WorldWideScience

Sample records for carrier density

  1. Temperature and carrier density dependence of anisotropy in supercurrent density in layered cuprate superconductors

    International Nuclear Information System (INIS)

    Singh, M.P.; Tewari, B.S.; Ajay

    2006-01-01

    In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)

  2. Residual carrier density in GaSb grown on Si substrates

    International Nuclear Information System (INIS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Gozu, Shin-ichiro; Ueta, Akio; Ohtani, Naoki

    2006-01-01

    The relationships between the densities of residual carriers and those of dislocation in GaSb films grown on Si substrates were investigated. Dislocation density was evaluated by cross-sectional transmission electron microscopy (TEM). The TEM images indicated that the dislocation density after a 5-μm-thick GaSb film was grown was below 1 x 10 8 /cm 2 although the density near the interface between the Si substrate and the GaSb film was about 3 x 10 9 /cm 2 . Forming a dislocation loop by growing a thick GaSb layer may decrease the dislocation density. The density and mobility of the residual carrier were investigated by Hall measurement using the van der Pauw method. The residual carriers in GaSb grown on Si substrates were holes, and their densities decreased significantly from 4.2 x 10 18 to 1.4 x 10 17 /cm 3 as GaSb thickness was increased from 500 to 5500 nm

  3. Influence of carrier density on the electronic cooling channels of bilayer graphene

    Science.gov (United States)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  4. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  5. Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots

    International Nuclear Information System (INIS)

    Norris, T B; Kim, K; Urayama, J; Wu, Z K; Singh, J; Bhattacharya, P K

    2005-01-01

    We have used two- and three-pulse femtosecond differential transmission spectroscopy to study the dependence of quantum dot carrier dynamics on temperature. At low temperatures and densities, the rates for relaxation between the quantum dot confined states and for capture from the barrier region into the various dot levels could be directly determined. For electron-hole pairs generated directly in the quantum dot excited state, relaxation is dominated by electron-hole scattering, and occurs on a 5 ps time scale. Capture times from the barrier into the quantum dot are of the order of 2 ps (into the excited state) and 10 ps (into the ground state). The phonon bottleneck was clearly observed in low-density capture experiments, and the conditions for its observation (namely, the suppression of electron-hole scattering for nongeminately captured electrons) were determined. As temperature increases beyond about 100 K, the dynamics become dominated by the re-emission of carriers from the lower dot levels, due to the large density of states in the wetting layer and barrier region. Measurements of the gain dynamics show fast (130 fs) gain recovery due to intradot carrier-carrier scattering, and picosecond-scale capture. Direct measurement of the transparency density versus temperature shows the dramatic effect of carrier re-emission for the quantum dots on thermally activated scattering. The carrier dynamics at elevated temperature are thus strongly dominated by the high density of the high energy continuum states relative to the dot confined levels. Deleterious hot carrier effects can be suppressed in quantum dot lasers by resonant tunnelling injection

  6. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  7. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  8. Carrier density control of magnetism and Berry phases in doped EuTiO3

    Science.gov (United States)

    Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne

    2018-05-01

    In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.

  9. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  10. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  11. Carrier density independent scattering rate in SrTiO3-based electron liquids.

    Science.gov (United States)

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack Y; Marshall, Patrick B; Kajdos, Adam P; Balents, Leon; Stemmer, Susanne

    2016-02-10

    We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with T(n) (T is the temperature and n ≤ 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (EF). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory.

  12. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  13. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  14. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  15. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  16. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  17. Electrical transport characteristics of Bi2Sr2CaCu2O8+δstacked junctions with control of the carrier density

    International Nuclear Information System (INIS)

    Inomata, Kunihiro; Kawae, Takeshi; Kim, Sang-Jae; Nakajima, Kensuke; Yamashita, Tsutomu; Sato, Shigeo; Nakajima, Koji; Hatano, Takeshi

    2003-01-01

    The control of the critical current density (J c ) and the junction resistance (R N ) along the c-axis of intrinsic Josephson junctions (IJJs) on a high-T c superconductor is very important for applying the IJJs to electronic devices. For controlling these junction parameters, we have clarified the relationship of J c , R N and the carrier density in Bi 2 Sr 2 CaCu 2 O 8+δ whiskers by changing the carrier density with an annealing process. We determined the electrical transport characteristics of the IJJs. As a result, the J c increased, and the R N decreased systematically when the carrier density increased. The values of J c and R N could be controlled by a change in the carrier density

  18. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NARCIS (Netherlands)

    Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-01-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons

  20. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    Science.gov (United States)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  1. Nonlinear transport in semiconducting polymers at high carrier densities.

    Science.gov (United States)

    Yuen, Jonathan D; Menon, Reghu; Coates, Nelson E; Namdas, Ebinazar B; Cho, Shinuk; Hannahs, Scott T; Moses, Daniel; Heeger, Alan J

    2009-07-01

    Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional 'metal'.

  2. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  3. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.

    2012-03-08

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  4. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.; Upadhyay Kahaly, M.; Sarath Kumar, S. R.; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2012-01-01

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  5. Controlling the Carrier Density of SrTiO3-Based Heterostructures with Annealing

    DEFF Research Database (Denmark)

    Christensen, Dennis Valbjørn; von Soosten, Merlin; Trier, Felix

    2017-01-01

    The conducting interface between the insulating oxides LaAlO3 (LAO) and SrTiO3 (STO) displays numerous physical phenomena that can be tuned by varying the carrier density, which is generally achieved by electrostatic gating or adjustment of growth parameters. Here, it is reported how annealing...... in oxygen at low temperatures (T

  6. Probing exotic phases of interacting two-dimensional carriers using one-dimensional density modulation

    Science.gov (United States)

    Mueed, M. A.

    In this Thesis, we present low-temperature magnetotransport studies of two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a one-dimensional, periodic density modulation. The modulation is achieved through the piezo-electric effect in GaAs as we fabricate a periodic, strain-inducing superlattice on the sample surface. Under varying perpendicular magnetic field, whenever the carriers' cyclotron orbit becomes commensurate with the modulation period, the magnetoresistance exhibits a minimum value. The resulting oscillations, known as the commensurability oscillations, directly measure the carriers' Fermi wave vector. Imposing a density modulation thus allows us to study the Fermi contour properties of 2D electrons and holes near zero field, and composite fermions (CFs) near the half filling of the lowest Landau level, i.e., filling factor nu=1/2. The application of a parallel magnetic field (B||) also features extensively in the Thesis. First, we use commensurability oscillations to capture the B||-induced deformation and the eventual splitting of the Fermi contour of 2D electrons. We also deduce the scattering time anisotropy of hole-flux CFs whose Fermi contour is rendered anisotropic by B||. Moreover, we study the anisotropic (warped) Fermi contour of 2D holes and hole-flux CFs in wide quantum well samples at B||=0. The results provide evidence that CFs inherit Fermi contour properties from their zero-field counterparts. We further investigate the fate of CFs near the bilayer quantum Hall states at nu=1 and 1/2 induced by a large B||. We observe that the commensurability features of CFs near nu=1 are consistent with half the total carrier density, implying that CFs prefer to stay in separate layers and show a two-component behavior. In contrast, close to nu=1/2, CFs appear single-layer-like (single-component) as their commensurability features correspond to the total density. This finding sheds light on the different

  7. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  8. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  9. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  10. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  11. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  12. Charge-carrier mobilities in disordered semiconducting polymers : effects of carrier density and electric field

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, D.M. de; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier

  13. Density and mobility effects of the majority carriers in organic semiconductors under light excitation

    Energy Technology Data Exchange (ETDEWEB)

    Vagenas, N.; Giannopoulou, A.; Kounavis, P., E-mail: pkounavis@upatras.gr [Department of Electrical and Computer Engineering, University of Patras, 26504 Patra (Greece)

    2015-01-21

    This study demonstrates that the effect of light excitation on the density and the mobility of the majority carriers can be explored in organic semiconductors by modulated photocurrent spectroscopy. The spectra of phase and amplitude of the modulated photocurrent of pentacene films indicate a significant increase in the density of the photogenerated mobile holes (majority carriers). This increase is accompanied by a comparatively much smaller increase of the steady state photocurrent response which can be reconciled with a decrease in the mobility (μ) of holes. The decrease of μ is supported from an unusual increase of the Y/μ ratio of the out-of-phase modulated photocurrent (Y) signal to the mobility under light excitation. It is proposed that the mobile holes, which are generated from the dissociation of the light-created excitons more likely near the pentacene-substrate interface by electron trapping, populate grain boundaries charging them and producing a downward band bending. As a result, potential energy barriers are build up which limit the transport of holes interacting through trapping-detrapping with deep partially occupied traps in the charged grain boundaries. On the other hand, the transport of holes interacting through trapping-detrapping with empty traps is found unaffected.

  14. Thickness and growth-condition dependence of in-situ mobility and carrier density of epitaxial thin-film Bi2Se3

    International Nuclear Information System (INIS)

    Hellerstedt, Jack; Fuhrer, Michael S.; Edmonds, Mark T.; Zheng, C. X.; Chen, J. H.; Cullen, William G.

    2014-01-01

    Bismuth selenide Bi 2 Se 3 was grown by molecular beam epitaxy, while carrier density and mobility were measured directly in situ as a function of film thickness. Carrier density shows high interface n-doping (1.5 × 10 13  cm −2 ) at the onset of film conduction and bulk dopant density of ∼5 × 10 11  cm −2 per quintuple-layer unit, roughly independent of growth temperature profile. Mobility depends more strongly on the growth temperature and is related to the crystalline quality of the samples quantified by ex-situ atomic force microscopy measurements. These results indicate that Bi 2 Se 3 as prepared by widely employed parameters is n-doped before exposure to atmosphere, the doping is largely interfacial in origin, and dopants are not the limiting disorder in present Bi 2 Se 3 films.

  15. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  16. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong; Adinolfi, Valerio; Comin, Riccardo; Yuan, Mingjian; Alarousu, Erkki; Buin, Andrei K.; Chen, Yin; Hoogland, Sjoerd H.; Rothenberger, Alexander; Katsiev, Khabiboulakh; Losovyj, Yaroslav B.; Zhang, Xin; Dowben, Peter A.; Mohammed, Omar F.; Sargent, E. H.; Bakr, Osman

    2015-01-01

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  17. Charge-carrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field [refereed

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, de D.M.; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solns. of the Master equation, we study the dependence of the charge-carrier mobility

  18. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    Science.gov (United States)

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  19. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  20. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field

    Science.gov (United States)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-01

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  1. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Baljinder [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Department of Physics, Panjab University, Chandigarh 160014 (India); Singh, Janpreet; Kaur, Jagdish [Department of Physics, Panjab University, Chandigarh 160014 (India); Moudgil, R.K. [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  2. Diverse carrier mobility of monolayer BNCx: A combined density functional theory and Boltzmann transport theory study.

    Science.gov (United States)

    Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng

    2017-09-19

    BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.

  3. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  4. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  5. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2.

    Science.gov (United States)

    Nie, Zhaogang; Long, Run; Sun, Linfeng; Huang, Chung-Che; Zhang, Jun; Xiong, Qihua; Hewak, Daniel W; Shen, Zexiang; Prezhdo, Oleg V; Loh, Zhi-Heng

    2014-10-28

    Femtosecond optical pump-probe spectroscopy with 10 fs visible pulses is employed to elucidate the ultrafast carrier dynamics of few-layer MoS2. A nonthermal carrier distribution is observed immediately following the photoexcitation of the A and B excitonic transitions by the ultrashort, broadband laser pulse. Carrier thermalization occurs within 20 fs and proceeds via both carrier-carrier and carrier-phonon scattering, as evidenced by the observed dependence of the thermalization time on the carrier density and the sample temperature. The n(-0.37 ± 0.03) scaling of the thermalization time with carrier density suggests that equilibration of the nonthermal carrier distribution occurs via non-Markovian quantum kinetics. Subsequent cooling of the hot Fermi-Dirac carrier distribution occurs on the ∼ 0.6 ps time scale via carrier-phonon scattering. Temperature- and fluence-dependence studies reveal the involvement of hot phonons in the carrier cooling process. Nonadiabatic ab initio molecular dynamics simulations, which predict carrier-carrier and carrier-phonon scattering time scales of 40 fs and 0.5 ps, respectively, lend support to the assignment of the observed carrier dynamics.

  6. Auger heating of carriers in {GaAs}/{AlAs} heterostructures

    Science.gov (United States)

    Borri, P.; Ceccherini, S.; Gurioli, M.; Bogani, F.

    1997-07-01

    The photoluminescence of {GaAs}/{AlAs} multiple quantum wells structures under optical ps excitation is investigated for carrier densities in the range 10 18-4 × 10 19 cm -3 with frequency and time-resolved spectroscopic techniques. The measurements give a direct evidence of the occurrence in the sample of carrier heating. This energy up-conversion gives rise to photoluminescence from the states near the Fermi level whose intensity and time evolution depend on the carrier density in a strongly non-linear way. The observed behaviour can be explained introducing in the carrier dynamics an up-conversion mechanism due to Auger-like processes.

  7. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111

    Directory of Open Access Journals (Sweden)

    J. Hennig

    2015-07-01

    Full Text Available We report on GaN based field-effect transistor (FET structures exhibiting sheet carrier densities of n = 2.9 1013 cm−2 for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally xIn = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices. Benchmarking the InxGa1−xN/GaN/AlN/Al0.87In0.13N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of ISD = 1300 mA/mm (560 mA/mm. In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.

  8. Carrier density modulation by structural distortions at modified LaAlO3/SrTiO3 interfaces

    International Nuclear Information System (INIS)

    Schoofs, Frank; Vickers, Mary E; Egilmez, Mehmet; Fix, Thomas; Kleibeuker, Josée E; MacManus-Driscoll, Judith L; Blamire, Mark G; Carpenter, Michael A

    2013-01-01

    In order to study the fundamental conduction mechanism of LaAlO 3 /SrTiO 3 (LAO/STO) interfaces, heterostructures were modified with a single unit cell interface layer of either an isovalent titanate ATiO 3 (A = Ca, Sr, Sn, Ba) or a rare earth modified Sr 0.5 RE 0.5 TiO 3 (RE = La, Nd, Sm, Dy) between the LAO and the STO. A strong coupling between the lattice strain induced in the LAO layer by the interfacial layers and the sheet carrier density in the STO substrate is observed. The observed crystal distortion of the LAO is large and it is suggested that it couples into the sub-surface STO, causing oxygen octahedral rotation and deformation. We propose that the ‘structural reconstruction’ which occurs in the STO surface as a result of the stress in the LAO is the enabling trigger for two-dimensional conduction at the LAO/STO interface by locally changing the band structure and releasing trapped carriers. (paper)

  9. Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces

    DEFF Research Database (Denmark)

    Niu, Wei; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning...... is found to be approximately 3×1013 cm-2, much lower than that of the unpatterned sample (~1015 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ~ 7×1012 cm-2, which exhibits clear Shubnikov-de Hass...... quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devic...

  10. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.

    Science.gov (United States)

    Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny

    2017-05-24

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.

  11. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  12. Diverse carrier mobility of monolayer BNC x : a combined density functional theory and Boltzmann transport theory study.

    Science.gov (United States)

    Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2017-10-19

    BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x  =  1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC 2 -1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm 2 V -1 s -1 . For BNC 2 -1, the hole mobility and electron mobility along both x and y directions can reach 10 5 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC 4 , its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 10 6 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.

  13. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  14. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.; Kinjo, K.; Nakaoka, T.; Oto, T. [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Kishino, K.; Ema, K. [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sophia Nanotechnology Research Center, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and a higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.

  15. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Oh, Byung Su [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Display Company, Yongin (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin 446-712 (Korea, Republic of)

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  16. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  17. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer

    Science.gov (United States)

    Ko, Tsung-Shine; Lin, Der-Yuh; Lin, Chia-Feng; Chang, Che-Wei; Zhang, Jin-Cheng; Tu, Shang-Ju

    2017-04-01

    In this paper, we experimentally studied the effect of AlN spacer layer on optical and electrical properties of AlGaN/GaN high electric mobility transistors (HEMTs) grown by metal organic chemical vapor deposition method. For AlGaN layer in HEMT structure, the Al composition of the sample was determined using x-ray diffraction and photoluminescence. Electrolyte electro-reflectance (EER) measurement not only confirmed the aluminum composition of AlGaN layer, but also determined the electric field strength on the AlGaN layer through the Franz-Keldysh oscillation phenomenon. This result indicated that the electric field on the AlGaN layer could be improved from 430 to 621 kV/cm when AlN spacer layer was inserted in HEMT structure, which increased the concentration of two dimensional electron gas (2DEG) and improve the mobility. The temperature dependent Hall results show that both the mobility and the carrier concentration of 2DEG would decrease abruptly causing HEMT loss of function due to phonon scattering and carrier thermal escape when temperature increases above a specific value. Meanwhile, our study also demonstrates using AlN spacer layer could be beneficial to allow the mobility and carrier density of 2DEG sustaining at high temperature region.

  18. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  19. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J.R.; Gerbaldi, C. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bruna, M.; Borini, S. [Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino (Italy); Daghero, D. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Gonnelli, R.S., E-mail: renato.gonnelli@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy)

    2017-02-15

    Highlights: • We fabricated few-layer graphene FETs by mechanical exfoliation and standard microfabrication techniques. • We employed a Li-TFSI based ion gel to induce carrier densities as high as ≈6e14 e{sup −}/cm{sup 2} in the devices' channel. • We found a strong asymmetry in the sheet conductance and mobility doping dependences between electron and hole doping. • We combined the experimental results with ab initio DFT calculations to obtain the average scattering lifetime of the charge carriers. • We found that the increase in the carrier density and an unexpected increase in the density of charged scattering centers compete in determining the scattering lifetime. - Abstract: We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  20. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  1. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices

    International Nuclear Information System (INIS)

    Röhr, Jason A; Nelson, Jenny; Kirchartz, Thomas

    2017-01-01

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm’s law and the Mott–Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm’s law is applicable the Mott–Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density–voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm’s law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott–Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm’s law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm’s law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results. (paper)

  2. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  3. Carrier dynamics in graphene. Ultrafast many-particle phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Malic, E.; Brem, S.; Jago, R. [Department of Physics, Chalmers University of Technology, Goeteborg (Sweden); Winzer, T.; Wendler, F.; Knorr, A. [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany); Mittendorff, M.; Koenig-Otto, J.C.; Schneider, H.; Helm, M.; Winnerl, S. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Ploetzing, T.; Neumaier, D. [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany)

    2017-11-15

    Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valence and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Strain engineering on transmission carriers of monolayer phosphorene.

    Science.gov (United States)

    Zhang, Wei; Li, Feng; Hu, Junsong; Zhang, Ping; Yin, Jiuren; Tang, Xianqiong; Jiang, Yong; Wu, Bozhao; Ding, Yanhuai

    2017-11-22

    The effects of uniaxial strain on the structure, band gap and transmission carriers of monolayer phosphorene were investigated by first-principles calculations. The strain induced semiconductor-metal as well as direct-indirect transitions were studied in monolayer phosphorene. The position of CBM which belonged to indirect gap shifts along the direction of the applied strain. We have concluded the change rules of the carrier effective mass when plane strains are applied. In band structure, the sudden decrease of band gap or the new formation of CBM (VBM) causes the unexpected change in carrier effective mass. The effects of zigzag and armchair strain on the effective electron mass in phosphorene are different. The strain along zigzag direction has effects on the electrons effective mass along both zigzag and armchair direction. By contrast, armchair-direction strain seems to affect only on the free electron mass along zigzag direction. For the holes, the effective masses along zigzag direction are largely affected by plane strains while the effective mass along armchair direction exhibits independence in strain processing. The carrier density of monolayer phosphorene at 300 K is calculated about [Formula: see text] cm -2 , which is greatly influenced by the temperature and strain. Strain engineering is an efficient method to improve the carrier density in phosphorene.

  5. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  6. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  7. Computer assisted analysis of hand radiographs in infantile hypophosphatasia carriers

    International Nuclear Information System (INIS)

    Chodirker, B.N.; Greenberg, C.R.; Manitoba Univ., Winnipeg, MB; Roy, D.; Cheang, M.; Evans, J.A.; Manitoba Univ., Winnipeg, MB; Manitoba Univ., Winnipeg, MB; Reed, M.H.; Manitoba Univ., Winnipeg, MB

    1991-01-01

    Hand radiographs of 49 carriers of infantile hypophosphatasia and 67 non-carriers were evaluated using two Apple IIe Computer Programs and Apple Graphics Tablet. CAMPS was used to determine the bone lengths and calculate the metacarpophalangeal profiles. A newly developed program (ADAM) was used to determine bone density based on percent cortical area of the second metacarpal. Carriers of infantile hypophosphatasia had significantly less dense bones. (orig.)

  8. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors.

    Science.gov (United States)

    Liu, Yuanfeng; Sahoo, Pranati; Makongo, Julien P A; Zhou, Xiaoyuan; Kim, Sung-Joo; Chi, Hang; Uher, Ctirad; Pan, Xiaoqing; Poudeu, Pierre F P

    2013-05-22

    The thermopower (S) and electrical conductivity (σ) in conventional semiconductors are coupled adversely through the carriers' density (n) making it difficult to achieve meaningful simultaneous improvements in both electronic properties through doping and/or substitutional chemistry. Here, we demonstrate the effectiveness of coherently embedded full-Heusler (FH) quantum dots (QDs) in tailoring the density, mobility, and effective mass of charge carriers in the n-type Ti(0.1)Zr(0.9)NiSn half-Heusler matrix. We propose that the embedded FH QD forms a potential barrier at the interface with the matrix due to the offset of their conduction band minima. This potential barrier discriminates existing charge carriers from the conduction band of the matrix with respect to their relative energy leading to simultaneous large enhancements of the thermopower (up to 200%) and carrier mobility (up to 43%) of the resulting Ti(0.1)Zr(0.9)Ni(1+x)Sn nanocomposites. The improvement in S with increasing mole fraction of the FH-QDs arises from a drastic reduction (up to 250%) in the effective carrier density coupled with an increase in the carrier's effective mass (m*), whereas the surprising enhancement in the mobility (μ) is attributed to an increase in the carrier's relaxation time (τ). This strategy to manipulate the transport behavior of existing ensembles of charge carriers within a bulk semiconductor using QDs is very promising and could pave the way to a new generation of high figure of merit thermoelectric materials.

  9. A rural mail-carrier index of North Dakota red foxes

    Science.gov (United States)

    Allen, S.H.; Sargeant, A.B.

    1975-01-01

    Rural mail-carrier sightings of red foxes (Vulpes vulpes) during mid-April, -July, and -September of 1969-73 were compared to spring fox family estimates derived by aerial searches of six townships. The mid-April mail-carrier index reflected annual fox density changes on the six townships (correlation coefficient = 0.958) . Random exclusions of individual mail-carrier reports indicated participation could decline 40 percent without affecting index accuracy.

  10. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.

    1999-01-01

    To use peptides as synthetic vaccines, they have to be coupled to a carrier protein to make them more immunogenic. Coupling efficiency between a carrier protein and a peptide, however, is difficult to control with respect to loading density of the peptide, This makes these carrier proteins poorly...... for the induction of antibodies against GnRH and immunocastration of pigs....

  11. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene)

    Science.gov (United States)

    Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y.

    2018-05-01

    Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm-1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage VD is lower than the source-gate voltage VG (linear region), the carrier density was uniform. When VD is nearly equal to VG (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors.

  12. Optical investigation of carrier tunneling in semiconductor nanostructures

    Science.gov (United States)

    Emiliani, V.; Ceccherini, S.; Bogani, F.; Colocci, M.; Frova, A.; Shi, Song Stone

    1997-08-01

    The tunneling dynamics of excitons and free carriers in AlxGa1-xAs/GaAs asymmetric double quantum well and near-surface quantum well structures has been investigated by means of time-resolved optical techniques. The competing processes of carrier tunneling out of the quantum well and exciton formation and recombination inside the quantum well have been thoroughly studied in the range of the excitation densities relevant to device applications. A consistent picture capable of fully describing the carrier and exciton-tunneling mechanisms in both types of structures has been obtained and apparently contrasting results in the recent literature are clarified.

  13. Intrinsic carrier mobility extraction based on a new quasi-analytical model for graphene field-effect transistors

    International Nuclear Information System (INIS)

    Wang, Shaoqing; Jin, Zhi; Muhammad, Asif; Peng, Songang; Huang, Xinnan; Zhang, Dayong; Shi, Jingyuan

    2016-01-01

    The most common method of mobility extraction for graphene field-effect transistors is proposed by Kim. Kim’s method assumes a constant mobility independent of carrier density and gets the mobility by fitting the transfer curves. However, carrier mobility changes with the carrier density, leading to the inaccuracy of Kim’s method. In our paper, a new and more accurate method is proposed to extract mobility by fitting the output curves at a constant gate voltage. The output curves are fitted using several kinds of current–voltage models. Besides the models in the literature, we present a modified model, which takes into account not only the quantum capacitance, contact resistance, but also a modified drift velocity-field relationship. Comparing with the other models, this new model can fit better with our experimental data. The dependence of carrier intrinsic mobility on carrier density is obtained based on this model. (paper)

  14. Investigation of carrier density and mobility in microcrystalline silicon alloys using Hall effect and thermopower measurements; Untersuchung der Ladungstraegerkonzentration und -beweglichkeit in mikrokristallinen Siliziumlegierungen mit Hall-Effekt und Thermokraft

    Energy Technology Data Exchange (ETDEWEB)

    Sellmer, Christian

    2012-08-31

    The electronic properties of amorphous and microcrystalline silicon layers in thin-film solar cells significantly affect the efficiency of solar cells. An important property of the individual layer is the electronic transport, which is described by the variables conductivity, photoconductivity, mobility, and carrier concentration. In the past, individual characterization methods were typically used to determine the electronic properties. Using the combination of Hall effect, conductivity, and thermoelectric power measurements additional variables can be derived, such as the effective density of states at the valence and conduction band edge, making a more detailed description of the material possible. To systematically study the electronic properties - in particular carrier mobility and carrier concentration - various series of silicon films are prepared for this work including microcrystalline silicon layers of different doping and crystallinity and a series of silicon films where the Fermi level is moved by irradiation with high energy electrons on one and the same sample. The results show that the transition from amorphous to microcrystalline transport is relatively abrupt. If the electron transport takes place in only amorphous regions, it is marked by the sign anomaly of the Hall effect. If a continuous crystalline path exists, the electronic properties are dominated by the crystalline volume fraction. The results of the measurements of silicon layers are compared with those of microcrystalline silicon carbide samples. Silicon carbide is especially interesting for future applications in thin-film solar cells due to high transparency and high conductivity. It is shown that the effective density of states at the valence and conduction band edge as a function of temperature in p- and n-type microcrystalline silicon and silicon carbide samples largely coincide with those of crystalline silicon or silicon carbide. A square root shaped profile of the density of

  15. Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements

    Science.gov (United States)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Okur, Serdal; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2014-02-01

    Carrier transport in double heterostructure (DH) InGaN light emitting diodes (LEDs) was investigated using photocurrent measurements performed under CW HeCd laser (325 nm wavelength) excitation. The effect of electron injector thicknesses was investigated by monitoring the excitation density and applied bias dependent escape of photogenerated carriers from the active region and through energy band structure and carrier transport simulations using Silvaco Atlas. For quad (4x) 3-nm DH LED structures incorporating staircase electron injectors (SEIs), photocurrent increased with SEI thickness due to reduced effective barrier opposing carrier escape from the active region as confirmed by simulations. The carrier leakage percentile at -3V bias and 280 Wcm-2 optical excitation density increased from 24 % to 55 % when In 0.04Ga0.96N + In0.08Ga0.92N SEI thickness was increased from 4 nm + 4 nm to 30 nm + 30 nm. The increased leakage with thicker SEI correlates with increased carrier overflow under forward bias.

  16. Effects of Carrier Confinement and Intervalley Scattering on Photoexcited Electron Plasma in Silicon.

    Science.gov (United States)

    Sieradzki, A; Kuznicki, Z T

    2013-01-01

    The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.

  17. Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon

    Science.gov (United States)

    Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey

    2018-04-01

    Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the

  18. Explanation of low efficiency droop in semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    OpenAIRE

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew A.; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel F.

    2017-01-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enab...

  19. Magnetotransport of the low-carrier density one-dimensional S = 1/2 ...

    Indian Academy of Sciences (India)

    mass of (0.275 ± 0.005)m0 and a charge-carrier mean-free path of 215 ˚A are ... ing into account an alternating Dzyaloshinskii–Moriya (DM) interaction [7]. .... B applied along the cubic 〈111〉 direction at T = 2 K, measured with a commercial.

