major biohazard in postulated severe accidents in light water reactors. The vapor transport of FPs depends on the volatilities of the chemical compounds that are formed in the carrier gas environment in which the FPs are released and transported. Chemically stable forms were evaluated by minimizing the total free energies of the FP/ fuel/gas environment systems. Many gaseous species for each FP were considered and their partial pressures calculated over a range of temperatures (600 to 3000K), the carrier gas environments (total pressure and ratio of H2/H2O), and the total amount of FPs in the system. It was found that the major dependence of the concentration of the FPs was on the gas temperature, and a model was developed to predict the source of volatile FPs. The model showed that the FPs leaving the core region would condense in the cooler regions of the upper plenum and/or the primary system either on the cold surfaces or be transported further as aerosols

  16. Methanol as an energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, P.; Grube, T.; Hoehlein, B. (eds.)

    2006-07-01

    For the future, a strongly growing energy demand is expected in the transport sector worldwide. Economically efficient oil production will run through a maximum in the next decade. Higher fuel prices and an environmentally desirable reduction of emissions will increase the pressure for reducing fuel consumption and emissions in road traffic. These criteria show the urgent necessity of structural changes in the fuel market. Due to its advantages concerning industrial-scale production, storage and global availability, methanol has the short- to medium-term potential for gaining increased significance as a substitution product in the energy market. Methanol can be produced both from fossil energy sources and from biomass or waste materials through the process steps of synthesis gas generation with subsequent methanol synthesis. Methanol has the potential to be used in an environmentally friendly manner in gasoline/methanol mixtures for flexible fuel vehicles with internal combustion engines and in diesel engines with pure methanol. Furthermore, it can be used in fuel cell vehicles with on-board hydrogen production in direct methanol fuel cell drives, and in stationary systems for electricity and heat generation as well as for hydrogen production. Finally, in portable applications it serves as an energy carrier for electric power generation. In this book, the processes for the production and use of methanol are presented and evaluated, markets and future options are discussed and issues of safety and environmental impacts are addressed by a team of well-known authors. (orig.)

  17. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    Science.gov (United States)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  18. Effects of carrier-carrier scattering on population inversion in graphene under pulse photoexcitation

    Science.gov (United States)

    Satou, Akira; Ryzhii, Victor; Otsuji, Taiichi

    2015-01-01

    We study the carrier relaxation dynamics in intrinsic graphene after pulse photoexcitation and reveal effects of intraband carrier-carrier scattering on population inversion in the terahertz region, by conducting simulation based on the quasi-classical Boltzmann equation. It is demonstrated that by changing the dielectric constant of the surrounding materials the rate of carrier-carrier scattering can be controlled and the relaxation dynamics differs for cases with low and high dielectric constants. It is also found that the Pauli blocking of photogeneration in case of the pulse photoexcitation causes decrease in the photocarrier concentration and thus weakening of population inversion with higher dielectric constant.

  19. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  20. Reactor container

    International Nuclear Information System (INIS)

    Purpose: To prevent shocks exerted on a vent head due to pool-swell caused within a pressure suppression chamber (disposed in a torus configuration around the dry well) upon loss of coolant accident in BWR type reactors. Constitution: The following relationship is established between the volume V (m3) of a dry well and the ruptured opening area A (m2) at the boundary expected upon loss of coolant accident: V >= 30340 (m) x A Then, the volume of the dry well is made larger than the ruptured open area, that is, the steam flow rate of leaking coolants upon loss of coolant accident to decrease the pressure rise in the dry well at the initial state where loss of coolant accident is resulted. Accordingly, the pressure of non-compressive gases jetted out from the lower end of the downcomer to the pool water is decreased to suppress the pool-swell. (Ikeda, J.)

  1. Simultaneous Organics and Nutrients Removal from Domestic Wastewater in a Combined Cylindrical Anoxic/Aerobic Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    Husham T. Ibrahim

    2014-03-01

    Full Text Available The aim of present study was to design and construct an continuous up-flow pilot scale Moving Bed Biofilm Reactor (MBBR which is consists of combined cylindrical Anoxic/Aerobic MBBR in nested form with anoxic/aerobic volume ratio equal to 0.16 to treated 4 m3 /days of domestic wastewater in Chongqing city at Southwest China. The treatment must be satisfactory to meet with grade B of discharge standard of pollutants for municipal wastewater treatment plant in China (GB/T18918-2002. Kaldnes (K1 media was used as a carrier in both reactors at a media fill ratio equal to 50%. The reactors was operated under the Anoxic/Oxic (An/O process which must meet stringent TN limits without sludge returning into the system and only an internal recycling was performed from aerobic to anoxic reactor. After developing the biofilm on the media, reactor was operated at 3 different Hydraulic Residence Time (HRT ranging from 4.95 to 8.25 h. During operation the internal recycle ratio to eliminate nitrogen compounds were 100% of inflow rate and the average Dissolved Oxygen concentration (DO in aerobic and anoxic MBBRs were 4.49 and 0.16 mg/L, respectively. The obtained results showed that the HRT of 6.2 h was suitable for simultaneous removal of COD, NH4+-N, TN and TP. In this HRT the average removal efficiencies were 93.15, 98.06, 71.67 and 90.88% for COD, NH4+-N, TN and TP, respectively.

  2. Challenges associated with Re-186: from 'carrier-free' 99mTc(V)-DMS to 'carrier' containing 186Re(V)-DMS

    International Nuclear Information System (INIS)

    Efforts on radiolabeling with rhenium (Re-186, Re-188), a tumor agent to resemble the pentavalent polynuclear technetium complex of dimercaptosuccinic acid [99mTc(V)-DMS] have been reported, for radiotherapeutical use. Nevertheless, in spite of the periodic analogies between both radiometals, differences in the redox potential and the carrier concentration have made the radiolabelling of the rhenium counterpart difficult. Based on the drug-design bases set for the Tc-complex, the present work is centred on the study of the carrier effect on the radiolabelling of the pentavalent DMS complex of both radiometals at an alkaline pH. Gathered data indicated very interesting effect of the carrier present in either the Tc-99m eluate or the reactor produced Re-186; although no effect of the carrier present in the generator eluate on the Tc-complex radiolabelling was detected, the great dependence of ligand and reducing agent on the Re amount present (two to four order higher than Tc) as carrier was noticeable in the Re-complex labelling. Under a good control of the above parameters, 186Re(V)-DMS was liable to be labeled with high yield (93-97%) at alkaline pH and room temperature. The mice biodistribution (Ehrlich Ascites Tumor bearing animals) of 186Re(V)-DMS superimposed that of 99mTc(V)-DMS in most tissue except the excretory organs. The interesting effect of radiometal carrier on the biological behavior of 99mTc(V)-DMS and 186Re(V)-DMS will be discussed. (author)

  3. 49 CFR 369.2 - Classification of carriers-motor carriers of property, household goods carriers, and dual...

