WorldWideScience

Sample records for carrier density dependent

  1. Temperature and carrier density dependence of anisotropy in supercurrent density in layered cuprate superconductors

    International Nuclear Information System (INIS)

    Singh, M.P.; Tewari, B.S.; Ajay

    2006-01-01

    In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)

  2. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  3. Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots

    International Nuclear Information System (INIS)

    Norris, T B; Kim, K; Urayama, J; Wu, Z K; Singh, J; Bhattacharya, P K

    2005-01-01

    We have used two- and three-pulse femtosecond differential transmission spectroscopy to study the dependence of quantum dot carrier dynamics on temperature. At low temperatures and densities, the rates for relaxation between the quantum dot confined states and for capture from the barrier region into the various dot levels could be directly determined. For electron-hole pairs generated directly in the quantum dot excited state, relaxation is dominated by electron-hole scattering, and occurs on a 5 ps time scale. Capture times from the barrier into the quantum dot are of the order of 2 ps (into the excited state) and 10 ps (into the ground state). The phonon bottleneck was clearly observed in low-density capture experiments, and the conditions for its observation (namely, the suppression of electron-hole scattering for nongeminately captured electrons) were determined. As temperature increases beyond about 100 K, the dynamics become dominated by the re-emission of carriers from the lower dot levels, due to the large density of states in the wetting layer and barrier region. Measurements of the gain dynamics show fast (130 fs) gain recovery due to intradot carrier-carrier scattering, and picosecond-scale capture. Direct measurement of the transparency density versus temperature shows the dramatic effect of carrier re-emission for the quantum dots on thermally activated scattering. The carrier dynamics at elevated temperature are thus strongly dominated by the high density of the high energy continuum states relative to the dot confined levels. Deleterious hot carrier effects can be suppressed in quantum dot lasers by resonant tunnelling injection

  4. Thickness and growth-condition dependence of in-situ mobility and carrier density of epitaxial thin-film Bi2Se3

    International Nuclear Information System (INIS)

    Hellerstedt, Jack; Fuhrer, Michael S.; Edmonds, Mark T.; Zheng, C. X.; Chen, J. H.; Cullen, William G.

    2014-01-01

    Bismuth selenide Bi 2 Se 3 was grown by molecular beam epitaxy, while carrier density and mobility were measured directly in situ as a function of film thickness. Carrier density shows high interface n-doping (1.5 × 10 13  cm −2 ) at the onset of film conduction and bulk dopant density of ∼5 × 10 11  cm −2 per quintuple-layer unit, roughly independent of growth temperature profile. Mobility depends more strongly on the growth temperature and is related to the crystalline quality of the samples quantified by ex-situ atomic force microscopy measurements. These results indicate that Bi 2 Se 3 as prepared by widely employed parameters is n-doped before exposure to atmosphere, the doping is largely interfacial in origin, and dopants are not the limiting disorder in present Bi 2 Se 3 films.

  5. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.; Kinjo, K.; Nakaoka, T.; Oto, T. [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Kishino, K.; Ema, K. [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sophia Nanotechnology Research Center, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and a higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.

  6. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  7. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  8. Density dependent effective interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1994-01-01

    An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs

  9. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  10. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  11. Charge-carrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field [refereed

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, de D.M.; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solns. of the Master equation, we study the dependence of the charge-carrier mobility

  12. Charge-carrier mobilities in disordered semiconducting polymers : effects of carrier density and electric field

    NARCIS (Netherlands)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; Leeuw, D.M. de; Michels, M.A.J.

    2006-01-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier

  13. density-dependent selection revisited

    Indian Academy of Sciences (India)

    Unknown

    is a more useful way of looking at density-dependent selection, and then go on ... these models was that the condition for maintenance of ... In a way, their formulation may be viewed as ... different than competition among species, and typical.

  14. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  15. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  17. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  18. Carrier density independent scattering rate in SrTiO3-based electron liquids.

    Science.gov (United States)

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack Y; Marshall, Patrick B; Kajdos, Adam P; Balents, Leon; Stemmer, Susanne

    2016-02-10

    We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with T(n) (T is the temperature and n ≤ 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (EF). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory.

  19. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  20. Nonlinear transport in semiconducting polymers at high carrier densities.

    Science.gov (United States)

    Yuen, Jonathan D; Menon, Reghu; Coates, Nelson E; Namdas, Ebinazar B; Cho, Shinuk; Hannahs, Scott T; Moses, Daniel; Heeger, Alan J

    2009-07-01

    Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning with mobilities around 10(-4) cm(2) V(-1) s(-1) to a recent report of 1 cm(2) V(-1) s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional 'metal'.

  1. Influence of carrier density on the electronic cooling channels of bilayer graphene

    Science.gov (United States)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  2. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.

    2012-03-08

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  3. Enhanced carrier density in Nb-doped SrTiO3 thermoelectrics

    KAUST Repository

    Ozdogan, K.; Upadhyay Kahaly, M.; Sarath Kumar, S. R.; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2012-01-01

    We study epitaxial SrTiO3 interfaced with Nb-doped SrTi1-x Nb x O3 (x = 0, 0.125, 0.25, 0.375, and 0.5) by full-potential density functional theory. From the electronic band structures obtained by our ab-initio calculations we determine the dependence of the induced metallicity on the Nb concentration. We obtain a monotonous increase of the carrier density with the Nb concentration. The results are confirmed by experiments for SrTi0.88Nb0.12O3 and SrTi0.8Nb0.2O3, demonstrating the predictive power and limitations of our theoretical approach. We also show that the Seebeck coefficient decreases monotonously with increasing temperature.

  4. and density-dependent quark mass model

    Indian Academy of Sciences (India)

    Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].

  5. Density dependence of the nuclear energy-density functional

    Science.gov (United States)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  6. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, R.; Juška, G.

    2005-07-01

    Time-dependent mobility and recombination in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)- C61 (PCBM) is studied simultaneously using the photoinduced charge carrier extraction by linearly increasing voltage technique. The charge carriers are photogenerated by a strongly absorbed, 3 ns laser flash, and extracted by the application of a reverse bias voltage pulse after an adjustable delay time (tdel) . It is found that the mobility of the extracted charge carriers decreases with increasing delay time, especially shortly after photoexcitation. The time-dependent mobility μ(t) is attributed to the energy relaxation of the charge carriers towards the tail states of the density of states distribution. A model based on a dispersive bimolecular recombination is formulated, which properly describes the concentration decay of the extracted charge carriers at all measured temperatures and concentrations. The calculated bimolecular recombination coefficient β(t) is also found to be time-dependent exhibiting a power law dependence as β(t)=β0t-(1-γ) with increasing slope (1-γ) with decreasing temperatures. The temperature dependence study reveals that both the mobility and recombination of the photogenerated charge carriers are thermally activated processes with activation energy in the range of 0.1 eV. Finally, the direct comparison of μ(t) and β(t) shows that the recombination of the long-lived charge carriers is controlled by diffusion.

  7. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  8. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2012-01-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young's modulus suggests that Li

  9. Density-dependent cladogenesis in birds.

    Directory of Open Access Journals (Sweden)

    Albert B Phillimore

    2008-03-01

    Full Text Available A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57% that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.

  10. Carrier density control of magnetism and Berry phases in doped EuTiO3

    Science.gov (United States)

    Ahadi, Kaveh; Gui, Zhigang; Porter, Zach; Lynn, Jeffrey W.; Xu, Zhijun; Wilson, Stephen D.; Janotti, Anderson; Stemmer, Susanne

    2018-05-01

    In materials with broken time-reversal symmetry, the Berry curvature acts as a reciprocal space magnetic field on the conduction electrons and is a significant contribution to the magnetotransport properties, including the intrinsic anomalous Hall effect. Here, we report neutron diffraction, transport, and magnetization measurements of thin films of doped EuTiO3, an itinerant magnetic material, as a function of carrier density and magnetic field. These films are itinerant antiferromagnets at all doping concentrations. At low carrier densities, the magnetoresistance indicates a metamagnetic transition, which is absent at high carrier densities (>6 × 1020 cm-3). Strikingly, the crossover coincides with a sign change in the spontaneous Hall effects, indicating a sign change in the Berry curvature. We discuss the results in the context of the band structure topology and its coupling to the magnetic texture.

  11. A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay

    International Nuclear Information System (INIS)

    Misra, A.K.; Mishra, S.N.; Pathak, A.L.; Srivastava, P.K.; Chandra, Peeyush

    2013-01-01

    In this paper, a non-linear delay mathematical model for the control of carrier-dependent infectious diseases through insecticides is proposed and analyzed. In the modeling process, it is assumed that disease spreads due to direct contact between susceptibles and infectives as well as through carriers (indirect contact). Further, it is assumed that insecticides are used to kill carriers and the rate of introduction of insecticides is proportional to the density of carriers with some time lag. The model analysis suggests that as delay in using insecticides exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. The direction, stability and period of the bifurcating periodic solutions arising through Hopf-bifurcation are also analyzed using normal form concept and center manifold theory. Numerical simulation is carried out to confirm the obtained analytical results

  12. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  13. Nuclear spectroscopy with density dependent effective interactions

    International Nuclear Information System (INIS)

    Krewald, S.

    1976-07-01

    The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de

  14. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  15. Wildlife disease elimination and density dependence

    KAUST Repository

    Potapov, A.

    2012-05-16

    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.

  16. Residual carrier density in GaSb grown on Si substrates

    International Nuclear Information System (INIS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Gozu, Shin-ichiro; Ueta, Akio; Ohtani, Naoki

    2006-01-01

    The relationships between the densities of residual carriers and those of dislocation in GaSb films grown on Si substrates were investigated. Dislocation density was evaluated by cross-sectional transmission electron microscopy (TEM). The TEM images indicated that the dislocation density after a 5-μm-thick GaSb film was grown was below 1 x 10 8 /cm 2 although the density near the interface between the Si substrate and the GaSb film was about 3 x 10 9 /cm 2 . Forming a dislocation loop by growing a thick GaSb layer may decrease the dislocation density. The density and mobility of the residual carrier were investigated by Hall measurement using the van der Pauw method. The residual carriers in GaSb grown on Si substrates were holes, and their densities decreased significantly from 4.2 x 10 18 to 1.4 x 10 17 /cm 3 as GaSb thickness was increased from 500 to 5500 nm

  17. Superconductivity in transparent zinc-doped In2O3 films having low carrier density

    Directory of Open Access Journals (Sweden)

    Kazumasa Makise, Nobuhito Kokubo, Satoshi Takada, Takashi Yamaguti, Syunsuke Ogura, Kazumasa Yamada, Bunjyu Shinozaki, Koki Yano, Kazuyoshi Inoue and Hiroaki Nakamura

    2008-01-01

    Full Text Available Thin polycrystalline zinc-doped indium oxide (In2O3–ZnO films were prepared by post-annealing amorphous films with various weight concentrations x of ZnO in the range 0≤x ≤0.06. We have studied the dependences of the resistivity ρ and Hall coefficient on temperature T and magnetic field H in the range 0.5≤T ≤300 K, H≤6 Tfor 350 nm films annealed in air. Films with 0≤x≤0.03 show the superconducting resistive transition. The transition temperature Tc is below 3.3 K and the carrier density n is about 1025–1026 m−3. The annealed In2O3–ZnO films were examined by transmission electron microscopy and x-ray diffraction analysis revealing that the crystallinity of the films depends on the annealing time. We studied the upper critical magnetic field Hc2 (T for the film with x = 0.01. From the slope of dHc2 /dT, we obtain the coherence length ξ (0 ≈ 10 nm at T = 0 K and a coefficient of electronic heat capacity that is small compared with those of other oxide materials.

  18. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  19. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  20. Controlling the Carrier Density of SrTiO3-Based Heterostructures with Annealing

    DEFF Research Database (Denmark)

    Christensen, Dennis Valbjørn; von Soosten, Merlin; Trier, Felix

    2017-01-01

    The conducting interface between the insulating oxides LaAlO3 (LAO) and SrTiO3 (STO) displays numerous physical phenomena that can be tuned by varying the carrier density, which is generally achieved by electrostatic gating or adjustment of growth parameters. Here, it is reported how annealing...... in oxygen at low temperatures (T

  1. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2008-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site

  2. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    NARCIS (Netherlands)

    Yimer, Y.Y.; Bobbert, P.A.; Coehoorn, R.

    2009-01-01

    We investigate charge transport in disordered organic host–guest systems with a bimodal Gaussian density of states. The energy difference between the peaks of the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice we

  3. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NARCIS (Netherlands)

    Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-01-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons

  4. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  5. Kinetic energy dependence of carrier diffusion in a GaAs epilayer studied by wavelength selective PL imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Providence High School, Charlotte, NC 28270 (United States); Su, L.Q.; Kon, J. [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Gfroerer, T. [Davidson College, Davidson, NC 28035 (United States); Wanlass, M.W. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Zhang, Y., E-mail: yong.zhang@uncc.edu [University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2017-05-15

    Photoluminescence (PL) imaging has been shown to be an efficient technique for investigating carrier diffusion in semiconductors. In the past, the measurement was typically carried out by measuring at one wavelength (e.g., at the band gap) or simply the whole emission band. At room temperature in a semiconductor like GaAs, the band-to-band PL emission may occur in a spectral range over 200 meV, vastly exceeding the average thermal energy of about 26 meV. To investigate the potential dependence of the carrier diffusion on the carrier kinetic energy, we performed wavelength selective PL imaging on a GaAs double hetero-structure in a spectral range from about 70 meV above to 50 meV below the bandgap, extracting the carrier diffusion lengths at different PL wavelengths by fitting the imaging data to a theoretical model. The results clearly show that the locally generated carriers of different kinetic energies mostly diffuse together, maintaining the same thermal distribution throughout the diffusion process. Potential effects related to carrier density, self-absorption, lateral wave-guiding, and local heating are also discussed.

  6. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  7. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  8. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    Science.gov (United States)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  9. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  10. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  11. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  12. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  13. Density-dependent growth in invasive Lionfish (Pterois volitans).

    Science.gov (United States)

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  14. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  15. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried

  16. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  17. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  18. Prevalence and strength of density-dependent tree recruitment

    Science.gov (United States)

    Kai Zhu; Christopher W. Woodall; Joao V.D. Monteiro; James S. Clark

    2015-01-01

    Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most...

  19. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  20. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  1. Tuning of Human Modulation Filters Is Carrier-Frequency Dependent

    Science.gov (United States)

    Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David

    2013-01-01

    Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759

  2. Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors

    International Nuclear Information System (INIS)

    Krauss, Michael

    2010-01-01

    This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot

  3. Diverse carrier mobility of monolayer BNCx: A combined density functional theory and Boltzmann transport theory study.

    Science.gov (United States)

    Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng

    2017-09-19

    BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.

  4. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  5. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  6. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10 18 cm -3 . Beyond this defect level, a sublinear relation is found i.e., not

  7. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  8. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong; Adinolfi, Valerio; Comin, Riccardo; Yuan, Mingjian; Alarousu, Erkki; Buin, Andrei K.; Chen, Yin; Hoogland, Sjoerd H.; Rothenberger, Alexander; Katsiev, Khabiboulakh; Losovyj, Yaroslav B.; Zhang, Xin; Dowben, Peter A.; Mohammed, Omar F.; Sargent, E. H.; Bakr, Osman

    2015-01-01

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  9. Probing exotic phases of interacting two-dimensional carriers using one-dimensional density modulation

    Science.gov (United States)

    Mueed, M. A.

    In this Thesis, we present low-temperature magnetotransport studies of two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a one-dimensional, periodic density modulation. The modulation is achieved through the piezo-electric effect in GaAs as we fabricate a periodic, strain-inducing superlattice on the sample surface. Under varying perpendicular magnetic field, whenever the carriers' cyclotron orbit becomes commensurate with the modulation period, the magnetoresistance exhibits a minimum value. The resulting oscillations, known as the commensurability oscillations, directly measure the carriers' Fermi wave vector. Imposing a density modulation thus allows us to study the Fermi contour properties of 2D electrons and holes near zero field, and composite fermions (CFs) near the half filling of the lowest Landau level, i.e., filling factor nu=1/2. The application of a parallel magnetic field (B||) also features extensively in the Thesis. First, we use commensurability oscillations to capture the B||-induced deformation and the eventual splitting of the Fermi contour of 2D electrons. We also deduce the scattering time anisotropy of hole-flux CFs whose Fermi contour is rendered anisotropic by B||. Moreover, we study the anisotropic (warped) Fermi contour of 2D holes and hole-flux CFs in wide quantum well samples at B||=0. The results provide evidence that CFs inherit Fermi contour properties from their zero-field counterparts. We further investigate the fate of CFs near the bilayer quantum Hall states at nu=1 and 1/2 induced by a large B||. We observe that the commensurability features of CFs near nu=1 are consistent with half the total carrier density, implying that CFs prefer to stay in separate layers and show a two-component behavior. In contrast, close to nu=1/2, CFs appear single-layer-like (single-component) as their commensurability features correspond to the total density. This finding sheds light on the different

  10. Sphingosine 1-Phosphate (S1P) Carrier-dependent Regulation of Endothelial Barrier

    Science.gov (United States)

    Wilkerson, Brent A.; Grass, G. Daniel; Wing, Shane B.; Argraves, W. Scott; Argraves, Kelley M.