  20. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  1. Spatial variation in carrier dynamics along a single CdSSe nanowire

    International Nuclear Information System (INIS)

    Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars

    2014-01-01

    Highlights: • Femtosecond Kerr-gate microscopy allows ultrafast fluorescence measurements along different positions of a single nanowire. • Amplified spontaneous emission observed at high fluences can be used to calculate recombination rates. • Observation of ASE at different locations along a single CdSSe nanowire provides the ability to extract defect densities. - Abstract: Ultrafast charge carrier dynamics along individual CdS x Se 1−x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility

  2. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  3. Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    We studied the THz conductivity of InGaN/GaN multiple quantum wells (MQWs)by time-resolved terahertz spectroscopy. A nonexponential carrier density decay is observed due to the restoration of a built-in piezoelectric field. Terahertz conductivity spectra show a nonmetallic behavior of the carriers....

  4. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei

    2014-01-01

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T −γ ) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced

  5. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2014-12-07

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T{sup −γ}) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced.

  6. Mechanism of carrier-induced ferromagnetism in diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Takahashi, M.; Furukawa, N.; Kubo, K.

    2004-01-01

    Using the spin-polarized band obtained by applying the dynamical coherent potential approximation to a simple model, we have calculated the magnetization of Ga x Mn 1-x As as a function of the temperature for various values of carrier density. The result is consistent with the experimental observation, supporting the view previously proposed by us that the ferromagnetism is induced by the carriers in the bandtail through double-exchange-like mechanism

  7. Femtosecond time-resolved hot carrier energy distributions of photoexcited semiconductor quantum dots

    International Nuclear Information System (INIS)

    Chuang, Chi-Hung; Burda, Clemens; Chen, Xiaobo

    2013-01-01

    Using femtosecond transient absorption spectroscopy, we investigated hot carrier distributions in semiconductor cadmium selenide quantum dots. The relaxation processes represent the behavior of an ensemble of QDs. This concept is applied for analysis with the Fermi-Dirac distribution and relaxation processes among different electron-hole pair states. By extracting the experimental hot carrier distribution and fitting with the Fermi-Dirac function, we resolved the rapid thermalization processes, such as carrier-carrier and carrier-phonon interactions was resolved within one picosecond upon photoexcitation. The analysis, using the Fermi-Dirac distribution modulated by the density of states, provides a general route to understanding the carrier cooling and heat dissipation processes in quantum dot-based systems. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier

    DEFF Research Database (Denmark)

    Storkfelt, Niels; Mikkelsen, B.; Olesen, D. S.

    1991-01-01

    Semiconductor optical amplifiers are used for investigation of the effective carrier lifetime and the linewidth enhancement factor. Contrary to semiconductor lasers, semiconductor optical amplifiers allow measurement at high levels of injected carrier density. The carrier lifetime and the linewid...

  9. Terahertz study of ultrafast carrier dynamics in InGa/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay...... of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well...

  10. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  11. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  12. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  13. Explanation of low efficiency droop in semipolar (202¯1¯) InGaN/GaN LEDs through evaluation of carrier recombination coefficients

    Science.gov (United States)

    Monavarian, Morteza; Rashidi, Arman; Aragon, Andrew; Oh, Sang H.; Nami, Mohsen; DenBaars, Steve P.; Feezell, Daniel

    2017-08-01

    We report the carrier dynamics and recombination coefficients in single-quantum-well semipolar $(20\\bar 2\\bar 1)$ InGaN/GaN light-emitting diodes emitting at 440 nm with 93% peak internal quantum efficiency. The differential carrier lifetime is analyzed for various injection current densities from 5 $A/cm^2$ to 10 $kA/cm^2$, and the corresponding carrier densities are obtained. The coupling of internal quantum efficiency and differential carrier lifetime vs injected carrier density ($n$) enables the separation of the radiative and nonradiative recombination lifetimes and the extraction of the Shockley-Read-Hall (SRH) nonradiative ($A$), radiative ($B$), and Auger ($C$) recombination coefficients and their $n$-dependency considering the saturation of the SRH recombination rate and phase-space filling. The results indicate a three to four-fold higher $A$ and a nearly two-fold higher $B_0$ for this semipolar orientation compared to that of $c$-plane reported using a similar approach [A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)]. In addition, the carrier density in semipolar $(20\\bar 2\\bar 1)$ is found to be lower than the carrier density in $c$-plane for a given current density, which is important for suppressing efficiency droop. The semipolar LED also shows a two-fold lower $C_0$ compared to $c$-plane, which is consistent with the lower relative efficiency droop for the semipolar LED (57% vs. 69%). The lower carrier density, higher $B_0$ coefficient, and lower $C_0$ (Auger) coefficient are directly responsible for the high efficiency and low efficiency droop reported in semipolar $(20\\bar 2\\bar 1)$ LEDs.

  14. Superconductivity in transparent zinc-doped In2O3 films having low carrier density

    Directory of Open Access Journals (Sweden)

    Kazumasa Makise, Nobuhito Kokubo, Satoshi Takada, Takashi Yamaguti, Syunsuke Ogura, Kazumasa Yamada, Bunjyu Shinozaki, Koki Yano, Kazuyoshi Inoue and Hiroaki Nakamura

    2008-01-01

    Full Text Available Thin polycrystalline zinc-doped indium oxide (In2O3–ZnO films were prepared by post-annealing amorphous films with various weight concentrations x of ZnO in the range 0≤x ≤0.06. We have studied the dependences of the resistivity ρ and Hall coefficient on temperature T and magnetic field H in the range 0.5≤T ≤300 K, H≤6 Tfor 350 nm films annealed in air. Films with 0≤x≤0.03 show the superconducting resistive transition. The transition temperature Tc is below 3.3 K and the carrier density n is about 1025–1026 m−3. The annealed In2O3–ZnO films were examined by transmission electron microscopy and x-ray diffraction analysis revealing that the crystallinity of the films depends on the annealing time. We studied the upper critical magnetic field Hc2 (T for the film with x = 0.01. From the slope of dHc2 /dT, we obtain the coherence length ξ (0 ≈ 10 nm at T = 0 K and a coefficient of electronic heat capacity that is small compared with those of other oxide materials.

  15. Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells

    KAUST Repository

    Melianas, Armantas

    2015-11-05

    In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.

  16. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  17. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    Science.gov (United States)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  18. Influence of quasi-bound states on the carrier capture into quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2002-01-01

    An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes are beli......An important characteristic of quantum dot (QD) materials is the timescale on which carriers are captured into the dots and relax to their ground state. The properties of devices based on QDs, such as lasers, thus rely on efficient carrier feeding to the active QD states. These processes...... are believed to be mediated by carrier-phonon and carrier-carrier interaction (Auger processes). In systems of higher dimensionality, carrier relaxation via emission of LO (Longitudinal Optical) phonons is dominant. However, due to the discrete QD density of states, this process is often considered impossible...... unless the energy level separation equals the LO phonon energy, leading to a so-called phonon bottleneck. This argument is based on the assumption that the carrier-LO phonon interaction is weak. It was shown that carriers in discrete QD states couple strongly to phonons and that the intersubband...

  19. The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces

    International Nuclear Information System (INIS)

    McSweeney, W.; Lotty, O.; Glynn, C.; Geaney, H.; Holmes, J.D.; O’Dwyer, C.

    2014-01-01

    The Li + insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. A rate-dependent redox process influenced by the surface region electronic density, which influences the magnitude of cyclic voltammetry current is found at Si(100) surface regions during Li insertion and extraction. At p-type Si(100) surface regions, a thin, uniform film forms at lower currents, while also showing a consistently high (>70%) Coulombic efficiency for Li extraction. The p-type Si(100) surface region does not undergo crack formation after deintercalation and the amorphization was demonstrated using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity

  20. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  1. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  2. A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons

    Science.gov (United States)

    Rossani, A.

    2017-12-01

    If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T_e and T_h greater than the lattice temperature, the electron-phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation-recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon-photon interactions are accounted for. Moreover, carrier-photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift-diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.

  3. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    Science.gov (United States)

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  4. Determination of carrier diffusion length in GaN

    Science.gov (United States)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  5. Near-infrared free carrier absorption in heavily doped silicon

    International Nuclear Information System (INIS)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-01-01

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10 18 and 3 × 10 20  cm −3 . Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis

  6. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  7. Information carriers and (reading them through) information theory in quantum chemistry.

    Science.gov (United States)

    Geerlings, Paul; Borgoo, Alex

    2011-01-21

    This Perspective discusses the reduction of the electronic wave function via the second-order reduced density matrix to the electron density ρ(r), which is the key ingredient in density functional theory (DFT) as a basic carrier of information. Simplifying further, the 1-normalized density function turns out to contain essentially the same information as ρ(r) and is even of preferred use as an information carrier when discussing the periodic properties along Mendeleev's table where essentially the valence electrons are at stake. The Kullback-Leibler information deficiency turns out to be the most interesting choice to obtain information on the differences in ρ(r) or σ(r) between two systems. To put it otherwise: when looking for the construction of a functional F(AB) = F[ζ(A)(r),ζ(B)(r)] for extracting differences in information from an information carrier ζ(r) (i.e. ρ(r), σ(r)) for two systems A and B the Kullback-Leibler information measure ΔS is a particularly adequate choice. Examples are given, varying from atoms, to molecules and molecular interactions. Quantum similarity of atoms indicates that the shape function based KL information deficiency is the most appropriate tool to retrieve periodicity in the Periodic Table. The dissimilarity of enantiomers for which different information measures are presented at global and local (i.e. molecular and atomic) level leads to an extension of Mezey's holographic density theorem and shows numerical evidence that in a chiral molecule the whole molecule is pervaded by chirality. Finally Kullback-Leibler information profiles are discussed for intra- and intermolecular proton transfer reactions and a simple S(N)2 reaction indicating that the theoretical information profile can be used as a companion to the energy based Hammond postulate to discuss the early or late transition state character of a reaction. All in all this Perspective's answer is positive to the question of whether an even simpler carrier of

  8. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    Science.gov (United States)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  9. Computed tomographic findings in manifesting carriers of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Verbeeten, B.

    1985-01-01

    Clinical and computed tomographic (CT) findings in 3 manifesting carriers of Duchenne muscular dystrophy are reported. CT proved to be an important adjunct to the clinical examination: in all our 3 cases a decrease in density was found in various non-paretic muscles

  10. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  11. Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.

    Science.gov (United States)

    Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela

    2018-06-20

    An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

  12. Low temperature carrier redistribution dynamics in InGaN/GaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, T. J., E-mail: Thomas.badcock@crl.toshiba.co.uk; Dawson, P.; Davies, M. J. [School of Physics and Astronomy, Photon Science Institute, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-03-21

    We have studied the carrier recombination dynamics in an InGaN/GaN multiple quantum well structure as a function of emission energy and excitation density between temperatures of 10 K and 100 K. Under relatively low levels of excitation, the photoluminescence (PL) intensity and decay time of emission on the high energy side of the luminescence spectrum decrease strongly between 10 K and 50 K. In contrast, for emission detected on the low energy side of the spectrum, the PL intensity and decay time increase over the same temperature range. These results are consistent with a thermally activated carrier redistribution process in which the (temperature dependent) average timescale for carrier transfer into or out of a localised state depends on the energy of the given state. Thus, the transfer time out of shallow, weakly localised states is considerably shorter than the arrival time into more deeply localised states. This picture is consistent with carriers hopping between localisation sites in an uncorrelated disorder potential where the density of localised states decreases with increasing localisation depth, e.g., a exponential or Gaussian distribution resulting from random alloy disorder. Under significantly higher levels of excitation, the increased occupation fraction of the localised states results in a greater average separation distance between unoccupied localised states, causing a suppression of the spectral and dynamic signatures of the hopping transfer of carriers.

  13. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  14. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  15. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    Science.gov (United States)

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  16. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions

    OpenAIRE

    Takashi Ichimura; Kohei Fujiwara; Hidekazu Tanaka

    2014-01-01

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the ...

  17. Simultaneous determination of effective carrier lifetime and resistivity of Si wafers using the nonlinear nature of photocarrier radiometric signals

    Science.gov (United States)

    Sun, Qiming; Melnikov, Alexander; Wang, Jing; Mandelis, Andreas

    2018-04-01

    A rigorous treatment of the nonlinear behavior of photocarrier radiometric (PCR) signals is presented theoretically and experimentally for the quantitative characterization of semiconductor photocarrier recombination and transport properties. A frequency-domain model based on the carrier rate equation and the classical carrier radiative recombination theory was developed. The derived concise expression reveals different functionalities of the PCR amplitude and phase channels: the phase bears direct quantitative correlation with the carrier effective lifetime, while the amplitude versus the estimated photocarrier density dependence can be used to extract the equilibrium majority carrier density and thus, resistivity. An experimental ‘ripple’ optical excitation mode (small modulation depth compared to the dc level) was introduced to bypass the complicated ‘modulated lifetime’ problem so as to simplify theoretical interpretation and guarantee measurement self-consistency and reliability. Two Si wafers with known resistivity values were tested to validate the method.

  18. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  19. Charge Energy Transport in Hopping Systems with Rapidly Decreasing Density of States

    Science.gov (United States)

    Mendels, Dan; Organic Electronics Group Technion Team

    2014-03-01

    An accurate description of the carrier hopping topology in the energy domain of hopping systems incorporating a rapidly decreasing density of states and the subsequent energetic position of these systems' so called effective conduction band is crucial for rationalizing and quantifying these systems' thermo-electric properties, doping related phenomena and carrier gradient effects such as the emergence of the General Einstein Relation under degenerate conditions. Additionally, as will be shown, the 'mobile' carriers propagating through the system can have excess energies reaching 0.3eV above the system quasi-Fermi energy. Hence, since these mobile carriers are most prone to reach systems interfaces and interact with oppositely charged carriers, their excess energy should be considered in determining the efficiencies of energy dependent processes such as carrier recombination and exciton dissociation. In light of the stated motivations, a comprehensive numerical and analytical study of the topology of hopping in the energetic density of such systems (i.e. the statistics regarding which energy values carriers visit most and in what manner) was implemented and the main statistical features of the hopping process that determine the position in energy of the system's effective conduction band were distilled. The obtained results also help shed light on yet to be elucidated discrepancies between predictions given by the widely employed transport energy concept and Monte Carlo simulations.

  20. Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer

    Science.gov (United States)

    Kuryliuk, V.; Korotchenkov, O.; Cantarero, A.

    2012-02-01

    We present computational results for strain effects on charge carrier confinement in GexSi1-x quantum dots (QDs) grown on an oxidized Si surface. The strain and free carrier probability density distributions are obtained using the continuum elasticity theory and the effective-mass approximation implemented by a finite-element modeling scheme. Using realistic parameters and conditions for hemisphere and pyramid QDs, it is pointed out that an uncapped hemisphere dot deposited on the Si surface with an intermediate ultrathin oxide layer offers advantageous electron-hole separation distances with respect to a square-based pyramid grown directly on Si. The enhanced separation is associated with a larger electron localization depth in the Si substrate for uncapped hemisphere dots. Thus, for dot diameters smaller than 15-20 nm and surface density of the dots (nQD) ranging from about 1010 to 1012 cm-2, the localization depth may be enhanced from about 8 nm for a pyramid to 38 nm for a hemisphere dot. We find that the effect in a hemisphere dot is very sensitive to the dot density and size, whereas the localization depth is not significantly affected by the variation of the Ge fraction x in GexSi1-x and the aspect ratio of the dot. We also calculate the effect of the fixed oxide charge (Qox) with densities ranging from 10-9 to 10-7 C/cm2 for 10-Ωcm p-type Si wafers on the carrier confinement. Although the confinement potential can be strongly perturbed by the charge at nQD less than ≈4×1011 cm-2, it is not very sensitive to the value of Qox at higher nQD. Since, to our knowledge, there are no data on carrier confinement for Ge QDs deposited on oxidized Si surfaces, these results might be applicable to functional devices utilizing separated electrons and holes such as photovoltaic devices, spin transistors, and quantum computing components. The use of hemisphere QDs placed on oxidized Si rather than pyramid dots grown on bare Si may help to confine charge carriers deeper

  1. Effect of carrier relaxation lifetime on the performance of InAs/InP quantum-dash lasers

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2011-12-01

    The effect of carrier relaxation process into the quantum dash (Qdash) ground state (GS) is examined theoretically by carrier-photon rate equation model incorporating the inhomogeneous broadening. Increase in the relaxation time and the inhomogeneous broadening degrades the threshold current density. Moreover, our results show that a relaxation time of less than 2 ps gives optimum laser performance. © 2011 IEEE.

  2. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  3. Correlation between minority carrier diffusion length and microstructure in a-Si:H thin films

    International Nuclear Information System (INIS)

    Conte, G.; Fameli, G.; Nobile, G.; Rubino, A.; Terzini, E.; Villani, F.

    1993-01-01

    The aim of this work is to investigate the opto-electronic properties of amorphous hydrogenated silicon (a-Si:H). The deposition temperature was used as a driving force to modify the morphology and bonded hydrogen distribution. The influence of the hydrogen microstructure on the carrier m-t products was examined. The m-t products, for both carriers, were evaluated from the diffusion length measurement, by using the Steady State Photocarrier Grating (SSPG) technique, and from the photoconductivity in the steady state condition (SSPC). The m-t products were correlated with the defect density and Fermi level position. The effects of the defect density on the Fermi level position were examined within the framework of a defect pool model in order to justify the consistency of the results

  4. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook

    2017-08-25

    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  5. Observing hot carrier distribution in an n-type epitaxial graphene on a SiC substrate

    International Nuclear Information System (INIS)

    Someya, T.; Ishida, Y.; Yoshida, R.; Iimori, T.; Yukawa, R.; Akikubo, K.; Yamamoto, Sh.; Yamamoto, S.; Kanai, T.; Itatani, J.; Komori, F.; Shin, S.; Matsuda, I.; Fukidome, H.; Funakubo, K.; Suemitsu, M.; Yamamoto, T.

    2014-01-01

    Hot carrier dynamics in the Dirac band of n-type epitaxial graphene on a SiC substrate were traced in real time using femtosecond-time-resolved photoemission spectroscopy. The spectral evolution directly reflects the energetically linear density of states superimposed with a Fermi–Dirac distribution. The relaxation time is governed by the internal energy dissipation of electron–electron scattering, and the observed electronic temperature indicates cascade carrier multiplication

  6. Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Hieu, Nguyen V.; Thu, Tran V.; Hung, Nguyen M.; Ilyasov, Victor V.; Poklonski, Nikolai A.; Nguyen, Chuong V.

    2018-01-01

    In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer MoS_2 using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer MoS_2 were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer MoS_2 are very sensitive to biaxial strain, leading to a direct-indirect transition in semiconductor monolayer MoS_2. Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer MoS_2 a promising candidate for application in nanoelectronic and optoelectronic devices.

  7. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yokoyama, Masaaki [Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Kaneka Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan)

    2014-07-21

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{sup 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  8. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  9. Enhancing light absorption within the carrier transport length in quantum junction solar cells.

    Science.gov (United States)

    Fu, Yulan; Hara, Yukihiro; Miller, Christopher W; Lopez, Rene

    2015-09-10

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31  mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.

  10. SiNx layers on nanostructured Si solar cells: Effective for optical absorption and carrier collection

    International Nuclear Information System (INIS)

    Cho, Yunae; Kim, Eunah; Gwon, Minji; Kim, Dong-Wook; Park, Hyeong-Ho; Kim, Joondong

    2015-01-01

    We compared nanopatterned Si solar cells with and without SiN x layers. The SiN x layer coating significantly improved the internal quantum efficiency of the nanopatterned cells at long wavelengths as well as short wavelengths, whereas the surface passivation helped carrier collection of flat cells mainly at short wavelengths. The surface nanostructured array enhanced the optical absorption and also concentrated incoming light near the surface in broad wavelength range. Resulting high density of the photo-excited carriers near the surface could lead to significant recombination loss and the SiN x layer played a crucial role in the improved carrier collection of the nanostructured solar cells

  11. Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lin.wang@insa-lyon.fr; Brémond, G. [Institut des Nanotechnologies de Lyon (INL), Université de Lyon, CNRS UMR 5270, INSA Lyon, Bat. Blaise Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne (France); Chauveau, J. M. [Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications (CRHEA), CNRS UPR10, rue Bernard Grégory 06560 Valbonne Sophia Antipolis (France); Physics Department, University of Nice Sophia Antipolis (UNS), Parc Valrose, 06103 Nice (France); Brenier, R. [Institut Lumière Matière (ILM), Université de Lyon, CNRS UMR 5306, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Sallet, V.; Jomard, F.; Sartel, C. [Groupe d' Étude de la Matière Condensée (GEMaC), CNRS-Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles (France)

    2016-03-28

    Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3} range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 10{sup 18 }cm{sup −3} range, in agreement with the result from four-probe measurements.

  12. Low-complexity Joint Sub-carrier Phase Noise Compensation for Digital Multi-carrier Systems

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Barletta, Luca; Zibar, Darko

    2017-01-01

    Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM.......Joint sub-carrier phase noise processing is proposed which recovers the SNR penalty related to decreased sub-carrier baudrate w.r.t. single carrier systems. The method enables digital sub-banding to be safely employed for nonlinear mitigation for modulation formats of up to 256-QAM....

  13. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    International Nuclear Information System (INIS)

    Cai, Yu; Sha, Shuang

    2016-01-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/ N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers. (paper)

  14. Change of the dominant luminescent mechanism with increasing current density in molecularly doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhou Liang; Zhang Hongjie; Meng Qingguo; Liu Fengyi; Yu Jiangbo; Deng Ruiping; Peng Zeping; Li Zhefeng; Guo Zhiyong

    2007-01-01

    We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA) 3 phen (x):CBP/BCP/ALQ/LiF/Al, where x is the weight percentage of Eu(TTA) 3 phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Foerster energy transfer participates in EL process. At the current density of 10.0 and 80.0 mA/cm 2 , 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Foerster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Foerster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Foerster energy transfer compared with carrier trapping

  15. Do methicillin resistant staphylococcus (MRSA) carrier patients influence MRSA infection more than MRSA-carrier medical officers and MRSA-carrier family?

    Science.gov (United States)

    Dilogo, Ismail H; Arya, Abikara; Phedy; Loho, Tony

    2013-07-01

    to determine the rate of MRSA-carrier among patients, family members and health care providers, and the association between MRSA-carrier family members and health care providers on MRSA infection patient after orthopaedic surgery. this is a cross-sectional analytical study. Samples were taken consecutively during December 2010 to December 2011, consisting of postoperative patients infected with MRSA, attending family members, and the medical officers with history of contact with the patient. Swab culture were taken from nasal and axilla of all subjects. The incidence of MRSA infection, and MRSA-carrier on the patient, family members and medical officers were presented descriptively, while their association with MRSA infection was statistically tested using Fischer exact test. during the study period, there were 759 surgeries, with 4 (0.5%) patients were identified to have MRSA infection. Of these four cases, 48 subjects were enrolled. The rate of MRSA-carrier among patients, family and health care providers were 50%, 25% and 0% respectively. There were no significant association between MRSA and the rates of MRSA-carrier on the family member or health care providers. the incidence of MRSA infection, MRSA-carrier patient, MRSA-carrier health care providers, and family member carrier were 0.5%, 50%, 0%, and 25% respectively. No significant association found between MRSA-carrier on the family member or health care providers and MRSA infection patient. There were no MRSA infection found on the health care provider.

  16. Joint Carrier-Phase Synchronization and LDPC Decoding

    Science.gov (United States)

    Simon, Marvin; Valles, Esteban

    2009-01-01

    A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine

  17. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Science.gov (United States)

    2010-01-01

    ... forth in paragraph (c) of this section. In such cases the Board may determine in an adjudicatory... carrier shall not engage in joint public relations activities at points served by both carriers which tend... either carrier are performed in common with the other carrier or as part of a single system. In cases...

  18. Carrier recombination in mid-wave infrared InAs/InAsSb superlattices

    Science.gov (United States)

    Aytac, Yigit; Olson, Benjamin Varberg; Kim, Jin K.; Shaner, Eric A.; Hawkins, Sam D.; Klem, John F.; Flatté, Michael E.; Boggess, Thomas F.

    2014-03-01

    Measurements of carrier recombination rates using a temperature-dependent time-resolved differential transmission technique are reported for mid-wave infrared InAs / InAs1 - x Sbx type-2 superlattices (T2SLs). By engineering the layer widths and antimony compositions a 16K band-gap of ~ 238 meV was achieved for all five unintentionally doped T2SLs. Carrier recombination rates were determined for all five samples by fitting a rate equation model to the density and temperature dependent data. Minority-carrier lifetimes as long as 22 μs were measured at 14K, while lifetimes in excess of 2 μs were measured for all five samples at 200K. The minority-carrier lifetimes were observed to generally increase with increasing antimony content. While minority-carrier lifetimes are much longer than those observed in InAs/Ga(In)Sb T2SLs, Auger recombination processes were found to be more prominent in the Ga-free T2SLs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This research was funded by the U.S. Government.

  19. Silicon nanowire hot carrier electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, M. du, E-mail: monuko@up.ac.za; Joubert, T.-H.

    2016-08-31

    Avalanche electroluminescence from silicon pn junctions has been known for many years. However, the internal quantum efficiencies of these devices are quite low due to the indirect band gap nature of the semiconductor material. In this study we have used reach-through biasing and SOI (silicon-on-insulator) thin film structures to improve the internal power efficiency and the external light extraction efficiency. Both continuous silicon thin film pn junctions and parallel nanowire pn junctions were manufactured using a custom SOI technology. The pn junctions are operated in the reach-through mode of operation, thus increasing the average electric field within the fully depleted region. Experimental results of the emission spectrum indicate that the most dominant photon generating mechanism is due to intraband hot carrier relaxation processes. It was found that the SOI nanowire light source external power efficiency is at least an order of magnitude better than the comparable bulk CMOS (Complementary Metal Oxide Semiconductor) light source. - Highlights: • We investigate effect of electric field on silicon avalanche electroluminescence. • With reach-through pn junctions the current and carrier densities are kept constant. • Higher electric fields increase short wavelength radiation. • Higher electric fields decrease long wavelength radiation. • The effect of the electric field indicates intraband transitions as main mechanism.

  20. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    Science.gov (United States)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  1. Both Hemophilia Health Care Providers and Hemophilia A Carriers Report that Carriers have Excessive Bleeding

    Science.gov (United States)

    Paroskie, Allison; Oso, Olatunde; DeBaun, Michael R.; Sidonio, Robert F

    2014-01-01

    Introduction Hemophilia A, the result of reduced factor VIII (FVIII) activity, is an X-linked recessive bleeding disorder. Previous reports of Hemophilia A carriers suggest an increased bleeding tendency. Our objective was to determine the attitudes and understanding of the Hemophilia A carrier bleeding phenotype, and opinions regarding timing of carrier testing from the perspective of both medical providers and affected patients. Data from this survey was used as preliminary data for an ongoing prospective study. Material and Methods An electronic survey was distributed to physicians and nurses employed at Hemophilia Treatment Centers (HTC), and Hemophilia A carriers who were members of Hemophilia Federation of America. Questions focused on the clinical understanding of bleeding symptoms and management of Hemophilia A carriers, and the timing and intensity of carrier testing. Results Our survey indicates that 51% (36/51) of providers compared to 78% (36/46) of carriers believe that Hemophilia A carriers with normal FVIII activity have an increased bleeding tendency (pHemophilia A carriers report a high frequency of bleeding symptoms. Regarding carrier testing, 72% (50/69) of medical providers recommend testing after 14 years of age, conversely 65% (29/45) of Hemophilia A carriers prefer testing to be done prior to this age (pHemophilia A carriers self-report a higher frequency of bleeding than previously acknowledged, and have a preference for earlier testing to confirm carrier status. PMID:24309601

  2. 47 CFR 25.208 - Power flux density limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Power flux density limits. 25.208 Section 25.208 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE... emissions from all co-frequency space stations of a single non-geostationary-satellite orbit (NGSO) system...

  3. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C., E-mail: jc.chen@ostendo.com; Li, X.; Chuang, Chih-Li [EPI Lab, Ostendo Technologies, Inc., 679 Brea Canyon Rd, Walnut, CA 91789 (United States)

    2016-07-15

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  4. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    International Nuclear Information System (INIS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-01-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  5. Enhanced piezoelectric operation of NiO/GaN heterojunction generator by suppressed internal carrier screening

    International Nuclear Information System (INIS)

    Jeong, Dae Kyung; Kang, Jin-Ho; Ryu, Sang-Wan; Ha, Jun-Seok

    2017-01-01

    A NiO/GaN heterojunction piezoelectric generator was fabricated, and the improvement in device performance was analyzed. The electrical properties of NiO were varied by regulating the gas environment during sputtering. An optimized NiO layer was adopted for high piezoelectric voltage generation. Internal carrier screening was revealed to be the dominant mechanism degrading the piezoelectric performance, necessitating the suppression of carrier screening. The highly resistive NiO layer was advantageous in the suppression of carrier transport across the junction that screened the piezoelectric field. The maximum piezoelectric voltage and current density values obtained were 7.55 V and 1.14 µ A cm −2 , respectively. The power obtained was sufficient to operate a light-emitting diode combined with a charging circuit. (paper)

  6. A high resolution EELS study of free-carrier variations in H2+/H+ bombarded (100)GaAs

    International Nuclear Information System (INIS)

    Dubois, L.H.; Schwartz, G.P.

