WorldWideScience

Sample records for carpocapsa pomonella

  1. Populationsdynamik des Cydia pomonella Granulovirus

    OpenAIRE

    Steineke, Susanne Barbara

    2004-01-01

    Das Cydia pomonella Granulovirus (CpGV, Fam. Baculoviridae) ist ein sehr virulentes und hoch spezifisches Pathogen des Apfelwicklers (Cydia pomonella), das seit mehreren Jahren in der Bundesrepublik Deutschland und anderen Ländern der EU als Insektizid zugelassen ist. Wie andere Baculoviren auch befällt es die Larven der Insekten und ist aufgrund seiner Selektivität für Nicht-Zielorganismen unbedenklich. In der Vergangenheit konzentrierte sich die Erforschung des CpGV auf Bereiche, die für di...

  2. Entomogenous nematode Neoaplectana carpocapsae: radiation and mammalian safety

    International Nuclear Information System (INIS)

    Infective-stage juveniles of Neoaplacetana carpocapsae were acutely sensitive to short uv radiation (254 nm) and natural sunlight. High nematode mortality, although delayed, accompanied uv exposure. Irradiation rapidly reduced nematode pathogenicity, so that nematodes exposed for 7 min were unable to cause lethal infections in Galleria mallonella larvae. Moreover, the median survival time of Galleria larvae increased progressively as nematode exposure to uv was lengthened. Inhibition of nematode reproduction and development was noted at exposure periods more than 2.45 and 5 min, respectively. However, irradiation did not appear to affect juvenile motility. Exposure to direct sunlight also reduced pathogenicity, in a range from 6.9 to 94.9% at 30 and 60 min of exposure, respectively. Long uv (366 nm) did not affect juveniles at the exposures tested

  3. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Inman III, Floyd L.; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  4. Storage of osmotically treated entomopathogenic nematode Steinernema carpocapsae

    Institute of Scientific and Technical Information of China (English)

    SHI-PENG FENG; RI-CHOU HAN; XUE-HONG QIU; LI CAO; JING-HUA CHEN; GUO-HONG WANG

    2006-01-01

    The infective juveniles (IJs) of Steinernema carpocapsae 'All' were osmotically stressed by a mixture of ionic (fortified artificial seawater) and non-ionic (3.2 mol/Lglycerol) solutions to establish a method for osmotic storage of entomopathogenic nematodes.Seven combinations (termed solution A to G) with different proportions of these two solutions were tested, with sterile extra pure water (sepH2O, termed solution H) as a control. The mortality of the IJs at a concentration of 5 × 105 IJ/mL in the solutions A to G, and H were 13.2%,16.2%, 16.7%, 13.5%, 25.2%, 31.6%, 44.6%, and 1.0%, respectively, after 21 days storage at 25℃. Most of the IJs shrunk and stopped motility after 6-9 hours incubation at 25℃ in solutions A to D. Based on the results, solutions A to D and H were chosen to further test the osmotic survival of the IJs at different IJ concentrations (5×105, 2.5 × 105, 2000 IJ/mL) and incubation temperature (30℃, 25℃, 10℃). The resulting IJs were exposed to a high temperature assay (45℃ for 4 h, HTA). Osmotically stressed IJs showed improved heat tolerance. The mortality of the IJs increased with the increasing concentrations of the test IJs and the storage temperatures after exposing to the HTA. More than 88.4%, 62.3% or 2.4% of the treated IJs died at the above three IJ concentrations, respectively. At the three IJ concentrations (2 000 IJs/mL, 2.5 × 105 IJs/mL or 5 × 105 IJs/mL), the highest mortality was recorded in solution D (11.6%, 85.9% or 98.0%, respectively), and the lowest mortality in solution B (2.4%, 62.3% or 86.6%, respectively). No untreated IJs survived after the heat treatment. During 42 days storage at 10℃, the IJs mortality in the solutions A to D and H were 7.19%, 5.97%,4.41%, 4.34%, and 4.34% respectively, and showed no significant differences. In conclusion,solutions enhances the heat tolerance. The mortality of the IJs after HTA increased with the increasing concentrations of the test IJs and the storage

  5. Effects of Insecticides on Movement, Nictation, and Infectivity of Steinernema carpocapsae

    OpenAIRE

    Ishibashi, Nobuyoshi; Takii, Shinji

    1993-01-01

    Movement, nictation, and infectivity of Steinernema carpocapsae strain All were compared for ensheathed (EnJ) and desheathed (DeJ) infective juveniles exposed to the insecticides acephate, dichlorvos, methomyl, oxamyl, or permethrin. Nematode response to various solutions included normal sinusoidal movement, uncoordinated motion, twitching, convulsion or formation of a pretzel shape, an inactive "S" posture with fine twitching, or a quiescent straight posture. The DeJ displayed these movement...

  6. Energy Metabolism and Survival of the Infective Juveniles of Steinernema carpocapsae under Oxygen-Deficient Conditions

    OpenAIRE

    L. Qiu; Bedding, R.A.

    2000-01-01

    Energy metabolism and its relation to survival of the infective juveniles (IJ) of S. carpocapsae under anaerobic and oxygen-deficient conditions were studied by monitoring changes in survival rate, levels of key energy reserve materials, oxygen consumption, and respiratory quotient (RQ). The effects of various factors on the survival of IJ under anaerobic conditions were also investigated. Under anaerobic conditions, the IJ were inactivated but could survive for several days in an immobile st...

  7. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Leonard D. Holmes

    2013-04-01

    Full Text Available The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process successively improved the mass production process of S. carpocapsae employing liquid medium technology. Within the first week of the fed-batch process (day six, the nematode density obtained was 202,000 nematodes mL−1; whereas on day six, batch culture mode resulted in a nematode density of 23,000 nematodes mL−1. The fed-batch process was superior to that of batch production with a yield approximately 8.8-fold higher. In fed-batch process, the nematode yield was improved 88.6 % higher within a short amount of time compared to the batch process. Fed-batch seems to make the process more efficient and possibly economically viable.

  8. Side effects of immune response of Colorado potato beetle, Leptinotarsa decemlineata against the entomopathogenic nematode, Steinernema carpocapsae infection

    Directory of Open Access Journals (Sweden)

    L Ebrahimi

    2014-05-01

    Full Text Available Entomopathogenic nematodes (EPNs are lethal pathogens of agricultural insect pests. Little is known about their sublethal effects on the insect hosts. The lethal effects of Steinernema carpocapsae on fourth instar larvae of Colorado potato beetle (CPB, Leptinotarsa decemlineata were detected using soil infection and direct injection of the nematode into the hemocel. LC20 and LC80 values of 7.8 (3.0 - 13.4 infective juveniles (IJs and 126.7 (91-206.7 IJs were obtained for the soil application method and 10.2 (8.7 - 11.4 IJs and 22.7 (19.73 - 28.0 IJs for direct injection, respecitvely. Sublethal effects of S. carpocapsae on last instar larvae and subsequent surviving adults and phenoloxidase (PO activity in hemolymph of nematode-injected last instar larvae were investigated. Sublethal effects included adult cuticular discoloration, deformation of the wings, legs and antenna and decreased fertilized egg production in females. Considering cuticular discoloration in most treated insects, it is hypothesized that production of PO in the insect larvae infected with an entomopathogenic nematode, S. carpocapsae might have costs for surviving adult insects. PO specific activity in CPB against S. carpocapsae generally increased up to 48 h post injection. Here in, the sublethal effects are discussed as a potential tread-offs of PO production in nematode-injected insects

  9. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida).

    Science.gov (United States)

    Mastore, Maristella; Arizza, Vincenzo; Manachini, Barbara; Brivio, Maurizio F

    2015-12-01

    Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target. PMID:24846780

  10. Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae).

    Science.gov (United States)

    Lacey, Lawrence A; Unruh, Thomas R; Headrick, Heather L

    2003-07-01

    Simultaneous use of parasitoids and entomopathogenic nematodes for codling moth (CM) control could produce an antagonistic interaction between the two groups resulting in death of the parasitoid larvae. Two ectoparasitic ichneumonid species, Mastrus ridibundus and Liotryphon caudatus, imported for classical biological control of cocooned CM larvae were studied regarding their interactions with Steinernema carpocapsae. Exposure of M. ridibundus and L. caudatus developing larvae to infective juveniles (IJs) of S. carpocapsae (10 IJs/cm2; approximately LC(80-90) for CM larvae) within CM cocoons resulted in 70.7 and 85.2% mortality, respectively. However, diapausing full grown parasitoid larvae were almost completely protected from nematode penetration within their own tightly woven cocoons. M. ridibundus and L. caudatus females were able to detect and avoid ovipositing on nematode-infected cocooned CM moth larvae as early as 12h after treatment of the host with IJs. When given the choice between cardboard substrates containing untreated cocooned CM larvae and those treated with an approximate LC95 of S. carpocapsae IJs (25 IJs/cm2) 12, 24, or 48h earlier, ovipositing parasitoids demonstrated a significant preference for untreated larvae. The ability of these parasitoids to avoid nematode-treated larvae and to seek out and kill cocooned CM larvae that survive nematode treatments enhances the complementarity of entomopathogenic nematodes and M. ridibundus and L. caudatus. PMID:12877830

  11. Analysis of Surstylus and Aculeus Shape and Size Using Geometric Morphometrics to Discriminate Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae)

    Science.gov (United States)

    Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow both occur in the Pacific Northwest of the U. S. and are frequently confused with one another due to their morphological similarity. The apple maggot, R. pomonella, is a threat to commercial apples in the Pacific Northwest, whereas R. zephyr...

  12. Assessment of control strategies against Cydia pomonella (L. in Morocco

    Directory of Open Access Journals (Sweden)

    Iraqui Salma El

    2016-01-01

    Full Text Available The codling moth, Cydia pomonella (L., is the key pest of apple production worldwide. In Morocco, there is a sustainable presence of codling moth causing considerable damage in apple orchards despite frequent applications of broad spectrum insecticides. For 12 years, sexual trapping and chemical control were performed and the development of the codling moth population was analysed in an orchard which was in the region of Azrou. The efficacy of some insecticides (azinphos-methyl, chlorpyriphos-ethyl, diflubenzuron, thiacloprid, methoxyfenozide, spinosad, and deltamethrin was also evaluated on neonate larvae and compared with a laboratory sensitive strain. This procedure was done to assess an eventual resistance in Moroccan populations. The action threshold was usually exceeded, leading to an intensive chemical control, with an average frequency of 9 to 13 days. The chemical control was done according to the action persistence time of the insecticides and the trap captures. However, those two parameters are compromised in Moroccan conditions because of the high summer temperatures which disrupt the action of insecticides and exacerbate populations. The pheromone traps may become ineffective and useless. Neonate larvae were resistant to five insecticides out of seven. Such results suggest the presence of a cross resistance in local strains. Overall, the insect resistance, the functioning of the sexual traps, and some insecticides properties (persistence action, pre-harvest interval are the key factors that could explain the failure to control these moths under Moroccan conditions.

  13. Genetic Transformation of the Codling Moth, Cydia pomonella L., with piggyBac EGFP

    Science.gov (United States)

    Genetic transformation of the codling moth, Cydia pomonella, was accomplished through embryo microinjection with a plasmid-based piggyBac vector containing the enhanced green fluorescent protein (EGFP) gene. Sequencing of the flanking regions around the inserted construct results in identification o...

  14. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella)

    Czech Academy of Sciences Publication Activity Database

    Rozsypal, Jan; Košťál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2013-01-01

    Roč. 8, č. 4 (2013), e61745. E-ISSN 1932-6203 R&D Projects: GA MŠk LH12103 Institutional support: RVO:60077344 Keywords : Cydia pomonella Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0061745

  15. Field Efficacy of Steinernema Carpocapsae Against Lima Bean Pod Borer, Etiella zynckenella Treitschke, Attacking Groundnut

    Directory of Open Access Journals (Sweden)

    Dwinardi Apriyanto

    2016-06-01

    Full Text Available Lima bean pod borer (LBPB, Etiella zynckenella Trietschke, is major insect pest of soybean in Indonesia. Currently it was also reported attacking groundnut in some parts of Sumatera causing serious yield loss. Insecticide treatment is not only ecologically unsafe, but also is not practical due to concealed behavior of the larvae within pods below soil surface. Systemic insecticide might be so but unsafe as it might leave unaccepted residue in harvested pods. It is clear that safer more effective technology such as biological control is badly needed. A Field study was conducted at the University of Bengkulu Research Station in 2012-2013. The objectives was to determine the effectiveness of non  local strain of entomopathoegen nematode (EPN, Sterinenema carpocapsae, to control LBPB attacking groundnut. Groundnut seeds were sewed in plots which were later treated with S. carpocasae produce by Biological Control Laboratory University of Jember at the dose of 500.000 JI m-2. EPN was sprayed upon plants and soil surface twice at plant age of 45 and 65 days after sewing (DAS. There were insecticide treatment and control plots as comparison. Observations of damaged pods and the presence of LBPB larvae were done at plant age of 63, 77,  90 DAS and at the haevesting date. Data were subjected to analysis of variance and the means of damaged pods were separated with least significant different (LSD. The result revealed that in two years study,  damaged pods consistently tended to be less in plots treated with S. carpocasae or insecticide than those in controls, indicating that it might be effective against PLPB. The lack of significant different between EPN treated and control  plots might be as a result of low percentages of EPN larval survival due shipment problem (i.e. inappropriate packaging and long transportation that toke several days or it might be that the strain was less adapted yet to local conditions. I speculate that local strain of EPN

  16. An unusual food plant for Cydia pomonella (Linnaeus (Lepidoptera, Tortricidae in Mexico

    Directory of Open Access Journals (Sweden)

    Alejandro Salinas-Castro

    2014-09-01

    Full Text Available An unusual food plant for Cydia pomonella (Linnaeus (Lepidoptera, Tortricidae in Mexico. Larvae of Cydia pomonella (Linnaeus, 1758 were discovered on floral cones of Magnolia schiedeana (Schltdl, 1864 near the natural reserve of La Martinica, Veracruz, México. Magnolia represents an unusual host for this moth species, which is known throughout the world as the "codling moth", a serious pest of fruits of Rosaceae, especially apples. The larvae were identified using taxonomic keys, and identification was corroborated using molecular markers. Further sampling resulted in no additional larvae, hence, the observation was probably that of an ovipositional error by the female, and M. schiedeana is not at risk of attack by this important moth pest.

  17. The interactive effect of entomopathogenic nematode, Steinernema carpocapsae (Weiser) and gamma radiation ori callosobruchus maculatus (F.) and their biochemical Effects

    International Nuclear Information System (INIS)

    Cowpea weevil, Callosobruchus maculatus (F.) adults were infected with entomopathogenic nematodes, Steinernema carpocapsae (Weiser) for evaluating their potential for suppressing this insect pest. Morality percentage of un-irradiated C. maculatus infected with irradiated nematodes decreased at higher doses of gamma irradiation. The results generally Indicated that the reduction of mortality was directly related to gamma irradiation. The results indicated that infestation intensity decreased at higher doses of gamma irradiation when irradiated nematodes infected the irradiated or non-irradiated C. maculatus. Protein content of irradiated C. maculatus adults infected with nematodes showed a slight decrease by increasing radiation dose and time elapsed from infection. Comparing the protein bands at different time intervals for all tested dosage used showed absence of some bands and reduction in the intensity of the others

  18. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    OpenAIRE

    Claire Duménil; Gary J. R. Judd; Dolors Bosch; Mario Baldessari; César Gemeno; Groot, Astrid T

    2014-01-01

    The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communicatio...

  19. Sterilization of Carpocapsa pomonella and evaluation of the sterile male technique. Part of a coordinated programme on the use of the sterile male technique in control of lepidopterous insects attacking fruit and forest trees

    International Nuclear Information System (INIS)

    Juvenoids affected all developmental stages studied. Some compounds appear more promising for orchard application. None of the tested compounds proved superior to conventional insecticides. Infestation of fruit could not be prevented in cage experiments carried out in orchards but was reduced compared with controls. The use of juvenile hormone analogues still appears promising provided more effective and selective compounds can be developed

  20. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.

    Science.gov (United States)

    Singh, Swati; Reese, Jordan M; Casanova-Torres, Angel M; Goodrich-Blair, Heidi; Forst, Steven

    2014-07-01

    Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors that X. nematophila encounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection, Staphylococcus saprophyticus was initially present and subsequently disappeared from the hemolymph, while Enterococcus faecalis proliferated. S. saprophyticus was sensitive to X. nematophila antibiotics and was eliminated from the hemolymph when coinjected with X. nematophila. In contrast, E. faecalis was relatively resistant to X. nematophila antibiotics. When injected by itself, E. faecalis persisted (~10(3) CFU/ml), but when coinjected with X. nematophila, it proliferated to ~10(9) CFU/ml. Injection of E. faecalis into the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed when E. faecalis was coinjected with X. nematophila. Its relative antibiotic resistance together with suppression of the host immune system by X. nematophila may account for the growth of E. faecalis. At higher injected levels (10(6) CFU/insect), E. faecalis could kill insects, suggesting that it may contribute to virulence in an X. nematophila infection. These findings provide new insights into the competitive events that occur early in infection after S. carpocapsae invades the host hemocoel. PMID:24814780

  1. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    Directory of Open Access Journals (Sweden)

    Ragland Gregory J

    2009-12-01

    Full Text Available Abstract Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes" such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the

  2. Effects of gamma radiation on codling moth (Cydia pomonella, Lepidoptera: Tortricidae) fertility and reproductive behaviour

    International Nuclear Information System (INIS)

    Studies were conducted with codling moth, Cydia pomonella (L.), to examine the effects of gamma radiation on fertility and reproductive behaviour. Data accumulated during these studies showed that egg production and hatch decreased with increasing radiation dose. Females were more sensitive to radiation treatment than were males. A dose of 150 Gy caused 100% sterility in females and significantly reduced fecundity, and a dose of 350 Gy reduced male fertility to less than 1%. Radiation dosages up to 400 Gy had no adverse effect on male longevity or competitiveness in cages using laboratory reared moths. However, males exposed to a dose of 350 or 400 Gy mated fewer times than unirradiated males. (author)

  3. Mapping of single-copy genes by TSA-FISH in th codling moth, Cydia pomonella

    Czech Academy of Sciences Publication Activity Database

    Carabajal Paladino, Leonela Z.; Nguyen, Petr; Šíchová, Jindra; Marec, František

    2014-01-01

    Roč. 15, Supplement 2 (2014), S15. ISSN 1471-2156 R&D Projects: GA ČR(CZ) GA14-22765S; GA ČR(CZ) GP14-35819P; GA MŠk(CZ) EE2.3.30.0032 Grant ostatní: GA JU(CZ) 052/2013/P; IAEA, Vienna(AT) 15838 Institutional support: RVO:60077344 Keywords : Cydia pomonella Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.397, year: 2014 http://www.biomedcentral.com/content/pdf/1471-2156-15-S2-S15.pdf

  4. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae

    Institute of Scientific and Technical Information of China (English)

    MAHAR Ali Nawaz; MUNIR Muhammad; ELAWAD Sami; GOWEN Simon Richard; HAGUE Nigel Graham Meckenzi

    2005-01-01

    The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mellonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found lethal to the Galleria larvae. Toxic secretion in broth caused 95% mortality within 4 d of application whereas the bacterial cells caused 93%mortality after 6 d. When filter and sand substrates were compared, the later one was observed as appropriate. Similarly, bacterial cells and secretion in broth were more effective at 14% moisture and 25 ℃ temperature treatments. Maximum insect mortality (100%) was observed when bacterial concentration of4×106 cells/ml was used. Similarly, maximum bacterial cells in broth (95%)were penetrated into the insect body within 2 h of their application. However, when stored bacterial toxic secretion was applied to the insects its efficacy declined. On the other hand, when the same toxic secretion was dried and then dissolved either in broth or water was proved to be effective. The present study showed that the bacterium, X. nematophila or its toxic secretion can be used as an important component of integrated pest management against Galleria.

  5. Effect of rearing strategy and gamma radiation on fecundity and fertility of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae)

    Science.gov (United States)

    The codling moth, Cydia pomonella (L.), is a serious pest of pome fruit worldwide. In an effort to reduce the use of pesticides to control this pest, the Sterile Insect Technique (SIT) is being used or considered as an integrated pest control tactic. Rearing codling moths through diapause has been...

  6. The geographic distribution of Rhagoletis pomonella (Diptera:Tephritidae) in the western United States: Introduced species or native population?

    Science.gov (United States)

    The apple maggot fly, Rhagoletis pomonella Walsh (Diptera: Tephritidae), is a major pest of commercially grown domesticated apple (Malus domestica) in North America. The shift of the fly from its native host hawthorn (Crataegus mollis) to apple in the eastern U.S. is often cited as an example of inc...

  7. Are apple and hawthorn fruit volatiles more attractive than ammonium carbonate to Rhagoletis pomonella (Diptera: Tephritidae) in Washington state?

    Science.gov (United States)

    The apple maggot fly, Rhagoletis pomonella (Walsh), is an introduced, quarantine pest of apple (Malus domestica Borkhausen) in the Pacific Northwest of the U.S. In the eastern U.S. where the fly is native, fruit volatiles have been reported to be more attractive than ammonia compounds to R. pomonel...

  8. Apple and sugar feeding in adult codling moths, Cydia pomonella: effects on longevity, fecundity, and egg fertility

    Science.gov (United States)

    Attraction of adult codling moths, Cydia pomonella (L.)(Lepidoptera: Tortricidae), to sweet baits has been well documented; however, beneficial effects of sugar feeding on moth fitness have not been demonstrated convincingly. Longevity, fecundity, and egg fertility were examined for female/male pair...

  9. Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the Western United States.