    2012-01-01

    Sphingosine 1-phosphate (S1P) is a blood-borne lysosphingolipid that acts to promote endothelial cell (EC) barrier function. In plasma, S1P is associated with both high density lipoproteins (HDL) and albumin, but it is not known whether the carriers impart different effects on S1P signaling. Here we establish that HDL-S1P sustains EC barrier longer than albumin-S1P. We showed that the sustained barrier effects of HDL-S1P are dependent on signaling by the S1P receptor, S1P1, and involve persistent activation of Akt and endothelial NOS (eNOS), as well as activity of the downstream NO target, soluble guanylate cyclase (sGC). Total S1P1 protein levels were found to be higher in response to HDL-S1P treatment as compared with albumin-S1P, and this effect was not associated with increased S1P1 mRNA or dependent on de novo protein synthesis. Several pieces of evidence indicate that long term EC barrier enhancement activity of HDL-S1P is due to specific effects on S1P1 trafficking. First, the rate of S1P1 degradation, which is proteasome-mediated, was slower in HDL-S1P-treated cells as compared with cells treated with albumin-S1P. Second, the long term barrier-promoting effects of HDL-S1P were abrogated by treatment with the recycling blocker, monensin. Finally, cell surface levels of S1P1 and levels of S1P1 in caveolin-enriched microdomains were higher after treatment with HDL-S1P as compared with albumin-S1P. Together, the findings reveal S1P carrier-specific effects on S1P1 and point to HDL as the physiological mediator of sustained S1P1-PI3K-Akt-eNOS-sGC-dependent EC barrier function. PMID:23135269

  11. Density dependence of reactor performance with thermal confinement scalings

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1992-03-01

    Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research

  12. Density and mobility effects of the majority carriers in organic semiconductors under light excitation

    Energy Technology Data Exchange (ETDEWEB)

    Vagenas, N.; Giannopoulou, A.; Kounavis, P., E-mail: pkounavis@upatras.gr [Department of Electrical and Computer Engineering, University of Patras, 26504 Patra (Greece)

    2015-01-21

    This study demonstrates that the effect of light excitation on the density and the mobility of the majority carriers can be explored in organic semiconductors by modulated photocurrent spectroscopy. The spectra of phase and amplitude of the modulated photocurrent of pentacene films indicate a significant increase in the density of the photogenerated mobile holes (majority carriers). This increase is accompanied by a comparatively much smaller increase of the steady state photocurrent response which can be reconciled with a decrease in the mobility (μ) of holes. The decrease of μ is supported from an unusual increase of the Y/μ ratio of the out-of-phase modulated photocurrent (Y) signal to the mobility under light excitation. It is proposed that the mobile holes, which are generated from the dissociation of the light-created excitons more likely near the pentacene-substrate interface by electron trapping, populate grain boundaries charging them and producing a downward band bending. As a result, potential energy barriers are build up which limit the transport of holes interacting through trapping-detrapping with deep partially occupied traps in the charged grain boundaries. On the other hand, the transport of holes interacting through trapping-detrapping with empty traps is found unaffected.

  13. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics

    Science.gov (United States)

    Brown, J. S.; Shaheen, S. E.

    2018-04-01

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  14. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    formers, we study the variation of relaxation dynamics with density, rather than temperature, as a control ... stronger behaviour, the use of scaled variables involving temperature and ... of the temperature dependence of B as written defines.

  15. Density-dependent feedbacks can mask environmental drivers of populations

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter

    I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats, an...

  16. Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe

    Directory of Open Access Journals (Sweden)

    Mattia Sist

    2016-09-01

    Full Text Available SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2% and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM. The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials.

  17. Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird.

    Directory of Open Access Journals (Sweden)

    Jenny C Dunn

    Full Text Available Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats, high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity, nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.

  18. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  19. The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces

    International Nuclear Information System (INIS)

    McSweeney, W.; Lotty, O.; Glynn, C.; Geaney, H.; Holmes, J.D.; O’Dwyer, C.

    2014-01-01

    The Li + insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. A rate-dependent redox process influenced by the surface region electronic density, which influences the magnitude of cyclic voltammetry current is found at Si(100) surface regions during Li insertion and extraction. At p-type Si(100) surface regions, a thin, uniform film forms at lower currents, while also showing a consistently high (>70%) Coulombic efficiency for Li extraction. The p-type Si(100) surface region does not undergo crack formation after deintercalation and the amorphization was demonstrated using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity

  20. Founder takes all: density-dependent processes structure biodiversity.

    Science.gov (United States)

    Waters, Jonathan M; Fraser, Ceridwen I; Hewitt, Godfrey M

    2013-02-01

    Density-dependent processes play a key role in the spatial structuring of biodiversity. Specifically, interrelated demographic processes, such as gene surfing, high-density blocking, and competitive exclusion, can generate striking geographic contrasts in the distributions of genes and species. Here, we propose that well-studied evolutionary and ecological biogeographic patterns of postglacial recolonization, progressive island colonization, microbial sectoring, and even the 'Out of Africa' pattern of human expansion, are fundamentally similar, underpinned by a 'founder takes all' density-dependent principle. Additionally, we hypothesize that older historic constraints of density-dependent processes are seen today in the dramatic biogeographic shifts that occur in response to human-mediated extinction events, whereby surviving lineages rapidly expand their ranges to replace extinct sister taxa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  2. The dependence of stellar properties on initial cloud density

    Science.gov (United States)

    Jones, Michael O.; Bate, Matthew R.

    2018-05-01

    We investigate the dependence of stellar properties on the initial mean density of the molecular cloud in which stellar clusters form using radiation hydrodynamical simulations that resolve the opacity limit for fragmentation. We have simulated the formation of three star clusters from the gravitational collapse of molecular clouds whose densities vary by a factor of a hundred. As with previous calculations including radiative feedback, we find that the dependence of the characteristic stellar mass, Mc, on the initial mean density of the cloud, ρ, is weaker than the dependence of the thermal Jeans mass. However, unlike previous calculations, which found no statistically significant variation in the median mass with density, we find a weak dependence approximately of the form Mc∝ρ-1/5. The distributions of properties of multiple systems do not vary significantly between the calculations. We compare our results to the result of observational surveys of star-forming regions, and suggest that the similarities between the properties of our lowest density calculation and the nearby Taurus-Auriga region indicate that the apparent excess of solar-type stars observed may be due to the region's low density.

  3. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  4. Characterization of temperature-dependent carrier transport in disordered indium-tin-oxide/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyfluorene/Ca/Al polymer structures

    International Nuclear Information System (INIS)

    Jiang, Joe-Air; Wang, Jen-Cheng; Fang, Chia-Hui; Wu, Ya-Fen; Teng, Jen-Wei; Chen, Yu-Ting; Fan, Ping-Lin; Nee, Tzer-En

    2011-01-01

    The temperature-dependent electrical characteristics of polyfluorene-based polymer structures over a temperature range from 200 to 300 K are systematically investigated in this study. Initially, using the definitions of the Berthelot-type model, it is found that the sample exhibits a higher Berthelot-type temperature T B with high driving voltage, indicating that carrier transport in a disordered system manifests Berthelot-type behaviors. The ideal current density-voltage curve for the polymer structures given the carrier transmit mechanism is further elucidated by taking into account the ohmic conduction, trap charge limited current, and Mott and Gurney model of space charge limited current. The proposed procedure is simple and can be used to characterize the material with reasonable accuracy. We also study the density of the traps H t , and the characteristic energy of the distribution E t to better understand the carrier-transport process in organic materials and structures.

  5. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  6. Computational complexity of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Whitfield, J D; Yung, M-H; Tempel, D G; Aspuru-Guzik, A; Boixo, S

    2014-01-01

    Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)

  7. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  8. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  10. Watching excitons move: the time-dependent transition density matrix

    Science.gov (United States)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  11. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  12. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  13. Cuticular antifungals in spiders: density- and condition dependence.

    Science.gov (United States)

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  14. Detection of density dependence requires density manipulations and calculation of lambda.

    Science.gov (United States)

    Fowler, N L; Overath, R Deborah; Pease, Craig M

    2006-03-01

    To investigate density-dependent population regulation in the perennial bunchgrass Bouteloua rigidiseta, we experimentally manipulated density by removing adults or adding seeds to replicate quadrats in a natural population for three annual intervals. We monitored the adjacent control quadrats for 14 annual intervals. We constructed a population projection matrix for each quadrat in each interval, calculated lambda, and did a life table response experiment (LTRE) analysis. We tested the effects of density upon lambda by comparing experimental and control quadrats, and by an analysis of the 15-year observational data set. As measured by effects on lambda and on N(t+1/Nt in the experimental treatments, negative density dependence was strong: the population was being effectively regulated. The relative contributions of different matrix elements to treatment effect on lambda differed among years and treatments; overall the pattern was one of small contributions by many different life cycle stages. In contrast, density dependence could not be detected using only the observational (control quadrats) data, even though this data set covered a much longer time span. Nor did experimental effects on separate matrix elements reach statistical significance. These results suggest that ecologists may fail to detect density dependence when it is present if they have only descriptive, not experimental, data, do not have data for the entire life cycle, or analyze life cycle components separately.

  15. Mapping Charge Carrier Density in Organic Thin-Film Transistors by Time-Resolved Photoluminescence Lifetime Studies

    DEFF Research Database (Denmark)

    Leißner, Till; Jensen, Per Baunegaard With; Liu, Yiming

    2017-01-01

    The device performance of organic transistors is strongly influenced by the charge carrier distribution. A range of factors effect this distribution, including injection barriers at the metal-semiconductor interface, the morphology of the organic film, and charge traps at the dielectric/organic...... interface or at grain boundaries. In our comprehensive experimental and analytical work we demonstrate a method to characterize the charge carrier density in organic thin-film transistors using time-resolved photoluminescence spectroscopy. We developed a numerical model that describes the electrical...... and optical responses consistently. We determined the densities of free and trapped holes at the interface between the organic layer and the SiO2 gate dielectric by comparison to electrical measurements. Furthermore by applying fluorescence lifetime imaging microscopy we determine the local charge carrier...

  16. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...

  18. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  19. Dependence of the carrier mobility and trapped charge limited conduction on silver nanoparticles embedment in doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2013-10-01

    The present article demonstrates an intensive study upon the temperature dependent current density (J)-voltage (V) characteristics of moderately doped polypyrrole nanostructure and its silver nanoparticles incorporated nanocomposites. Analysis of the measured J-V characteristics of different synthesized nano-structured samples within a wide temperature range revealed that the electrical conduction behavior followed a trapped charge-limited conduction and a transition of charge transport mechanism from deep exponential trap limited conduction to shallow traps limited conduction had been occurred due to the incorporation of silver nanoparticles within the polypyrrole matrix. A direct evaluation of carrier mobility as a function of electric field and temperature from the measured J-V characteristics illustrates that the incorporation of silver nanoparticles within the polypyrrole matrix enhances the carrier mobility at a large extent by reducing the concentration of traps within the polypyrrole matrix. The calculated mobility is consistent with the Poole-Frenkel form for the electrical field up to a certain temperature range. The nonlinear low temperature dependency of mobility of all the nanostructured samples was explained by Mott variable range hopping conduction mechanisms. Quantitative information regarding the charge transport parameters obtained from the above study would help to extend optimization strategies for the fabrication of new organic semiconducting nano-structured devices.

  20. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  1. Model dependence of isospin sensitive observables at high densities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-07

    Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.

  2. Angular momentum dependence of the nuclear level density parameter

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2010-01-01

    Dependence of nuclear level density parameter on the angular momentum and temperature is investigated in a theoretical framework using the statistical theory of hot rotating nuclei. The structural effects are incorporated by including shell correction, shape, and deformation. The nuclei around Z≅50 with an excitation energy range of 30 to 40 MeV are considered. The calculations are in good agreement with the experimentally deduced inverse level density parameter values especially for 109 In, 113 Sb, 122 Te, 123 I, and 127 Cs nuclei.

  3. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  4. Does density-dependent diversification mirror ecological competitive exclusion?

    Directory of Open Access Journals (Sweden)

    Melanie J Monroe

    Full Text Available Density-dependence is a term used in ecology to describe processes such as birth and death rates that are regulated by the number of individuals in a population. Evolutionary biologists have borrowed the term to describe decreasing rates of species accumulation, suggesting that speciation and extinction rates depend on the total number of species in a clade. If this analogy with ecological density-dependence holds, diversification of clades is restricted because species compete for limited resources. We hypothesize that such competition should not only affect numbers of species, but also prevent species from being phenotypically similar. Here, we present a method to detect whether competitive interactions between species have ordered phenotypic traits on a phylogeny, assuming that competition prevents related species from having identical trait values. We use the method to analyze clades of birds and mammals, with body size as the phenotypic trait. We find no sign that competition has prevented species from having the same body size. Thus, since body size is a key ecological trait and competition does not seem to be responsible for differences in body size between species, we conclude that the diversification slowdown that is prevalent in these clades is unlikely due to the ecological interference implied by the term density dependence.

  5. Modelling the effect of autotoxicity on density-dependent phytotoxicity.

    Science.gov (United States)

    Sinkkonen, A

    2007-01-21

    An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in

  6. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  7. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  8. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  9. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.

  10. Nuclear level density parameter 's dependence on angular momentum

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2009-01-01

    Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions

  11. Observation of diameter dependent carrier distribution in nanowire-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, A; Hantschel, T; Eyben, P; Verhulst, A S; Rooyackers, R; Vandooren, A; Mody, J; Nazir, A; Leonelli, D; Vandervorst, W, E-mail: Andreas.Schulze@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2011-05-06

    The successful implementation of nanowire (NW) based field-effect transistors (FET) critically depends on quantitative information about the carrier distribution inside such devices. Therefore, we have developed a method based on high-vacuum scanning spreading resistance microscopy (HV-SSRM) which allows two-dimensional (2D) quantitative carrier profiling of fully integrated silicon NW-based tunnel-FETs (TFETs) with 2 nm spatial resolution. The key elements of our characterization procedure are optimized NW cleaving and polishing steps, the use of in-house fabricated ultra-sharp diamond tips, measurements in high vacuum and a dedicated quantification procedure accounting for the Schottky-like tip-sample contact affected by surface states. In the case of the implanted TFET source regions we find a strong NW diameter dependence of conformality, junction abruptness and gate overlap, quantitatively in agreement with process simulations. In contrast, the arsenic doped drain regions reveal an unexpected NW diameter dependent dopant deactivation. The observed lower drain doping for smaller diameters is reflected in the device characteristics by lower TFET off-currents, as measured experimentally and confirmed by device simulations.

  12. Temperature dependence of carrier transfer and exciton localization in ZnO/MgZnO heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Dongxu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)]. E-mail: dxzhao2000@yahoo.com.cn; Li Binghui [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University, Changchun 130024 (China); Wu Chunxia [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Lu Youming [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Shen Dezhen [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Jiying [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Fan Xiwu [Key Laboratory of Excited State Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2006-07-15

    MgZnO/ZnO heterostructure was fabricated on sapphire substrate by plasma assistant molecular beam epitaxy. The micro-photoluminescence spectra of sample are reported, which shows that different emission peaks would appear when the laser beam focuses different deepness in the film. A carrier tunneling process from the MgZnO capping layer to ZnO layer was observed by the measured temperature dependence of photoluminescence spectra. This induces the emission intensity of the ZnO grew monotonically from 81 to 103 K.

  13. Density-dependence as a size-independent regulatory mechanism.

    Science.gov (United States)

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  14. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)

  15. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  16. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  17. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  18. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  19. Momentum and density dependence of the nuclear mean field

    International Nuclear Information System (INIS)

    Behera, B.; Routray, T.R.

    1999-01-01

    The purpose of this is to analyse the momentum, density and temperature dependence of the mean field in nuclear matter derived from finite range effective interactions and to examine the influence of the functional form of the interaction on the high momentum behaviour of the mean field. Emphasis will be given to use very simple parametrizations of the effective interaction with a minimum number of adjustable parameters and yet capable of giving a good description of the mean field in nuclear matter over a wide range of momentum, density and temperature. As an application of the calculated equation of state of nuclear matter, phase transitions to quark-gluon plasma is studied where the quark phase is described by a zeroth order bag model equation of state

  20. The time-dependent density matrix renormalisation group method

    Science.gov (United States)

    Ma, Haibo; Luo, Zhen; Yao, Yao

    2018-04-01

    Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.

  1. Nuclear ``pasta'' phase within density dependent hadronic models

    Science.gov (United States)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  2. Nuclear 'pasta' phase within density dependent hadronic models

    International Nuclear Information System (INIS)

    Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.

    2009-01-01

    In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations

  3. Perspective: Fundamental aspects of time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2016-06-14

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  4. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  5. Development and application of a density dependent matrix ...