    1984-01-01

    High resolution electron energy loss spectroscopy (EELS) has been used to examine whether thermal recovery of the near-surface free-carrier concentration in Te-doped (100) GaAs is accomplished following low energy (250--1500 eV) hydrogen ion bombardment. For hydrogen ion impact energies below 500 eV, the nominal bulk free-carrier density is recovered by annealing at 725 K for 2 h. For comparable ion doses, the net free-carrier concentration decreases monotonically at higher impact energies under similar annealing conditions. The threshold for damage retention occurs close to the value of transmitted energy which is necessary to create either a Ga or an As interstitial point defect

  7. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Providence High School, Charlotte, NC 28270 (United States); Su, L.Q.; Kon, J. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Gfroerer, T. [Davidson College, Davidson, NC 28035 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Zhang, Y., E-mail: yong.zhang@uncc.edu [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2017-05-15

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in a spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.

  8. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  9. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  10. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier.

    Directory of Open Access Journals (Sweden)

    Keith D Miller

    Full Text Available Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH, we have synthesized a short trimeric coiled-coil peptide (TCC that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg from reaching the brain.

  11. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    International Nuclear Information System (INIS)

    Yu Zhenrui; Aceves, Mariano; Carrillo, Jesus; Lopez-Estopier, Rosa

    2006-01-01

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V T . When the applied voltage is smaller than V T , the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V T , the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained

  12. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  13. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  14. Mechanism of the free charge carrier generation in the dielectric breakdown

    Science.gov (United States)

    Rahim, N. A. A.; Ranom, R.; Zainuddin, H.

    2017-12-01

    Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.

  15. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengjiao [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Dai, Xiaojuan [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 P. R. China; Zhu, Weikun [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Chung, Hyunjoong [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA; Diao, Ying [Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Ave. Urbana IL 61801 USA

    2017-05-10

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.

  16. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    Science.gov (United States)

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  17. 29 CFR 1201.1 - Carrier.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce Act...

  18. Carrier redistribution between different potential sites in semipolar (202¯1) InGaN quantum wells studied by near-field photoluminescence

    KAUST Repository

    Marcinkevičius, S.

    2014-09-15

    © 2014 AIP Publishing LLC. Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202¯1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202¯1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  19. Self-consistent simulation of carrier confinement characteristics in (AlyGa1−yN/AlN)SLs/GaN/(InxGa1−xN/GaN)MQW/GaN heterostructures

    International Nuclear Information System (INIS)

    Ding Jieqin; Wang Xiaoliang; Xiao Hongling; Wang Cuimei; Yin Haibo; Chen Hong; Feng Chun; Jiang Lijuan

    2012-01-01

    Highlights: ► We present calculations of carrier confinement characteristics. ► An optimization of In x Ga 1−x N/GaN multiquantum-well (MQW) was made. ► 2DEG sheet carrier density in designed heterostructure is greatly increased. ► Interface roughness and alloy disorder scattering reduced. ► Carrier mobility will be improved in designed heterostructure. - Abstract: We present calculations of carrier confinement characteristics in (Al y Ga 1−y N/AlN)SLs/GaN/(In x Ga 1−x N/GaN)MQW/GaN heterojunction structure in the presence of spontaneous and piezoelectrically induced polarization effects. The calculations were made using a self-consistent solution of the Schrödinger, Poisson, potential and charge balance equations. An optimization of In x Ga 1−x N/GaN multiquantum-well (MQW) was made firstly including thickness of GaN channel, InGaN, and indium composition of In x Ga 1−x N in order to increase carrier density and mobility, and the influence of pairs of AlGaN/AlN superlattices (SLs) and InGaN/GaN MQWs on structure was discussed. Theoretical calculations clearly indicate that the two-dimensional electron gas (2DEG) sheet carrier density in designed heterostructure is greatly increased due to the enhancing of carrier confinement compared to those in conventional AlGaN/GaN one at the similar Al composition. Furthermore, the calculated carrier distribution shows that carrier mobility will be improved by reducing interface roughness and alloy disorder scattering in designed heterostructure.

  20. A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay

    International Nuclear Information System (INIS)

    Misra, A.K.; Mishra, S.N.; Pathak, A.L.; Srivastava, P.K.; Chandra, Peeyush

    2013-01-01

    In this paper, a non-linear delay mathematical model for the control of carrier-dependent infectious diseases through insecticides is proposed and analyzed. In the modeling process, it is assumed that disease spreads due to direct contact between susceptibles and infectives as well as through carriers (indirect contact). Further, it is assumed that insecticides are used to kill carriers and the rate of introduction of insecticides is proportional to the density of carriers with some time lag. The model analysis suggests that as delay in using insecticides exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. The direction, stability and period of the bifurcating periodic solutions arising through Hopf-bifurcation are also analyzed using normal form concept and center manifold theory. Numerical simulation is carried out to confirm the obtained analytical results

  1. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  2. Differential carrier lifetime and transport effects in electrically injected III-nitride light-emitting diodes

    Science.gov (United States)

    Rashidi, A.; Nami, M.; Monavarian, M.; Aragon, A.; DaVico, K.; Ayoub, F.; Mishkat-Ul-Masabih, S.; Rishinaramangalam, A.; Feezell, D.

    2017-07-01

    This work describes a small-signal microwave method for determining the differential carrier lifetime and transport effects in electrically injected InGaN/GaN light-emitting diodes (LEDs). By considering the carrier diffusion, capture, thermionic escape, and recombination, the rate equations are used to derive an equivalent small-signal electrical circuit for the LEDs, from which expressions for the input impedance and modulation response are obtained. The expressions are simultaneously fit to the experimental data for the input impedance and modulation response for nonpolar InGaN/GaN micro-LEDs on free-standing GaN substrates. The fittings are used to extract the transport related circuit parameters and differential carrier lifetimes. The dependence of the parameters on the device diameter and current density is reported. We also derive approximations for the modulation response under low and high injection levels and show that the transport of carriers affects the modulation response of the device, especially at low injection levels. The methods presented are relevant to the design of high-speed LEDs for visible-light communication.

  3. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  4. Personality traits in Huntington's disease: An exploratory study of gene expansion carriers and non-carriers.

    Science.gov (United States)

    Larsen, Ida Unmack; Mortensen, Erik Lykke; Vinther-Jensen, Tua; Nielsen, Jørgen Erik; Knudsen, Gitte Moos; Vogel, Asmus

    2016-12-01

    Huntington's disease (HD) is associated with risk for developing psychiatric symptoms. Vulnerability or resilience to psychiatric symptoms may be associated with personality traits. This exploratory study, aimed to investigate personality traits in a large cohort of HD carriers and at risk gene-expansion negative individuals (HD non-carriers), exploring whether carrying the HD gene or growing up in an HD family influences personality traits. Forty-seven HD carriers, Thirty-nine HD non-carriers, and 121 healthy controls answered the Danish version of the revised NEO personality inventory. Comparisons between HD carriers and HD non-carriers were mostly non-significant but the combined group of HD carriers and non-carriers showed significantly higher scores on the facets: "hostility," "assertiveness," and "activity" and on the trait "Conscientiousness" relative to controls, "Conscientiousness" have been associated with resilience to psychiatric symptoms. Twelve HD carriers and non-carriers were classified as depressed and showed significantly lower scores on "Extraversion" and "Conscientiousness" and significantly higher scores on "Neuroticism," which are associated with vulnerability to psychiatric symptoms. Our findings suggest that, there is no direct effect of the HD gene on personality traits, but that personality assessment may be relevant to use when identifying individuals from HD families who are vulnerable to develop psychiatric symptoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Enhancing the performance of blue GaN-based light emitting diodes with carrier concentration adjusting layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yao; Huang, Yang; Wang, Junxi; Wang, Guohong [R& D Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083,P. R. China (China); Liu, Zhiqiang, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Yi, Xiaoyan, E-mail: lzq@semi.ac.cn, E-mail: spring@semi.ac.cn; Li, Jinmin [R& D Center for Semiconductor Lighting, Chinese Academy of Sciences, Beijing 100083,P. R. China (China); State Key Laboratory of Solid State Lighting, Beijing 100083 (China); Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083 (China)

    2016-03-15

    In this work, a novel carrier concentration adjusting insertion layer for InGaN/GaN multiple quantum wells light-emitting diodes was proposed to mitigate the efficiency droop and improve optical output properties at high current density. The band diagrams and carrier distributions were investigated numerically and experimentally. The results indicate that due to the newly formed electron barrier and the adjusted built-in field near the active region, the hole injection has been improved and a better radiative recombination can be achieved. Compared to the conventional LED, the light output power of our new structure with the carrier concentration adjusting layers is enhanced by 127% at 350 mA , while the efficiency only droops to be 88.2% of its peak efficiency.

  6. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  7. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... AND PLUMS Definitions § 35.4 Carrier. Carrier means any common or private carrier, including, but not being limited to, trucks, rail, airplanes, vessels, tramp or chartered steamers, whether carrying for...

  8. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions

    Science.gov (United States)

    Fang, Yu; Yang, Junyi; Yang, Yong; Wu, Xingzhi; Xiao, Zhengguo; Zhou, Feng; Song, Yinglin

    2016-02-01

    The dependence of the carrier distribution on photoexcited carrier dynamics in a p-type Mg-doped GaN (GaN:Mg) wafer were systematically measured by femtosecond transient absorption (TA) spectroscopy. The homogeneity of the carrier distribution was modified by tuning the wavelength of the UV pulse excitation around the band gap of GaN:Mg. The TA kinetics appeared to be biexponential for all carrier distributions, and only the slower component decayed faster as the inhomogeneity of the carrier distribution increased. It was concluded that the faster component (50-70 ps) corresponded to the trap process of holes by the Mg acceptors, and the slower component (150-600 ps) corresponded to the combination of non-radiative surface recombination and intrinsic carrier recombination via dislocations. Moreover, the slower component increased gradually with the incident fluence due to the saturation of surface states.

  9. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  10. Terahertz response of two-dimensional charge carrier systems in GaAs-based heterostructures; Terahertz-Antwort von zweidimensionalen Ladungstraegersystemen in GaAs-basierten Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Torben

    2009-12-17

    This thesis deals with the THz response of two-dimensional charge carrier systems in different semiconductor heterostructures under varying conditions. The utilized spectrometer is suitable for time-resolved optical pump - THz probe experiments, as well as for optical pump-probe experiments in the near infrared for identical conditions. It allows the investigation of the transverse dielectric function of both, a (GaIn)As/GaAs quantum well and a two-dimensional electron gas in a GaAs-based heterostructure. First, the THz response of an electron-hole plasma is examined for different carrier densities. The plasma is generated by interband transitions in a (GaIn)As/GaAs quantum well. The measured transverse dielectric function reveals that the plasma behaves in accordance with the classical Drude oscillator model. It also conforms to the microscopic theory of the THz response of corresponding many-body systems. Evidence of a plasma resonance in the negative imaginary part of the inverse dielectric function is found. The squared peak frequency of the resonance is proportional to the carrier density of the plasma. This behavior corresponds to the plasma frequency of a three-dimensional plasma. Overall, it can be shown that the transverse THz response of a two-dimensional electron-hole plasma behaves like the response of a three-dimensional plasma. Therefore, the transversal THz response of an electron-hole plasma seems to be independent of the dimension of the charge carrier system. Secondly, the behavior of the quantum well for a 1s-exciton dominated carrier system is investigated. A good agreement between experiment and microscopic theory is obtained for the dielectric function. The negative imaginary part of the inverse dielectric function shows a resonance at the intraexcitonic 1s-2p transition frequency, even in weakly excited excitonic systems. Increasing the carrier density leads to a plasma-like behavior of the system. However, in these densities a significant

  11. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  12. Homozygous carriers of the TCF7L2 rs7903146 T-allele show altered postprandial response in triglycerides and triglyceride-rich lipoproteins

    DEFF Research Database (Denmark)

    Engelbrechtsen, L; Hansen, T H; Mahendran, Y

    2017-01-01

    to CC carriers. Additionally, TT carriers had lower postprandial levels of total triglycerides (TG) (q = 0.03), VLDL-TG (q = 0.05, including medium, small and extra small, q = 0.048, q = 0.0009, q = 0.04, respectively), HDL-TG (triglycerides in high density lipoproteins q = 0.037) and S-HDL-TG (q = 0.......00003). In conclusion, TT carriers show altered postprandial triglyceride response, mainly influencing VLDL and HDL subclasses suggesting a genotype-mediated effect on hepatic lipid regulation....

  13. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.

    Science.gov (United States)

    Azad, Mohammad; Moreno, Jacqueline; Bilgili, Ecevit; Davé, Rajesh

    2016-11-20

    Formation of core-shell nanocomposites of Fenofibrate and Itraconazole, model poorly water soluble drugs, via fluidized bed (FB) coating of their well-stabilized high drug loaded nanosuspensions is investigated. Specifically, the extent of dissolution enhancement, when fine carrier particles (sub-50μm) as opposed to the traditional large carrier particles (>300μm) are used, is examined. This allows testing the hypothesis that greatly increased carrier surface area and more importantly, thinner shell for finer carriers at the same drug loading can significantly increase the dissolution rate when spray-coated nanosuspensions are well-stabilized. Fine sub-50μm lactose (GranuLac ® 200) carrier particles were made fluidizable via dry coating with nano-silica, enabling decreased cohesion, fluidization and subsequent nanosuspension coating. For both drugs, 30% drug loaded suspensions were prepared via wet-stirred media milling using hydroxypropyl methyl cellulose and sodium dodecyl sulfate as stabilizers. The stabilizer concentrations were varied to affect the milled particle size and prepare a stable nanosuspension. The suspensions were FB coated onto hydrophilic nano-silica (M-5P) dry coated sub-50μm lactose (GranuLac ® 200) carrier particles or larger carrier particles of median size >300μm (PrismaLac ® 40). The resulting finer composite powders (sub-100μm) based on GranuLac ® 200 were freely flowing, had high bulk density, and had much faster, immediate dissolution of the poorly water-soluble drugs, in particular for Itraconazole. This is attributed to a much higher specific surface area of the carrier and corresponding thinner coating layer for fine carriers as opposed to those for large carrier particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Non-permeable substrate carrier for electroplating

    Science.gov (United States)

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  15. Dynamics of photoexcited carrier relaxation and recombination in CdTe/CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Fluegel, B.D.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Efficiency-limiting defects in photovoltaic devices are readily probed by time-resolved spectroscopy. This paper presents the first direct optical measurements of the relaxation and recombination pathways of photoexcited carriers in the CdS window layer of CdTe/CdS polycrystalline thin films. Femtosecond time-resolved pump/probe measurements indicate the possible existence of a two-phase CdS/CdSTe layer, rather than a continuously graded alloy layer at the CdTe/CdS interface. Complementary time-resolved photoluminescence (PL) measurements show that the photoexcited carriers are rapidly captured by deep-level defects. The temporal and density-dependent properties of the photoluminescence prove that the large Stokes shift of the PL relative to the band edge is due to strong phonon coupling to deep-level defects in CdS. The authors suggest that modifications in the CdS processing may enhance carrier collection efficiency in the blue spectral region.

  16. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M

    2014-01-01

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  17. 300% Enhancement of Carrier Mobility in Uniaxial-Oriented Perovskite Films Formed by Topotactic-Oriented Attachment.

    Science.gov (United States)

    Kim, Dong Hoe; Park, Jaehong; Li, Zhen; Yang, Mengjin; Park, Ji-Sang; Park, Ik Jae; Kim, Jin Young; Berry, Joseph J; Rumbles, Garry; Zhu, Kai

    2017-06-01

    Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 × 10 14 cm -3 ), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 s -1 ), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). The TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Narducci, Dario, E-mail: dario.narducci@unimib.it [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Selezneva, Ekaterina [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Cerofolini, Gianfranco [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Frabboni, Stefano; Ottaviani, Giampiero [Department of Physics, University of Modena and Reggio Emilia, via Campi 213, 41100 Modena (Italy)

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of the actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.

  19. Characterization of temperature-dependent carrier transport in disordered indium-tin-oxide/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyfluorene/Ca/Al polymer structures

    International Nuclear Information System (INIS)

    Jiang, Joe-Air; Wang, Jen-Cheng; Fang, Chia-Hui; Wu, Ya-Fen; Teng, Jen-Wei; Chen, Yu-Ting; Fan, Ping-Lin; Nee, Tzer-En

    2011-01-01

    The temperature-dependent electrical characteristics of polyfluorene-based polymer structures over a temperature range from 200 to 300 K are systematically investigated in this study. Initially, using the definitions of the Berthelot-type model, it is found that the sample exhibits a higher Berthelot-type temperature T B with high driving voltage, indicating that carrier transport in a disordered system manifests Berthelot-type behaviors. The ideal current density-voltage curve for the polymer structures given the carrier transmit mechanism is further elucidated by taking into account the ohmic conduction, trap charge limited current, and Mott and Gurney model of space charge limited current. The proposed procedure is simple and can be used to characterize the material with reasonable accuracy. We also study the density of the traps H t , and the characteristic energy of the distribution E t to better understand the carrier-transport process in organic materials and structures.

  20. Charge transport in organic transistors accounting for a wide distribution of carrier energies, Part I : Theory

    NARCIS (Netherlands)

    Torricelli, F.

    2012-01-01

    An extended theory of carrier hopping transport in organic transistors is proposed. According to many experimental studies, the density of localized states in organic thin-film transistors can be described by a double-exponential function. In this work, using a percolation model of hopping, the

  1. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  2. Probing surface states in PbS nanocrystal films using pentacene field effect transistors: controlling carrier concentration and charge transport in pentacene.

    Science.gov (United States)

    Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias

    2014-12-21

    We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.

  3. 7 CFR 33.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common or...

  4. Effect of PEGylation on ligand-based targeting of drug carriers to the vascular wall in blood flow.

    Science.gov (United States)

    Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2013-09-03

    The blood vessel wall plays a prominent role in the development of many life-threatening diseases and as such is an attractive target for treatment. To target diseased tissue, particulate drug carriers often have their surfaces modified with antibodies or epitopes specific to vascular wall-expressed molecules, along with poly(ethylene glycol) (PEG) to improve carrier blood circulation time. However, little is known about the effect of poly(ethylene glycol) on carrier adhesion dynamics-specifically in blood flow. Here we examine the influence of different molecular weight PEG spacers on particle adhesion in blood flow. Anti-ICAM-1 or Sialyl Lewis(a) were grafted onto polystyrene 2 μm and 500 nm spheres via PEG spacers and perfused in blood over activated endothelial cells at physiological shear conditions. PEG spacers were shown to improve, reduce, or have no effect on the binding density of targeted-carriers depending on the PEG surface conformation, shear rate, and targeting moiety.

  5. Low-cost carriers fare competition effect

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2010-01-01

    This paper examines the effects that low-cost carriers (LCC’s) produce when entering new routes operated only by full-service carriers (FSC’s) and routes operated by low-cost carriers in competition with full-service carriers. A mathematical model has been developed to determine what routes should

  6. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions.

    Science.gov (United States)

    Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu

    2014-07-24

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.

  7. Estimating Motor Carrier Management Information System Crash File Underreporting from Carrier Records.

    Science.gov (United States)

    2017-08-01

    This FMCSA-sponsored research investigated the claim that motor carriers have a substantial number of crashes in their own records that are not contained in the Motor Carrier Management Information System (MCMIS) crash file. Based on the results of t...

  8. Investigation of carrier dynamics in InAs/GaAsSb quantum dots with different silicon delta-doping levels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Keun-Yong [Arizona State Univ., Tempe, AZ (United States). School of Electrical, Computer and Energy Engineering; Kim, Yeongho [Korea Research Inst. of Chemistry Technology (KRICT), Daejeon (Korea, Republic of). Division of Metrology for Future Technology; Kuciauskas, Darius [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bremner, Stephen P. [Univ. of New South Wales, Sydney, NSW (Australia). School of Photovoltaic and Renewable Energy Engineering; Honsberg, Christiana B. [Arizona State Univ., Tempe, AZ (United States). School of Electrical, Computer and Energy Engineering

    2016-11-10

    The optical properties of InAs quantum dots (QDs) embedded in a GaAsSb matrix with different delta (d)-doping levels of 0, 2, 4, and 6 electrons per dot (e-/dot), incorporated to control the occupation of QD electronic states, are studied by photoluminescence (PL) spectroscopy. The time-resolved PL data taken at 10 K reveal that the increase of δ-doping density from 2 to 6 e-/dot decreases the recombination lifetime of carriers at ground states of the QDs from 996 ± 36 to 792 ± 19 ps, respectively. Furthermore, the carrier lifetime of the sample with 4 e-/dot is found to increase at a slower rate than that of the undoped sample as temperature increases above 70 K. An Arrhenius plot of the temperature dependent PL intensity indicates that the thermal activation energy of electrons in the QDs, required for carrier escape from the dot ground state to continuum state, is increased when the d-doping density is high enough (>4 e-/dot). These results are attributed to the enhanced Coulomb interaction of electrons provided by the d-doping, leading to reduced thermal quenching of the PL.

  9. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  10. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  11. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  12. Characteristics of carrier-generated field-effect transistors with pentacene/vanadium pentoxide

    International Nuclear Information System (INIS)

    Minagawa, M.; Nakai, K.; Baba, A.; Shinbo, K.; Kato, K.; Kaneko, F.; Lee, C.

    2011-01-01

    In this paper, the driving mechanism of carrier-generated organic field-effect transistors (OFETs) with pentacene and vanadium pentoxide (V 2 O 5 ) layers is discussed. In this study, large on-currents were observed in an OFET with a 35-nm V 2 O 5 layer. Devices with aluminum (Al)/pentacene/V 2 O 5 /Al layer structures were also prepared. These devices exhibited a large current density in spite of their high carrier injection barriers between each layer and the Al electrodes. Moreover, new absorption bands corresponding to the radical cation absorption of pentacene were observed within the absorption spectrum of the pentacene and V 2 O 5 mixed layers. It was inferred that the charge transfer (CT) complexes that formed at the interface between the pentacene and V 2 O 5 layers were dissociated by the applied gate voltage and that the generated holes contributed to driving the OFETs.

  13. Joint Iterative Carrier Synchronization and Signal Detection for Dual Carrier 448 Gb/s PDM 16-QAM

    DEFF Research Database (Denmark)

    Zibar, Darko; Carvalho, Luis; Estaran Tolosa, Jose Manuel

    2013-01-01

    Soft decision driven joint carrier synchronization and signal detection, employing expectation maximization, is experimentally demonstrated. Employing soft decisions offers an improvement of 0.5 dB compared to hard decision digital PLL based carrier synchronization and demodulation.......Soft decision driven joint carrier synchronization and signal detection, employing expectation maximization, is experimentally demonstrated. Employing soft decisions offers an improvement of 0.5 dB compared to hard decision digital PLL based carrier synchronization and demodulation....

  14. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics

    Science.gov (United States)

    Brown, J. S.; Shaheen, S. E.

    2018-04-01

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  15. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  16. Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths.

    Science.gov (United States)

    Yettapu, Gurivi Reddy; Talukdar, Debnath; Sarkar, Sohini; Swarnkar, Abhishek; Nag, Angshuman; Ghosh, Prasenjit; Mandal, Pankaj

    2016-08-10

    Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron-hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm(2) V(-1) s(-1)), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system.

  17. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2013-11-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  18. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2012-07-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  19. Quantum-mechanical calculation of carrier distribution in MOS accumulation and strong inversion layers

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2013-10-01

    Full Text Available We derive a statistical physics model of two-dimensional electron gas (2DEG and propose an accurate approximation method for calculating the quantum-mechanical effects of metal-oxide-semiconductor (MOS structure in accumulation and strong inversion regions. We use an exponential surface potential approximation in solving the quantization energy levels and derive the function of density of states in 2D to 3D transition region by applying uncertainty principle and Schrödinger equation in k-space. The simulation results show that our approximation method and theory of density of states solve the two major problems of previous researches: the non-negligible error caused by the linear potential approximation and the inconsistency of density of states and carrier distribution in 2D to 3D transition region.

  20. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    International Nuclear Information System (INIS)

    Wampler, William R.; Myers, Samuel M.

    2015-01-01

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation

  1. Band gap tunning in BN-doped graphene systems with high carrier mobility

    KAUST Repository

    Kaloni, T. P.

    2014-02-17

    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.

  2. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    Science.gov (United States)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  3. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    International Nuclear Information System (INIS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-01-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED

  4. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun [Department of Applied Physics, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nan Tzu Dist., 811 Kaohsiung, Taiwan (China); Leung, Benjamin; Han, Jung [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Yang, Fann-Wei [Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Wang, Hsiang-Chen [Graduate Institute of Opto-Mechatronics and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi, Taiwan (China)

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  5. Calculation of the major material parameters of heat carriers for cryogenic heat pipes

    International Nuclear Information System (INIS)

    Molt, W.

    1976-07-01

    In order to make predictions on the efficiency of cryogenic heat pipes, the material parameters of the heat carrier such as surface tension, viscosity, evaporation heat and density of the liquid should be known. The author therefore investigates suitable interpolation methods and equations which enable the calculation of the desired material parameter at a certain temperature from other known quantities or which require that 1 to 3 material parameters at different temperatures are known. The calculations are limited to the temperature between critical temperature and triple point, since this is the only temperature region in which the heat carrier is in its liquid phase. The applicability and exactness of the equations is tested using known experimental data on N 2 , O 2 , CH 4 and partly on CF 4 . (orig./TK) [de

  6. Increase of Carrier-to-Noise Ratio in GPS Receivers Caused by Continuous-Wave Interference

    Directory of Open Access Journals (Sweden)

    J. Li

    2016-09-01

    Full Text Available The increased use of personal private devices (PPDs is drawing greater attention to the effects of continuous-wave interference (CWI on the performance of global positioning system (GPS receivers. The effective carrier-to-noise density ratio (C/N0, an essential index of GNSS receiver performance, is studied in this paper. Receiver tracking performance deteriorates in the presence of interference. Hence, the effective C/N0, which measures tracking performance, decreases. However, simulations and bench tests have shown that the effective C/N0 may increase in the presence of CWI. The reason is that a sinusoidal signal is induced by the CWI in the correlator and may be tracked by the carrier tracking loop. Thus, the effective carrier power depends on the power of the signal induced by the CWI, and the effective C/N0 increases with the power of the CWI. The filtering of the CWI in the carrier tracking loop correlator and its effect on the phase locked loop (PLL tracking performance are analyzed. A mathematical model of the effect of the CWI on the effective C/N0 is derived. Simulation results show that the proposed model is more accurate than existing models, especially when the jam-to-signal ratio (JSR is greater than 30 dBc.

  7. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    Science.gov (United States)

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  8. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density

    Science.gov (United States)

    Guster, Bogdan; Canadell, Enric; Pruneda, Miguel; Ordejón, Pablo

    2018-04-01

    We present a density functional theory study of the electronic structure of single-layer TiSe2, and focus on the charge density wave (CDW) instability present on this 2D material. We explain the 2× 2 periodicity of the CDW from the phonon band structure of the undistorted crystal, which is unstable under one of the phonon modes at the M point. This can be understood in terms of a partial band gap opening at the Fermi level, which we describe on the basis of the symmetry of the involved crystal orbitals, leading to an energy gain upon the displacement of the atoms following the phonon mode in a 2  ×  1 structure. Furthermore, the combination of the corresponding phonons for the three inequivalent M points of the Brillouin zone leads to the 2  ×  2 distortion characteristic of the CDW state. This leads to a further opening of a full gap, which reduces the energy of the 2  ×  2 structure compared to the 2  ×  1 one of a single M point phonon, and makes the CDW structure the most stable one. We also analyze the effect of charge injection into the layer on the structural instability. We predict that the 2  ×  2 structure only survives for a certain range of doping levels, both for electrons and for holes, as doping reduces the energy gain due to the gap opening. We predict the transition from the commensurate 2  ×  2 distortion to an incommensurate one with increasing wavelength upon increasing the doping level, followed by the appearance of the undistorted 1  ×  1 structure for larger carrier concentrations.

  9. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...