    Science.gov (United States)

    Linn, Charles E; Yee, Wee L; Sim, Sheina B; Cha, Dong H; Powell, Thomas H Q; Goughnour, Robert B; Feder, Jeffrey L

    2012-11-01

    The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind-directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations. PMID:23106724

  10. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    Science.gov (United States)

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. PMID:21190707

  11. Identification of biotransformation enzymes in the antennae of codling moth Cydia pomonella.

    Science.gov (United States)

    Huang, Xinglong; Liu, Lu; Su, Xiaoji; Feng, Jinian

    2016-04-10

    Biotransformation enzymes are found in insect antennae and play a critical role in degrading xenobiotics and odorants. In Cydia pomonella, we identified 26 biotransformation enzymes. Among these enzymes, twelve carboxylesterases (CXEs), two aldehyde oxidases (AOXs) and six alcohol dehydrogenases (ADs) were predominantly expressed in antennae. Each of the CpomCXEs presents a conserved catalytic triad "Ser-His-Glu", which is the structural characteristic of known insect CXEs. CpomAOXs present two redox centers, a FAD-binding domain and a molybdenum cofactor/substrate-binding domain. The antennal CpomADs are from two protein families, short-chain dehydrogenases/reducetases (SDRs) and medium-chain dehydrogenases/reducetases (MDRs). Putative catalytic active domain and cofactor binding domain were found in these CpomADs. Potential functions of these enzymes were determined by phylogenetic analysis. The results showed that these enzymes share close relationship with odorant degrading enzymes (ODEs) and resistance-associated enzymes of other insect species. Because of commonly observed roles of insect antennal biotransformation enzymes, we suggest antennal biotransformation enzymes presented here are candidate that involved in degradation of odorants and xenobiotics within antennae of C. pomonella. PMID:26778204

  12. A field test for host fruit odour discrimination and avoidance behaviour for Rhagoletis pomonella flies in the western United States.

    Science.gov (United States)

    Sim, S B; Mattsson, M; Feder, Jasmine L; Cha, D H; Yee, W L; Goughnour, R B; Linn, C E; Feder, Jeffrey L

    2012-05-01

    Prezygotic isolation due to habitat choice is important to many models of speciation-with-gene-flow. Habitat choice is usually thought to occur through positive preferences of organisms for particular environments. However, avoidance of non-natal environments may also play a role in choice and have repercussions for post-zygotic isolation that preference does not. The recent host shift of Rhagoletis pomonella (Diptera: Tephritidae) from downy hawthorn, Crataegus mollis, to introduced apple, Malus domestica, in the eastern United States is a model for speciation-with-gene-flow. However, the fly is also present in the western United States where it was likely introduced via infested apples ≤ 60 years ago. R. pomonella now attacks two additional hawthorns in the west, the native C. douglasii (black hawthorn) and the introduced C. monogyna (English ornamental hawthorn). Flight tunnel tests have shown that western apple-, C. douglasii- and C. monogyna-origin flies all positively orient to fruit volatile blends of their respective natal hosts in flight tunnel assays. Here, we show that these laboratory differences translate to nature through field-trapping studies of flies in the state of Washington. Moreover, western R. pomonella display both positive orientation to their respective natal fruit volatiles and avoidance behaviour (negative orientation) to non-natal volatiles. Our results are consistent with the existence of behaviourally differentiated host races of R. pomonella in the west. In addition, the rapid evolution of avoidance behaviour appears to be a general phenomenon for R. pomonella during host shifts, as the eastern apple and downy hawthorn host races also are antagonized by non-natal fruit volatiles. PMID:22435643

  13. Microbial control of diamondback moth, Plutella xylostella L.(Lepidoptera:Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae

    Institute of Scientific and Technical Information of China (English)

    MAHAR Ali Nawaz; MUNIR Muhammad; ELAWAD Sami; GOWEN Simon Richard; HAGUE Nigel Graham Meckenzi

    2004-01-01

    Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

  14. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae

    Institute of Scientific and Technical Information of China (English)

    MAHARAliNawaz; MUNIRMuhammad; ELAWADSami

    2004-01-01

    Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X.nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

  15. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.

    Science.gov (United States)

    Singh, Swati; Orr, David; Divinagracia, Emmanuel; McGraw, Joseph; Dorff, Kellen; Forst, Steven

    2015-01-01

    Xenorhabdus nematophila engages in a mutualistic partnership with the nematode Steinernema carpocapsae, which invades insects, migrates through the gut, and penetrates into the hemocoel (body cavity). We showed previously that during invasion of Manduca sexta, the gut microbe Staphylococcus saprophyticus appeared transiently in the hemocoel, while Enterococcus faecalis proliferated as X. nematophila became dominant. X. nematophila produces diverse secondary metabolites, including the major water-soluble antimicrobial xenocoumacin. Here, we study the role of X. nematophila antimicrobials in interspecies competition under biologically relevant conditions using strains lacking either xenocoumacin (ΔxcnKL strain), xenocoumacin and the newly discovered antibiotic F (ΔxcnKL:F strain), or all ngrA-derived secondary metabolites (ngrA strain). Competition experiments were performed in Grace's insect medium, which is based on lepidopteran hemolymph. S. saprophyticus was eliminated when inoculated into growing cultures of either the ΔxcnKL strain or ΔxcnKL:F strain but grew in the presence of the ngrA strain, indicating that ngrA-derived antimicrobials, excluding xenocoumacin or antibiotic F, were required to eliminate the competitor. In contrast, S. saprophyticus was eliminated when coinjected into M. sexta with either the ΔxcnKL or ngrA strain, indicating that ngrA-derived antimicrobials were not required to eliminate the competitor in vivo. E. faecalis growth was facilitated when coinjected with either of the mutant strains. Furthermore, nematode reproduction in M. sexta naturally infected with infective juveniles colonized with the ngrA strain was markedly reduced relative to the level of reproduction when infective juveniles were colonized with the wild-type strain. These findings provide new insights into interspecies competition in a host environment and suggest that ngrA-derived compounds serve as signals for in vivo nematode reproduction. PMID:25398871

  16. Captures of MFO-resistant Cydia pomonella adults as affected by lure, crop management system and flight

    OpenAIRE

    Bosch, D; Rodríguez, M.A.; Avilla, J.

    2015-01-01

    The main resistance mechanism of codling moth (Cydia pomonella) in the tree fruit area of Lleida (NE Spain) is multifunction oxidases (MFO). We studied the frequency of MFO-resistant adults captured by different lures, with and without pear ester, and flights in orchards under different crop management systems. The factor year affected codling moth MFO-resistance level, particularly in the untreated orchards, highlighting the great influence of codling moth migration on the spread of resistan...

  17. Characterization of Multiple Heat-Shock Protein Transcripts from Cydia pomonella: Their Response to Extreme Temperature and Insecticide Exposure.

    Science.gov (United States)

    Yang, Xue-Qing; Zhang, Ya-Lin; Wang, Xiao-Qi; Dong, Hui; Gao, Ping; Jia, Ling-Yi

    2016-06-01

    The economically important fruit pest Cydia pomonella (L.) exhibits a strong adaptability and stress tolerance to environmental stresses. Heat-shock proteins (HSPs) play key roles in insects in coping with environmental stresses. However, little is known about the spatiotemporal expression patterns of HSPs and their response to stresses in C. pomonella. In this study, a thermal treatment-recovery test was performed, and the expression profiles of a novel isolated HSP, named CpHSP40, and six CpHSPs were determined. Third-instar larvae were able to recover from cold shock (0 °C) and heat shock (40 °C). Escherichia coli BL21 (DE3) cells harboring recombinant pET-28a (+)-CpHSP40 plasmid showed significant temperature tolerance. CpHSPs were developmentally and tissue-specifically expressed. The responses of CpHSPs to 0 and 40 °C (with or without recovery) and insecticide exposure were varied. All of these indicated that the expression of HSPs plays a role in the development and in environmental adaptation in C. pomonella. PMID:27159229

  18. Effects of some insecticides on the neutral lipid percentage, survival and infectivity of Steinernema carpocapsae ALL and Heterorhabditis amazonensis JPM 4

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Siqueira Sabino

    2014-08-01

    Full Text Available Lipids are an important energy source for entomopathogenic nematodes (EPNs and directly influence their infectivity in the host. Some insecticides reduce the infectivity of infective juveniles (IJs while keeping them viable after exposure. Thus, the objective of this study was to correlate the amounts of lipid reserves in the EPN Heterorhabditis amazonensis JPM 4 and Steinernema carpocapsae ALL with their survival and infectivity when exposed to insecticides that keep the nematodes viable but reduced their infective capacity against Galleria mellonella. Among the tested insecticides, Vertimec and Klorpan were incompatible (class 2 with the two EPN species because they reduced infectivity. The insecticides Vertimec and Klorpan maintained the viability of the IJs but reduced their infectivity and their lipid amounts after insecticide exposure.

  19. A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester

    Directory of Open Access Journals (Sweden)

    JonasMBengtsson

    2014-07-01

    Full Text Available Plant volatiles mediate host discrimination and host finding in phytophagous insects. Understanding how insects recognize these signals is a current challenge in chemical ecology research. Pear ester, ethyl (E,Z-2,4-decadienoate, is a powerful, bisexual attractant of codling moth Cydia pomonella (Lepidoptera, Tortricidae and strongly synergizes the male response to female-produced sex pheromone. We show here that the codling moth odorant receptor (OR CpomOR3 is dedicated to detecting this plant volatile. Heterologous expression of CpomOR3 in Drosophila T1 trichoid and ab3A basiconic sensilla, followed by a screening with codling moth pheromone compounds and known plant volatile attractants, confirms that CpomOR3 binds to pear ester. Although CpomOR3 does not respond to any of the pheromone components tested, a phylogenetic analysis of lepidopteran chemosensory receptor genes reveals a close relationship of CpomOR3 with pheromone receptors (PRs in moths. This corroborates the interaction of ecological and social chemosensory cues during premating communication. The finding that a plant volatile compound, pear ester, is a specific ligand for a PR-like lepidopteran receptor adds to our understanding of insect-plant interactions and emphasizes the interaction of natural and sexual selection during the phylogenetic divergence of insect herbivores.

  20. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles

    Science.gov (United States)

    Hern, Alan; Dorn, Silvia

    Host plant-derived esters were investigated as potential female-specific attractants for the codling moth (CM), Cydia pomonella (L.), a key pest of apples worldwide. The behavioural effects of single and combined volatile compounds and of a natural odour blend were examined using olfactometry and wind-tunnel bioassays. The apple-derived volatile butyl hexanoate attracted mated females while it was behaviourally ineffective for males over a dosage range of more than three orders of magnitude in olfactometer assays. Female CM preferred this kairomone to the headspace volatiles from ripe apples. Both no-choice and choice trials in the wind-tunnel suggested that female moths might be effectively trapped by means of this compound. In contrast, headspace volatiles collected from ripe apple fruits as well as a blend containing the six dominant esters from ripe apples were behaviourally ineffective. A female-specific repellency was found for the component hexyl acetate in the olfactometer, but this ester had no significant effect in the wind-tunnel. Butyl hexanoate with its sex-specific attraction should be further evaluated for monitoring and controlling CM females in orchards.

  1. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.

    Science.gov (United States)

    McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J

    2016-07-01

    Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities. PMID:27369280

  2. The effect of environmental conditions on viability of irradiated codling moth Cydia Pomonella (L.) adults

    International Nuclear Information System (INIS)

    Cooled (4 ± 2 Centigrade) codling moth, Cydia pomonella (L.) males exposed to dose of 350 Gy were released in apple orchards starting at 6:00 o'clock in the morning until 4:00 in the afternoon at 2 h. intervals. Moths were released in shade (under trees) or in the sun (between trees), the number of dead moths after 20 minutes of release were recorded, percentage mortality was calculated and compared with unirradiated controls. The effect of ambient temperature and relative humidity on moth survival and activity was evaluated by counting the number of caught males by pheromone traps. Results showed that percentage mortality increased with increase in temperature and decrease in relative humidity and reached to 82% at 30 Centigrade and 40% Rh., when irradiated moths were released under direct sun shine. However, when moths were released in the shade under the same conditions, survival rate was as high as 91%. Results also showed that percentage survival in irradiated males was less than in the control when moths were released under direct sunshine. Results of monitoring moth activity also showed that pheromone trap continued to catch males for up to 8 days which may suggests that released males lived under field conditions for no less than one week. (author)

  3. Potential geographical distribution of Rhagoletis pomonella (Diptera: Tephritidae)in China

    Institute of Scientific and Technical Information of China (English)

    Jian Geng; Zhi-Hong Li; Edwin G. Rajotte; Fang-Hao Wan; Xiao-Yu Lu; Zhi-Ling Wang

    2011-01-01

    Apple maggot fly, Rhagoletis pomonella (Walsh) is a major pest causing considerable economic losses of fruits in North America. During the development of international trade, apple maggot fly has become a threat to Chinese agriculture. In this study, CLIMEX and ArcGIS were used to predict the potential geographical distribution of apple maggot fly in China. The parameters used in CLIMEX for apple maggot fly were derived from ecological data and the present geographical distribution of apple maggot fly in North America. Then the potential distribution map in China was presented based on the adjusted values of these parameters. The results showed that apple maggot fly has a wide potential distribution area in China; 47.5% of 748 meteorological stations presented high or medium suitability of pest establishment. These high suitable stations are mainly located in northeast, southwest and northwest of China, such as Liaoning, Shandong,Gansu and Shaanxi Provinces. These areas are also the central regions of apple, pear and peach production in China. Two hundred and twenty-five stations (30.1%) in western and southern China, such as Tibet, Qinghai, Guangdong, Guangxi, Hainan and Taiwan,were unsuitable for establishment of apple maggot fly populations. In order to prevent the introduction of apple maggot fly in China, the present plant quarantine measures should be enhanced, especially in the areas with high suitability for the presence of apple maggot fly.

  4. How the oligophage codling moth Cydia pomonella survives on walnut despite its secondary metabolite juglone.

    Science.gov (United States)

    Piskorski, Rafal; Dorn, Silvia

    2011-06-01

    Besides apple, its primary host, the codling moth Cydia pomonella uses walnut as a secondary host. Abundance of toxic naphthoquinones, among which juglone prevails, does not restrain this economically important pest insect from infesting walnut, but processes underlying the suitability of this host were yet unknown. Larvae feeding on an artificial diet supplemented with juglone at naturally occurring concentrations survived to adulthood at a similarly high proportion as those in the juglone-devoid control. However, their development time was prolonged, their weight gain was reduced, and adult sex ratio was distorted. Results from the natural system with walnut and apple fruits were in line with data gained on artificial diet. Remarkably, a twofold increase of the maximal juglone content reported from the walnut husk was lethal to the larvae. Chemical analyses showed that larvae feeding on the artificial diet supplemented with juglone concentrations present in walnut contained 1,4,5-trihydroxynaphthalene and excreted it in their frass, whereas the hemolymph contained neither detectable amounts of juglone nor the product of its reduction. Hence, effective metabolism of juglone in the intestinal system of the larvae underlies their survival on host plants containing this defensive compound. PMID:21356213

  5. Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella

    Directory of Open Access Journals (Sweden)

    Claire Duménil

    2014-09-01

    Full Text Available The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae, is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.

  6. Effects of ionizing radiation on codling moth Cydia pomonella (L) female's ability to attract males in the field

    International Nuclear Information System (INIS)

    Codling moth Cydia pomonella L. males and females were exposed to three levels of gamma radiation (0, 250 and 350 Gy). Females were used in pheromone traps (instead of pheromone capsules) inside wire cages at a rate of one female / trap. Males were released in a 2 * 2 m square in the middle of the orchard and the number of caught males (wild and released ) in female baited traps was recorded. Results showed an inverse relationship between radiation dose and the ability of females to attract males (wild and released). Contrary to that, result showed that the higher the dose, the lower was the number of males caught in female baited traps. (author)

  7. Parasitoides nativos de Rhagoletis pomonella Walsh (Diptera: Tephritidae) en tejocote Crataegus spp. en el centro de México

    OpenAIRE

    Erica MUÑIZ-REYES; J. Refugio LOMELÍ-FLORES; Julio SÁNCHEZ-ESCUDERO

    2011-01-01

    Rhagoletis pomonella es una de la principales plagas de tejocote en la zona central de México, donde llega a ocasionar la pérdida de 100% de la cosecha si no se realizan medidas de control. Con la finalidad de conocer el complejo de enemigos naturales asociados a esta especie, se realizaron colectas de puparios de este tefrítido en Texcoco, Edo. de México de 2007 a 2009. Los puparios se mantuvieron en condiciones controladas durante la diapausa en espera de la emergencia de parasitoides. Se c...

  8. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus)(Lepidoptera: Tortricidae) to facilitate expansion of field application

    Science.gov (United States)

    The codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is a key pest of most pome fruit (apple, pear and quince) and walnut orchards in the temperate regions of the world. Efforts to control the codling moth have in the past mostly relied on the use of broad spectrum insecticide spra...

  9. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella.

    Directory of Open Access Journals (Sweden)

    Jan Rozsypal

    Full Text Available BACKGROUND: The codling moth (Cydia pomonella is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. PRINCIPAL FINDINGS: We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately -15.3 °C during summer to -26.3 °C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to -15 °C, even in partially frozen state. CONCLUSION: Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer.

  10. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae)

    Institute of Scientific and Technical Information of China (English)

    ABBAS KHANI; SAEID MOHARRAMIPOUR; MOHSEN BARZEGAR; HOSSEIN NADERI-MANESH

    2007-01-01

    Seasonal changes in the fatty acid composition of the total lipid extracted from the whole body of Cydia pomonella L. larvae were determined by gas chromatography. The six most abundant fatty acids in both non-diapause and diapause larvae of codling moth were oleic (35%-39%), palmitic (23%-33%), linoleic (16%-30%), palmitoleic (5%-10%),stearic (1.5%-3.0%) and linolenic acids (1.0%-2.5%). This represents a typical complement of Lepidopteran fatty acids. The fatty acid composition of total lipid of C. pomonella larvae was related to diapause. In similarity to most other reports, the proportion of unsaturated fatty acids increased in diapause initiation state. The total lipid of diapause larvae contained more linoleic acid (25.8% vs. 16.1%) and less palmitic acid (24.7% vs. 33.4%),than that ofnon-diapause larvae. The weight percentage of linoleic acid (C18:2) increased from 16% to 26% from early-August through early-September during transition to diapause,while palmitic acid (C16:0) decreased from 33% to 25% at the same time. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (UFA/SFA) from 1.72 in non-diapause larvae to 2.63 in diapause larvae.

  11. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella

    Directory of Open Access Journals (Sweden)

    Orkun Baris Kovanci

    2016-03-01

    Full Text Available Behavioral manipulation of codling moth with spice-based deterrents may provide an alternative control strategy. Microencapsulation technology could lead to more effective use of spice essential oils and oleoresins in the field by extending their residual activity. The feeding and oviposition deterrent potential of the microencapsulated cardamom (Elettaria cardamomum [L.] Maton oleoresin (MEC-C and eucalyptol (MEC-E were evaluated against codling moth, Cydia pomonella Linnaeus, 1758. MEC-C capsules contained both 1,8-cineole and a-terpinyl acetate, whereas MEC-E capsules contained only 1,8-cineole. In larval feeding bioassays, MEC-E exhibited the lowest feeding deterrent activity (33% while MEC-C at 100 mg mL-1 had the highest (91%. The highest oviposition deterrence activity against gravid females was also shown by MEC-C at 100 mg mL-1 with 84% effective repellency. In 2010 and 2011, two apple orchards were divided into four 1 ha blocks and sprayed with the following treatments in ultra-low volume sprays: (a MEC-E at 100 g L-1, (b MEC-C at 50 g L-1, (c MEC-C at 100 g L-1, and (d MEC-pyrethrin at 15 mL L-1. Water-treated abandoned orchards were used as negative controls. Moth catches were monitored weekly using Ajar traps baited with the combination of codlemone, pear ester, and terpinyl acetate. Based on pooled data, mean cumulative moth catch per trap per week was significantly higher in the MEC-E blocks (26.3 male and 13.5 female moths than those in other treatments except the abandoned blocks. At mid-season and pre-harvest damage assessment, the percentage of infested fruits with live larvae in the high dose MEC-C-treated blocks was reduced to 1.9% and 2.3% in 2010 and to 1.1% and 1.8% in 2011, respectively. Since fruit damage exceeded the economic damage threshold of 1%, high-dose MEC-C treatment may only offer supplementary protection against codling moth in integrated pest management programs.

  12. Effects of ionizing radiation on codling moth cydia pomonella (L) female's ability to attract males in the field

    International Nuclear Information System (INIS)

    Codling moth Cydia pomonella L. males and females were exposed to three levels of gamma radiation (0, 250 and 350 Gy). Females were used in pheromone traps (instead of pheromone capsules) inside wire cages at a rate of one female / trap. Males were released in a 2 x 2 m square in the middle of the orchard and the number of caught males (wild and released ) in female baited traps was recorded. Results showed an inverse relationship between radiation dose and the ability of females to attract males (wild and released). Contrary to that, result showed that the higher the dose, the lower was the number of males caught in female baited traps. (author)

  13. Rapid and repeatable shifts in life‐history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States

    OpenAIRE

    Mattsson, Monte; Hood, Glen R.; Jeffrey L. Feder; Ruedas, Luis A.

    2015-01-01

    Abstract Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn ( Crataegus mollis) to introduced, domesticated apple ( Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in p...

  14. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    Science.gov (United States)

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin. PMID:27017882

  15. Studium syntenie chromosomu Z obaleče jablečného (Cydia pomonella) (L.) metodou BAC-FISH.

    OpenAIRE

    Nguyen, Petr

    2009-01-01

    In this study, the codling moth (Cydia pomonella) partial sequences orthologous to genes that are Z-linked in other lepidopteran species were isolated and used as probes for screening of the codling moth BAC library. Selected BAC clones were labelled and mapped by fluorescence in situ hybridization (the so-called BAC-FISH) to codling moth chromosomes. Where BAC clones were unavailable, Z-linkage was confirmed by Southern hybridization with male and female genomic DNAs. The results revealed co...

  16. EVALUACIÓN DE UNA FORMULACIÓN ATRACTICIDA PARA CONTROL DE Cydia pomonella (L. (Lepidoptera: Tortricidae EN MANZANOS EN EL ESTADO DE WASHINGTON, EEUU Assessment of an attracticide formulation to control Cydia pomonella (L. (Lepidoptera: Tortricidae in apple orchards in Washington State, USA.

    Directory of Open Access Journals (Sweden)

    Tomislav Curkovic S.

    2003-07-01

    Full Text Available Se evaluó la actividad de un atracticida (Sirene®CM: 0,16% codlemone + 6% permetrina en el control y atracción de machos de Cydia pomonella. Los machos fueron atraídos por un período prolongado (> 80 días hacia las trampas con el atracticida. Sólo una pequeña proporción ( 2,5 m.Cydia pomonella control and male attraction of an attracticide (Sirene®CM: 0.16% codlemone + 6% permethrin were evaluated. The attracticide had a long-lasting attraction (> 80 days for males to regular traps. Only a small proportion of males ( 2.5 m.

  17. Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States.