    Science.gov (United States)

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using

  6. Electrical transport characteristics of Bi2Sr2CaCu2O8+δstacked junctions with control of the carrier density

    International Nuclear Information System (INIS)

    Inomata, Kunihiro; Kawae, Takeshi; Kim, Sang-Jae; Nakajima, Kensuke; Yamashita, Tsutomu; Sato, Shigeo; Nakajima, Koji; Hatano, Takeshi

    2003-01-01

    The control of the critical current density (J c ) and the junction resistance (R N ) along the c-axis of intrinsic Josephson junctions (IJJs) on a high-T c superconductor is very important for applying the IJJs to electronic devices. For controlling these junction parameters, we have clarified the relationship of J c , R N and the carrier density in Bi 2 Sr 2 CaCu 2 O 8+δ whiskers by changing the carrier density with an annealing process. We determined the electrical transport characteristics of the IJJs. As a result, the J c increased, and the R N decreased systematically when the carrier density increased. The values of J c and R N could be controlled by a change in the carrier density

  7. High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer

    Science.gov (United States)

    Ko, Tsung-Shine; Lin, Der-Yuh; Lin, Chia-Feng; Chang, Che-Wei; Zhang, Jin-Cheng; Tu, Shang-Ju

    2017-04-01

    In this paper, we experimentally studied the effect of AlN spacer layer on optical and electrical properties of AlGaN/GaN high electric mobility transistors (HEMTs) grown by metal organic chemical vapor deposition method. For AlGaN layer in HEMT structure, the Al composition of the sample was determined using x-ray diffraction and photoluminescence. Electrolyte electro-reflectance (EER) measurement not only confirmed the aluminum composition of AlGaN layer, but also determined the electric field strength on the AlGaN layer through the Franz-Keldysh oscillation phenomenon. This result indicated that the electric field on the AlGaN layer could be improved from 430 to 621 kV/cm when AlN spacer layer was inserted in HEMT structure, which increased the concentration of two dimensional electron gas (2DEG) and improve the mobility. The temperature dependent Hall results show that both the mobility and the carrier concentration of 2DEG would decrease abruptly causing HEMT loss of function due to phonon scattering and carrier thermal escape when temperature increases above a specific value. Meanwhile, our study also demonstrates using AlN spacer layer could be beneficial to allow the mobility and carrier density of 2DEG sustaining at high temperature region.

  8. Magnetotransport of the low-carrier density one-dimensional S = 1/2 ...

    Indian Academy of Sciences (India)

    mass of (0.275 ± 0.005)m0 and a charge-carrier mean-free path of 215 ˚A are ... ing into account an alternating Dzyaloshinskii–Moriya (DM) interaction [7]. .... B applied along the cubic 〈111〉 direction at T = 2 K, measured with a commercial.

  9. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  10. Fundamentals of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Marques, Miguel A.L.; Rubio, Angel

    2012-01-01

    There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. (orig.)

  11. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-01-01

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  12. Age-Dependent Cancer Risk Is not Different in between MSH2 and MLH1 Mutation Carriers

    International Nuclear Information System (INIS)

    Olschwang, S.; Olschwang, S.; Yu, K.

    2009-01-01

    Lynch syndrome is mostly characterized by early-onset colorectal and endometrial adenocarcinomas. Over 90% of the causal mutations occur in two mismatch repair genes, MSH2 and MLH1. The aim of this study was to evaluate the age-dependent cancer risk in MSH2 or MLH1 mutation carriers from data of DNA diagnostic laboratories. To avoid overestimation, evaluation was based on the age-dependent proportion of mutation carriers in asymptomatic first-degree relatives of identified mutation carriers. Data from 859 such eligible relatives were collected from 8 centers; 387 were found to have inherited the mutation from their relatives. Age-dependent risks were calculated either using a nonparametric approach for four discrete age groups or assuming a modified Weibull distribution for the dependence of risk on age. Cancer risk was estimated starting at 28 (25-32 0.68 confidence interval) and to reach near 0.70 at 70 years. The risks were very similar for MSH2 and MLH1 mutation carriers. Although not statistically significant, the risk in males appeared to precede that for females by ten years. This difference needs to be investigated on a larger dataset. If confirmed, this would indicate that the onset of the colonoscopic surveillance may be different in male and female mutation carriers.

  13. Intrinsic carrier concentrations in long wavelength HgCdTe based on the new, nonlinear temperature dependence of Eg(x,T)

    International Nuclear Information System (INIS)

    Seiler, D.G.; Lowney, J.R.; Littler, C.L.; Yoon, I.T.

    1991-01-01

    This paper reports on intrinsic carrier concentrations of narrow-gap Hg 1-x Cd x Te alloys (0.17 ≤ x ≤ 0.30) calculated as a function of temperature between 0 and 300 K by using the new nonlinear temperature dependence of the energy gap obtained previously by two-photon magneto-absorption measurements for samples with 0.24 ≤ x ≤ 0.26. We report here experimental values for E g (x,T) for samples with x = 0.20 and 0.23 obtained by one-photon magneto-absorption measurements. These data confirm the validity of the new E g (x,T) relationship for these x values. In this range of composition and temperature, the energy gap of mercury cadmium telluride is small, and very accurate values are needed for the gap to obtain reliable values of the intrinsic carrier density

  14. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  15. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane

    International Nuclear Information System (INIS)

    Bucuvalas, J.C.; Goodrich, A.L.; Suchy, F.J.

    1987-01-01

    Highly purified rat basolateral liver plasma membrane vesicles were used examine the mechanism and the driving forces for hepatic uptake of the β-amino acid, taurine. An inwardly directed 100 mM NaCl gradient stimulated the initial rate of taurine uptake and energized a transient twofold accumulation of taurine above equilibrium (overshoot). In contrast, uptake was slower and no overshoot was detected in the presence of a KCl gradient. A negative intravesicular electrical potential generated by the presence of permeant anions or an outwardly directed K + gradient with valinomycin increased Na + -stimulated taurine uptake. External Cl - stimulated Na + -dependent taurine uptake independent of effects on the transmembrane electrical potential difference. Na + -dependent taurine uptake showed a sigmoidal dependence on extravesicular Na + concentration, suggesting multiple Na + ions are involved in the translocation of each taurine molecule. Na + -dependent taurine uptake demonstrated Michaelis-Menten kinetics with a maximum velocity of 0.537 nmol x mg protein -1 x min -1 and an apparent K/sub m/ of 174 μM. [ 3 H]taurine uptake was inhibited by the presence of excess unlabeled taurine, β-alanine, or hypotaurine but not by L-glutamine or L-alanine. In summary, using basolateral liver plasma membrane vesicles, the authors have shown that hepatic uptake of taurine occurs by a carrier-mediated, secondary active transport process specific for β-amino acids. Uptake is electrogenic, stimulated by external Cl - , and requires multiple Na + ions for the translocation of each taurine molecule

  16. Diverse carrier mobility of monolayer BNC x : a combined density functional theory and Boltzmann transport theory study.

    Science.gov (United States)

    Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng

    2017-10-19

    BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x  =  1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC 2 -1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm 2 V -1 s -1 . For BNC 2 -1, the hole mobility and electron mobility along both x and y directions can reach 10 5 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC 4 , its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 10 6 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.

  17. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  18. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  19. Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine

    NARCIS (Netherlands)

    Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.

    Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is

  20. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Baljinder [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Department of Physics, Panjab University, Chandigarh 160014 (India); Singh, Janpreet; Kaur, Jagdish [Department of Physics, Panjab University, Chandigarh 160014 (India); Moudgil, R.K. [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  1. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  2. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  3. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  4. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    Science.gov (United States)

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  5. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Zhong, Xinxin; Zhao, Yi; Cao, Jianshu

    2014-01-01

    The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)

  6. Density-dependent growth and metamorphosis in the larval bronze ...

    Indian Academy of Sciences (India)

    Effects of density and kinship on growth and metamorphosis in tadpoles of Rana temporalis were studied in a 2 × 4 factorial experiment. Fifteen egg masses were collected from streams in the Western Ghat region of south India. The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz ...

  7. Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

    International Nuclear Information System (INIS)

    Yang Jing; Zhao De-Gang; Jiang De-Sheng; Liu Zong-Shun; Chen Ping; Li Liang; Wu Liang-Liang; Le Ling-Cong; Li Xiao-Jing; He Xiao-Guang; Yang Hui; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p—i—n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm 2 to 0.95 mA/cm 2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells. (interdisciplinary physics and related areas of science and technology)

  8. Carrier density modulation by structural distortions at modified LaAlO3/SrTiO3 interfaces

    International Nuclear Information System (INIS)

    Schoofs, Frank; Vickers, Mary E; Egilmez, Mehmet; Fix, Thomas; Kleibeuker, Josée E; MacManus-Driscoll, Judith L; Blamire, Mark G; Carpenter, Michael A

    2013-01-01

    In order to study the fundamental conduction mechanism of LaAlO 3 /SrTiO 3 (LAO/STO) interfaces, heterostructures were modified with a single unit cell interface layer of either an isovalent titanate ATiO 3 (A = Ca, Sr, Sn, Ba) or a rare earth modified Sr 0.5 RE 0.5 TiO 3 (RE = La, Nd, Sm, Dy) between the LAO and the STO. A strong coupling between the lattice strain induced in the LAO layer by the interfacial layers and the sheet carrier density in the STO substrate is observed. The observed crystal distortion of the LAO is large and it is suggested that it couples into the sub-surface STO, causing oxygen octahedral rotation and deformation. We propose that the ‘structural reconstruction’ which occurs in the STO surface as a result of the stress in the LAO is the enabling trigger for two-dimensional conduction at the LAO/STO interface by locally changing the band structure and releasing trapped carriers. (paper)

  9. Diameter dependent failure current density of gold nanowires

    International Nuclear Information System (INIS)

    Karim, S; Maaz, K; Ali, G; Ensinger, W

    2009-01-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  10. Quantum Drude friction for time-dependent density functional theory

    Science.gov (United States)

    Neuhauser, Daniel; Lopata, Kenneth

    2008-10-01

    way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.

  11. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  12. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  13. Density-dependent effects on physical condition and reproduction in North American elk: an experimental test.

    Science.gov (United States)

    Kelley M. Stewart; R. Terry Bowyer; Brian L. Dick; Bruce K. Johnson; John G. Kie

    2005-01-01

    Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density...

  14. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    Science.gov (United States)

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  15. Long-term persistence, density dependence and effects of climate change on rosyside dace (Cyprinidae)

    Science.gov (United States)

    Gary D. Grossman; Gary Sundin; Robert E. Ratajczak

    2016-01-01

    SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...

  16. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  17. Density dependent atomic motion in a liquid alkali metal

    International Nuclear Information System (INIS)

    Pilgrim, W.-C.; Hosokawa, S.; Morkel, C.

    2001-01-01

    Inelastic X-ray and neutron scattering results obtained from liquid sodium and rubidium are presented. They cover the entire liquid range between melting and liquid vapour critical point. At high densities the dynamics of the liquid metal is characterized by collective excitations. The corresponding dispersion relations indicate the existence of surprisingly stable next neighbouring shells leading to an increase of the propagation speed for the collective modes. Below 2ρ crit. the dynamics changes from collective to localized indicating the existence of molecular aggregates. This interpretation is in accord with a simple model where the properties of a Rb- and a Rb 2 - lattice are calculated using density functional theory. (orig.)

  18. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    Science.gov (United States)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  19. Density-dependent vulnerability of forest ecosystems to drought

    Science.gov (United States)

    Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann

    2017-01-01

    Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...

  20. Density dependence of the diffusion coefficient of alkali metals

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.; Njah, A.N.; Mathew, B.; Fabamise, O.A.T.

    2004-06-01

    The effect of density on transport coefficients of liquid Li, Na and K at high temperatures using the method of Molecular Dynamics simulation has been studied. Simulation of these liquid alkali metals were carried out with 800 particles in simulation boxes with periodic boundary conditions imposed. In order to test the reliability of the interatomic potential used in the calculations, experimental data on the structural properties were compared with calculated results. The calculations showed a linear relationship between the density and the diffusion coefficient in all the systems investigated except in lithium, where, due to the small size of the atom, standard molecular dynamics simulation method may not be appropriate for calculating the properties of interest. (author)

  1. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  2. Time-dependent density functional theory for multi-component systems

    International Nuclear Information System (INIS)

    Tiecheng Li; Peiqing Tong

    1985-10-01

    The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)

  3. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  4. Exponential integrators in time-dependent density-functional calculations

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  5. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  6. Species dependent studies of no-carrier-added 93mMo: A green method

    International Nuclear Information System (INIS)

    Mandal, Swadesh; Nayak, Dalia

    2010-01-01

    The present paper reports a combination of radioanalytical and green methodology for the ultra-trace scale speciation of molybdenum. The differential attitude of iron-doped calcium alginate (Fe-CA) and chitosan biopolymers towards no-carrier-added 93m Mo radionuclide was studied to develop environmentally sustainable speciation methodology in ultra-trace scale. The affinity of 93m Mo towards the Fe-CA beads is greater than that of chitosan. Species information was obtained by comparing the adsorption profile of 93m Mo on Fe-CA and chitosan biopolymer with the software code CHEAQS PRO program. From the experimental results it is concluded that no-carrier-added 93m Mo radionuclide form mononuclear species instead of polynuclear species in aqueous solution. Use of biodegradable, non-toxic biopolymer makes this method a step forward towards green chemistry.

  7. Similarity of dependences of thermal conductivity and density of uranium and tungsten hexafluorides on desublimation conditions

    International Nuclear Information System (INIS)

    Barkov, V.A.

    1989-01-01

    Consideration is given to results of investigations of the dependence of thermal conductivity and density of UF 6 and WF 6 desublimates on volume content of hexafluoride in initial gaseous mixture. Similarity of these dependences, as well as the dependences of thermal conductivity of desublimates on their density was revealed. Generalized expressions, relating thermal conductivity and density of desublimates among each ofter and with volume content of hexafluoride in gaseous mixture were derived. Possibility of applying the generalized relations for calculation of thermal conductivity and density of other compounds of MeF 6 type under prescribed desublimation conclitions is shown. 15 refs.; 6 figs

  8. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  9. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  11. Maitra-Burke example of initial-state dependence in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Holas, A.; Balawender, R.

    2002-01-01

    In a recent paper, Maitra and Burke [Phys. Rev. A 63, 042501 (2001); 64, 039901(E) (2001)] have given an interesting and instructive example that illustrates a specific feature of the time-dependent density-functional theory--the dependence of the reconstructed time-dependent potential not only on the electron density, but also on the initial state of the system. However, a concise form of its presentation by these authors is insufficient to reveal all its peculiarities. Our paper represents a very detailed study of this valuable example, intended to facilitate a better understanding and appreciation

  12. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Directory of Open Access Journals (Sweden)

    Elijah Reyes

    Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  13. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Science.gov (United States)

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  14. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  15. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  16. Carrier-envelope phase-dependent transmitted spectra in inversion-asymmetric media with permanent dipole moments

    International Nuclear Information System (INIS)

    Yang Weifeng; Song Xiaohong; Zhang Chaojin; Xu Zhizhan

    2009-01-01

    We investigate the transmitted spectra of a few-cycle ultrashort pulse in an inversion-asymmetric medium with a permanent dipole moment (PDM). Our results show that even-order harmonics can be generated in this medium. Moreover, the generated even-order harmonics depend strongly on the carrier-envelope phase (CEP) of initial incident few-cycle ultrashort pulses. Physical analysis of the re-emitted spectra of the medium reveals that the CEP-dependent spectral effect is originated from the inversion-asymmetric structure and the corresponding PDM effects: two-photon transition dominates in the nonlinear process and further induces the generations of the even-order harmonics. Furthermore, the orientation relation between the electric field peak of the pulse and the PDM results in even-order harmonic generations depending on the CEP.

  17. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1982-01-01

    The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT

  18. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  19. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    Science.gov (United States)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  20. On the role of minority carriers in the frequency dependence of organic magnetoresistance

    NARCIS (Netherlands)

    Janssen, Paul; Wagemans, W.; Verhoeven, Wouter; van der Heijden, E.H.M.; Kemerink, M.; Koopmans, B.

    2011-01-01

    In this work we investigate the frequency dependence of organic magnetoresistance (OMAR) both in small molecule-based (Alq3) and polymer (PPV derivative) materials, and investigate its thickness dependence. For all devices, we observed a strong decrease in magnetoconductance (MC) with increasing

  1. Investigation of carrier density and mobility in microcrystalline silicon alloys using Hall effect and thermopower measurements; Untersuchung der Ladungstraegerkonzentration und -beweglichkeit in mikrokristallinen Siliziumlegierungen mit Hall-Effekt und Thermokraft

    Energy Technology Data Exchange (ETDEWEB)

    Sellmer, Christian

    2012-08-31

    The electronic properties of amorphous and microcrystalline silicon layers in thin-film solar cells significantly affect the efficiency of solar cells. An important property of the individual layer is the electronic transport, which is described by the variables conductivity, photoconductivity, mobility, and carrier concentration. In the past, individual characterization methods were typically used to determine the electronic properties. Using the combination of Hall effect, conductivity, and thermoelectric power measurements additional variables can be derived, such as the effective density of states at the valence and conduction band edge, making a more detailed description of the material possible. To systematically study the electronic properties - in particular carrier mobility and carrier concentration - various series of silicon films are prepared for this work including microcrystalline silicon layers of different doping and crystallinity and a series of silicon films where the Fermi level is moved by irradiation with high energy electrons on one and the same sample. The results show that the transition from amorphous to microcrystalline transport is relatively abrupt. If the electron transport takes place in only amorphous regions, it is marked by the sign anomaly of the Hall effect. If a continuous crystalline path exists, the electronic properties are dominated by the crystalline volume fraction. The results of the measurements of silicon layers are compared with those of microcrystalline silicon carbide samples. Silicon carbide is especially interesting for future applications in thin-film solar cells due to high transparency and high conductivity. It is shown that the effective density of states at the valence and conduction band edge as a function of temperature in p- and n-type microcrystalline silicon and silicon carbide samples largely coincide with those of crystalline silicon or silicon carbide. A square root shaped profile of the density of

  2. Infrared spectroscopic studies on the cluster size dependence of charge carrier structure in nitrous oxide cluster anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias

    2016-01-01

    We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N 2 O) n O − (n = 1–12) and (N 2 O) n − (n = 7–15) in the region 800–1600 cm −1 . The charge carriers in these ions are NNO 2 − and O − for (N 2 O) n O − clusters with a solvation induced core ion switch, and N 2 O − for (N 2 O) n − clusters. The N–N and N–O stretching vibrations of N 2 O − (solvated by N 2 O) are reported for the first time, and they are found at (1595 ± 3) cm −1 and (894 ± 5) cm −1 , respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.