  10. Carrier-added and no-carrier-added syntheses of [18F]spiroperidol and [18F]haloperidol

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Welch, M.J.; Dence, C.S.; Tewson, T.J.; Saji, H.; Maeda, M.

    1984-01-01

    Syntheses of [ 18 F]haloperidol and [ 18 F]spiroperidol in both no-carrier-added and carrier-added forms have been accomplished. The no-carrier-added [ 18 F]butyrophenone neuroleptics were prepared in low ( 18 F-neuroleptics were prepared in better (5-17%) yields by 18 F-for- 19 F nucleophilic aromatic substitution. The preparation of all synthetic precursors, and procedures for radiolabeling are fully described. (author)

  11. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Katsuichi, E-mail: kkane@sci.osaka-cu.ac.jp; Nakatani, Hitomi; Domoto, Shinya [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  12. 14 CFR 271.4 - Carrier costs.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.4 Carrier costs. (a) The reasonable costs projected for a carrier providing essential air service at an eligible...

  13. 14 CFR 271.5 - Carrier revenues.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.5 Carrier revenues. (a) The projected passenger revenue for a carrier providing essential air service at an eligible...

  14. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  15. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Science.gov (United States)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  16. Difficulty of carrier generation in orthorhombic PbO

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Min; Takemoto, Seiji; Toda, Yoshitake; Tada, Tomofumi [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Xiao, Zewen; Kamiya, Toshio; Hosono, Hideo, E-mail: hosono@msl.titech.ac.jp [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Quantum Beam Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-04-28

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10{sup −7} S cm{sup −1}, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O{sub 3}) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 10{sup 2} S cm{sup −1}) but it is the result of the formation of an n-type PbO{sub 2} phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  17. Carrier-added and no-carrier-added syntheses of (/sup 18/F)spiroperidol and (/sub 18/F)haloperidol

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, M R; Welch, M J; Dence, C S; Tewson, T J; Saji, H; Maeda, M

    1984-07-01

    Syntheses of (18F)haloperidol and (18F)spiroperidol in both no-carrier-added and carrier-added forms have been accomplished. The no-carrier-added (18F)butyrophenone neuroleptics were prepared in low (less than 2%) yield by acid decomposition of aryl piperidine triazenes. Carrier-added 18F-neuroleptics were prepared in better (5-17%) yields by 18F-for-19F nucleophilic aromatic substitution. The preparation of all synthetic precursors, and procedures for radiolabeling are fully described.

  18. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, R.; Juška, G.

    2005-07-01

    Time-dependent mobility and recombination in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)- C61 (PCBM) is studied simultaneously using the photoinduced charge carrier extraction by linearly increasing voltage technique. The charge carriers are photogenerated by a strongly absorbed, 3 ns laser flash, and extracted by the application of a reverse bias voltage pulse after an adjustable delay time (tdel) . It is found that the mobility of the extracted charge carriers decreases with increasing delay time, especially shortly after photoexcitation. The time-dependent mobility μ(t) is attributed to the energy relaxation of the charge carriers towards the tail states of the density of states distribution. A model based on a dispersive bimolecular recombination is formulated, which properly describes the concentration decay of the extracted charge carriers at all measured temperatures and concentrations. The calculated bimolecular recombination coefficient β(t) is also found to be time-dependent exhibiting a power law dependence as β(t)=β0t-(1-γ) with increasing slope (1-γ) with decreasing temperatures. The temperature dependence study reveals that both the mobility and recombination of the photogenerated charge carriers are thermally activated processes with activation energy in the range of 0.1 eV. Finally, the direct comparison of μ(t) and β(t) shows that the recombination of the long-lived charge carriers is controlled by diffusion.

  19. Effect of Thermal Annealing on Light-Induced Minority Carrier Lifetime Enhancement in Boron-Doped Czochralski Silicon

    International Nuclear Information System (INIS)

    Wang Hong-Zhe; Zheng Song-Sheng; Chen Chao

    2015-01-01

    The effect of thermal annealing on the light-induced effective minority carrier lifetime enhancement (LIE) phenomenon is investigated on the p-type Czochralski silicon (Cz-Si) wafer passivated by a phosphorus-doped silicon nitride (P-doped SiN_x) thin film. The experimental results show that low temperature annealing (below 300°C) can not only increase the effective minority carrier lifetime of P-doped SiN_x passivated boron-doped Cz-Si, but also improve the LIE phenomenon. The optimum annealing temperature is 180°C, and its corresponding effective minority carrier lifetime can be increased from initial 7.5 μs to maximum 57.7 μs by light soaking within 15 min after annealing. The analysis results of high-frequency dark capacitance-voltage characteristics reveal that the mechanism of the increase of effective minority carrier lifetime after low temperature annealing is due to the sharp enhancement of field effect passivation induced by the negative fixed charge density, while the mechanism of the LIE phenomenon after low temperature annealing is attributed to the enhancement of both field effect passivation and chemical passivation. (paper)

  20. Carrier-added and no-carrier-added syntheses of (/sup 18/F)spiroperidol and (/sup 18/F)haloperidol

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, M R; Welch, M J; Dence, C S; Tewson, T J; Saji, H; Maeda, M [Washington Univ., St. Louis, MO (USA). Edward Mallinckrodt Inst. of Radiology

    1984-07-01

    Syntheses of (/sup 18/F)haloperidol and (/sup 18/F)spiroperidol in both no-carrier-added and carrier-added forms have been accomplished. The no-carrier-added (/sup 18/F)butyrophenone neuroleptics were prepared in low (<2%) yield by acid decomposition of aryl piperidine triazenes. Carrier-added /sup 18/F-neuroleptics were prepared in better (5-17%) yields by /sup 18/F-for-/sup 19/F nucleophilic aromatic substitution. The preparation of all synthetic precursors, and procedures for radiolabeling are fully described.

  1. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    values extracted from OPTP measurements and their dependence on perovskite composition and morphology. The significance of the reviewed charge-carrier recombination and mobility parameters is subsequently evaluated in terms of the charge-carrier diffusion lengths and radiative efficiencies that may be obtained for such hybrid perovskites. We particularly focus on calculating such quantities in the limit of ultra-low trap-related recombination, which has not yet been demonstrated but could be reached through further advances in material processing. We find that for thin films of hybrid lead iodide perovskites with typical charge-carrier mobilities of ∼30cm(2)/(V s), charge-carrier diffusion lengths at solar (AM1.5) irradiation are unlikely to exceed ∼10 μm even if all trap-related recombination is eliminated. We further examine the radiative efficiency for hybrid lead halide perovskite films and show that if high efficiencies are to be obtained for intermediate charge-carrier densities (n ≈ 10(14) cm(-3)) trap-related recombination lifetimes will have to be enhanced well into the microsecond range.

  2. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 8 CFR 217.6 - Carrier agreements.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under this...

  4. Analytic 1D pn junction diode photocurrent solutions following ionizing radiation and including time-dependent changes in the carrier lifetime.

    Energy Technology Data Exchange (ETDEWEB)

    Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)

    2011-04-01

    Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.

  5. Estimating motor carrier management information system crash file underreporting from carrier records : research brief.

    Science.gov (United States)

    2017-08-01

    This study estimated a significant amount of underreporting to the MCMIS crash file by the States, for the carriers who cooperated in the study. For the study carriers, it appears that the MCMIS file contained about 66 percent of their reportable cra...

  6. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Directory of Open Access Journals (Sweden)

    Nayoung Park

    2018-04-01

    Full Text Available We demonstrate thermally assisted hopping (TAH as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  7. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing with the subst......The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... and polyphloretinephosphate. The results of the analysis for these inhibitors indicate a substrate competitive mode of action. The effect of reversing the transport direction by interchanging the substrate concentration has been treated for the case of a non-penetrating substrate competitive inhibitor in the external medium...

  8. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  9. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    Science.gov (United States)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  10. Doping effects in InN/GaN short-period quantum well structures-Theoretical studies based on density functional methods

    Science.gov (United States)

    Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2014-09-01

    Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.

  11. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  12. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  13. Lower reflectivity and higher minority carrier lifetime of hand-tailored porous silicon

    International Nuclear Information System (INIS)

    Zhang Nansheng; Ma Zhongquan; Zhou Chengyue; He Bo

    2009-01-01

    Solar cell grade crystalline silicon with very low reflectivity has been obtained by electrochemically selective erosion. The porous silicon (PS) structure with a mixture of nano- and micro-crystals shows good antireflection properties on the surface layer, which has potential for application in commercial silicon photovoltaic devices after optimization. The morphology and reflectivity of the PS layers are easily modulated by controlling the electrochemical formation conditions (i.e., the current density and the anodization time). It has been shown that much a lower reflectivity of approximately 1.42% in the range 380-1100 nm is realized by using optimized conditions. In addition, the minority carrier lifetime of the PS after removing the phosphorus silicon layer is measured to be ∼3.19 μs. These values are very close to the reflectivity and the minority carrier lifetime of Si 3 N 4 as a passivation layer on a bulk silicon-based solar cell (0.33% and 3.03 μs, respectively).

  14. Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers.

    Science.gov (United States)

    Ghasemzadeh-Moghaddam, H; Neela, V; van Wamel, W; Hamat, R A; Shamsudin, M Nor; Hussin, N Suhaila Che; Aziz, M N; Haspani, M S Mohammad; Johar, A; Thevarajah, S; Vos, M; van Belkum, A

    2015-11-01

    We performed a prospective observational study in a clinical setting to test the hypothesis that prior colonization by a Staphylococcus aureus strain would protect, by colonization interference or other processes, against de novo colonization and, hence, possible endo-infections by newly acquired S. aureus strains. Three hundred and six patients hospitalized for >7 days were enrolled. For every patient, four nasal swabs (days 1, 3, 5, and 7) were taken, and patients were identified as carriers when a positive nasal culture for S. aureus was obtained on day 1 of hospitalization. For all patients who acquired methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus via colonization and/or infection during hospitalization, strains were collected. We note that our study may suffer from false-negative cultures, local problems with infection control and hospital hygiene, or staphylococcal carriage at alternative anatomical sites. Among all patients, 22% were prior carriers of S. aureus, including 1.9% whom carried MRSA upon admission. The overall nasal staphylococcal carriage rate among dermatology patients was significantly higher than that among neurosurgery patients (n = 25 (55.5%) vs. n = 42 (16.1%), p 0.005). This conclusion held when the carriage definition included individuals who were nasal culture positive on day 1 and day 3 of hospitalization (p 0.0001). All MRSA carriers were dermatology patients. There was significantly less S. aureus acquisition among non-carriers than among carriers during hospitalization (p 0.005). The mean number of days spent in the hospital before experiencing MRSA acquisition in nasal carriers was 5.1, which was significantly lower than the score among non-carriers (22 days, p 0.012). In conclusion, we found that nasal carriage of S. aureus predisposes to rather than protects against staphylococcal acquisition in the nose, thereby refuting our null hypothesis. Copyright © 2015 European Society of Clinical

  15. Modulation Based on Probability Density Functions

    Science.gov (United States)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  16. Increased carrier lifetimes in epitaxial silicon layers on buried silicon nitride produced by ion implantation

    International Nuclear Information System (INIS)

    Skorupa, W.; Kreissig, U.; Hensel, E.; Bartsch, H.

    1984-01-01

    Carrier lifetimes were measured in epitaxial silicon layers deposited on buried silicon nitride produced by high-dose nitrogen implantation at 330 keV. The values were in the range 20-200 μs. The results are remarkable taking into account the high density of crystal defects in the epitaxial layers. Comparing with other SOI technologies the measured lifetimes are higher by 1-2 orders of magnitude. (author)

  17. No differences in brain microstructure between young KIBRA-C carriers and non-carriers.

    Science.gov (United States)

    Hu, Li; Xu, Qunxing; Li, Jizhen; Wang, Feifei; Xu, Xinghua; Sun, Zhiyuan; Ma, Xiangxing; Liu, Yong; Wang, Qing; Wang, Dawei

    2018-01-02

    KIBRA rs17070145 polymorphism is associated with variations in memory function and the microstructure of related brain areas. Diffusion kurtosis imaging (DKI) as an extension of diffusion tensor imaging that can provide more information about changes in microstructure, based on the idea that water diffusion in biological tissues is heterogeneous due to structural hindrance and restriction. We used DKI to explore the relationship between KIBRA gene polymorphism and brain microstructure in young adults. We recruited 100 healthy young volunteers, including 53 TT carriers and 47 C allele carriers. No differences were detected between the TT homozygotes and C-allele carriers for any diffusion and kurtosis parameter. These results indicate KIBRA rs17070145 polymorphism likely has little or no effect on brain microstructure in young adults.

  18. Safety requirements for the Pu carriers

    International Nuclear Information System (INIS)

    Mishima, H.

    1993-01-01

    Ministry of Transport of Japan has now set about studying requirements for Pu carriers to ensure safety. It was first studied what the basic concept of safe carriage of Pu should be, and the basic ideas have been worked out. Next the requirements for the Pu carriers were studied based on the above. There are at present no international requirements of construction and equipment for the nuclear-material carriers, but MOT of Japan has so far required special construction and equipment for the nuclear-material carriers which carry a large amount of radioactive material, such as spent fuel or low level radioactive waste, corresponding to the level of the respective potential hazard. The requirements of construction and equipment of the Pu carriers have been established considering the difference in heat generation between Pu and spent fuel, physical protection, and so forth, in addition to the above basic concept. (J.P.N.)

  19. Preparation of microorganism free carrier for biofertilizer product

    International Nuclear Information System (INIS)

    Latiffah Norddin; Maizatul Akmam Mhd Nasir; Phua Choo Kwai Hoe

    2007-01-01

    Biofertilizer has been identified as an alternative or complementary to chemical fertilizer to increase soil fertility and crop production in sustainable farming. Biofertilizers are products containing living cells of different types of known microorganisms that may increase crop productivity through N2 fixation, phosphate solubilization or stimulation of plant growth by synthesising phytohormones. A good biofertilizer product needs a good carrier or substrate. A good carrier is free from microbial contamination and can optimise the growth of the biofertilizer microorganisms. Compost is commonly used as carrier or substrate for biofertilizer microorganisms. In the present study, compost produced by Nuclear Malaysia using the Natural Farming was used as a carrier for the biofertilizer products. Gamma irradiation has been used to produce a ?clean? or sterile carrier. The sterilization effect of the carrier was checked by using serial dilution technique. Carriers that were irradiated at 50 kGy of gamma irradiation were found to be sterile. The shelf life of the sterile carriers was also determined. After six months the compost carriers were still free from microbial contamination. (Author)

  20. Carrier-mediated transport of peptides by the kidney

    International Nuclear Information System (INIS)

    Skopicki, H.A.

    1988-01-01

    Small peptide transport was characterized to determine if: (1) Multiple carriers are present in the luminal membrane of renal proximal tubular cells; (2) Carrier-mediated peptide transport is limited by size; and (3) Gentamicin inhibits carrier-mediated reabsorption of peptides. Uptake of glycyl-[ 3 H]proline (Gly-Pro) into renal brush border membrane vesicles demonstrated a dual affinity carrier system. Whether multiple carriers are present was further investigated by characterizing the uptake of [ 3 H]pyroglutamyl-histidine. To determine if carrier-mediated transport of peptides is limited by size of the molecule, uptake of the hydrolytically resistant tripeptide, [ 3 H]pryroglutamyl-histidyl-tryptophan (pGlu-His-Trp), and tetrapeptide, [ 3 H]pyroglutamyl-histidyl-tryptophyl-serine (pGlu-His-Trp-Ser) were assessed. These data indicate: multiple carriers exist on the luminal membrane of renal proximal tubular cells for the transport of dipeptides, and tripeptide pGlu-His-Trp and the tetrapeptide pGlu-His-Trp-Ser are not taken up by a carrier-mediated mechanism, suggesting that the carrier may be limited by the size of the substrate

  1. Dedicated Carrier Deployment in Heterogeneous Networks with Inter-site Carrier Aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus I.

    2013-01-01

    the macrocell or the picocell using simple cell range expansion (RE). Extensive system-level simulations have been conducted to investigate the performance gains that can be achieved with inter-site CA under different traffic models and user distributions. Results show that using inter-site CA between......) or picos with dedicated carrier deployment. Collaborative inter-site carrier aggregation (CA) is proposed in scenarios with macro+RRH deployment to make an efficient use of the fragmented spectrum from multiple cells. While in scenarios with macro+pico deployment, UEs can only connect to either...

  2. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Kirchartz, Thomas, E-mail: t.kirchartz@fz-juelich.de [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, Duisburg 47057 (Germany)

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  3. Carrier-carrier scattering in the gain dynamics of InxGa1-xAs/AlyGa1-yAs diode lasers

    DEFF Research Database (Denmark)

    Sanders, Gary D; Sun, C.-K.; Golubovic, B.

    1996-01-01

    Ultrafast optical nonlinearities in semiconductors play a central role in determining transient amplification and pulse-dependent gain saturation in diode lasers. Both carrier-phonon and carrier-carrier scattering are expected to determine the gain dynamics in these systems. We present a relaxation......-Dirac function where the chemical potential and temperature are self-consistently chosen so that both particle number and energy are conserved in the carrier-carrier scattering process. The relaxation approximation makes the problem an effective one-dimensional problem which can then be solved directly...

  4. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    Science.gov (United States)

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  5. 14 CFR 271.3 - Carrier subsidy need.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.3 Carrier subsidy need. In establishing the subsidy for an air carrier providing essential air service at an...

  6. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  7. Carbon: Hydrogen carrier or disappearing skeleton?

    International Nuclear Information System (INIS)

    De Jong, K.P.; Van Wechem, H.M.H.

    1994-01-01

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently developed Shell Middle Distillate Hydrogenation process for the manufacture of high quality diesel from aromatic refinery streams fits this picture. In the future, the hydrogen required to raise the product H/C ratio will be increasingly produced via gasification of large amounts of heavy residues. In the light of the strong preference towards using liquid fuels in the transport sector, the Shell Middle Distillate Synthesis process to convert natural gas into diesel of very high quality is discussed. Finally, a few comments on the use of hydrogen without a carbon carrier are made. Long lead times and the likelihood of producing the 'first' hydrogen from fossil fuel are highlighted. 13 figs., 6 tabs., 5 refs

  8. Microscopic study on the carrier distribution in optoelectronic device structures: experiment and modeling

    Science.gov (United States)

    Huang, Wenchao; Xia, Hui; Wang, Shaowei; Deng, Honghai; Wei, Peng; Li, Lu; Liu, Fengqi; Li, Zhifeng; Li, Tianxin

    2011-12-01

    Scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) both are capable of mapping the 2-demensional carrier distribution in semiconductor device structures, which is essential in determining their electrical and optoelectronic performances. In this work, cross-sectional SCM1,2 is used to study the InGaAs/InP P-i-N junctions prepared by area-selective p-type diffusion. The diffusion lengths in the depth as well as the lateral directions are obtained for junctions under different window sizes in mask, which imply that narrow windows may result in shallow p-n junctions. The analysis is beneficial to design and fabricate focal plane array of near infrared photodetectors with high duty-cycle and quantum efficiency. On the other hand, SSRM provides unparalleled spatial resolution (demanded for studying low-dimensional structures. However, to derive the carrier density from the measured local conductance in individual quantum structures, reliable model for SSRM is necessary but still not well established. Based on the carrier concentration related transport mechanisms, i.e. thermionic emission and thermionic field emission4,5, we developed a numerical model for the tip-sample Schottky contact4. The calculation is confronted with SSRM study on the dose-calibrated quantum wells (QWs).

  9. Generated carrier dynamics in V-pit enhanced InGaN/GaN light emitting diode

    KAUST Repository

    Ajia, Idris A.

    2017-12-18

    We investigate the effects of V-pits on the optical properties of a state-of-the art highly efficient, blue InGaN/GaN multi-quantum-well (MQW) light emitting diode (LED) with high internal quantum efficiency (IQE) of > 80%. The LED is structurally enhanced by incorporating pre-MQW InGaN strain-relief layer with low InN content and patterned sapphire substrate. For comparison, a conventional (unenhanced) InGaN/GaN MQW LED (with IQE of 46%) grown under similar conditions was subjected to the same measurements. Scanning transmission electron microscopy (STEM) reveals the absence of V-pits in the unenhanced LED, whereas in the enhanced LED, V-pits with {10-11} facets, emerging from threading dislocations (TDs) were prominent. Cathodoluminescence mapping reveals the luminescence properties near the V-pits, showing that the formation of V-pit defects can encourage the growth of defect-neutralizing barriers around TD defect states. The diminished contribution of TDs in the MQWs allows indium-rich localization sites to act as efficient recombination centers. Photoluminescence and time-resolved spectroscopy measurements suggest that the V-pits play a significant role in the generated carrier rate and droop mechanism, showing that the quantum confined Stark effect is suppressed at low generated carrier density, after which the carrier dynamics and droop are governed by the carrier overflow effect.

  10. Subthreshold slope as a measure of interfacial trap density in pentacene films

    International Nuclear Information System (INIS)

    Kwon, Yongwoo; Park, Byoungnam

    2016-01-01

    Electrical properties in organic field effect transistors (FETs) are dominated by charge transport in the accumulation layer, few molecular layers close to the gate dielectric. Through comparison of the subthreshold slope between monolayer (ML) and thick pentacene FETs, formation of the second layer islands on top of the complete first layer is found to be crucial in determining the charge transport in ML pentacene FETs. It is demonstrated that a pentacene ML field effect transistor (FET) is an excellent probe that can detect electronic states of organic semiconductors interfacing with the gate dielectric at nanometer scale. Far higher sub-threshold slope in ML FETs, as a measure of interfacial charge trap density, than that in thick pentacene FETs is translated that the path of the induced carriers in ML FETs is limited into the molecular layer interfacing with the gate dielectric with a high density of charge traps, while carriers in thicker films have alternative pathways through more electrically conductive layer above the first layer with much less trap density. - Highlights: • Sub-threshold slope is demonstrated to be a measure of interface traps. • For application to sensors, effective charge transport layer should be chosen. • Monolayer transistors can be used as a platform for probing localized states.

  11. Subthreshold slope as a measure of interfacial trap density in pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwoo; Park, Byoungnam, E-mail: metalpbn@hongik.ac.kr

    2016-01-29

    Electrical properties in organic field effect transistors (FETs) are dominated by charge transport in the accumulation layer, few molecular layers close to the gate dielectric. Through comparison of the subthreshold slope between monolayer (ML) and thick pentacene FETs, formation of the second layer islands on top of the complete first layer is found to be crucial in determining the charge transport in ML pentacene FETs. It is demonstrated that a pentacene ML field effect transistor (FET) is an excellent probe that can detect electronic states of organic semiconductors interfacing with the gate dielectric at nanometer scale. Far higher sub-threshold slope in ML FETs, as a measure of interfacial charge trap density, than that in thick pentacene FETs is translated that the path of the induced carriers in ML FETs is limited into the molecular layer interfacing with the gate dielectric with a high density of charge traps, while carriers in thicker films have alternative pathways through more electrically conductive layer above the first layer with much less trap density. - Highlights: • Sub-threshold slope is demonstrated to be a measure of interface traps. • For application to sensors, effective charge transport layer should be chosen. • Monolayer transistors can be used as a platform for probing localized states.

  12. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    Portsmouth, J.H.; Maxwell, J.E.; Boness, G.O.; Rice, L.E.

    1991-04-01

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  13. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  14. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  15. Recombination of charge carriers in the GaAs-based p-i-n diode

    International Nuclear Information System (INIS)

    Ayzenshtat, G. I.; Yushenko, A. Y.; Gushchin, S. M.; Dmitriev, D. V.; Zhuravlev, K. S.; Toropov, A. I.

    2010-01-01

    It is established that the radiative recombination of charge carriers plays a substantial role in the GaAs-based p-i-n diodes at high densities of the forward current. It is shown experimentally that the diodes operating in microwave integrated circuits intensely emit light in the IR range with wavelengths from 890 to 910 nm. The obtained results indicate the necessity of taking into account the features of recombination processes in the GaAs-based microwave p-i-n diodes.

  16. A self-consistent first-principle based approach to model carrier mobility in organic materials

    International Nuclear Information System (INIS)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang

    2015-01-01

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC

  17. Desublimation of krypton from a noncondensable carrier gas

    International Nuclear Information System (INIS)

    Eby, R.S.

    1978-09-01

    A study was conducted to obtain column concentration profiles and point buildup rates for a cold trap freezing out krypton from a nitrogen carrier gas stream and to compare those experimentally obtained profiles with profiles generated from a theoretical model. Profiles were obtained over a range of flow conditions from 0.14 to 1.06 standard cubic feet per minute, krypton feed gas concentrations varied from 5.2 to 13.5%, and cold trap operating temperatures from -281 to -312 0 F. Gamma scintillation techniques using tracer amounts of krypton-85 provided the major analytical tool employed in the investigation. Data obtained from the experiments indicate that if values for the density and thermal conductivity of the krypton frost are known, the model can accurately predict krypton loading profiles in the cold trap. The frost density and frost conductivity appear to be functions of the freeze-out temperature and condensable krypton concentration. A discussion of cold trapping theory, a description of the experimental apparatus and tests performed, and an explanation of the usefulness of the model as a design tool for engineering use are included

  18. Impact of Interface States and Bulk Carrier Lifetime on Photocapacitance of Metal/Insulator/GaN Structure for Ultraviolet Light Detection

    Science.gov (United States)

    Bidzinski, Piotr; Miczek, Marcin; Adamowicz, Boguslawa; Mizue, Chihoko; Hashizume, Tamotsu

    2011-04-01

    The influence of interface state density and bulk carrier lifetime on the dependencies of photocapacitance versus wide range of gate bias (-0.1 to -3 V) and light intensity (109 to 1020 photon cm-2 s-1) was studied for metal/insulator/n-GaN UV light photodetector by means of numerical simulations. The light detection limit and photocapacitance saturation were analyzed in terms of the interface charge and interface Fermi level for electrons and holes and effective interface recombination velocity. It was proven that the excess carrier recombination through interface states is the main reason of photocapacitance signal quenching. It was found that the photodetector can work in various modes (on-off or quantitative light measurement) adjusted by the gate bias. A comparison between experimental data and theoretical capacitance-light intensity characteristics was made. A new method for the determination of the interface state density distribution from capacitance-voltage-light intensity measurements was also proposed.

  19. Charge carrier dynamics of methylammonium lead iodide: from PbI₂-rich to low-dimensional broadly emitting perovskites.

    Science.gov (United States)

    Klein, Johannes R; Flender, Oliver; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas

    2016-04-28

    We provide an investigation of the charge carrier dynamics of the (MAI)(x)(PbI2)(1-x) system in the range x = 0.32-0.90 following the recently published "pseudobinary phase-composition processing diagram" of Song et al. (Chem. Mater., 2015, 27, 4612). The dynamics were studied using ultrafast pump-supercontinuum probe spectroscopy over the pump fluence range 2-50 μJ cm(-2), allowing for a wide variation of the initial carrier density. At high MAI excess (x = 0.90), low-dimensional perovskites (LDPs) are formed, and their luminescence spectra are significantly blue-shifted by ca. 50 nm and broadened compared to the 3D perovskite. The shift is due to quantum confinement effects, and the inhomogeneous broadening arises from different low-dimensional structures (predominantly 2D, but presumably also 1D and 0D). Accurate transient carrier temperatures are extracted from the transient absorption spectra. The regimes of carrier-carrier, carrier-optical phonon and acoustic phonon scattering are clearly distinguished. Perovskites with mole fractions x ≤ 0.71 exhibit extremely fast carrier cooling (ca. 300 fs) at low fluence of 2 μJ cm(-2), however cooling slows down significantly at high fluence of 50 μJ cm(-2) due to the "hot phonon effect" (ca. 2.8 ps). A kinetic analysis of the electron-hole recombination dynamics provides second-order recombination rate constants k2 which decrease from 5.3 to 1.5 × 10(-9) cm(3) s(-1) in the range x = 0.32-0.71. In contrast, recombination in the LDPs (x = 0.90) is more than one order of magnitude faster, 6.4 × 10(-8) cm(3) s(-1), which is related to the confined perovskite structure. Recombination in these LDPs should be however still slow enough for their potential application as efficient broadband emitters or solar light-harvesting materials.

  20. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  1. Microwave measurements of the time evolution of electron density in the T-11M tokamak

    International Nuclear Information System (INIS)

    Petrov, V.G.; Petrov, A.A.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.