    Science.gov (United States)

    Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A

    2015-12-01

    Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process. PMID:26811757

  18. 斯氏线虫对天幕毛虫幼虫取食差异性的初步研究%Preliminary Study on the Feeding Difference of Steinernem Carpocapsae on Larva of Malacosoma Neustria Testacea

    Institute of Scientific and Technical Information of China (English)

    王春蕾

    2014-01-01

    利用斯氏线虫属小卷叶蛾线虫(Steinernem carpocapsae)防治鳞翅目天幕毛虫幼虫。分别以不同浓度的活线虫组织匀浆溶液和死线虫组织匀浆溶液喷洒叶片,让供试昆虫食用。试验结果表明:昆虫病原线虫对天幕毛虫的防治效果良好。%This research aimed at using Steinernem carpocapsae to control larva of Malacosoma neustria testacea. Solutions of living nematodes homogenate and dead worm homogenates of different concentrations were sprayed on leaves to make them edible for insects. The experimentation results indicated that nematode has good effect on the control of Malacosoma neustria testacea.

  19. Isolation, characterization and localization of orthologous sequence of the \\kur{Drosophila Notch} gene in codling moth, \\kur{Cydia pomonella}

    OpenAIRE

    Kůta, Václav

    2011-01-01

    The codling moth, Cydia pomonella (Tortricidae) is a significant pest in apple orchards. In the 1990ies, a control programme using the Sterile Insect Technique (SIT) has been established, based on bisexual releases of sterile insects into wild populations of this pest. Male-only releases are not possible due to the lack of an efficient system to produce male-only progeny. Recently, a new approach has been proposed for the development of genetic sexing strains in Lepidoptera. It is based on in...

  20. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  1. Exploración de enemigos naturales nativos de Rhagoletis pomonella Walsh, (Díptera: Tephritidae) en tejocote Crataegus spp. en comunidades del centro de México.

    OpenAIRE

    Muñiz Reyes, Erica

    2011-01-01

    El manejo del tefrítido Rhagoletis pomonella en zonas productoras de tejocote Crataegus spp. en México, se realiza bajo un esquema convencional basado en el uso de insecticidas químicos. Es importante considerar una transición agroecológica, que comience por la unidad productiva, para lo cual es esencial la participación de los productores agrícolas involucrados. La inclusión de la investigación social en este estudio permitió conocer la manera en la que los productores enfrentan el problema ...

  2. Detección de poblaciones de Rhagoletis pomonella (Diptera: Tephritidae) durante la fructificación de Crataegus mexicana (Rosaceae) en Puebla, México

    OpenAIRE

    Vicente Hern\\u00E1ndez Ortiz; Irma Morales; Carlos Vergara

    2004-01-01

    Durante el período de fructificación-maduración del tejocote (Crataegus mexicana), se realizó una evaluación de las poblaciones de Rhagoletis pomonella (Walsh), con el propósito de detectar las etapas críticas de la infestación. El estudio se llevó a cabo en el Municipio de Huejotzingo, Puebla, para lo cual se seleccionaron cuatro localidades de muestreo. La detección de adultos se efectuó empleando 64 trampas tipo Mc Phail durante 15 semanas (entre septiembre y diciembre 1997), distribuidas ...

  3. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to R. pomonella flies from the western U.S.

    Science.gov (United States)

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonel...

  4. Captures of MFO-resistant Cydia pomonella adults as affected by lure, crop management system and flight.

    Science.gov (United States)

    Bosch, D; Rodríguez, M A; Avilla, J

    2016-02-01

    The main resistance mechanism of codling moth (Cydia pomonella) in the tree fruit area of Lleida (NE Spain) is multifunction oxidases (MFO). We studied the frequency of MFO-resistant adults captured by different lures, with and without pear ester, and flights in orchards under different crop management systems. The factor year affected codling moth MFO-resistance level, particularly in the untreated orchards, highlighting the great influence of codling moth migration on the spread of resistance in field populations. Chemical treatments and adult flight were also very important but mating disruption technique showed no influence. The second adult flight showed the highest frequency, followed by the first flight and the third flight. In untreated orchards, there were no significant differences in the frequency of MFO-resistant individuals attracted by Combo and BioLure. Red septa lures baited with pear ester (DA) captured sufficient insects only in the first generation of 2010, obtaining a significantly lower proportion of MFO-resistant adults than Combo and BioLure. In the chemically treated orchards, in 2009 BioLure caught a significantly lower proportion of MFO-resistant adults than Combo during the first and third flight, and also than DA during the first flight. No significant differences were found between the lures or flights in 2010. These results cannot support the idea of a higher attractiveness of the pear ester for MFO-resistant adults in the field but do suggest a high influence of the response to the attractant depending on the management of the orchard, particularly with regard to the use of chemical insecticides. PMID:26497943

  5. Possibilities of eradicating the codling moth, Cydia pomonella L. from Syria, by releasing gamma irradiation sterilized males

    International Nuclear Information System (INIS)

    Being a large apple producer, Syria is facing difficulties in exporting its surplus because of the high level of pesticide residues from the control of Codling moth, Cydia pomonella L. etc. In addition, these species are under quarantine in some countries. A solution could be in using the sterile insect release technique (SIRT) for Codling moth. This method, however, has some limitations. It requires a thorough knowledge of biology and ecology of the pest species. It is also specific and effective towards particular pest species. A disadvantage could be the necessity to spray for other apple pests. Reporting the life history of the Codling moth in the apple producing regions, this paper discusses the possibility of using the SIRT for codling moth eradication. The results of the study indicate that the Codling moth has two distinct generations in the three main producing regions of the country. They also show that the separation between generations is very clear which may facilitate decision making in Codling moth control and eradication methods and reduces the number of required pesticide sprays. This also could be useful in adjusting Codling moth mass reading and release operations in a sterile insect release programme. Sex ratio is about 1:1 (males to females) and fecundity of the summer generation is higher than the spring one. The results also show that a very small percentage of the spring generation larvae enter diapause, while most of the summer generation larvae and all of those maturing in September do so. Studies on population density show that it is more than 5 times higher in neglected orchards than in commercial ones. Also the Codling moth summer generation increases about three times more than the spring generation, due probably to higher fecundity and favourable climatic conditions. (author)

  6. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models.

    Science.gov (United States)

    Kumar, Sunil; Neven, Lisa G; Zhu, Hongyu; Zhang, Runzhi

    2015-08-01

    Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and correlative niche models to quantify and map the global patterns of the potential for establishment of codling moth (Cydia pomonella L.), a major pest of apples, peaches, pears, and other pome and stone fruits, and a quarantine pest in countries where it currently does not occur. The mechanistic model CLIMEX was calibrated using species-specific physiological tolerance thresholds, whereas the correlative model MaxEnt used species occurrences and climatic spatial data. Projected potential distribution from both models conformed well to the current known distribution of codling moth. None of the models predicted suitable environmental conditions in countries located between 20°N and 20°S potentially because of shorter photoperiod, and lack of chilling requirement (<60 d at ≤10°C) in these areas for codling moth to break diapause. Models predicted suitable conditions in South Korea and Japan where codling moth currently does not occur but where its preferred host species (i.e., apple) is present. Average annual temperature and latitude were the main environmental variables associated with codling moth distribution at global level. The predictive models developed in this study present the global risk of establishment of codling moth, and can be used for monitoring potential introductions of codling moth in different countries and by policy makers and trade negotiators in making science-based decisions. PMID:26470312

  7. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L..

    Directory of Open Access Journals (Sweden)

    Sibylle Stoeckli

    Full Text Available Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season and spatial (regional resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074, the present risk of below 20% for a pronounced second generation (peak larval emergence in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require

  8. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.).

    Science.gov (United States)

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant

  9. Impact of Climate Change on Voltinism and Prospective Diapause Induction of a Global Pest Insect – Cydia pomonella (L.)

    Science.gov (United States)

    Stoeckli, Sibylle; Hirschi, Martin; Spirig, Christoph; Calanca, Pierluigi; Rotach, Mathias W.; Samietz, Jörg

    2012-01-01

    Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature – the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045–2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70–100%. The risk of an additional third generation will increase from presently 0–2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of

  10. Utilización de Microsatélites para la Determinación de la Polilla de la Manzana Cydia pomonella L. (Lepidoptera: Tortricidae) en Chile Central Utilization of Microsatellites to Determine Genetic Variability of the Codling Moth Cydia pomonella L. (Lepidoptera: Tortricidae) in Central Chile

    OpenAIRE

    Juan L Espinoza; Eduardo Fuentes-Contreras; Wilson Barros; Claudio Ramírez

    2007-01-01

    La polilla de la manzana (Cydia pomonella L.) es la plaga más importante de los frutales pomáceos en el mundo. A pesar de su gran importancia económica, poco se sabe acerca de su estructura genética y patrones de movimiento a escala local y regional, aspectos importantes para establecer una estrategia de control de esta plaga. Mediante la utilización de microsatélites se realizó un análisis de la variabilidad genética de seis poblaciones de la polilla de la manzana en las dos principales regi...

  11. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to Rhagoletis pomonella flies from the western United States.

    Science.gov (United States)

    Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2012-03-01

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies. PMID:22399441

  12. Codling Moth (Cydia pomonella)

    OpenAIRE

    Alston, Diane; Murray, Marion; Reding, Michael

    2010-01-01

    Codling moth (Order Lepidoptera, Family Tortricidae) is the most serious pest of apple and pear worldwide. In most commercial fruit producing regions and home yards in Utah, fruit must be protected to harvest a crop. Insecticides are the main control tactic. There are new insecticides available, many of which are less toxic to humans and beneficial insects and mites than earlier insecticides. For commercial orchards with more than 10 acres of contiguous apple and pear plantings, pheromone-bas...

  13. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV: Ability to Control Susceptible and Resistant Pest Populations

    Directory of Open Access Journals (Sweden)

    Benoit Graillot

    2016-05-01

    Full Text Available The detection of resistance in codling moth (Cydia pomonella populations against the Mexican isolate of its granulovirus (CpGV-M, raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized—among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides.

  14. Evaluating the potential of suppressing codling moth, Cydia pomonella L. field populations by the use of the sterile insect release method

    International Nuclear Information System (INIS)

    Studies were done to evaluate the possibility of using the sterile insect technique for codling moth, Cydia pomonella L., eradication from Syria. Data accumulated during these studies indicate that codling moth has two distinct generations (spring and summer generation) in the country. Spring generation starts from mid April to early May, reaches its peak about one month later, then declines rapidly soon after. Adults of summer generation start their activity in July, peak in August and wild moths disappear by late September to early October. A very small percentage of spring generation larvae enter diapause, while most of summer generation larvae and all of hose maturing in September do so. Sex ratio is about 1:1 (males to females). Studies on population density and rate of increase show that it ranged between 2.4 and 11.05 larvae/tree in commercial and neglected apple orchards respectively. The results also indicate that codling moth summer generation increased about three times more than spring generation. In the radiosensitivity studies, it is clear that egg production and hatch decreased with increasing radiation dose. Females were more sensitive to irradiation treatment than males. A dose of 15 krad caused 100% sterility in treated females and reduced fecundity to less than 1% This dose (35 Krad) had no adverse effect on male longevity and competitiveness under laboratory conditions. However, males exposed to a dose of 25 or 35 Krad mated less times than control males and recovered some of their fertility overtime. (author)

  15. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme

    Science.gov (United States)

    Chidawanyika, Frank; Terblanche, John S

    2011-01-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy. PMID:25568003

  16. Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations.

    Science.gov (United States)

    Graillot, Benoit; Bayle, Sandrine; Blachere-Lopez, Christine; Besse, Samantha; Siegwart, Myriam; Lopez-Ferber, Miguel

    2016-01-01

    The detection of resistance in codling moth (Cydia pomonella) populations against the Mexican isolate of its granulovirus (CpGV-M), raised questions on the sustainability of the use of this biological insecticide. In resistant host cells, CpGV-M is not able to complete its replication cycle because replication is blocked at an early step. Virus isolates able to overcome this resistance have been characterized-among them, the CpGV-R5 isolate. In mixed infections on resistant insects, both CpGV-M and CpGV-R5 viruses replicate, while CpGV-M alone does not induce mortality. Genetically heterogeneous virus populations, containing 50% of each CpGV-M and CpGV-R5 appear to control resistant host populations as well as CpGV-R5 alone at the same final concentration, even if the concentration of CpGV-R5 is only half in the former. The use of mixed genotype virus preparations instead of genotypically homogeneous populations may constitute a better approach than traditional methods for the development of baculovirus-based biological insecticides. PMID:27213431

  17. Implementation of the sterile insect release programme to eradicate the codling moth, Cydia pomonella (L.) (Lepidoptera: Olethreutidae), in British Columbia, Canada

    International Nuclear Information System (INIS)

    The sterile insect release (SIR) programme to eradicate the codling moth, Cydia pomonella (L.), from the Okanagan region by the year 2000 has begun. The SIR programme includes about 8000 ha of apple and pear trees. In many orchards, the cessation of insecticidal sprays for codling moth control should permit apples to be grown without pesticide applications during the fruit development period, a major environmental and economic benefit. Research done by M.D. Proverbs and colleagues over twenty years has established techniques for rearing, sterilizing and releasing codling moths. However, the SIR costs estimated from a pilot project were more than twice those of chemical sprays to control the pest. Nevertheless, recent studies have shown that a programme would be economical if only the minimum required number of moths was released, if the eradication area was treated in steps and if reinfestation was prevented. The British Columbia Fruit Growers' Association helped to develop an implementation plan which included a budget, a revenue scheme and a political and administrative framework. The plan was approved by the municipal governing bodies in the region, as well as the Provincial and Federal Governments. Enabling legislation was passed in 1989. Funds for equipment and a rearing facility to produce about five million moths per week were provided by the two senior governments, and the municipal governing bodies will collect property taxes and parcel based on the orchard are to cover the operational costs. The first phase of the programme, wild population reduction, started in 1992; the second, sterile moth release, will begin in 1994, and the third, prevention of reinfestation, will start in 1997. Recent improvements in the rearing procedures will increase efficiency and production security, and reduce worker health hazards. The integrated pest management systems in apples and pears may require some changes when the moth release phase of SIR begins. (author). 18 refs

  18. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    Science.gov (United States)

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  19. The behavior of Cydia pomonella larvae both inside and outside fruit%苹果蠹蛾的蛀果与脱果特性

    Institute of Scientific and Technical Information of China (English)

    杜磊; 刘伟; 柴绍忠; 杨建强; 张润志

    2012-01-01

    The codling moth Cydia pomonella ( L. ) is an important quarantine pest in China that inflicts serious damage to apple and pear crops. The newly hatched larvae bore into the fruit, and eat the seed to complete the larval stage. The mature larvae leave the fruit at night to find suitable sites to form cocoons. In order to better understand the behavioral traits of codling moth larvae and provide basic information to improve control of this pest we studied the behavior of codling moth larvae in Celingbulongtan in Inner Mongolia. The main results were as follows: (1) at high population densities, the average numbers of holes bored in fruit was 5. 25 and the initial number of larvae that entered was 2-8; (2) The number of larvae in damaged fruit had no relationship to the numbers of holes bored in the fruit. In general, damaged fruit contained less than 3 larvae. (3) When the number of holes in fruit was high ( on apples > 5 , on pears > 2) larvae stopped eating seeds and began to eat pulp. (4) 43. 1% of larvae left damaged apples within 5days and 99. 9% of them left within 15 days. (5) 94% of the larvae left damaged apples at night and 6% of them left during the day. (6) 64% of larvae remained in damaged apples when the study ended. These results indicate that codling moth larvae are subject to intense competition at high population density, and collecting fallen fruit will be an effective control method.%苹果蠹蛾Cydia pomonella(L.)是我国重大植物检疫性有害生物,对苹果属以及梨属的水果生产造成严重的危害.该虫以初孵化的1龄幼虫蛀入果肉,在果实内部取食为害并完成发育,老熟幼虫在黑暗中离开果实并寻找场所结茧化蛹.为掌握苹果蠹蛾幼虫进入及脱出果实时的行为特性,从而为实施有效的防治措施提供基础信息,本文在内蒙古格棱布楞滩对苹果蠹蛾幼虫的蛀果与脱果特性开展了详细研究.取得的主要研究结果如下:1)在苹果蠹蛾种群密度

  20. Susceptibilidad a Insecticidas y Actividad Enzimática de Cydia pomonella L. (Lepidoptera: Tortricidae Proveniente de Tres Huertos de la Región del Maule, Chile Insecticide Susceptibility and Enzymatic Activity of Cydia pomonella L. (Lepidoptera: Tortricidae from Three Apple Orchards of Maule Region, Chile

    Directory of Open Access Journals (Sweden)

    Maritza Reyes

    2004-07-01

    Full Text Available Cydia pomonella L., la principal plaga de pomáceas y nogales en Chile, ha sido controlada casi exclusivamente con aplicaciones de insecticidas organofosforados. Sin embargo, durante las últimas temporadas se han observado crecientes niveles de frutos dañados a cosecha. Dado que esta plaga ha desarrollado resistencia a insecticidas en varios países, se evaluó la susceptibilidad a dosis diagnóstico de azinfos metil y tebufenozide de larvas diapausantes provenientes de tres huertos de manzano de la Región del Maule y una cepa susceptible de referencia (S; además de la actividad de enzimas detoxificadoras en adultos emergidos de las mismas Tanto la actividad de oxidasas de función múltiple (OFM como de glutation-S-transferasas (GST se evaluó a través de fluorimetría, mientras la de esterasas (EST se determinó por absorbancia. La mortalidad larvaria frente a azinfos metil fue significativamente menor para Molina y Teno (30 y 85,4%, respectivamente que para la cepa S (95,3%. Para tebufenozide la mortalidad larvaria fue significativamente menor en Molina (35,31% que en la cepa S (88,6%. La actividad de GST fue significativamente mayor en dos de los tres huertos analizados (Teno = 13.679 unidades de fluorescencia insecto-1 y Molina =13.096 unidades de fluorescencia insecto-1. Similarmente, la actividad de OFM fue significativamente mayor en los mismos huertos, con valores 25,08 y 17,95 picogramos (pg de 7OH insecto-1 min.-1 para Molina y Teno, respectivamente. La cepa S presentó una actividad de EST significativamente mayor que la de las otras poblaciones, la cual parece no estar relacionada con la menor susceptibilidad a los insecticidas evaluados.Cydia pomonella L., the major pest of pome fruits and walnuts in Chile, has been controlled almost exclusively with applications of organophosphates insecticides. However, during the last few seasons, increasing levels of fruit damage at harvest have been observed. Given that this insect has

  1. 苹果蠹蛾种群遗传多样性研究进展%Recent advances concerning the population genetic diversity of the codling moth, Cydia pomonella (L.)

    Institute of Scientific and Technical Information of China (English)

    李玉婷; 陈茂华

    2015-01-01

    苹果蠹蛾是重要的世界性果树害虫,寄主广泛,通过形成各种生态型或种群适应新入侵环境,对当地果品生产造成严重损失。本文综述了国内外有关苹果蠹蛾遗传多样性的研究进展。相关研究表明,寄主植物、地理隔离和杀虫剂等因素影响种群间的遗传多样性和遗传分化。其中,地理隔离是种群间形成遗传分化的主要原因之一,寄主分布格局、气候条件、虫体飞行能力和人为活动等因素都会影响种群间遗传分化的程度。苹果蠹蛾是我国重要的入侵害虫,我国东北地区和西北地区的苹果蠹蛾种群具有不同的遗传多样性水平,并且种群间有一定程度的分化,今后需要进一步研究影响我国苹果蠹蛾种群遗传的重要因素,明确该虫种群间分化情况、入侵来源和扩散路径,这对于延缓苹果蠹蛾在我国的扩散,制定合理有效的综合防治策略具有重要意义。%The codling moth, Cydia pomonella is an important cosmopolitan fruit pest. This species has a wide host range, and forms various ecotypes or populations to adapt newly invaded habitats, thus causing serious economic losses to fruit production every year. The research progresses of C. pomonella genetic diversity in China and other counties were reviewed in the current paper. The previ ̄ous research showed that some factors including host plants, geographic isolation and insecticide application could affect the popula ̄tion genetics of C. pomonella. Geographic isolation was one of the major factors which caused genetic differentiation of the pest, whilst other factors including host plant distribution, climate, flight capacity and anthropogentic measures could also influence the extent of genetic differentiation. C. pomonella populations from the northwestern vs. northeastern China have different level of genetic diversity, and show genetic differentiation. The further research need to be

  2. Identification of fruit volatiles from green hawthorn (Crataegus viridis) and blueberry hawthorn (Crataegus brachyacantha) host plants attractive to different phenotypes of Rhagoletis pomonella flies in the southern United States.

    Science.gov (United States)

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. In a companion paper, we showed that R. pomonella flies infesting two different mayhaw species (Crataegus opaca and C. aestivalis) can discriminate between volatile blends developed for each host fruit, and that these blends are different from previously constructed blends for northern fly populations that infest domestic apple (Malus domestica), downy hawthorn (Crataegus mollis), and flowering dogwood (Cornus florida). Here, we show by using coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays, that two additional southern hawthorn fly populations infesting C. viridis (green hawthorn) and C. brachyacantha (blueberry hawthorn) also can discriminate between volatile blends for each host fruit type. A 9-component blend was developed for C. viridis (3-methylbutan-1-ol [5%], butyl butanoate [19.5%], propyl hexanoate [1.5%], butyl hexanoate [24%], hexyl butanoate [24%], pentyl hexanoate [2.5%], 1-octen-3-ol [0.5%], pentyl butanoate [2.5%], and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) [20.5%]) and an 8-component blend for C. brachyacantha (3-methylbutan-1-ol [0.6%], butyl acetate [50%], pentyl acetate [3.5%], butyl butanoate [9%], butyl hexanoate [16.8%], hexyl butanoate [16.8%], 1-octen-3-ol [0.3%], and pentyl butanoate [3%]). Crataegus viridis and C. brachyacantha-origin flies showed significantly higher levels of upwind oriented flight to their natal blend in flight tunnel assays compared to the alternate, non-natal blend and previously developed northern host plant blends. The presence of DMNT in C. viridis and butyl acetate in C. brachyacantha appeared to be largely responsible for driving the differential response. This sharp behavioral distinction underscores the diversity of odor response phenotypes in the southern USA, points to possible host race formation in these

  3. Application of biological pesticides in the control of codling moth, Cydia pomonella (L.)%生物源农药在苹果蠹蛾防治中的应用

    Institute of Scientific and Technical Information of China (English)

    吴正伟; 杨雪清; 张雅林

    2015-01-01

    The codling moth, Cydia pomonella (L.) (Lepidoptera:Tortricidae), a notorious quarantine fruit pest worldwide, poses a serious threat to the main apple producing areas in China. In terms of food safety, environmentally friendly biological pesticides are desirable substitutes for chemical pesticides;the long ̄term use of the latter have caused resistance, preventing its long team use for codling moth control. The present review summarized the use of biological pesticides, including parasitoids, sterilized insect, granu ̄lovirus, entomopathogenic nematodes, Bacillus thuringiensis, entomopathogenic fungi, microsporidia, sex pheromone, cantharidin, and spinosad that have been either applied or suggested to control codling moth. The challenges faced by biological pesticides are al ̄so discussed, and anyhow it will play an important role in the integrated pest management of codling moth due to its characteristics of infinite variety, wide source, good selectivity in application.%苹果蠹蛾是世界性检疫害虫,对我国苹果优势产区构成了巨大威胁。长期依赖化学防治使该虫抗性问题变得十分严峻。为了保障食品安全,以环境友好的生物源农药替代化学农药已成为当前苹果蠹蛾防治的热点。本文对国内外现有的生物源农药,如寄生蜂、不育昆虫、颗粒体病毒、病原线虫、Bt、病原真菌、微孢子虫、性信息素、斑蝥素、多杀菌素等,在苹果蠹蛾防治中的最新应用及其存在的问题进行论述,讨论了生物源农药凭借其种类多、来源广且在用药时期上选择性强等特点,在该虫综合治理中的重要地位及面临的挑战。

  4. Enhancing biological control in apple orchards

    OpenAIRE

    Lordan Sanahuja, Jaume

    2014-01-01

    La tisoreta comuna Forficula auricularia Linnaeus i Forficula pubescens Gené (Dermaptera : Forficulidae ) poden tenir un paper decisiu com a depredadors. Es va observar compatibilitat entre la tisoreta i nematodes entomopatògens (NEPs) i una activitat dissuassòria en larves de carpocapsa Cydia pomonella L. (Lepidoptera: Tortricidae) mortes per NEPs, reduint l’alimentació de la tisoreta sobre cadàvers que contenien nematodes al seu interior. La presència de tisoretes i aranyes (Araneae) es va ...