    Science.gov (United States)

    2010-10-01

    ... operating revenues after applying the revenue deflator formula shown in Note A. (3) When a business combination occurs such as a merger, reorganization, or consolidation, the surviving carrier shall...

  4. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao; Fu, Rong; Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2009-01-01

    technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  5. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao;

    2009-01-01

    Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and T-MPLS, it is now possible to use Ethernet as a transport...... OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  6. ISRAEL’S NATIONAL WATER CARRIER

    OpenAIRE

    Nathan Cohen

    2008-01-01

    The National Water Carrier of Israel (Ha Movil Ha' Artzi). It is the main water project of Israel and its main task is to transfer water from the rainy north to the center and to the arid south. The National Water Carrier connects the Sea of Galilee with Israel's water system. The original goal was to provide irrigation water to Negev. Today 80% of the water is utilized for Israel's domestic consumption. Most of the water works in Israel are combined with the National Water Carrier for about...

  7. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  8. Desenvolvimento e operação de reator anaeróbio de manta de lodo (UASB no tratamento dos efluentes da suinocultura em escala laboratorial Development and operation of an upflow anaerobic sludge blanket reactor (UASB treating liquid effluent from swine manure in laboratory scale

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos

    2006-02-01

    Full Text Available A atividade suinícola vem, desde meados da década de 70, sendo uma das mais poluidoras atividades agroindustriais no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver um Reator Anaeróbio de Manta de Lodo (UASB-Upflow Anaerobic Sludge Blanket visando tratar os dejetos produzidos com máxima eficiência dentro de um tempo e com custo reduzidos. Para tanto um experimento em escala laboratorial foi projetado e monitorado no Laboratório de Análise de Água do Departamento de Engenharia da Universidade Federal de Lavras (LAADEG, sendo composto por um Tanque de Acidificação e Equalização (TAE, um Reator Anaeróbio de Manta de Lodo e uma Lagoa Aerada Facultativa (LAF, o qual foi alimentado com fluxo contínuo. As análises físico-químicas realizadas foram: DQO, DBO5, Sólidos Totais (Fixos e Voláteis, Temperatura, pH, Nitrogênio, Fósforo, Acidez e Alcalinidade Total. O sistema proporcionou eficiência de remoção média de 93% de DQO, 84% de DBO5 e 85% de Sólidos Totais Voláteis, demonstrando adequada adaptação aos diversos tempos de detenção hidráulica adotados (55, 40, 30, 25, 18 e 15 horas. Os parâmetros adotados na partida do reator UASB foram: COV: 1,11kgDQO.m-3.d-1, COB: 0,019 kgDBO5.kgSVT-1.d-1 e TDH: 55h.The swine production, since 70th , is one of the most pollutant agro-industrial activities in the Minas Gerais State, Brazil. The objective of this research was to develop an Upflow Anaerobic Sludge Blanket Reactor (UASB, aiming at treating the effluent generated within a maximum efficiency and minimum time and cost. Therefore, a lab-scale reactor was built up and monitored in the laboratory of Engineering Department at the Federal University of Lavras (UFLA. The system consisted of an Acidification and Equalization Tank (AET, an Upflow Anaerobic Sludge Blanket reactor (UASB, and an Aerated Facultative Pond (AFP. The system was fed continuously. The physical-chemical analyses carried out were: COD, BOD5, Total

  9. Performance of UASB reactors in two stages under different HRT and OLR treating residual waters of swine farming Desempenho de reatores UASB em dois estágios sob diferentes TDH e COV tratando águas residuárias de suinocultura

    Directory of Open Access Journals (Sweden)

    Estevão Urbinati

    2013-04-01

    Full Text Available In this study it was evaluated the effects of hydraulic retention time (HRT and Organic Loading Rate (OLR on the performance of UASB (Upflow Anaerobic Sludge Blanket reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2, respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2 was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d-1. The average removal efficiencies of chemical oxygen demand (COD and total suspended solids (TSS ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2. The volumetric production of methane in the system (R1 + R2 ranged from 0.295 to 0.721 m³CH4 (m³ reactor d-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.Neste trabalho, avaliou-se o efeito do tempo de detenção hidráulica (TDH e da carga orgânica volumétrica (COV no desempenho de reatores UASB (Upflow Anaerobic Sludge Blanket, em dois estágios, tratando águas residuárias de suinocultura. O sistema foi constituído por dois reatores UASB em escala-piloto, instalados em série, com volumes de 908 e 188 L, para o primeiro e segundo estágios (R1 e R2, respectivamente. Os TDH, aplicados no sistema de tratamento anaeróbio, em dois estágios (R1 + R2, foram de 19,3; 29,0 e 57,9 h. As COVs aplicadas no R1 variaram de 5,5 a 40,1 kg DQOtotal (m³ d-1. As eficiências médias de remoção de demanda química de oxigênio total (DQOtotal e s

  10. Non-dispersive carrier transport in molecularly doped polymers and the convection-diffusion equation

    Science.gov (United States)

    Tyutnev, A. P.; Parris, P. E.; Saenko, V. S.

    2015-08-01

    We reinvestigate the applicability of the concept of trap-free carrier transport in molecularly doped polymers and the possibility of realistically describing time-of-flight (TOF) current transients in these materials using the classical convection-diffusion equation (CDE). The problem is treated as rigorously as possible using boundary conditions appropriate to conventional time of flight experiments. Two types of pulsed carrier generation are considered. In addition to the traditional case of surface excitation, we also consider the case where carrier generation is spatially uniform. In our analysis, the front electrode is treated as a reflecting boundary, while the counter electrode is assumed to act either as a neutral contact (not disturbing the current flow) or as an absorbing boundary at which the carrier concentration vanishes. As expected, at low fields transient currents exhibit unusual behavior, as diffusion currents overwhelm drift currents to such an extent that it becomes impossible to determine transit times (and hence, carrier mobilities). At high fields, computed transients are more like those typically observed, with well-defined plateaus and sharp transit times. Careful analysis, however, reveals that the non-dispersive picture, and predictions of the CDE contradict both experiment and existing disorder-based theories in important ways, and that the CDE should be applied rather cautiously, and even then only for engineering purposes.

  11. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  12. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  13. Reactor calculations for improving utilization of TRIGA reactor

    International Nuclear Information System (INIS)

    A brief review of our work on reactor calculations of 250 kW TRIGA with mixed core (standard + FLIP fuel) will be presented. The following aspects will be treated: - development of computer programs; - optimization of in-core fuel management with respect to fuel costs and irradiation channels utilization. TRIGAP programme package will be presented as an example of computer programs. It is based on 2-group 1-D diffusion approximation and besides calculations offers possibilities for operational data logging and fuel inventory book-keeping as well. It is developed primarily for the research reactor operators as a tool for analysing reactor operation and fuel management. For this reason it is arranged for a small (PC) computer. Second part will be devoted to reactor physics properties of the mixed cores. Results of depletion calculations will be presented together with measured data to confirm some general guidelines for optimal mixed core fuel management. As the results are obtained using TRIGAP program package results can be also considered as an illustration and qualification for its application. (author)

  14. Survey of research reactors

    International Nuclear Information System (INIS)

    A survey of reasearch reactors based on the IAEA Nuclear Research Reactor Data Base (RRDB) was done. This database includes information on 273 operating research reactors ranging in power from zero to several hundred MW. From these 273 operating research reactors 205 reactors have a power level below 5 MW, the remaining 68 reactors range from 5 MW up to several 100 MW thermal power. The major reactor types with common design are: Siemens Unterrichtsreaktors, 1.2 Argonaut reactors, Slowpoke reactors, the miniature neutron source reactors, TRIGA reactors, material testing reactors and high flux reactors. Technical data such as: power, fuel material, fuel type, enrichment, maximum neutron flux density and experimental facilities for each reactor type as well as a description of their utilization in physics and chemistry, medicine and biology, academic research and teaching, training purposes (students and physicists, operating personnel), industrial application (neutron radiography, silicon neutron transmutation doping facilities) are provided. The geographically distribution of these reactors is also shown. As conclusions the author discussed the advantages (low capital cost, low operating cost, low burn up, simple to operate, safe, less restrictive containment and sitting requirements, versatility) and disadvantages (lower sensitivity for NAA, limited radioisotope production, limited use of neutron beams, limited access to the core, licensing) of low power research reactors. 24 figs., refs. 15, Tab. 1 (nevyjel)

  15. Department of reactor technology

    International Nuclear Information System (INIS)

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  16. RB reactor noise analysis

    International Nuclear Information System (INIS)

    Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed

  17. Consistent time histories in transient dynamic analysis of reactors

    International Nuclear Information System (INIS)

    The paper includes the results of the comparison of consistent acceleration time histories corresponding to various selected earthquake records. The results of the transient dynamic seismic analysis of the TREAT Upgrade reactor support structure are also presented. (orig./HP)

  18. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann;

    2014-01-01

    ) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the...... contents. Only for boron and zinc were differences recorded. The reused water contribution in term of nutrients value for FTS was up to 108 euro ha-1 while MBR water reduced fertiliser costs by up to 114 euro ha-1....

  19. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Mohammad Barzegar-jalali

    2014-09-01

    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  20. Analysis of the TREAT LEU Conceptual Design

    International Nuclear Information System (INIS)

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy's Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration's Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  1. Analysis of the TREAT LEU Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Papadias, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Strons, P. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Management and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.

  2. Clusters of dislocations in a carrier wave

    International Nuclear Information System (INIS)

    Clusters of point dislocations (wave vortices) may be present within an otherwise perfect plane scalar wave, a carrier wave in two dimensions, which may be evanescent. The question arises: is it possible to deduce the orientation of the distant undisturbed carrier wave purely from local information about the cluster itself? For groups of two and four dislocations in a carrier wave, this may be done by using no other information than the local phase map or the individual positions of the singularities. The maximum number possible in a cluster with a carrier wave is 4 and the total strength (topological charge) of a cluster is always zero or ± 2. The study includes an examination of degenerate dislocations of strength zero or ± 1

  3. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the...... substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine and......, with the result that a certain asymmetry of inhibition (stronger inhibition of exit than of entrance) is to be expected. This asymmetry was termed “first order asymmetry”. In experiments with each of the three inhibitors an asymmetry of inhibition in the expected direction was observed which however...

  4. Physician Fee Schedule Carrier Specific Files

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) has condensed all 56 Physician Fee Schedule (PFS) carrier specific pricing files into one zip file. It is...

  5. Protection switching for carrier ethernet multicast

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2010-01-01

    This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carrier...... recovery path length, recovery time, number of branch nodes and operational complexity. The integrated approach therefore shows significant potential to increase the QoE for IPTV users in case of network failures and recovery actions....

  6. Airport Congestion When Carriers Have Market Power

    OpenAIRE

    Brueckner, Jan K.

    2002-01-01

    This paper analyzes airport congestion when carriers are nonatomistic, showing how the results of the road-pricing literature are modified when the economic agents causing congestion have market power. The analysis shows that when an airport is dominated by a monopolist, congestion is fully internalized, yielding no role for congestion pricing under monopoly conditions. Under a Cournot oligopoly, however, carriers are shown to internalize only the congestion they impose on themselves. A toll ...

  7. Evaluating multicast resilience in carrier ethernet

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang;

    2010-01-01

    This paper gives an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we show how multicast traffic, which is essential for IPTV can be protected. We detail the ackground for resilience mechanisms and their control and e present Carrier Ethernet...... resilience methods for linear nd ring networks. By simulation we show that the vailability of a multicast connection can be significantly increased by applying protection methods....

  8. Preparation and application of magnetic microsphere carriers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; XING Jianmin; LIU Huizhou

    2007-01-01

    Magnetic microsphere carriers have received considerable attention,primarily because of their wide applications in the fields of biomedicine and bioengineering.In this paper,preparation methods,surface modification and application of magnetic carriers are reviewed.Emphasis will be placed on recent biological and biomedical developments and trends such as enzyme immobilization,cell isolation,protein purification,target drugs and DNA separation.

  9. Hot carrier solar cell absorbers: investigation of carrier cooling properties of candidate materials

    Science.gov (United States)

    Conibeer, G.; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Smyth, Suntrana; Liao, Yuanxun; Lin, Shu; Wang, Pei; Dai, Xi; Chung, Simon; Yang, Jianfeng; Zhang, Yi

    2015-09-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  10. Radio Science Measurements with Suppressed Carrier

    Science.gov (United States)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  11. MAPLE reactors for the secure supply of medical isotopes

    International Nuclear Information System (INIS)

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  12. Aging of reactor vessels in LWR type reactors

    International Nuclear Information System (INIS)

    Most of the degradation mechanisms of nuclear components were not included on the design so they have to be treated a posteriori, and that imply a loss of capacity. In this paper the state of the art on the reactor pressure vessel neutron embrittlement and on the irradiation assisted stress corrosion cracking that affects internal components, are explained. Special attention is devoted on the influence of the neutron fluence on IASCC process, on the material alterations promoted by irradiation and their consequences on the susceptibility to this phenomenon. Regarding the reactor pressure vessel degradation, this paper discuss the application of the Master Curve on the structural integrity evaluation of the vessel. Other aspects related to further developments are also mentioned and the importance of a good materials ageing management on the operation of the plant is pointed out. (Author) 12 refs

  13. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  14. TREAT light water reactor source term experiments program

    International Nuclear Information System (INIS)

    Pre-test calculations indicate that, for the STEP-1 (Source Term Experimental Program) test, cladding temperatures in excess of 42000F can be reached on a heatup transient similar to that of the AD accident sequence in a 20-min test duration. This is well above the Zircaloy melting point of approx. 33500F and should provide a degree of cladding disruption sufficient to allow a singificant release of products from the fuel into the flowing steam. The same temperature range can be reached in a 60-min-duration run to simulate the TQUW sequence for the STEP-2 test. The complete paper will present initial experimental results from these two tests and perhaps from the two TMLB' simulations run without and with control rod material in STEP-3 and STEP-4, respectively

  15. Treating Influenza (Flu)

    Science.gov (United States)

    ... can be used to treat influenza illness. Antiviral drugs fight influenza viruses in your body. They are different from ... chills and fatigue. Your doctor may prescribe antiviral drugs to treat your flu illness. Should Istill get aflu vaccine? Yes. Antiviral ...

  16. How Is Pneumonia Treated?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. How Is Pneumonia Treated? Treatment for pneumonia depends on the type ... can go back to their normal routines. Bacterial Pneumonia Bacterial pneumonia is treated with medicines called antibiotics. ...

  17. Reactor Physics Training

    International Nuclear Information System (INIS)

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  18. Introduction of Nuclear Reactor Engineering

    International Nuclear Information System (INIS)

    This book introduces development, status, supply and demand and resource of nuclear reactor. It deals with basic knowledge of nuclear reactor, which are reactor system, heat recovery in reactor core, structural feature in reactor, materials of structure in reactor, shielding of gamma ray, shielding of reactor, safety and environmental problem of nuclear power plant, nuclear fuel and economical efficiency of nuclear energy.

  19. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  20. Assessment criteria for TRIGA reactors performances

    International Nuclear Information System (INIS)

    Full text: The international statistic data show that a number of 325 research reactors are now in operation. Their constructional and functional diversity is very large, a great share being represented by the TRIGA family reactors. Such reactors are now operating at: Tucson, Arizona - USA (1958); Austin, Texas - USA (1963); Belo Horizonte - Brazil (1960); Mainz - Germany (1975); Omaha - Veterans (1959); Heidelberg - Germany (1966); Bandung - Indonesia (1964/1971); Dalat - Vietnam (1963); Pavia - Italy (1965);, Rikkyo, Yokosuka - Japan (1961); Rome, Casaccia - Italy (1960); Seoul - Rep. of Korea (1962); Wien - Austria (1962); Dasa Bethesda, MD - USA (1962); Pitesti, Arges - Romania (1979), etc. In the proposed paper, the author sets the evaluation criteria for the TRIGA-type reactors performances. The treated phenomena can be described through functions of the type φ(N1,N2,N3,...) = constant, where for example, N1 FAα1Bβ1Cγ1Eδ1. (author)

  1. Safeguarding research reactors

    International Nuclear Information System (INIS)

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  2. Research nuclear reactors

    International Nuclear Information System (INIS)

    Since the divergence of the first nuclear reactor in 1942, about 600 research or test reactors have been built throughout the world. Today 255 research reactors are operating in 57 countries and about 70% are over 25 years old. Whereas there are very few reactor types for power plants because of rationalization and standardisation, there is a great diversity of research reactors. We can divide them into 2 groups: heavy water cooled reactors and light water moderated reactors. Heavy water cooled reactors are dedicated to the production of high flux of thermal neutrons which are extracted from the core by means of neutronic channels. Light water moderated reactors involved pool reactors and slightly pressurized closed reactors, they are polyvalent but their main purposes are material testing, technological irradiations, radionuclide production and neutron radiography. At the moment 8 research reactors are being built in Canada, Germany, Iran, Japan, Kazakhstan, Morocco, Russia and Slovakia and 8 others are planned in 7 countries (France, Indonesia, Nigeria, Russia, Slovakia, Thailand and Tunisia. Different research reactors are described: Phebus, Masurca, Phenix and Petten HFR. The general principles of nuclear safety applied to test reactors are presented. (A.C.)

  3. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus.

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  4. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    Science.gov (United States)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schønning, Kristian; Fredholm, Merete; Guardabassi, Luca

    2016-01-01

    Staphylococcus aureus is presently regarded as an emerging zoonotic agent due to the spread of specific methicillin-resistant S. aureus (MRSA) clones in pig farms. Studying the microbiota can be useful for the identification of bacteria that antagonize such opportunistic veterinary and zoonotic pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium system. Carriers and non-carriers were selected on the basis of quantitative longitudinal data on S. aureus carriage in 600 pigs sampled at 20 Danish herds included in two previous studies in Denmark. Raw sequences were analysed with the BION meta package and the resulting abundance matrix was analysed using the DESeq2 package in R to identify operational taxonomic units (OTUs) with differential abundance between S. aureus carriers and non-carriers. Twenty OTUs were significantly associated to non-carriers, including species with known probiotic potential and antimicrobial effect such as lactic acid-producing isolates described among Leuconostoc spp. and some members of the Lachnospiraceae family, which is known for butyrate production. Further 5 OTUs were significantly associated to carriage, including known pathogenic bacteria such as Pasteurella multocida and Klebsiella spp. Our results show that the nasal microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate these bacteria and assess their possible antagonistic effect on S. aureus for the pursuit of new strategies to control MRSA in pig farming. PMID:27509169

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  6. Testing the reactor charging machine

    International Nuclear Information System (INIS)

    One of the main objective of the R - D technological engineering program devoted to the Fuel Handling System is domestic production of equipment and technology for testing the ends of the reactor charging machine (MID) destined to Cernavoda NPP, beginning with Unit 2. To achieve the objective based on an own design, a bench-scale testing stand of MIDs which can simulate the pressure, flow-rate, and temperature conditions proper to fuel channels in operating CANDU 600 reactors. The main components of this testing facility are: - fuel channels, cold also test sections, allowing the coupling of MID end upwardly and downwardly, corresponding to the direction of the water flow through the channel; - technological installation feeding with light water the testing sections of the facility in thermohydraulic conditions, similar to those in the reactor, allowing the cold and hot testings, respectively, of the MID end; - cold testing installation, water supply and oil control panel, feeding the hydraulic drives of the MID's end during the testings; - fixed bridge and mobile carrier for MID's end positioning against testing sections; - installation for functional testing of MID thrusters, before pre-admission and reception tests; - dedicated tools and devices; - raising and transport mechanical devices for handling and positioning the MID's end upon the carrier; - automation panel for controlling the stand equipment and MID's end; - process computer for conducting on-line tests. MID's end testing implies mainly the following operations: - regulation, calibration and functional testing of the MID thrusters carried out independently on a specialised stand; - regulation and calibration of MID's end sub-assemblages; - carrying out the cold and hot pre-admission tests consisting in automatic performing, without operator intervention, of 12 fuel changes, two of which being successive; - performing the cold and hot reception tests, consisting in automatic accomplishment of 4

  7. Nuclear reactor building

    International Nuclear Information System (INIS)

    Purpose: To prevent seismic vibrations of external buildings from transmitting to the side walls of a reactor container in a tank type FBR reactor building. Constitution: The reactor building is structured such that the base mat for a reactor container chamber and a reactor container is separated from the base mat for the walls of building, and gas-tight material such as silicon rubber is filled in the gap therebetween. With such a constitution, even if the crane-supporting wall vibrates violently upon occurrence of earthqualkes, the seismic vibrations do not transmit toward the reactor container chamber. (Horiuchi, T.)

  8. 49 CFR 1139.22 - Revenue data for study carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Revenue data for study carriers. 1139.22 Section... BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity Bus Industry § 1139.22 Revenue data for study carriers. The study carriers, as identified...

  9. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  10. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... sessions announced on January 5, 2010 (75 FR 285), and elsewhere in today's Federal Register, and to... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety...

  11. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses

    Directory of Open Access Journals (Sweden)

    Eisenstein S

    2014-11-01

    Full Text Available Samuel Eisenstein,1 Shu-Hsia Chen,2 Ping-Ying Pan21Department of Surgery, 2Department of Oncological Sciences and Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USAAbstract: Oncolytic virotherapy on its own has numerous drawbacks, including an inability of the virus to actively target tumor cells and systemic toxicities at the high doses necessary to effectively treat tumors. Addition of immune cell-based carriers of oncolytic viruses holds promise as a technique in which oncolytic virus can be delivered directly to tumors in smaller and less toxic doses. Interestingly, the cell carriers themselves have also demonstrated antitumor effects, which can be augmented further by tailoring the appropriate oncolytic virus to the appropriate cell type. This review discusses the multiple factors that go into devising an effective, cell-based delivery system for oncolytic viruses.Keywords: oncolytic virus, cell carrier, immune cells, cancer therapy, myeloid-derived suppressor cells

  12. Charge carrier transport in liquid crystals

    International Nuclear Information System (INIS)

    The materials exhibiting charge carrier mobility ranging from 10−3 to 0.1 cm2/Vs, i.e., between those of amorphous and crystalline materials, had been missing before the 1990s when the electronic conduction in liquid crystals was discovered. Since then, various liquid crystalline materials including discotic and calamitic liquid crystals have been studied in order to clarify their charge carrier transport properties in liquid crystalline mesophases. In this article, the historical background of the discovery of electronic conduction in liquid crystals, intrinsic and extrinsic conductions, unique properties of the charge carrier transport, the effect of molecular alignment on it, and the conduction mechanism in liquid crystalline mesophases are shortly described on the basis of the experimental and theoretical studies accumulated in these two decades, noting that the missing materials were liquid crystals. - Highlights: • Liquid crystals exhibit charge mobility ranging from 10–3 to 0.1 cm2/Vs. • Electronic (intrinsic) and ionic (extrinsic) conductions in liquid crystals • Unique charge carrier transport properties in liquid crystals • Effect of molecular alignment in mesophases on charge carrier transport • Conduction mechanism in smectic liquid crystals

  13. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  14. Carbon: Hydrogen carrier or disappearing skeleton?

    International Nuclear Information System (INIS)

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently developed Shell Middle Distillate Hydrogenation process for the manufacture of high quality diesel from aromatic refinery streams fits this picture. In the future, the hydrogen required to raise the product H/C ratio will be increasingly produced via gasification of large amounts of heavy residues. In the light of the strong preference towards using liquid fuels in the transport sector, the Shell Middle Distillate Synthesis process to convert natural gas into diesel of very high quality is discussed. Finally, a few comments on the use of hydrogen without a carbon carrier are made. Long lead times and the likelihood of producing the 'first' hydrogen from fossil fuel are highlighted. 13 figs., 6 tabs., 5 refs

  15. Dedicated Carrier Deployment in Heterogeneous Networks with Inter-site Carrier Aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    picos with dedicated carrier deployment. Collaborative inter-site carrier aggregation (CA) is proposed in scenarios with macro+RRH deployment to make an efficient use of the fragmented spectrum from multiple cells. While in scenarios with macro+pico deployment, UEs can only connect to either the...

  16. Development of nanostructured lipid carrier for dacarbazine delivery

    Science.gov (United States)

    Almousallam, Musallam; Moia, Claudia; Zhu, Huijun

    2015-09-01

    Dacarbazine (Dac) is one of the most commonly used chemotherapy drugs for treating various cancers. However, its poor water solubility, short half-life in blood circulation, low response rate and high side effect limit its application. This study aimed to improve the drug solubility and prolong drug release by developing nanostructured lipid carriers (NLCs) for Dac delivery. The NLC and Dac-encapsulated NLC were synthesized with precirol ATO 5 and isopropyl myristate as lipids, tocopheryl polyethylene glycol succinate, soybean lecithin and Kolliphor P 188 as co-surfactants. The NLCs with controlled size were achieved using high shear dispersion following solidification of oil-in-water emulsion. For Dac encapsulation, the smallest NLC with 155 ± 10 nm in size, 0.2 ± 0.01 polydispersion index and -43.4 ± 2 mV zeta potential was selected. The resultant DLC-Dac possessed size, polydispersion index and zeta potential of 190 ± 10, 0.2 ± 0.01, and -43.5 ± 1.2, respectively. The drug encapsulation efficiency and drug loading were 98.5 % and 14 %, respectively. In vitro drug release study showed a biphasic pattern, with 50 % released in the first 2 h, and the remaining released sustainably for up to 30 h. This is the first report on the development of NLC for Dac delivery, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac.

  17. Reactor Physics Programme

    International Nuclear Information System (INIS)

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  18. Tomographic imaging of severely disrupted fuel assemblies tested in TREAT

    International Nuclear Information System (INIS)

    A series of CT codes is under development in the Reactor Analysis and Safety Division of Argonne National Laboratory for use as a post-test examination tool to analyze segments of the final fuel-bundle configuration of TREAT tests. This paper presents the results of CT analysis for fuel assemblies using neutron radiography. Fuel relocation following overpower transients in the TREAT reactor is examined for sections of the assemblies, and results are compared to metallographic sections. Further improvements are expected to increase the use and reliability of CT analysis as a standard post-test examination tool

  19. Biodegradation of chlorinated hydrocarbons in a vapor phase reactor

    International Nuclear Information System (INIS)

    A bench scale gas lift loop reactor was constructed to evaluate the feasibility of trichloroethylene (TCE) degradative microorganisms being used to treat TCE contaminated air. Two different microorganisms were used as biocatalysts in this reactor. After proper operating conditions were established for use of this reactor/biocatalyst combination, both microorganisms could degrade 95% of inlet TCE at air flow rates of up to 3% of the total reactor volume per minute. TCE concentrations of between 300 μg/L (60ppmv) and 3000 μg/L (600 ppmv) were degraded with 95% or better efficiency. Preliminary economic evaluations suggest that bioremediation may be the low cost alternative for treating certain TCE contaminated air streams and field trials of a scaled-up reactor system based on this technology are currently underway

  20. Aflatoxin M1 in the urine of non-carriers and chronic carriers of hepatitis B virus in Maringa, Brazil

    Directory of Open Access Journals (Sweden)

    Marcel Padovani Giolo

    2012-09-01

    Full Text Available Exposure to aflatoxins (AFs in the diet may favour the development of hepatocellular carcinoma (HCC and the acute exacerbation of hepatitis in chronic hepatitis B virus (HBV carriers. Measurement of biomarkers such as aflatoxin M1 (AFM1, a metabolite of aflatoxin B1 (AFB1, in urine allows for the assessment of populations exposed to aflatoxins. The aim of this study was to investigate the occurrence of aflatoxin M1 in the urine of HBV carrier and non-carrier patients. One group included 43 randomly selected HBV carriers treated at two hospitals in the city of Maringa, Brazil, from March to June 2008. Control group consisted of 29 healthy adult volunteers with anti-HBs positive and HBsAg negative test results. Detection of AFM1 was performed by fluorescence using high performance liquid chromatography (HPLC and post-column derivation with the Kobra Cell®. Of the 72 samples analysed, 05/29 (17.2% AFM1 positive samples were from HBV non-carriers, and 16/43 (37.2% of samples were from chronic HBV carriers. This study showed AFM1 in the urine of the two surveyed population. However, there is evidence that the chronic HBV carriers have a higher risk of developing HCC due to additive interaction between AFs and HBV.A exposição às aflatoxinas (AFs na dieta é um fator de risco para o desenvolvimento do carcinoma hepatocelular (CHC e a exacerbação da hepatite aguda em indivíduos portadores do vírus da hepatite B (VHB. O uso de biomarcadores, como a aflatoxina M1 (AFM1 na urina, produto de biotransformação da aflatoxina B1 (AFB1, permite avaliar se a população está exposta às AFs. O objetivo do presente estudo foi investigar ocorrência de AFM1 na urina de portadores e não portadores crônicos do VHB. Foi selecionado um grupo, de forma aleatória, representado por 43 portadores do VHB atendidos em dois hospitais da cidade de Maringá, Brasil, no período de Março a Junho/2008. O grupo controle foi composto por 29 voluntários adultos saud

  1. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  2. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  3. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  4. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  5. Process heat reactors

    International Nuclear Information System (INIS)

    The consumption of heat, for industrial and domestic needs, takes up half of the national energy supply; direct utilization of the heat produced by nuclear reactors could therefore contribute to reduce the deficit in the energetic results. The restraints proper to heat consumption (dispersal and variety of consumers, irregular demand) involve the development of the heat transport system structures and adequate nuclear reactors. With this in view, the Commissariat a l'Energie Atomique and Technicatome are developing the CAS reactor series, pressurized water reactors (PWR), (CAS 3G reactor with a power of 420 MW.th.), and the Thermos reactor (100 MW.th.), directly conceived to produce heat at 1200C and whose technology derives from the experimental pool reactors type. In order to prove the value of the Thermos design, an experimental reactor should soon be constructed in the Saclay nuclear research centre

  6. Reactor System Design

    International Nuclear Information System (INIS)

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  7. Nuclear Reactor RA Safety Report, Vol. 11, Reactor operation

    International Nuclear Information System (INIS)

    This volume includes the following chapters describing: Organisation of reactor operation (including operational safety, fuel management, and regulatory rules for RA reactor operation); Control and maintenance of reactor components (reactor core, nuclear fuel, heavy water and cover gas systems, mechanical structures, electric power supply system, reactor instrumentation); Quality assurance and Training of the reactor personnel

  8. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  9. Biogenesis of the mitochondrial phosphate carrier

    OpenAIRE

    Zara, Vincenzo; Rassow, Joachim; Wachter, Elmar; Tropschug, Maximilian; Palmieri, Ferdinando; Neupert, Walter; Pfanner, Nikolaus

    1991-01-01

    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct...

  10. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  11. The Chernobylsk reactor accident

    International Nuclear Information System (INIS)

    The construction, the safety philosophy, the major reactor physical parameters of RBMK-1000 type reactor units and the detailed description of the Chernobylsk-4 reactor accident, its causes and conclusions, the efforts to reduce the consequences on the reactor site and in the surroundings are discussed based on different types of Soviet documents including the report presented to the IAEA by the Soviet Atomic Energy Agency in August 1986. (V.N.)

  12. Zero energy reactor 'RB'

    International Nuclear Information System (INIS)

    In 1958 the zero energy reactor RB was built with the purpose of enabling critical experiments with various reactor systems to be carried out. The first core assembly built in this reactor consists of heavy water as moderator and natural uranium metal as fuel. In order to be able to obtain very accurate results when measuring the main characteristics of the assembly the reactor was built as a completely bare system. (author)

  13. Line broadening caused by Coulomb carrier-carrier correlations and dynamics of carrier capture and emission in quantum dots

    DEFF Research Database (Denmark)

    Uskov, Alexander V; Magnúsdóttir, Ingibjörg; Tromborg, Bjarne;

    2001-01-01

    Mechanisms of pure dephasing in quantum dots due to Coulomb correlations and the dynamics of carrier capture and emission are suggested, and a phenomenological model for the dephasing is developed. It is shown that, if the rates of these capture and emission processes are sufficiently high, signi......, significant homogeneous line broadening of the order of several meV can result....

  14. Measurement of coolant flowrate through the fuel assemblies in BN 350 and BN 600 reactors

    International Nuclear Information System (INIS)

    Methods of the primary circuit coolant flowrate measurement in BN 350 and BN 600 reactors are described. Flowmeter design and parameters are outlined. Flowmeter application during reactor, conditions and the results of measurement are presented. Details of the modified flowmeter to be used in BN 600 reactors, that enables its verification during reactor operation by the correlation method have been briefly treated. (author). 1 ref., 1 fig

  15. Pilot Scale Test to Treat High Concentration Gasification Wastewater Using Catalytic Oxidation and Aerobic Biological Fluid-Bed Combination Process

    Institute of Scientific and Technical Information of China (English)

    LI Na; HUANG Jun-li; WANG Wei; ZHAO Jian-wei; WANG Cui-lin; CUI Chong-wei

    2008-01-01

    The gasitication wastewatet is a kind of typical ocgauic industrial wastewatet with high chemical oxygen demand (COD) and ammonia uitrogen,which could not be completely degraded by the traditional physical,chimical and bidogical method.So it is very important to find an effective treatment process.A combination process of catalytic oxidation with noble metal catalysts and aerobic biological fluid-bed packed with the new uitrastructure biological carriers,which was devdoped by ourselves,was investigated to treat the gasification wastcwater.The pilot scale test with 0.5m3/h influent flow was carried out to investigate the performance of this new combination process.The results showed that the effluent COD was 84.02 mg/L,ananonia nitrogen was 14.15 mg/L,and total phenol was 0.20 mg/L,which could completely meet the Grade I of Wastewater Discharge Standard (GB8978-1996),when the influent average COD was 5564 mg/L,anunonia nitrogen was 237 mg/L,and total phenol was 1100 mg/L.The two catalytic reactors could evidently improve the wastewater biodegradability,and the value of BOD5/COD(B/C) increased from 0.23 to 0.413 in the one-stage catalytic reactor and from 0.273 to 0.421 in two-stage catalytic reactor.The further experiment results showed that the effluent quality of this new combination progess could still meet the discharge standard,aromatic and heterocyclic compounds were degraded effectively in this combination process.

  16. [Full-scale experiments of municipal sewage treated by symbiotic system consisting of tubifex and microbes].

    Science.gov (United States)

    Lou, Ju-qing; Guo, Mao-xin; Sun, Pei-de; Wu, Ge; Song, Ying-qi

    2009-12-01

    A symbiotic system consisting of tubifex and microbe was formed when tubifex was incubated in the biological contact oxidation process,the tubifex attached to the outer layer of the carriers. When the density of tubifex was about 31.3 g/L, a recycling food chain between corpse of tubifex and excrement and wastewater and microbe and sludge was formed and it could reach balance. The large scale control experimental system for treating 20,000 m3 x d(-1) municipal sewage was carried out for a long time. The result showed that tubifex could improve water quality in the effluent. When the concentration in the influent of COD,NH4+ -N,TP and SS were 130-459, 14.21-27.46, 1.60-6.93, 60-466 mg x L(-1), respectively,the removal rates of COD and SS can be improved by 8.7% and 13.6%. However, tubifex can also increase the concentration of NH4+ -N in the system,but a proper operation can make the effluent concentration of NH4+ -N below 5 mg x L(-1) stably. The symbiotic system consisting of tubifex and microbe has very good phosphorus removal efficiency. The reactor has a high toleration to loading shock and it could keep the effluent quality stable. PMID:20187394

  17. High solids fermentation reactor

    Science.gov (United States)

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  18. Fossil nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maurette, M.

    1976-01-01

    The discussion of fossil nuclear reactors (the Oklo phenomenon) covers the earth science background, neutron-induced isotopes and reactor operating conditions, radiation-damage studies, and reactor modeling. In conclusion possible future studies are suggested and the significance of the data obtained in past studies is summarized. (JSR)

  19. Fusion reactor studies

    International Nuclear Information System (INIS)

    A review is given of fusion reactor systems studies, the objectives of these studies are outlined and some recent conceptual reactor designs are described. The need for further studies in greater depth is indicated so that progress towards a commercial fusion reactor may be consolidated. (U.K.)

  20. Reactor power measuring device

    International Nuclear Information System (INIS)

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  1. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  2. [The application of air-lift loop column filling with porous carrier in wastewater treatment].

    Science.gov (United States)

    Fan, Y; Ding, F; Yang, H; Chen, S; Zhang, W; Xing, X

    2001-09-01

    An air lift loop reactor filling with porous carrier particles was utilized as aeration column. Experiments were carried out in wide operating conditions. The experimental results showed that in the range of gas flow rate from 0.117 to 0.156 m3/(min.m3), a higher efficiency of removal of ammonium-N was achieved, and when the gas flow rate was above 0.039 m3/(min.m3), the COD was completely degraded in about 1 h. The filling ratio of the porous carriers in the column was an important factor for the removal of C and N compounds, and a filling ratio of 15% was proved to be most suitable in the operation ranges. The experimental results also indicated that the effect of aeration temperature on the removal efficiency was significant and the highest efficiency was obtained at around 25 degrees C. PMID:11769236

  3. Modeling of drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls to treat vulnerable plaques

    KAUST Repository

    Hossain, Shaolie S.

    2010-01-01

    The main objective of this work is to develop computational tools to support the design of a catheter-based local drug delivery system that uses nanoparticles as drug carriers in order to treat vulnerable plaques and diffuse atherosclerotic disease.

  4. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  5. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Yobs) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  6. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  7. Nuclear reactor repairing device

    International Nuclear Information System (INIS)

    Purpose: To enable free repairing of an arbitrary position in an LMFBR reactor. Constitution: A laser light emitted from a laser oscillator installed out of a nuclear reactor is guided into a portion to be repaired in the reactor by using a reflecting mirror, thereby welding or cutting it. The guidance of the laser out of the reactor into the reactor is performed by an extension tube depending into a through hole of a rotary plug, and the guidance of the laser light into a portion to be repaired is performed by the transmitting and condensing action of the reflecting mirror. (Kamimura, M.)

  8. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  9. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  10. Electric disc brakes hold nuclear aircraft carriers

    International Nuclear Information System (INIS)

    Two nuclear-powered aircraft carriers, the U.S.S. Nimitz and the soon-to-be-completed U.S.S. Dwight D. Eisenhower, use electric disc brakes to stop and hold lines on warping and mooring capstans during docking maneuvers and mooring operations

  11. Managing photons and carriers for photocatalysis

    Science.gov (United States)

    Thomann, Isabell; Robatjazi, Hossein; Bahauddin, Shah; Doiron, Chloe; Liu, Xuejun; Tumkur, Thejaswi; Wang, Wei-Ren; Wray, Parker

    While small plasmonic nanoparticles efficiently generate energetic hot carriers, light absorption in a monolayer of such particles is inefficient, and practical utilization of the hot carriers in addition requires efficient charge-separation. Here we describe our approach to address both challenges. By designing an optical cavity structure for the plasmonic photoelectrode, light absorption in these particles can be significantly enhanced, resulting in efficient hot electron generation. Rather than utilizing a Schottky barrier to preserve the energy of the carriers, our structure allows for their direct injection into the adjacent electrolyte. On the substrate side, the plasmonic particles are in contact with a wide band gap oxide film that serves as an electron blocking layer but accepts holes and transfers them to the counter electrode. The observed photocurrent spectra follow the plasmon spectrum, and demonstrate that the extracted electrons are energetic enough to drive the hydrogen evolution reaction. A similar structure can be designed to achieve broadband absorption enhancement in monolayer MoS2. Time permitting, I will discuss charge carrier dynamics in hybrid nanoparticles composed of plasmonic / two-dimensional materials, and applications of photo-induced force microscopy to study photocatalytic processes.

  12. Polyester Dendrimers: Smart Carriers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jean–d’Amour K. Twibanire

    2014-01-01

    Full Text Available Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  13. Polyester Dendrimers: Smart Carriers for Drug Delivery

    OpenAIRE

    Jean–d’Amour K. Twibanire; T. Bruce Grindley

    2014-01-01

    Polyester dendrimers have been shown to be outstanding candidates for biomedical applications. Compared to traditional polymeric drug vehicles, these biodegradable dendrimers show excellent advantages especially as drug delivery systems because they are non-toxic. Here, advances on polyester dendrimers as smart carriers for drug delivery applications have been surveyed. Both covalent and non-covalent incorporation of drugs are discussed.

  14. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben;

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  15. Biodegradable PEG-based drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Braunová, Alena; Ulbrich, Karel; Jelínková, Markéta; Říhová, Blanka; Seymour, L. W.

    Glasgow : University of Strathclyde, 2005, s. 7-9. [Conference on New Approaches to Drug Delivery "Nanomedicines of the Future". Glasgow (GB), 18.11.2005] R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable polymers * drug carriers Subject RIV: EI - Biotechnology ; Bionics

  16. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  17. Safety scenario for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    A scenario to ensure the safety of the Fusion Experimental Reactor (FER) is proposed. The safety features of a fusion reactor are given and their impacts on the safety design are shown. The requirements in the design of major components of FER to achieve safety and the safety evaluation process are described. The results of the evaluation showed that even in the event of the maximum credible accidents, the radiological consequence to the public can be held at an acceptable level. The applicability to FER of various aspects of the regulations for facilities treating large amounts of radioisotopes is discussed with a positive conclusion. (author). 11 refs, 1 fig

  18. Gossypiboma treated by colonoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, C.; Methratta, S.; Ybasco, A.C. [Dept. of Radiology, Univ. of Medicine and Dentistry of New Jersey, Univ. Hospital, Newark (United States)

    2003-04-01

    Gossypibomas are an unusual postoperative complication and are reluctantly reported in the literature. In the past, the patient would require a laparotomy. More recently, they have been treated laparoscopically and percutaneously by interventional radiology. This is the first case report of a gossypiboma treated with colonoscopy. This may represent an addition treatment option for this complication. (orig.)

  19. Gossypiboma treated by colonoscopy

    International Nuclear Information System (INIS)

    Gossypibomas are an unusual postoperative complication and are reluctantly reported in the literature. In the past, the patient would require a laparotomy. More recently, they have been treated laparoscopically and percutaneously by interventional radiology. This is the first case report of a gossypiboma treated with colonoscopy. This may represent an addition treatment option for this complication. (orig.)

  20. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    arising in nuclear field and especially in works implying research reactors result first from the synthesis of the problems which sometimes are conventionally treated depending on the experience of the decision staff. Abnormal or un-specific problems from the technical point of view but always with economic consequences, as risk doses may occur. A series of such aspects and corresponding measures are discussed for the different situations as follows: a. Startup, operation, and shutdown of the reactor and, where appropriate, experimental devices; b. Loading, unloading, and movement within the reactor of fuel and other core and reflector components, including experimental devices; c. Routine maintenance of major components or systems that could have an effect on reactor safety; d. Inspections and tests of structures, systems and components that may have an effect on reactor safety, including those specified in the approved programme of periodic testing and inspection; e. Personnel radiation protection consistent with applicable regulations; f. Authorization of operation and maintenance and the conduct of irradiations and experiments that could affect reactor safety or radioactivity; g. Operator response to appropriate anticipated operational occurrences and, to the extent feasible, accident conditions; h. Emergency actions; i. Safety issues. Finally the handling of radioactive wastes and control monitoring of radioactive release are discussed