    2004-01-01

    Unambiguous diagnostics intended for measuring the time behavior of the electron density and monitoring the line-averaged plasma density in the T-11M tokamak are described. The time behavior of the plasma density in the T-11M tokamak is measured by a multichannel phase-jump-free microwave polarization interferometer based on the Cotton-Mouton effect. After increasing the number of simultaneously operating interferometer channels and enhancing the sensitivity of measurements, it became possible to measure the time evolution of the plasma density profile in the T-11M tokamak. The first results from such measurements in various operating regimes of the T-11M tokamak are presented. The measurement and data processing techniques are described, the measurement errors are analyzed, and the results obtained are discussed. We propose using a pulsed time-of-flight refractometer to monitor the average plasma density in the T-11M tokamak. The refractometer emits nanosecond microwave probing pulses with a carrier frequency that is higher than the plasma frequency and, thus, operates in the transmission mode. A version of the instrument has been developed with a carrier frequency of 140 GHz, which allows one to measure the average density in regimes with a nominal T-11M plasma density of (3-5) x 10 13 cm -3 . Results are presented from the first measurements of the average density in the T-11M tokamak with the help of a pulsed time-of-flight refractometer by probing the plasma in the equatorial plane in a regime with the reflection of the probing radiation from the inner wall of the vacuum chamber

  2. Electrodeposition of carrier-free 57Co on rhodium as an approach to the preparation of Moessbauer sources

    International Nuclear Information System (INIS)

    Cieszykowska, Izabela; ZoLtowska, MaLgorzata; Mielcarski, MieczysLaw

    2011-01-01

    Electrodeposition of carrier-free 57 Co on a rhodium matrix as the first step of preparing Moessbauer sources was studied. To optimize the plating parameters, the influences of current density, volume and pH of the electrolyte solution, shape, thickness, and surface area of the rhodium cathode, mode of cathode pretreatment, concentration of 57 Co and duration of electrolysis were investigated.

  3. Interfacial dynamic surface traps of lead sulfide (PbS) nanocrystals: test-platform for interfacial charge carrier traps at the organic/inorganic functional interface

    Science.gov (United States)

    Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam

    2018-04-01

    Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.

  4. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    Matsumura, K.; Nakano, I.

    1989-01-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  5. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  6. Relaxation of a kinetic hole due to carrier-carrier scattering in multisubband single-quantum-well semiconductors

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe a theoretical model for carrier-carrier scattering in an inverted semiconductor quantum well structure using a multisubband diagram. The model includes all possible nonvanishing interaction terms within the static screening approximation, and it enables one to calculate accurately...

  7. Controlling of carrier movement on gamma irradiator ISG-500

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2010-01-01

    Gamma irradiator ISG-500 is being designed. One of the design objects in the gamma irradiator is carrier movement and its controlling. Many possibilities of carrier movements can be implemented in the set-up design, such as using discrete or continuous mode. In this paper, selected discrete carriers movement and their controlling for the basic-design of the ISG-500 will be discussed. Nine stopper locations for nineteen carriers in operation will be controlled their carriers movement so that the movements have maximum positive transient load (increasing load) two carriers only. The controlling of the movement uses a train of pulses counting system as a one-dimension coordinate reference of a point on the rotated chain pulling the carrier. Every stopper location has a specific counting number in which will be used by the controlling system to let the carrier in the stopper location moving. By this movement, it is expected to prolong the life-time of the in use carrier mover motor. (author)

  8. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  9. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  10. Motor carrier evaluation program

    International Nuclear Information System (INIS)

    Portsmouth, James

    1992-01-01

    The U.S. Department of Energy-Headquarters (DOE-HQ), Transportation Management Program (TMP) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned materials. The DOE-TMP has established an excellent safety record in the transportation of hazardous materials including radioactive materials and radioactive wastes. This safety record can be maintained only through continued diligence and sustained effort on the part of the DOE-TMP, its field offices, and the contractors' organizations. Key elements in the DOE'S effective hazardous and radioactive materials shipping program are (1) integrity of packages, (2) strict adherence to regulations and procedures, (3) trained personnel, (4) complete management support, and (5) use of the best commercial carriers. The DOE Motor Carrier Evaluation Program was developed to better define the criteria and methodology needed to identify motor carriers for use in the transportation of Highway Route Controlled Quantities (HRCQ), Truck Load (TL) quantities of radioactive materials, hazardous materials and waste. (author)

  11. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    Science.gov (United States)

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  12. Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors

    International Nuclear Information System (INIS)

    Asai, Tetsuya; Adamatzky, Andrew; Amemiya, Yoshihito

    2004-01-01

    Reaction-diffusion (RD) chemical systems are known to realize sensible computation when both data and results of the computation are encoded in concentration profiles of chemical species; the computation is implemented via spreading and interaction of either diffusive or phase waves. Thin-layer chemical systems are thought of therefore as massively-parallel locally-connected computing devices, where micro-volume of the medium is analogous to an elementary processor. Practical applications of the RD chemical systems are reduced however due to very low speed of traveling waves which makes real-time computation senseless. To overcome the speed-limitations while preserving unique features of RD computers we propose a semiconductor RD computing device where minority carriers diffuse as chemical species and reaction elements are represented by p-n-p-n diodes. We offer blue-prints of the RD semiconductor devices, and study in computer simulation propagation phenomena of the density wave of minority carriers. We then demonstrate what computational problems can be solved in RD semiconductor devices and evaluate space-time complexity of computation in the devices

  13. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety... and recommendations on motor carrier safety programs and motor carrier safety regulations through a...

  14. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  15. Performance of Uplink Carrier Aggregation in LTE-Advanced Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2010-01-01

    Carrier aggregation (CA) has been proposed to aggregate two or more component carriers (CCs) to support a much wider transmission bandwidth for LTE-Advanced systems. With carrier aggregation, it is possible to schedule a user equipment (UE) on multiple component carriers simultaneously. In this p...

  16. Carrier tracking by smoothing filter improves symbol SNR

    Science.gov (United States)

    Pomalaza-Raez, Carlos A.; Hurd, William J.

    1986-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (SNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  17. Correlation effects of excited charge carriers in semiconductor nanostructures on the example of InGaAs quantum dots and atomic MoS{sub 2} monolayers; Korrelationseffekte angeregter Ladungstraeger in Halbleiter-Nanostrukturen am Beispiel von InGaAs-Quantenpunkten und atomaren MoS{sub 2}-Monolagen

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Alexander

    2014-11-10

    Semiconductor nanostructures are applied in various electronic and optoelectronic devices. As miniaturization of these devices progresses, a microscopic treatment of correlations between excited carriers is essential for understanding and describing the governing physics. We investigate two different types of semiconductor nanostructures, which have each received considerable attention over the last years. These are self-assembled InGaAs quantum dots (QDs) on the one hand and atomic monolayers of MoS{sub 2} on the other hand. Self-assembled semiconductor QDs are used as active material in conventional lasers and as efficient non-classical light sources with applications in quantum information. As they can confine a small number of carriers in localized stats with discrete energies, it is questionable to neglect correlations between the carriers when describing their dynamics. We analyze the influence of carrier correlations in a single QD on Coulomb scattering processes, which are due to the contact with a quasi-continuum of wetting-layer (WL) states. Results obtained from a Boltzmann equation are compared with the fully correlated dynamics governed by a von-Neumann-Lindblad equation. In a first step, we take into account correlations generated by the exact treatment of Pauli blocking due to the contributing QD carrier configurations. Subsequently, we include correlations generated by energy renormalizations due to Coulomb interaction between the QD carriers. It is shown that at low WL carrier densities, neither Pauli correlations nor Coulomb correlations can be safely neglected, if the dynamics of single-particle states in the QD are to be predicted qualitatively and quantitatively. In the high-density regime, both types of correlations play a lesser role and thus a description of carrier dynamics by a Boltzmann equation becomes reliable. Furthermore, the efficiency of WL-assisted scattering processes as well as scattering-induced dephasing rates depending on the

  18. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  19. Driver citation/carrier data relationship project

    Science.gov (United States)

    1996-09-01

    The Driver/Carrier Relationship Project was commissioned to address three issues. The first was to determine if drivers of commercial motor vehicles get tickets at a different rate, depending on the carrier that they are working for. The second issue...

  20. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  1. Literature review of the passenger airline business models : Full service carrier, low-cost carrier and charter airlines

    NARCIS (Netherlands)

    Carmona Benitez, R.B.; Lodewijks, G.

    2008-01-01

    The deregulation and liberalization of the air transportation industry have developed three main passenger business models: full service carriers, low-cost carriers, and charter airlines. Deregulation removed regulated fares and routes increasing competition and yields. Airlines business models main

  2. Top-gate dielectric induced doping and scattering of charge carriers in epitaxial graphene

    Science.gov (United States)

    Puls, Conor P.; Staley, Neal E.; Moon, Jeong-Sun; Robinson, Joshua A.; Campbell, Paul M.; Tedesco, Joseph L.; Myers-Ward, Rachael L.; Eddy, Charles R.; Gaskill, D. Kurt; Liu, Ying

    2011-07-01

    We show that an e-gun deposited dielectric impose severe limits on epitaxial graphene-based device performance based on Raman spectroscopy and low-temperature transport measurements. Specifically, we show from studies of epitaxial graphene Hall bars covered by SiO2 that the measured carrier density is strongly inhomogenous and predominantly induced by charged impurities at the grapheme/dielectric interface that limit mobility via Coulomb interactions. Our work emphasizes that material integration of epitaxial graphene and a gate dielectric is the next major road block towards the realization of graphene-based electronics.

  3. The sensitivity of bit error rate (BER) performance in multi-carrier (OFDM) and single-carrier

    Science.gov (United States)

    Albdran, Saleh; Alshammari, Ahmed; Matin, Mohammad

    2012-10-01

    Recently, the single-carrier and multi-carrier transmissions have grabbed the attention of industrial systems. Theoretically, OFDM as a Multicarrier has more advantages over the Single-Carrier especially for high data rate. In this paper we will show which one of the two techniques outperforms the other. We will study and compare the performance of BER for both techniques for a given channel. As a function of signal to noise ratio SNR, the BER will be measure and studied. Also, Peak-to-Average Power Ratio (PAPR) is going to be examined and presented as a drawback of using OFDM. To make a reasonable comparison between the both techniques, we will use additive white Gaussian noise (AWGN) as a communication channel.

  4. Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window

    Science.gov (United States)

    Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf

    2018-04-01

    Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.

  5. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids

    KAUST Repository

    Zhitomirsky, David

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells. © 2013 American Chemical Society.

  6. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  7. Aerial Logistics Management for Carrier Onboard Delivery

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY by Samuel L. Chen September 2016...AND SUBTITLE AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY 5. FUNDING NUMBERS 6. AUTHOR(S) Samuel L. Chen 7. PERFORMING ORGANIZATION NAME(S...delivery (COD) is the use of aircraft to transport people and cargo from a forward logistics site (FLS) to a carrier strike group (CSG). The goal of

  8. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  9. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Zhang, Martin Y. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Wang, Yuefeng [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Das, Suprem R.; Bhat, Venkataprasad S. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); Huang, Fuqiang [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducing scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.

  10. Investigation of cosmogenic radionuclide carriers in the atmosphere

    International Nuclear Information System (INIS)

    Lujaniene, G.

    2000-01-01

    Speciation of 7 Be, 32 P, 33 P, 35 S and stable S carriers and their changes in the atmosphere were investigated. It has been determined that aerosol-carriers of 7 Be, 32 P and 33 P radionuclides can have different properties, and after several days their transformation was observed. The amount of water-soluble carriers in aerosol samples differed widely (from 11 to 95 %). The dependence of radionuclide carrier solubility on pH was obtained for 7 Be, 32 P and 33 P. It has been found that 7 Be carriers can be soluble compounds such as mixed chlorides, sulphates and nitrates as well as insoluble carbonates and insoluble hydrous Fe(III) oxides. High percentage of 32 P and 33 P was found in exchangeable fraction. The 35 S carriers were found to be more soluble than those of 7 Be, 32 P and 33 P and exhibited a lower or the same solubility as stable sulphur. (author)

  11. Biological treatment in the slurry-reactor with brown-coal products and ceramic materials as biomass carrier

    International Nuclear Information System (INIS)

    Koerner, W.

    1992-01-01

    In order to raise the decay rate in metabolism processes with low turnover rate, such as microbiological degradations, it is advantageously as well to decouple the residence times of the cells and the culture medium as to increase the cell density with methods of process engineering. For that purpose it is possible to use the three-phase-fluidization where microorganisms are adapted at small, fluidisable and porous solid substances. The gas phase causes a nearly complete radial distribution and a high backmixing. The produced biomass on the carriers with its biocatalytic effect remains in the reactor and the catabolized culture solution drains off. First experiments with a variety of materials have indicated, that Siliziumnitrite can be suitable for such carriers. It is especially wear-resistant, pH-neutral and inexpensive. (orig.). 1 tab., 1 fig [de

  12. Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration

    Directory of Open Access Journals (Sweden)

    Yuta Fujimoto

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of amorphous InGaZnO (a-IGZO thin films optimized by adjusting the carrier concentration. The a-IGZO films were produced under various oxygen flow ratios. The Seebeck coefficient and the electrical conductivity were measured from 100 to 400 K. We found that the power factor (PF at 300 K had a maximum value of 82 × 10−6 W/mK2, where the carrier density was 7.7 × 1019 cm−3. Moreover, the obtained data was analyzed by fitting the percolation model. Theoretical analysis revealed that the Fermi level was located approximately above the potential barrier when the PF became maximal. The thermoelectric properties were controlled by the relationship between the position of Fermi level and the height of potential energy barriers.

  13. Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2015-12-01

    Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance

  14. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  15. High capacity carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao

    2009-01-01

    OAM functions, survivability and the increased bandwidth requirements of carrier class systems. This article provides an overview of PBB-TE and T-MPLS and demonstrates how IPTV services can be realized in the framework of Carrier Ethernet. In addition we provide a case study on performing bit error...

  16. Simulation methods of rocket fuel refrigerating with liquid nitrogen and intermediate heat carrier

    Directory of Open Access Journals (Sweden)

    O. E. Denisov

    2014-01-01

    Full Text Available Temperature preparation of liquid propellant components (LPC before fueling the tanks of rocket and space technology is the one of the operations performed by ground technological complexes on cosmodromes. Refrigeration of high-boiling LPC is needed to increase its density and to create cold reserve for compensation of heat flows existing during fueling and prelaunch operations of space rockets.The method and results of simulation of LPC refrigeration in the recuperative heat exchangers with heat carrier which is refrigerated by-turn with liquid nitrogen sparging. The refrigerating system consists of two tanks (for the chilled coolant and LPC, LPC and heat carrier circulation loops with heat exchanger and system of heat carrier refrigeration in its tank with bubbler. Application of intermediate heat carrier between LPC and liquid nitrogen allows to avoid LPC crystallization on cold surfaces of the heat exchanger.Simulation of such systems performance is necessary to determine its basic design and functional parameters ensuring effective refrigerating of liquid propellant components, time and the amount of liquid nitrogen spent on refrigeration operation. Creating a simulator is quite complicated because of the need to take into consideration many different heat exchange processes occurring in the system. Also, to determine the influence of various parameters on occurring processes it is necessary to take into consideration the dependence of all heat exchange parameters on each other: heat emission coefficients, heat transfer coefficients, heat flow amounts, etc.The paper offers an overview of 10 references to foreign and Russian publications on separate issues and processes occurring in liquids refrigerating, including LPC refrigeration with liquid nitrogen. Concluded the need to define the LPC refrigerating conditions to minimize cost of liquid nitrogen. The experimental data presented in these publications is conformed with the application of

  17. Theoretical insights into the minority carrier lifetime of doped Si—A computational study

    Science.gov (United States)

    Iyakutti, K.; Lavanya, R.; Rajeswarapalanichamy, R.; Mathan Kumar, E.; Kawazoe, Y.

    2018-04-01

    Using density functional theory, we have analyzed the ways and means of improving the minority carrier lifetime (MCL) by calculating the band structure dependent quantities contributing to the MCL. We have computationally modeled silicon doped with different elements like B, C, N, O, P, Ti, Fe, Ga, Ge, As, In, Sn, Sb, and Pt and looked at the effect of doping on MCL. In co-doping, the systems Si-B-Ga, Si-B-Ge, Si-B-2Ge, Si-B-Pt, Si-Ga-Ge, Si-Ga-2Ge, and Si-Ga-Pt are investigated. From our calculation, it is found that by doping and co-doping of Si with suitable elements having "s" and "p" electrons, there is a decrease in the recombination activity. The predicted effective minority carrier lifetime indicates the possibility of significant improvements. Based on the above studies, it is now maybe possible, with suitable choice of dopant and co-dopant material, to arrive at part of a standard production process for solar grade Si material.

  18. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee (MCSAC) Meeting. SUMMARY...

  19. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Science.gov (United States)

    2012-08-03

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety Advisory Committee (MCSAC...

  20. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  1. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA...

  2. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces...

  3. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  4. Biomacromolecules as carriers in drug delivery and tissue engineering.

    Science.gov (United States)

    Zhang, Yujie; Sun, Tao; Jiang, Chen

    2018-01-01

    Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.

  5. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  6. Effect of carrier gas pressure on condensation in a supersonic nozzle

    International Nuclear Information System (INIS)

    Wyslouzil, B.E.; Wilemski, G.; Beals, M.G.; Frish, M.B.

    1994-01-01

    Supersonic nozzle experiments were performed with a fixed water or ethanol vapor pressure and varying amounts of nitrogen to test the hypothesis that carrier gas pressure affects the onset of condensation. Such an effect might occur if nonisothermal nucleation were important under conditions of excess carrier gas in the atmospheric pressure range, as has been suggested by Ford and Clement [J. Phys. A 22, 4007 (1989)]. Although a small increase was observed in the condensation onset temperature as the stagnation pressure was reduced from 3 to 0.5 atm, these changes cannot be attributed to any nonisothermal effects. The pulsed nozzle experiments also exhibited two interesting anomalies: (1) the density profiles for the water and ethanol mixtures were shifted in opposite directions from the dry N 2 profile; (2) a long transient period was required before the nozzle showed good pulse-to-pulse repeatability for condensible vapor mixtures. To theoretically simulate the observed onset behavior, calculations of nucleation and droplet growth in the nozzle were performed that took into account two principal effects of varying the carrier gas pressure: (1) the change in nozzle shape due to boundary layer effects and (2) the variation in the heat capacity of the flowing gas. Energy transfer limitations were neglected in calculating the nucleation rates. The trend of the calculated results matched that of the experimental results very well. Thus, heat capacity and boundary layer effects are sufficient to explain the experimental onset behavior without invoking energy transfer limited nucleation. The conclusions about the rate of nucleation are consistent with those obtained recently using an expansion cloud chamber, but are at odds with results from thermal diffusion cloud chamber measurements

  7. Optimization of territory control of the mail carrier by using Hungarian methods

    Science.gov (United States)

    Supian, S.; Wahyuni, S.; Nahar, J.; Subiyanto

    2018-03-01

    In this paper, the territory control of the mail carrier from the central post office Bandung in delivering the package to the destination location was optimized by using Hungarian method. Sensitivity analysis against data changes that may occur was also conducted. The sampled data in this study are the territory control of 10 mail carriers who will be assigned to deliver mail package to 10 post office delivery centers in Bandung. The result of this research is the combination of territory control optimal from 10 mail carriers as follows: mail carrier 1 to Cikutra, mail carrier 2 to Ujung Berung, mail carrier 3 to Dayeuh Kolot, mail carrier 4 to Padalarang, mail carrier 5 to Situ Saeur, mail carrier 6 to Cipedes, mail carrier 7 to Cimahi, mail carrier 8 to Soreang, mail carrier 9 to Asia-Afrika, mail carrier 10 to Cikeruh. Based on this result, manager of the central post office Bandung can make optimal decisions to assign tasks to their mail carriers.

  8. Determination of dislocation densities in InN

    Energy Technology Data Exchange (ETDEWEB)

    Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)

    2012-03-15

    The magneto-transport measurements, carried out at magnetic fields up to 11 T and in the temperature range between 1.8 K and 300 K, are used to investigate the scattering mechanisms in GaN/InN/AlN double heterojunctions. Theoretical modeling is based on a variational approach to solving Boltzmann transport equation. It is found that dislocation scattering is the dominant scattering mechanisms at low temperatures because of the large lattice mismatch with the substrate and hence the high density of dislocations in these material systems. Nevertheless, InN epilayers are characterized by a high background carrier density, probably associated with unwanted impurities. Therefore, we also included in our calculations the ionized impurity scattering. However, the effect of ionized impurity scattering as well as the acoustic phonon scattering, remote- background-ionized impurity scattering, and interface roughness scattering on electron mobility are much smaller than that of dislocation scattering. The dislocation densities, in samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m, are then determined from the best fit to the experimental data for the low-temperature transport mobility (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Protection switching for carrier ethernet multicast

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Berger, Michael Stübert

    2010-01-01

    This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carri...... recovery path length, recovery time, number of branch nodes and operational complexity. The integrated approach therefore shows significant potential to increase the QoE for IPTV users in case of network failures and recovery actions.......This paper addresses network survivability for IPTV multicast transport in Carrier Ethernet networks. The impact of link failures is investigated and suggestions for intelligent multicast resilience schemes are proposed. In particular, functions of the multicast tree are integrated with the Carrier...

  10. Carrier screening in the era of expanding genetic technology.

    Science.gov (United States)

    Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel

    2016-12-01

    The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.

  11. Modeling of carrier dynamics in quantum-well electroabsorption modulators

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Mørk, Jesper

    2002-01-01

    We present a comprehensive drift-diffusion-type electroabsorption modulator (EAM) model. The model allows us to investigate both steady-state properties and to follow the sweep-out of carriers after pulsed optical excitation. Furthermore, it allows for the investigation of the influence that vari...... in the field near each well affect the escape of carriers from that well. Finally, we look at the influence that the separate-confinement heterostructure barriers have on the carrier sweep-out....... that various design parameters have on the device properties, in particular how they affect the carrier dynamics and the corresponding field dynamics. A number of different types of results are presented. We calculate absorption spectra and steady-state field screening due to carrier pile-up at the separate......-confinement heterobarriers. We then move on to look at carrier sweep-out upon short-pulse optical excitation. For a structure with one well, we analyze how the well position affects the carrier sweep-out and the absorption recovery. We calculate the field dynamics in a multiquantum-well structure and discuss how the changes...

  12. Carrier tracking by smoothing filter can improve symbol SNR

    Science.gov (United States)

    Hurd, W. J.; Pomalaza-Raez, C. A.

    1985-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (CNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  13. Radon generator and the method of radium carrier fabrication

    International Nuclear Information System (INIS)

    Czerski, B.

    1992-01-01

    The radon generator construction and the method of radium carrier fabrication has been the subject of the patent. The generator is a cylindrical vessel with gas valves system and two filters inside. Between them the radium carrier has been located. As a carrier polyurethane foam has been used. The carrier is obtained in a generator vessel from polyester resin in the presence of activated mixture of engine oil, zinc-organic catalyst and toluene. To the obtained mixture the radium chloride in the solution of hydrochloric acid is added. The carrier foam is produced by mechanical stirring of substrates inside the vessel and drying in 50 C in a heater. 1 fig

  14. Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT

    Science.gov (United States)

    Panda, D. K.; Lenka, T. R.

    2017-12-01

    In this paper the drain current low-frequency noise (LFN) of E-mode GaN MOS-HEMT is investigated for different gate insulators such as SiO2, Al2O3/Ga2O3/GdO3, HfO2/SiO2, La2O3/SiO2 and HfO2 with different trap densities by IFM based TCAD simulation. In order to analyze this an analytical model of drain current low frequency noise is developed. The model is developed by considering 2DEG carrier fluctuations, mobility fluctuations and the effects of 2DEG charge carrier fluctuations on the mobility. In the study of different gate insulators it is observed that carrier fluctuation is the dominant low frequency noise source and the non-uniform exponential distribution is critical to explain LFN behavior, so the analytical model is developed by considering uniform distribution of trap density. The model is validated with available experimental data from literature. The effect of total number of traps and gate length scaling on this low frequency noise due to different gate dielectrics is also investigated.

  15. Evolution of gap anisotropy with doping carriers in LixZrNCl superconductors

    International Nuclear Information System (INIS)

    Kasahara, Y.; Kishiume, T.; Takano, T.; Kobayashi, K.; Matsuoka, E.; Onodera, H.; Kuroki, K.; Taguchi, Y.; Iwasa, Y.

    2010-01-01

    We have performed specific heat measurements on the electron-doped layered Li x ZrNCl superconductors with systematically controlled x. It has been found that, at the lowest doping x ∼ 0.07, field dependence of the electronic specific heat γ(H) exhibits almost linear increase up to the upper critical field H c2 . Contrastingly, at higher doping (x > 0.10), γ(H) shows steep increase well below H c2 . These results indicate that the anisotropy of the superconducting gap evolves with increasing carrier density, in accord with a prediction by very recent theoretical calculation that takes into account Coulomb interactions in a doped band insulator with honeycomb lattice.

  16. Sensitized charge carrier injection into organic crystals studied by isotope effects in weak magnetic fields

    International Nuclear Information System (INIS)

    Bube, W.; Michel-Beyerle, M.E.; Haberkorn, R.; Steffens, E.

    1977-01-01

    The magnetic field (H approximately 50 Oe) dependence of the rhodamine sensitized triplet exciton density in anthracene crystals is influenced by isotopic substitution. This confirms the hyperfine interaction as mechanism explaining the change of the spin multiplicity in the initially formed singlet state of the radical pair. The isotope effect occurs in the sensitizing dye ( 14 N/ 15 N) rather than at the molecular site of the injected charge within the crystal. This can be understood in terms of the high hopping frequency of the charge carriers as compared to the time constant of the hyperfine induced singlet-triplet transition. Since the dye molecules adsorb in an oriented fashion, the angular dependence of the magnetic field modulation of the triplet exciton density can be interpreted without assuming any additional interactions. (Auth.)

  17. 49 CFR 397.67 - Motor carrier responsibility for routing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier responsibility for routing. 397.67 Section 397.67 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS...

  18. Annealing behaviour of excess carriers in neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Maekawa, T.; Nogami, S.; Inoue, S.

    1993-01-01

    In neutron-transmutation-doped silicon wafers excess carriers are clearly generated over the transmuted phosphorus atoms. The generation occurs for annealing temperatures above 900 o C. The maximum percentage of excess carriers obtained is about 24.5% of the final carrier concentration. Due to the difference in energy of generation and removal, the excess carriers can be removed by annealing above 800 o C. The radiation damage responsible for generation of excess carriers is fairly thermostable in the range of annealing temperatures below 800 o C. From deep-level transient spectroscopy measurements, it is found that the radiation damage remains insensitive to changes in carrier concentration. The activation energies of excess carrier generation and removal are estimated from the analysis of the thermal and temporal behaviours of radiation damage in the annealing process. (Author)

  19. Feelings Associated with Being a Carrier and Characteristics of Reproductive Decision Making in Women Known to Be Carriers of X-linked Conditions.

    Science.gov (United States)

    Kay, Elizabeth; Kingston, Helen

    2002-03-01

    Qualitative data were collected from 14 women known to be carriers of an X-linked condition associated with 'serious' disability on feelings about being a carrier and impact on reproductive decisions. Guilt and responsibility were commonly expressed by carriers about issues surrounding pregnancy. Personal experience of the condition influenced their approach to reproductive decisions. Those who had lived with an affected brother were more concrete in their decisions to avoid having an affected child compared to those with less personal experience of the condition. It is concluded that feelings of guilt associated with difficult reproductive decisions are reflected in the strong sense of responsibility attached to being a carrier. Personal experience of the condition has a clear influence on reproductive decisions of X-linked carriers.

  20. 14 CFR 158.69 - Recordkeeping and auditing: Collecting carriers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Recordkeeping and auditing: Collecting carriers. 158.69 Section 158.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....69 Recordkeeping and auditing: Collecting carriers. (a) Collecting carriers shall establish and...

  1. 49 CFR 373.101 - Motor carrier bills of lading.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier bills of lading. 373.101 Section 373.101 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS RECEIPTS AND...

  2. Double carriers pulse DLTS for the characterization of electron-hole recombination process in GaAsN grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Bouzazi, Boussairi; Suzuki, Hidetoshi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2011-01-01

    A nitrogen-related electron trap (E1), located approximately 0.33 eV from the conduction band minimum of GaAsN grown by chemical beam epitaxy, was confirmed by investigating the dependence of its density with N concentration. This level exhibits a high capture cross section compared with that of native defects in GaAs. Its density increases significantly with N concentration, persists following post-thermal annealing, and was found to be quasi-uniformly distributed. These results indicate that E1 is a stable defect that is formed during growth to compensate for the tensile strain caused by N. Furthermore, E1 was confirmed to act as a recombination center by comparing its activation energy with that of the recombination current in the depletion region of the alloy. However, this technique cannot characterize the electron-hole (e-h) recombination process. For that, double carrier pulse deep level transient spectroscopy is used to confirm the non-radiative e-h recombination process through E1, to estimate the capture cross section of holes, and to evaluate the energy of multi-phonon emission. Furthermore, a configuration coordinate diagram is modeled based on the physical parameters of E1. -- Research Highlights: → Double carrier pulse DLTS method confirms the existence of SRH center. → The recombination center in GaAsN depends on nitrogen concentration. → Minority carrier lifetime in GaAsN is less than 1 ns. → A non-radiative recombination center exits in GaAsN.