  5. 苹果蠹蛾的综合防控和遗传控制研究进展%The status of the integrated pest management of the codling moth, Cydia pomonella (L.) in China, and the prospects for the application of genetically modified insects

    Institute of Scientific and Technical Information of China (English)

    申建茹; 武强; 万方浩

    2015-01-01

    The codling moth, Cydia pomonella (L.) (Lepidoptera:Tortricidae), is a worldwide quarantine pest of fruits and nuts. Efforts to control the codling moth in the past mostly relied on broad ̄spectrum chemical pesticides. Recently, alternative non ̄chemi ̄cal control methods such as mating disruption and the granulovirus of C. pomonella ( CpGV) are increasingly being adopted, the pest could not be eradicated or suppressed effectively. This lead to a demand for new control tactics that are not only effective but also friendly to the environment. The sterile insect technique ( SIT) is one of the cost effective methods for eradication or suppression of the target population. However, the traditional SIT have some drawbacks:the amount of radiation required for full sterilization leads to lower competitiveness and field performance than those of the wild type, and the sex identification requires manual separation, making the method very labor ̄intensive. The developments of the genetically modified insects may address some of these limitations. Research progress in the SIT developmental history and the improvement caused by the genetically modified approach in the codling moth is reviewed, and the advantages and the feasibility of the genetically modified approach for codling moth control in China is also discussed.%苹果蠹蛾是仁果类水果的重要检疫害虫,在世界各地造成了巨大的经济损失。目前对其化学防治、化学生态调控、病毒等防治方法研究较多,但仍不能满足防控该害虫的需要,对新型防控技术的需求日益增强。不育昆虫释放技术( SIT)是一种可控制甚至根除靶标害虫的环境友好型防控技术,但传统SIT技术存在一定的局限性,如较难区分性别与筛选雌雄虫、辐射不育昆虫的交配竞争力和适合度降低等问题,这些缺陷随着昆虫遗传修饰技术的发展将得以解决,并将在害虫防控进程中起到积极作用。本文综

  6. A flight cylinder bioassay as a simple, effective quality control test for Cydia pomonella

    Science.gov (United States)

    Assessment of quality of the sterile male insects that are being mass-reared for release in area-wide integrated pest management programmes that include a sterile insect technique component is crucial for the success of these programmes. Routine monitoring of sterile male quality needs to be carried...

  7. Modeling population dynamics and dispersion of Codling moth Cydia pomonella L. (Lepidoptera, Tortricidae)

    OpenAIRE

    Gharehkhani, Gholamhossein

    2009-01-01

    The study of insect dispersal plays an essential role in estimating the spread of damage caused by a newly invaded pest or the spatial distribution of an insect during the active period in growing season. Moreover concerning dispersal, quantitative information performs a crucial role in the evaluation and implementation of pest control. Since rearing clean and healthy insects in sufficient numbers is the most important prerequisite for many basic research programs and for developing pest cont...

  8. Control of codling moth (Cydia pomonella) using the area-wide approach in Chile

    International Nuclear Information System (INIS)

    Full text: Management of codling moth (CM) is being conducted in southern Chile using an area-wide approach and integrating different tools such us Geographic Information System (GIS), classical biological control, inundative biological control and mating disruption. The total area covers 6,000 ha, and extends from the foothills of the Andes mountains and is bordered in the south and north by rivers. Vegetation cover is predominantly pastures, pine forests and berries, including six commercial apple orchards. Codling moth control in the commercial orchards is based on chemical insecticides, mating disruption or organic practices. Many alternative hosts for CM grow in this area, mainly as ornamentals, in abandoned orchards and in gardens for self-consumption. The most important species are noncommercial apple, pear, quince, walnut and apricot. Satellite images were obtained and every alternate host tree was georeferenced and drawn on these images. Pheromone traps are being used to identify main migrant sources and to quantify migration from sources to commercial orchards. Classical biological control includes importation and release of an egg/larval parasitoid (Ascogaster quadridentata) from USA to Chile. CM is reared on artificial diet and eggs are used to increase the A. quadridentata colony and allow field releases in the 2004-2005 growing season, especially in isolated and abandoned trees. Related to inundative biological control, several strains of entomopathogenic organisms have been collected and evaluated against CM, including the fungus (Beauveria bassiana) and nematodes. In addition, a Chilean species of trichogrammatid wasps, Trichogramma nerudai and Trichogramma caccociae, have been used under an inundative approach, especially in abandoned orchards. The Chilean species T. nerudai has shown similar or better preference and laboratory performance than introduced species such as T. bactrae, T. caccociae, T. dendrolimi and T. platneri. (author)

  9. Comparison of laboratory and field bioassays of lab-reared Cydia pomonella (Lepidoptera: Tortricidae) quality and field performance.

    Science.gov (United States)

    Maximum production and fitness of insect species that are mass-reared for biological control programs such as the sterile insect technique (SIT) have benefitted from the employment of quality control and quality management. With a growing interest in the use of SIT as a tactic for the suppression/e...

  10. Quality control tests of lab-reared Cydia pomonella and Cactoblastis cactorum field performance: Comparison of laboratory and field bioassays.

    Science.gov (United States)

    Research, operational, and commercial programs which rely on mass-reared insects of high quality and performance, need accurate methods for monitoring quality degradation during each step of production, handling and release. With continued interest in the use of the sterile insect technique (SIT) a...

  11. Preliminary study of the quarantine treatment by gamma rays for codling moth (Cydia pomonella) in apples and pears

    International Nuclear Information System (INIS)

    After irradiation, important variations have been observed in the behaviour and metabolism of the moth larvae that are clearly attributable to the effects of gamma rays. The variation includes the loss of the characteristic pink colour, partial or total loss of appetite, loss of turgidity, etc. (author)

  12. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application

    Czech Academy of Sciences Publication Activity Database

    Vreysen, M. J. B.; Carpenter, J. E.; Marec, František

    2010-01-01

    Roč. 134, č. 3 (2010), s. 165-181. ISSN 0931-2048 R&D Projects: GA ČR GA523/09/2106 Institutional research plan: CEZ:AV0Z50070508 Keywords : area-wide integrated pest management * codling moth * genetic sexing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.276, year: 2010

  13. Developing transgenic sexing strains for the release of non-transgenic sterile male codling moths Cydia pomonella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Neven, L. G.; Fuková, Iva

    Dordrecht: Springer, 2007 - (Vreysen, M.; Robinson, A.; Hendrichs, J.), s. 103-111 ISBN 978-1-4020-6058-8 R&D Projects: GA AV ČR IAA6007307 Grant ostatní: Division of Nuclear Techniques in Food and Agriculture(AT) 12677; Division of Nuclear Techniques in Food and Agriculture(AT) 12055/R Institutional research plan: CEZ:AV0Z50070508 Keywords : codling moth * transgenesis * W chromosome Subject RIV: EB - Genetics ; Molecular Biology

  14. The potential use of entomopathogenic nematodes against Typhaea stercorea

    DEFF Research Database (Denmark)

    Svendsen, Tina Stendal; Steenberg, Tove

    2000-01-01

    bait traps, biological control, broiler houses, checken litter and manure, hairy fungus beetle, Heterorhabditis bacteriophora, Heterorhabditis megidis, Salmonella spp., Steinernema carpocapsae,......bait traps, biological control, broiler houses, checken litter and manure, hairy fungus beetle, Heterorhabditis bacteriophora, Heterorhabditis megidis, Salmonella spp., Steinernema carpocapsae,...

  15. Molecular species identification of cryptic apple and snowberry maggots (Diptera: Tephritidae) in Western and Central Washington

    Science.gov (United States)

    In Washington state, identification of the quarantine apple pest Rhagoletis pomonella (Walsh) is complicated by the presence of the cryptic species R. zephyria Snow (Diptera: Tephritidae). Distinguishing the two flies is important because there is a zero tolerance policy for R. pomonella in apple p...

  16. Development of mass production, gamma sterilization and release of the codling moth, Laspeyresia pomonella L. Part of a coordinated programme on the use of the sterile male technique for control of lepidopterous insects attacking fruit and forest trees

    International Nuclear Information System (INIS)

    Research on codling moths was conducted from Spring 1973 to Autumn 1978 and included rearing of larvae on thinning apples and artificial diet ecology, radiation sterilization and the effect of field releases of sterile moths in suppressing the wild population. Field releases of irradiated with 30 Krad unsexed insects were conducted in two consecutive seasons, namely in 1977 and 1978 and aimed at a sterile to wild ratio of 97:1 and 233:1 respectively. The experimentally obtained ratio, however, based on catches in traps baited with sex attractant was 24:1 and 79:1 respectively. Examination of fruit infestation at harvest revealed an increase in infestation by 9% in the 1977 sterile release programme and by 56% in the 1978 programme. Likely causes of the failure of the SIT programme were the immigration of fertile females from the surrounding area and inadequate mating competitiveness of the released moths due to somatic damage caused by the irradiation and laboratory adaptation. The sharp increase of fruit infestation in 1978 was very likely the result of a six fold increase in yield which provided a better chance of survival for hatching larvae

  17. Využití BAC klonů při studiu pohlavního chromosomu W obaleče jablečného Cydia pomonella (Lepidoptera: Tortricidae)

    OpenAIRE

    Dalíková, Martina

    2009-01-01

    In the present study, the W sex-chromosome of the codling moth was studied by means of fluorescence in situ hybridization (FISH) with probes prepared from bacterial artificial chromosome (BAC), which were isolated from the codling moth BAC library. The BAC library was screened for clones derived from both the W and Z sex chromosomes using three sets of molecular markers of codling moth sex chromosomes. A total of 54 BAC clones have been obtained. In this work, only 3 W-derived BAC clones and ...

  18. Difficulties and Successes in the Mass Rearing of Insects in the Laboratory, and the Possibility of Autocidal Control of some Harmful Species

    International Nuclear Information System (INIS)

    developing ways of overcoming the diapause in laboratory populations in order to ensure continuous rearing. This can be done either by reactivating the insects by temperature changes or by instituting a period of illumination which prevents die diapause from starting. A further possible method is that of selecting and crossing diapausing and non-diapausing strains of a given species. A number of species of Orthoptera having a fairly wide natural habitat have been used to show the possibility of autocidal control by adding to a natural population which normally has a diapause specimens of a non-diapausing population from other parts of the habitat. This possibility has been demonstrated for the cricket Teleogryllus corn modus Walk, in Australia and for sub-species of Locusta migratoria L. in the Old World. The development of this form of autocidal control of insects merits close attention. The work reported is devoted mainly to developing methods of autocidal control and techniques for mass laborarory breeding of such harmful species as Carpocapsa pomonella L., Eurygaster integriceps Put, and Locusta migratoria L. (author)

  19. PERMANENT GENETIC RESOURCES: Polymorphic microsatellite loci for Diachasma alloeum (Hymenoptera: Braconidae).

    Science.gov (United States)

    Forbes, Andrew A; Powell, Thomas H Q; Lobo, Neil F; Noor, Mohamed A F; Feder, Jeffrey L

    2008-03-01

    Here, we report the isolation of 21 novel primers for amplification of microsatellite loci in Diachasma alloeum (Hymenoptera: Braconidae). Diachasma alloeum is a larval parasitoid of the apple maggot fly (Rhagoletis pomonella), which is an economically significant agricultural pest species and a textbook example of sympatric speciation via host-plant shifting. These microsatellite markers will prove useful both for assessing genetic relationships between different host-associated populations of D. alloeum, as well as for future R. pomonella biological control programmes. We also report the cross-species amplification of several loci for Diachasmimorpha mellea and Diachasma ferrugineum, parasitoids of R. pomonella and R. cingulata, respectively. PMID:21585796

  20. Susceptibility of irradiated Galleria mellonella F1Larvae to Entomopathogenic Nematodes

    International Nuclear Information System (INIS)

    Combined effect of substerilizing doses of gamma radiation (40 and 100 Gy) and different concentrations of entomopathogenic nematodes (20, 40, 60, and 80 IJs) on the greater wax moth, Galleria mellonella was studied. The 4th larval instar resulted from irradiated male parent pupae mated with normal female were tested for susceptibility to Heterorhabditis bacteriophora BA1 and Steinernema carpocapsae BA2. The mortality rate of the larvae increased by increrasing radiation dose and nematode concentrations. The reproduction of both nematode strains decreased significantly with increasing the treatments (radiation dose and nematode concentrations). In addition, exposure to gamma radiation and entomopathogenic nematodes significantly decreased the total haemocyte count (THC) of the larvae with increasing radiation doses (40 and 100 Gy) and both nematode strains concentrations (20 and 40 IJs) and reached the minimal count at the combiend effect. Finally, larvae were more susceptible to Steinernema carpocapsa than Heterorhabditis bacteriophora. (author)

  1. Efficacy of entomopathogenic nematodes against the Tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato field

    OpenAIRE

    Gözel, Çiğdem; KASAP, İsmail

    2015-01-01

    The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a very challenging pest that causes economical losses in tomato production. This devastating pest originated from South America was the first time detected in İzmir province of Turkey in August 2009. The efficacy of the infective juveniles (IJs) of four native entomopathogenic nematode (EPN) species, Steinernema affine (Bovien) (isolate 46), S. carpocapsae (Weiser) (isolate 1133), S. feltiae (Filipjev) (isolate 879) a...

  2. The potential use of entomopathogenic nematodesagainst Typhaea stercorea

    DEFF Research Database (Denmark)

    Svendsen, Tina Stendal; Steenberg, Tove

    2000-01-01

    Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophora and H. megidis, were tested in a petri dish assay against larvae and , were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general, a...... mould probably limited the nematode infection. When the bait was used in tube traps, desiccation and growth of mould was prevented, but nematode efficacy dropped to 4.4% in the traps and 12% in the surrounding litter....

  3. Steinernema huense sp. n., a new entomopathogenic nematode (Nematoda: Steinernematidae) from Vietnam

    Czech Academy of Sciences Publication Activity Database

    Phan, K. L.; Mráček, Zdeněk; Půža, Vladimír; Nermuť, Jiří; Jarošová, Andrea

    2014-01-01

    Roč. 16, č. 7 (2014), s. 761-775. ISSN 1388-5545 R&D Projects: GA MŠk LH12105 Grant ostatní: Ministry of Science and Technology, Vietnam (VN) 106,06,16,09; Vietnam Academy of Science and Technilogy(VN) VAST.HTQT.01/2012-2013 Institutional support: RVO:60077344 Keywords : carpocapsae group * description * molecular Subject RIV: EG - Zoology Impact factor: 1.239, year: 2014

  4. Identification of a New Alcaligenes faecalis Strain MOR02 and Assessment of Its Toxicity and Pathogenicity to Insects

    OpenAIRE

    Rosa Estela Quiroz-Castañeda; Ared Mendoza-Mejía; Verónica Obregón-Barboza; Fernando Martínez-Ocampo; Armando Hernández-Mendoza; Felipe Martínez-Garduño; Gabriel Guillén-Solís; Federico Sánchez-Rodríguez; Guadalupe Peña-Chora; Laura Ortíz-Hernández; Paul Gaytán-Colín; Edgar Dantán-González

    2015-01-01

    We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortalit...

  5. Eicosanoids mediate Galleria mellonella immune response to hemocoel injection of entomopathogenic nematode cuticles.

    Science.gov (United States)

    Yi, Yunhong; Wu, Gongqing; Lv, Junliang; Li, Mei

    2016-02-01

    Entomopathogenic nematodes are symbiotically associated with bacteria and widely used in biological control of insect pests. The interference of symbiotic bacteria with insect host immune responses is fairly well documented. However, knowledge of mechanisms regulating parasite–host interactions still remains fragmentary. In this study, we used nematode (Steinernema carpocapsae and Heterorhabditis bacteriophora) cuticles and Galleria mellonella larvae as parasite–host model, focused on the changes of innate immune parameters of the host in the early phase of nematode cuticle infection and investigated the role of eicosanoid biosynthesis pathway in the process. The results showed that injection of either S. carpocapsae or H. bacteriophora cuticles into the larval hemocoel both resulted in significant decreases in the key innate immune parameters (e.g., hemocyte density, microaggregation, phagocytosis and encapsulation abilities of hemocyte, and phenoloxidase and antibacterial activities of the cell-free hemolymph). Our study indicated that the parasite cuticles could actively suppress the innate immune response of the G. mellonella host. We also found that treating G. mellonella larvae with dexamethasone and indomethacin induced similar depression in the key innate immune parameters to the nematode cuticles. However, these effects were reversed when dexamethasone, indomethacin, or nematode cuticles were injected together with arachidonic acid. Additionally, we found that palmitic acid did not reverse the influence of the dexamethasone, indomethacin, or nematode cuticles on the innate immune responses. Therefore, we inferred from our results that both S. carpocapsae and H. bacteriophora cuticles inhibited eicosanoid biosynthesis to induce host immunodepression. PMID:26472713

  6. Arsenic Recovery by Stinging Nettle From Lead-Arsenate Contaminated Orchard Soils

    Science.gov (United States)

    Soil contamination with arsenic (As) is common in orchards with a history of lead-arsenate pesticide application. This problem is prevalent in the U.S. Northeast where lead-arsenate foliar sprays were used to control codling moth (Cydia pomonella) in apple orchards. Arsenic is not easily biodegrad...

  7. Combined approaches using sex pheromone and pear ester for behavioral disruption of codling moth (Lepidoptera: Tortricidae)

    Science.gov (United States)

    Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...

  8. Effect of Sex Pheromone and Kairomone Lures on Catches of Codling Moth

    Science.gov (United States)

    Studies in apple orchards treated with sex pheromone evaluated the performance of a clear vertical interception trap coated with oil and baited with either sex pheromone, pear ester, or both attractants (combo) for adult codling moth, Cydia pomonella (L.). Baited interception traps caught significan...

  9. Evidence for the non-pest status of codling moth on commercial fresh sweet cherries intended for export

    Science.gov (United States)

    To gain acceptance of a systems approach as an alternative to methyl bromide fumigation for U.S. fresh sweet cherries, Prunus avium (L.) L., exported to Japan, additional evidence was needed to show that sweet cherries are poor or non-hosts for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortri...

  10. Before harvest survival of codling moth (Lepidoptera: Tortricidae) in artificially infested sweet cherries

    Science.gov (United States)

    Prior to the 2009 season, sweet cherries, Prunus avium (L.) L., from North America were required to be fumigated with methyl bromide before being exported to Japan to eliminate possible infestation by codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). However, based on recent biological...

  11. Correction: Graillot, B.; et al. Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M. Viruses 2014, 6, 5135–5144

    Directory of Open Access Journals (Sweden)

    Benoît Graillot

    2015-12-01

    Full Text Available In our article “Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M.” (Viruses 2014, 6, 5135–5144; doi:10.3390/v6125135 [1] we obtained resistance values of the codling moth, Cydia pomonella, RGV laboratory colony [2], when challenged with Cydia pomonella Granulovirus, Mexican Isolate (CpGV-M, that were lower than those previously published [2]. Careful analysis of both the RGV colony and the CpGV-M virus stock used led to the realization that a low level contamination of this virus stock with CpGV-R5 occurred. We have made new tests with a verified stock, and the results are now in agreement with those previously published.

  12. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response.

    Science.gov (United States)

    Binda-Rossetti, Simona; Mastore, Maristella; Protasoni, Marina; Brivio, Maurizio F

    2016-01-01

    Relationships between parasites and hosts can be drastic, depending on the balance between parasite strategies and the efficiency of the host immune response. In the case of entomopathogenic nematodes and their insect hosts, we must also consider the role of bacterial symbionts, as the interaction among them is tripartite and each component plays a critical role in death or survival. We analyzed the effects induced by the nematode-bacteria complex Steinernema carpocapsae, against red palm weevil (RPW) larvae, Rhynchophorus ferrugineus. We examined the antimicrobial response of the insect when in the presence of nematocomplexes or of its symbionts, Xenorhabdus nematophila. In detail, we investigated the potential interference of live and dead S. carpocapsae, their isolated cuticles, live or dead bacterial symbionts and their lipopolysaccharides, on the synthesis and activity of host antimicrobial peptides. Our data indicate that both live nematodes and live bacterial symbionts are able to depress the host antimicrobial response. When nematodes or symbionts were killed, they lacked inhibitory properties, as detected by the presence of antimicrobial peptides (AMPs) in the host hemolymph and by assays of antimicrobial activity. Moreover, we isolated S. carpocapsae cuticles; when cuticles were injected into hosts they revealed evasive properties because they were not immunogenic and were not recognized by the host immune system. We observed that weevil AMPs did not damage X. nematophila, and the lipopolysaccharides purified from symbionts seemed to be non-immunogenic. We believe that our data provide more information on the biology of entomopathogenic nematodes, in particular concerning their role and the activity mediated by symbionts in the relationship with insect hosts. PMID:26549224

  13. Combining mutualistic yeast and pathogenic virus - a novel method for codling moth control

    OpenAIRE

    Knight, Alan; Witzgall, Peter

    2013-01-01

    The combination of a pathogenic virus and mutualistic yeasts isolated from larvae of codling moth Cydia pomonella is proposed as a novel insect control technique. Apples were treated with codling moth granulovirus (CpGV) and either one of three yeasts, Metschnikowia pulcherrima, Cryptococcus tephrensis, or Aureobasidium pullulans. The combination of yeasts with CpGV significantly increased mortality of neonate codling moth larvae, compared with CpGV alone. The three yeasts were equally effici...