  3. Intraspecific density dependence and a guild of consumers coexisting on one resource.

    Science.gov (United States)

    McPeek, Mark A

    2012-12-01

    The importance of negative intraspecific density dependence to promoting species coexistence in a community is well accepted. However, such mechanisms are typically omitted from more explicit models of community dynamics. Here I analyze a variation of the Rosenzweig-MacArthur consumer-resource model that includes negative intraspecific density dependence for consumers to explore its effect on the coexistence of multiple consumers feeding on a single resource. This analysis demonstrates that a guild of multiple consumers can easily coexist on a single resource if each limits its own abundance to some degree, and stronger intraspecific density dependence permits a wider variety of consumers to coexist. The mechanism permitting multiple consumers to coexist works in a fashion similar to apparent competition or to each consumer having its own specialized predator. These results argue for a more explicit emphasis on how negative intraspecific density dependence is generated and how these mechanisms combine with species interactions to shape overall community structure.

  4. Time dependentdensity functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat; Aziz, Saadullah G.; Osman, Osman I.; Bredas, Jean-Luc

    2017-01-01

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD

  5. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting

  6. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  7. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  8. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Oh, Byung Su [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Display Company, Yongin (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin 446-712 (Korea, Republic of)

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  9. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  10. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    Science.gov (United States)

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  12. Density dependence, density independence, and recruitment in the American shad (Alosa sapidissima) population of the Connecticut River

    International Nuclear Information System (INIS)

    Leggett, W.C.

    1977-01-01

    The role of density-dependent and density-independent factors in the regulation of the stock-recruitment relationship of the American shad (Alosa sapidissima) population of the Connecticut River was investigated. Significant reductions in egg-to-adult survival and juvenile growth rates occurred in the Holyoke--Turners Falls region in response to increases in the intensity of spawning in this area. For the Connecticut River population as a whole, egg-to-adult survival was estimated to be 0.00056 percent at replacement levels, and 0.00083 percent at the point of maximum population growth. Density-independent factors result in significant annual deviations from recruitment levels predicted by the density-dependent model. Temperature and flow regimes during spawning and early larval development are involved, but they explain only a small portion (less than 16 percent) of the total variation. In spite of an extensive data base, the accuracy of predictions concerning the potential effects of additional mortality to pre-recruit stages is low. The implications of these findings for environmental impact assessment are discussed

  13. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field

    Science.gov (United States)

    Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon

    2016-10-01

    A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.

  14. Color-flavor locked strange quark matter in a mass density-dependent model

    International Nuclear Information System (INIS)

    Chen Yuede; Wen Xinjian

    2007-01-01

    Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)

  15. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    , but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...

  16. Excitation energy and angular momentum dependence of the nuclear level densities

    International Nuclear Information System (INIS)

    Razavi, R.; Kakavand, T.; Behkami, A. N.

    2007-01-01

    We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.

  17. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    Science.gov (United States)

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  18. Density dependence in a recovering osprey population: demographic and behavioural processes.

    Science.gov (United States)

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  19. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  20. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  1. Frequency and temperature dependent mobility of a charged carrier and randomly interrupted strand

    International Nuclear Information System (INIS)

    Kumar, N.; Jayannavar, A.M.

    1981-05-01

    Randomly interrupted strand model of a one-dimensional conductor is considered. Exact analytical expression is obtained for the temperature dependent as mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and tempeature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies). (author)

  2. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    Science.gov (United States)

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  3. Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests

    Science.gov (United States)

    Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall

    2016-01-01

    Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...

  4. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  5. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  6. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2.

    Science.gov (United States)

    Nie, Zhaogang; Long, Run; Sun, Linfeng; Huang, Chung-Che; Zhang, Jun; Xiong, Qihua; Hewak, Daniel W; Shen, Zexiang; Prezhdo, Oleg V; Loh, Zhi-Heng

    2014-10-28

    Femtosecond optical pump-probe spectroscopy with 10 fs visible pulses is employed to elucidate the ultrafast carrier dynamics of few-layer MoS2. A nonthermal carrier distribution is observed immediately following the photoexcitation of the A and B excitonic transitions by the ultrashort, broadband laser pulse. Carrier thermalization occurs within 20 fs and proceeds via both carrier-carrier and carrier-phonon scattering, as evidenced by the observed dependence of the thermalization time on the carrier density and the sample temperature. The n(-0.37 ± 0.03) scaling of the thermalization time with carrier density suggests that equilibration of the nonthermal carrier distribution occurs via non-Markovian quantum kinetics. Subsequent cooling of the hot Fermi-Dirac carrier distribution occurs on the ∼ 0.6 ps time scale via carrier-phonon scattering. Temperature- and fluence-dependence studies reveal the involvement of hot phonons in the carrier cooling process. Nonadiabatic ab initio molecular dynamics simulations, which predict carrier-carrier and carrier-phonon scattering time scales of 40 fs and 0.5 ps, respectively, lend support to the assignment of the observed carrier dynamics.

  7. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    Science.gov (United States)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  8. Density-dependent selection on mate search and evolution of Allee effects.

    Science.gov (United States)

    Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M

    2018-01-01

    Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness

  9. Decay of hollow states in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Wismarsche Str. 43-45, Universitaet Rostock, Rostock-18051 (Germany)

    2012-07-01

    Hollow or multiply excited states are inaccessible in time dependent density functional theory (TDDFT) using adiabatic Kohn-Sham potentials. We determine the exact Kohn Sham (KS) potential for doubly excited states in an exactly solvable model Helium atom. The exact single-particle density corresponds to the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose origin is traced back to phase of the exact KS orbital. The potential controls the barrier height and width in order for the density to tunnel out and decay with the same rate as the doubly excited state in the ab initio time-dependent Schroedinger calculation. Instead, adiabatic KS potentials only show direct photoionization but no autoionization. A frequency-dependent linear response kernel would be necessary in order to capture the decay of autoionizing states.

  10. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  11. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  12. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    Our approach represents a full solid-state calculation, allowing for polarization ef- fects while still capable of capturing inter-molecular dis...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S

  13. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  14. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  15. Enhanced sheet carrier densities in polarization controlled AlInN/AlN/GaN/InGaN field-effect transistor on Si (111

    Directory of Open Access Journals (Sweden)

    J. Hennig

    2015-07-01

    Full Text Available We report on GaN based field-effect transistor (FET structures exhibiting sheet carrier densities of n = 2.9 1013 cm−2 for high-power transistor applications. By grading the indium-content of InGaN layers grown prior to a conventional GaN/AlN/AlInN FET structure control of the channel width at the GaN/AlN interface is obtained. The composition of the InGaN layer was graded from nominally xIn = 30 % to pure GaN just below the AlN/AlInN interface. Simulations reveal the impact of the additional InGaN layer on the potential well width which controls the sheet carrier density within the channel region of the devices. Benchmarking the InxGa1−xN/GaN/AlN/Al0.87In0.13N based FETs against GaN/AlN/AlInN FET reference structures we found increased maximum current densities of ISD = 1300 mA/mm (560 mA/mm. In addition, the InGaN layer helps to achieve broader transconductance profiles as well as reduced leakage currents.

  16. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  17. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  18. Parental care masks a density-dependent shift from cooperation to competition among burying beetle larvae.

    Science.gov (United States)

    Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M

    2015-04-01

    Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. How can we model selectively neutral density dependence in evolutionary games.

    Science.gov (United States)

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  20. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  1. Natural excitation orbitals from linear response theories : Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory

    NARCIS (Netherlands)

    Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2017-01-01

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In

  2. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C.

    2000-01-01

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  3. Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate

    Directory of Open Access Journals (Sweden)

    Li Yingke

    2011-01-01

    Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.

  4. Tables of density dependent effective interactions between 122 and 800 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1996-01-01

    Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs

  5. Exponential Extinction of Nicholson's Blowflies System with Nonlinear Density-Dependent Mortality Terms

    Directory of Open Access Journals (Sweden)

    Wentao Wang

    2012-01-01

    Full Text Available This paper presents a new generalized Nicholson’s blowflies system with patch structure and nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some criteria to guarantee the exponential extinction of this system. Moreover, we give two examples and numerical simulations to demonstrate our main results.

  6. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  7. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  8. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based...

  9. Demonstrating the Temperature Dependence of Density via Construction of a Galilean Thermometer

    Science.gov (United States)

    Priest, Marie A.; Padgett, Lea W.; Padgett, Clifford W.

    2011-01-01

    A method for the construction of a Galilean thermometer out of common chemistry glassware is described. Students in a first-semester physical chemistry (thermodynamics) class can construct the Galilean thermometer as an investigation of the thermal expansivity of liquids and the temperature dependence of density. This is an excellent first…

  10. BONE-DENSITY IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS - THE ROTTERDAM STUDY

    NARCIS (Netherlands)

    VANDAELE, PLA; STOLK, RP; BURGER, H; ALGRA, D; GROBBEE, DE; HOFMAN, A; BIRKENHAGER, JC; POLS, HAP

    1995-01-01

    Objective: To investigate the relation between noninsulin-dependent diabetes mellitus and bone mineral density at the lumbar spine and hip. Design: Population-based study with a cross-sectional survey, Setting: A district of Rotterdam, the Netherlands. Participants: 5931 residents (2481 men, 3450

  11. Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model

    Science.gov (United States)

    James H. Roberds; James F. Selgrade

    2000-01-01

    A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...

  12. The ideal free distribution as an evolutionarily stable state in density-dependent population games

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2010-01-01

    Roč. 119, č. 8 (2010), s. 1231-1242 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : density-dependent population games Subject RIV: EH - Ecology, Behaviour Impact factor: 3.393, year: 2010

  13. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  14. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  15. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  16. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    Science.gov (United States)

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  17. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  18. Is contextual-potentiated eating dependent on caloric density of food?

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Aranda

    2009-01-01

    Full Text Available One experiment tested whether a specific context could elicit eating in rats as a result of Pavlovian conditioning and whether this effect depended on the caloric density of food. Thirty two deprived rats experienced two contexts. They had access to food in context A, but no food was available in context B. During conditioning, half of the animals received high density caloric food (HD groups whereas the other half, low density caloric food (LD groups. Then, half of the rats in each type of food group was tested in context A and the other half in context B. The results demonstrated an effect of context conditioning only in HD groups. These findings suggest the relevance of both contextual conditioning and caloric density of food in eating behaviour. Implications for the aetiology of binge eating will be discussed.

  19. Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices

    International Nuclear Information System (INIS)

    Yang Gui; Zhang Fengying; Li Yuanhong; Li Yuqi

    2012-01-01

    A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes. (semiconductor physics)

  20. Knock-on type exchange and the density dependence of an effective interaction

    International Nuclear Information System (INIS)

    Jeukenne, J.P.; Mahaux, C.

    1981-01-01

    We investigate the origin of the density-dependence of the strength of an effective interaction previously derived from a Brueckner-Hartree-Fock calculation of the optical-model potential in nuclear matter. From the analysis of a model based on the Hartree-Fock approximation and on a Yukawa interaction with a Majorana exchange component, we study to what extent this dependence derives from the momentum-dependence of the exchange contribution of the knock-on type. The model is also used to discuss zero-range pseudopotential methods for including this knock-on contribution. (orig.)

  1. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    Science.gov (United States)

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  2. Sensitivity and uncertainty analysis for functionals of the time-dependent nuclide density field

    International Nuclear Information System (INIS)

    Williams, M.L.; Weisbin, C.R.

    1978-04-01

    An approach to extend the present ORNL sensitivity program to include functionals of the time-dependent nuclide density field is developed. An adjoint equation for the nuclide field was derived previously by using generalized perturbation theory; the present derivation makes use of a variational principle and results in the same equation. The physical significance of this equation is discussed and compared to that of the time-dependent neutron adjoint equation. Computational requirements for determining sensitivity profiles and uncertainties for functionals of the time-dependent nuclide density vector are developed within the framework of the existing FORSS system; in this way the current capability is significantly extended. The development, testing, and use of an adjoint version of the ORIGEN isotope generation and depletion code are documented. Finally, a sample calculation is given which estimates the uncertainty in the plutonium inventory at shutdown of a PWR due to assumed uncertainties in uranium and plutonium cross sections. 8 figures, 4 tables

  3. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1986-10-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for a Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasmas and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  4. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1985-02-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for an Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasma and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  5. The impacts of marijuana dispensary density and neighborhood ecology on marijuana abuse and dependence

    Science.gov (United States)

    Mair, Christina; Freisthler, Bridget; Ponicki, William R.; Gaidus, Andrew

    2015-01-01

    Background As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001–2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. Methods We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. Results An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Conclusions Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. PMID:26154479

  6. Analytic 1D pn junction diode photocurrent solutions following ionizing radiation and including time-dependent changes in the carrier lifetime.

    Energy Technology Data Exchange (ETDEWEB)

    Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)

    2011-04-01

    Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.

  7. Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces

    DEFF Research Database (Denmark)

    Niu, Wei; Gan, Yulin; Christensen, Dennis Valbjørn

    2017-01-01

    The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning...... is found to be approximately 3×1013 cm-2, much lower than that of the unpatterned sample (~1015 cm-2). Remarkably, a high electron mobility of approximately 3,600 cm2V-1s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ~ 7×1012 cm-2, which exhibits clear Shubnikov-de Hass...... quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devic...

  8. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  9. Quorum sensing and density-dependent dispersal in an aquatic model system.

    Directory of Open Access Journals (Sweden)

    Simon Fellous

    Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.

  10. Detection of density-dependent effects on caribou numbers from a series of census data

    Directory of Open Access Journals (Sweden)

    Francois Messier

    1991-10-01

    Full Text Available The main objective of this paper is to review and discuss the applicability of statistical procedures for the detection of density dependence based on a series of annual or multi-annual censuses. Regression models for which the statistic value under the null hypothesis of density independence is set a priori (slope = 0 or 1, generate spurious indications of density dependence. These tests are inappropriate because low sample sizes, high variance, and sampling error consistently bias the slope when applied to a finite number of population estimates. Two distribution-free tests are reviewed for which the rejection region for the hypothesis of density independence is derived intrinsically from the data through a computer-assisted permutation process. The "randomization test" gives the best results as the presence of a pronounced trend in the sequence of population estimates does not affect test results. The other non-parametric test, the "permutation test", gives reliable results only if the population fluctuates around a long-term equilibrium density. Both procedures are applied to three sets of data (Pukaskwa herd, Avalon herd, and a hypothetical example that represent quite divergent population trajectories over time.

  11. Density dependence of SOL power width in ASDEX upgrade L-Mode

    Directory of Open Access Journals (Sweden)

    B. Sieglin

    2017-08-01

    A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport.

  12. A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-01-01

    Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.

  13. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  14. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  15. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-01-01

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7  cm/s at a low sheet charge density of 7.8 × 10 11  cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs

  16. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  17. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  18. Isotope effect with energy-dependent density of states and impurities

    International Nuclear Information System (INIS)

    Williams, P.J.; Carbotte, J.P.

    1992-01-01

    We have calculated the total isotope coefficient β in a model where there is energy-dependent structure in the electronic density of states. We model the structure with a simple Lorentzian. In our calculation, doping has the effect of shifting the Fermi level and broadening the structure in the density of states. We have treated the dopants both as normal and as magnetic impurities. The asymmetry observed in the experimental data is found in our results. However, the complete range of values observed is difficult to reproduce. We question also whether the shifts in Fermi level required in such models are reasonable

  19. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  20. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  1. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  2. Temperature- and density-dependent x-ray scattering in a low-Z plasma

    International Nuclear Information System (INIS)

    Brown, R.T.

    1976-06-01

    A computer program is described which calculates temperature- and density-dependent differential and total coherent and incoherent x-ray scattering cross sections for a low-Z scattering medium. Temperature and density are arbitrary within the limitations of the validity of local thermodynamic equilbrium, since ionic populations are calculated under this assumption. Scattering cross sections are calculated in the form factor approximation. The scattering medium may consist of any mixure of elements with Z less than or equal to 8, with this limitation imposed by the availability of atomic data

  3. Density dependence governs when population responses to multiple stressors are magnified or mitigated.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S

    2017-10-01

    Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.

  4. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  5. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Judit Vas

    Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  6. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus)

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e. distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g. resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation. PMID:26657240

  7. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  8. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  9. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  10. Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality. Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle, a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube. In this study, we investigated the bandstructure fluctuations caused by the nanotube strain, which depends on both the vacancy density and the tube chirality. These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  12. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    International Nuclear Information System (INIS)

    Cherednikov, Igor O.

    2017-01-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  13. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)

    2017-05-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  14. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    International Nuclear Information System (INIS)

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  15. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  16. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo

    2011-01-01

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions

  17. On the numerical simulation of population dynamics with density-dependent migrations and the Allee effects

    International Nuclear Information System (INIS)

    Sweilam, H N; Khader, M M; Al-Bar, F R

    2008-01-01

    In this paper, the variational iteration method (VIM) and the Adomian decomposition method (ADM) are presented for the numerical simulation of the population dynamics model with density-dependent migrations and the Allee effects. The convergence of ADM is proved for the model problem. The results obtained by these methods are compared to the exact solution. It is found that these methods are always converges to the right solutions with high accuracy. Furthermore, VIM needs relative less computational work than ADM

  18. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.