  3. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    solution, sufficient charge carriers to counteract the applied but not cause ion- lock , are energy densities at their maximum. For the salt identities and...OF ANODIZED TITANIUM- BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER, AND ENERGY DENSITIES...SUBTITLE CHARACTERIZATION OF ANODIZED TITANIUM-BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER

  4. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  5. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  6. Carrier concentration effects on radiation damage in InP

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Ando, K.; Uemura, C.

    1984-01-01

    Minority carrier diffusion length and carrier concentration studies have been made on room-temperature 1-MeV electron irradiated liquid-encapsulated Czochralski grown Zn-doped p-InP. The damage rate for the diffusion length and carrier removal rate due to irradiation have been found to strongly decrease with an increase in the carrier concentration in InP. These phenomena suggest that the induced defects interact with impurities in InP. A preliminary study on the annealing behavior has also been performed

  7. 47 CFR 63.23 - Resale-based international common carriers.

    Science.gov (United States)

    2010-10-01

    ... presumption that they lack market power in particular foreign points are available on the International Bureau... 47 Telecommunication 3 2010-10-01 2010-10-01 false Resale-based international common carriers. 63... Supplements § 63.23 Resale-based international common carriers. The following conditions apply to carriers...

  8. Hot-carrier effects on irradiated deep submicron NMOSFET

    International Nuclear Information System (INIS)

    Cui Jiangwei; Zheng Qiwen; Yu Xuefeng; Cong Zhongchao; Zhou Hang; Guo Qi; Wen Lin; Wei Ying; Ren Diyuan

    2014-01-01

    We investigate how γ exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irradiated devices are greater than those without irradiation, especially for narrow channel device. The reason is attributed to charge traps in STI, which then induce different electric field and impact ionization rates during hot-carrier stress. (semiconductor devices)

  9. Infrared studies of impurity states and ultrafast carrier dynamics in semiconductor quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Stehr, D.

    2007-12-28

    density, many-body effects such as the depolarization and their influence on the spectral position as well as on the lineshape on the intersubband dephasing are studied. Also the difference of excitonic and free-carrier type excitation is discussed, and indication of an excitonic intersubband transition is found. (orig.)

  10. On safety of radioactive waste carrier

    International Nuclear Information System (INIS)

    Kondo, Toshikazu

    1995-01-01

    The waste generated by reprocessing the spent fuel from Japanese nuclear power stations in France and U.K. is to be returned to Japan. The first return transport was carried out from February to April when the waste management facility in Rokkasho, Aomori Prefecture, was completed. Most of this return transport was the sea transport using the exclusively used carrier, Pacific Pintail, from Cherbourg, France, to Mutsu Ogawara, Japan. Ministry of Transport carried out the examination on the safety of this method of transport including the safety of the carrier based on the rule for the sea transport and storage of dangerous substances. The international rule on the sea transport of high level radioactive waste, the course of adopting the INF code and its outline, and the Japanese safety standard for the carriers exclusively used for high level radioactive waste are explained. The Pacific Pintail is the ship of 5087 GT, which was built in 1987 as the carrier exclusively used for radioactive substances, owned by Pacific Nuclear Transport Ltd. of U.K. The main features related to the safety of the Pacific Pintail are explained, and the sufficient countermeasures are taken. (K.I.)

  11. Bulk contribution to magnetotransport properties of low-defect-density Bi2Te3 topological insulator thin films

    Science.gov (United States)

    Ngabonziza, P.; Wang, Y.; Brinkman, A.

    2018-04-01

    An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.

  12. Research on energy efficiency design index for sea-going LNG carriers

    Science.gov (United States)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  13. Method and apparatus for information carrier authentication

    NARCIS (Netherlands)

    2015-01-01

    The present invention relates to a method of enabling authentication of an information carrier, the information carrier comprising a writeable part and a physical token arranged to supply a response upon receiving a challenge, the method comprising the following steps; applying a first challenge to

  14. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  15. Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Gu, Yaxu; Rong, Caicai; Xu, Yadong; Shen, Hao; Zha, Gangqiang; Wang, Ning; Lv, Haoyan; Li, Xinyi; Wei, Dengke; Jie, Wanqi

    2015-01-01

    Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high-density

  16. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    Science.gov (United States)

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ

  17. Providing resilience for carrier ethernet multicast traffic

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang

    2009-01-01

    This paper presents an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we detail how multicast traffic, which is essential for e.g. IPTV can be protected. We present Carrier Ethernet resilience methods for linear and ring networks and show by simulation...

  18. 76 FR 5424 - Motor Carrier Safety Advisory Committee; Request for Nominations

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee; Request for Nominations AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Request for Nominations to the Motor Carrier Safety Advisory...

  19. Screening in crystalline liquids protects energetic carriers in hybrid perovskites

    Science.gov (United States)

    Zhu, Haiming; Miyata, Kiyoshi; Fu, Yongping; Wang, Jue; Joshi, Prakriti; Niesner, Daniel; Williams, Kristopher; Jin, Song; Zhu, Xiaoyang

    Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with 102 picosecond lifetimes in CH3NH3PbBr3 or CH(NH,SUB>2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit. This work was supported by U.S. Department of Energy Grant ER46980, National Science Foundation, Grant DMR 1420634 (MRSEC), and Department of Energy Award DE-FG02-09ER46664.

  20. 49 CFR 1150.22 - Exemptions and common carrier status.

    Science.gov (United States)

    2010-10-01

    ... the line itself, it will be considered a common carrier. However, when a State acquires a rail line... 49 Transportation 8 2010-10-01 2010-10-01 false Exemptions and common carrier status. 1150.22... common carrier status. The acquisition by a State of a fully abandoned line is not subject to the...

  1. Atom and carrier depth distributions for 300 keV arsenic channeled in the of silicon as a function of alignment angle and ion fluence

    International Nuclear Information System (INIS)

    Wilson, R.G.

    1980-01-01

    Depth distributions of As atoms measured by SIMS, and of associated carriers measured by differential C-V, both give a measured most probable channeling range Rsub(c) of 3.35 to 3.40 μm for 300 keV As ions implanted in the of Si, aligned within approximately 0.05 deg (proper or axial channeling). The As ion fluences used were 3.0 x 10 13 and 1.0 x 10 14 , and 1.5 x 10 12 cm -2 , for the SIMS and C-V, respectively, and the lowest atom and carrier densities measured in the profiles were 1 x 10 15 and 1 x 10 14 cm -3 , respectively. The maximum or saturated As density measured at Rsub(c) was approximately 1.5 x 10 16 cm -3 . The depth distribution for 0.50 deg misalignment from the differed only slightly, probably within the experimental measurement reproducibility, and the Rsub(c) was still approximately 3.4 μm. Atom and carrier depth distributions are also shown for misalignment angles of 1.0 and 2.0 deg from the of Si and are significantly degraded. Comparison of the SIMS profiles shows that channeling has saturated by the time an ion fluence of 3 x 10 13 cm -2 is reached. No significant redistribution of channeled As atoms occurs upon annealing at 800 0 C for 30 min. (author)

  2. Study of variations of radiofrequency power density from mobile phone base stations with distance

    International Nuclear Information System (INIS)

    Ayinmode, B. O.; Farai, I. P.

    2013-01-01

    The variations of radiofrequency (RF) radiation power density with distance around some mobile phone base stations (BTSs), in ten randomly selected locations in Ibadan, western Nigeria, were studied. Measurements were made with a calibrated hand-held spectrum analyser. The maximum Global System of Mobile (GSM) communication 1800 signal power density was 323.91 μW m -2 at 250 m radius of a BTS and that of GSM 900 was 1119.00 μW m -2 at 200 m radius of another BTS. The estimated total maximum power density was 2972.00 μW m -2 at 50 m radius of a different BTS. This study shows that the maximum carrier signal power density and the total maximum power density from a BTS may be observed averagely at 200 and 50 m of its radius, respectively. The result of this study demonstrates that exposure of people to RF radiation from phone BTSs in Ibadan city is far less than the recommended limits by International scientific bodies. (authors)

  3. Evaluating multicast resilience in carrier ethernet

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Wessing, Henrik; Zhang, Jiang

    2010-01-01

    This paper gives an overview of the Carrier Ethernet technology with specific focus on resilience. In particular, we show how multicast traffic, which is essential for IPTV can be protected. We detail the ackground for resilience mechanisms and their control and e present Carrier Ethernet...... resilience methods for linear nd ring networks. By simulation we show that the vailability of a multicast connection can be significantly increased by applying protection methods....

  4. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe

    Science.gov (United States)

    Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.

    2011-09-01

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  5. Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A S; Kochereshko, V P [A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation); Bleuse, J; Mariette, H [CEA-CNRS Group ' Nanophysique et Semiconducteurs' , CEA, INAC/SP2M, and Institut Neel, 17 rue des Martyrs, F-38054 Grenoble (France); Waag, A [Braunschweig Technical University, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Akimoto, R, E-mail: vladimir.kochereshko@mail.ioffe.ru [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2-1, Tsukuba 305-8568 (Japan)

    2011-09-07

    The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.

  6. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  7. The method of determination of micro quantities of labeled iodide in carrier free Na125 solution

    International Nuclear Information System (INIS)

    Kholbaev, A.Kh.; Shilin, E.A.

    1996-01-01

    The method of determination of microquantities of labelled iodide in Na 125 carrier-free solution was elaborated. This method permits to increase the sensitivity and radiation protection of the determination of labeled iodide. It includes oxidation of iodide by iodate in diluted sulphuric acid with molar concentration 0,03-0,04 mole/l. The extraction of I 2 is made by toluene. The coloured solution is made and optical density is measured at λ=640 nm at the 10 mm optical path .(A.A.D.)

  8. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    Science.gov (United States)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  9. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control.

    Science.gov (United States)

    Li, Jianhai; Xu, Leimeng; Wang, Tao; Song, Jizhong; Chen, Jiawei; Xue, Jie; Dong, Yuhui; Cai, Bo; Shan, Qingsong; Han, Boning; Zeng, Haibo

    2017-02-01

    Solution-processed CsPbBr 3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement (up to 6.27%) are achieved through balancing surface passivation and carrier injection via ligand density control (treating with hexane/ethyl acetate mixed solvent), which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Attachment theory and baby slings/carriers: technological network formation].

    Science.gov (United States)

    Lu, Zxy-Yann Jane; Lin, Wan-Shiuan

    2011-12-01

    Healthcare providers recognize the important role played by attachment theory in explaining the close relationship between mental health and social behavior in mothers and their children. This paper uses attachment theory in a socio-cultural context to ascertain the mechanism by which baby slings/carriers, a new technology, produced and reproduced the scientific motherhood. It further applies a social history of technology perspective to understand how baby carriers and attachment theory are socially constructed and historically contingent on three major transformations. These transformations include the use of attachment theory-based baby carriers to further scientific motherhood; the use of baby slings/carriers to further the medicalization of breastfeeding and enhance mother-infant attachment; and the use of baby slings/carriers to transform woman's identities by integrating scientific motherhood, independence and fashion. Implications for nursing clinical policy are suggested.

  11. Functionalized organic semiconductor molecules to enhance charge carrier injection in electroluminescent cell

    Science.gov (United States)

    Yalcin, Eyyup; Kara, Duygu Akin; Karakaya, Caner; Yigit, Mesude Zeliha; Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Demic, Serafettin; Kus, Mahmut; Aboulouard, Abdelkhalk

    2017-07-01

    Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3‧,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3‧,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices.

  12. 47 CFR 54.201 - Definition of eligible telecommunications carriers, generally.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Definition of eligible telecommunications carriers, generally. 54.201 Section 54.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... § 54.201 Definition of eligible telecommunications carriers, generally. (a) Carriers eligible to...

  13. The influence of hapten density on the assay of penicilloylated proteins in fluids

    International Nuclear Information System (INIS)

    Lee, D.; Dewdney, J.M.; Edwards, R.G.

    1985-01-01

    The use of inhibition radioimmunoassays for the measurement of penicilloylated proteins in biological fluids is compromised by the dominant influence of hapten density. Precise quantitation, and therefore assessment of antigenicity and immunogenicity, cannot be achieved in the absence of knowledge of the number and distribution of haptenic groups on the protein carrier. These assays may not, therefore, be appropriate for the measurement of potential allergenic residues in food products. (Auth.)

  14. Bioactive albumin-based carriers for tumour chemotherapy.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Ikram Ullah; Hussain, Talib; Alamgeer; Serra, Christophe A; Rizvi, Syed A A; Gerber, Minja; du Plessis, Jeanetta

    2014-01-01

    Proteins are posed as the natural counterpart of the synthetic polymers for the development of drug delivery systems and few of them, have been regarded safe for drug delivery purposes by the United States Food and Drug Administration (FDA). Serum albumin is the most abundant protein in human blood. Interest in the exploration of pharmaceutical applications of albumin-based drug delivery carriers, especially for the delivery of chemotherapeutic agents, has increased in recent years. Albumin has several advantages over synthetic polymers, as it is biocompatible, biodegradable, has low cytotoxicity and has an excellent binding capacity with various drugs. Micro- and nano-carriers not only protect active pharmaceutical ingredients against degradation, but also offer a prolonged release of drugs in a controlled fashion. Since existing tumour chemotherapeutic agents neither target tumour cells, nor are they specific to tumour cells, a slow release of drugs from carriers would be beneficial in targeting carcinogenic cells intracellularly. This article aims at providing an overview of pharmaceutical applications of albumin as a drug delivery carrier in tumour chemotherapy.

  15. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy?

    International Nuclear Information System (INIS)

    Guerard, F.; Barbet, J.; Cherel, M.; Chatal, J.-F.; Haddad, F.; Kraeber-Bodere, F.

    2015-01-01

    Beta-emitting radionuclides are not able to kill isolated tumor cells disseminated in the body, even if a high density of radiolabeled molecules can be targeted at the surface of these cells because the vast majority of emitted electrons deliver their energy outside the targeted cells. Alpha-particle emitting radionuclides may overcome this limitation. It is thus of primary importance to test and validate the radionuclide of choice, the most appropriate carrier molecule and the most promising clinical indication. Four α-particle emitting radionuclides have been or are clinically tested in phase I studies namely 213 Bi, 225 Ac, 212 Pb and 211 At. Clinical safety has been documented and encouraging efficacy has been shown for some of them ( 213 Bi and 211 At). 211 At has been the most studied and could be the most promising radionuclide but 225 Ac and 212 Pb are also of potential great interest. Any carrier molecule that has been labeled with β-emitting radionuclides could be labeled with alpha particle-emitting radionuclide using, for some of them, the same chelating agents. However, the physical half-life of the radionuclide should match the biological half-life of the radioconjugate or its catabolites. Finally everybody agrees, based on the quite short range of alpha particles, on the fact that the clinical indications for alpha-immunotherapy should be limited to the situation of disseminated minimal residual diseases made of small clusters of malignant cells or isolated tumor cells.

  16. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  17. Poisoning of liquid membrane carriers in extraction of metal ions

    International Nuclear Information System (INIS)

    Wang, Yuchun; Wang, Dexian

    1992-01-01

    As means of effective separation and preconcentration, emulsion liquid membranes (ELMs) have found application in many fields including biochemical separation, wastewater treatment, hydrometallurgy, and preconcentration in analytical chemistry. In the extraction of desired metal (scandium, mixed rare earths) ions using chelating extractants (TTA, HDEHP) as liquid membrane carriers, the carriers will become poisoned owing to the presence of even minute quantity of certain high ionic potential ions in the feed solution. The reason for the poisoning of carriers is that those ions have so much greater affinity than the desired ions for the membrane carrier that the ion-carrier coordination compound cannot be stripped at the interior interface of the membrane and gradually no more free carrier transports any metal ions across the membrane. The calculated results are in agreement with the experiments, and methods to avoid the poisoning are given in the paper

  18. Natural carriers in bioremediation: A review

    Directory of Open Access Journals (Sweden)

    Anna Dzionek

    2016-09-01

    Full Text Available Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ, type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.

  19. Cosmogenic radionuclide carriers in the atmosphere

    International Nuclear Information System (INIS)

    Lujaniene, G.; Lujanas, V.

    1998-01-01

    The investigation of radionuclides ( 7 Be 32,33 P and 35 S) and stable sulfur and phosphorus forms was based on the Tessier sequential extraction method. The properties of radionuclide carriers can be transformed in the atmosphere in a very short time (days, hours), in contrast to soil and the hydrosphere. Oxidation processes proceeding in the atmosphere induce changes in the aerosol carrier properties. The aerosol can be characterized by low pH and high Eh values corresponding to high 7Be solubility. The unexpectedly high negative Eh values obtained in dry summer period indicate that the 7 Be 32,33 P aerosol is bound to insoluble carriers. 137 Cs solubility does not depend on changes in pH. This can be explained by the fact that in contrast to 7 Be, 137 Cs is associated with the exchangeable fraction. Cs ions can be replaced not only by H + but also by NH 4 + and other ions. 7 Be aerosols collected at the seaside of the Baltic sea (Preila) were found to be more soluble than those in Vilnius, their solubility was up to 50-90 % and clear dependence between 7 Be solubility, pH and Eh was not observed. It can be attributed to differences in the atmospheric aerosol composition (e.g. soluble chlorides) in Vilnius and Preila. A great variety of 7 Be carriers properties as well as their dependence on the season and the existence of admixtures in the atmosphere require great caution in applying this isotope in tracer investigations. Soluble carriers are removed faster from the atmosphere by precipitation. The significance of this fact is confirmed by the ratio of 7 Be/ 32 P in the air and precipitation. Both soluble and insoluble aerosols can be formed depending on the environmental conditions

  20. 47 CFR 69.608 - Carrier Common Line hypothetical net balance.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier Common Line hypothetical net balance. 69.608 Section 69.608 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... net balance. The hypothetical net balance shall be equal to a Carrier Common Line revenue requirement...

  1. Lack of neural compensatory mechanisms of BDNF val66met met carriers and APOE E4 carriers in healthy aging, mild cognitive impairment, and Alzheimer's disease.

    Science.gov (United States)

    Gomar, Jesus J; Conejero-Goldberg, Concepcion; Huey, Edward D; Davies, Peter; Goldberg, Terry E

    2016-03-01

    Compromises in compensatory neurobiologic mechanisms due to aging and/or genetic factors (i.e., APOE gene) may influence brain-derived neurotrophic factor (BDNF) val66met polymorphism effects on temporal lobe morphometry and memory performance. We studied 2 cohorts from Alzheimer's Disease Neuroimaging Initiative: 175 healthy subjects and 222 with prodromal and established Alzheimer's disease. Yearly structural magnetic resonance imaging and cognitive performance assessments were carried out over 3 years of follow-up. Both cohorts had similar BDNF Val/Val and Met allele carriers' (including both Val/Met and Met/Met individuals) distribution. In healthy subjects, a significant trend for thinner posterior cingulate and precuneus cortices was detected in Met carriers compared to Val homozygotes in APOE E4 carriers, with large and medium effect sizes, respectively. The mild cognitive impairment/Alzheimer's disease cohort showed a longitudinal decline in entorhinal thickness in BDNF Met carriers compared to Val/Val in APOE E4 carriers, with effect sizes ranging from medium to large. In addition, an effect of BDNF genotype was found in APOE E4 carriers for episodic memory (logical memory and ADAS-Cog) and semantic fluency measures, with Met carriers performing worse in all cases. These findings suggest a lack of compensatory mechanisms in BDNF Met carriers and APOE E4 carriers in healthy and pathological aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Drug targeting and the carriers. Application to chemoembolization and medical imaging

    International Nuclear Information System (INIS)

    Puisieux, F.; Benoit, J.P.; Roblot-Treupel, L.

    1987-01-01

    The last fifteen years have seen an increased interest in drug targeting which can be considered as a new way to control the body distribution of drugs when associated with an appropriate carrier. The systems currently studied possess different structures (macromolecular, vesicular and particular) and can be classified into carriers of first, second and third generation. After a brief review of the three types of carriers, this paper focuses on their respective interest in the different fields of radiology: carriers of first generation (microcapsules, microspheres) in chemoembolization, carriers of second generation (liposomes, nanocapsules, nanospheres) in conventional radiology, in computerized tomography, in scintigraphy, in RMN; carriers of third generation (monoclonal antibodies...) in immunoscintigraphy of tumors [fr

  3. Wafer-scale characterization of carrier dynamics in graphene

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2015-01-01

    The electronic properties of single-layer graphene, such as surface conductance, carrier concentration, scattering time and mobility, can be characterized in a noncontact manner by THz time-domain spectroscopy. Standard spectroscopic imaging reveals the AC conductance over large areas with a few...... hundred μm resolution, and spectroscopic imaging on back-gated graphene allows for extraction of both the carrier concentration and the mobility. We find that spatial variations of the conductance of single-layer CVD-grown graphene are predominantly due to variations in mobility rather than in carrier...

  4. Proposal for tutorial: Resilience in carrier Ethernet transport

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Wessing, Henrik; Ruepp, Sarah Renée

    2009-01-01

    This tutorial addresses how Carrier Ethernet technologies can be used in the transport network to provide resilience to the packet layer. Carrier Ethernet networks based on PBB-TE and T-MPLS/MPLS-TP are strong candidates for reliable transport of triple-play services. These technologies offer...... of enhancements are still required to make Carrier Ethernet ready for large scale deployments of reliable point-to-multipoint services. The tutorial highlights the necessary enhancements and shows possible solutions and directions towards reliable multicast. Explicit focus is on OAM for multicast, where...

  5. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  6. JDFTx: Software for joint density-functional theory

    Directory of Open Access Journals (Sweden)

    Ravishankar Sundararaman

    2017-01-01

    Full Text Available Density-functional theory (DFT has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units. This code hosts the development of joint density-functional theory (JDFT that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.

  7. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  8. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  9. Direct no-carrier-added 18F-labelling of arenes via nucleophilic substitution on aryl(2-thienyl)iodonium salts

    International Nuclear Information System (INIS)

    Ross, T.L.

    2006-01-01

    For in vivo imaging of molecular processes via positron emission tomography (PET) radiotracers of high specific activity are demanded. In case of the most commonly used positron emitter fluorine-18, this is only achievable with no-carrier-added [ 18 F]fluoride, which implies nucleophilic methods of 18 F-substitution. Whereas electron deficient aromatic groups can be labelled in one step using no-carrier-added [ 18 F]fluoride, electron rich 18 F-labelled aromatic molecules are only available by multi-step radiosyntheses or carrier-added electrophilic reactions. Here, diaryliodonium salts represent an alternative, since they have been proven as potent precursor for a direct nucleophilic 18 F-introduction into aromatic molecules. Furthermore, as known from non-radioactive studies, the highly electron rich 2-thienyliodonium leaving group leads to a high regioselectivity in nucleophilic substitution reactions. Consequently, a direct nucleophilic no-carrier-added 18 F-labelling of electron rich arenes via aryl(2-thienyl)iodonium precursors was developed in this work. The applicability of direct nucleophilic 18 F-labelling was examined in a systematic study on eighteen aryl(2-thienyl)iodonium salts. As electron rich precursors the ortho-, meta- and para-methoxyphenyl(2-thienyl)iodonium bromides, iodides, tosylates and triflates were synthesised. In addition, para-substituted (R=BnO, CH 3 , H, Cl, Br, I) aryl(2-thienyl)iodonium bromides were prepared as precursors with a systematically varying electron density. As first approach, the general reaction conditions of the nucleophilic 18 F-substitution procedure were optimised. The best conditions for direct nucleophilic no-carrier-added 18 F-labelling via aryl(2-thienyl)iodonium salts were found with dimethylformamide as solvent, a reaction temperature of 130±3 C and 25 mmol/l as concentration of the precursor. (orig.)

  10. 49 CFR 1004.1 - Gifts, donations, and hospitality by carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Gifts, donations, and hospitality by carriers. 1004.1 Section 1004.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... REGULATIONS § 1004.1 Gifts, donations, and hospitality by carriers. It is unlawful for any common carrier...

  11. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  12. Willis H Carrier

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. Willis H. Carrier - Father of Air Conditioning. R V Simha. General Article Volume 17 Issue 2 February 2012 pp 117-138. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/02/0117-0138 ...

  13. Multi-Dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques

    Science.gov (United States)

    Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.

  14. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films.

    Science.gov (United States)

    Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny

    2018-03-14

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  15. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films

    Science.gov (United States)

    Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-03-01

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  16. Nonlinear gain suppression in semiconductor lasers due to carrier heating

    International Nuclear Information System (INIS)

    Willatzen, M.; Uskov, A.; Moerk, J.; Olesen, H.; Tromborg, B.; Jauho, A.P.

    1991-01-01

    We present a simple model for carrier heating in semiconductor lasers, from which the temperature dynamics of the electron and hole distributions can be calculated. Analytical expressions for two new contributions to the nonlinear gain coefficient ε are derived, which reflect carrier heating due to stimulated emission and free carrier absorption. In typical cases, carrier heating and spectral holeburning are found to give comparable contributions to nonlinear gain suppression. The results are in good agreement with recent measurements on InGaAsP laser diodes. (orig.)

  17. Different elution modes and field programming in gravitational field-flow fractionation: Field programming using density and viscosity gradients

    Czech Academy of Sciences Publication Activity Database

    Plocková, Jana; Chmelík, Josef

    2006-01-01

    Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  18. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.

    Science.gov (United States)

    Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A

    2018-01-30

    This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Performance-based standards for South African car-carriers

    CSIR Research Space (South Africa)

    De Saxe, C

    2012-12-01

    Full Text Available Until recently, car-carriers in South Africa operated under abnormal load permits allowing a finite relaxation of legal height and length limits. This practice is being phased out, and exemption will only be granted if a car-carrier complies...

  20. Acid extraction by supported liquid membranes containing basic carriers

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1983-01-01

    The extraction of HNO 3 (nitric acid) from aqueous solutions by permeation through a number of supported liquid membranes containing basic carriers dissolved in diethylbenzene has been studied. The results have shown that the best permeations are obtained with long chain aliphatic amines (TLA, Primene JM-T) followed by TOPO (trioctylphosphine oxide) and then by other monofunctional and bifunctional organophosphorous basic carriers. The influence of an aliphatic diluent on the permeability of HNO 3 through a supported liquid membrane containing TLA as carrier was also investigated. In this case the permeability to HNO 3 decreases as a result of the lower diffusion coefficient of the acid-carrier complex in the more vicous aliphatic solvent. 4 figures

  1. Immobilisation of Acinetobacter calcoaceticus using natural carriers

    African Journals Online (AJOL)

    2005-04-02

    Apr 2, 2005 ... and Cloete, 1995) or ceramic (Kariminiaae-Hamedaani et al.,. 2003) carriers. Besides the synthetic carriers, natural zeolite. (NZ) has been shown as a .... ing 9 mℓ of sterile distilled water, crushed with a sterile glass rod and dispersed by mixing (2 700 r/min for 10 min using the test tube shaker Kartell TK3S) ...

  2. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  3. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  4. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  5. 77 FR 67584 - Air Carrier Contract Maintenance Requirements

    Science.gov (United States)

    2012-11-13

    ... many, including air carriers lowering costs by employing fewer maintenance personnel and reducing their... make accurate risk assessments. B. History In May 1996, employees of SabreTech, a contract maintenance...-certificated repair facilities, and the air carriers' outsourcing of maintenance. In each of those reports...

  6. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    Science.gov (United States)

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  7. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements

    Science.gov (United States)

    Glenn, G. M.

    1976-01-01

    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  8. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    Science.gov (United States)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  9. Stability and carrier mobility of organic-inorganic hybrid perovskite CH3NH3PbI3 in two-dimensional limit

    Science.gov (United States)

    Huang, Kui; Lai, Kang; Yan, Chang-Lin; Zhang, Wei-Bing

    2017-10-01

    Recently, atomically thin organic-inorganic hybrid perovskites have been synthesized experimentally, which opens up new opportunities for exploring their novel properties in the 2D limit. Based on the comparative density functional theory calculation with and without spin-orbit coupling effects, the stability, electronic structure, and carrier mobility of the two-dimensional organic-inorganic hybrid perovskites MAPbI3 (MA = CH3NH3) have been investigated systemically. Two single-unit-cell-thick 2D MAPbI3 terminated by PbI2 and CH3NH3I are constructed, and their thermodynamic stabilities are also evaluated using the first-principles constrained thermodynamics method. Our results indicate that both 2D MAPbI3 with different terminations can be stable under certain conditions and have a suitable direct bandgap. Moreover, they are also found to have termination-dependent band edge and carrier mobility. The acoustic-phonon-limited carrier mobilities estimated using the deformation theory and effective mass approximation are on the order of thousands of square centimeters per volt per second and also highly anisotropic. These results indicate that 2D MAPbI3 are competitive candidates for low-dimensional photovoltaic applications.