  14. Gamma irradiation as a quarantine treatment for walnuts infested with codling moths (Lepidoptera: Tortricidae)

    International Nuclear Information System (INIS)

    Irradiation may be a potential quarantine treatment for either diapausing or nondiapausing codling moth, Cydia pomonella (L.), larvae in walnuts. Exposure of larvae to 51.9 Gy from a 60Co source significantly reduced emergence of normal adults. The dose required for quarantine security (99.9968% mortality) was 230 Gy based on emergence of adults from treated larvae. Normal adults did not emerge from larvae exposed to 177 Gy in walnuts

  15. Climate variability and potential distribution of selected pest species in south Moravia and north-east Austria in the past 200 years – lessons for the future

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Eva; Trnka, Miroslav; Žalud, Zdeněk; Semerádová, D.; Dubrovský, Martin; Eitzinger, Josef; Štěpánek, Petr; Brázdil, Rudolf

    2014-01-01

    Roč. 152, č. 2 (2014), s. 225-237. ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : lobesia-botrana lepidoptera * colding moth lepidoptera * european grape vine moth * predictive models * crop protection * cydia-pomonella * tortricidae * temperature * populations * phenology Subject RIV: EH - Ecology, Behaviour Impact factor: 0.653, year: 2014

  16. Climate variability and potential distribution of selected pest species in south Moravia and north-east Austria in the past 200 years – lessons for the future

    Czech Academy of Sciences Publication Activity Database

    Svobodová, E.; Trnka, M.; Žalud, Z.; Semerádová, D.; Dubrovský, Martin; Eitzinger, J.; Štepánek, P.; Brázdil, R.

    2014-01-01

    Roč. 152, č. 2 (2014), s. 225-237. ISSN 0021-8596 Institutional support: RVO:68378289 Keywords : lobesia-botrana lepidoptera * colding moth lepidoptera * european grape vine moth * predictive models * crop protection * cydia-pomonella * tortricidae * temperature * populations * phenology Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.653, year: 2014 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8853541

  17. Estimation of demographic parameters of an insect pest in apple-orchards landscape, from genetic data

    OpenAIRE

    Walker, Emily; Klein, Etienne; Roques, Lionel; Franck, Pierre

    2014-01-01

    In the context of agrosystem management in order to reduce the use of pesticides, we aim to understand population dynamics at the landscape scale of the codling moth (Cydia pomonella), an insect pest in apple orchards. To analyse statistically the genetic markers data (22 microsatellites) obtained from a thousand georeferenced individuals (sampled in 51 different orchards), we developed a spatially explicit metapopulation model. The objective is to estimate population sizes and...

  18. Codling moth cytogenetics: karyotype, sex-chromosome differentiation and development of W-chromosome painting probes

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Fuková, Iva; Vítková, Magda; Korchová, Marie; Kubíčková, S.; Traut, W.

    Vienna : IAEA, 2004, s. 55-66. [ FAO /IAEA Research Co-ordination Meeting within the FAO /IAEA /2./. Stellenbosch (ZA), 08.03.2004-12.03.2004] R&D Projects: GA AV ČR IAA6007307; GA AV ČR KSK5052113 Grant ostatní: IAEA(AT) 12055/R Institutional research plan: CEZ:AV0Z5007907 Keywords : Cydia pomonella * karyotype Subject RIV: EB - Genetics ; Molecular Biology

  19. The effect of increasing temperature on the climate niche of selected pyralidae and tortricidae

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Eva; Trnka, Miroslav; Žalud, Zdeněk; Semerádová, D.; Dubrovský, Martin; Eitzinger, Josef; Štěpánek, Petr

    2012-01-01

    Roč. 15, SEP 2012 (2012), s. 54-57. ISSN 1335-258X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : Cydia pomonella * Ostrinia nubilalis * Lobesia botrana * změna klimatu * CLIMEX * climate change * sensitive areas Subject RIV: DG - Athmosphere Sciences, Meteorology

  20. Control biològic del Rhynchophorus ferrugineus a partir de diferents soques de nematodes entomopatògens i la seva problemàtica a Catalunya

    OpenAIRE

    Sarsanedas Palau, Joan; García del Pino, Fernando

    2010-01-01

    En el present treball s'ha avaluat el potencial dels nemàtodes entomopatògens per a controlar la plaga de R. ferrugineus. Per fer-ho, s'ha determinat la susceptibilitat d'aquesta a 4 espècies diferents de nemàtodes: Steinernema carpocasae (soca B14, IDEBIO, BIOVERD), Steinernema feltiae (soca D114), Steinernema sp. (D122) i Heterorhabditis bacteriophora (soca DG46). D'altra banda, s'ha determinat la predació de Steinernema carpocapsae per part de l'àcar Centroupeda almerodai (Acari: Acaridae)...

  1. Effect of Temperature and Host Life Stage on Efficacy of Soil Entomopathogens Against the Swede Midge (Diptera: Cecidomyiidae).

    Science.gov (United States)

    Evans, Braden G; Jordan, Katerina S; Brownbridge, Michael; Hallett, Rebecca H

    2015-04-01

    The Swede midge, Contarinia nasturtii Kieffer, is an economically significant pest of cruciferous crops in Canada and the northeastern United States. The effect of temperature on the virulence of three entomopathogenic nematode species, Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae, the entomopathogenic fungus Metarhizium brunneum, and a H. bacteriophora+M. brunneum combination treatment to C. nasturtii larvae, pupae, and cocoons was investigated. In the laboratory, all three nematode species successfully reproduced inside C. nasturtii larvae: H. bacteriophora produced the highest number of infective juveniles per larva, followed by S. carpocapsae and S. feltiae. H. bacteriophora and the H. bacteriophora+M. brunneum combination treatment generally caused the highest mortality levels to all C. nasturtii life stages at 20°C and 25°C, whereas S. feltiae caused the highest mortality to larvae and pupae at 16°C. No nematode species caused significant mortality when applied in foliar treatments to the infested host plant meristem and, in spite of high mortality, an antagonistic interaction was observed in the H. bacteriophora+M. brunneum combination treatment when compared with expected mortality. In trials conducted in broccoli fields in Elora, Ontario, M. brunneum suppressed adult emergence of C. nasturtii from infested soil in 2012 and all nematode treatments successfully suppressed adult emergence in 2013; however, no significant effects were observed in field trials conducted in Baden, Ontario. PMID:26470158

  2. Virulence of four entomopathogenic nematode species for plum sawfly, Hoplocampa flava L. (Hymenoptera: Tenthredinidae

    Directory of Open Access Journals (Sweden)

    TC Ulu

    2015-10-01

    Full Text Available The yellow sawfly Hoplocampa flava is an important pest of plum all around the world. Larvae feed on the seed with damaged fruit falling prematurely. There are many studies on the control of other pests with entomopathogenic nematode (EPN, but few on the control of plum sawfly. The present study was conducted to determine virulence of four EPN species: Heterorhabditis bacteriophora, H. marelatus, Steinernema carpocapsae Tur-S4 and S. feltiae Tur-S3 against plum sawfly Hoplocampa flava L. (Hymenoptera: Tenthredinidae under laboratory conditions. For each nematode species, six different doses (3, 5, 7, 10, 15, 20 Infective Juveniles (IJs /larva were applied against last instar larvae of H. flava. Assays were done in 24 well tissue culture plates filled with 10 % (w/v moist silver sand. The most virulent species was H. bacteriophora which had LD50 and LD90 values of 6.51 and 15.46 IJs, respectively. The least virulent was S. carpocapsae Tur-S4 with LD50 and LD90 values of 16.617 and 33.779 IJs, respectively.

  3. Entomopathogenic nematodes for the control of phorid and sciarid flies in mushroom crops

    Directory of Open Access Journals (Sweden)

    María Jesús Navarro

    2014-01-01

    Full Text Available The objective of this work was to evaluate the efficacy of two nematodes, Steinernema feltiae and S. carpocapsae, to control mushroom flies and to evaluate the effect of these treatments on Agaricus bisporus production. Two mushroom cultivation trials were carried out in controlled conditions, in substrate previously infested with the diptera Megaselia halterata and Lycoriella auripila, with two treatments: 106infective juveniles (IJ per square meter of S. feltiae and 0.5x106IJ m-2S. feltiae + 0.5x106IJ m-2S. carpocapsae. Another experiment was carried out using the same treatments to evaluate the possible nematode effect on mushroom yield. The number of adults emerging from the substrate was evaluated for each fly species. No decrease in the population of M. halterata was detected with nematode application, whereas the number of L. auripila was reduced in both treatments, particularly in the individual treatment with S. feltiae. The application of entomopathogenic nematodes has no adverse effect on mushroom production.

  4. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    OpenAIRE

    Birnbaum, M. J.; Clem, R J; Miller, L K

    1994-01-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Us...

  5. Use of \\kur{Notch} gene for the production of genetic "sexing" lines of codling moth.

    OpenAIRE

    ŠVELLEROVÁ, Hana

    2013-01-01

    The codling moth, Cydia pomonella, is the key pest of pome fruit and walnut orchards in the temperate regions of the world. The extensive use of insecticides for a control of this pest has resulted in the development of resistance to these chemicals, and there is an increasing demand on the use of environment-friendly control tactics, such as the Sterile Insect Technique (SIT). Codling moth SIT relies on the mass rearing and release of genetically sterile both males and females into a wild po...

  6. Contribución al estudio de la familia Tortricidae Latreille, 1803 (Lepidoptera), con especial referencia a la fauna neotropical

    OpenAIRE

    Lincango Chorlango, María Piedad

    2015-01-01

    La familia Tortricidae Latreille es uno de los grupos de lepidópteros más diversos con alrededor de 10.000 especies, distribuidas en tres subfamilias (Chlidanotinae, Tortricinae y Olethreutinae), 20 tribus y más de 1070 géneros. Dentro de esta familia se encuentran plagas de gran importancia económica como el gusano de las yemas del abeto, Choristoneura fumiferana Clemens 1865 (Tortricinae: Archipini), y el gusano de la manzana, Cydia pomonella L. 1758 (Olethreutinae: Grapholitini). La clasif...

  7. Contrasting effects of codling moth exclusion netting on the natural control of the rosy apple aphid

    OpenAIRE

    Simon, Sylvaine; Fleury, Amandine; Alaphilippe, Aude; Dib, Hazem; Capowiez, Yvan

    2013-01-01

    Exclusion netting is developing in Southern France against Cydia pomonella, a major pest of apple. Most insecticides and therefore side-effects on natural enemies (NE) are avoided in netted orchards. Conversely, nets can also exclude some NE and/or modify their access to prey in the tree canopy. The effect of nets on the beneficial complex associated to the rosy apple aphid (RAA) was studied in experimental and commercial orchards in 2009 and 2012 in South-Eastern France. RAA infestation was ...

  8. Sperm precedence in female apple maggots alternately mated to normal and irradiated males

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H.S.; Barry, B.D.; Burnside, J.A.; Rhode, R.H.

    1976-01-15

    A dose of irradiation (Cesium 137) of 3 krad was sufficient to sterilize both sexes of the apple maggot, Rhagoletis pomonella (Walsh). When the irradiated male (IM) mated with normal female (NF), egg production was not reduced compared with a normal mating, but the eggs were not viable. Also, two matings of 1 NF with either 2 IM or with 1 NM and 1 IM, produced fewer eggs than a single mating with 1 normal male. Sperm precedence exhibited for the 2nd of the 2 matings was not complete.

  9. Sperm precedence in female apple maggots alternately mated to normal and irradiated males

    International Nuclear Information System (INIS)

    A dose of irradiation (Cesium 137) of 3 krad was sufficient to sterilize both sexes of the apple maggot, Rhagoletis pomonella (Walsh). When the irradiated male (IM) mated with normal female (NF), egg production was not reduced compared with a normal mating, but the eggs were not viable. Also, two matings of 1 NF with either 2 IM or with 1 NM and 1 IM, produced fewer eggs than a single mating with 1 normal male. Sperm precedence exhibited for the 2nd of the 2 matings was not complete

  10. Codling moth control by release of radiation-sterilized moths in a pome fruit orchard and observations of other pests

    International Nuclear Information System (INIS)

    Release of radiation-sterilized male and female Laspeyresia pomonella (L.) in a 40-ha pome fruit orchard from 1969-72 in the Similkameen Valley of British Columbia reduced the wild population of this pest to a very low level without causing serious problems in control of other apple and pear pests. Percent apples injured by codling moth larvae at harvest were 0.1 in 1968 (after 3 sprays of azinphosmethyl), and 0.05, 0.02, 0.007, and 0.001 from 1969-72

  11. PREMISE Insect Model: Integrated Population Dynamics Model for the Ex-ante Evaluation of IPM against Insect Pest

    OpenAIRE

    Hennen, Wil; Alaphilippe, Aude

    2015-01-01

    Codling moth Cydia pomonella L. is the most serious pest of apple and pear worldwide and causes damage and decreasedyields. To minimize this risk, IPM tools can be applied to reduce the use of chemicals. A cost-effective application of IPM dependson the number of insects at the time of application. Several conditions and factors influence the lifecycle and numbers of generationswithin a year. In order to perform ex-ante evaluations of the cost-effectiveness of IPM measures against pest insect...

  12. Serine proteases of parasitic helminths.

    Science.gov (United States)

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  13. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae in the UK

    Directory of Open Access Journals (Sweden)

    Giles E. Budge

    2012-08-01

    Full Text Available The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and S. carpocapsae provided excellent control with 100% mortality of larvae being obtained. Sequential applications of the nematodes following larvae entering sand to pupate also provided excellent control for up to 3 weeks. The information gained supports the development of contingency plans to deal with A. tumida should it occur in the UK, and is relevant to the management of Small hive beetle where it is already present.

  14. Screening Commercially Available Entomopathogenic Biocontrol Agents for the Control of Aethina tumida (Coleoptera: Nitidulidae) in the UK.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Mathers, James J; Blackburn, Lisa F; Powell, Michelle E; Marris, Gay; Pietravalle, Stephane; Brown, Mike A; Budge, Giles E

    2012-01-01

    The Small hive beetle, Aethina tumida, is an invasive pest of honey bees. Indigenous to sub-Saharan Africa, it has now become established in North America and Australia. It represents a serious threat to European honey bees. Commercially available entomopathogenic agents were screened for their potential to control beetle larvae. Entomopathogenic fungi investigated had minimal impact. The nematodes Steinernema kraussei and S. carpocapsae provided excellent control with 100% mortality of larvae being obtained. Sequential applications of the nematodes following larvae entering sand to pupate also provided excellent control for up to 3 weeks. The information gained supports the development of contingency plans to deal with A. tumida should it occur in the UK, and is relevant to the management of Small hive beetle where it is already present. PMID:26466625

  15. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): a nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Nansen, Christian; Stokes, Bryan; James, Jacob; Porter, Patrick; Shields, Eilson J; Wheeler, Terry; Meikle, William G

    2013-04-01

    The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses. PMID:23786050

  16. Unexpected Variation in Neuroanatomy among Diverse Nematode Species

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E.

    2016-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  17. Infectivity of Four Entomopathogenic Nematodes in Relation to Environmental Factors and Their Effects on the Biochemistry of the Medfly Ceratitis capitata (Wied.) (Diptera: Tephritidae).

    Science.gov (United States)

    Shaurub, E H; Soliman, N A; Hashem, A G; Abdel-Rahman, A M

    2015-12-01

    Late third instars of the medfly, Ceratitis capitata (Wied.), migrate from the host fruit into the soil and leaf litter beneath host trees, where they may become a target for entomopathogenic nematodes (EPNs). The effects of ultraviolet (UV) light, temperature, soil type (texture), and soil moisture level on infectivity of the four tested EPNs Heterorhabditis bacteriophora AS1, H. bacteriophora HP88, Steinernema carpocapsae ALL, and Steinernema riobrave ML29 to late third instars of C. capitata were evaluated. Biochemical alterations induced by the most virulent nematodes were quantified. The nematode infectivity decreased with increase in exposure time to UV light, whereas it increased with increase in temperature. Infectivity increased in sandy soil, whereas it decreased in silt and clay soils. Soils with high moisture levels decreased infectivity. Based on the 50% lethal concentration (LC50), H. bacteriophora AS1 and S. carpocapsae ALL were the most virulent heterorhabditid and steinernematid nematodes, respectively, with the highest virulence for H. bacteriophora AS1. The nematodes caused significant decline in total protein and cholesterol content of larvae and caused reduced activity of transaminases and phosphatases. In contrast, they significantly enhanced total glucose content. It can be concluded that the most optimum environmental conditions of the tested nematodes to elicit their infectivity against late third instars of C. capitata were sandy soil with 10% moisture level, ambient temperature of 25°C, and no exposure to UV. The EPNs tested can affect late third instars of C. capitata by targeting different biochemical molecules in different metabolic pathways. The interaction between them and the host larvae appears to be primarily nutritional. PMID:26391517

  18. Unexpected Variation in Neuroanatomy among Diverse Nematode Species.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2015-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  19. Use of cellulose acetate electrophoresis in the taxonomy of steinernematids (rhabditida, nematoda).

    Science.gov (United States)

    Jagdale, G B; Gordon, R; Vrain, T C

    1996-09-01

    A steinernematid nematode was isolated from soil samples collected near St. John's, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. feltiae Umeå strain, S. feltiae L1C strain, Steinernema carpocapsae All strain, and Steinernema riobravis TX strain. Based on comparisons of the relative electrophoretic mobilities (mu) of the isozymes, one of the eight enzymes (arginine kinase) yielded zymograms that were distinctive for each of the isolates, except for the Umeå and NF strains of S. feltiae, which had identical banding patterns. Four enzymes (fumarate hydratase, phosphoglucoisomerase, phosphoglucomutase, and 6-phosphogluconate dehydrogenase) yielded isozyme banding patterns that were characteristic for all isolates, except for the L1C and NF strains of S. feltiae, which were identical. Two enzymes (aspartate amino transferase and glycerol-3-phosphate dehydrogenase) yielded zymograms that permitted S. carpocapsae All strain to be discriminated from the other four isolates, while the remaining enzyme (mannose-6-phosphate isomerase) was discriminatory for S. riobravis TX strain. Except for one enzyme, the isozyme banding pattern of the NF isolate of S. feltiae was the same as in the L1C strain, isolated 13 years previously from Newfoundland. Cellulose acetate electrophoresis could prove invaluable for taxonomic identification of isolates of steinernematids, provided that a combination of enzymes is used. PMID:19277147

  20. effect of gamma radiation and parasitic nematodes on the black cut-worm agrotis ipsilon(HUFN)

    International Nuclear Information System (INIS)

    The sterility effects were examined on the P1 generation of the black cutworm; Agrotis ipsilon (Hufn.) after gamma sterilization with at 0, 75, 100,125, 150,175 and 200 Gy, to identify the dose of gamma irradiation that would allow for maximum production of partially sterile P1 adults while inducing full sterility in the F1 generation. The studied effects were included the percentage mated males with untreated females, copulation duration to format spermatophores directly in the female bursa copulatrix, number of eggs /female deposited by females mated to irradiated males and egg hatch through three sequential females.The irradiated males with tested doses as well as untreated control were tested for mating successive and starting copulation at the same period of the scotophase. The mating competitiveness calculated from the direct observation in A. ipsilon males emerged from pupae irradiated at doses 75 to 200 Gy was noticed. The effect of substerilizing dose (125Gy) on certain biological aspects and reproduction was studied among parental generation, as well as immature stages were investigated throughout two successive generations. The influence of two entomopathogenic nematodes, Steinernema carpocapsae and Steinernema riobrivae on the insect management was included. Special attention was given to combined effect of F1 progeny of partially sterile males and S. Carpocapsae (All) on A .ipsilon, the combination of tested treatments at all concentrations analyzed for synergistic effect. The parasitisation efficacy of EPNs, the morbidity and mortality induced by normal IJs (i.e., IJs derived from untreated host) and the incubation time taken by normal IJs were compared with these of IJs derived from irradiated host with 125 Gy

  1. Effects of a novel entomopathogenic nematode-infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida.

    Science.gov (United States)

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, Maria G; Tedders, Walker L

    2010-02-01

    An alternative approach to applying entomopathogenic nematodes entails the distribution of nematodes in their infected insect hosts. Protection of the infected host from rupturing, and improving ease of handling, may be necessary to facilitate application. In this study our objective was to test the potential of a new method of formulating the infected hosts, i.e., enclosing the infected host in masking tape. Tenebrio molitor L. cadavers infected with Heterorhabditis indica Poinar, Karunakar and David or Steinernema carpocapsae (Weiser) were wrapped in tape using an automatic packaging machine; the machine was developed to reduce labor and to standardize the final product. The effects of the tape formulation on the ability to protect the cadavers from mechanical damage, nematode yield, and pest control efficacy were tested. After exposure to mechanical agitation at 7-d-post-infection, S. carpocapsae cadavers in tape were more resistant to rupture than cadavers without tape, yet H. indica cadavers 7-d-post-infection were not affected by mechanical agitation (with or without tape), nor was either nematode affected when 4-d-old cadavers were tested. Experiments indicated that infective juvenile yield was not affected by the tape formulation. Laboratory experiments were conducted measuring survival of the root weevil, Diaprepes abbreviatus (L.), or the small hive beetle, Aethina tumida Murray, after the application of two H. indica-infected hosts with or without tape per 15 cm pot (filled with soil). A greenhouse experiment was also conducted in a similar manner measuring survival of D. abbreviatus. In all experiments, both the tape and no-tape treatments caused significant reductions in insect survival relative to the control, and no differences were detected between the nematode treatments. Fifteen days post-application, the infected host treatments caused up to 78% control in A. tumida, 91% control in D. abbreviatus in the lab, and 75% in the greenhouse. These