    OpenAIRE

    Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E

    1989-01-01

    Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...

  19. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper

    2014-01-01

    the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...

  20. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  1. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  2. An investigation on the bone density of patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Guo Yan; Huang Zhaomin; Meng Quanfei; Da Rengrong; Zhang Suidong; Weng Jianping

    1999-01-01

    Objective: To investigate the morbidity and pattern of osteoporosis in the patients with non-insulin-dependent diabetes mellitus (NIDDM). Methods: Bone density of lumbar vertebra, hip and whole body were measured in 48 patients with NIDDM and in 35 health people aged 30-35 years. All the patients were diagnosed by the standards introduced by the WHO committee in 1985. Outcome were measured by using t text, analysis of variance and coefficient of multiple correlation. Results: Bone density decreased in all the 48 patients with NIDDM, in which 25 (52.1%) patients were diagnosed as osteoporosis. In the patients with NIDDM and osteoporosis, there was a higher rate of the decrease of the bone density of hip (14.1% in male and 15.6% in female respectively) than that of lumbar vertebra. Conclusions: There is a higher morbidity of osteoporosis in the patients with NIDDM. The loss of the bone density might start at the hip. The bone mineral content of whole body lose markedly. And the longer the NIDDM and the menopause exist, the more obvious the decrease of the bone density is. The mechanism of the phenomena is considered as a result of not only the increased loss of calcium and absorption of the bone tissue induced by the secondary hyperparathyroidism, but also the decreased level of the serum insulin-like growth factor, which inhibits the bone formation

  3. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  4. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    D T Tyler Flockhart

    Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.

  5. Dependence of the critical current density on the history of magnetic field and temperature

    International Nuclear Information System (INIS)

    Kuepfer, H.

    1976-08-01

    The dependence of the volume pinning force on different paths taken to arrive at a state (H,T) is investigated. The local magnetic induction is measured by means of an ac technique on samples with different Hsub(c), kappa, pinning centres and densities. Line pinning and a distorted flux line lattice are properties of those samples which show the above mentioned history dependence. Using the model of E.J. Kramer it is deduced the reason of the history effect is the dependence of the shear modulus on the defect structure of the flux line lattice. The differences occur in the lower field region and are also observed in materials with kappa approximately = 40 and large volume pinning forces. (orig.) [de

  6. Stocking density affects the growth performance of broilers in a sex-dependent fashion.

    Science.gov (United States)

    Zuowei, S; Yan, L; Yuan, L; Jiao, H; Song, Z; Guo, Y; Lin, H

    2011-07-01

    The effects of stocking density, sex, and dietary ME concentration on live performance, footpad burns, and leg weakness of broilers were investigated. A total of 876 male and 1,020 female 1-d-old chicks were placed in 24 pens to simulate final stocking density treatments of 26 kg (LSD; 10 males or 12 females/m(2)) and 42 kg (HSD; 16 males or 18 females/m(2)) of BW/m(2) floor space. Two series of experimental diets with a 150 kcal/kg difference in ME concentration (2,800, 2,900, and 3,000 or 2,950, 3,050, and 3,150 kcal of ME/kg) were compared in a 3-phase feeding program. The HSD treatment significantly decreased BW gain and feed conversion ratio (FCR). The HSD chickens consumed less feed by 35 d of age; thereafter, the reverse was true. Male chickens had significantly higher feed intake (FI), BW gain, and FCR compared with females. A significant interaction was found of stocking density and age for FI, BW gain, and FCR. Compared with LSD treatment, HSD broilers had a higher FI and a lower FCR from 36 to 42 d of age. Stocking density, sex, and age had a significant interaction for BW gain and FCR. Female broilers had worse BW gain and FCR when stocked at high density from 36 to 42 d of age. Stocking density had no significant influence on breast, thigh, or abdominal fat yield. Female broilers had significantly higher breast yield and abdominal fat. Male broilers and HSD treatment had high footpad burn and gait scores. A low ME diet increased footpad burn score but had no effect on gait score. The result indicated that stocking density had a more severe effect on the growth of male broilers before 35 d of age. Female broilers need more space than males at similar BW per square meter near marketing age. The incidence and severity of leg weakness are associated with sex, diet, and stocking density. This result suggests that the deteriorated effect of high stocking density is sex and age dependent.

  7. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  8. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  9. Temperature Dependence on Density, Viscosity, and Electrical Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride

    Directory of Open Access Journals (Sweden)

    Fengguo Liu

    2018-03-01

    Full Text Available Ionic liquids are considered environmentally friendly media for various industrial applications. Basic data on physicochemical properties are significant for a new material, in terms of developing its potential applications. In this work, 1-ethyl-3-methylimidazolium fluoride ([EMIm]F ionic liquid was synthesized via an anion metathesis process. Physical properties including the density, viscosity, electrical conductivity, and thermal stability of the product were measured. The results show that the density of [EMIm]F decreases linearly with temperature increases, while dynamic viscosity decreases rapidly below 320 K and the temperature dependence of electrical conductivity is in accordance with the VFT (Vogel–Fulcher–Tammann equation. The temperature dependence of the density, conductivity, and viscosity of [EMIm]F can be expressed via the following equations: ρ = 1.516 − 1.22 × 10−3 T, σm = 4417.1exp[−953.17/(T − 166.65] and η = 2.07 × 10−7exp(−5.39 × 104/T, respectively. [EMIm]F exhibited no clear melting point. However, its glass transition point and decomposition temperature are −71.3 °C and 135 °C, respectively.

  10. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  11. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  12. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  13. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  14. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes

    DEFF Research Database (Denmark)

    Thorson, James T.; Rindorf, Anna; Gao, Jin

    2016-01-01

    among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species–region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea......The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...

  15. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  16. Bone mineral density in patients with noninsulin-dependent diabetes mellitus by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Kao, C.H.; Tsou, C.T.; Chen, C.C.; Wang, S.J.

    1993-01-01

    Bone mineral density (BMD) in 38 male patients with noninsulin-dependent diabetes mellitus (NIDDM) was measured by dual photon absorptiometry (DPA) using a M and SE Osteo Tech 300 scanner. The BMD of the second to fourth lumbar vertebrae was measured and the mean density was presented as g cm -2 . The patients were distinguished according to the following three criteria: (1) blood sugar control was good or poor; (2) the duration of diabetes was long or short; (3) renal function was evaluated by effective renal plasma flow (ERPF) as good or poor. The results showed about half the cases of NIDDM had lower BMD. The patients with poor blood sugar control, longer disease duration and poor renal function had lower BMD. However, the difference between any two groups distinguished by the three criteria is not significant. We think that the causes of osteoporosis in patients with NIDDM may not be explained by only a single factor. (author)

  17. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  18. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  19. Temperature dependent spin momentum densities in Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Ahuja, B L; Dashora, Alpa; Vadkhiya, L; Heda, N L; Priolkar, K R; Lobo, Nelson; Itou, M; Sakurai, Y; Chakrabarti, Aparna; Singh, Sanjay; Barman, S R

    2010-01-01

    The spin-dependent electron momentum densities in Ni 2 MnIn and Ni 2 Mn 1.4 In 0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.

  20. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  1. Size-dependent error of the density functional theory ionization potential in vacuum and solution.

    Science.gov (United States)

    Sosa Vazquez, Xochitl A; Isborn, Christine M

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  2. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    Science.gov (United States)

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent

  3. Critique of the foundations of time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Schirmer, J.; Dreuw, A.

    2007-01-01

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion

  4. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX{sub 3}, X=Br and I) perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heejae; Jung, Seok Il; Kim, Hyo Jin; Cha, Wonhee; Sim, Eunji; Kim, Dongho [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Koh, Weon-Kyu [Device Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Kim, Jiwon [School of Integrated Technology and Underwood International College, Yonsei University, Incheon (Korea, Republic of)

    2017-04-03

    Cesium-based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot-carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot-carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs-based perovskite (CsPbX{sub 3} with X=Br, I, or their mixtures) NCs on the hot-carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot-carrier relaxation dynamics with following order: CsPbBr{sub 3} (310 fs)>CsPbBr{sub 1.5}I{sub 1.5} (380 fs)>CsPbI{sub 3} NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI{sub 3} NC compared to CsPbBr{sub 3} NC. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells

    International Nuclear Information System (INIS)

    Quijada, M.; Borisov, A.G.; Muino, R.D.

    2008-01-01

    Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  7. Stopping of deuterium in warm dense deuterium from Ehrenfest time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, R.J.; Shulenburger, L.; Baczewski, A.D. [Sandia National Laboratories - Multi-scale Physics 1444 MS 1322, Albuquerque, NM (United States)

    2016-06-15

    In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Time-dependent density functional theory description of total photoabsorption cross sections

    Science.gov (United States)

    Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga

    2018-02-01

    The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.

  9. Time-dependent density functional theory for open quantum systems with unitary propagation.

    Science.gov (United States)

    Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán

    2010-01-29

    We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.

  10. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    Science.gov (United States)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  11. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  12. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  13. Hydrodynamic perspective on memory in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Thiele, M.; Kuemmel, S.

    2009-01-01

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  14. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    Science.gov (United States)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  15. Charge carrier transport in Cu(In,Ga)Se2 thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    International Nuclear Information System (INIS)

    Nichterwitz, Melanie

    2012-01-01

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se 2 (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe 2 absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p + layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p + layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface. The p + layer leads

  16. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  17. How important is self-consistency for the dDsC density dependent dispersion correction?

    Energy Technology Data Exchange (ETDEWEB)

    Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  18. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  19. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Science.gov (United States)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  20. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    International Nuclear Information System (INIS)

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-01-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP

  1. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  2. Colony Development and Density-Dependent Processes in Breeding Grey Herons

    Directory of Open Access Journals (Sweden)

    Takeshi Shirai

    2013-01-01

    Full Text Available The density-dependent processes that limit the colony size of colonially breeding birds such as herons and egrets remain unclear, because it is difficult to monitor colonies from the first year of their establishment, and the most previous studies have considered mixed-species colonies. In the present study, single-species colonies of the Grey Heron (Ardea cinerea were observed from the first year of their establishment for 16 years in suburban Tokyo. Colony size increased after establishment, illustrating a saturation curve. The breeding duration (days from nest building to fledging by a pair increased, but the number of fledglings per nest decreased, with colony size. The reproductive season in each year began earlier, and there was greater variation in the timing of individual breeding when the colony size was larger. The prolonged duration until nestling feeding by early breeders of the colony suggests that herons at the beginning of the new breeding season exist in an unsteady state with one another, likely owing to interactions with immigrant individuals. Such density-dependent interference may affect reproductive success and limit the colony size of Grey Herons.

  3. Relativistic time-dependent local-density approximation theory and applications to atomic physics

    International Nuclear Information System (INIS)

    Parpia, F.Z.

    1984-01-01

    A time-dependent linear-response theory appropriate to the relativistic local-density approximation (RLDA) to quantum electrodynamics (QED) is developed. The resulting theory, the relativistic time-dependent local-density approximation (RTDLDA) is specialized to the treatment of electric excitations in closed-shell atoms. This formalism is applied to the calculation of atomic photoionization parameters in the dipole approximation. The static-field limit of the RTDLDA is applied to the calculation of dipole polarizabilities. Extensive numerical calculations of the photoionization parameters for the rare gases neon, argon, krypton, and xenon, and for mercury from the RTDLDA are presented and compared in detail with the results of other theories, in particular the relativistic random-phase approximation (RRPA), and with experimental measurements. The predictions of the RTDLDA are comparable with the RRPA calculations made to date. This is remarkable in that the RTDLDA entails appreciably less computational effort. Finally, the dipole polarizabilities predicted by the static-field RTDLDA are compared with other determinations of these quantities. In view of its simplicity, the static-field RTDLDA demonstrates itself to be one of the most powerful theories available for the calculation of dipole polarizabilities

  4. Ecological change points: The strength of density dependence and the loss of history.

    Science.gov (United States)

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  6. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  7. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  8. The effects of density dependent resource limitation on size of wild reindeer.

    Science.gov (United States)

    Skogland, Terje

    1983-11-01

    A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body

  9. Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Toda, Kensuke; Oya, Yasuhisa; Okuno, Kenji

    2014-01-01

    Tritium migration behaviors in Li 2 TiO 3 with the increase of irradiation damage density were investigated by means of electron spin resonance and thermal desorption spectroscopy. The irradiation damages of F + -centers and O − -centers were formed by neutron irradiation, and their damage densities were increased with increasing neutron fluence. Tritium release temperature was clearly shifted toward higher temperature side with increasing neutron fluence, i.e. increasing damage density. The rate determining process for tritium release was also clearly changed depending on the damage density. Tritium release was mainly controlled by tritium diffusion process in crystalline grain of Li 2 TiO 3 at lower neutron fluence. The apparent tritium diffusivity was reduced as the damage density in Li 2 TiO 3 increased due to the introduction of tritium trapping/detrapping sites for diffusing tritium. Then, tritium trapping/detrapping processes began to control the overall tritium release with further damage introductions as the amount of tritium trapping sites increased enough to trap most of tritium in Li 2 TiO 3 . The effects of water vapor in purge gas on tritium release behaviors were also investigated. It was considered that hydrogen isotopes in purge gas would be dissociated and adsorbed on the surface of Li 2 TiO 3 . Then, hydrogen isotopes diffused inward Li 2 TiO 3 would occupy the tritium trapping sites before diffusing tritium reaches to these sites, promoting apparent tritium diffusion consequently. Kinetics analysis of tritium release for highly damaged Li 2 TiO 3 showed that the rate determining process of tritium release was the detrapping process of tritium formed as hydroxyl groups. The rate of tritium detrapping as hydroxyl groups was determined by the kinetic analysis, and was comparable to tritium release kinetics for Li 2 O, LiOH and Li 4 TiO 4 . The dangling oxygen atoms (O − -centers) formed by neutron irradiation would contribute strongly on the

  10. The dependence of the counting efficiency of Marinelli beakers for environmental samples on the density of the samples

    International Nuclear Information System (INIS)

    Alfassi, Z.B.; Lavi, N.

    2005-01-01

    The effect of the density of the radioactive material packed in a Marinelli beaker on the counting efficiency was studied. It was found that for all densities (0.4-1.7g/cm 3) studied the counting efficiency (ε) fits the linear log-log dependence on the photon energy (E) above 200keV, i.e. obeying the equation ε=αE β (α, β-parameters). It was found that for each photon energy the counting efficiency is linearly dependent on the density (ρ) of the matrix. ε=a-bρ (a, b-parameters). The parameters of the linear dependence are energy dependent (linear log-log dependence), leading to a final equation for the counting efficiency of Marinelli beaker involving both density of the matrix and the photon energy: ε=α 1 .E β 1 -α 2 E β 2 ρ

  11. Optical properties of body-centered tetragonal C4: Insights from many-body perturbation and time-dependent density functional theories

    Science.gov (United States)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2018-04-01

    We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.

  12. Time-dependent internal density functional theory formalism and Kohn-Sham scheme for self-bound systems

    International Nuclear Information System (INIS)

    Messud, Jeremie

    2009-01-01

    The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound system (such as an atomic nuclei or a helium droplet) are all defined by the internal one-body density and the initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the center-of-mass correlations in the functional.

  13. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    Science.gov (United States)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  14. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    Science.gov (United States)

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  15. Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    2005-01-01

    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method

  16. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism.

    Directory of Open Access Journals (Sweden)

    Derek W Cain

    Full Text Available Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of "emergency" granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis.

  17. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    Science.gov (United States)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  18. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  19. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  20. Auger heating of carriers in {GaAs}/{AlAs} heterostructures

    Science.gov (United States)

    Borri, P.; Ceccherini, S.; Gurioli, M.; Bogani, F.

    1997-07-01

    The photoluminescence of {GaAs}/{AlAs} multiple quantum wells structures under optical ps excitation is investigated for carrier densities in the range 10 18-4 × 10 19 cm -3 with frequency and time-resolved spectroscopic techniques. The measurements give a direct evidence of the occurrence in the sample of carrier heating. This energy up-conversion gives rise to photoluminescence from the states near the Fermi level whose intensity and time evolution depend on the carrier density in a strongly non-linear way. The observed behaviour can be explained introducing in the carrier dynamics an up-conversion mechanism due to Auger-like processes.

  1. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei

    2014-01-01

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T −γ ) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced

  2. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2014-12-07

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T{sup −γ}) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced.

  3. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  4. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  5. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  6. Plant diversity increases with the strength of negative density dependence at the global scale

    Science.gov (United States)

    LaManna, Joseph A.; Mangan, Scott A.; Alonso, Alfonso; Bourg, Norman; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B.; Clay, Keith; Condit, Richard; Cordell, Susan; Davies, Stuart J.; Furniss, Tucker J.; Giardina, Christian P.; Gunatilleke, I.A.U. Nimal; Gunatilleke, C.V. Savitri; He, Fangliang; Howe, Robert W.; Hubbell, Stephen P.; Hsieh, Chang-Fu; Inman-Narahari, Faith M.; Janik, David; Johnson, Daniel J.; Kenfack, David; Korte, Lisa; Kral, Kamil; Larson, Andrew J.; Lutz, James A.; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve R.; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S.; Orwig, David A.; Ostertag, Rebecca; Parker, Geoffrey G.; Phillips, Richard P.; Sack, Lawren; Sun, I-Fang; Tello, J. Sebastian; Thomas, Duncan W.; Turner, Benjamin L.; Vela Diaz, Dilys M.; Vrska, Tomas; Weiblen, George D.; Wolf, Amy; Yap, Sandra; Myers, Jonathan A.

    2017-01-01

    Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.

  7. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock

    International Nuclear Information System (INIS)

    Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J.

    2011-01-01

    We observe two-body loss of 3 P 0 87 Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 μK that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the 1 S 0 - 3 P 0 transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.

  8. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    Science.gov (United States)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  9. A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

    International Nuclear Information System (INIS)

    Liu Dan-Dan; Zhang Hong

    2011-01-01

    We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    International Nuclear Information System (INIS)

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-01-01

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars

  11. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  12. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  13. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  14. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    International Nuclear Information System (INIS)

    Appel, H.

    2007-05-01

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation

  15. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  16. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    Science.gov (United States)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  17. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  18. Thermodynamics of strange quark matter with the density-dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.

  19. Thermodynamics of strange quark matter with the density-dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao

    2009-01-01

    The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.

  20. Density-dependent microbial turnover improves soil carbon model predictions of long-term litter manipulations

    Science.gov (United States)

    Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret

    2017-04-01

    Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.

  1. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density

    Science.gov (United States)

    Guster, Bogdan; Canadell, Enric; Pruneda, Miguel; Ordejón, Pablo

    2018-04-01

    We present a density functional theory study of the electronic structure of single-layer TiSe2, and focus on the charge density wave (CDW) instability present on this 2D material. We explain the 2× 2 periodicity of the CDW from the phonon band structure of the undistorted crystal, which is unstable under one of the phonon modes at the M point. This can be understood in terms of a partial band gap opening at the Fermi level, which we describe on the basis of the symmetry of the involved crystal orbitals, leading to an energy gain upon the displacement of the atoms following the phonon mode in a 2  ×  1 structure. Furthermore, the combination of the corresponding phonons for the three inequivalent M points of the Brillouin zone leads to the 2  ×  2 distortion characteristic of the CDW state. This leads to a further opening of a full gap, which reduces the energy of the 2  ×  2 structure compared to the 2  ×  1 one of a single M point phonon, and makes the CDW structure the most stable one. We also analyze the effect of charge injection into the layer on the structural instability. We predict that the 2  ×  2 structure only survives for a certain range of doping levels, both for electrons and for holes, as doping reduces the energy gain due to the gap opening. We predict the transition from the commensurate 2  ×  2 distortion to an incommensurate one with increasing wavelength upon increasing the doping level, followed by the appearance of the undistorted 1  ×  1 structure for larger carrier concentrations.

  2. Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells

    KAUST Repository

    Melianas, Armantas

    2015-11-05

    In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.

  3. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.

  4. Coupled hydromechanical paleoclimate analyses of density-dependant groundwater flow in discretely fractured crystalline rock settings

    Science.gov (United States)

    Normani, S. D.; Sykes, J. F.; Jensen, M. R.

    2009-04-01

    A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In

  5. Excitonic effects in solids : time-dependent density functional theory versus the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de

  6. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L

    2012-06-13

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  7. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  8. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  9. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  10. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    International Nuclear Information System (INIS)

    Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L

    2012-01-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)

  11. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  12. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  13. Field dependence of the current density of superconductors at high temperatures

    International Nuclear Information System (INIS)

    Hiergeist, R.; Hergt, R.; Erb, A.; Kummeth, P.; Winzer, K.

    1993-01-01

    An essential drawback of the high-T c superconductors (HTS) with respect to technical applications at liquid nitrogen temperature is the large degradation of their pinning properties in magnetic fields. For the field dependence of the volume pinning force often a high field tail due to thermally activated flux flow is observed. An exponential decay of the irreversible magnetization with increasing field was reported in the case of sintered material (YBCO) for the intergranular part of the magnetization while a power law decay was found for the intragranular part. Song et al. observed an exponential field dependence of the critical current density for proton-irradiated material which before irradiation showed a power law decay. Gladun et al. found an exponential decay for BSCCO-2223 tapes. The high field behaviour of BSCCO was shown to be governed by thermally activated flux creep with a logarithmic pinning barrier, which may result in an exponential decrease of the current with the external magnetic field, as argued recently by Ries et al. We will show in the present paper that the different HTS substance classes (YBCO, BSCCO, TBCCO) behave qualitatively in a similar way. (orig.)

  14. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    International Nuclear Information System (INIS)

    Bordini, B; Alknes, P; Bottura, L; Rossi, L; Valentinis, D

    2013-01-01

    The critical current density of the Nb 3 Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb 3 Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature. (paper)

  15. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic.

    Science.gov (United States)

    Ross, Megan V; Alisauskas, Ray T; Douglas, David C; Kellett, Dana K

    2017-07-01

    A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading

  16. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic

    Science.gov (United States)

    Ross, Megan V.; Alisaukas, Ray T.; Douglas, David C.; Kellett, Dana K.

    2017-01-01

    A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992–2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May–30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment

  17. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  18. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    Science.gov (United States)

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  19. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  20. The Effects of Text Density Levels and the Cognitive Style of Field Dependence on Learning from a CBI Tutorial

    Science.gov (United States)

    Ipek, Ismail

    2011-01-01

    The purpose of this study was to investigate the effects of variations in text density levels and the cognitive style of field dependence on learning from a CBI tutorial, based on the dependent measures of achievement, reading comprehension, and reading rate, and of lesson completion time. Eighty college undergraduate students were randomly…

  1. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes.

    Science.gov (United States)

    Eikeset, Anne Maria; Dunlop, Erin S; Heino, Mikko; Storvik, Geir; Stenseth, Nils C; Dieckmann, Ulf

    2016-12-27

    The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.

  2. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  3. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  4. Extension of biomass estimates to pre-assessment periods using density dependent surplus production approach.

    Directory of Open Access Journals (Sweden)

    Jan Horbowy

    Full Text Available Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR, which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.

  5. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  6. Modes of competition: adding and removing brown trout in the wild to understand the mechanisms of density-dependence.

    Directory of Open Access Journals (Sweden)

    Rasmus Kaspersson

    Full Text Available While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta as a study species. We manipulated densities of large and small individuals, and observed effects on survival, migration, condition and individual growth rate in a target group of intermediate-sized individuals. The generality of the response was investigated by reducing population densities below and increasing above the natural levels (removing and adding large and small individuals. Reducing the density (relaxing the intensity of competition had no influence on the response variables, suggesting that stream productivity was not a limiting factor at natural population density. Addition of large individuals resulted in a negative density-dependent response, while no effect was detected when adding small individuals or when maintaining the natural population structure. We found that the density-dependent response was revealed as reduced growth rate rather than increased mortality and movement, an effect that may arise from exclusion to suboptimal habitats or increased stress levels among inferior individuals. Our findings confirm the notion of interference competition as the primary mode of competition in juvenile salmonids, and also show that the feedback-mechanisms of density-dependence are primarily acting when increasing densities above their natural levels.

  7. Simulating Excitons in MoS2 with Time-Dependent Density Functional Theory

    Science.gov (United States)

    Flamant, Cedric; Kolesov, Grigory; Kaxiras, Efthimios

    Monolayer molybdenum disulfide, owing to its graphene-like two-dimensional geometry whilst still having a finite bandgap, is a material of great interest in condensed matter physics and for potential application in electronic devices. In particular, MoS2 exhibits significant excitonic effects, a desirable quality for fundamental many-body research. Time-dependent density functional theory (TD-DFT) allows us to simulate dynamical effects as well as temperature-based effects in a natural way given the direct treatment of the time evolution of the system. We present a TD-DFT study of monolayer MoS2 exciton dynamics, examining various qualitative and quantitative predictions in pure samples and in the presence of defects. In particular, we generate an absorption spectrum through simulated pulse excitation for comparison to experiment and also analyze the response of the exciton in an external electric field.In this work we also discuss the electronic structure of the exciton in MoS2 with and without vacancies.

  8. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    Energy Technology Data Exchange (ETDEWEB)

    Franco de Carvalho, F. [Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Tavernelli, I. [IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon (Switzerland)

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.

  9. Time dependentdensity functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  10. Optical rotation calculated with time-dependent density functional theory: the OR45 benchmark.

    Science.gov (United States)

    Srebro, Monika; Govind, Niranjan; de Jong, Wibe A; Autschbach, Jochen

    2011-10-13

    Time-dependent density functional theory (TDDFT) computations are performed for 42 organic molecules and three transition metal complexes, with experimental molar optical rotations ranging from 2 to 2 × 10(4) deg cm(2) dmol(-1). The performances of the global hybrid functionals B3LYP, PBE0, and BHLYP, and of the range-separated functionals CAM-B3LYP and LC-PBE0 (the latter being fully long-range corrected), are investigated. The performance of different basis sets is studied. When compared to liquid-phase experimental data, the range-separated functionals do, on average, not perform better than B3LYP and PBE0. Median relative deviations between calculations and experiment range from 25 to 29%. A basis set recently proposed for optical rotation calculations (LPol-ds) on average does not give improved results compared to aug-cc-pVDZ in TDDFT calculations with B3LYP. Individual cases are discussed in some detail, among them norbornenone for which the LC-PBE0 functional produced an optical rotation that is close to available data from coupled-cluster calculations, but significantly smaller in magnitude than the liquid-phase experimental value. Range-separated functionals and BHLYP perform well for helicenes and helicene derivatives. Metal complexes pose a challenge to first-principles calculations of optical rotation.

  11. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Vecharynski, Eugene [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.

  12. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

    Science.gov (United States)

    Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-05-10

    Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    Science.gov (United States)

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-03

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.

  14. Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.

    Science.gov (United States)

    Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan

    2016-12-01

    Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Determining the functional form of density dependence: deductive approaches for consumer-resource systems having a single resource.

    Science.gov (United States)

    Abrams, Peter A

    2009-09-01

    Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.

  16. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  17. Density dependence of a positron annihilation and positronium formation in H2 gas at temperatures between 77 and 297 K

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)

  18. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    Science.gov (United States)

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  19. 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM)-doping density dependence of luminescence spectra and white emission in polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akinori; Hosokawa, Takeshi; Haishi, Motoki; Ohtani, Naoki [Department of Electronics, Doshisha University, Tatara-Miyakodani, Kyotanabe-shi, Kyoto (Japan)

    2009-01-15

    We fabricated white polymer light-emitting diodes (PLEDs), in which the active region is doped with a low-weight molecule. The host polymer material is Poly(9,9-didodecyl-fluorenyl-2,7-yleneethylnylene) (PFO), while the guest luminescent low-weight-molecule is 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). The photoluminescence (PL) and electroluminescence (EL) spectra strongly depend on DCM-doping-density. However, the most suitable DCM-doping-densities for white emissions in PL and EL are slightly different. This discrepancy is caused by the difference in excitation efficiencies. The photo-excitation system for PL measurement is better than the current injection for generating carriers efficiently. Thus, the realization of the white EL signal requires the larger DCM-doping-density than that of the white PL signal. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    Science.gov (United States)

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  2. Symmetry energy of the nucleus in the relativistic Thomas-Fermi approach with density-dependent parameters

    Science.gov (United States)

    Haddad, S.

    2017-11-01

    The symmetry energy of a nucleus is determined in a local density approximation and integrating over the entire density distribution of the nucleus, calculated utilizing the relativistic density-dependent Thomas-Fermi approach. The symmetry energy is found to decrease with increasing neutron excess in the nucleus. The isovector coupling channel reduces the symmetry energy, and this effect increases with increased neutron excess. The isovector coupling channel increases the symmetry energy integral in ^{40}Ca and reduces it in ^{48}Ca, and the interplay between the isovector and the isoscalar channels of the nuclear force explains this isotope effect.

  3. THE TURBULENCE SPECTRUM OF MOLECULAR CLOUDS IN THE GALACTIC RING SURVEY: A DENSITY-DEPENDENT PRINCIPAL COMPONENT ANALYSIS CALIBRATION

    International Nuclear Information System (INIS)

    Roman-Duval, Julia; Jackson, James; Federrath, Christoph; Klessen, Ralf S.; Brunt, Christopher; Heyer, Mark

    2011-01-01

    Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA pseudo-structure function, α PCA , on intermittency, on the turbulence velocity (β v ) and density (β n ) spectral indexes, and on density dispersion. We find that PCA is insensitive to β n and to the log-density dispersion σ s , provided σ s ≤ 2. For σ s > 2, α PCA increases with σ s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBm structures with σ s ≤ 2 and apply it to 367 13 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, (α PCA ) = 0.62 ± 0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent of (β v ) = 2.06 ± 0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests β v ≅ 1.9, consistent with both Burgers and compressible intermittent turbulence.

  4. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    Science.gov (United States)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  5. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  6. Curvature Dependence of Interfacial Properties for Associating Lennard—Jones Fluids: A Density Functional Study

    International Nuclear Information System (INIS)

    Sun Zong-Li; Kang Yan-Shuang

    2011-01-01

    Classical density functional theory is used to study the associating Lennard—Jones fluids in contact with spherical hard wall of different curvature radii. The interfacial properties including contact density and fluid-solid interfacial tension are investigated. The influences of associating energy, curvature of hard wall and the bulk density of fluids on these properties are analyzed in detail. The results may provide helpful clues to understand the interfacial properties of other complex fluids. (condensed matter: structure, mechanical and thermal properties)

  7. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  8. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  9. Time-dependent density functional theory study of the luminescence properties of gold phosphine thiolate complexes.

    Science.gov (United States)

    Guidez, Emilie B; Aikens, Christine M

    2015-04-09

    The origin of the emission of the gold phosphine thiolate complex (TPA)AuSCH(CH3)2 (TPA = 1,3,5-triaza-7-phosphaadamantanetriylphosphine) is investigated using time-dependent density functional theory (TDDFT). This system absorbs light at 3.6 eV, which corresponds mostly to a ligand-to-metal transition with some interligand character. The P-Au-S angle decreases upon relaxation in the S1 and T1 states. Our calculations show that these two states are strongly spin-orbit coupled at the ground state geometry. Ligand effects on the optical properties of this complex are also discussed by looking at the simple AuP(CH3)3SCH3 complex. The excitation energies differ by several tenths of an electronvolt. Excited state optimizations show that the excited singlet and triplet of the (TPA)AuSCH(CH3)2 complex are bent. On the other hand, the Au-S bond breaks in the excited state for the simple complex, and TDDFT is no longer an adequate method. The excited state energy landscape of gold phosphine thiolate systems is very complex, with several state crossings. This study also shows that the formation of the [(TPA)AuSCH(CH3)2]2 dimer is favorable in the ground state. The inclusion of dispersion interactions in the calculations affects the optimized geometries of both ground and excited states. Upon excitation, the formation of a Au-Au bond occurs, which results in an increase in energy of the low energy excited states in comparison to the monomer. The experimentally observed emission of the (TPA)AuSCH(CH3)2 complex at 1.86 eV cannot be unambiguously assigned and may originate from several excited states.

  10. Density-dependent hydro-mechanical behaviour of a compacted expansive soil

    International Nuclear Information System (INIS)

    NOWAMOOZ, Hossein; MASROURI, Farimah

    2010-01-01

    Document available in extended abstract form only. Clayey soils are widely used in geotechnical engineering for dam cores, barriers in waste landfills and for engineered barriers in nuclear waste storage facilities. In the latter case, the used materials contain a large amount of smectite which is a highly swelling clay. On site, they can be submitted to complex suction/ stress/temperature variations that could change dramatically their hydro-mechanical behavior, meaning their saturated and unsaturated mechanical characteristics. To further our knowledge of the coupling between the hydraulic and mechanical behaviour of the swelling soils, this paper presents an experimental study on a swelling bentonite/silt mixture using osmotic odometers. A loading/unloading cycle was applied to samples with different initial dry densities (1.27, 1.48, and 1.55 Mg.m -3 ) at different constant suctions (0, 2, and 8 MPa). These experimental results provided a sufficient database to analytically model the mechanical behavior of the swelling soil and define three yielding surfaces: - the Suction Limit between Micro- and Macrostructure (s m/M ) and the Suction Limit between Nano- and Microstructure (s n/m ), which depend completely on the soil fabrics and the diameter separating the nano-, micro-, and macrostructure, - the Loading Collapse (LC) curve, representing the pre-consolidation stress variation as a function of suction, - the Saturation Curve (SC), representing the variation of the saturation stress (P sat ) as a function of suction. In general, we can state that the increase of compaction pressure unified the LC and SC surfaces and decreased the (s m/M ) value without modifying the (s n/m ) value. (authors)

  11. Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment

    Science.gov (United States)

    Lin, Yow-Jon; Hung, Cheng-Chun

    2018-02-01

    The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(-OH) x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene-SiO2 interaction, thus increasing the field-effect carrier mobility ( µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.

  12. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    Science.gov (United States)

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  13. Analysis of physical mechanisms underlying density-dependent transport in porous media

    NARCIS (Netherlands)

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste.

  14. Changes in density of aluminium, lead and zinc melts dependent on temperature

    International Nuclear Information System (INIS)

    Kazachkov, S.P.; Kochegura, N.M.; Markovskij, E.A.

    1979-01-01

    Density of aluminium, lead and zinc in various aggregate states has been studied in a wide temperature range. The density of the above metals was found to manifest temperature hysteresis after melting and cyclic change at the temperature of melting and crystallization. These phenomena are in agreement with the Stuart model of liquid state

  15. Tunable high-order-sideband generation and carrier-envelope-phase-dependent effects via microwave fields in hybrid electro-optomechanical systems

    Science.gov (United States)

    Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying

    2018-02-01

    We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.

  16. Chain length dependence of the critical density of organic homologous series

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Fredenslund, Aage; Tassios, Dimitrios P.

    1995-01-01

    Whether the critical density of organic compounds belonging to a certain homologous series increases or decreases with (increasing) molecular weight has been a challenging question over the years. Two sets of experimental data have recently appeared in the literature for the critical density of n......-alkanes: Steele's data (up to n-decane) suggest that critical density increases with carbon number and reaches a limiting value. On the other hand, the data of Teja et al., 1990 which cover a broader range of n-alkanes (up to n-octadecane), reveal a decreasing trend of the critical density after a maximum at n......-heptane. Teja et al. have also presented critical density measurements for 1-alkenes (up to 1-decene) and 1-alkanols (up to 1-undecanol). These data follow the same decreasing trend with the molecular weight as n-alkanes. This trend is not in agreement with the predictions of most group-contribution methods...

  17. Local environment and density-dependent feedbacks determine population growth in a forest herb

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter; Östergård, Hannah; Ehrlén, Johan

    2014-01-01

    Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult...... to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring...... shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots...

  18. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae

    Directory of Open Access Journals (Sweden)

    Flávia Freitas Coelho

    2005-09-01

    Full Text Available Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant’s vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one. Rev. Biol. Trop. 53(3-4: 369-376. Epub 2005 Oct 3.Pistias strariotes es una macrófita acuática que crece en charcas estacionales en el Pantanal sureño de Brasil. Se reproduce tanto sexual como asexualmente y se obsrva generalmente que forma densas parches sobre la superficie del agua, una condicion que favorecida por la reproduccion vegetativa de la

  19. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    Science.gov (United States)

    Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie

    2018-05-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.

  20. Seed yield and protein content in sunflower depending on stand density

    Directory of Open Access Journals (Sweden)

    Balalić Igor M.

    2016-01-01

    Full Text Available The aim of this research was to investigate the effect of stand density on seed yield and protein content in sunflower hybrids. The field experiment was carried out at Rimski Šančevi location. Six NS sunflower hybrids were examined. Five hybrids are confectionery (NS Goliat, NS Slatki, NS Gricko, Vranac and Cepko, and one is used for bird food (NS-H-6485. The trial was arranged as randomized complete block design (RCBD with four replications. Sowing was done with six different densities (from 20,000 to 70,000 plants per hectare, with an increment of 10,000 plants per hectare. Analysis of variance (ANOVA showed that the effect of hybrid, stand density and hybrid × stand density interation were highly significant for seed yield and protein content. The highest seed yield, on the basis of average for all densities, was found in NS-H-6485 (4.77 t ha-1 and in NS Gricko (4.43 t ha-1. Average seed yield of hybrids significantly increased up to 50,000 plants per ha-1, when it reached the value of 4.50 t ha-1, and then decreased. Significantly higher protein content, taking into account all stand densities, showed hybrid Cepko (16.94%. Protein content, above the overall average value, was achieved in hybrid Vranac (16.11%. The high­est protein content in the average for all six hybrids was at the lowest stand density (20,000 plants per ha-1, and then decreased up to higher densities. The results showed that stand density had significant effect on seed yield and protein content in sunflower hybrids. [Projekat Ministarstva nauke Republike Srbije, br. TR31025: The development of new cultivars and improving the technology of producing oil plant species for different purposes

  1. Density dependence in flower visitation rates of cockroach-pollinated Clusia blattophila on the Nouragues inselberg, French Guiana

    Czech Academy of Sciences Publication Activity Database

    Vlasáková, Blanka

    2015-01-01

    Roč. 31, Part 1 (2015), s. 95-98 ISSN 0266-4674 R&D Projects: GA ČR GPP505/12/P039 Institutional support: RVO:67985939 Keywords : Clusia * ockroach * density dependence Subject RIV: EF - Botanics Impact factor: 0.975, year: 2015

  2. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  3. Time-dependent occupation numbers in reduced-density-matrix-functional theory: Application to an interacting Landau-Zener model

    International Nuclear Information System (INIS)

    Requist, Ryan; Pankratov, Oleg

    2011-01-01

    We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.

  4. DEPENDENCE OF THE TURBULENT VELOCITY FIELD ON GAS DENSITY IN L1551

    International Nuclear Information System (INIS)

    Yoshida, Atsushi; Kitamura, Yoshimi; Shimajiri, Yoshito; Kawabe, Ryohei

    2010-01-01

    We have carried out mapping observations of the entire L1551 molecular cloud with about 2 pc x 2 pc size in the 12 CO(1-0) line with the Nobeyama 45 m radio telescope at the high effective resolution of 22'' (corresponding to 0.017 pc at the distance of 160 pc), and analyzed the 12 CO data together with the 13 CO(1-0) and C 18 O(1-0) data from the Nobeyama Radio Observatory database. We derived the new non-thermal line width-size relations, σ NT ∝ L γ , for the three molecular lines, corrected for the effect of optical depth and the line-of-sight integration. To investigate the characteristic of the intrinsic turbulence, the effects of the outflows were removed. The derived relations are (σ NT /km s -1 ) = (0.18 ± 0.010)(L/pc) 0.45±0.095 , (0.20 ± 0.020)(L/pc) 0.48±0.091 , and (0.22 ± 0.050) (L/pc) 0.54±0.21 for the 12 CO, 13 CO, and C 18 O lines, respectively, suggesting that the line width-size relation of the turbulence very weakly depends on our observed molecular lines, i.e., the relation does not change between the density ranges of 10 2 -10 3 and 10 3 -10 4 cm -3 . In addition, the relations indicate that incompressible turbulence is dominant at the scales smaller than 0.6 pc in L1551. The power spectrum indices converted from the relations, however, seem to be larger than that of the Kolmogorov spectrum for incompressible flow. The disagreement could be explained by the anisotropy in the turbulent velocity field in L1551, as expected in MHD turbulence. Actually, the autocorrelation functions of the centroid velocity fluctuations show larger correlation along the direction of the magnetic field measured for the whole Taurus cloud, which is consistent with the results of numerical simulations for incompressible MHD flow.

  5. Dependence of radar auroral scattering cross section on the ambient electron density and the destabilizing electric field

    International Nuclear Information System (INIS)

    Haldoupis, C.; Nielsen, E.; Schlegel, K.

    1990-01-01

    By using a data set that includes simultaneous STARE and EISCAT measurements made at a common magnetic flux tube E region in the ionosphere, we investigate the dependence of relative scattering cross section of 1-meter auroral irregularities on the destabilizing E x B electron drift, or alternatively the electric field, and the E region ambient electron density. The analysis showed that both, the E field and mean electron density are the decisive factors in determining the strength of radar auroral echoes at magnetic aspect angles near perpendicularity. We have found that at instability threshold, i.e., when the E field strength is in the 15 to 20 mV/m range, the backscatter power level is affected strongly by the mean electron density. Above threshold, the wave saturation amplitudes are determined mainly by the combined action of electron drift velocity magnitude, V d , and mean electron density, N e , in a way that the scattering cross section, or the electron density fluctuation level, increases with electric field magnitude but at a rate which is larger when the ambient electron density is lower. The analysis enabled us to infer an empirical functional relationship which is capable of predicting reasonably well the intensity of STARE echoes from EISCAT E field and electron density data. In this functional relationship, the received power at threshold depends on N e 2 whereas, from threshold to perhaps more than 50 mV/m, the power increases nonlinearly with drift velocity as V d n where the exponent n is approximately proportional to N e -1/2 . The results support the Farley-Bunemann instability as the primary instability mechanism, but the existing nonlinear treatment of the theory, which includes wave-induced cross field diffusion, cannot account for the observed role of electron density in the saturation of irregularity amplitudes

  6. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  7. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  8. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  9. Non-linear density-dependent effects of an intertidal ecosystem engineer.

    Science.gov (United States)

    Harley, Christopher D G; O'Riley, Jaclyn L

    2011-06-01

    Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate.

  10. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Urban, Alexander

    2012-01-01

    Electronic structure calculations based on Kohn-Sham density-functional theory (DFT) allow the accurate prediction of chemical bonding and materials properties. Due to the high computational demand DFT calculations are, however, restricted to structures containing at most several hundreds of atoms, i.e., to length scales of a few nanometers. Though, many processes of technological relevance, for example in the field of nanoelectronics, are governed by phenomena that occur on a slightly larger length scale of up to 100 nanometers, which corresponds to tens of thousands of atoms. The semiempirical Slater-Koster tight-binding (TB) method makes it feasible to calculate the electronic structure of such large systems. In contrast to first-principles-based DFT, which is universally applicable to almost all chemical species, the TB method is based on parametrized models that are usually specialized for a particular application or for one certain class of compounds. Usually the model parameters (Slater-Koster tables) are empirically adjusted to reproduce either experimental reference data (e.g., geometries, elastic constants) or data from first-principles methods such as DFT. The construction of a new TB model is therefore connected with a considerable effort that is often contrasted by a low transferability of the parametrization. In this thesis we develop a systematic methodology for the derivation of accurate and transferable TB models from DFT calculations. Our procedure exploits the formal relationship between the two methods, according to which the TB total energy can be understood as a direct approximation of the Kohn--Sham energy functional. The concept of our method is different to previous approaches such as the DFTB method, since it allows to extract TB parameters from converged DFT wave functions and Hamiltonians of arbitrary reference structures. In the following the different subjects of this thesis are briefly summarized. We introduce a new technique for the

  11. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  12. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  13. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    Science.gov (United States)

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Universal time dependence of nighttime F region densities at high latitudes

    International Nuclear Information System (INIS)

    Beaujardiere, O.D.L.; Wickwar, V.B.; Caudal, G.

    1985-01-01

    Coordinated EISCAT, Chatanika, and Millstone Hill incoherent scatter radar observations have revealed that in the auroral zone, the nighttime F region densities vary substantially with the longitude of the observing site: EISCAT's densities are the largest and Millstone Hill's are the lowest. The nighttime F region densities measured by the individual radars are not uniform: the regions where the densities are maximum are the so-called ''blobs'' or ''patches'' that have been reported previously. The observations are consistent with the hypothesis that the nighttime densities are produced in significant amounts not by particle precipitation, but by solar EUV radiation, and that they have been transported across the polar cap. The observed differences can be explained by the offset of the geographic and geomagnetic poles. A larger portion of the magnetospheric convection pattern is sunlit when EISCAT is in the midnight sector than when Chatanika is. In winter, when Millstone Hill is in the midnight sector, almost all the auroral oval is in darkness. This universal time effect, which was observed on all coordinated three-radar experiments (September 1981 to February 1982), is illustrated using two periods of coincident radar and satellite observations: November 18--19, and December 15--16, 1981. These two periods were selected because they corresponded to relatively steady conditions. Dynamics Explorer (DE) measurements are used to aid in interpreting the radar observations. De 1 auroral images show what portion of the oval was sunlit. DE 2 data are used to measure the ion drift across the polar cap. Because the altitude of the ionization peak was high, the decay time of the F region density was substantially longer than the transit time across the polar cap

  15. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  16. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  17. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  18. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    Science.gov (United States)

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  19. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the

  20. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for

  1. Composition dependence of density of states in a-Se100−xSnx thin ...

    Indian Academy of Sciences (India)

    genide glassy semiconductors [5–15] and the results have been interpreted in terms of space charge limited conduction or Poole–Frenkel conduction. One of the most direct methods for the determination of the density of the localised states g0 in the mobility gap involves the measurements of SCLC, which can be easily ...

  2. The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion

    Science.gov (United States)

    Rowland, David R.

    2011-01-01

    The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…

  3. Alternative male mating behaviour in the two-spotted spider mite: dependence on age and density

    NARCIS (Netherlands)

    Sato, Y.; Sabelis, M.W.; Egas, M.

    2014-01-01

    Highlights • We investigated alternative male mating behaviour in the two-spotted spider mite. • We found no differences between genetic lines of fighting and sneaking behaviour. • The proportion of sneaker males changed with male density and with male age. • In competition with old males, young

  4. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    Science.gov (United States)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  5. Age dependent mineral density in the bones of inhabitants of Karelia

    Directory of Open Access Journals (Sweden)

    I. G. Pashkova

    2013-01-01

    Full Text Available Analysis of the age changes of mineral density in the lumbar vertebrae was carried out in 929 people (740 women and 189 men at the age of 20 to 87 years, living in Karelia. Bone mineral density was evaluated by dual xray absorptiometry. In the women and in the men the spine bone mineralization peak was seen at the age of 22. The peak mineral density values were 5 % lower in the men and 1.6 % in the women in comparison with the data of the densitometer base. Considerable decrease of the bone mineral density in the vertebrae in the women began at the age of 41–45 years, and in the men – at the age of 51–55 years. Demineralization of the vertebrae in 75 year old women was 20 %, in the men it was 11.1 %, and in 81–87 year old women – 25.2 %.

  6. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    Science.gov (United States)

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  7. Yields of ZP sweet maize hybrids in dependence on sowing densities

    Directory of Open Access Journals (Sweden)

    Srdić Jelena

    2008-01-01

    Full Text Available Sweet maize differs from maize of standard grain quality by many important traits that affect the ear appearance, and especially by traits controlling taste. The ear appearance trait encompasses the kernel row number, configuration, row pattern (direction and arrangement, seed set, kernel width and depth, ear shape and size. The quality of immature kernels is controlled by genes by which sweet maize differs from common maize. In order to obtain high-ranking and high-quality yields, it is necessary to provide the most suitable cropping practices for sweet maize hybrids developed at the Maize Research Institute, Zemun Polje. The adequate sowing density is one of more important elements of correct cropping practices. The objective of the present study was to determine the effect of four sowing densities in four ZP sweet maize hybrids of different FAO maturity groups on ear qualitative traits and yields obtained on chernozem type of soil in Zemun Polje. The observed traits of sweet maize (ear length, kernel row number, number of kernels per row, yield and shelling percentage significantly varied over years. The higher sowing density was the higher yield of sweet maize was, hence the highest ear yield of 9.67 t ha-1 , on the average for all four hybrids, was recorded at the highest sowing density of 70,000 plants ha-1. The highest yield was detected in the hybrid ZP 424su. The highest shelling percentage (67.81% was found in the hybrid ZP 521su at the sowing density of 60,000 plants ha-1. Generally, it can be stated that sweet maize hybrids of a shorter growing season (FAO 400 could be cultivated up to 70,000 plants ha-1, while those of a longer growing season (FAO 500 could be grown up to 60,000 plants ha-1. In such a way, the most favorable parameters of yields and the highest yields can be obtained.

  8. Variation in foraging behavior and body mass in broods of Emperor Geese (Chen canagica): Evidence for interspecific density dependence

    Science.gov (United States)

    Schmutz, J.A.; Laing, K.K.

    2002-01-01

    Broods of geese spend time feeding according to availability and quality of food plants, subject to inherent foraging and digestive constraints. We studied behavioral patterns of broods of Emperor Geese (Chen canagica) on the Yukon–Kuskokwim Delta, Alaska, and examined how feeding and alert behavior varied in relation to habitat and goose density. During 1994–1996, time spent feeding by Emperor Goose goslings and adult females was positively related to multispecies goose densities near observation blinds, and not to just Emperor Goose density. Similarly, body mass of Emperor Goose goslings was more strongly related (negatively) to multispecies goose densities than intraspecific densities. A grazing experiment in 1995 indicated that most above ground primary production by Carex subspathacea, a preferred food plant, was consumed by grazing geese. Those results demonstrate that interspecific competition for food occurred, with greatest support for goslings whose behavioral repertoire is limited primarily to feeding, digesting, and resting. Although the more abundant Cackling Canada Geese (Branta canadensis minima) differed from Emperor Geese in their preferred use of habitats during brooding rearing (Schmutz 2001), the two species occurred in equal abundance in habitats preferred by Emperor Goose broods. Thus, Cackling Canada Geese were a numerically significant competitor with Emperor Geese. Comparing these results to an earlier study, time spent feeding by goslings, adult females, and adult males were greater during 1993–1996 than during 1985–1986. During the interval between those studies, densities of Cackling Canada Geese increased two to three times whereas Emperor Goose numbers remained approximately stable, which implies that interspecific competition affected foraging behavior over a long time period. These density-dependent changes in foraging behavior and body mass indicate that interspecific competition affects nutrient acquisition and gosling

  9. Ultrafast carrier dynamics in tetrahedral amorphous carbon: carrier trapping versus electron-hole recombination

    International Nuclear Information System (INIS)

    Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De

    2007-01-01

    We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors

  10. Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.

  11. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  12. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiun [Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, EE137, Hsinchu 300, Taiwan (China); Hung, Yao-Ching [Department of Obstetrics and Gynecology, School of Medicine, China Medical University and Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Lin, Wei-Hsu [Institute of Nanotechnology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Huang, Guewha Steven, E-mail: gstevehuang@mail.nctu.edu.tw [Department of Materials Science and Engineering, Institute of Nanotechnology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China (China)

    2010-05-14

    To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.

  13. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide

    Science.gov (United States)

    Chen, Yu-Shiun; Hung, Yao-Ching; Lin, Wei-Hsu; Huang, Guewha Steven

    2010-05-01

    To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.

  14. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide

    International Nuclear Information System (INIS)

    Chen, Yu-Shiun; Hung, Yao-Ching; Lin, Wei-Hsu; Huang, Guewha Steven

    2010-01-01

    To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.

  15. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: Size does not matter

    International Nuclear Information System (INIS)

    Venkatpurwar, V.P.; Rhodes, S.; Oien, K.A.; Elliott, M.A.; Tekwe, C.D.; Jørgensen, H.G.; Kumar, M.N.V. Ravi

    2015-01-01

    Highlights: • The particulate delivery allows an increase in dose range without accrual of toxicities. • The altered haematological and biochemical changes are drug, but not particle dependent. • PLGA nano/microparticles are safe on subacute peroral dosing over 28 days. • Nano-toxicology, drug needs to be considered. - Abstract: Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral ® 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is

  16. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  17. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  18. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Mundt, Michael; Kuemmel, Stephan

    2006-01-01

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential is analyzed

  19. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    Energy Technology Data Exchange (ETDEWEB)

    Geerkens, A.; Frenck, H.J.; Ewert, S. [Technical Univ. of Cottbus (Germany)] [and others

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  20. A Room to Grow: The Residential Density-dependence of Childbearing in Europe and the United States

    Directory of Open Access Journals (Sweden)

    Nathanael Lauster

    2010-01-01

    Full Text Available I argue that cultural processes linked to the demographic transition produce new density-dependent fertility dynamics. In particular, childbearing becomes dependent upon residential roominess. This relationship is culturally specific, and I argue that the cultural nature of this relationship means that professional and managerial classes are likely to be particularly influenced by residential roominess, while immigrants are less likely to be influenced. I test hypotheses linking residential roominess to the presence of an “own infant” in the household using census data from the Austria, Greece, Portugal, Spain, and the United States. Roominess predicts fertility in all countries, but to differing degrees.

  1. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    Science.gov (United States)

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  2. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  3. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  4. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    OpenAIRE

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

    2009-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

  5. Contactless estimation of critical current density and its temperature dependence using magnetic measurements

    Czech Academy of Sciences Publication Activity Database

    Youssef, A.; Baničová, L.; Švindrych, Zdeněk; Janů, Zdeněk

    2010-01-01

    Roč. 118, č. 5 (2010), s. 1036-1037 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /14./. Košice, 06.07.2010-09.07.2010] R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * critical state * Bean model * critical current density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.467, year: 2010

  6. Density dependence of the fine-differential disturbed gamma-gamma-spatial correlation in gaseous 111InI-sources

    International Nuclear Information System (INIS)

    Schuetter, K.

    1985-01-01

    An instrument for measuring a time-differential disturbed angular correlation was developed. Using this instrument the disturbance of the spatial correlation of the γ-quanta of the 171-245 keV γ-γ-cascade in 111 Cd was examined in dependence of the density of the gaseous 111 InI-systems and the time difference between the emission of the both γ-quanta. (BBOE)

  7. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  8. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    Science.gov (United States)

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  9. The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines

    Science.gov (United States)

    Schmauch, Preston B.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.

  10. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  11. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  12. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dae Jung; Lee, Dong-Hun [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Kim, Kihong [Division of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  14. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  15. Nest site preference depends on the relative density of conspecifics and heterospecifics in wild birds.

    Science.gov (United States)

    Samplonius, Jelmer M; Kromhout Van Der Meer, Iris M; Both, Christiaan

    2017-01-01

    Social learning allows animals to eavesdrop on ecologically relevant knowledge of competitors in their environment. This is especially important when selecting a habitat if individuals have relatively little personal information on habitat quality. It is known that birds can use both conspecific and heterospecific information for social learning, but little is known about the relative importance of each information type. If provided with the choice between them, we expected that animals should copy the behaviour of conspecifics, as these confer the best information for that species. We tested this hypothesis in the field for Pied Flycatchers Ficedula hypoleuca arriving at their breeding grounds to select a nest box for breeding. We assigned arbitrary symbols to nest boxes of breeding pied flycatchers (conspecifics) and blue and great tits, Cyanistes caeruleus and Parus major (heterospecifics), in 2014 and 2016 in two areas with different densities of tits and flycatchers. After ca 50% of flycatchers had returned and a flycatcher symbol was assigned to their nest box, we gave the later arriving flycatchers the choice between empty nest boxes with either a conspecific (flycatcher) or a heterospecific (tit) symbol. As expected, Pied Flycatchers copied the perceived nest box choice of conspecifics, but only in areas that were dominated by flycatchers. Against our initial expectation, flycatchers copied the perceived choice of heterospecifics in the area heavily dominated by tits, even though conspecific minority information was present. Our results confirm that the relative density of conspecifics and heterospecifics modulates the propensity to copy or reject novel behavioural traits. By contrasting conspecific and heterospecific ecology in the same study design we were able to draw more general conclusions about the role of fluctuating densities on social information use.

  16. Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon

    OpenAIRE

    Park, H. R.; Liu, J. Z.; Roca i Cabarrocas, P.; Maruyama, A.; Isomura, M.; Wagner, S.; Abelson, J. R.; Finger, F.

    2008-01-01

    We report a study of the saturated light-induced defect density Ns,sat in 37 hydrogenated (and in part fluorinated) amorphous silicon [a-Si:H(F)] films grown in six different reactors under widely different conditions. Ns,sat was attained by exposing the films to light from a krypton ion laser (λ=647.1 nm). Ns,sat is determined by the constant photocurrent method and lies between 5×1016 and 2×1017 cm−3. Ns,sat drops with decreasing optical gap Eopt and hydrogen content cH, but is not correlat...

  17. Angular dependences of the luminescence and density of photon states in a chiral liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Umanskii, B A; Blinov, L M; Palto, S P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation)

    2013-11-30

    Luminescence spectra of a laser dye-doped chiral liquid crystal have been studied in a wide range of angles (up to 60°) to the axis of its helical structure using a semicylindrical quartz prism, which made it possible to observe the shift and evolution of the photonic band gap in response to changes in angle. Using measured spectra and numerical simulation, we calculated the spectral distributions of the density of photon states in such a cholesteric crystal for polarised and unpolarised light, which characterise its structure as that of a chiral one-dimensional photonic crystal. (optics of liquid crystals)

  18. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  19. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  20. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  1. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  2. Intrinsic carrier mobility extraction based on a new quasi-analytical model for graphene field-effect transistors

    International Nuclear Information System (INIS)

    Wang, Shaoqing; Jin, Zhi; Muhammad, Asif; Peng, Songang; Huang, Xinnan; Zhang, Dayong; Shi, Jingyuan

    2016-01-01

    The most common method of mobility extraction for graphene field-effect transistors is proposed by Kim. Kim’s method assumes a constant mobility independent of carrier density and gets the mobility by fitting the transfer curves. However, carrier mobility changes with the carrier density, leading to the inaccuracy of Kim’s method. In our paper, a new and more accurate method is proposed to extract mobility by fitting the output curves at a constant gate voltage. The output curves are fitted using several kinds of current–voltage models. Besides the models in the literature, we present a modified model, which takes into account not only the quantum capacitance, contact resistance, but also a modified drift velocity-field relationship. Comparing with the other models, this new model can fit better with our experimental data. The dependence of carrier intrinsic mobility on carrier density is obtained based on this model. (paper)

  3. A test of density-dependent pollination within three populations of endangered Pentachaeta lyonii

    Directory of Open Access Journals (Sweden)

    Jocelyn R. Holt

    2014-02-01

    Full Text Available A major concern with endangered plants is that they might attract insufficient numbers of pollinators, produce low numbers of seeds, and decline towards extinction. We examined effects of density as it varied within populations on the pollination of Pentachaeta lyonii, an endangered species that requires pollinators for seed set. Generalist bee-flies and bees were abundant pollinators at three sites for two years. Per-capita visitation rates did not decline at sparse points or for plants placed on the order of 10 m away from other flowering individuals. Seed production was not pollinator-limited within patches, but seed set was low beyond 10 m from neighbours. Considering prior findings, factors such as habitat loss, competition with alien plants, and poor establishment of new populations likely contribute to the rarity of P. lyonii more than pollination failure.

  4. Temperature dependence study of positronium formation in high density polyethylene by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Nahid, F.; Beling, C.D.; Fung, S.

    2007-01-01

    Positron annihilation lifetime spectroscopy has been used to study the formation of positronium in high density polyethylene as a function of temperature over the range 30 K-350 K. It is observed that the thermal history of the sample, while having no influence on the positronium lifetime, has a strong effect on the formation of positronium. A hysteresis is seen in the positronium formation probability in cooling and heating cycles. This is explained on a two channel formation model, the first channel being through ''blob'' formation and the second through the pick-up of shallow trapped electrons. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Simulation and control of the site-dependent neutron density in a nuclear reactor

    International Nuclear Information System (INIS)

    Stark, K.

    1974-01-01

    The present work deals with the simulation and control of a pressurized-water reactor such as is used in nuclear power plants today. In the first part of the work, the mathematical model equations of the reactor are set up. They take into consideration the local distribution of the various reactor parameters as far as seems necessary for further investigations. Taking the given approximations, the mathematical model is locally one-dimensional; it is valid for the period of time in which a power control of the reactor must work. The model equations set up are calculated on an analog/hybride computer according to the modal simulation method in true time. The method is distinguished in the present problem here through good convergence and enables the observation of the simulation results as a stationary picture on an oscillograph screen. For this reason, a simulation of this type seems particularly suitable for the training of operational personnel. The aim of the second part of the work is the development of a simple control concept which enables the control of the total power of the reactor as well as of the distribution of the power density in the reactor core. The fundamentals of the control design are the non-linear system equations of the nuclear reactor. The developed control is based on the controlling of eigenfunctions; it controls the total power of the reactor as well as the distribution of the power density in the reactor core where a uniform burn-up of the nuclear fuel is seen to. Part-absorbing control rods amongst others are used as actuators like they are already used in that type of reactors. (orig./LH) [de

  6. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  7. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields

    International Nuclear Information System (INIS)

    Fenwick, John D; Kumar, Sudhir; Scott, Alison J D; Nahum, Alan E

    2013-01-01

    The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a detector located within a water phantom depends on the density of the sensitive volume. Here this effect is explained using cavity theory, and analysed using Monte Carlo data calculated for schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density and atomic composition of the sensitive volume on its response is represented as a ratio, F w,det , of doses absorbed by equal volumes of unit density water and detector material co-located within a unit density water phantom. The impact of density alone is characterized through a similar ratio, P ρ− , of doses absorbed by equal volumes of unit and modified density water. The cavity theory is developed by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons liberated in photon interactions occurring inside and outside the volume. Using this theory a simple model is obtained that links P ρ− to the degree of electronic equilibrium, s ee , at the centre of a field via a parameter I cav determined by the density and geometry of the sensitive volume. Following the scheme of Bouchard et al (2009 Med. Phys. 36 4654–63) F w,det can be written as the product of P ρ− , the water-to-detector stopping power ratio [L-bar Δ /ρ] ω det , and an additional factor P fl− . In small fields [L-bar Δ /ρ] ω det changes little with field-size; and for the schematic diamond and Pinpoint detectors P fl− takes values close to one. Consequently most of the field-size variation in F w,det originates from the P ρ− factor. Relative changes in s ee and in the phantom scatter factor s p are similar in small fields. For the diamond detector, the variation of P ρ− with s ee (and thus field-size) is described well by the simple cavity model using an I cav parameter in line with independent Monte Carlo estimates. The model also captures the overall field

  8. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Thomsen Lene

    2004-11-01

    Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.

  9. Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.

    2018-02-01

    Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.

  10. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  11. A temperature dependent tunneling study of the spin density wave gap in EuFe2As2 single crystals.

    Science.gov (United States)

    Dutta, Anirban; Anupam; Hossain, Z; Gupta, Anjan K

    2013-09-18

    We report temperature dependent scanning tunneling microscopy and spectroscopy measurements on single crystals of EuFe2As2 in the 15-292 K temperature range. The in situ cleaved crystals show atomic terraces with homogeneous tunnel spectra that correlate well with the spin density wave (SDW) transition at a temperature, TSDW ≈ 186 K. Above TSDW the local tunnel spectra show a small depression in the density of states (DOS) near the Fermi energy (EF). The gap becomes more pronounced upon entering the SDW state with a gap value ∼90 meV at 15 K. However, the zero bias conductance remains finite down to 15 K indicating a finite DOS at the EF in the SDW phase. Furthermore, no noticeable change is observed in the DOS at the antiferromagnetic ordering transition of Eu(2+) moments at 19 K.

  12. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  13. Possibility of ΛΛ pairing and its dependence on background density in a relativistic Hartree-Bogoliubov model

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2003-01-01

    We calculate a ΛΛ pairing gap in binary mixed matter of nucleons and Λ hyperons within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density ρ N =2.5ρ 0 the ΛΛ pairing gap is very small, and that a denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker ΛΛ attraction on the gap is also examined in connection with the revised information of the ΛΛ interaction

  14. Approximate spin projected spin-unrestricted density functional theory method: Application to diradical character dependences of second hyperpolarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)

    2015-01-22

    We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.

  15. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  16. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J.R.; Gerbaldi, C. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bruna, M.; Borini, S. [Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino (Italy); Daghero, D. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Gonnelli, R.S., E-mail: renato.gonnelli@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy)

    2017-02-15

    Highlights: • We fabricated few-layer graphene FETs by mechanical exfoliation and standard microfabrication techniques. • We employed a Li-TFSI based ion gel to induce carrier densities as high as ≈6e14 e{sup −}/cm{sup 2} in the devices' channel. • We found a strong asymmetry in the sheet conductance and mobility doping dependences between electron and hole doping. • We combined the experimental results with ab initio DFT calculations to obtain the average scattering lifetime of the charge carriers. • We found that the increase in the carrier density and an unexpected increase in the density of charged scattering centers compete in determining the scattering lifetime. - Abstract: We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  17. Time-dependent density functional theory for nonlinear properties of open-shell systems.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Jha, Prakash Chandra; Oprea, Corneliu I; Vahtras, Olav; Agren, Hans

    2007-09-21

    This paper presents response theory based on a spin-restricted Kohn-Sham formalism for computation of time-dependent and time-independent nonlinear properties of molecules with a high spin ground state. The developed approach is capable to handle arbitrary perturbations and constitutes an efficient procedure for evaluation of electric, magnetic, and mixed properties. Apart from presenting the derivation of the proposed approach, we show results from illustrating calculations of static and dynamic hyperpolarizabilities of small Si(3n+1)H(6n+3) (n=0,1,2) clusters which mimic Si(111) surfaces with dangling bond defects. The results indicate that the first hyperpolarizability tensor components of Si(3n+1)H(6n+3) have an ordering compatible with the measurements of second harmonic generation in SiO2/Si(111) interfaces and, therefore, support the hypothesis that silicon surface defects with dangling bonds are responsible for this phenomenon. The results exhibit a strong dependence on the quality of basis set and exchange-correlation functional, showing that an appropriate set of diffuse functions is required for reliable predictions of the first hyperpolarizability of open-shell compounds.

  18. Social Sustainability Issues and Older Adults’ Dependence on Automobiles in Low-Density Environments

    Directory of Open Access Journals (Sweden)

    Hitomi Nakanishi

    2015-06-01

    Full Text Available An implicit assumption underlying government strategies to achieve a more sustainable urban transportation system is that all automobile users will be encouraged or persuaded to use more “green” transportation: public transportation, walking and cycling. Little consideration has been given as to how sustainable transportation policies and programmess might impact on different age groups in society, including those retired or semi-retired, despite the fact that an unprecedented number of older drivers will be on the highways in the next few decades. There is limited literature on the contextual factors behind their continued reliance on automobiles, their actual driving behavior (e.g., route choice and time of day to drive framed within the context of social sustainability. This paper introduces the elements of transportation and social sustainability then conducts a comprehensive international literature review focusing on older drivers, their travel choices and associated social sustainability issues. It describes a case study, low-density city and presents empirical evidence, from two surveys conducted in Canberra, Australia. The paper concludes with future research directions that address these issues associated with sustainable transportation.

  19. Cell density-dependent nuclear/cytoplasmic localization of NORPEG (RAI14) protein

    International Nuclear Information System (INIS)

    Kutty, R. Krishnan; Chen, Shanyi; Samuel, William; Vijayasarathy, Camasamudram; Duncan, Todd; Tsai, Jen-Yue; Fariss, Robert N.; Carper, Deborah; Jaworski, Cynthia; Wiggert, Barbara

    2006-01-01

    NORPEG (RAI14), a developmentally regulated gene induced by retinoic acid, encodes a 980 amino acid (aa) residue protein containing six ankyrin repeats and a long coiled-coil domain [Kutty et al., J. Biol. Chem. 276 (2001), pp. 2831-2840]. We have expressed aa residues 1-287 of NORPEG and used the recombinant protein to produce an anti-NORPEG polyclonal antibody. Confocal immunofluorescence analysis showed that the subcellular localization of NORPEG in retinal pigment epithelial (ARPE-19) cells varies with cell density, with predominantly nuclear localization in nonconfluent cells, but a cytoplasmic localization, reminiscent of cytoskeleton, in confluent cultures. Interestingly, an evolutionarily conserved putative monopartite nuclear localization signal (P 27 KKRKAP 276 ) was identified by analyzing the sequences of NORPEG and its orthologs. GFP-NORPEG (2-287 aa), a fusion protein containing this signal, was indeed localized to nuclei when expressed in ARPE-19 or COS-7 cells. Deletion and mutation analysis indicated that the identified nuclear localization sequence is indispensable for nuclear targeting

  20. Dependence of streamer density on electric field strength on positive electrode

    Science.gov (United States)

    Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration

    2015-09-01

    Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.