  10. Two carrier temperatures non-equilibrium generalized Planck law for semiconductors

    Science.gov (United States)

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2016-10-01

    Planck's law of radiation describes the light emitted by a blackbody. This law has been generalized in the past for the case of a non-blackbody material having a quasi Fermi-level splitting: the lattice of the material and the carriers are then considered in an isothermal regime. Hot carrier spectroscopy deals with carriers out of the isothermal regime, as their respective temperatures (THe ≠ THh) are considered to be different than that of the lattice (TL). Here we show that Fermi-Dirac distribution temperature for each type of carrier still determine an effective radiation temperature: an explicit relationship is given involving the effective masses. Moreover, we show how to determine, in principle with an additional approximation, the carrier temperatures (THe, THh) and the corresponding absolute electrochemical potentials from photoluminescence measurements.

  11. Intrinsic carrier concentrations in long wavelength HgCdTe based on the new, nonlinear temperature dependence of Eg(x,T)

    International Nuclear Information System (INIS)

    Seiler, D.G.; Lowney, J.R.; Littler, C.L.; Yoon, I.T.

    1991-01-01

    This paper reports on intrinsic carrier concentrations of narrow-gap Hg 1-x Cd x Te alloys (0.17 ≤ x ≤ 0.30) calculated as a function of temperature between 0 and 300 K by using the new nonlinear temperature dependence of the energy gap obtained previously by two-photon magneto-absorption measurements for samples with 0.24 ≤ x ≤ 0.26. We report here experimental values for E g (x,T) for samples with x = 0.20 and 0.23 obtained by one-photon magneto-absorption measurements. These data confirm the validity of the new E g (x,T) relationship for these x values. In this range of composition and temperature, the energy gap of mercury cadmium telluride is small, and very accurate values are needed for the gap to obtain reliable values of the intrinsic carrier density

  12. Reversible electron–hole separation in a hot carrier solar cell

    International Nuclear Information System (INIS)

    Limpert, S; Bremner, S; Linke, H

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices. (paper)

  13. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  14. Self-scaling minority carrier lifetime imaging using periodically modulated electroluminescence

    Science.gov (United States)

    Kropp, Timo; Berner, Marcel; Werner, Jürgen H.

    2017-11-01

    We present a straightforward self-scaling imaging technique to extract the effective minority carrier lifetime image of silicon solar cells using periodically modulated electroluminescence. This novel modulation technique overcomes main limiting factors linked to camera integration time. Our approach is based on comparing three luminescence images taken during current modulation. One image is taken while periodically injecting excess charge carriers with a pulsed current stimulation followed by an open-circuit luminescence decay. A second image with the same injection profile is taken while additionally extracting excess charge carriers at the falling edge, accelerating the luminescence decay. Both images are normalized to a steady-state image. The camera integration time is several orders of magnitude longer than the modulation period length, and no synchronization of image acquisition is needed. The intensity difference between both modulated images is used for determining a calibration factor to convert the steady-state image into the effective minority carrier lifetime image: Our modulation method enables carrier lifetime images completely independent of the image integration time. First carrier lifetime images show good agreement with data from time resolved electroluminescence.

  15. An Estimation Method for number of carrier frequency

    Directory of Open Access Journals (Sweden)

    Xiong Peng

    2015-01-01

    Full Text Available This paper proposes a method that utilizes AR model power spectrum estimation based on Burg algorithm to estimate the number of carrier frequency in single pulse. In the modern electronic and information warfare, the pulse signal form of radar is complex and changeable, among which single pulse with multi-carrier frequencies is the most typical one, such as the frequency shift keying (FSK signal, the frequency shift keying with linear frequency (FSK-LFM hybrid modulation signal and the frequency shift keying with bi-phase shift keying (FSK-BPSK hybrid modulation signal. In view of this kind of single pulse which has multi-carrier frequencies, this paper adopts a method which transforms the complex signal into AR model, then takes power spectrum based on Burg algorithm to show the effect. Experimental results show that the estimation method still can determine the number of carrier frequencies accurately even when the signal noise ratio (SNR is very low.

  16. Mobility of charge carriers in porous silicon layers

    International Nuclear Information System (INIS)

    Forsh, P. A.; Martyshov, M. N.; Latysheva, A. P.; Vorontsov, A. S.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2008-01-01

    The (conduction) mobility of majority charge carriers in porous silicon layers of the n and p types is estimated by joint measurements of electrical conductivity and free charge carrier concentration, which is determined from IR absorption spectra. Adsorption of donor and acceptor molecules leading to a change in local electric fields in the structure is used to identify the processes controlling the mobility in porous silicon. It is found that adsorption of acceptor and donor molecules at porous silicon of the p and n types, respectively, leads to a strong increase in electrical conductivity, which is associated with an increase in the concentration of free carrier as well as in their mobility. The increase in the mobility of charge carriers as a result of adsorption indicates the key role of potential barriers at the boundaries of silicon nanocrystals and may be due to a decrease in the barrier height as a result of adsorption

  17. Insight into carrier lifetime impact on band-modulation devices

    Science.gov (United States)

    Parihar, Mukta Singh; Lee, Kyung Hwa; Park, Hyung Jin; Lacord, Joris; Martinie, Sébastien; Barbé, Jean-Charles; Xu, Yue; El Dirani, Hassan; Taur, Yuan; Cristoloveanu, Sorin; Bawedin, Maryline

    2018-05-01

    A systematic study to model and characterize the band-modulation Z2-FET device is developed bringing light to the relevance of the carrier lifetime influence. This work provides guidelines to optimize the Z2-FETs for sharp switching, ESD protection, and 1T-DRAM applications. Lower carrier lifetime in the Z2-FET helps in attaining the sharp switch. We provide new insights into the correlation between generation/recombination, diffusion, electrostatic barriers and carrier lifetime.

  18. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  19. Achieving Uniform Carriers Distribution in MBE Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs

    KAUST Repository

    Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Shen, Chao; Salhi, Abdelmajid; Alyamani, Ahmed; El-Desouki, Munir; Ooi, Boon S.

    2015-01-01

    We investigated the design and growth of compositionally-graded InGaN multiple quantum wells (MQW) based light-emitting diode (LED) without an electron-blocking layer (EBL). Numerical investigation showed uniform carrier distribution in the active region, and higher radiative recombination rate for the optimized graded-MQW design, i.e. In0→xGa1→(1-x)N / InxGa(1-x)N / Inx→0Ga(1-x)→1N, as compared to the conventional stepped-MQW-LED. The composition-grading schemes, such as linear, parabolic, and Fermi-function profiles were numerically investigated for comparison. The stepped- and graded-MQW-LED were then grown using plasma assisted molecular beam epitaxy (PAMBE) through surface-stoichiometry optimization based on reflection high-energy electron-diffraction (RHEED) in-situ observations. Stepped- and graded-MQW-LED showed efficiency roll over at 160 A/cm2 and 275 A/cm2, respectively. The extended threshold current density roll-over (droop) in graded-MQW-LED is due to the improvement in carrier uniformity and radiative recombination rate, consistent with the numerical simulation.

  20. Achieving Uniform Carriers Distribution in MBE Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs

    KAUST Repository

    Mishra, Pawan

    2015-05-06

    We investigated the design and growth of compositionally-graded InGaN multiple quantum wells (MQW) based light-emitting diode (LED) without an electron-blocking layer (EBL). Numerical investigation showed uniform carrier distribution in the active region, and higher radiative recombination rate for the optimized graded-MQW design, i.e. In0→xGa1→(1-x)N / InxGa(1-x)N / Inx→0Ga(1-x)→1N, as compared to the conventional stepped-MQW-LED. The composition-grading schemes, such as linear, parabolic, and Fermi-function profiles were numerically investigated for comparison. The stepped- and graded-MQW-LED were then grown using plasma assisted molecular beam epitaxy (PAMBE) through surface-stoichiometry optimization based on reflection high-energy electron-diffraction (RHEED) in-situ observations. Stepped- and graded-MQW-LED showed efficiency roll over at 160 A/cm2 and 275 A/cm2, respectively. The extended threshold current density roll-over (droop) in graded-MQW-LED is due to the improvement in carrier uniformity and radiative recombination rate, consistent with the numerical simulation.

  1. Investigation of interaction of vanillin with Alpha, Beta and Gamma-cyclodextrin as drug delivery carriers: brief report

    Directory of Open Access Journals (Sweden)

    Batoolalsadat Mousavi Fard

    2015-05-01

    Methods: All theoretical calculations were performed on a Intel® Core™ i5 Processors computer at Kerman University using Gaussian 09 program package (Gaussian, Inc., Wallingford, USA in a three month period (February 2014 to May 2014. Starting geometries were generated employing GaussView software, version 5 (Gaussian, Inc., Wallingford, USA and then the resulting coordinates were optimized using density functional theory (DFT calculations. The natural bond orbital method (NBO program, under Gaussian 09 program package was carried out to study charge transfer energy associated with the intermolecular interactions. The quantum theory of atoms in molecules was applied for DFT results to get insight in the nature of interaction existing in the investigated systems. The calculations were carried out with AIM2000 program and AIMAll 14.10.27 package (Todd A. Keith, TK Gristmill software, Overland Park KS, USA to find and characterize bond critical points. Results: The vanillin molecule is adsorbed on the surface of carriers by hydrogen bonding between its oxygen atom and hydrogen atoms of cyclodextrin. The hydrogen of -OH group on the cyclodextrin can form hydrogen bond to the oxygen atom of carbonyl group of vanillin molecule. This study indicates a decrease of total energy with increasing surface of cyclodextrin. So gamma-cyclodextrin and its complex with the maximum surface in between carriers have the highest stabilities. The gamma-cyclodextrin shows the strongest interaction with vanillin. In all complexes of vanillin-cyclodextrin, the direction of charge transfer is from drug to carrier. Conclusion: Due to the high solubility of gamma-cyclodxtrin and its stronger interaction with the molecule vanillin, it can be the best option as drug carrier.

  2. Accurate evaluation of subband structure in a carrier accumulation layer at an n-type InAs surface: LDF calculation combined with high-resolution photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Takeshi Inaoka

    2012-12-01

    Full Text Available Adsorption on an n-type InAs surface often induces a gradual formation of a carrier-accumulation layer at the surface. By means of high-resolution photoelectron spectroscopy (PES, Betti et al. made a systematic observation of subbands in the accumulation layer in the formation process. Incorporating a highly nonparabolic (NP dispersion of the conduction band into the local-density-functional (LDF formalism, we examine the subband structure in the accumulation-layer formation process. Combining the LDF calculation with the PES experiment, we make an accurate evaluation of the accumulated-carrier density, the subband-edge energies, and the subband energy dispersion at each formation stage. Our theoretical calculation can reproduce the three observed subbands quantitatively. The subband dispersion, which deviates downward from that of the projected bulk conduction band with an increase in wave number, becomes significantly weaker in the formation process. Accurate evaluation of the NP subband dispersion at each formation stage is indispensable in making a quantitative analysis of collective electronic excitations and transport properties in the subbands.

  3. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  4. Effective carrier sweepout in a silicon waveguide by a metal-semiconductor-metal structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Hu, Hao; Ou, Haiyan

    2015-01-01

    We demonstrate effective carrier depletion by metal-semiconductor-metal junctions for a silicon waveguide. Photo-generated carriers are efficiently swept out by applying bias voltages, and a shortest carrier lifetime of only 55 ps is demonstrated.......We demonstrate effective carrier depletion by metal-semiconductor-metal junctions for a silicon waveguide. Photo-generated carriers are efficiently swept out by applying bias voltages, and a shortest carrier lifetime of only 55 ps is demonstrated....

  5. Outcomes for Gestational Carriers Versus Traditional Surrogates in the United States.

    Science.gov (United States)

    Fuchs, Erika L; Berenson, Abbey B

    2018-05-01

    Little is known about the obstetric and procedural outcomes of traditional surrogates and gestational carriers. Participants included 222 women living in the United States who completed a brief online survey between November 2015 and February 2016. Differences between gestational carriers (n = 204) and traditional surrogates (n = 18) in demographic characteristics, pregnancy outcomes, and procedural outcomes were examined using chi-squared tests, Fisher's exact tests, and t-tests. Out of 248 eligible respondents, 222 surveys were complete, for a response rate of 89.5%. Overall, obstetric outcomes were similar among gestational carriers and traditional surrogates. Traditional surrogates were more likely than gestational carriers to have a Center for Epidemiologic Studies Depression Scale Revised score of 16 or higher (37.5% vs. 4.0%). Gestational carriers reported higher mean compensation ($27,162.80 vs. $17,070.07) and were more likely to travel over 400 miles (46.0% vs. 0.0%) than traditional surrogates. Procedural differences, but not differences in obstetric outcomes, emerged between gestational carriers and traditional surrogates. To ensure that both traditional surrogates and gestational carriers receive optimal medical care, it may be necessary to extend practice guidelines to ensure that traditional surrogates are offered the same level of care offered to gestational carriers.

  6. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  7. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    International Nuclear Information System (INIS)

    Stoika, R; Boiko, N; Panchuk, R; Filyak, Y; Senkiv, Y; Finiuk, N; Shlyakhtina, Y; Bilyy, R; Kit, Y; Skorohyd, N; Klyuchivska, O; Zaichenko, A; Mitina, N; Ryabceva, A

    2013-01-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  8. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  9. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  10. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  11. Direct no-carrier-added {sup 18}F-labelling of arenes via nucleophilic substitution on aryl(2-thienyl)iodonium salts

    Energy Technology Data Exchange (ETDEWEB)

    Ross, T L

    2006-01-15

    For in vivo imaging of molecular processes via positron emission tomography (PET) radiotracers of high specific activity are demanded. In case of the most commonly used positron emitter fluorine-18, this is only achievable with no-carrier-added [{sup 18}F]fluoride, which implies nucleophilic methods of {sup 18}F-substitution. Whereas electron deficient aromatic groups can be labelled in one step using no-carrier-added [{sup 18}F]fluoride, electron rich {sup 18}F-labelled aromatic molecules are only available by multi-step radiosyntheses or carrier-added electrophilic reactions. Here, diaryliodonium salts represent an alternative, since they have been proven as potent precursor for a direct nucleophilic {sup 18}F-introduction into aromatic molecules. Furthermore, as known from non-radioactive studies, the highly electron rich 2-thienyliodonium leaving group leads to a high regioselectivity in nucleophilic substitution reactions. Consequently, a direct nucleophilic no-carrier-added {sup 18}F-labelling of electron rich arenes via aryl(2-thienyl)iodonium precursors was developed in this work. The applicability of direct nucleophilic {sup 18}F-labelling was examined in a systematic study on eighteen aryl(2-thienyl)iodonium salts. As electron rich precursors the ortho-, meta- and para-methoxyphenyl(2-thienyl)iodonium bromides, iodides, tosylates and triflates were synthesised. In addition, para-substituted (R=BnO, CH{sub 3}, H, Cl, Br, I) aryl(2-thienyl)iodonium bromides were prepared as precursors with a systematically varying electron density. As first approach, the general reaction conditions of the nucleophilic {sup 18}F-substitution procedure were optimised. The best conditions for direct nucleophilic no-carrier-added {sup 18}F-labelling via aryl(2-thienyl)iodonium salts were found with dimethylformamide as solvent, a reaction temperature of 130{+-}3 C and 25 mmol/l as concentration of the precursor. (orig.)

  12. A density functional theory study of new boron nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhao-Hua [Shijiazhuang Institute of Technology, Shijiazhuang (China); Xie, Zun [Hebei Normal Univ., Shijiazhuang (China). College of Physics Science and Information Engineering and Hebei Advanced Thin Films Lab.

    2017-07-01

    Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.

  13. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  14. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo

    2011-01-01

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions

  15. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  16. Safety and environmental aspects in LNG carrier design

    International Nuclear Information System (INIS)

    Takashi Yoneyama

    1997-01-01

    'Safety and Reliability' has been and will continue to be a key phr ase in marine transportation of LNG. Mitsui Engineering and Shipbuilding Co.,Ltd. has utilized its all expertise and state of art technologies to realize this objective, resulting in exceptionally successful operations of LNG carrier built by the Co. In line with growing global concern about environmental issues, we need to pay more attention to the environmental aspects of the design and construction of LNG carriers. Accordingly, in this paper, we present some topics related safety and environmental concerns which need to be taken into consideration in LNG carriers design and construction. (Author). 7 figs

  17. Safety and environmental aspects in LNG carrier design

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Takashi [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    1997-06-01

    `Safety and Reliability` has been and will continue to be a key phr ase in marine transportation of LNG. Mitsui Engineering and Shipbuilding Co.,Ltd. has utilized its all expertise and state of art technologies to realize this objective, resulting in exceptionally successful operations of LNG carrier built by the Co. In line with growing global concern about environmental issues, we need to pay more attention to the environmental aspects of the design and construction of LNG carriers. Accordingly, in this paper, we present some topics related safety and environmental concerns which need to be taken into consideration in LNG carriers design and construction. (Author). 7 figs.

  18. UV-Vis optoelectronic properties of α-SnWO4: A comparative experimental and density functional theory based study

    KAUST Repository

    Ziani, Ahmed

    2015-09-03

    We report a combined experimental and theoretical study on the optoelectronic properties of α-SnWO4 for UV-Vis excitation. The experimentally measured values for thin films were systematically compared with high-accuracy density functional theory and density functional perturbation theory using the HSE06 functional. The α-SnWO4 material shows an indirect bandgap of 1.52 eV with high absorption coefficient in the visible-light range (>2 × 105 cm−1). The results show relatively high dielectric constant (>30) and weak diffusion properties (large effective masses) of excited carriers.

  19. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-01-01

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  20. 49 CFR 397.2 - Compliance with Federal motor carrier safety regulations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compliance with Federal motor carrier safety...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.2 Compliance with...

  1. Effect of carrier on labeling and biodistribution of Re-188-Hydroxyethylidene diphosphonate

    International Nuclear Information System (INIS)

    Chang, Young Soo; Jeong, Jae Min; Kim, Bo Kwang; Cho, Jung Hyuk; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Lee, Seung Jin; Jin, Ren Jie; Lee, Sang Eun

    2000-01-01

    Re-188-Hydroxyethylidene diphosphonate (HEDP) is a new cost-effective agent for systemic radioisotope therapy of metastatic bone pain. We investigated the influence of carrier for labeling and biodistribution of Re-188-HEDP using HEDP kit with or without carrier (KReO 4 ). The kits (HEDP 15 mg, gentisic acid 4 mg and SnC1 2 .2H 2 O 4.5 mg) with or without carrier (KReO 4 0.1 mg) were labeled with Re-188 solution, made available from an in-house generator by boiling for 15 min. We compared the labeling efficiency and stability of carrier-added and carrier-free preparations of Re-188-HEDP. Biodistribution and imaging studies of each preparation were performed in ICR mice (1.85-3.7 MBq/0.1 ml) and SD rats (74.1-85.2 MBq/0.5 ml). The carrier-added preparation showed high labeling efficiency (95% at pH 5) and high stability in serum (88%, 3hr). However, the carrier-free preparation showed low labeling efficiency (59% at pH 5) and low stability (43%, 3 hr). The carrier-added preparation showed high uptake in bone and low uptake in stomach and kidneys. However, the carrier-free preparation showed lower uptake in bone and higher uptake in both stomach and kidneys, which is supposed to be due to released perrhenate. The carrier-added preparation also showed better images with higher skeletal accumulation, lower uptake in other organs and lower soft tissue uptake than the carrier-free preparation. The results of these studies clearly demonstrate that addition of carrier perrhenate is required for high labeling efficiency, stability, bone uptake and good image quality of Re-188-HEDP.=20

  2. Efficiency of some spectrochemical carriers

    International Nuclear Information System (INIS)

    Gomes, R.P.

    1978-01-01

    A comparative study of the efficiency of some spectrochemical carriers for the quantitative spectrographic analysis of Ag, Al, B, Bi, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, Si, Sn, V and Zn in uranium-base materials is presented. The volatility behavior of the eighteen elements is verified by means of the moving plate technique and each of the mentioned carriers. The best results are obtained with 4% In 2 O 3 , 6% AgCl and 5% NaF in a U 3 O 8 matrix. The sensitivities for some elements were extended to fractions of p.p.m. The precision, accuracy and acceptability of the method are calculated for all elements. The total error values as approximately in the range of 16-45% [pt

  3. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Jukjeon-dong, Gyeonggi-do 448-701 (Korea, Republic of); Taguchi, Dai, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp; Iwamoto, Mitsumasa, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  4. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  5. Thermal activation of carriers from semiconductor quantum wells

    International Nuclear Information System (INIS)

    Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

    1999-01-01

    Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

  6. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  7. 75 FR 39891 - Rate Adjustment for the Satellite Carrier Compulsory License

    Science.gov (United States)

    2010-07-13

    ... the purpose of determining the royalty fees to be paid under the satellite carrier statutory license... royalty fees in that agreement be applied to all satellite carriers, distributors, and copyright owners...: PART 386--ADJUSTMENT OF ROYALTY FEES FOR SECONDARY TRANSMISSIONS BY SATELLITE CARRIERS Sec. 386.1...

  8. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  9. Magnetic suspension and pointing system. [on a carrier vehicle

    Science.gov (United States)

    Anderson, W. W.; Groom, N. J. (Inventor)

    1979-01-01

    Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.

  10. Hybrid nanostructured drug carrier with tunable and controlled drug release

    International Nuclear Information System (INIS)

    Depan, D.; Misra, R.D.K.

    2012-01-01

    We describe here a transformative approach to synthesize a hybrid nanostructured drug carrier that exhibits the characteristics of controlled drug release. The synthesis of the nanohybrid architecture involved two steps. The first step involved direct crystallization of biocompatible copolymer along the long axis of the carbon nanotubes (CNTs), followed by the second step of attachment of drug molecule to the polymer via hydrogen bonding. The extraordinary inorganic–organic hybrid architecture exhibited high drug loading ability and is physically stable even under extreme conditions of acidic media and ultrasonic irradiation. The temperature and pH sensitive characteristics of the hybrid drug carrier and high drug loading ability merit its consideration as a promising carrier and utilization of the fundamental aspects used for synthesis of other promising drug carriers. The higher drug release response during the application of ultrasonic frequency is ascribed to a cavitation-type process in which the acoustic bubbles nucleate and collapse releasing the drug. Furthermore, the study underscores the potential of uniquely combining CNTs and biopolymers for drug delivery. - Graphical abstract: Block-copolymer crystallized on carbon nanotubes (CNTs). Nanohybrid drug carrier synthesized by attaching doxorubicin (DOX) to polymer crystallized CNTs. Crystallized polymer on CNTs provide mechanical stability. Triggered release of DOX. Highlights: ► The novel synthesis of a hybrid nanostructured drug carrier is described. ► The drug carrier exhibits high drug loading ability and is physically stable. ► The high drug release is ascribed to a cavitation-type process.

  11. [Drug delivery systems using nano-sized drug carriers].

    Science.gov (United States)

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  12. 78 FR 5243 - Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees

    Science.gov (United States)

    2013-01-24

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee (MCSAC): Public Meeting of Subcommittees AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety...

  13. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari)

    Science.gov (United States)

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  14. Carriers of foot-and-mouth disease virus: a review

    NARCIS (Netherlands)

    Moonen, P.; Schrijver, R.

    2000-01-01

    This review describes current knowledge about persistent foot-and-mouth disease virus (FMDV) infections, the available methods to detect carrier animals, the properties of persisting virus, the immunological mechanisms, and the risk of transmission. In particular, knowledge about the carrier state,

  15. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand

    2010-01-01

    index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  16. Sterilization of Carriers by using Gamma Irradiation for Bio fertilizer Inoculum Production

    International Nuclear Information System (INIS)

    Tittabutr, Panlada; Teamtisong, Kamonluck; Pewlong, Wachiraporn; Teaumroong, Neuhg; Laoharojanaphand, Sirinart; Boonkerd, Nantakorn

    2009-07-01

    Full text: Gamma irradiation has been widely used in sterilization process, which leads to improvement in the quality of the products. In the case of bio fertilizer inoculum, the sterilized carrier is also needed for producing high quality bio fertilizer. This study aimed at determining the factors, such as carrier materials, moistures, and packing sizes including packaging materials that may affect the sterilization efficiency by using gamma irradiation. All carrier materials, peat and compost, could be efficiently sterilized by irradiation. The carriers that have moisture content lower than 20% could be sterilized by irradiation at 15 kGy, while carrier with 30% moisture content must be sterilized by irradiation at 25 kGy. Higher irradiation dose was also necessary for sterilization of bigger carrier packing sizes. For, packaging materials, polyethylene bag appeared most durable after gamma irradiation even at high doses. However, contaminants could be detected in irradiated carrier after storage at room temperature for two months. It was hypothesized that these contaminants are spore forming microorganisms, which resist gamma irradiation. This hypothesis, as well as the quality of bio fertilizer produced from irradiated carrier, will be further evaluated

  17. On the Comparative Performance Analysis of Turbo-Coded Non-Ideal Sigle-Carrier and Multi-Carrier Waveforms over Wideband Vogler-Hoffmeyer HF Channels

    Directory of Open Access Journals (Sweden)

    F. Genc

    2014-09-01

    Full Text Available The purpose of this paper is to compare the turbo-coded Orthogonal Frequency Division Multiplexing (OFDM and turbo-coded Single Carrier Frequency Domain Equalization (SC-FDE systems under the effects of Carrier Frequency Offset (CFO, Symbol Timing Offset (STO and phase noise in wide-band Vogler-Hoffmeyer HF channel model. In mobile communication systems multi-path propagation occurs. Therefore channel estimation and equalization is additionally necessary. Furthermore a non-ideal local oscillator generally is misaligned with the operating frequency at the receiver. This causes carrier frequency offset. Hence in coded SC-FDE and coded OFDM systems; a very efficient, low complex frequency domain channel estimation and equalization is implemented in this paper. Also Cyclic Prefix (CP based synchronization synchronizes the clock and carrier frequency offset.The simulations show that non-ideal turbo-coded OFDM has better performance with greater diversity than non-ideal turbo-coded SC-FDE system in HF channel.

  18. Characteristic Assessment of Diesel-degrading Bacteria Immobilized on Natural Organic Carriers in Marine Environment: the Degradation Activity and Nutrient.

    Science.gov (United States)

    Xue, Jianliang; Wu, Yanan; Liu, Zhixiu; Li, Menglu; Sun, Xiyu; Wang, Huajun; Liu, Bing

    2017-08-17

    Oil spill has led to severe environmental and ecological problems. Due to the harsh environmental conditions, the bioremediation technology is not successfully used to remedy the oil spill in marine environment. In this study, immobilization technology was used to immobilize bacteria on natural organic carriers (i.e., wood chips and maize straw). The higher surface area of in wood chips leads to larger biomass density (0.0242 gVSS/g) than that of maize straw of 0.0097 gVSS/g carrier. Compared with biodegradation efficiency of free bacteria (44.79%), the immobilized bacteria on wood chips and maize straw reached to 73.39% and 52.28%, respectively. The high biological activity of the immobilized bacteria can be also explained by nutrients, such as TN (total nitrogen) and TP (total phosphorus), released from wood chips and maize straw, which was 8.83 mg/g and 5.53 mg/g, 0.0624 mg/g and 0.0099 mg/g, respectively.

  19. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: Effects of plastic type and fouling load.

    Science.gov (United States)

    Hodgson, D J; Bréchon, A L; Thompson, R C

    2018-02-01

    Inappropriate disposal of plastic debris has led to the contamination of marine habitats worldwide. This debris can be ingested by organisms; however, the extent to which chewing and gut transit modifies plastic debris is unclear. Detritivores, such as amphipods, ingest and shred natural organic matter and are fundamental to its breakdown. Here we examine ingestion and shredding of plastic carrier bags by Orchestia gammarellus. A laboratory experiment showed these amphipods shredded plastic carrier bags, generating numerous microplastic fragments (average diameter 488.59μm). The presence of a biofilm significantly increased the amount of shredding, but plastic type (conventional, degradable and biodegradable) had no effect. Subsequent field observations confirmed similar shredding occurred on the strandline. Rates of shredding will vary according to amphipod density; however, our data indicates that shredding by organisms could substantially accelerate the formation microplastics in the environment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    International Nuclear Information System (INIS)

    Moerman, David; Colbert, Adam E.; Ginger, David S.; Kim, Hyungchul; Graham, Samuel

    2016-01-01

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO_2) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO_2 thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO_2 thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO_2 form. Finally, we use local SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO_2 thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO_2 is amorphous, in agreement with the device measurements.