  2. Compatibility of entomopathogenic nematodes and aqueous plant extracts aiming at the control of fruit fly Ceratitis capitata (Wiedemann (Diptera: TephritidaeCompatibilidade de nematóides entomopatogênicos e extratos vegetais aquosos visando o controle da mosca-das-frutas Ceratitis capitata (Wiedemann (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Cristhiane Rohde

    2013-06-01

    Full Text Available Currently, the fruit fly Ceratitis capitata (Diptera: Tephritidae has been controlled mainly by the chemical method, which is responsible for environmental and public health impacts. It has often been ineffective due to development of resistant insect populations. Thus, it has necessary to research new effective and less impacting control forms. In this sense, the use of entomopathogenic nematodes and plant extracts has been effective for controlling this pest. However, studies are needed to assess the compatibility between these methods, aiming at their use in integrated management programs for this pest. The aim of this study was to evaluate the compatibility of the nematodes Steinernema carpocapsae ALL and Heterorhabditis sp. JPM4 with aqueous extracts prepared from dried plant of cinnamon leaf, twig and fruit (Melia azedarach, rue leaf (Ruta graveolens, ginger (Zingiber officinale and garlic (Allium sativum for the control of C. capitata. The bioassay was carried out in completely randomized design with four replicates per treatment. Each replication consisted of a glass tube containing 1 mL of plant extract 40% w/v and 1 mL suspension of entomopathogenic nematodes with 1800 JI/mL for S. carpocapsae ALL and 600 JI/mL for Heterorhabditis sp. JPM4. The viability and infectivity of this nematode were evaluated on C. capitata larvae after 48 and 120 hours. It was found that all extracts reduced the viability and infectivity of both nematodes and they were incompatible after 120 hours of exposure. The nematode Heterorhabditis sp. JPM4 was more sensitive than the S. carpocapsae ALL as it showed, in the first 48 hours, a reduction in the viability and infectivity of more than 80 and 75%, respectively, when exposed to all the extracts except the ginger.A mosca-das-frutas Ceratitis capitata (Diptera: Tephritidae tem sido controlada, principalmente, pelo método químico, que é o responsável por impactos ambientais e na saúde pública e, muitas

  3. The Relationship between Polarized Moonlight and the Number of Pest Microlepidoptera Specimens Caught in Pheromone Traps

    Directory of Open Access Journals (Sweden)

    Nowinszky László

    2015-09-01

    Full Text Available Pheromone traps were deployed in Borsod-Abaúj-Zemplén County (Hungary between 1982 and 1988, in 1990 and also between 1993 and 2013. These traps attracted 8 Microlepidoptera species: Phyllonorycter blancardella, P. corylifoliella, Anarsia lineatella, Eupoecilia ambiguella, Lobesia botrana, Grapholita funebrana, G. molesta and Cydia pomonella. We examined the trapping data of these species in the context of lunar phases and polarized moonlight. Catches of the European Vine Moth (Lobesia botrana and the Codling Moth (Cydia pomonella were higher in the First Quarter, whereas catches of Peach Twig Borer (Anarsia lineatella, Vine Moth (Eupoecilia ambiguella, Plum Fruit Moth (Grapholita funebrana and Oriental Fruit Moth (Grapholita molesta were larger in the Last Quarter. Catches of the other two species, the Spotted Tentiform Leafminer (Phyllonorycter blancardella and Hawthorn Red Midget Moth (P. corylifoliella, were higher in both the First and Last Quarters. When using pheromone traps, insects do not fly to a light source, so moonlight does not modify either the catching distance or flight activity. However, at high levels of polarized moonlight, pheromone trap catches will increase, as in the case of light-trap catches. The results are comprehensible when one considers that the target species can fly both during the daytime and also at night.

  4. Effects of azadirachtin/Neemazal on different stages and adult life table parameters of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Saber, Moosa; Hejazi, Mir Jalil; Hassan, Sherif Ali

    2004-06-01

    The effects of azadirachtin/Neemazal on adults, emergence, and life table parameters of Trichogramma cacoeciae Marchal were studied. The adults were exposed to fresh residues of the insecticide applied on glass plates. Based on the dose-response study, the LC50 value was 1330 ppm or 13.3 microg (AI)/ml. The effect of Neemazal on three developmental stages of the parasitoid was tested by dipping parasitized Sitotroga cerealella (Olivier) and Cydia pomonella (L.) eggs at the field-recommended concentration 3, 6, and 9 d after parasitization corresponding to larval, prepupal, and pupal stages. The emergence of adult parasitoids was adversely affected in both hosts, but the adverse effect was more in S. cerealella eggs compared with C. pomonella. The adult emergence was reduced by 73.3 and 33.76% in Sitotroga and Cydia eggs compared with controls, respectively. Longevity and progeny production of the emergent adults did not differ significantly from control. Neemazal affected stable population parameters (r(m), T, and DT) significantly. The intrinsic rate of increase for the control and Neemazal-exposed populations was 0.340 and 0.335 female offspring per female per day, respectively. Because some of postemergence life table parameters of adults were significantly reduced by the insecticide treatment, emergence rate of the parasitoid from treated eggs is not an adequate measure of ecological selectivity, and field studies are needed to determine the actual impact of neem on T. cacoeciae. PMID:15279270

  5. Quantitative relationships between different injury factors and development of brown rot caused by Monilinia fructigena in integrated and organic apple orchards.

    Science.gov (United States)

    Holb, I J; Scherm, H

    2008-01-01

    In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C

  6. Investigating physiological methods to determine previous exposure of immature insects to ionizing radiation

    International Nuclear Information System (INIS)

    Effect of gamma radiation on phenoloxidase activity in codling moth, Cydia pomonella L., larvae was investigated. Phenoloxidase activity was determined spectrophotometrically by measuring the increase in optical density at 490 nm, or by observing the degree of melanization in larvae killed by freezing. Results showed that, in unirradiated larvae, phenoloxidase activity could be detected in 7 day old larvae and activity continued to increase throughout the larval stage. This increase was not observed when larvae were irradiated with a minimum dose of 50 Gy during the 1st week of their development. However, irradiating larvae in which enzyme activity was already high (24 week old) did not eliminate the activity but reduced further increase. Larval melanization studies were in general agreement with the results of the phenoloxidase assay. (author)

  7. Dicty_cDB: Contig-U08029-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 2e-05 1 ( ES599047 ) BPE00000503 Buddenbrockia plumatellae SMART cDNA ... 64 2e-05 1 ( AY763971 ) Globobulimina tur...tial act1 gene for actin... 50 1e-05 3 ( ES599114 ) BPE00000423 Buddenbrockia plumatellae SMART cDNA ... 64 ...( EH754565 ) CNSL13734.b1_L02.ab1 CNS(LMS) yellow starthistle ... 46 9e-05 2 ( FD411392 ) 1106514814545 Cryptosporidium muri...9 2e-61 AY524976_1( AY524976 |pid:none) Cydia pomonella actin gene, partia... 239 2e-61 AF228714_1( AF228714 |pid:none) Ictalur...gida clone GoA130_47s actin type... 32 6e-05 6 ( DQ017265 ) Orientobilharzia turkestanicum actin mRNA, compl

  8. Pharmacological analysis of feeding in a caterpillar: different transduction pathways for umami and saccharin?

    Science.gov (United States)

    Pszczolkowski, Maciej A.; Durden, Kevin; Marquis, Juleah; Ramaswamy, Sonny B.; Brown, John J.

    2009-05-01

    Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of l-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.

  9. Concept of integral protection of apple and pear

    Directory of Open Access Journals (Sweden)

    Veličković Milovan M.

    2015-01-01

    Full Text Available This paper implies current and economically significant diseases and pests of an apple and pear, i.e. problems of integral protection of these species of fruits in our country. Measures for their prevention are recommended regarding an adequate period. Special consideration is given to the diseases such as Venturia pyrina, Venturia inaequalis, Monilinia fructigena, Podosphaera leucotricha and Chondrostereum purpureum, as well as to pests such as Cydia pomonella, Cacopsylla pyri, Cacopsilla pyrisuga, Eryiophidae, Panonychus ulmi and Aphididae. The demand and importance of mass implementation of the concept of integral production in terms of obtaining biologically more valuable and ecologically safer fruits, i.e. preservation of the environment and health have been implied.

  10. SIT for codling moth eradication in British Columbia, Canada

    International Nuclear Information System (INIS)

    The codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae), is considered the key pest of apples and pears in the fruit growing regions of south central British Columbia. This region includes about 18,000 acres of commercial production, as well as several urban centres with abundant backyard fruit trees and ornamental crab apples. Now, after 30 years of research and planning, an eradication programme using the sterile insect technique (SIT) has been implemented against CM. This article reviews the progress that the programme has made and how well reality has met expectations in key areas. Proverbs (1982) and Proverbs et al. (1982) reviewed the techniques for mass rearing, sterilising and releasing CM, DeBiasio (1988) developed the initial implementation plan and Dyck et al. (1993) reviewed the history and development of the programme up to 1992 when it became operational

  11. Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).

    Science.gov (United States)

    Saber, Moosa

    2011-08-01

    One focus of integrated pest management (IPM) is the use of biological and chemical control in an optimal way. The availability of selective pesticides is important as is information about both lethal and sublethal effects of pesticides on biocontrol agents. Acute and sublethal effects of imidacloprid and fenpyroximate exposure were studied on adult stage of egg parasitoid Trichogramma cacoeciae Marchal and the emergence rate and life table parameters were determined. The adult wasps were exposed to field recommended concentration (FRC) of the pesticides on glass plates. Field rates of imidacloprid and fenpyroximate caused 100 and 32% adult mortality, respectively. Based on concentration-response experiments, the LC(50) values of imidacloprid and fenpyroximate were 6.25 and 1,949 ppm, respectively. The effect of imidacloprid and fenpyroximate on larvae, prepupae and pupae of the parasitoid was tested by exposing parasitized eggs of Sitotroga cerealella Olivier or Cydia pomonella L. to the FRC. Imidacloprid and fenpyroximate reduced adult emergence by 10.7 and 29%, respectively, when S. cerealella eggs were used as the host and 10.9 and 24.9%, respectively, when C. pomonella eggs were used as the host. Population parameters of emerged adults from treated pre-imaginal stages by FRC of the pesticides were also studied. The parameters were longevity and progeny production of emergent adults and also intrinsic rate of increase (r ( m )), generation time (T) and doubling time (DT). Longevity and progeny production of the emergent adults was not affected by pesticide exposure in comparison to the control. In addition, none of population parameters such as r ( m ), T and DT were affected by pesticide exposure. The intrinsic rate of increase for the control, fenpyroximate and imidacloprid exposed populations were 0.388, 0.374, and 0.372 female offspring per female per day, respectively. Overall, results of this study suggest a relative compatibility between fenpyroximate

  12. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. PMID:26331624

  13. Sequence and analysis of the mitochondrial DNA control region in the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Bravo

    2008-08-01

    Full Text Available This study aimed at the sequence and analysis of the mtDNA control region (CR of the Diatraea saccharalis. The genome PCR amplification was performed using the complementary primers to the flanking regions of Bombyx mori CR mitochondrial segment. The sequencing revealed that the amplified product was 568 bp long, which was smaller than that observed for B. mori (725 bp. Within the amplified segment, a sequence with 338 nucleotides was identified as the control region, which displayed a high AT content (93.5%. The D. saccharalis mtDNA CR multiple sequence alignment analysis showed that this region had high similarity with the Lepidoptera Cydia pomonella.A broca da cana, Diatraea saccharalis pertence à família dos lepidópteros. A presença da larva pode ser extremamente destrutiva, chegando a inviabilizar a atividade canavieira, causando prejuízos consideráveis à agroindústria sucro-alcooleira. Atualmente a broca da cana vem sendo extinta da plantação por métodos de controle biológico, entretanto a evolução desses programas depende de maiores conhecimentos básicos da biologia molecular deste inseto. O estudo do segmento do genoma mitocondrial denominado região controle é amplamente utilizado em análises genéticas e filogenéticas em insetos. O objetivo desse trabalho foi sequenciar e analisar a região controle do genoma mitocondrial de Diatraea saccharalis. Esse segmento apresentou 338 nucleotídeos, menor que o observado em Bombyx mori, com conteúdo de 93,5% de A/T. As analises realizadas mostraram que Diatraea saccharalis apresenta 76% de similaridade com Cydia pomonella.

  14. Report on the 4. Session of the Commission on Phytosanitary Measures, International Plant Protection Convention, FAO

    International Nuclear Information System (INIS)

    From March 30 to April 3, the Fourth Session of the Commission on Phytosanitary Measures (CPM) took place at FAO Headquarters in Rome, where the International Plant Protection Organization (IPPC) Secretariat is based. There were ca. 350 participants, including 109 out of 170 representatives of the Contracting Parties, regional plant protection organizations, specialized UN agencies and other international and regional institutions related to plant protection. During the meeting the CPM accepted to integrate the topic 'Establishment of Pest Free Places of Production and Pest Free Production Sites for Fruit Flies' into the recently drafted standard 'Systems Approaches for Pest Risk Management of Fruit Flies'. The following International Standards for Phytosanitary Measures (ISPM) were revised and adopted: 1) amendments to ISPM No. 5 'Glossary of Phytosanitary Terms' 2) appendix to ISPM No. 5 'Glossary of Phytosanitary Terms on Terminology of the Convention on Biological Diversity (CBD)' in relation to the 'Glossary of Phytosanitary Terms' 3) revision of ISPM No. 15 'Guidelines for Regulating Wood Packaging Material in International Trade' 4) adoption as annexes to ISPM No. 28 'Phytosanitary Treatments for Regulated Pests' of eight irradiation treatments: six related to several species of fruit flies (Anastrepha ludens, A. obiqua, A. serpentina, Bactrocera jarvisi, B. tryoni and Rhagoletis pomonella), one related to the codling moth (Cydia pomonella), and most importantly one dealing with the generic irradiation treatment for fruit flies of the family Tephritidae 5) new standard 'Categorization of Commodities According to their Pest Risk' (ISPM No 32). To see the complete list of the 32 ISPMs and download the documents in various languages, please visit the IPPC website at: www.ippc.int/IPP/En/default.jsp

  15. Histopathological Effects of the Protein Toxin from Xenorhabdus nematophila on the Midgut of Helicoverpa armigera

    Institute of Scientific and Technical Information of China (English)

    NANGONG Zi-yan; WANG Qin-ying; SONG Ping; YANG Jun; MAO Wen-jie

    2006-01-01

    Xenorhabdus nematophila HB310, which is highly virulent for many insects, is symbiotic with Steinernema carpocapsae HB310. Toxin Ⅱ was obtained using methods such as salting out and native-PAGE from the cells of X. Nematophila HB310. The histopathology of toxin Ⅱ on H. Armigera larvae was studied by dissecting an olefin slice of the midgut. The symptoms showed that the histopathology of the H. Armigera midgut was similar to that of other novel midgut-active toxins such as the δ-endotoxins from Bacillus thuringiensis, as well as Tca from Photorhabdus luminescens W14. The midgut tissues of H. Armigera fourth-instar larvae began to transform after the oral intake of the toxin Ⅱ over 6 h. First, the anterior region of the peritrophic membrane (PM) began to degrade followed by the elongation of the columnar cells.The epithelium decomposed gradually, and the midgut tissues were either loose or disordered. The PM disappeared after 12 h but reappeared after 72 h following transient or sublethal exposure to the toxin Ⅱ. Toxin Ⅱ also directly destroyed in vitro PMs of H. Armigera.

  16. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana.

    Science.gov (United States)

    Reddy, Gadi V P; Tangtrakulwanich, Khanobporn; Miller, John H; Ophus, Victoria L; Prewett, Julie

    2014-04-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), has recently emerged as a serious pest of canola (Brassica napus L.) in Montana. The adult beetles feed on canola leaves, causing many small holes that stunt growth and reduce yield. In 2013, damage to canola seedlings was high (approximately 80%) in many parts of Montana, evidence that when flea beetles emerge in large numbers, they can quickly destroy a young canola crop. In the current study, the effectiveness of several biopesticides was evaluated and compared with two insecticides (deltamethrin and bifenthrin) commonly used as foliar sprays as well as seed treatment with an imidacloprid insecticide for the control of P. cruciferae under field conditions in 2013. The biopesticides used included an entomopathogenic nematode (Steinernema carpocapsae), two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), neem, and petroleum spray oils. The control agents were delivered in combination or alone in a single or repeated applications at different times. The plant-derived compound neem (azadirachtin), petroleum spray oil, and fatty acids (M-Pede) only showed moderate effect, although they significantly reduced leaf injuries caused by P. cruciferae and resulted in higher canola yield than the untreated control. Combined use of B. bassiana and M. brunneum in two repeated applications and bifenthrin in five applications were most effective in reducing feeding injuries and improving yield levels at both trial locations. This indicates that entomopathogenic fungi are effective against P. cruciferae, and may serve as alternatives to conventional insecticides or seed treatments in managing this pest. PMID:24772547

  17. A novel approach to biocontrol: Release of live insect hosts pre-infected with entomopathogenic nematodes.

    Science.gov (United States)

    Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk

    2015-09-01

    As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. PMID:26149819

  18. Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae).

    Science.gov (United States)

    McKern, Jacquelyn A; Johnson, Donn T; Lewis, Barbara A

    2007-04-01

    This study explored the biology of raspberry crown borer, Pennisetia marginata (Harris) (Lepidoptera: Sesiidae), in Arkansas and the optimum timing for insecticide and nematode applications. The duration of P. marginata's life cycle was observed to be 1 yr in Arkansas. Insecticide trials revealed that bifenthrin, chlorpyrifos, imidacloprid, metaflumizone, and metofluthrin efficacy were comparable with that of azinphosmethyl, the only labeled insecticide for P. marginata in brambles until 2005. Applications on 23 October 2003 for plots treated with bifenthrin, chlorpyrifos, and azinphosmethyl resulted in >88% reduction in larvae per crown. Applications on 3 November 2004 of metaflumizone, metofluthrin, and bifenthrin resulted in >89% reduction in larvae per crown. Applications on 7 April 2005 for metofluthrin, imidacloprid, bifenthrin, metaflumizone, and benzoylphenyl urea resulted in >64% reduction in the number of larvae per crown. Applications on 6 May 2004 did not reduce larval numbers. The optimum timing for treatments was found to be between October and early April, before the larvae tunneled into the crowns of plants. Applying bifenthrin with as little as 468 liters water/ha (50 gal/acre) was found to be as effective against larvae as higher volumes of spray. Nematode applications were less successful than insecticides. Nematode applications of Steinernemafeltiae, Steinernema carpocapsae, and Heterorhabditis bacteriophora reduced larvae counts per plant by 46, 53, and 33%, respectively. PMID:17461064

  19. Attraction Behaviors of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) to Synthetic Volatiles Emitted by Insect Damaged Potato Tubers.

    Science.gov (United States)

    Laznik, Žiga; Trdan, Stanislav

    2016-04-01

    Entomopathogenic nematodes (EPNs) play a role in indirect defense of plants under attack by root herbivores. Several investigations have shown that EPNs are attracted or repelled by various volatile compounds (VOCs) released from insect damaged plant roots. We hypothesized that the directional responses of EPNs to the VOCs would be affected by foraging strategy and would vary among species, VOC type, and VOC concentrations. We tested the chemotactic responses of four commercial EPN species (Steinernema feltiae, S. carpocapsae, S. kraussei, and Heterorhabditis bacteriophora) to seven compounds released from insect (Melolontha hippocastani)-damaged (decanal, nonanal, octanal, undecane, 6-methyl-5-hepten-2-one, and 1,2,4-trimethylbenzene) and undamaged (2-ethyl-1-hexanol) potato tubers. Our results suggest that EPNs are able to distinguish herbivore-induced VOCs from those that are typical for healthy potato tubers. In our investigation, nonanal, octanal, and decanal had a greater influence on the movement of EPNs than other tested synthetic volatiles. Decanal was an attractant for H. bacteriophora and S. kraussei at both tested concentrations (as a pure compound and at a concentration of 0.03 ppm). The results suggest that the susceptibility to perception of chemical stimuli from the environment is a species-specific characteristic that prevails over the influence of the foraging strategy. PMID:27108451

  20. Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes Influencia de la temperatura y del tiempo de almacenaje sobre las reservas lipídicas de nemátodos entomopatógenos

    Directory of Open Access Journals (Sweden)

    VANESSA ANDALÓ

    2011-12-01

    Full Text Available Lipids represent the main source of energy in entomopathogenic nematodes. In the infective juvenile (IJ phase, the level of such reserves can be influenced by storage, and this may affect their infectivity. The aim of this study was to evaluate the percentage of lipids and the associated infectivity in IJs of Steinernema carpocapsae, S. riobrave, Heterorhabditis sp. JPM4, Heterorhabditis sp. CCA and Heterorhabditis sp. PI that had been stored under different temperatures (8-28°C for various times (0 to 180 days. The amounts of lipids present in IJs were evaluated histologically using a colorimetric method, while infectivity was assayed against Galleria mellonella larvae. Lipid levels diminished with increasing storage time for all nematodes, but the rates of decrease varied according to storage temperature and species. Lipid reserves were conserved for longer storage periods at 8, 16 and 20°C, while at 24 and 28°C the percentage of lipids decreased rapidly. The infectivities of IJs of Heterorhabditis spp. were less tolerant than those of Steinernema spp. to temperatures of 8, 24 and 28°C. Thus, while storage at 8°C was optimal for conserving lipid reserves, infectivity was best preserved at temperatures of 16 and 20°C gave rise to the least reduction in infectivities after 180 days of storage. In this way, lipids and infectivity are influenced by different storage temperatures for the species tested. These data are useful for greater success in using entomopathogenic nematodes as biocontrol agents.La principal fuente de energía de los nematodos entomopatógenos (NEP en su fase infectiva son los lípidos, el nivel de esas reservas puede estar influenciado por el almacenamiento e interferir en su infectividad. El objetivo de este trabajo fue evaluar el porcentaje de lípidos en juveniles infectantes (JI almacenados en diferentes temperaturas y asociar esto con su infectividad. Suspensiones de Steinernema carpocapsae, S. riobravis

  1. Unexpected variation in neuroanatomy among diverse nematode species

    Directory of Open Access Journals (Sweden)

    Ziduan eHan

    2016-01-01

    Full Text Available Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and Ascaris suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research, had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapse, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent

  2. Interspecific competition between entomopathogenic nematodes (Steinernema is modified by their bacterial symbionts (Xenorhabdus

    Directory of Open Access Journals (Sweden)

    Pages Sylvie

    2006-09-01

    Full Text Available Abstract Background Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i two nematode species: S. carpocapsae and S. scapterisci and (ii their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella. Three conditions of competition between nematodes were tested: (i infection of insects with aposymbiotic IJs (i.e. without symbiont of both species (ii infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts of both species. Results We found that both the progression and the outcome of interspecific competition between entomopathogenic nematodes were influenced by their bacterial symbionts. Thus, the results obtained with aposymbiotic nematodes were totally opposite to those obtained with symbiotic nematodes. Moreover, the experimental introduction of different ratios of Xenorhabdus symbionts in the insect-host during competition between Steinernema modified the proportion of

  3. Effects of four nematode species on fitness costs of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac.

    Science.gov (United States)

    Hannon, Eugene R; Sisterson, Mark S; Stock, S Patricia; Carrière, Yves; Tabashnik, Bruce E; Gassmann, Aaron J

    2010-10-01

    Evolution of resistance by pests can reduce the efficacy oftransgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt). In conjunction with refuges of non-Bt host plants, fitness costs can delay the evolution of resistance. Furthermore, fitness costs often vary with ecological conditions, suggesting that agricultural landscapes can be manipulated to magnify fitness costs and thereby prolong the efficacy of Bt crops. In the current study, we tested the effects of four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) on the magnitude and dominance of fitness costs of resistance to Bt toxin CrylAc in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). For more than a decade, field populations of pink bollworm in the United States have remained susceptible to Bt cotton Gossypium hirsutum L. producing CrylAc; however, we used laboratory strains that had a mixture of susceptible and resistant individuals. In laboratory experiments, dominant fitness costs were imposed by the nematode Steinernema riobrave Cabanillas, Poinar, and Raulston but no fitness costs were imposed by Steinernema carpocapsae Weiser, Steinernema sp. (ML18 strain), or Heterorhabditis sonorensis Stock, Rivera-Orduño, and Flores-Lara. In computer simulations, evolution of resistance to Cry1Ac by pink bollworm was substantially delayed by treating some non-Bt cotton refuge fields with nematodes that imposed a dominant fitness cost, similar to the cost observed in laboratory experiments with S. riobrave. Based on the results here and in related studies, we conclude that entomopathogenic nematodes could bolster insect resistance management, but the success of this approach will depend on selecting the appropriate species of nematode and environment, as fitness costs were magnified by only two of five species evaluated and also depended on environmental factors. PMID:21061986

  4. Transgenic approaches applied to the sterile insect technique of codling moth control%转基因在苹果蠹蛾不育昆虫释放技术中的应用

    Institute of Scientific and Technical Information of China (English)

    朱虹昱; 徐婧; 张润志

    2012-01-01

    使用不育昆虫释放技术是一项新兴的苹果蠹蛾Cydia pomonella(L.)防治方法,使用转基因得到不育雄蛾具有比传统辐射方法更多的优点.转基因技术通过使用基于piggyBac等转座子的质粒载体,并插入显性条件致死基因以培育遗传性别品系,同时插入荧光蛋白等标记基因来显示转基因的效果;在人工控制的发育条件,建立成熟的稳定苹果蠹蛾品系,用以最终的田间释放以达到防治的目的.%The sterile insect technique (SIT) is a relatively new approach to controlling the codling moth. Compared with the traditional irradiation method, the application of transgenic techniques is much better at producing sterile males. In addition to manual control of developmental conditions this involves using plasmid vectors based on the piggyBac transposon, inserting a dominant conditional lethal gene to culture genetic sexing strains and inserting marker genes such as fluorescent proteins to elucidate the efficacy of gene transfer.

  5. Field Trials of CpGV Virus Isolates Overcoming Resistance to CpGV-M

    Institute of Scientific and Technical Information of China (English)

    M. Berling; J. -B. Rey; S. -J. Ondet; Y. Tallot; O. Soubabère; A. Bonhomme; B. Sauphanor; M. Lopez-Ferber

    2009-01-01

    The Cydia pomonella granulovirus (CpGV) has been used for many years as biological agent for codling moth control in apple orchards. Resistance to the Mexican strain of CpGV was detected in orchards in Germany, France and Italy. A laboratory insect colony was started from insects collected in a French resistant orchard. It was named RGV. Various virus isolates were identified as active against this resistant insect colony. Field tests were carried out in 2007 to test if the two virus isolates CpGV-I12 and NPP-R1 were effective in the field. Although these virus isolates were not able to reduce insect caused fruit damages, they significantly reduced the overwintering insect populations. NPP-R1 was subjected to eight passages on RGV larvae (NPP-R1.8) that improved its biological activity on RGV larvae. 2008 field trials were set up to test this improved virus strain, compared to CpGV-I12 and Madex plus active on RGV. These tests confirmed the ability to control both in susceptible and resistant insect populations.

  6. ECONOMIC EFFICIENCY OF DIFFERENT PROTECTION TREATMENTS IN APPLE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Vesna Tomaš

    2015-06-01

    Full Text Available Apple is the most represented fruit species in Croatia. Codling moth, Cydia pomonella L, is one of the most important apple pests whose population is growing from year to year. The aim of this study was to determine the economic effectiveness of four treatments against codling moth (1 - based on baculovirus; 2 - based on the group of synthetic pyrethroid; 3 - based on kaolin, 4 - control treatment, on the three apple varieties. The experiment was performed at the Agricultural Institute Osijek, Croatia, during three years (2012-2014. In order to analyze the results of apple production it was necessary to calculate production efficiency, labor productivity, and profitability of production. The results of the research of economic efficiency according to market prices treatment 1 and treatment 2 had economic coefficient above 1 with tendency of significant growth, while treatment 3 and 4 were uneconomical. The treatment 1showed advantage over the treatment 2 because of its positive effects on human health and biodiversity, as well as satisfactory economic efficiency.

  7. Identification of irradiated apples for phytosanitary purposes

    Science.gov (United States)

    Horak, Celina I.; Di Giorgio, Marina; Kairiyama, Eulogia

    2009-07-01

    The irradiation treatment of fresh fruits and vegetables for phytosanitary purposes is a satisfactory alternative method to others like fumigation and cold and hot treatments. Its use is increasing in several countries, and at present its approval is under revision by the National Regulatory Authorities. To verify the control process, apart from irradiation and dosimetry certificates, National Authorities require complementary evidence to show the efficacy of this treatment, especially when the documentation is not clear. The irradiation of fresh fruits produces single and double fragmentation in the DNA molecule, which can be measured using the microgel electrophoresis of individual cell (comet assay). The purpose of this work was to evaluate if it is possible to identify the irradiated apples for phytosanitary purposes from the others that were not treated. The possibility to estimate the absorbed dose was also evaluated. The methodology was carried out on the cell suspension obtained from irradiated seed cells with incremental doses (100, 200 and 300 Gy). The irradiation treatment for phytosanitary purposes to avoid emergency of codling moth ( Cydia pomonella) is 200 Gy. The fragmentation produced in the irradiated samples was proportional with the incremental doses applied. These results show that with this methodology it can be determined if the apple was irradiated or not. This comet assay is a simple, economical and interesting method that can be used, in case of necessity, by the National Authorities.

  8. Cost-benefit trade-offs of bird activity in apple orchards

    Science.gov (United States)

    Saunders, Manu E.; Luck, Gary W.

    2016-01-01

    Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639

  9. Invertebrate Iridovirus Modulation of Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Trevor Williams; Nllesh S. Chitnis; Sh(a)n L. Bilimoria

    2009-01-01

    Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inh ibitor(SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana ceils. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 iap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.

  10. Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A. [Comision Nacional de Energia Atomica, Centro Atomico Ezeiza Presbitero Juan Gonzalez y Aragon No. 15, (B1802AYA) Ezeiza, Buenos Aires (Argentina); Kairiyama, E. [Comision Nacional de Energia Atomica, Centro Atomico Ezeiza Presbitero Juan Gonzalez y Aragon No. 15, (B1802AYA) Ezeiza, Buenos Aires (Argentina)], E-mail: kairiyam@cae.cnea.gov.ar

    2009-07-15

    Argentina produces 1.8 million tons/year of apples (Malus domestica L.) and pears (Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, (Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 deg. C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results)

  11. Investigating physiological methods to determine previous exposure of immature insects to ionizing radiation and estimating the exposure dose

    International Nuclear Information System (INIS)

    Effects of gamma radiation on pupation and adult emergence in mature (diapausing and non-diapausing) codling moth, Cydia pomonella L., larvae and on phenoloxidase activity in larvae killed by freezing were investigated. Results showed that, a dose of 50 Gy reduced adult emergence (and pupation) significantly and 200 Gy completely prevented it. Diapausing larvae were more susceptible to irradiation that non-diapausing larvae and female moths were more susceptible to irradiation injury than males. Phenoloxidase activity in codling moth larvae was determined spectrophotometrically by measuring the increase in optical density at 490 nm, or by observing the degree of melanization in larvae killed by freezing. Results showed that, in un-irradiated larvae, phenoloxidase activity can be detected in 7 day old larvae and activity continued to accumulate throughout the larval stage. This accumulation was not observed when larvae were irradiated with a minimum dose of 50 Gy during the 1st week of their development. However, irradiating larvae in which enzyme activity was already high (2-3 week old) did not remove activity but only reduced further accumulation. Larval melanization studies were in agreement with results of the phenoloxidase assay. (author)

  12. Study of the mechanism and possibilities of using F1 sterility for genetic control of codling moth

    International Nuclear Information System (INIS)

    A computer based model was developed to simulate the suppression through three filial generations of field populations of codling moths, Laspeyresia pomonella (L.), that have been exposed to the release of codling moths exposed to doses of gamma rays ranging from 1 to 500 Gy. The main purpose of the model is to select the optimal dose of radiation. The model runs on an IBM compatible computer. Numerous experiments were conducted to provide the experimental data required for the model. The model takes into account the fact that individual moths are affected in different ways by exposure to gamma rays. Some irradiated males mate and form spermatophore, while others fail to mate. Some males that form spermatophores fail to produce eupyrene sperm. These undesirable effects occur with increasing frequencies as the dose increases. Indeed, a high doses of radiation these negative effects are so great that the treated moths are totally non-competitive with the untreated moths. The release of F1 individuals has a number of advantages for the control of the codling moth. This approach involves the mass rearing and stockpiling of diapausing F1 larvae during the winter months. It facilitates the synchronization of the emergence and flight of genetically impaired individuals with the emergence and flight of the wild population. In addition, this approach facilitates the separation of the sexes and the release of only F1 males. The optimum dose for this approach was found to be 100 Gy. (author). 5 refs, 5 figs

  13. Identification of irradiated apples for phytosanitary purposes

    International Nuclear Information System (INIS)

    The irradiation treatment of fresh fruits and vegetables for phytosanitary purposes is a satisfactory alternative method to others like fumigation and cold and hot treatments. Its use is increasing in several countries, and at present its approval is under revision by the National Regulatory Authorities. To verify the control process, apart from irradiation and dosimetry certificates, National Authorities require complementary evidence to show the efficacy of this treatment, especially when the documentation is not clear. The irradiation of fresh fruits produces single and double fragmentation in the DNA molecule, which can be measured using the microgel electrophoresis of individual cell (comet assay). The purpose of this work was to evaluate if it is possible to identify the irradiated apples for phytosanitary purposes from the others that were not treated. The possibility to estimate the absorbed dose was also evaluated. The methodology was carried out on the cell suspension obtained from irradiated seed cells with incremental doses (100, 200 and 300 Gy). The irradiation treatment for phytosanitary purposes to avoid emergency of codling moth (Cydia pomonella) is 200 Gy. The fragmentation produced in the irradiated samples was proportional with the incremental doses applied. These results show that with this methodology it can be determined if the apple was irradiated or not. This comet assay is a simple, economical and interesting method that can be used, in case of necessity, by the National Authorities.

  14. Irradiation disinfestation of apple maggot (Diptera: Tephritidae) in hypoxic and low-temperature storage.

    Science.gov (United States)

    Hallman, Guy J

    2004-08-01

    Apple maggot, Rhagoletis pomonella (Walsh), is a quarantine pest of apples, Malus domestica Borkhausen, and pears, Pyrus communis L., shipped from much of the United States and Canada. As such, these fruits shipped from infested areas to uninfested areas must undergo a quarantine disinfestation treatment. The objective of this research was to develop irradiation quarantine treatments against apple maggot considering that fruit hosts may be stored under hypoxic or cold conditions when they are irradiated. Hypoxia increased from 30.5 to 35.7 Gy (17%) the estimated dose to achieve 99% prevention of the full pupal stage from irradiated third instars in apples compared with ambient atmospheres. However, 50 Gy completely prevented the full pupa in 22,360 and 15,530 third instars, respectively, irradiated in apples in ambient and hypoxic atmospheres. There was no difference in development to the full pupal stage in apple maggot third instars held at 1 or 24 degrees C when irradiated with 20 Gy. Because the maximum dose measured when 50 Gy was sought was 57 Gy, the latter should be the dose recommended for quarantine disinfestation of host fruits of the apple maggot. Apples and pears tolerate much higher doses. PMID:15384333

  15. Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance.

    Science.gov (United States)

    Nollet, Maxime; Mercé, Manuel; Laurichesse, Eric; Pezon, Annaïck; Soubabère, Olivier; Besse, Samantha; Schmitt, Véronique

    2016-03-30

    We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically. PMID:26936127

  16. Ability of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) to detoxify juglone, the main secondary metabolite of the non-host plant walnut.

    Science.gov (United States)

    Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia

    2011-10-01

    Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest. PMID:21901444

  17. Assessing the quality of mass-reared codling moths (Lepidoptera: tortricidae) by using field release-recapture tests

    International Nuclear Information System (INIS)

    Following small-scale field releases of sterile, mass-reared codling moths, Cydia pomonella (L.), in the spring of 1995, significantly higher numbers of adults originating from larvae that had been induced into diapause were recaptured in passive interception traps compared with standard (nondiapaused) colony moths reared under either constant or fluctuating temperatures. When releases were made in the summer, significantly more diapaused females were again recaptured and similar numbers of diapaused and fluctuating temperature-reared standard males were trapped. Our field data showed that both male and female codling moths dispersed farther as ambient temperatures increased. When standard and diapaused sterile codling moths were released into replicated 1-ha plots under large-scale Sterile Insect Release program conditions in the summer and fall of 1996 and the spring of 1997, the proportion of recaptured diapaused males was significantly higher than for standard (nondiapaused) moths. This was true for recapture of males with passive interception, pheromone-baited, and virgin female-baited traps

  18. Investigations on the use of the sterile male technique for the control of codling moth in an integrated pest control system

    International Nuclear Information System (INIS)

    The diapause of the codling moth, Laspeyresia pomonella L., was studied in relation to various altitudes of origin. Altitudes of 350 m and 1300 m above sea level showed that low-altitude moths had a longer diapause. Altitude appears to affect the duration of larval diapause. Biological control by virus-induced granulosis was investigated, using 3 to 4 applications of the virus per tree per season, at the rate of 2x1011 to 9x1011 virus capsules per application. Codling moth infestation was reduced by 74.2% to 88.2%. Trichomma enecator and Ascogaster quadridentatus Wesm., both parasites of the codling moth, were both colonized in the laboratory, and population dynamics are being studied. Copulatory behaviour in the males of A. quadridentatus is elicited primarily by pheromones produced by the female. Males emit some sounds which appear primarily intended to convey territorial rights to other males. The frequencies produced by males and by females differ. Codling moth odours stimulate females to oviposit. The effect of pesticides on parasitation is being studied. Details of a planned mass-rearing facility for lepidopteran and other pests are given

  19. Sterile insect technique in codling moth control

    International Nuclear Information System (INIS)

    Exposure of mature pupae or adult codling moths, Cydia pomonella (L.), to 30-40 krad of gamma radiation induces a high level of sterility in the male and complete sterility in the female without seriously affecting behaviour except for sperm competitiveness which is drastically reduced. Substerilizing doses (below about 25 krad) have very little adverse effect and induces higher level of sterility in the F1 male than in the irradiated male parent. The most satisfactory method of measuring the population density of native moths is by examining fruit for larval exit holes. Population increase per generation depends largely on evening temperatures during the moth's reproductive period. The codling moth is a sedentary species, and its distribution is very uneven in commercial orchards. Neglected host trees must be sprayed or destroyed to avoid reinfestation of sterile insect release orchards with immigrant moths. Laboratory-reared moths may be marked externally with fluorescent powders or internally with calco oil red without adverse effects. Mass rearing is still unreliable and expensive, and prolonged colonization affects the insects' behaviour. Successful codling moth suppression was achieved in North America and/or Europe by release of sterile males, sterile females or sterile mixed sexes; by substerile males; and by F1 male progeny (released as diapausing larvae) of substerile males X untreated females. Arthropod predators and parasites held aphids and spider mites at noninjurious levels in most insect release orchards, but leafrollers eventually built up to damaging numbers. The sterile insect technique for commercial control of the codling moth is not feasible at this time because of high costs. (author)

  20. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression.

    Science.gov (United States)

    Meyers, Peter J; Powell, Thomas H Q; Walden, Kimberly K O; Schieferecke, Adam J; Feder, Jeffrey L; Hahn, Daniel A; Robertson, Hugh M; Berlocher, Stewart H; Ragland, Gregory J

    2016-09-01

    The duration of dormancy regulates seasonal timing in many organisms and may be modulated by day length and temperature. Though photoperiodic modulation has been well studied, temperature modulation of dormancy has received less attention. Here, we leverage genetic variation in diapause in the apple maggot fly, Rhagoletis pomonella, to test whether gene expression during winter or following spring warming regulates diapause duration. We used RNAseq to compare transcript abundance during and after simulated winter between an apple-infesting population and a hawthorn-infesting population where the apple population ends pupal diapause earlier than the hawthorn-infesting population. Marked differences in transcription between the two populations during winter suggests that the 'early' apple population is developmentally advanced compared with the 'late' hawthorn population prior to spring warming, with transcripts participating in growth and developmental processes relatively up-regulated in apple pupae during the winter cold period. Thus, regulatory differences during winter ultimately drive phenological differences that manifest themselves in the following summer. Expression and polymorphism analysis identify candidate genes in the Wnt and insulin signaling pathways that contribute to population differences in seasonality. Both populations remained in diapause and displayed a pattern of up- and then down-regulation (or vice versa) of growth-related transcripts following warming, consistent with transcriptional repression. The ability to repress growth stimulated by permissive temperatures is likely critical to avoid mismatched phenology and excessive metabolic demand. Compared with diapause studies in other insects, our results suggest some overlap in candidate genes/pathways, though the timing and direction of changes in transcription are likely species specific. PMID:27312473

  1. Irradiation as a quarantine treatment of agricultural commodities against arthropod pests

    International Nuclear Information System (INIS)

    The purpose of quarantine treatments is to eliminate, as far as possible, the risks of introduction or establishment of exotic pests in countries or regions where they do not already occur. Treatments may be applied to host commodities traded commercially or carried by travellers. Ionizing radiation is very effective when used as a quarantine treatment to disinfest fresh, dried or processed fruits, grains and other plant materials. It is highly effective in killing or inactivating arthropod pests, leaves no residues, and at the low doses required it can be used on most commodities without affecting the quality. The most important single pest group of quarantine importance internationally is arguably fruit flies in fresh fruits and vegetables. More than thirty species of fruit flies are recognized as serious quarantine pests. Dose-mortality studies with irradiation have shown that doses of 75-150 Gy prevent adult emergence. At two Task Force Meetings on Irradiation as a Quarantine Treatment convened by the International Consultative Group on Food Irradiation, a generic dose of 150 Gy was recommended against any fruit, based on extensive research data for these pests. Most fruits are relatively unaffected by quarantine disinfestation treatments of 100-300 Gy but some, for example avocado, appear to be intolerant. Other pests of quarantine importance for which irradiation is an appropriate disinfestation treatment include certain moths (Lepidoptera), beetles (Coleoptera), bugs (Homoptera), flies (Diptera), thrips (Thysanoptera) and mites (Acarina). The Task Force Group also recommended that a generic treatment of 300 Gy, based on the inability to perpetuate the species, would be appropriate for any pest other than fruit fly. This was derived from extensive research on the codling moth, Cydia pomonella (L.), and the mango seed weevil, Sternochaetus mangiferae (Fabricius), with supporting results on eleven other pests from six orders. (author). 54 refs, 2 tabs

  2. New technology for mating disruption and prospects for integration with SIT: ExosexTM and ExolureTM

    International Nuclear Information System (INIS)

    Full text: The Exosex autoconfusion system has been successfully trialed against a variety of insect pests and is now registered for use in certain countries. It differs fundamentally from all other mating disruption systems by contaminating the target pest with electrostatically charged powder formulated with pheromone or other biologically active materials. The method requires only 25 dispensers and less than 100 mg of pheromone per hectare. The mode of action in disrupting mate location, courtship, and mating, may include a variety of effects, all of which contribute to the efficacy of management of the pest in question. The most important are believed to be the following: - False trail following: - Habituation; - Trail masking; - Sensory imbalance; - Inhibition of courtship; - Enhancement of predation and; - Delay of mating. Factors making Exosex autoconfusion such a uniquely powerful technology are demonstrated by the following calculations based on the threshold responsiveness of Cydia pomonella to pheromone. One particle of EntostatTM (wax) powder contains on average 67 femtograms (6.7 x 10 14 g) of formulated pheromone, and there are approximately 1.5 x 1010 particles per gram of powder. One particle resting on the antennae would theoretically release sufficient pheromone to induce habituation of responsiveness to pheromone. Approximately 1,800 particles would constitute an attractive source for a male moth in the field. Hence the contents of one Exosex dispenser are theoretically capable of contaminating around 1 billion male codling moths with enough pheromone to make them attractive sources to other males. The Exosect technology has also given rise to a highly efficient lure and kill method, in which slow-acting chemical insecticides or entomopathogens can be spread throughout a pest population by autodissemination. Both the mating disruption and lure and kill technologies are clearly compatible with SIT, and several new ideas will be presented

  3. Consultants Group Meeting on Improvement of Codling Moth SIT to Facilitate Expansion of Field Application. Working Material

    International Nuclear Information System (INIS)

    SIT currently has only limited application in Lepidoptera control. Prospects for improvement of the technique however are good, and the species with the best immediate prospect is the codling moth (Cydia pomonella). Codling moth is the key pest of most apple and pear orchards in the world and the cause of intensive insecticide use during the whole fruiting season. As a result of increasing development of insecticide resistance in codling moth, the banning of essential insecticides, as well as public concerns about the environment and food safety, the Subprogramme continues to receive enquiries from a number of countries as to the applicability of SIT as a suppression method for this species. SIT is currently used as part of areawide codling moth control in British Columbia, Canada and in the border area with Washington State, USA. The SIT can be integrated with a number of other techniques, including mating disruption as in the trial in Washington State. The Canadian programme is co-funded by growers, local and national government. The programme is proving effective at controlling the moth in an environmental friendly way. Currently the programme is only financially attractive with government subsidy although in view of the replacement of insecticide use with SIT, growers will be able to access the rapidly growing and very lucrative market for organic fruit. A new CRP is proposed with the objective of improving the efficiency of all stages of the SIT for codling moth. This will cover reducing the cost of production, product and process quality control, genetic sexing, strain compatibility and field monitoring among others.