  1. Limitations of high dose carrier based formulations.

    Science.gov (United States)

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  2. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  3. High school Tay-Sachs disease carrier screening: 5 to 11-year follow-up.

    Science.gov (United States)

    Curd, Helen; Lewis, Sharon; Macciocca, Ivan; Sahhar, Margaret; Petrou, Vicki; Bankier, Agnes; Lieberman, Sari; Levy-Lahad, Ephrat; Delatycki, Martin B

    2014-04-01

    The Melbourne high school Tay-Sachs disease (TSD) carrier screening program began in 1997. The aim of this study was to assess the outcomes of this screening program among those who had testing more than 5 years ago, to evaluate the long-term impact of screening. A questionnaire was used for data collection and consisted of validated scales and purposively designed questions. Questionnaires were sent to all carriers and two non-carriers for each carrier who were screened in the program between 1999 and 2005. Twenty-four out of 69 (34.8 %) carriers and 30/138 (21.7 %) non-carriers completed the questionnaire. Most participants (82 %) retained good knowledge of TSD and there was no evidence of a difference in knowledge between carriers and non-carriers. Most participants (83 %) were happy with the timing and setting of screening and thought that education and screening for TSD should be offered during high school. There was no difference between carriers and non-carriers in mean scores for the State Trait Anxiety Inventory and Decision Regret Scale. This evaluation indicated that 5-11 years post high school screening, those who were screened are supportive of the program and that negative consequences are rare.

  4. Theoretical study on the cage-like nanostructures formed by amino acids and their potential applications as drug carriers

    Science.gov (United States)

    Weng, Pei Pei; Fan, Jian Fen; Lin, Hui Fang; Zhao, Xin; Si, Xia Lan

    2017-12-01

    The cage-like octamer, decamer and dodecamer constructed from aspartic acid monomers have been studied to explore their potential applications as drug carriers using the density functional theory. The calculation results indicate that these stable cage-like oligomers are mainly connected by the -C=O…HOOC- and -HN…HOOC- H-bonds and still keep stability and good drum-shaped topologies after the incorporation of 5-fluorouracil, paraldehyde and C24, respectively. The self-assembled cage-like oligomers may be applied to the preparation of new biological materials and the design of drug delivery systems.

  5. Study of Charge Carrier Transport in GaN Sensors

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-01-01

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects. PMID:28773418

  6. 41 CFR 109-40.303-3 - Most fuel efficient carrier/mode.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Most fuel efficient...-3 Most fuel efficient carrier/mode. When more than one mode, or more than one carrier within a mode... cost, the carrier/mode determined to be the most fuel efficient will be selected. In determining the...

  7. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  8. 49 CFR 385.303 - How does a motor carrier register with the FMCSA?

    Science.gov (United States)

    2010-10-01

    ... Washington, DC headquarters by mail at, Federal Motor Carrier Safety Administration, 1200 New Jersey Ave., SE... 49 Transportation 5 2010-10-01 2010-10-01 false How does a motor carrier register with the FMCSA...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY...

  9. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  10. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  11. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    Science.gov (United States)

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  12. 77 FR 60507 - Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting

    Science.gov (United States)

    2012-10-03

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee (MCSAC): Public Subcommittee Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Meeting of Compliance, Safety...

  13. Genetic variation at the PCSK9 locus, low density lipoproteins, response to pravastatin and coronary heart disease: results from PROSPER

    Science.gov (United States)

    Caucasian carriers of the T allele at R46L in the proprotein convertase subtilisin/kexin type 9 (PCSK9) locus have been reported to have 15% lower low-density lipoprotein (LDL) cholesterol (C) levels and 47% lower coronary heart disease (CHD) risk. Our objective was to examine two PCSK9 single nucle...

  14. Prognostic value of X-chromosome inactivation in symptomatic female carriers of dystrophinopathy

    Directory of Open Access Journals (Sweden)

    Juan-Mateu Jonàs

    2012-10-01

    Full Text Available Abstract Background Between 8% and 22% of female carriers of DMD mutations exhibit clinical symptoms of variable severity. Development of symptoms in DMD mutation carriers without chromosomal rearrangements has been attributed to skewed X-chromosome inactivation (XCI favouring predominant expression of the DMD mutant allele. However the prognostic use of XCI analysis is controversial. We aimed to evaluate the correlation between X-chromosome inactivation and development of clinical symptoms in a series of symptomatic female carriers of dystrophinopathy. Methods We reviewed the clinical, pathological and genetic features of twenty-four symptomatic carriers covering a wide spectrum of clinical phenotypes. DMD gene analysis was performed using MLPA and whole gene sequencing in blood DNA and muscle cDNA. Blood and muscle DNA was used for X-chromosome inactivation (XCI analysis thought the AR methylation assay in symptomatic carriers and their female relatives, asymptomatic carriers as well as non-carrier females. Results Symptomatic carriers exhibited 49.2% more skewed XCI profiles than asymptomatic carriers. The extent of XCI skewing in blood tended to increase in line with the severity of muscle symptoms. Skewed XCI patterns were found in at least one first-degree female relative in 78.6% of symptomatic carrier families. No mutations altering XCI in the XIST gene promoter were found. Conclusions Skewed XCI is in many cases familial inherited. The extent of XCI skewing is related to phenotype severity. However, the assessment of XCI by means of the AR methylation assay has a poor prognostic value, probably because the methylation status of the AR gene in muscle may not reflect in all cases the methylation status of the DMD gene.

  15. Dominant role of many-body effects on the carrier distribution function of quantum dot lasers

    Science.gov (United States)

    Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.

    2016-03-01

    The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.

  16. Hiding secret data into a carrier image

    Directory of Open Access Journals (Sweden)

    Ovidiu COSMA

    2012-06-01

    Full Text Available The object of steganography is embedding hidden information in an appropriate multimedia carrier, e.g., image, audio, or video. There are several known methods of solving this problem, which operate either in the space domain or in the frequency domain, and are distinguished by the following characteristics: payload, robustness and strength. The payload is the amount of secret data that can be embedded in the carrier without inducing suspicious artefacts, robustness indicates the degree in which the secret data is affected by the normal processing of the carrier e.g., compression, and the strength indicate how easy the presence of hidden data can be detected by steganalysis techniques. This paper presents a new method of hiding secret data into a digital image compressed by a technique based on the Discrete Wavelet Transform (DWT [2] and the Set Partitioning In Hierarchical Trees (SPIHT subband coding algorithm [6]. The proposed method admits huge payloads and has considerable strength.

  17. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    Johansson, Bengt.

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO 2 emission reduction per unit arable and forest land used for biomass production (kg CO 2 /ha,year) and costs for CO 2 emission reduction (SEK/kg CO 2 ) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO 2 emission reduction. In a medium long perspective, the costs for CO 2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  18. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    Science.gov (United States)

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  20. Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells

    KAUST Repository

    Melianas, Armantas; Etzold, Fabian; Savenije, Tom J.; Laquai, Fré dé ric; Inganä s, Olle; Kemerink, Martijn

    2015-01-01

    motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from

  1. 46 CFR 520.11 - Non-vessel-operating common carriers.

    Science.gov (United States)

    2010-10-01

    ... CARRIER AUTOMATED TARIFFS § 520.11 Non-vessel-operating common carriers. (a) Financial responsibility. An... its tariff publication: (1) That it has furnished the Commission proof of its financial responsibility..., insurance policy, or guaranty; (5) The number of the bond, insurance policy or guaranty; and (6) Where...

  2. GUI Application for ATCA-based LLRF Carrier Board Management

    CERN Document Server

    Wychowaniak, Jan; Predki, Pawel; Napieralski, Andrzej

    2011-01-01

    The Advanced Telecommunications Computing Architecture (ATCA) standard describes an efficient and powerful platform, implementation of which was adopted to be used as a base for control systems in high energy physics. The ATCA platform is considered to be applied for the X-ray Free Electron Laser (X-FEL), being built at Deutsches Electronen- Synchrotron (DESY) in Hamburg, Germany. The Low Level Radio Frequency (LLRF) control system is composed of a few ATCA Carrier Boards. Carrier Board hosts Intelligent Platform Management Controller (IPMC), which is developed in compliance with the PICMG specifications. IPMC is responsible for management and monitoring of sub-modules installed on Carrier Boards and pluggable Advanced Mezzanine Card (AMC) modules. The ATCA Shelf Manager is the main control unit of a single ATCA crate, responsible for all power and fan modules and Carrier Boards installed in ATCA shelf. The device provides a system administrator with a set of control and diagnostic capabilities regarding the ...

  3. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kohei [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  4. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  5. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.; Howard, Ian A.; Laquai, Fré dé ric

    2015-01-01

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  6. Carrier introduction to moire pattern for automatic fringe-order distinguishing

    International Nuclear Information System (INIS)

    Fang, J.; Laermann, K.H.

    1992-01-01

    This paper presents an automatic procedure of pseudo-colour encoding of moire fringe orders. A carrier consisting of parallel fringes is introduced before the specimen deforms. The carrier pattern is captured by a camera and then stored in computer as a standard image. The space of the carrier fringes is distored by the strains on the specimen as it is loaded. On a certain condition, the orders of the frequency-modulated carrier still vary monotonically so that they can be easyly distinguished. Both the standard fringe-carrier and the frequency-modulated fringe pattern are transformed into two digital images, of which every fringe is encoded by one of the pseudo-colour codes corresponding to the monotonical fringe orders. At each pixel, the difference between the colour sequences of two images is calculated to obtain the fringe order of pure deformation. The moire pattern of the in-plane displacement is restored as a pseudo-colour image by whose colour-change the variation of the fringe orders is displayed. (orig.)

  7. Performance Analysis of Downlink Inter-band Carrier Aggregation in LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2011-01-01

    CC can be different. In this paper, we investigate the downlink resource allocation for inter-band CA, i.e., how to assign carrier(s) to different UEs. A simple yet effective G-factor based carrier selection algorithm, which takes both traffic load and radio channel characteristics......Carrier aggregation (CA) is one of the most distinct features for LTE-Advanced systems, which can support a much wider transmission bandwidth up to 100 MHz by aggregating two or more individual component carriers (CCs) belonging to the same (intra-band) or different (inter-band) frequency bands....... With CA, it is possible to schedule a user equipment (UE) on multiple CCs simultaneously. From radio resource management (RRM) perspective, CC selection plays an important role in optimizing the system performance, especially in the case of inter-band CA where the radio propagation characteristics of each...

  8. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. UVB-induced photoperoxidation of lipids of human low and high density lipoproteins. A possible role of tryptophan residues

    International Nuclear Information System (INIS)

    Salmon, S.; Maziere, J.C.; Santus, R.; Bouchemal, N.; Morliere, P.

    1990-01-01

    Ultraviolet radiation of the UVB region readily destroys tryptophan (Trp) residues of low (LDL) and high (HDL) density lipoproteins. The photooxidation of tryptophan residues is accompanied by peroxidation of low and high density lipoproteins unsaturated fatty acids, as measured by thiobarbituric acid assay. Moreover, low and high density lipoproteins are natural carriers of vitamin E and carotenoids. These two antioxidants are also rapidly bleached by UVB. The UVA radiation promotes neither tryptophan residue destruction nor lipid photoperoxidation. The redox cycling Cu 2+ ions considerably increase lipid photoperoxidation. The synergistic action of photo and auto (Cu 2+ -induced) peroxidation induces marked post-irradiation modifications of apolipoproteins as illustrated by degradation of most tryptophan residues after overnight incubation in the dark of pre-irradiated samples. (author)

  10. Development of carrier usage for the treatment of radioactive effluent

    International Nuclear Information System (INIS)

    Kahraman, A.

    1997-01-01

    Low level radioactive liquid wastes are produced in many nuclear applications. Their physico-chemical characteristics may very considerably. Chemical precipitation is a convenient treatment method for the liquid streams of high salinity or solid content containing different radionuclide types. Generally, the concentrations of nuclides in liquid wastes are extremely low. For example, 1000 Bq of 137 Cs makes about 3·10 -10 g of caesium. Therefore conventional precipitation cannot be applied since the solubility product value is not exceeded. The carriers which are capable to adsorb the nuclides are used to achieve the nuclide removal. Stable isotopes of the nuclide are usually added as the carriers but any reagent which has similar chemical specifications with the nuclide can also be used as the carrier. Precipitation of these non-radioactive carriers ion together with the radionuclide is called co-precipitation. The operational steps of the chemical precipitation process should be established and applied in a treatment facility. Thus, the most suitable carrier for a particular nuclide and its usage conditions are required to be determined. In this study, the carriers for removal of 137 Cs and uranium, their accurate amounts and usage conditions to achieve highest decontamination factors (DF) have been investigated. Residual sludge volumes were evaluated for cementation purposes. The cement composite samples were prepared for each set of experiments and hardening times were measured. 9 refs, 9 figs

  11. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    Science.gov (United States)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  12. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  13. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-04-01

    Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers. Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier. Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles. Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  14. Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review

    Directory of Open Access Journals (Sweden)

    Islam MA

    2012-12-01

    Full Text Available Mohammad Ariful Islam,1–3,* Jannatul Firdous,1–3,* Yun-Jaie Choi,1 Cheol-Heui Yun,1–4 Chong-Su Cho1,21Department of Agricultural Biotechnology, 2Research Institute for Agriculture and Life Sciences, 3Center for Food and Bioconvergence, 4World Class University Biomodulation Program, Seoul National University, Seoul, South Korea*These authors contributed equally to this workAbstract: Chitosan, a natural biodegradable polymer, is of great interest in biomedical research due to its excellent properties including bioavailability, nontoxicity, high charge density, and mucoadhesivity, which creates immense potential for various pharmaceutical applications. It has gelling properties when it interacts with counterions such as sulfates or polyphosphates and when it crosslinks with glutaraldehyde. This characteristic facilitates its usefulness in the coating or entrapment of biochemicals, drugs, antigenic molecules as a vaccine candidate, and microorganisms. Therefore, chitosan together with the advance of nanotechnology can be effectively applied as a carrier system for vaccine delivery. In fact, chitosan microspheres have been studied as a promising carrier system for mucosal vaccination, especially via the oral and nasal route to induce enhanced immune responses. Moreover, the thiolated form of chitosan is of considerable interest due to its improved mucoadhesivity, permeability, stability, and controlled/extended release profile. This review describes the various methods used to design and synthesize chitosan microspheres and recent updates on their potential applications for oral and nasal delivery of vaccines. The potential use of thiolated chitosan microspheres as next-generation mucosal vaccine carriers is also discussed.Keywords: chitosan microspheres, oral, nasal, vaccine delivery, mucosal and systemic immune responses

  15. Comparison of carrier-added [99mTc] EDTMP and carrier-free preparations of [99mTc] EDTMP and [99mTc] DPD

    International Nuclear Information System (INIS)

    Krcal, A.; Kletter, K.; Dudczak, R.; Pirich, C.; Mitterhauser, M.

    2002-01-01

    Full text: High uptake of bone-seeking radiopharmaceuticals in malignant bone lesions is a prerequisite for adequate bone scanning. Visual image analysis is impaired due to high soft-tissue activity with currently available [ 99m Tc]-EDTMP-kits. This study aimed to compare carrier-added [ 99m Tc]-EDTMP with carrier-free [ 99m Tc]-EDTMP and [ 99m Tc]-DPD preparations in clinical routine. 15 μg and 150 μg perrhenic acid respectively were added to [ 99m Tc]-pertechnetate (>6 GBq in 3 ml phys. saline). The solution was then transferred into a vial, containing 1 mg of EDTMP, 3.6 mg stannous(II)chloride and 10 mg ascorbic acid under inert conditions. Under vigorous stirring the reaction mixture was heated to 45 o C for 10 min. After cooling down to room temperature the labelling mixture was sterile filtrated (millipore 0.22 μm). Quality control was performed using radio-ITLC (Whatman SG; acetone or ethanol: R f perrhenate/pertechnetate 0.87, colloid/product 0.05; phys. saline: R f colloid 0.00, perrhenate/pertechnetate and product 0.9) allowing rapid and efficient assessment of the product. Carrier free [ 99m Tc]-EDTMP and [ 99m Tc]-DPD were prepared according to instructions of the manufacturer. Clinical studies were performed in 29 patients according to a routine bone scanning protocol by injecting 700-800 MBq of the respective tracer and whole body imaging 3 h thereafter. Radiochemical purity and radiochemical yield relied on various parameters such as concentration of carrier and reducing agent and reaction conditions (pH, reaction time, temperature). Means of the labelling yield were 22 % for the preparation using 150 μg of carrier (5 preparations), 80 % for the preparation using 15 μpg of carrier (10 preparations) and 91 % for the carrier free products (5 preparations). Radiochemical purity was >96 % in all experiments. Colloid was formed in very low amounts, and was completely removed by sterile filtration. In clinical studies quantitative analysis

  16. Towards 100 gigabit carrier ethernet transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Zhang, Jiang; Yu, Hao

    2010-01-01

    technology, making the use of Ethernet as a convergence layer for Next Generation Networks a distinct possibility. Triple Play services, in particular IPTV, are expected to be a main drivers for carrier Ethernet, however, a number of challenges must be addressed including QoS enabled control plane, enhanced......Ethernet as a transport technology has, up to now, lacked the features such as network layer architecture, customer separation and manageability that carriers require for wide-scale deployment. However, with the advent of PBB-TE and TMPLS, it is now possible to use Ethernet as a transport...

  17. Tunneling-assisted transport of carriers through heterojunctions.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  18. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    Science.gov (United States)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  19. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  20. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  1. Study of the full-service and low-cost carriers network configuration

    Directory of Open Access Journals (Sweden)

    Oriol Lordan

    2014-10-01

    Full Text Available Purpose: The network strategies used by airline carriers have been a recurring subject in air transport research. The aim of this paper is to investigate the relationship between the different operational characteristics of the airline and its route network configuration. Design/methodology/approach: The two main airline carrier typologies - Full-Service and Low-Cost carriers – are analysed using empirical models developed on complex network research relating them to the business model of the airlines. Findings and Originality/value: Just in Europe, one can differentiate between Full-Service and Low-Cost Carriers by complex network analyses. In this process, it has been also found that new concept Low-Cost Carriers, such as Vueling, have network properties closer to Full-Service Carriers. Research limitations/implications: This paper has a limited sample, as includes 26 airline case studies from Europe, United States and Asia. Practical implications: The analysis carried out in this research can help to the assessment of the evolution of the strategies of airline carriers, and has also operational implications, since the configuration of an airline route network can determine its resilience to attacks and errors. Social implications: A better understanding of the properties of airline route networks can benefit airlines, passengers and another stakeholders of the air transport industry. Originality/value: Current research on air transport networks has only considered the global or regional level, but few studies have addressed the study of airline transport networks, and its relationship with their business model.

  2. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  3. Development of carrier usage for the treatment of radioactive effluent

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, A [Cekmece Nuclear Research and Training Center, Istanbul (Turkey)

    1997-02-01

    Low level radioactive liquid wastes are produced in many nuclear applications. Their physico-chemical characteristics may very considerably. Chemical precipitation is a convenient treatment method for the liquid streams of high salinity or solid content containing different radionuclide types. Generally, the concentrations of nuclides in liquid wastes are extremely low. For example, 1000 Bq of {sup 137}Cs makes about 3{center_dot}10{sup -10} g of caesium. Therefore conventional precipitation cannot be applied since the solubility product value is not exceeded. The carriers which are capable to adsorb the nuclides are used to achieve the nuclide removal. Stable isotopes of the nuclide are usually added as the carriers but any reagent which has similar chemical specifications with the nuclide can also be used as the carrier. Precipitation of these non-radioactive carriers ion together with the radionuclide is called co-precipitation. The operational steps of the chemical precipitation process should be established and applied in a treatment facility. Thus, the most suitable carrier for a particular nuclide and its usage conditions are required to be determined. In this study, the carriers for removal of {sup 137}Cs and uranium, their accurate amounts and usage conditions to achieve highest decontamination factors (DF) have been investigated. Residual sludge volumes were evaluated for cementation purposes. The cement composite samples were prepared for each set of experiments and hardening times were measured. 9 refs, 9 figs.

  4. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E.

    2010-01-01

    Structure of the ternary complex of F. tularensis enoyl-acyl carrier protein reductase reveals the structure of the substrate binding loop whose electron density was missing in an earlier structure, and demonstrates a shift in the position of the NAD + cofactor. Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD + has been solved to a resolution of 2.1 Å. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure which is bound to only NAD + reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD + cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors

  5. A joint recovery scheme for carrier frequency offset and carrier phase noise using extended Kalman filter

    Science.gov (United States)

    Li, Linqian; Feng, Yiqiao; Zhang, Wenbo; Cui, Nan; Xu, Hengying; Tang, Xianfeng; Xi, Lixia; Zhang, Xiaoguang

    2017-07-01

    A joint carrier recovery scheme for polarization division multiplexing (PDM) coherent optical transmission system is proposed and demonstrated, in which the extended Kalman filter (EKF) is exploited to estimate and equalize the carrier frequency offset (CFO) and carrier phase noise (CPN) simultaneously. The proposed method is implemented and verified in the PDM-QPSK system and the PDM-16QAM system with the comparisons to conventional improved Mth-power (IMP) algorithm for CFO estimation, blind phase search (BPS) algorithm or Viterbi-Viterbi (V-V) algorithm for CPN recovery. It is demonstrated that the proposed scheme shows high CFO estimation accuracy, with absolute mean estimation error below 1.5 MHz. Meanwhile, the proposed method has the CFO tolerance of [±3 GHz] for PDM-QPSK system and [±0.9 GHz] for PDM-16QAM system. Compare with IMP/BPS and IMP/V-V, the proposed scheme can enhance the linewidth symbol duration product from 3 × 10-4 (IMP/BPS) and 2 × 10-4 (IMP/V-V) to 1 × 10-3 for PDM-QPSK, and from 1 × 10-4 (IMP/BPS) to 3 × 10-4 for PDM-16QAM, respectively, at the 1 dB optical signal-to-noise ratio (OSNR) penalty. The proposed Kalman filter also shows a fast convergence with only 100 symbols and much lower computational complexity.

  6. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  7. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, J.; Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Boogen, C. (Univ. of Essen Medical School (Germany))

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  8. On motions of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  9. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  10. MULTIMODAL IMAGING OF MOSAIC RETINOPATHY IN CARRIERS OF HEREDITARY X-LINKED RECESSIVE DISEASES.

    Science.gov (United States)

    Wu, An-Lun; Wang, Jung-Pan; Tseng, Yun-Ju; Liu, Laura; Kang, Yu-Chuan; Chen, Kuan-Jen; Chao, An-Ning; Yeh, Lung-Kun; Chen, Tun-Lu; Hwang, Yih-Shiou; Wu, Wei-Chi; Lai, Chi-Chun; Wang, Nan-Kai

    2018-05-01

    To investigate the clinical features in carriers of X-linked retinitis pigmentosa, X-linked ocular albinism, and choroideremia (CHM) using multimodal imaging and to assess their diagnostic value in these three mosaic retinopathies. We prospectively examined 14 carriers of 3 X-linked recessive disorders (X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM). Details of abnormalities of retinal morphology were evaluated using fundus photography, fundus autofluorescence (FAF) imaging, and spectral domain optical coherence tomography. In six X-linked retinitis pigmentosa carriers, fundus appearance varied from unremarkable to the presence of tapetal-like reflex and pigmentary changes. On FAF imaging, all carriers exhibited a bright radial reflex against a dark background. By spectral domain optical coherence tomography, loss of the ellipsoid zone in the macula was observed in 3 carriers (50%). Regarding the retinal laminar architecture, 4 carriers (66.7%) showed thinning of the outer nuclear layer and a dentate appearance of the outer plexiform layer. All five X-linked ocular albinism carriers showed a characteristic mud-splatter patterned fundus, dark radial streaks against a bright background on FAF imaging, and a normal-appearing retinal structure by spectral domain optical coherence tomography imaging. Two of the 3 CHM carriers (66.7%) showed a diffuse moth-eaten appearance of the fundus, and all 3 showed irregular hyper-FAF and hypo-FAF spots throughout the affected area. In the CHM carriers, the structural changes observed by spectral domain optical coherence tomography imaging were variable. Our findings in an Asian cohort suggest that FAF imaging is a practical diagnostic test for differentiating X-linked retinitis pigmentosa, X-linked ocular albinism, and CHM carriers. Wide-field FAF is an easy and helpful adjunct to testing for the correct diagnosis and identification of lyonization in carriers of these three mosaic retinopathies.

  11. Slowing hot-carrier relaxation in graphene using a magnetic field

    Science.gov (United States)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  12. Aromatase expression is increased in BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Chand, Ashwini L; KConFab; Simpson, Evan R; Clyne, Colin D

    2009-01-01

    Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of BRCA1 gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression in vitro. Our objective was to characterise aromatase gene (CYP19A1) and its promoter expression in breast adipose and ovarian tissue in BRCA1 mutation carriers and unaffected controls. We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women. We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of BRCA1 mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts. Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA1 mutation carriers

  13. Perlite as a carrier of phosphate-accumulating bacteria

    International Nuclear Information System (INIS)

    Ivankovic, T.; Hrenovic, J.; Sekovanic, L.; Tofant, A.

    2009-01-01

    The phosphate (P)-accumulating bacteria are important for biological P removal from wastewater. Currently, attention is being drawn to the immobilisation of desired bacteria on different carriers in order to achieve a better efficiency of the wastewater treatment. In this study, two size fractions (0.1-1 and 0.1-2 mm) of different forms of expanded perlite (original, autoclaved and magnesium-exchanged) were investigates as possible carriers of P accumulating bacterium. (Author)

  14. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  15. Multipactor susceptibility on a dielectric with two carrier frequencies

    Science.gov (United States)

    Iqbal, Asif; Verboncoeur, John; Zhang, Peng

    2018-04-01

    This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.

  16. Clinical manifestations of intermediate allele carriers in Huntington disease

    DEFF Research Database (Denmark)

    Cubo, Esther; Ramos-Arroyo, María A; Martinez-Horta, Saul

    2016-01-01

    a cohort of participants at risk with cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided...... into IA carriers (27-35 CAG) and controls (older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. RESULTS: Of 12....... However, older participants with IAs had higher chorea scores compared to controls (p = 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p = 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater...

  17. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  18. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Cotoros, Ingrid A. [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The field of spintronics offers perspectives for seamless integration of coupled and inter-tunable electrical and magnetic properties in a single device. For integration of the spin degree of freedom with current electronic technology, new semiconductors are needed that show electrically-tunable magnetic properties at room temperature and above. Dilute magnetic semiconductors derived from III-V compounds, like GaMnAs and InMnAs, show coupled and tunable magnetic, transport, and optical properties, due to the fact that their ferromagnetism is hole-mediated. These unconventional materials are ideal systems for manipulating the magnetic order by changing the carrier polarization, population density, and energy band distribution of the complementary subsystem of holes. This is the main theme we cover in this thesis. In particular, we develop a unique setup by use of ultraviolet pump, near-infrared probe femtosecond laser pulses, that allows for magneto-optical Kerr effect (MOKE) spectroscopy experiments. We photo-excite transient carriers in our samples, and measure the induced transient magnetization dynamics. One set of experiments performed allowed us to observe for the first time enhancement of the ferromagnetic order in GaMnAs, on an ultrafast time scale of hundreds of picoseconds. The corresponding transient increase of Curie temperature (Tc, the temperature above which a ferromagnetic material loses its permanent magnetism) of about 1 K for our experimental conditions is a very promising result for potential spintronics applications, especially since it is seconded by observation of an ultrafast ferromagnetic to paramagnetic phase transition above Tc. In a different set of experiments, we "write" the magnetization in a particular orientation in the sample plane. Using an ultrafast scheme, we alter the distribution of holes in the system and detect signatures of the particular memory state in the subsequent magnetization dynamics, with unprecedented hundreds of

  19. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  20. Detection of hemophilia A carriers by use of frozen plasma samples

    International Nuclear Information System (INIS)

    Yang, H.C.; Hardin, J.; Vaudreuil, C.

    1978-01-01

    The efficacy of using promptly frozen plasma samples in the diagnosis of the carrier state for hemophilia A was evaluated by simultaneous measurement of factor VIII activity and antigen in 20 normal women and 20 obligate carriers. Factor VIII antigen was measured by two methods, electroimmunoassay and immunoradiometric assay. When the factor VIII activity and antigen data were evaluated by regression analysis, 94% of the carriers were correctly identified at the 95% confidence level