  4. A conserved odorant receptor detects the same 1-indanone analogs in a tortricid and a noctuid moth

    Directory of Open Access Journals (Sweden)

    Francisco eGonzalez

    2015-11-01

    Full Text Available Odorant receptors (ORs interface animals with airborne chemical signals. They are under strong selection pressure and are therefore highly divergent in different taxa. Yet, some OR orthologs are highly conserved. These ORs may be tuned to odorants of broad importance, across species boundaries. Two widely distributed lepidopteran herbivores, codling moth Cydia pomonella (Tortricidae feeding in apples and pears, and the African cotton leafworm Spodoptera littoralis (Noctuidae, a moth feeding on foliage of a wide range of herbaceous plants, both express a receptor ortholog, OR19, which shares 58% amino acid identity and 69% amino acid similarity. Following heterologous expression in the empty neuron system of Drosophila melanogaster, we show by single sensillum recordings that CpomOR19 and SlitOR19 show similar affinity to several substituted indanes. Tests with a series of compounds structurally related to 1-indanone show that 2-methyl-1-indanone, 2-ethyl-1-indanone, 3-methyl-1-indanone and 1-indanone elicit a strong response from both ORs. A keto group in position 1 is essential for biological activity and so are both rings of the indane skeleton. However, there is an important difference in steric complementary of the indane rings and the receptor. Methyl substituents on the benzene ring largely suppressed the response. On the other hand, alkyl substituents at position 2 and 3 of the five-membered ring increased the response indicating a higher complementarity with the receptor cavity, in both CpomOR19 and SlitOR19. Our results demonstrate a conserved function of an odorant receptor in two moths that are phylogenetically and ecologically distant. It is conceivable that a conserved OR is tuned to signals that are relevant for both species, although their ecological roles are yet unknown. Our finding demonstrates that functional characterization of ORs leads to the discovery of novel semiochemicals that have not yet been found through chemical

  5. Life stage toxicity and residual activity of insecticides to codling moth and oriental fruit moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Magalhaes, Leonardo C; Walgenbach, James F

    2011-12-01

    The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs. PMID:22299357

  6. Quality of 'Brightwell' and 'Tifblue' blueberries after gamma irradiation for quarantine treatment

    International Nuclear Information System (INIS)

    Blueberries must be subjected to a quarantine treatment of methyl bromide fumigation when shipped to certain domestic or export markets. The principle insects that inhibit distribution of blueberries are the apple maggot [Rhagoletis pomonella (Walsh)], blueberry maggot (R. mendax Curran), and plum curculio [Conotrachelus nenuphar (Herbst)]. Methyl bromide fumigation is the only approved quarantine treatment for blueberries and it is scheduled to be phased out by the year 2001. Highbush blueberries’ tolerance to low-dose irradiation is cultivar-dependent (Eaton et al., 1970). Two main cultivars grown in Florida, ‘Climax’ and ‘Sharpblue’, will tolerate irradiation up to 0.75 kGy without loss of fruit market quality (Miller et al., 1994a, 1994b, 1995). A 1.0-kGy dose is the maximum allowed (U.S. Food and Drug Administration, 1986) for treatment of fresh fruit or vegetables, and reportedly (personal communications, J. Sharp and G. Hallman) »0.3 kGy is sufficient for control of blueberry insects requiring quarantine certification. Two or three times the minimum dose may, however, be required to assure that the minimum dose is absorbed by all berries during commercial application. Therefore, it is most important to determine the tolerance of berries to irradiation stress. The purpose of this research was to determine the effects of low-dose irradiation on the quality and condition of ‘Brightwell’ and ‘Tifblue’, two major rabbiteye cultivars grown in Georgia. The data were subjected to analysis of variance (P £ 0.05) on a split-block experimental design, with harvest dates for ‘Brightwell’, and randomized sample sets as replications for ‘Tifblue’ berries. The data were tested for the main effect of irradiation dosage on quality attributes

  7. Optimizing use of codling moth granulovirus: effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards.

    Science.gov (United States)

    Arthurs, S P; Lacey, L A; Fritts, R

    2005-10-01

    New formulations of the codling moth, Cydia pomonella (L.), granulovirus (CpGV) [family Baculoviridae, genus Granulovirus] are commercially available in North America. In field tests on apple (Malus sp. 'Delicious'), we compared different application strategies for CpGV (Cyd-X, Certis USA, Clovis, CA) used in full-season programs against high pest populations. In replicated single tree plots, three rates (0.073, 0.219, and 0.438 liter ha(-1)) and application intervals (7, 10, and 14 d) killed 81-99% of larvae in fruit and reduced the number of mature larvae recovered in tree bands by 54-98%. Although the proportion of deep entries declined by 77-98%, the amount of fruit injury was not reduced compared with controls. There was a statistical trend between increasing dosage and spray frequency intervals and virus effectiveness, but no interaction between these factors. In a commercial orchard, we assessed a standard (0.219 liter ha(-1)) and two reduced rates of the virus (0.146 and 0.073 liter ha(-1)) applied in a weekly spray program in replicated 0.2-ha blocks. In the first generation, fruit injury was reduced in virus-treated compared with three untreated blocks although the decrease was only significant at the standard rate. Mortality rates of larvae (in fruit) were > or =90%, dose dependent, and comparable with rates observed from individual trees sprayed with equivalent treatments in the previous study. Rates of larval mortality declined at all dosages (81-85%) in the first part of the second generation. Most damage and proportionally less mortality occurred in the upper canopy. High pest pressures and untreated blocks contributed to significant damage and the study was terminated early. These data suggest virus programs can be tailored according to the localized pest pressure, but it may not prevent economic damage in high-pressure situations. PMID:16334311

  8. Incorporation of diapause into codling moth mass rearing: Production advantages and insect quality issues

    International Nuclear Information System (INIS)

    The codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae) is a widely distributed species and the key pest of apples and pears in orchards of the Pacific Northwest. CM possesses facultative diapause and the mature 5th instar larva is the overwintering stage (Brown 1991). British Columbia, Canada, is attempting to eradicate CM using the sterile insect technique (SIT). The Okanagan-Kootenay Sterile Insect Release (SIR) Program began releasing sterile CM in 1994 (Dyck et al. 1993, Bloem and Bloem 1996) and results in recent years have been excellent. Despite the fact that standard rearing operations have gone extremely well, and weekly CM production has increased from 8.7 million CM per week in 1994 to 14.2 million per week in 1997, the ability to mass rear diapausing CM holds a number of advantages that are currently not available. The ability to stockpile CM larvae in diapause throughout the fall and winter months when the mass rearing facility is underutilised would: 1) provide additional CM for release during the spring/summer field season, 2) provide back-up material to guard against colony losses due to operational failures and/or pathogen outbreaks, 3) allow for a potentially more cost-effective use of the facility by maintaining production year round, 4) facilitate the development of mass rearing techniques for key parasitoids that attack the overwintering stage, 5) allow for the easy shipment (and sale) of CM to researchers around the world. Here we outline the current standard CM mass rearing procedures and discuss research that has allowed diapausing CM to be mass reared (Bloem et al. 1997). We also discuss research that suggests diapaused CM are more competitive than standard non-diapaused CM (Bloem et al. 1998)

  9. 苹果蠹蛾不育昆虫释放技术研究进展%Advances in the sterile insect technique for controlling codling moth

    Institute of Scientific and Technical Information of China (English)

    刘伟; 徐婧; 张润志

    2012-01-01

    The sterile insect technique ( SIT) involves the mass release of sterile insects to reduce fertility of wild populations of the same species. The codling moth is a major global pest of apple and pear crops that has invaded 71 countries and 5 continents. In this paper, advances in mass rearing, sterilization and the release of sterile insects for codling moth control are introduced, including artificial diet, population construction, rearing facilities and conditions, adult collection and quality control, long distance transport, sterilization source and equipment, radiation sensitivity, release method, marking and saturation rate. The effectiveness of SIT in countries that have used this technique is reviewed. The codling moth had now been found in Xinjiang, Gansu, Ningxia, Inner Mongolia, Heilongjiang, Jilin and poses a serious threat to China' s fruit industry. The introduction of SIT' s to China is therefore both timely and important.%不育昆虫释放技术(sterile insect technique,SIT)是一种环境友好、可作为大面积害虫综合治理(AW-IPM)的防治技术,是以压倒性比例释放不育昆虫来减少田间同种害虫繁殖量的害虫治理方法.苹果蠹蛾Cydia pomonella(L.)是世界重要的梨果类害虫,现已入侵世界5洲71国.本文综述了苹果蠹蛾大规模饲养技术、辐射不育技术、释放技术3个关键环节的研究与技术进展,主要包括:苹果蠹蛾人工饲料、实验种群建立、饲养设备与条件、收集和质量评估、长距离运输、辐射源与设备、辐射剂量与敏感性、释放方法、释放标记和释放量等,并介绍了各国采用SIT技术的应用效果.苹果蠹蛾在我国新疆、甘肃、宁夏、内蒙、黑龙江、吉林6个省区发现,对我国苹果产业安全生产构成严重威胁,我国很有必要引进并建立苹果蠹蛾SIT防治技术体系.

  10. Estimation of the change in the harmfulness of selected pests in expected climate - European area

    Science.gov (United States)

    Svobodova, E.; Trnka, M.; Zalud, Z.; Semeradova, D.; Dubrovsky, M.; Sefrova, H.

    2010-09-01

    Climate change is likely to be a dominant factor affecting the lifecycle and overall occurrence of pest's species whose development is directly linked with climate conditions. This study is focused on the estimation of the potential occurrence and generation growth of selected pests causing the significant damages on the yield of crops over western part of Europe in changing climate. Modelled species involved the main pest of potato Colorado potato beetle (Leptinotarsa decemlineata, Say 1824), the pest of maize European corn borer (Ostrinia nubilalis, Hubner 1796), the pest which causes the damages in orchards and decreases the yield of apples, Codling moth (Cydia pomonella, Linnaeus 1758) and Cereal leaf beetle (Oulema melanopus, Linnaeus 1758) seriously affecting wheat production. The development of these pests' is driven mainly by temperature of the environment, which is in turn function of air temperature. The climate change is likely to lead to an earlier once and prolongation of the growing season and in the same time accelerate pests' developmental rate and will increase number of generations. Estimates of potential distribution of selected pest species for the present as well as expected climate conditions are based on the dynamical model CLIMEX. This approach exploits the expression of the overall climate suitability for the species longterm survival in terms of ecoclimatic index. The CLIMEX model was at first validated with observed data of pests' occurrences using CRU 10´ climate data set a source of climate data. All pest models listed were then used to study the effects of climate change on pests by estimating changes in population dynamics and/or infestation pressure during the first half of the 21st century. Outputs of the models were applied within the European scale in the 10´ resolution using digital terrain model. Simulations of the impacts of expected climate on the pests distribution were conducted under three global circulation models (Had

  11. Area-wide population suppression of codling moth

    International Nuclear Information System (INIS)

    The area-wide pest population control concept began with E.F. Knipling (1979) in the 1970s. Control of a pest population on individual fields does little to control the overall pest population because only a portion of the population is being affected. Expanding control tactics beyond individual farms tends to suppress the population on a wider scale and frequently results in suppression of the population for more than one year. The Agriculture Research Service (ARS) believes that this concept has not been addressed with the focus and support that it deserves. The ARS Administration made a conscious decision in 1994 to create a series of area-wide programmes funded out of ARS-based funds that had previously been used for pilot tests. These programmes involve a coordinated effort among ARS and university scientists, growers, and fieldmen for agriculture supply centres and fruit packing houses. The first area-wide programme supported by ARS was the codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae) suppression programme. The codling moth is the key pest of pome fruit throughout the western United States (Beers et al. 1993). About half of the insecticides applied on these crops are directed toward this pest. A non-insecticidal control technique, mating disruption (MD), is available to replace the organophosphates. Removal of the hard pesticides directed against this pest would do the most to allow natural enemies to survive and reproduce in the orchards, which in turn would have the effect of reducing secondary pests. Elimination of the pesticides would also remove much of the health risks to workers and would minimise buildup of pesticide resistance. The objectives of the Codling Moth Area-wide Program are to enhance the efficacy of the non-pesticide approach, to demonstrate that mating disruption will work if conducted properly, to develop biological technology to lower costs of control that complement mating disruption, to implement effective

  12. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  13. History of the sterile insect technique

    International Nuclear Information System (INIS)

    During the 1930s and 1940s the idea of releasing insects of pest species to introduce sterility (sterile insect technique or SIT) into wild populations, and thus control them, was independently conceived in three extremely diverse intellectual environments. The key researchers were A. S. Serebrovskii at Moscow State University, F. L. Vanderplank at a tsetse field research station in rural Tanganyika (now Tanzania), and E. F. Knipling of the United States Department of Agriculture. Serebrovskii's work on chromosomal translocations for pest population suppression could not succeed in the catastrophic conditions in the USSR during World War II, after which he died. Vanderplank used hybrid sterility to suppress a tsetse population in a large field experiment, but lacked the resources to develop this method further. Knipling and his team exploited H. J. Muller's discovery that ionizing radiation can induce dominant lethal mutations, and after World War II this approach was applied on an area-wide basis to eradicate the New World screwworm Cochliomyia hominivorax (Coquerel) in the USA, Mexico, and Central America. Since then very effective programmes integrating the SIT have been mounted against tropical fruit flies, some species of tsetse flies Glossina spp., the pink bollworm Pectinophora gossypiella (Saunders), and the codling moth Cydia pomonella (L.). In non-isolated onion fields in the Netherlands, the onion maggot Delia antiqua (Meigen) has since 1981 been suppressed by the SIT. In the 1970s there was much research conducted on mosquito SIT, which then went into 'eclipse', but now appears to be reviving. Development of the SIT for use against the boll weevil Anthonomus grandis grandis Boheman and the gypsy moth Lymantria dispar (L.) has ended, but it is in progress for two sweetpotato weevil species, Cylas formicarius (F.) and Euscepes postfasciatus (Fairmaire), the false codling moth Cryptophlebia leucotreta (Meyrick), the carob moth Ectomyelois ceratoniae

  14. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae).

    Science.gov (United States)

    Zhang, Sufang; Zhang, Zhen; Wang, Hongbin; Kong, Xiangbo

    2014-09-01

    The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were

  15. Management of lepidopterans through irradiations

    International Nuclear Information System (INIS)

    suppression by irradiation include Spodoptera litura, S.exigua, S.frugiperda, Helicoverpa armigera, H.zea, Pectinophora gossypiella, Diatraea saccharalis, Cydia pomonella, C.molesta, Ectomyelois ceratoniae, Ephestia kuehniella, Crocidolomia binotalis, Chilo suppressalis, Ostrinia furnacalis, O.nubilalis, Plutella xylostella and Spilosoma obliqua. (author)

  16. Mortalidade do ácaro predador Neoseiulus californicus (Acari: Phytoseiidae em testes de toxicidade residual de inseticidas e acaricidas usuais em pomáceas Mortality of predatory mite Neoseiulus californicus (Acari: Phytoseiidae in residual toxicity persistence tests

    Directory of Open Access Journals (Sweden)

    Marcelo Gustavo Ruiz

    2008-12-01

    . Azimphos-methyl foi o produto que menos afetou a sobrevivência do ácaro predador. Os inseticidas testados, usados na região do "Alto Valle del Río Negro y Neuquén" para o controle de Cydia pomonella, praga-chave das culturas de pomáceas, apresentaram baixa toxicidade sobre N. californicus.Phytoseiid mites, mainly Neoseiulus californicus (McGregor, are important biological control agents of Tetranychidae pest mites in pip fruit crops in the region known as "Alto Valle del Río Negro y Neuquén", Argentina. We assessed the mortality of N. californicus when exposed to residues of the insecticides azimphos-methyl, carbaryl and cyfluthrin, as well as the acaricides cyhexatin and propargite. Pear plants were sprayed up to dip-point with pesticides in their recommended label concentrations. One, 3, 6 and 10 days after application (DAA, leaves were collected from treated plants and used to establish experimental arenas. Five adult laboratory-reared N. californicus specimens were transferred into each arena which contained Southern cattail pollen as food source. Experimental arenas were kept at 25 ± 2 ºC, 60 ± 10% RH and a photoperiod of 14 hours. Mite mortality was assessed 24 hours after the confinement. The completely randomized design was adopted for data statistical analysis, mortality means were compared by Dunnett's test (p < 0.05. Progression of pesticide's effect decline was submitted to regression analysis. On 1 and 3 DAA mean mortality in all of the treatments was significantly different from that of the water-treated control. On the sixth DAA, propargite, cyhexatin and cyfluthrin treatments caused about 30% mortality, while mortality levels in treatments with azimphos-methyl and carbaryl were statistically similar to that of control treatment. On the tenth DAA, mortality in none of the pesticide treatments differed from that of control. All of the pesticide treatments presented progressive decline throughout the experimental period, being significant (p < 0

  17. Privatising an SIT programme: A conflict between business and technology?

    International Nuclear Information System (INIS)

    Full text: A programme to suppress Mediterranean fruit fly, Ceratitis capitata, using the Sterile Insect Technique (SIT) has been in operation in South Africa since 1999. After a difficult start, the Hex River Valley SIT Pilot Project over 10,000 ha of table grapes has been regarded as a success. Two other fruit production areas have since joined the fruit fly SIT programme, and other areas are showing strong interest. There is wide acceptance in the fruit industry that SIT suppression, and more particularly the eventual development of fruit fly-free areas, are essential to remain competitive on the international fruit export market. In the meantime, pilot projects for two key fruit pests, codling moth (Cydia pomonella) and false codling moth (Cryptophlebia leucotreta), have recently started. Due to the reluctance of national or provincial Government to assume responsibility for the SIT programme, and in the absence of capital investment, economic realities ultimately compelled the fruit fly SIT programme to privatise its mass-rearing and release operations in 2003. SIT Africa (Pty) Ltd thereby became the first commercial medfly SIT company in the world, albeit a small one. This action, at a time when the existence of the entire SIT programme was seriously threatened, probably saved the programme from an early demise. However, economic forces associated with the successful management of a commercial business pose a risk to the long-term success and expansion of SIT in South Africa. Some of the dilemmas facing the commercialised programme include the following: - The need for the company to maximise sales of sterile flies in order to ensure a positive cashflow is potentially in conflict with, and at the expense of, what is best for the SIT technology - The deciduous fruit industry is in an economic crisis, making it difficult to persuade growers to adopt a new and little-known technology, that may initially be more expensive - Growers in different production areas

  18. Transgenic approaches to a non-transgenic release of sterile male Lepidoptera

    International Nuclear Information System (INIS)

    Successful implementation of the Sterile Insect Technique (SIT) against codling moth, Cydia pomonella (L.) (Tortricidae), in British Columbia, Canada, resulted in demands for the expansion of codling moth SIT and a related suppression strategy, radiation-induced inherited sterility (IS), in other countries. In the current SIT programme, both sterile males and females are released to control the pest population. There are compelling reasons to believe that both codling moth SIT and IS would benefit if efficient ways could be found to produce and release only males. Recently, a new scheme for genetic sexing in Lepidoptera has been proposed. The scheme is based on the construction of transgenic females carrying a dominant conditional lethal gene in the female-determining chromosome W. Following this scheme we intend to develop transgenic sexing strains in the codling moth. This requires basic knowledge of codling moth genome and appropriate molecular tools for codling moth transgenesis. We performed a detailed analysis of codling moth karyotype with a particular focus on the identification and characterization of sex chromosomes. Here we summarize our data on codling moth cytogenetics and discuss the potential of codling moth sex chromosomes for their use in developing transgenic sexing strains. The karyotype of codling moth consists of 2n=56 chromosomes, which can be classified into five groups according to their sizes: extra large (3 pairs), large (3 pairs), medium (15 pairs), small (5 pairs), and dot-like (2 pairs). Females are heterogametic with a W-Z sex chromosome pair, males are homogametic with two Z chromosomes. The W and Z chromosomes represent the two largest elements in female chromosome complements. While the Z is composed of euchromatin and resembles to autosomes, the W consists largely of heterochromatin. For successful development of transgenic sexing strains in the codling moth, it is required to insert a conditional dominant lethal mutation (a

  19. Codling moth tans-hemisferic compatibility studies and effect of long-distance airfreighting on adult longevity and mating

    International Nuclear Information System (INIS)

    Full text: The codling moth (CM), Cydia pomonella (L.), is the key pest in pome fruit orchards in South Africa. Approximately 50 % of the pome fruit production area in this country is under a combination of mating disruption and insecticides. Despite the increased use of mating disruption, this technology is not employed in a true area-wide fashion and results have been variable. Consequently producers still rely almost exclusively on an organophosphate programme to control CM. The negative impact of insecticides on the environment coupled with increasing global incidence of CM resistance has necessitated the development of more environmentally friendly products and sustainable control technologies against this pest. The Sterile Insect Technique (SIT) has been successfully applied against CM in British Columbia since 1992. The mass-rearing facility located in Osoyoos, BC produces between 14-16 million moths per week. Due to the seasonality of this pest, the facility in Canada is only fully utilised for part of the year. The time and expense of implementing SIT against CM in South Africa would be substantially reduced if CM produced in Canada were found to be fully compatible with South African CM. In addition, because the pome fruit-growing season in both countries is opposite, the programme in Canada would benefit by maintaining CM production year-round and selling the CM to South Africa to use in SIT. Studies were conducted in small cages in the laboratory and in an unsprayed apple orchard in October 2003 to examine the mating compatibility of CM from Canada and South Africa. In addition during 2004, four shipments of CM adults and pupae were made through normal airfreighting services and insects were assessed for their longevity and mating ability upon their arrival in South Africa. The results from the small cage study suggest that Canadian CM males were equally attracted to calling Canadian and South African CM females despite the fact that Canadian CM had had

  20. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2011-08-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland

  1. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern